1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/AST/UnresolvedSet.h" 39 #include "clang/Basic/AddressSpaces.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/IdentifierTable.h" 43 #include "clang/Basic/LLVM.h" 44 #include "clang/Basic/LangOptions.h" 45 #include "clang/Basic/OpenCLOptions.h" 46 #include "clang/Basic/OperatorKinds.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/SourceLocation.h" 49 #include "clang/Basic/SourceManager.h" 50 #include "clang/Basic/Specifiers.h" 51 #include "clang/Basic/SyncScope.h" 52 #include "clang/Basic/TargetBuiltins.h" 53 #include "clang/Basic/TargetCXXABI.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "clang/Basic/TypeTraits.h" 56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 57 #include "clang/Sema/Initialization.h" 58 #include "clang/Sema/Lookup.h" 59 #include "clang/Sema/Ownership.h" 60 #include "clang/Sema/Scope.h" 61 #include "clang/Sema/ScopeInfo.h" 62 #include "clang/Sema/Sema.h" 63 #include "clang/Sema/SemaInternal.h" 64 #include "llvm/ADT/APFloat.h" 65 #include "llvm/ADT/APInt.h" 66 #include "llvm/ADT/APSInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/FoldingSet.h" 70 #include "llvm/ADT/None.h" 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallBitVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallString.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/ADT/StringSet.h" 79 #include "llvm/ADT/StringSwitch.h" 80 #include "llvm/ADT/Triple.h" 81 #include "llvm/Support/AtomicOrdering.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/ConvertUTF.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/Locale.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/SaveAndRestore.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 #include <bitset> 93 #include <cassert> 94 #include <cctype> 95 #include <cstddef> 96 #include <cstdint> 97 #include <functional> 98 #include <limits> 99 #include <string> 100 #include <tuple> 101 #include <utility> 102 103 using namespace clang; 104 using namespace sema; 105 106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 107 unsigned ByteNo) const { 108 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 109 Context.getTargetInfo()); 110 } 111 112 /// Checks that a call expression's argument count is the desired number. 113 /// This is useful when doing custom type-checking. Returns true on error. 114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 115 unsigned argCount = call->getNumArgs(); 116 if (argCount == desiredArgCount) return false; 117 118 if (argCount < desiredArgCount) 119 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 120 << 0 /*function call*/ << desiredArgCount << argCount 121 << call->getSourceRange(); 122 123 // Highlight all the excess arguments. 124 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 125 call->getArg(argCount - 1)->getEndLoc()); 126 127 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 128 << 0 /*function call*/ << desiredArgCount << argCount 129 << call->getArg(1)->getSourceRange(); 130 } 131 132 /// Check that the first argument to __builtin_annotation is an integer 133 /// and the second argument is a non-wide string literal. 134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 135 if (checkArgCount(S, TheCall, 2)) 136 return true; 137 138 // First argument should be an integer. 139 Expr *ValArg = TheCall->getArg(0); 140 QualType Ty = ValArg->getType(); 141 if (!Ty->isIntegerType()) { 142 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 143 << ValArg->getSourceRange(); 144 return true; 145 } 146 147 // Second argument should be a constant string. 148 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 149 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 150 if (!Literal || !Literal->isAscii()) { 151 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 152 << StrArg->getSourceRange(); 153 return true; 154 } 155 156 TheCall->setType(Ty); 157 return false; 158 } 159 160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 161 // We need at least one argument. 162 if (TheCall->getNumArgs() < 1) { 163 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 164 << 0 << 1 << TheCall->getNumArgs() 165 << TheCall->getCallee()->getSourceRange(); 166 return true; 167 } 168 169 // All arguments should be wide string literals. 170 for (Expr *Arg : TheCall->arguments()) { 171 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 172 if (!Literal || !Literal->isWide()) { 173 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 174 << Arg->getSourceRange(); 175 return true; 176 } 177 } 178 179 return false; 180 } 181 182 /// Check that the argument to __builtin_addressof is a glvalue, and set the 183 /// result type to the corresponding pointer type. 184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 185 if (checkArgCount(S, TheCall, 1)) 186 return true; 187 188 ExprResult Arg(TheCall->getArg(0)); 189 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 190 if (ResultType.isNull()) 191 return true; 192 193 TheCall->setArg(0, Arg.get()); 194 TheCall->setType(ResultType); 195 return false; 196 } 197 198 /// Check that the argument to __builtin_function_start is a function. 199 static bool SemaBuiltinFunctionStart(Sema &S, CallExpr *TheCall) { 200 if (checkArgCount(S, TheCall, 1)) 201 return true; 202 203 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 204 if (Arg.isInvalid()) 205 return true; 206 207 TheCall->setArg(0, Arg.get()); 208 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>( 209 Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext())); 210 211 if (!FD) { 212 S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type) 213 << TheCall->getSourceRange(); 214 return true; 215 } 216 217 return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 218 TheCall->getBeginLoc()); 219 } 220 221 /// Check the number of arguments and set the result type to 222 /// the argument type. 223 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 224 if (checkArgCount(S, TheCall, 1)) 225 return true; 226 227 TheCall->setType(TheCall->getArg(0)->getType()); 228 return false; 229 } 230 231 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 232 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 233 /// type (but not a function pointer) and that the alignment is a power-of-two. 234 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 235 if (checkArgCount(S, TheCall, 2)) 236 return true; 237 238 clang::Expr *Source = TheCall->getArg(0); 239 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 240 241 auto IsValidIntegerType = [](QualType Ty) { 242 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 243 }; 244 QualType SrcTy = Source->getType(); 245 // We should also be able to use it with arrays (but not functions!). 246 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 247 SrcTy = S.Context.getDecayedType(SrcTy); 248 } 249 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 250 SrcTy->isFunctionPointerType()) { 251 // FIXME: this is not quite the right error message since we don't allow 252 // floating point types, or member pointers. 253 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 254 << SrcTy; 255 return true; 256 } 257 258 clang::Expr *AlignOp = TheCall->getArg(1); 259 if (!IsValidIntegerType(AlignOp->getType())) { 260 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 261 << AlignOp->getType(); 262 return true; 263 } 264 Expr::EvalResult AlignResult; 265 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 266 // We can't check validity of alignment if it is value dependent. 267 if (!AlignOp->isValueDependent() && 268 AlignOp->EvaluateAsInt(AlignResult, S.Context, 269 Expr::SE_AllowSideEffects)) { 270 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 271 llvm::APSInt MaxValue( 272 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 273 if (AlignValue < 1) { 274 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 275 return true; 276 } 277 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 278 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 279 << toString(MaxValue, 10); 280 return true; 281 } 282 if (!AlignValue.isPowerOf2()) { 283 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 284 return true; 285 } 286 if (AlignValue == 1) { 287 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 288 << IsBooleanAlignBuiltin; 289 } 290 } 291 292 ExprResult SrcArg = S.PerformCopyInitialization( 293 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 294 SourceLocation(), Source); 295 if (SrcArg.isInvalid()) 296 return true; 297 TheCall->setArg(0, SrcArg.get()); 298 ExprResult AlignArg = 299 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 300 S.Context, AlignOp->getType(), false), 301 SourceLocation(), AlignOp); 302 if (AlignArg.isInvalid()) 303 return true; 304 TheCall->setArg(1, AlignArg.get()); 305 // For align_up/align_down, the return type is the same as the (potentially 306 // decayed) argument type including qualifiers. For is_aligned(), the result 307 // is always bool. 308 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 309 return false; 310 } 311 312 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, 313 unsigned BuiltinID) { 314 if (checkArgCount(S, TheCall, 3)) 315 return true; 316 317 // First two arguments should be integers. 318 for (unsigned I = 0; I < 2; ++I) { 319 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); 320 if (Arg.isInvalid()) return true; 321 TheCall->setArg(I, Arg.get()); 322 323 QualType Ty = Arg.get()->getType(); 324 if (!Ty->isIntegerType()) { 325 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 326 << Ty << Arg.get()->getSourceRange(); 327 return true; 328 } 329 } 330 331 // Third argument should be a pointer to a non-const integer. 332 // IRGen correctly handles volatile, restrict, and address spaces, and 333 // the other qualifiers aren't possible. 334 { 335 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); 336 if (Arg.isInvalid()) return true; 337 TheCall->setArg(2, Arg.get()); 338 339 QualType Ty = Arg.get()->getType(); 340 const auto *PtrTy = Ty->getAs<PointerType>(); 341 if (!PtrTy || 342 !PtrTy->getPointeeType()->isIntegerType() || 343 PtrTy->getPointeeType().isConstQualified()) { 344 S.Diag(Arg.get()->getBeginLoc(), 345 diag::err_overflow_builtin_must_be_ptr_int) 346 << Ty << Arg.get()->getSourceRange(); 347 return true; 348 } 349 } 350 351 // Disallow signed bit-precise integer args larger than 128 bits to mul 352 // function until we improve backend support. 353 if (BuiltinID == Builtin::BI__builtin_mul_overflow) { 354 for (unsigned I = 0; I < 3; ++I) { 355 const auto Arg = TheCall->getArg(I); 356 // Third argument will be a pointer. 357 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); 358 if (Ty->isBitIntType() && Ty->isSignedIntegerType() && 359 S.getASTContext().getIntWidth(Ty) > 128) 360 return S.Diag(Arg->getBeginLoc(), 361 diag::err_overflow_builtin_bit_int_max_size) 362 << 128; 363 } 364 } 365 366 return false; 367 } 368 369 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 370 if (checkArgCount(S, BuiltinCall, 2)) 371 return true; 372 373 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 374 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 375 Expr *Call = BuiltinCall->getArg(0); 376 Expr *Chain = BuiltinCall->getArg(1); 377 378 if (Call->getStmtClass() != Stmt::CallExprClass) { 379 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 380 << Call->getSourceRange(); 381 return true; 382 } 383 384 auto CE = cast<CallExpr>(Call); 385 if (CE->getCallee()->getType()->isBlockPointerType()) { 386 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 387 << Call->getSourceRange(); 388 return true; 389 } 390 391 const Decl *TargetDecl = CE->getCalleeDecl(); 392 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 393 if (FD->getBuiltinID()) { 394 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 395 << Call->getSourceRange(); 396 return true; 397 } 398 399 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 400 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 401 << Call->getSourceRange(); 402 return true; 403 } 404 405 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 406 if (ChainResult.isInvalid()) 407 return true; 408 if (!ChainResult.get()->getType()->isPointerType()) { 409 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 410 << Chain->getSourceRange(); 411 return true; 412 } 413 414 QualType ReturnTy = CE->getCallReturnType(S.Context); 415 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 416 QualType BuiltinTy = S.Context.getFunctionType( 417 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 418 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 419 420 Builtin = 421 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 422 423 BuiltinCall->setType(CE->getType()); 424 BuiltinCall->setValueKind(CE->getValueKind()); 425 BuiltinCall->setObjectKind(CE->getObjectKind()); 426 BuiltinCall->setCallee(Builtin); 427 BuiltinCall->setArg(1, ChainResult.get()); 428 429 return false; 430 } 431 432 namespace { 433 434 class ScanfDiagnosticFormatHandler 435 : public analyze_format_string::FormatStringHandler { 436 // Accepts the argument index (relative to the first destination index) of the 437 // argument whose size we want. 438 using ComputeSizeFunction = 439 llvm::function_ref<Optional<llvm::APSInt>(unsigned)>; 440 441 // Accepts the argument index (relative to the first destination index), the 442 // destination size, and the source size). 443 using DiagnoseFunction = 444 llvm::function_ref<void(unsigned, unsigned, unsigned)>; 445 446 ComputeSizeFunction ComputeSizeArgument; 447 DiagnoseFunction Diagnose; 448 449 public: 450 ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument, 451 DiagnoseFunction Diagnose) 452 : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {} 453 454 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 455 const char *StartSpecifier, 456 unsigned specifierLen) override { 457 if (!FS.consumesDataArgument()) 458 return true; 459 460 unsigned NulByte = 0; 461 switch ((FS.getConversionSpecifier().getKind())) { 462 default: 463 return true; 464 case analyze_format_string::ConversionSpecifier::sArg: 465 case analyze_format_string::ConversionSpecifier::ScanListArg: 466 NulByte = 1; 467 break; 468 case analyze_format_string::ConversionSpecifier::cArg: 469 break; 470 } 471 472 analyze_format_string::OptionalAmount FW = FS.getFieldWidth(); 473 if (FW.getHowSpecified() != 474 analyze_format_string::OptionalAmount::HowSpecified::Constant) 475 return true; 476 477 unsigned SourceSize = FW.getConstantAmount() + NulByte; 478 479 Optional<llvm::APSInt> DestSizeAPS = ComputeSizeArgument(FS.getArgIndex()); 480 if (!DestSizeAPS) 481 return true; 482 483 unsigned DestSize = DestSizeAPS->getZExtValue(); 484 485 if (DestSize < SourceSize) 486 Diagnose(FS.getArgIndex(), DestSize, SourceSize); 487 488 return true; 489 } 490 }; 491 492 class EstimateSizeFormatHandler 493 : public analyze_format_string::FormatStringHandler { 494 size_t Size; 495 496 public: 497 EstimateSizeFormatHandler(StringRef Format) 498 : Size(std::min(Format.find(0), Format.size()) + 499 1 /* null byte always written by sprintf */) {} 500 501 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 502 const char *, unsigned SpecifierLen, 503 const TargetInfo &) override { 504 505 const size_t FieldWidth = computeFieldWidth(FS); 506 const size_t Precision = computePrecision(FS); 507 508 // The actual format. 509 switch (FS.getConversionSpecifier().getKind()) { 510 // Just a char. 511 case analyze_format_string::ConversionSpecifier::cArg: 512 case analyze_format_string::ConversionSpecifier::CArg: 513 Size += std::max(FieldWidth, (size_t)1); 514 break; 515 // Just an integer. 516 case analyze_format_string::ConversionSpecifier::dArg: 517 case analyze_format_string::ConversionSpecifier::DArg: 518 case analyze_format_string::ConversionSpecifier::iArg: 519 case analyze_format_string::ConversionSpecifier::oArg: 520 case analyze_format_string::ConversionSpecifier::OArg: 521 case analyze_format_string::ConversionSpecifier::uArg: 522 case analyze_format_string::ConversionSpecifier::UArg: 523 case analyze_format_string::ConversionSpecifier::xArg: 524 case analyze_format_string::ConversionSpecifier::XArg: 525 Size += std::max(FieldWidth, Precision); 526 break; 527 528 // %g style conversion switches between %f or %e style dynamically. 529 // %f always takes less space, so default to it. 530 case analyze_format_string::ConversionSpecifier::gArg: 531 case analyze_format_string::ConversionSpecifier::GArg: 532 533 // Floating point number in the form '[+]ddd.ddd'. 534 case analyze_format_string::ConversionSpecifier::fArg: 535 case analyze_format_string::ConversionSpecifier::FArg: 536 Size += std::max(FieldWidth, 1 /* integer part */ + 537 (Precision ? 1 + Precision 538 : 0) /* period + decimal */); 539 break; 540 541 // Floating point number in the form '[-]d.ddde[+-]dd'. 542 case analyze_format_string::ConversionSpecifier::eArg: 543 case analyze_format_string::ConversionSpecifier::EArg: 544 Size += 545 std::max(FieldWidth, 546 1 /* integer part */ + 547 (Precision ? 1 + Precision : 0) /* period + decimal */ + 548 1 /* e or E letter */ + 2 /* exponent */); 549 break; 550 551 // Floating point number in the form '[-]0xh.hhhhp±dd'. 552 case analyze_format_string::ConversionSpecifier::aArg: 553 case analyze_format_string::ConversionSpecifier::AArg: 554 Size += 555 std::max(FieldWidth, 556 2 /* 0x */ + 1 /* integer part */ + 557 (Precision ? 1 + Precision : 0) /* period + decimal */ + 558 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 559 break; 560 561 // Just a string. 562 case analyze_format_string::ConversionSpecifier::sArg: 563 case analyze_format_string::ConversionSpecifier::SArg: 564 Size += FieldWidth; 565 break; 566 567 // Just a pointer in the form '0xddd'. 568 case analyze_format_string::ConversionSpecifier::pArg: 569 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 570 break; 571 572 // A plain percent. 573 case analyze_format_string::ConversionSpecifier::PercentArg: 574 Size += 1; 575 break; 576 577 default: 578 break; 579 } 580 581 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 582 583 if (FS.hasAlternativeForm()) { 584 switch (FS.getConversionSpecifier().getKind()) { 585 default: 586 break; 587 // Force a leading '0'. 588 case analyze_format_string::ConversionSpecifier::oArg: 589 Size += 1; 590 break; 591 // Force a leading '0x'. 592 case analyze_format_string::ConversionSpecifier::xArg: 593 case analyze_format_string::ConversionSpecifier::XArg: 594 Size += 2; 595 break; 596 // Force a period '.' before decimal, even if precision is 0. 597 case analyze_format_string::ConversionSpecifier::aArg: 598 case analyze_format_string::ConversionSpecifier::AArg: 599 case analyze_format_string::ConversionSpecifier::eArg: 600 case analyze_format_string::ConversionSpecifier::EArg: 601 case analyze_format_string::ConversionSpecifier::fArg: 602 case analyze_format_string::ConversionSpecifier::FArg: 603 case analyze_format_string::ConversionSpecifier::gArg: 604 case analyze_format_string::ConversionSpecifier::GArg: 605 Size += (Precision ? 0 : 1); 606 break; 607 } 608 } 609 assert(SpecifierLen <= Size && "no underflow"); 610 Size -= SpecifierLen; 611 return true; 612 } 613 614 size_t getSizeLowerBound() const { return Size; } 615 616 private: 617 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 618 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 619 size_t FieldWidth = 0; 620 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 621 FieldWidth = FW.getConstantAmount(); 622 return FieldWidth; 623 } 624 625 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 626 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 627 size_t Precision = 0; 628 629 // See man 3 printf for default precision value based on the specifier. 630 switch (FW.getHowSpecified()) { 631 case analyze_format_string::OptionalAmount::NotSpecified: 632 switch (FS.getConversionSpecifier().getKind()) { 633 default: 634 break; 635 case analyze_format_string::ConversionSpecifier::dArg: // %d 636 case analyze_format_string::ConversionSpecifier::DArg: // %D 637 case analyze_format_string::ConversionSpecifier::iArg: // %i 638 Precision = 1; 639 break; 640 case analyze_format_string::ConversionSpecifier::oArg: // %d 641 case analyze_format_string::ConversionSpecifier::OArg: // %D 642 case analyze_format_string::ConversionSpecifier::uArg: // %d 643 case analyze_format_string::ConversionSpecifier::UArg: // %D 644 case analyze_format_string::ConversionSpecifier::xArg: // %d 645 case analyze_format_string::ConversionSpecifier::XArg: // %D 646 Precision = 1; 647 break; 648 case analyze_format_string::ConversionSpecifier::fArg: // %f 649 case analyze_format_string::ConversionSpecifier::FArg: // %F 650 case analyze_format_string::ConversionSpecifier::eArg: // %e 651 case analyze_format_string::ConversionSpecifier::EArg: // %E 652 case analyze_format_string::ConversionSpecifier::gArg: // %g 653 case analyze_format_string::ConversionSpecifier::GArg: // %G 654 Precision = 6; 655 break; 656 case analyze_format_string::ConversionSpecifier::pArg: // %d 657 Precision = 1; 658 break; 659 } 660 break; 661 case analyze_format_string::OptionalAmount::Constant: 662 Precision = FW.getConstantAmount(); 663 break; 664 default: 665 break; 666 } 667 return Precision; 668 } 669 }; 670 671 } // namespace 672 673 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 674 CallExpr *TheCall) { 675 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 676 isConstantEvaluated()) 677 return; 678 679 bool UseDABAttr = false; 680 const FunctionDecl *UseDecl = FD; 681 682 const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>(); 683 if (DABAttr) { 684 UseDecl = DABAttr->getFunction(); 685 assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!"); 686 UseDABAttr = true; 687 } 688 689 unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true); 690 691 if (!BuiltinID) 692 return; 693 694 const TargetInfo &TI = getASTContext().getTargetInfo(); 695 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 696 697 auto TranslateIndex = [&](unsigned Index) -> Optional<unsigned> { 698 // If we refer to a diagnose_as_builtin attribute, we need to change the 699 // argument index to refer to the arguments of the called function. Unless 700 // the index is out of bounds, which presumably means it's a variadic 701 // function. 702 if (!UseDABAttr) 703 return Index; 704 unsigned DABIndices = DABAttr->argIndices_size(); 705 unsigned NewIndex = Index < DABIndices 706 ? DABAttr->argIndices_begin()[Index] 707 : Index - DABIndices + FD->getNumParams(); 708 if (NewIndex >= TheCall->getNumArgs()) 709 return llvm::None; 710 return NewIndex; 711 }; 712 713 auto ComputeExplicitObjectSizeArgument = 714 [&](unsigned Index) -> Optional<llvm::APSInt> { 715 Optional<unsigned> IndexOptional = TranslateIndex(Index); 716 if (!IndexOptional) 717 return llvm::None; 718 unsigned NewIndex = IndexOptional.getValue(); 719 Expr::EvalResult Result; 720 Expr *SizeArg = TheCall->getArg(NewIndex); 721 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 722 return llvm::None; 723 llvm::APSInt Integer = Result.Val.getInt(); 724 Integer.setIsUnsigned(true); 725 return Integer; 726 }; 727 728 auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> { 729 // If the parameter has a pass_object_size attribute, then we should use its 730 // (potentially) more strict checking mode. Otherwise, conservatively assume 731 // type 0. 732 int BOSType = 0; 733 // This check can fail for variadic functions. 734 if (Index < FD->getNumParams()) { 735 if (const auto *POS = 736 FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>()) 737 BOSType = POS->getType(); 738 } 739 740 Optional<unsigned> IndexOptional = TranslateIndex(Index); 741 if (!IndexOptional) 742 return llvm::None; 743 unsigned NewIndex = IndexOptional.getValue(); 744 745 const Expr *ObjArg = TheCall->getArg(NewIndex); 746 uint64_t Result; 747 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 748 return llvm::None; 749 750 // Get the object size in the target's size_t width. 751 return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 752 }; 753 754 auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> { 755 Optional<unsigned> IndexOptional = TranslateIndex(Index); 756 if (!IndexOptional) 757 return llvm::None; 758 unsigned NewIndex = IndexOptional.getValue(); 759 760 const Expr *ObjArg = TheCall->getArg(NewIndex); 761 uint64_t Result; 762 if (!ObjArg->tryEvaluateStrLen(Result, getASTContext())) 763 return llvm::None; 764 // Add 1 for null byte. 765 return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth); 766 }; 767 768 Optional<llvm::APSInt> SourceSize; 769 Optional<llvm::APSInt> DestinationSize; 770 unsigned DiagID = 0; 771 bool IsChkVariant = false; 772 773 auto GetFunctionName = [&]() { 774 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 775 // Skim off the details of whichever builtin was called to produce a better 776 // diagnostic, as it's unlikely that the user wrote the __builtin 777 // explicitly. 778 if (IsChkVariant) { 779 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 780 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 781 } else if (FunctionName.startswith("__builtin_")) { 782 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 783 } 784 return FunctionName; 785 }; 786 787 switch (BuiltinID) { 788 default: 789 return; 790 case Builtin::BI__builtin_strcpy: 791 case Builtin::BIstrcpy: { 792 DiagID = diag::warn_fortify_strlen_overflow; 793 SourceSize = ComputeStrLenArgument(1); 794 DestinationSize = ComputeSizeArgument(0); 795 break; 796 } 797 798 case Builtin::BI__builtin___strcpy_chk: { 799 DiagID = diag::warn_fortify_strlen_overflow; 800 SourceSize = ComputeStrLenArgument(1); 801 DestinationSize = ComputeExplicitObjectSizeArgument(2); 802 IsChkVariant = true; 803 break; 804 } 805 806 case Builtin::BIscanf: 807 case Builtin::BIfscanf: 808 case Builtin::BIsscanf: { 809 unsigned FormatIndex = 1; 810 unsigned DataIndex = 2; 811 if (BuiltinID == Builtin::BIscanf) { 812 FormatIndex = 0; 813 DataIndex = 1; 814 } 815 816 const auto *FormatExpr = 817 TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 818 819 const auto *Format = dyn_cast<StringLiteral>(FormatExpr); 820 if (!Format) 821 return; 822 823 if (!Format->isAscii() && !Format->isUTF8()) 824 return; 825 826 auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize, 827 unsigned SourceSize) { 828 DiagID = diag::warn_fortify_scanf_overflow; 829 unsigned Index = ArgIndex + DataIndex; 830 StringRef FunctionName = GetFunctionName(); 831 DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall, 832 PDiag(DiagID) << FunctionName << (Index + 1) 833 << DestSize << SourceSize); 834 }; 835 836 StringRef FormatStrRef = Format->getString(); 837 auto ShiftedComputeSizeArgument = [&](unsigned Index) { 838 return ComputeSizeArgument(Index + DataIndex); 839 }; 840 ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose); 841 const char *FormatBytes = FormatStrRef.data(); 842 const ConstantArrayType *T = 843 Context.getAsConstantArrayType(Format->getType()); 844 assert(T && "String literal not of constant array type!"); 845 size_t TypeSize = T->getSize().getZExtValue(); 846 847 // In case there's a null byte somewhere. 848 size_t StrLen = 849 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 850 851 analyze_format_string::ParseScanfString(H, FormatBytes, 852 FormatBytes + StrLen, getLangOpts(), 853 Context.getTargetInfo()); 854 855 // Unlike the other cases, in this one we have already issued the diagnostic 856 // here, so no need to continue (because unlike the other cases, here the 857 // diagnostic refers to the argument number). 858 return; 859 } 860 861 case Builtin::BIsprintf: 862 case Builtin::BI__builtin___sprintf_chk: { 863 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 864 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 865 866 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 867 868 if (!Format->isAscii() && !Format->isUTF8()) 869 return; 870 871 StringRef FormatStrRef = Format->getString(); 872 EstimateSizeFormatHandler H(FormatStrRef); 873 const char *FormatBytes = FormatStrRef.data(); 874 const ConstantArrayType *T = 875 Context.getAsConstantArrayType(Format->getType()); 876 assert(T && "String literal not of constant array type!"); 877 size_t TypeSize = T->getSize().getZExtValue(); 878 879 // In case there's a null byte somewhere. 880 size_t StrLen = 881 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 882 if (!analyze_format_string::ParsePrintfString( 883 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 884 Context.getTargetInfo(), false)) { 885 DiagID = diag::warn_fortify_source_format_overflow; 886 SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 887 .extOrTrunc(SizeTypeWidth); 888 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 889 DestinationSize = ComputeExplicitObjectSizeArgument(2); 890 IsChkVariant = true; 891 } else { 892 DestinationSize = ComputeSizeArgument(0); 893 } 894 break; 895 } 896 } 897 return; 898 } 899 case Builtin::BI__builtin___memcpy_chk: 900 case Builtin::BI__builtin___memmove_chk: 901 case Builtin::BI__builtin___memset_chk: 902 case Builtin::BI__builtin___strlcat_chk: 903 case Builtin::BI__builtin___strlcpy_chk: 904 case Builtin::BI__builtin___strncat_chk: 905 case Builtin::BI__builtin___strncpy_chk: 906 case Builtin::BI__builtin___stpncpy_chk: 907 case Builtin::BI__builtin___memccpy_chk: 908 case Builtin::BI__builtin___mempcpy_chk: { 909 DiagID = diag::warn_builtin_chk_overflow; 910 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2); 911 DestinationSize = 912 ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); 913 IsChkVariant = true; 914 break; 915 } 916 917 case Builtin::BI__builtin___snprintf_chk: 918 case Builtin::BI__builtin___vsnprintf_chk: { 919 DiagID = diag::warn_builtin_chk_overflow; 920 SourceSize = ComputeExplicitObjectSizeArgument(1); 921 DestinationSize = ComputeExplicitObjectSizeArgument(3); 922 IsChkVariant = true; 923 break; 924 } 925 926 case Builtin::BIstrncat: 927 case Builtin::BI__builtin_strncat: 928 case Builtin::BIstrncpy: 929 case Builtin::BI__builtin_strncpy: 930 case Builtin::BIstpncpy: 931 case Builtin::BI__builtin_stpncpy: { 932 // Whether these functions overflow depends on the runtime strlen of the 933 // string, not just the buffer size, so emitting the "always overflow" 934 // diagnostic isn't quite right. We should still diagnose passing a buffer 935 // size larger than the destination buffer though; this is a runtime abort 936 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 937 DiagID = diag::warn_fortify_source_size_mismatch; 938 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); 939 DestinationSize = ComputeSizeArgument(0); 940 break; 941 } 942 943 case Builtin::BImemcpy: 944 case Builtin::BI__builtin_memcpy: 945 case Builtin::BImemmove: 946 case Builtin::BI__builtin_memmove: 947 case Builtin::BImemset: 948 case Builtin::BI__builtin_memset: 949 case Builtin::BImempcpy: 950 case Builtin::BI__builtin_mempcpy: { 951 DiagID = diag::warn_fortify_source_overflow; 952 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); 953 DestinationSize = ComputeSizeArgument(0); 954 break; 955 } 956 case Builtin::BIsnprintf: 957 case Builtin::BI__builtin_snprintf: 958 case Builtin::BIvsnprintf: 959 case Builtin::BI__builtin_vsnprintf: { 960 DiagID = diag::warn_fortify_source_size_mismatch; 961 SourceSize = ComputeExplicitObjectSizeArgument(1); 962 DestinationSize = ComputeSizeArgument(0); 963 break; 964 } 965 } 966 967 if (!SourceSize || !DestinationSize || 968 llvm::APSInt::compareValues(SourceSize.getValue(), 969 DestinationSize.getValue()) <= 0) 970 return; 971 972 StringRef FunctionName = GetFunctionName(); 973 974 SmallString<16> DestinationStr; 975 SmallString<16> SourceStr; 976 DestinationSize->toString(DestinationStr, /*Radix=*/10); 977 SourceSize->toString(SourceStr, /*Radix=*/10); 978 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 979 PDiag(DiagID) 980 << FunctionName << DestinationStr << SourceStr); 981 } 982 983 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 984 Scope::ScopeFlags NeededScopeFlags, 985 unsigned DiagID) { 986 // Scopes aren't available during instantiation. Fortunately, builtin 987 // functions cannot be template args so they cannot be formed through template 988 // instantiation. Therefore checking once during the parse is sufficient. 989 if (SemaRef.inTemplateInstantiation()) 990 return false; 991 992 Scope *S = SemaRef.getCurScope(); 993 while (S && !S->isSEHExceptScope()) 994 S = S->getParent(); 995 if (!S || !(S->getFlags() & NeededScopeFlags)) { 996 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 997 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 998 << DRE->getDecl()->getIdentifier(); 999 return true; 1000 } 1001 1002 return false; 1003 } 1004 1005 static inline bool isBlockPointer(Expr *Arg) { 1006 return Arg->getType()->isBlockPointerType(); 1007 } 1008 1009 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 1010 /// void*, which is a requirement of device side enqueue. 1011 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 1012 const BlockPointerType *BPT = 1013 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 1014 ArrayRef<QualType> Params = 1015 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 1016 unsigned ArgCounter = 0; 1017 bool IllegalParams = false; 1018 // Iterate through the block parameters until either one is found that is not 1019 // a local void*, or the block is valid. 1020 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 1021 I != E; ++I, ++ArgCounter) { 1022 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 1023 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 1024 LangAS::opencl_local) { 1025 // Get the location of the error. If a block literal has been passed 1026 // (BlockExpr) then we can point straight to the offending argument, 1027 // else we just point to the variable reference. 1028 SourceLocation ErrorLoc; 1029 if (isa<BlockExpr>(BlockArg)) { 1030 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 1031 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 1032 } else if (isa<DeclRefExpr>(BlockArg)) { 1033 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 1034 } 1035 S.Diag(ErrorLoc, 1036 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 1037 IllegalParams = true; 1038 } 1039 } 1040 1041 return IllegalParams; 1042 } 1043 1044 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 1045 // OpenCL device can support extension but not the feature as extension 1046 // requires subgroup independent forward progress, but subgroup independent 1047 // forward progress is optional in OpenCL C 3.0 __opencl_c_subgroups feature. 1048 if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts()) && 1049 !S.getOpenCLOptions().isSupported("__opencl_c_subgroups", 1050 S.getLangOpts())) { 1051 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 1052 << 1 << Call->getDirectCallee() 1053 << "cl_khr_subgroups or __opencl_c_subgroups"; 1054 return true; 1055 } 1056 return false; 1057 } 1058 1059 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 1060 if (checkArgCount(S, TheCall, 2)) 1061 return true; 1062 1063 if (checkOpenCLSubgroupExt(S, TheCall)) 1064 return true; 1065 1066 // First argument is an ndrange_t type. 1067 Expr *NDRangeArg = TheCall->getArg(0); 1068 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 1069 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1070 << TheCall->getDirectCallee() << "'ndrange_t'"; 1071 return true; 1072 } 1073 1074 Expr *BlockArg = TheCall->getArg(1); 1075 if (!isBlockPointer(BlockArg)) { 1076 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1077 << TheCall->getDirectCallee() << "block"; 1078 return true; 1079 } 1080 return checkOpenCLBlockArgs(S, BlockArg); 1081 } 1082 1083 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 1084 /// get_kernel_work_group_size 1085 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 1086 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 1087 if (checkArgCount(S, TheCall, 1)) 1088 return true; 1089 1090 Expr *BlockArg = TheCall->getArg(0); 1091 if (!isBlockPointer(BlockArg)) { 1092 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1093 << TheCall->getDirectCallee() << "block"; 1094 return true; 1095 } 1096 return checkOpenCLBlockArgs(S, BlockArg); 1097 } 1098 1099 /// Diagnose integer type and any valid implicit conversion to it. 1100 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 1101 const QualType &IntType); 1102 1103 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 1104 unsigned Start, unsigned End) { 1105 bool IllegalParams = false; 1106 for (unsigned I = Start; I <= End; ++I) 1107 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 1108 S.Context.getSizeType()); 1109 return IllegalParams; 1110 } 1111 1112 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 1113 /// 'local void*' parameter of passed block. 1114 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 1115 Expr *BlockArg, 1116 unsigned NumNonVarArgs) { 1117 const BlockPointerType *BPT = 1118 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 1119 unsigned NumBlockParams = 1120 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 1121 unsigned TotalNumArgs = TheCall->getNumArgs(); 1122 1123 // For each argument passed to the block, a corresponding uint needs to 1124 // be passed to describe the size of the local memory. 1125 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 1126 S.Diag(TheCall->getBeginLoc(), 1127 diag::err_opencl_enqueue_kernel_local_size_args); 1128 return true; 1129 } 1130 1131 // Check that the sizes of the local memory are specified by integers. 1132 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 1133 TotalNumArgs - 1); 1134 } 1135 1136 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 1137 /// overload formats specified in Table 6.13.17.1. 1138 /// int enqueue_kernel(queue_t queue, 1139 /// kernel_enqueue_flags_t flags, 1140 /// const ndrange_t ndrange, 1141 /// void (^block)(void)) 1142 /// int enqueue_kernel(queue_t queue, 1143 /// kernel_enqueue_flags_t flags, 1144 /// const ndrange_t ndrange, 1145 /// uint num_events_in_wait_list, 1146 /// clk_event_t *event_wait_list, 1147 /// clk_event_t *event_ret, 1148 /// void (^block)(void)) 1149 /// int enqueue_kernel(queue_t queue, 1150 /// kernel_enqueue_flags_t flags, 1151 /// const ndrange_t ndrange, 1152 /// void (^block)(local void*, ...), 1153 /// uint size0, ...) 1154 /// int enqueue_kernel(queue_t queue, 1155 /// kernel_enqueue_flags_t flags, 1156 /// const ndrange_t ndrange, 1157 /// uint num_events_in_wait_list, 1158 /// clk_event_t *event_wait_list, 1159 /// clk_event_t *event_ret, 1160 /// void (^block)(local void*, ...), 1161 /// uint size0, ...) 1162 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 1163 unsigned NumArgs = TheCall->getNumArgs(); 1164 1165 if (NumArgs < 4) { 1166 S.Diag(TheCall->getBeginLoc(), 1167 diag::err_typecheck_call_too_few_args_at_least) 1168 << 0 << 4 << NumArgs; 1169 return true; 1170 } 1171 1172 Expr *Arg0 = TheCall->getArg(0); 1173 Expr *Arg1 = TheCall->getArg(1); 1174 Expr *Arg2 = TheCall->getArg(2); 1175 Expr *Arg3 = TheCall->getArg(3); 1176 1177 // First argument always needs to be a queue_t type. 1178 if (!Arg0->getType()->isQueueT()) { 1179 S.Diag(TheCall->getArg(0)->getBeginLoc(), 1180 diag::err_opencl_builtin_expected_type) 1181 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 1182 return true; 1183 } 1184 1185 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 1186 if (!Arg1->getType()->isIntegerType()) { 1187 S.Diag(TheCall->getArg(1)->getBeginLoc(), 1188 diag::err_opencl_builtin_expected_type) 1189 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 1190 return true; 1191 } 1192 1193 // Third argument is always an ndrange_t type. 1194 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 1195 S.Diag(TheCall->getArg(2)->getBeginLoc(), 1196 diag::err_opencl_builtin_expected_type) 1197 << TheCall->getDirectCallee() << "'ndrange_t'"; 1198 return true; 1199 } 1200 1201 // With four arguments, there is only one form that the function could be 1202 // called in: no events and no variable arguments. 1203 if (NumArgs == 4) { 1204 // check that the last argument is the right block type. 1205 if (!isBlockPointer(Arg3)) { 1206 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1207 << TheCall->getDirectCallee() << "block"; 1208 return true; 1209 } 1210 // we have a block type, check the prototype 1211 const BlockPointerType *BPT = 1212 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 1213 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 1214 S.Diag(Arg3->getBeginLoc(), 1215 diag::err_opencl_enqueue_kernel_blocks_no_args); 1216 return true; 1217 } 1218 return false; 1219 } 1220 // we can have block + varargs. 1221 if (isBlockPointer(Arg3)) 1222 return (checkOpenCLBlockArgs(S, Arg3) || 1223 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 1224 // last two cases with either exactly 7 args or 7 args and varargs. 1225 if (NumArgs >= 7) { 1226 // check common block argument. 1227 Expr *Arg6 = TheCall->getArg(6); 1228 if (!isBlockPointer(Arg6)) { 1229 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1230 << TheCall->getDirectCallee() << "block"; 1231 return true; 1232 } 1233 if (checkOpenCLBlockArgs(S, Arg6)) 1234 return true; 1235 1236 // Forth argument has to be any integer type. 1237 if (!Arg3->getType()->isIntegerType()) { 1238 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1239 diag::err_opencl_builtin_expected_type) 1240 << TheCall->getDirectCallee() << "integer"; 1241 return true; 1242 } 1243 // check remaining common arguments. 1244 Expr *Arg4 = TheCall->getArg(4); 1245 Expr *Arg5 = TheCall->getArg(5); 1246 1247 // Fifth argument is always passed as a pointer to clk_event_t. 1248 if (!Arg4->isNullPointerConstant(S.Context, 1249 Expr::NPC_ValueDependentIsNotNull) && 1250 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1251 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1252 diag::err_opencl_builtin_expected_type) 1253 << TheCall->getDirectCallee() 1254 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1255 return true; 1256 } 1257 1258 // Sixth argument is always passed as a pointer to clk_event_t. 1259 if (!Arg5->isNullPointerConstant(S.Context, 1260 Expr::NPC_ValueDependentIsNotNull) && 1261 !(Arg5->getType()->isPointerType() && 1262 Arg5->getType()->getPointeeType()->isClkEventT())) { 1263 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1264 diag::err_opencl_builtin_expected_type) 1265 << TheCall->getDirectCallee() 1266 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1267 return true; 1268 } 1269 1270 if (NumArgs == 7) 1271 return false; 1272 1273 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1274 } 1275 1276 // None of the specific case has been detected, give generic error 1277 S.Diag(TheCall->getBeginLoc(), 1278 diag::err_opencl_enqueue_kernel_incorrect_args); 1279 return true; 1280 } 1281 1282 /// Returns OpenCL access qual. 1283 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1284 return D->getAttr<OpenCLAccessAttr>(); 1285 } 1286 1287 /// Returns true if pipe element type is different from the pointer. 1288 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1289 const Expr *Arg0 = Call->getArg(0); 1290 // First argument type should always be pipe. 1291 if (!Arg0->getType()->isPipeType()) { 1292 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1293 << Call->getDirectCallee() << Arg0->getSourceRange(); 1294 return true; 1295 } 1296 OpenCLAccessAttr *AccessQual = 1297 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1298 // Validates the access qualifier is compatible with the call. 1299 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1300 // read_only and write_only, and assumed to be read_only if no qualifier is 1301 // specified. 1302 switch (Call->getDirectCallee()->getBuiltinID()) { 1303 case Builtin::BIread_pipe: 1304 case Builtin::BIreserve_read_pipe: 1305 case Builtin::BIcommit_read_pipe: 1306 case Builtin::BIwork_group_reserve_read_pipe: 1307 case Builtin::BIsub_group_reserve_read_pipe: 1308 case Builtin::BIwork_group_commit_read_pipe: 1309 case Builtin::BIsub_group_commit_read_pipe: 1310 if (!(!AccessQual || AccessQual->isReadOnly())) { 1311 S.Diag(Arg0->getBeginLoc(), 1312 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1313 << "read_only" << Arg0->getSourceRange(); 1314 return true; 1315 } 1316 break; 1317 case Builtin::BIwrite_pipe: 1318 case Builtin::BIreserve_write_pipe: 1319 case Builtin::BIcommit_write_pipe: 1320 case Builtin::BIwork_group_reserve_write_pipe: 1321 case Builtin::BIsub_group_reserve_write_pipe: 1322 case Builtin::BIwork_group_commit_write_pipe: 1323 case Builtin::BIsub_group_commit_write_pipe: 1324 if (!(AccessQual && AccessQual->isWriteOnly())) { 1325 S.Diag(Arg0->getBeginLoc(), 1326 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1327 << "write_only" << Arg0->getSourceRange(); 1328 return true; 1329 } 1330 break; 1331 default: 1332 break; 1333 } 1334 return false; 1335 } 1336 1337 /// Returns true if pipe element type is different from the pointer. 1338 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1339 const Expr *Arg0 = Call->getArg(0); 1340 const Expr *ArgIdx = Call->getArg(Idx); 1341 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1342 const QualType EltTy = PipeTy->getElementType(); 1343 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1344 // The Idx argument should be a pointer and the type of the pointer and 1345 // the type of pipe element should also be the same. 1346 if (!ArgTy || 1347 !S.Context.hasSameType( 1348 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1349 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1350 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1351 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1352 return true; 1353 } 1354 return false; 1355 } 1356 1357 // Performs semantic analysis for the read/write_pipe call. 1358 // \param S Reference to the semantic analyzer. 1359 // \param Call A pointer to the builtin call. 1360 // \return True if a semantic error has been found, false otherwise. 1361 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1362 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1363 // functions have two forms. 1364 switch (Call->getNumArgs()) { 1365 case 2: 1366 if (checkOpenCLPipeArg(S, Call)) 1367 return true; 1368 // The call with 2 arguments should be 1369 // read/write_pipe(pipe T, T*). 1370 // Check packet type T. 1371 if (checkOpenCLPipePacketType(S, Call, 1)) 1372 return true; 1373 break; 1374 1375 case 4: { 1376 if (checkOpenCLPipeArg(S, Call)) 1377 return true; 1378 // The call with 4 arguments should be 1379 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1380 // Check reserve_id_t. 1381 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1382 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1383 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1384 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1385 return true; 1386 } 1387 1388 // Check the index. 1389 const Expr *Arg2 = Call->getArg(2); 1390 if (!Arg2->getType()->isIntegerType() && 1391 !Arg2->getType()->isUnsignedIntegerType()) { 1392 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1393 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1394 << Arg2->getType() << Arg2->getSourceRange(); 1395 return true; 1396 } 1397 1398 // Check packet type T. 1399 if (checkOpenCLPipePacketType(S, Call, 3)) 1400 return true; 1401 } break; 1402 default: 1403 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1404 << Call->getDirectCallee() << Call->getSourceRange(); 1405 return true; 1406 } 1407 1408 return false; 1409 } 1410 1411 // Performs a semantic analysis on the {work_group_/sub_group_ 1412 // /_}reserve_{read/write}_pipe 1413 // \param S Reference to the semantic analyzer. 1414 // \param Call The call to the builtin function to be analyzed. 1415 // \return True if a semantic error was found, false otherwise. 1416 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1417 if (checkArgCount(S, Call, 2)) 1418 return true; 1419 1420 if (checkOpenCLPipeArg(S, Call)) 1421 return true; 1422 1423 // Check the reserve size. 1424 if (!Call->getArg(1)->getType()->isIntegerType() && 1425 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1426 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1427 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1428 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1429 return true; 1430 } 1431 1432 // Since return type of reserve_read/write_pipe built-in function is 1433 // reserve_id_t, which is not defined in the builtin def file , we used int 1434 // as return type and need to override the return type of these functions. 1435 Call->setType(S.Context.OCLReserveIDTy); 1436 1437 return false; 1438 } 1439 1440 // Performs a semantic analysis on {work_group_/sub_group_ 1441 // /_}commit_{read/write}_pipe 1442 // \param S Reference to the semantic analyzer. 1443 // \param Call The call to the builtin function to be analyzed. 1444 // \return True if a semantic error was found, false otherwise. 1445 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1446 if (checkArgCount(S, Call, 2)) 1447 return true; 1448 1449 if (checkOpenCLPipeArg(S, Call)) 1450 return true; 1451 1452 // Check reserve_id_t. 1453 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1454 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1455 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1456 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1457 return true; 1458 } 1459 1460 return false; 1461 } 1462 1463 // Performs a semantic analysis on the call to built-in Pipe 1464 // Query Functions. 1465 // \param S Reference to the semantic analyzer. 1466 // \param Call The call to the builtin function to be analyzed. 1467 // \return True if a semantic error was found, false otherwise. 1468 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1469 if (checkArgCount(S, Call, 1)) 1470 return true; 1471 1472 if (!Call->getArg(0)->getType()->isPipeType()) { 1473 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1474 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1475 return true; 1476 } 1477 1478 return false; 1479 } 1480 1481 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1482 // Performs semantic analysis for the to_global/local/private call. 1483 // \param S Reference to the semantic analyzer. 1484 // \param BuiltinID ID of the builtin function. 1485 // \param Call A pointer to the builtin call. 1486 // \return True if a semantic error has been found, false otherwise. 1487 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1488 CallExpr *Call) { 1489 if (checkArgCount(S, Call, 1)) 1490 return true; 1491 1492 auto RT = Call->getArg(0)->getType(); 1493 if (!RT->isPointerType() || RT->getPointeeType() 1494 .getAddressSpace() == LangAS::opencl_constant) { 1495 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1496 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1497 return true; 1498 } 1499 1500 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1501 S.Diag(Call->getArg(0)->getBeginLoc(), 1502 diag::warn_opencl_generic_address_space_arg) 1503 << Call->getDirectCallee()->getNameInfo().getAsString() 1504 << Call->getArg(0)->getSourceRange(); 1505 } 1506 1507 RT = RT->getPointeeType(); 1508 auto Qual = RT.getQualifiers(); 1509 switch (BuiltinID) { 1510 case Builtin::BIto_global: 1511 Qual.setAddressSpace(LangAS::opencl_global); 1512 break; 1513 case Builtin::BIto_local: 1514 Qual.setAddressSpace(LangAS::opencl_local); 1515 break; 1516 case Builtin::BIto_private: 1517 Qual.setAddressSpace(LangAS::opencl_private); 1518 break; 1519 default: 1520 llvm_unreachable("Invalid builtin function"); 1521 } 1522 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1523 RT.getUnqualifiedType(), Qual))); 1524 1525 return false; 1526 } 1527 1528 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1529 if (checkArgCount(S, TheCall, 1)) 1530 return ExprError(); 1531 1532 // Compute __builtin_launder's parameter type from the argument. 1533 // The parameter type is: 1534 // * The type of the argument if it's not an array or function type, 1535 // Otherwise, 1536 // * The decayed argument type. 1537 QualType ParamTy = [&]() { 1538 QualType ArgTy = TheCall->getArg(0)->getType(); 1539 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1540 return S.Context.getPointerType(Ty->getElementType()); 1541 if (ArgTy->isFunctionType()) { 1542 return S.Context.getPointerType(ArgTy); 1543 } 1544 return ArgTy; 1545 }(); 1546 1547 TheCall->setType(ParamTy); 1548 1549 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1550 if (!ParamTy->isPointerType()) 1551 return 0; 1552 if (ParamTy->isFunctionPointerType()) 1553 return 1; 1554 if (ParamTy->isVoidPointerType()) 1555 return 2; 1556 return llvm::Optional<unsigned>{}; 1557 }(); 1558 if (DiagSelect.hasValue()) { 1559 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1560 << DiagSelect.getValue() << TheCall->getSourceRange(); 1561 return ExprError(); 1562 } 1563 1564 // We either have an incomplete class type, or we have a class template 1565 // whose instantiation has not been forced. Example: 1566 // 1567 // template <class T> struct Foo { T value; }; 1568 // Foo<int> *p = nullptr; 1569 // auto *d = __builtin_launder(p); 1570 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1571 diag::err_incomplete_type)) 1572 return ExprError(); 1573 1574 assert(ParamTy->getPointeeType()->isObjectType() && 1575 "Unhandled non-object pointer case"); 1576 1577 InitializedEntity Entity = 1578 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1579 ExprResult Arg = 1580 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1581 if (Arg.isInvalid()) 1582 return ExprError(); 1583 TheCall->setArg(0, Arg.get()); 1584 1585 return TheCall; 1586 } 1587 1588 // Emit an error and return true if the current object format type is in the 1589 // list of unsupported types. 1590 static bool CheckBuiltinTargetNotInUnsupported( 1591 Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1592 ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) { 1593 llvm::Triple::ObjectFormatType CurObjFormat = 1594 S.getASTContext().getTargetInfo().getTriple().getObjectFormat(); 1595 if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) { 1596 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1597 << TheCall->getSourceRange(); 1598 return true; 1599 } 1600 return false; 1601 } 1602 1603 // Emit an error and return true if the current architecture is not in the list 1604 // of supported architectures. 1605 static bool 1606 CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1607 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1608 llvm::Triple::ArchType CurArch = 1609 S.getASTContext().getTargetInfo().getTriple().getArch(); 1610 if (llvm::is_contained(SupportedArchs, CurArch)) 1611 return false; 1612 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1613 << TheCall->getSourceRange(); 1614 return true; 1615 } 1616 1617 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1618 SourceLocation CallSiteLoc); 1619 1620 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 1621 CallExpr *TheCall) { 1622 switch (TI.getTriple().getArch()) { 1623 default: 1624 // Some builtins don't require additional checking, so just consider these 1625 // acceptable. 1626 return false; 1627 case llvm::Triple::arm: 1628 case llvm::Triple::armeb: 1629 case llvm::Triple::thumb: 1630 case llvm::Triple::thumbeb: 1631 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); 1632 case llvm::Triple::aarch64: 1633 case llvm::Triple::aarch64_32: 1634 case llvm::Triple::aarch64_be: 1635 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); 1636 case llvm::Triple::bpfeb: 1637 case llvm::Triple::bpfel: 1638 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1639 case llvm::Triple::hexagon: 1640 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1641 case llvm::Triple::mips: 1642 case llvm::Triple::mipsel: 1643 case llvm::Triple::mips64: 1644 case llvm::Triple::mips64el: 1645 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); 1646 case llvm::Triple::systemz: 1647 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1648 case llvm::Triple::x86: 1649 case llvm::Triple::x86_64: 1650 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); 1651 case llvm::Triple::ppc: 1652 case llvm::Triple::ppcle: 1653 case llvm::Triple::ppc64: 1654 case llvm::Triple::ppc64le: 1655 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); 1656 case llvm::Triple::amdgcn: 1657 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1658 case llvm::Triple::riscv32: 1659 case llvm::Triple::riscv64: 1660 return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall); 1661 } 1662 } 1663 1664 ExprResult 1665 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1666 CallExpr *TheCall) { 1667 ExprResult TheCallResult(TheCall); 1668 1669 // Find out if any arguments are required to be integer constant expressions. 1670 unsigned ICEArguments = 0; 1671 ASTContext::GetBuiltinTypeError Error; 1672 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1673 if (Error != ASTContext::GE_None) 1674 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1675 1676 // If any arguments are required to be ICE's, check and diagnose. 1677 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1678 // Skip arguments not required to be ICE's. 1679 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1680 1681 llvm::APSInt Result; 1682 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1683 return true; 1684 ICEArguments &= ~(1 << ArgNo); 1685 } 1686 1687 switch (BuiltinID) { 1688 case Builtin::BI__builtin___CFStringMakeConstantString: 1689 // CFStringMakeConstantString is currently not implemented for GOFF (i.e., 1690 // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported 1691 if (CheckBuiltinTargetNotInUnsupported( 1692 *this, BuiltinID, TheCall, 1693 {llvm::Triple::GOFF, llvm::Triple::XCOFF})) 1694 return ExprError(); 1695 assert(TheCall->getNumArgs() == 1 && 1696 "Wrong # arguments to builtin CFStringMakeConstantString"); 1697 if (CheckObjCString(TheCall->getArg(0))) 1698 return ExprError(); 1699 break; 1700 case Builtin::BI__builtin_ms_va_start: 1701 case Builtin::BI__builtin_stdarg_start: 1702 case Builtin::BI__builtin_va_start: 1703 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1704 return ExprError(); 1705 break; 1706 case Builtin::BI__va_start: { 1707 switch (Context.getTargetInfo().getTriple().getArch()) { 1708 case llvm::Triple::aarch64: 1709 case llvm::Triple::arm: 1710 case llvm::Triple::thumb: 1711 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1712 return ExprError(); 1713 break; 1714 default: 1715 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1716 return ExprError(); 1717 break; 1718 } 1719 break; 1720 } 1721 1722 // The acquire, release, and no fence variants are ARM and AArch64 only. 1723 case Builtin::BI_interlockedbittestandset_acq: 1724 case Builtin::BI_interlockedbittestandset_rel: 1725 case Builtin::BI_interlockedbittestandset_nf: 1726 case Builtin::BI_interlockedbittestandreset_acq: 1727 case Builtin::BI_interlockedbittestandreset_rel: 1728 case Builtin::BI_interlockedbittestandreset_nf: 1729 if (CheckBuiltinTargetInSupported( 1730 *this, BuiltinID, TheCall, 1731 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1732 return ExprError(); 1733 break; 1734 1735 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1736 case Builtin::BI_bittest64: 1737 case Builtin::BI_bittestandcomplement64: 1738 case Builtin::BI_bittestandreset64: 1739 case Builtin::BI_bittestandset64: 1740 case Builtin::BI_interlockedbittestandreset64: 1741 case Builtin::BI_interlockedbittestandset64: 1742 if (CheckBuiltinTargetInSupported(*this, BuiltinID, TheCall, 1743 {llvm::Triple::x86_64, llvm::Triple::arm, 1744 llvm::Triple::thumb, 1745 llvm::Triple::aarch64})) 1746 return ExprError(); 1747 break; 1748 1749 case Builtin::BI__builtin_isgreater: 1750 case Builtin::BI__builtin_isgreaterequal: 1751 case Builtin::BI__builtin_isless: 1752 case Builtin::BI__builtin_islessequal: 1753 case Builtin::BI__builtin_islessgreater: 1754 case Builtin::BI__builtin_isunordered: 1755 if (SemaBuiltinUnorderedCompare(TheCall)) 1756 return ExprError(); 1757 break; 1758 case Builtin::BI__builtin_fpclassify: 1759 if (SemaBuiltinFPClassification(TheCall, 6)) 1760 return ExprError(); 1761 break; 1762 case Builtin::BI__builtin_isfinite: 1763 case Builtin::BI__builtin_isinf: 1764 case Builtin::BI__builtin_isinf_sign: 1765 case Builtin::BI__builtin_isnan: 1766 case Builtin::BI__builtin_isnormal: 1767 case Builtin::BI__builtin_signbit: 1768 case Builtin::BI__builtin_signbitf: 1769 case Builtin::BI__builtin_signbitl: 1770 if (SemaBuiltinFPClassification(TheCall, 1)) 1771 return ExprError(); 1772 break; 1773 case Builtin::BI__builtin_shufflevector: 1774 return SemaBuiltinShuffleVector(TheCall); 1775 // TheCall will be freed by the smart pointer here, but that's fine, since 1776 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1777 case Builtin::BI__builtin_prefetch: 1778 if (SemaBuiltinPrefetch(TheCall)) 1779 return ExprError(); 1780 break; 1781 case Builtin::BI__builtin_alloca_with_align: 1782 case Builtin::BI__builtin_alloca_with_align_uninitialized: 1783 if (SemaBuiltinAllocaWithAlign(TheCall)) 1784 return ExprError(); 1785 LLVM_FALLTHROUGH; 1786 case Builtin::BI__builtin_alloca: 1787 case Builtin::BI__builtin_alloca_uninitialized: 1788 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1789 << TheCall->getDirectCallee(); 1790 break; 1791 case Builtin::BI__arithmetic_fence: 1792 if (SemaBuiltinArithmeticFence(TheCall)) 1793 return ExprError(); 1794 break; 1795 case Builtin::BI__assume: 1796 case Builtin::BI__builtin_assume: 1797 if (SemaBuiltinAssume(TheCall)) 1798 return ExprError(); 1799 break; 1800 case Builtin::BI__builtin_assume_aligned: 1801 if (SemaBuiltinAssumeAligned(TheCall)) 1802 return ExprError(); 1803 break; 1804 case Builtin::BI__builtin_dynamic_object_size: 1805 case Builtin::BI__builtin_object_size: 1806 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1807 return ExprError(); 1808 break; 1809 case Builtin::BI__builtin_longjmp: 1810 if (SemaBuiltinLongjmp(TheCall)) 1811 return ExprError(); 1812 break; 1813 case Builtin::BI__builtin_setjmp: 1814 if (SemaBuiltinSetjmp(TheCall)) 1815 return ExprError(); 1816 break; 1817 case Builtin::BI__builtin_classify_type: 1818 if (checkArgCount(*this, TheCall, 1)) return true; 1819 TheCall->setType(Context.IntTy); 1820 break; 1821 case Builtin::BI__builtin_complex: 1822 if (SemaBuiltinComplex(TheCall)) 1823 return ExprError(); 1824 break; 1825 case Builtin::BI__builtin_constant_p: { 1826 if (checkArgCount(*this, TheCall, 1)) return true; 1827 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1828 if (Arg.isInvalid()) return true; 1829 TheCall->setArg(0, Arg.get()); 1830 TheCall->setType(Context.IntTy); 1831 break; 1832 } 1833 case Builtin::BI__builtin_launder: 1834 return SemaBuiltinLaunder(*this, TheCall); 1835 case Builtin::BI__sync_fetch_and_add: 1836 case Builtin::BI__sync_fetch_and_add_1: 1837 case Builtin::BI__sync_fetch_and_add_2: 1838 case Builtin::BI__sync_fetch_and_add_4: 1839 case Builtin::BI__sync_fetch_and_add_8: 1840 case Builtin::BI__sync_fetch_and_add_16: 1841 case Builtin::BI__sync_fetch_and_sub: 1842 case Builtin::BI__sync_fetch_and_sub_1: 1843 case Builtin::BI__sync_fetch_and_sub_2: 1844 case Builtin::BI__sync_fetch_and_sub_4: 1845 case Builtin::BI__sync_fetch_and_sub_8: 1846 case Builtin::BI__sync_fetch_and_sub_16: 1847 case Builtin::BI__sync_fetch_and_or: 1848 case Builtin::BI__sync_fetch_and_or_1: 1849 case Builtin::BI__sync_fetch_and_or_2: 1850 case Builtin::BI__sync_fetch_and_or_4: 1851 case Builtin::BI__sync_fetch_and_or_8: 1852 case Builtin::BI__sync_fetch_and_or_16: 1853 case Builtin::BI__sync_fetch_and_and: 1854 case Builtin::BI__sync_fetch_and_and_1: 1855 case Builtin::BI__sync_fetch_and_and_2: 1856 case Builtin::BI__sync_fetch_and_and_4: 1857 case Builtin::BI__sync_fetch_and_and_8: 1858 case Builtin::BI__sync_fetch_and_and_16: 1859 case Builtin::BI__sync_fetch_and_xor: 1860 case Builtin::BI__sync_fetch_and_xor_1: 1861 case Builtin::BI__sync_fetch_and_xor_2: 1862 case Builtin::BI__sync_fetch_and_xor_4: 1863 case Builtin::BI__sync_fetch_and_xor_8: 1864 case Builtin::BI__sync_fetch_and_xor_16: 1865 case Builtin::BI__sync_fetch_and_nand: 1866 case Builtin::BI__sync_fetch_and_nand_1: 1867 case Builtin::BI__sync_fetch_and_nand_2: 1868 case Builtin::BI__sync_fetch_and_nand_4: 1869 case Builtin::BI__sync_fetch_and_nand_8: 1870 case Builtin::BI__sync_fetch_and_nand_16: 1871 case Builtin::BI__sync_add_and_fetch: 1872 case Builtin::BI__sync_add_and_fetch_1: 1873 case Builtin::BI__sync_add_and_fetch_2: 1874 case Builtin::BI__sync_add_and_fetch_4: 1875 case Builtin::BI__sync_add_and_fetch_8: 1876 case Builtin::BI__sync_add_and_fetch_16: 1877 case Builtin::BI__sync_sub_and_fetch: 1878 case Builtin::BI__sync_sub_and_fetch_1: 1879 case Builtin::BI__sync_sub_and_fetch_2: 1880 case Builtin::BI__sync_sub_and_fetch_4: 1881 case Builtin::BI__sync_sub_and_fetch_8: 1882 case Builtin::BI__sync_sub_and_fetch_16: 1883 case Builtin::BI__sync_and_and_fetch: 1884 case Builtin::BI__sync_and_and_fetch_1: 1885 case Builtin::BI__sync_and_and_fetch_2: 1886 case Builtin::BI__sync_and_and_fetch_4: 1887 case Builtin::BI__sync_and_and_fetch_8: 1888 case Builtin::BI__sync_and_and_fetch_16: 1889 case Builtin::BI__sync_or_and_fetch: 1890 case Builtin::BI__sync_or_and_fetch_1: 1891 case Builtin::BI__sync_or_and_fetch_2: 1892 case Builtin::BI__sync_or_and_fetch_4: 1893 case Builtin::BI__sync_or_and_fetch_8: 1894 case Builtin::BI__sync_or_and_fetch_16: 1895 case Builtin::BI__sync_xor_and_fetch: 1896 case Builtin::BI__sync_xor_and_fetch_1: 1897 case Builtin::BI__sync_xor_and_fetch_2: 1898 case Builtin::BI__sync_xor_and_fetch_4: 1899 case Builtin::BI__sync_xor_and_fetch_8: 1900 case Builtin::BI__sync_xor_and_fetch_16: 1901 case Builtin::BI__sync_nand_and_fetch: 1902 case Builtin::BI__sync_nand_and_fetch_1: 1903 case Builtin::BI__sync_nand_and_fetch_2: 1904 case Builtin::BI__sync_nand_and_fetch_4: 1905 case Builtin::BI__sync_nand_and_fetch_8: 1906 case Builtin::BI__sync_nand_and_fetch_16: 1907 case Builtin::BI__sync_val_compare_and_swap: 1908 case Builtin::BI__sync_val_compare_and_swap_1: 1909 case Builtin::BI__sync_val_compare_and_swap_2: 1910 case Builtin::BI__sync_val_compare_and_swap_4: 1911 case Builtin::BI__sync_val_compare_and_swap_8: 1912 case Builtin::BI__sync_val_compare_and_swap_16: 1913 case Builtin::BI__sync_bool_compare_and_swap: 1914 case Builtin::BI__sync_bool_compare_and_swap_1: 1915 case Builtin::BI__sync_bool_compare_and_swap_2: 1916 case Builtin::BI__sync_bool_compare_and_swap_4: 1917 case Builtin::BI__sync_bool_compare_and_swap_8: 1918 case Builtin::BI__sync_bool_compare_and_swap_16: 1919 case Builtin::BI__sync_lock_test_and_set: 1920 case Builtin::BI__sync_lock_test_and_set_1: 1921 case Builtin::BI__sync_lock_test_and_set_2: 1922 case Builtin::BI__sync_lock_test_and_set_4: 1923 case Builtin::BI__sync_lock_test_and_set_8: 1924 case Builtin::BI__sync_lock_test_and_set_16: 1925 case Builtin::BI__sync_lock_release: 1926 case Builtin::BI__sync_lock_release_1: 1927 case Builtin::BI__sync_lock_release_2: 1928 case Builtin::BI__sync_lock_release_4: 1929 case Builtin::BI__sync_lock_release_8: 1930 case Builtin::BI__sync_lock_release_16: 1931 case Builtin::BI__sync_swap: 1932 case Builtin::BI__sync_swap_1: 1933 case Builtin::BI__sync_swap_2: 1934 case Builtin::BI__sync_swap_4: 1935 case Builtin::BI__sync_swap_8: 1936 case Builtin::BI__sync_swap_16: 1937 return SemaBuiltinAtomicOverloaded(TheCallResult); 1938 case Builtin::BI__sync_synchronize: 1939 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1940 << TheCall->getCallee()->getSourceRange(); 1941 break; 1942 case Builtin::BI__builtin_nontemporal_load: 1943 case Builtin::BI__builtin_nontemporal_store: 1944 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1945 case Builtin::BI__builtin_memcpy_inline: { 1946 auto ArgArrayConversionFailed = [&](unsigned Arg) { 1947 ExprResult ArgExpr = 1948 DefaultFunctionArrayLvalueConversion(TheCall->getArg(Arg)); 1949 if (ArgExpr.isInvalid()) 1950 return true; 1951 TheCall->setArg(Arg, ArgExpr.get()); 1952 return false; 1953 }; 1954 1955 if (ArgArrayConversionFailed(0) || ArgArrayConversionFailed(1)) 1956 return true; 1957 clang::Expr *SizeOp = TheCall->getArg(2); 1958 // We warn about copying to or from `nullptr` pointers when `size` is 1959 // greater than 0. When `size` is value dependent we cannot evaluate its 1960 // value so we bail out. 1961 if (SizeOp->isValueDependent()) 1962 break; 1963 if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) { 1964 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1965 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1966 } 1967 break; 1968 } 1969 #define BUILTIN(ID, TYPE, ATTRS) 1970 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1971 case Builtin::BI##ID: \ 1972 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1973 #include "clang/Basic/Builtins.def" 1974 case Builtin::BI__annotation: 1975 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1976 return ExprError(); 1977 break; 1978 case Builtin::BI__builtin_annotation: 1979 if (SemaBuiltinAnnotation(*this, TheCall)) 1980 return ExprError(); 1981 break; 1982 case Builtin::BI__builtin_addressof: 1983 if (SemaBuiltinAddressof(*this, TheCall)) 1984 return ExprError(); 1985 break; 1986 case Builtin::BI__builtin_function_start: 1987 if (SemaBuiltinFunctionStart(*this, TheCall)) 1988 return ExprError(); 1989 break; 1990 case Builtin::BI__builtin_is_aligned: 1991 case Builtin::BI__builtin_align_up: 1992 case Builtin::BI__builtin_align_down: 1993 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1994 return ExprError(); 1995 break; 1996 case Builtin::BI__builtin_add_overflow: 1997 case Builtin::BI__builtin_sub_overflow: 1998 case Builtin::BI__builtin_mul_overflow: 1999 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) 2000 return ExprError(); 2001 break; 2002 case Builtin::BI__builtin_operator_new: 2003 case Builtin::BI__builtin_operator_delete: { 2004 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 2005 ExprResult Res = 2006 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 2007 if (Res.isInvalid()) 2008 CorrectDelayedTyposInExpr(TheCallResult.get()); 2009 return Res; 2010 } 2011 case Builtin::BI__builtin_dump_struct: { 2012 // We first want to ensure we are called with 2 arguments 2013 if (checkArgCount(*this, TheCall, 2)) 2014 return ExprError(); 2015 // Ensure that the first argument is of type 'struct XX *' 2016 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 2017 const QualType PtrArgType = PtrArg->getType(); 2018 if (!PtrArgType->isPointerType() || 2019 !PtrArgType->getPointeeType()->isRecordType()) { 2020 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 2021 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 2022 << "structure pointer"; 2023 return ExprError(); 2024 } 2025 2026 // Ensure that the second argument is of type 'FunctionType' 2027 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 2028 const QualType FnPtrArgType = FnPtrArg->getType(); 2029 if (!FnPtrArgType->isPointerType()) { 2030 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 2031 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 2032 << FnPtrArgType << "'int (*)(const char *, ...)'"; 2033 return ExprError(); 2034 } 2035 2036 const auto *FuncType = 2037 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 2038 2039 if (!FuncType) { 2040 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 2041 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 2042 << FnPtrArgType << "'int (*)(const char *, ...)'"; 2043 return ExprError(); 2044 } 2045 2046 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 2047 if (!FT->getNumParams()) { 2048 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 2049 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 2050 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 2051 return ExprError(); 2052 } 2053 QualType PT = FT->getParamType(0); 2054 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 2055 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 2056 !PT->getPointeeType().isConstQualified()) { 2057 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 2058 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 2059 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 2060 return ExprError(); 2061 } 2062 } 2063 2064 TheCall->setType(Context.IntTy); 2065 break; 2066 } 2067 case Builtin::BI__builtin_expect_with_probability: { 2068 // We first want to ensure we are called with 3 arguments 2069 if (checkArgCount(*this, TheCall, 3)) 2070 return ExprError(); 2071 // then check probability is constant float in range [0.0, 1.0] 2072 const Expr *ProbArg = TheCall->getArg(2); 2073 SmallVector<PartialDiagnosticAt, 8> Notes; 2074 Expr::EvalResult Eval; 2075 Eval.Diag = &Notes; 2076 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) || 2077 !Eval.Val.isFloat()) { 2078 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) 2079 << ProbArg->getSourceRange(); 2080 for (const PartialDiagnosticAt &PDiag : Notes) 2081 Diag(PDiag.first, PDiag.second); 2082 return ExprError(); 2083 } 2084 llvm::APFloat Probability = Eval.Val.getFloat(); 2085 bool LoseInfo = false; 2086 Probability.convert(llvm::APFloat::IEEEdouble(), 2087 llvm::RoundingMode::Dynamic, &LoseInfo); 2088 if (!(Probability >= llvm::APFloat(0.0) && 2089 Probability <= llvm::APFloat(1.0))) { 2090 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) 2091 << ProbArg->getSourceRange(); 2092 return ExprError(); 2093 } 2094 break; 2095 } 2096 case Builtin::BI__builtin_preserve_access_index: 2097 if (SemaBuiltinPreserveAI(*this, TheCall)) 2098 return ExprError(); 2099 break; 2100 case Builtin::BI__builtin_call_with_static_chain: 2101 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 2102 return ExprError(); 2103 break; 2104 case Builtin::BI__exception_code: 2105 case Builtin::BI_exception_code: 2106 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 2107 diag::err_seh___except_block)) 2108 return ExprError(); 2109 break; 2110 case Builtin::BI__exception_info: 2111 case Builtin::BI_exception_info: 2112 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 2113 diag::err_seh___except_filter)) 2114 return ExprError(); 2115 break; 2116 case Builtin::BI__GetExceptionInfo: 2117 if (checkArgCount(*this, TheCall, 1)) 2118 return ExprError(); 2119 2120 if (CheckCXXThrowOperand( 2121 TheCall->getBeginLoc(), 2122 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 2123 TheCall)) 2124 return ExprError(); 2125 2126 TheCall->setType(Context.VoidPtrTy); 2127 break; 2128 // OpenCL v2.0, s6.13.16 - Pipe functions 2129 case Builtin::BIread_pipe: 2130 case Builtin::BIwrite_pipe: 2131 // Since those two functions are declared with var args, we need a semantic 2132 // check for the argument. 2133 if (SemaBuiltinRWPipe(*this, TheCall)) 2134 return ExprError(); 2135 break; 2136 case Builtin::BIreserve_read_pipe: 2137 case Builtin::BIreserve_write_pipe: 2138 case Builtin::BIwork_group_reserve_read_pipe: 2139 case Builtin::BIwork_group_reserve_write_pipe: 2140 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 2141 return ExprError(); 2142 break; 2143 case Builtin::BIsub_group_reserve_read_pipe: 2144 case Builtin::BIsub_group_reserve_write_pipe: 2145 if (checkOpenCLSubgroupExt(*this, TheCall) || 2146 SemaBuiltinReserveRWPipe(*this, TheCall)) 2147 return ExprError(); 2148 break; 2149 case Builtin::BIcommit_read_pipe: 2150 case Builtin::BIcommit_write_pipe: 2151 case Builtin::BIwork_group_commit_read_pipe: 2152 case Builtin::BIwork_group_commit_write_pipe: 2153 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 2154 return ExprError(); 2155 break; 2156 case Builtin::BIsub_group_commit_read_pipe: 2157 case Builtin::BIsub_group_commit_write_pipe: 2158 if (checkOpenCLSubgroupExt(*this, TheCall) || 2159 SemaBuiltinCommitRWPipe(*this, TheCall)) 2160 return ExprError(); 2161 break; 2162 case Builtin::BIget_pipe_num_packets: 2163 case Builtin::BIget_pipe_max_packets: 2164 if (SemaBuiltinPipePackets(*this, TheCall)) 2165 return ExprError(); 2166 break; 2167 case Builtin::BIto_global: 2168 case Builtin::BIto_local: 2169 case Builtin::BIto_private: 2170 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 2171 return ExprError(); 2172 break; 2173 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 2174 case Builtin::BIenqueue_kernel: 2175 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 2176 return ExprError(); 2177 break; 2178 case Builtin::BIget_kernel_work_group_size: 2179 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 2180 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 2181 return ExprError(); 2182 break; 2183 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 2184 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 2185 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 2186 return ExprError(); 2187 break; 2188 case Builtin::BI__builtin_os_log_format: 2189 Cleanup.setExprNeedsCleanups(true); 2190 LLVM_FALLTHROUGH; 2191 case Builtin::BI__builtin_os_log_format_buffer_size: 2192 if (SemaBuiltinOSLogFormat(TheCall)) 2193 return ExprError(); 2194 break; 2195 case Builtin::BI__builtin_frame_address: 2196 case Builtin::BI__builtin_return_address: { 2197 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 2198 return ExprError(); 2199 2200 // -Wframe-address warning if non-zero passed to builtin 2201 // return/frame address. 2202 Expr::EvalResult Result; 2203 if (!TheCall->getArg(0)->isValueDependent() && 2204 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 2205 Result.Val.getInt() != 0) 2206 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 2207 << ((BuiltinID == Builtin::BI__builtin_return_address) 2208 ? "__builtin_return_address" 2209 : "__builtin_frame_address") 2210 << TheCall->getSourceRange(); 2211 break; 2212 } 2213 2214 // __builtin_elementwise_abs restricts the element type to signed integers or 2215 // floating point types only. 2216 case Builtin::BI__builtin_elementwise_abs: { 2217 if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) 2218 return ExprError(); 2219 2220 QualType ArgTy = TheCall->getArg(0)->getType(); 2221 QualType EltTy = ArgTy; 2222 2223 if (auto *VecTy = EltTy->getAs<VectorType>()) 2224 EltTy = VecTy->getElementType(); 2225 if (EltTy->isUnsignedIntegerType()) { 2226 Diag(TheCall->getArg(0)->getBeginLoc(), 2227 diag::err_builtin_invalid_arg_type) 2228 << 1 << /* signed integer or float ty*/ 3 << ArgTy; 2229 return ExprError(); 2230 } 2231 break; 2232 } 2233 2234 // These builtins restrict the element type to floating point 2235 // types only. 2236 case Builtin::BI__builtin_elementwise_ceil: 2237 case Builtin::BI__builtin_elementwise_floor: 2238 case Builtin::BI__builtin_elementwise_roundeven: 2239 case Builtin::BI__builtin_elementwise_trunc: { 2240 if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) 2241 return ExprError(); 2242 2243 QualType ArgTy = TheCall->getArg(0)->getType(); 2244 QualType EltTy = ArgTy; 2245 2246 if (auto *VecTy = EltTy->getAs<VectorType>()) 2247 EltTy = VecTy->getElementType(); 2248 if (!EltTy->isFloatingType()) { 2249 Diag(TheCall->getArg(0)->getBeginLoc(), 2250 diag::err_builtin_invalid_arg_type) 2251 << 1 << /* float ty*/ 5 << ArgTy; 2252 2253 return ExprError(); 2254 } 2255 break; 2256 } 2257 2258 // These builtins restrict the element type to integer 2259 // types only. 2260 case Builtin::BI__builtin_elementwise_add_sat: 2261 case Builtin::BI__builtin_elementwise_sub_sat: { 2262 if (SemaBuiltinElementwiseMath(TheCall)) 2263 return ExprError(); 2264 2265 const Expr *Arg = TheCall->getArg(0); 2266 QualType ArgTy = Arg->getType(); 2267 QualType EltTy = ArgTy; 2268 2269 if (auto *VecTy = EltTy->getAs<VectorType>()) 2270 EltTy = VecTy->getElementType(); 2271 2272 if (!EltTy->isIntegerType()) { 2273 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) 2274 << 1 << /* integer ty */ 6 << ArgTy; 2275 return ExprError(); 2276 } 2277 break; 2278 } 2279 2280 case Builtin::BI__builtin_elementwise_min: 2281 case Builtin::BI__builtin_elementwise_max: 2282 if (SemaBuiltinElementwiseMath(TheCall)) 2283 return ExprError(); 2284 break; 2285 case Builtin::BI__builtin_reduce_max: 2286 case Builtin::BI__builtin_reduce_min: { 2287 if (PrepareBuiltinReduceMathOneArgCall(TheCall)) 2288 return ExprError(); 2289 2290 const Expr *Arg = TheCall->getArg(0); 2291 const auto *TyA = Arg->getType()->getAs<VectorType>(); 2292 if (!TyA) { 2293 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) 2294 << 1 << /* vector ty*/ 4 << Arg->getType(); 2295 return ExprError(); 2296 } 2297 2298 TheCall->setType(TyA->getElementType()); 2299 break; 2300 } 2301 2302 // These builtins support vectors of integers only. 2303 case Builtin::BI__builtin_reduce_xor: 2304 case Builtin::BI__builtin_reduce_or: 2305 case Builtin::BI__builtin_reduce_and: { 2306 if (PrepareBuiltinReduceMathOneArgCall(TheCall)) 2307 return ExprError(); 2308 2309 const Expr *Arg = TheCall->getArg(0); 2310 const auto *TyA = Arg->getType()->getAs<VectorType>(); 2311 if (!TyA || !TyA->getElementType()->isIntegerType()) { 2312 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) 2313 << 1 << /* vector of integers */ 6 << Arg->getType(); 2314 return ExprError(); 2315 } 2316 TheCall->setType(TyA->getElementType()); 2317 break; 2318 } 2319 2320 case Builtin::BI__builtin_matrix_transpose: 2321 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); 2322 2323 case Builtin::BI__builtin_matrix_column_major_load: 2324 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); 2325 2326 case Builtin::BI__builtin_matrix_column_major_store: 2327 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); 2328 2329 case Builtin::BI__builtin_get_device_side_mangled_name: { 2330 auto Check = [](CallExpr *TheCall) { 2331 if (TheCall->getNumArgs() != 1) 2332 return false; 2333 auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts()); 2334 if (!DRE) 2335 return false; 2336 auto *D = DRE->getDecl(); 2337 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) 2338 return false; 2339 return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() || 2340 D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>(); 2341 }; 2342 if (!Check(TheCall)) { 2343 Diag(TheCall->getBeginLoc(), 2344 diag::err_hip_invalid_args_builtin_mangled_name); 2345 return ExprError(); 2346 } 2347 } 2348 } 2349 2350 // Since the target specific builtins for each arch overlap, only check those 2351 // of the arch we are compiling for. 2352 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 2353 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 2354 assert(Context.getAuxTargetInfo() && 2355 "Aux Target Builtin, but not an aux target?"); 2356 2357 if (CheckTSBuiltinFunctionCall( 2358 *Context.getAuxTargetInfo(), 2359 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 2360 return ExprError(); 2361 } else { 2362 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, 2363 TheCall)) 2364 return ExprError(); 2365 } 2366 } 2367 2368 return TheCallResult; 2369 } 2370 2371 // Get the valid immediate range for the specified NEON type code. 2372 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 2373 NeonTypeFlags Type(t); 2374 int IsQuad = ForceQuad ? true : Type.isQuad(); 2375 switch (Type.getEltType()) { 2376 case NeonTypeFlags::Int8: 2377 case NeonTypeFlags::Poly8: 2378 return shift ? 7 : (8 << IsQuad) - 1; 2379 case NeonTypeFlags::Int16: 2380 case NeonTypeFlags::Poly16: 2381 return shift ? 15 : (4 << IsQuad) - 1; 2382 case NeonTypeFlags::Int32: 2383 return shift ? 31 : (2 << IsQuad) - 1; 2384 case NeonTypeFlags::Int64: 2385 case NeonTypeFlags::Poly64: 2386 return shift ? 63 : (1 << IsQuad) - 1; 2387 case NeonTypeFlags::Poly128: 2388 return shift ? 127 : (1 << IsQuad) - 1; 2389 case NeonTypeFlags::Float16: 2390 assert(!shift && "cannot shift float types!"); 2391 return (4 << IsQuad) - 1; 2392 case NeonTypeFlags::Float32: 2393 assert(!shift && "cannot shift float types!"); 2394 return (2 << IsQuad) - 1; 2395 case NeonTypeFlags::Float64: 2396 assert(!shift && "cannot shift float types!"); 2397 return (1 << IsQuad) - 1; 2398 case NeonTypeFlags::BFloat16: 2399 assert(!shift && "cannot shift float types!"); 2400 return (4 << IsQuad) - 1; 2401 } 2402 llvm_unreachable("Invalid NeonTypeFlag!"); 2403 } 2404 2405 /// getNeonEltType - Return the QualType corresponding to the elements of 2406 /// the vector type specified by the NeonTypeFlags. This is used to check 2407 /// the pointer arguments for Neon load/store intrinsics. 2408 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 2409 bool IsPolyUnsigned, bool IsInt64Long) { 2410 switch (Flags.getEltType()) { 2411 case NeonTypeFlags::Int8: 2412 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 2413 case NeonTypeFlags::Int16: 2414 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 2415 case NeonTypeFlags::Int32: 2416 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 2417 case NeonTypeFlags::Int64: 2418 if (IsInt64Long) 2419 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 2420 else 2421 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 2422 : Context.LongLongTy; 2423 case NeonTypeFlags::Poly8: 2424 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 2425 case NeonTypeFlags::Poly16: 2426 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 2427 case NeonTypeFlags::Poly64: 2428 if (IsInt64Long) 2429 return Context.UnsignedLongTy; 2430 else 2431 return Context.UnsignedLongLongTy; 2432 case NeonTypeFlags::Poly128: 2433 break; 2434 case NeonTypeFlags::Float16: 2435 return Context.HalfTy; 2436 case NeonTypeFlags::Float32: 2437 return Context.FloatTy; 2438 case NeonTypeFlags::Float64: 2439 return Context.DoubleTy; 2440 case NeonTypeFlags::BFloat16: 2441 return Context.BFloat16Ty; 2442 } 2443 llvm_unreachable("Invalid NeonTypeFlag!"); 2444 } 2445 2446 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2447 // Range check SVE intrinsics that take immediate values. 2448 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2449 2450 switch (BuiltinID) { 2451 default: 2452 return false; 2453 #define GET_SVE_IMMEDIATE_CHECK 2454 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2455 #undef GET_SVE_IMMEDIATE_CHECK 2456 } 2457 2458 // Perform all the immediate checks for this builtin call. 2459 bool HasError = false; 2460 for (auto &I : ImmChecks) { 2461 int ArgNum, CheckTy, ElementSizeInBits; 2462 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2463 2464 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2465 2466 // Function that checks whether the operand (ArgNum) is an immediate 2467 // that is one of the predefined values. 2468 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2469 int ErrDiag) -> bool { 2470 // We can't check the value of a dependent argument. 2471 Expr *Arg = TheCall->getArg(ArgNum); 2472 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2473 return false; 2474 2475 // Check constant-ness first. 2476 llvm::APSInt Imm; 2477 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2478 return true; 2479 2480 if (!CheckImm(Imm.getSExtValue())) 2481 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2482 return false; 2483 }; 2484 2485 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2486 case SVETypeFlags::ImmCheck0_31: 2487 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2488 HasError = true; 2489 break; 2490 case SVETypeFlags::ImmCheck0_13: 2491 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2492 HasError = true; 2493 break; 2494 case SVETypeFlags::ImmCheck1_16: 2495 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2496 HasError = true; 2497 break; 2498 case SVETypeFlags::ImmCheck0_7: 2499 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2500 HasError = true; 2501 break; 2502 case SVETypeFlags::ImmCheckExtract: 2503 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2504 (2048 / ElementSizeInBits) - 1)) 2505 HasError = true; 2506 break; 2507 case SVETypeFlags::ImmCheckShiftRight: 2508 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2509 HasError = true; 2510 break; 2511 case SVETypeFlags::ImmCheckShiftRightNarrow: 2512 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2513 ElementSizeInBits / 2)) 2514 HasError = true; 2515 break; 2516 case SVETypeFlags::ImmCheckShiftLeft: 2517 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2518 ElementSizeInBits - 1)) 2519 HasError = true; 2520 break; 2521 case SVETypeFlags::ImmCheckLaneIndex: 2522 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2523 (128 / (1 * ElementSizeInBits)) - 1)) 2524 HasError = true; 2525 break; 2526 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2527 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2528 (128 / (2 * ElementSizeInBits)) - 1)) 2529 HasError = true; 2530 break; 2531 case SVETypeFlags::ImmCheckLaneIndexDot: 2532 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2533 (128 / (4 * ElementSizeInBits)) - 1)) 2534 HasError = true; 2535 break; 2536 case SVETypeFlags::ImmCheckComplexRot90_270: 2537 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2538 diag::err_rotation_argument_to_cadd)) 2539 HasError = true; 2540 break; 2541 case SVETypeFlags::ImmCheckComplexRotAll90: 2542 if (CheckImmediateInSet( 2543 [](int64_t V) { 2544 return V == 0 || V == 90 || V == 180 || V == 270; 2545 }, 2546 diag::err_rotation_argument_to_cmla)) 2547 HasError = true; 2548 break; 2549 case SVETypeFlags::ImmCheck0_1: 2550 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) 2551 HasError = true; 2552 break; 2553 case SVETypeFlags::ImmCheck0_2: 2554 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) 2555 HasError = true; 2556 break; 2557 case SVETypeFlags::ImmCheck0_3: 2558 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) 2559 HasError = true; 2560 break; 2561 } 2562 } 2563 2564 return HasError; 2565 } 2566 2567 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, 2568 unsigned BuiltinID, CallExpr *TheCall) { 2569 llvm::APSInt Result; 2570 uint64_t mask = 0; 2571 unsigned TV = 0; 2572 int PtrArgNum = -1; 2573 bool HasConstPtr = false; 2574 switch (BuiltinID) { 2575 #define GET_NEON_OVERLOAD_CHECK 2576 #include "clang/Basic/arm_neon.inc" 2577 #include "clang/Basic/arm_fp16.inc" 2578 #undef GET_NEON_OVERLOAD_CHECK 2579 } 2580 2581 // For NEON intrinsics which are overloaded on vector element type, validate 2582 // the immediate which specifies which variant to emit. 2583 unsigned ImmArg = TheCall->getNumArgs()-1; 2584 if (mask) { 2585 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2586 return true; 2587 2588 TV = Result.getLimitedValue(64); 2589 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2590 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2591 << TheCall->getArg(ImmArg)->getSourceRange(); 2592 } 2593 2594 if (PtrArgNum >= 0) { 2595 // Check that pointer arguments have the specified type. 2596 Expr *Arg = TheCall->getArg(PtrArgNum); 2597 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2598 Arg = ICE->getSubExpr(); 2599 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2600 QualType RHSTy = RHS.get()->getType(); 2601 2602 llvm::Triple::ArchType Arch = TI.getTriple().getArch(); 2603 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2604 Arch == llvm::Triple::aarch64_32 || 2605 Arch == llvm::Triple::aarch64_be; 2606 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; 2607 QualType EltTy = 2608 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2609 if (HasConstPtr) 2610 EltTy = EltTy.withConst(); 2611 QualType LHSTy = Context.getPointerType(EltTy); 2612 AssignConvertType ConvTy; 2613 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2614 if (RHS.isInvalid()) 2615 return true; 2616 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2617 RHS.get(), AA_Assigning)) 2618 return true; 2619 } 2620 2621 // For NEON intrinsics which take an immediate value as part of the 2622 // instruction, range check them here. 2623 unsigned i = 0, l = 0, u = 0; 2624 switch (BuiltinID) { 2625 default: 2626 return false; 2627 #define GET_NEON_IMMEDIATE_CHECK 2628 #include "clang/Basic/arm_neon.inc" 2629 #include "clang/Basic/arm_fp16.inc" 2630 #undef GET_NEON_IMMEDIATE_CHECK 2631 } 2632 2633 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2634 } 2635 2636 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2637 switch (BuiltinID) { 2638 default: 2639 return false; 2640 #include "clang/Basic/arm_mve_builtin_sema.inc" 2641 } 2642 } 2643 2644 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2645 CallExpr *TheCall) { 2646 bool Err = false; 2647 switch (BuiltinID) { 2648 default: 2649 return false; 2650 #include "clang/Basic/arm_cde_builtin_sema.inc" 2651 } 2652 2653 if (Err) 2654 return true; 2655 2656 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); 2657 } 2658 2659 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, 2660 const Expr *CoprocArg, bool WantCDE) { 2661 if (isConstantEvaluated()) 2662 return false; 2663 2664 // We can't check the value of a dependent argument. 2665 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2666 return false; 2667 2668 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context); 2669 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2670 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2671 2672 uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); 2673 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2674 2675 if (IsCDECoproc != WantCDE) 2676 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2677 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2678 2679 return false; 2680 } 2681 2682 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2683 unsigned MaxWidth) { 2684 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2685 BuiltinID == ARM::BI__builtin_arm_ldaex || 2686 BuiltinID == ARM::BI__builtin_arm_strex || 2687 BuiltinID == ARM::BI__builtin_arm_stlex || 2688 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2689 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2690 BuiltinID == AArch64::BI__builtin_arm_strex || 2691 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2692 "unexpected ARM builtin"); 2693 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2694 BuiltinID == ARM::BI__builtin_arm_ldaex || 2695 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2696 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2697 2698 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2699 2700 // Ensure that we have the proper number of arguments. 2701 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2702 return true; 2703 2704 // Inspect the pointer argument of the atomic builtin. This should always be 2705 // a pointer type, whose element is an integral scalar or pointer type. 2706 // Because it is a pointer type, we don't have to worry about any implicit 2707 // casts here. 2708 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2709 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2710 if (PointerArgRes.isInvalid()) 2711 return true; 2712 PointerArg = PointerArgRes.get(); 2713 2714 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2715 if (!pointerType) { 2716 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2717 << PointerArg->getType() << PointerArg->getSourceRange(); 2718 return true; 2719 } 2720 2721 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2722 // task is to insert the appropriate casts into the AST. First work out just 2723 // what the appropriate type is. 2724 QualType ValType = pointerType->getPointeeType(); 2725 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2726 if (IsLdrex) 2727 AddrType.addConst(); 2728 2729 // Issue a warning if the cast is dodgy. 2730 CastKind CastNeeded = CK_NoOp; 2731 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2732 CastNeeded = CK_BitCast; 2733 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2734 << PointerArg->getType() << Context.getPointerType(AddrType) 2735 << AA_Passing << PointerArg->getSourceRange(); 2736 } 2737 2738 // Finally, do the cast and replace the argument with the corrected version. 2739 AddrType = Context.getPointerType(AddrType); 2740 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2741 if (PointerArgRes.isInvalid()) 2742 return true; 2743 PointerArg = PointerArgRes.get(); 2744 2745 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2746 2747 // In general, we allow ints, floats and pointers to be loaded and stored. 2748 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2749 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2750 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2751 << PointerArg->getType() << PointerArg->getSourceRange(); 2752 return true; 2753 } 2754 2755 // But ARM doesn't have instructions to deal with 128-bit versions. 2756 if (Context.getTypeSize(ValType) > MaxWidth) { 2757 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2758 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2759 << PointerArg->getType() << PointerArg->getSourceRange(); 2760 return true; 2761 } 2762 2763 switch (ValType.getObjCLifetime()) { 2764 case Qualifiers::OCL_None: 2765 case Qualifiers::OCL_ExplicitNone: 2766 // okay 2767 break; 2768 2769 case Qualifiers::OCL_Weak: 2770 case Qualifiers::OCL_Strong: 2771 case Qualifiers::OCL_Autoreleasing: 2772 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2773 << ValType << PointerArg->getSourceRange(); 2774 return true; 2775 } 2776 2777 if (IsLdrex) { 2778 TheCall->setType(ValType); 2779 return false; 2780 } 2781 2782 // Initialize the argument to be stored. 2783 ExprResult ValArg = TheCall->getArg(0); 2784 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2785 Context, ValType, /*consume*/ false); 2786 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2787 if (ValArg.isInvalid()) 2788 return true; 2789 TheCall->setArg(0, ValArg.get()); 2790 2791 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2792 // but the custom checker bypasses all default analysis. 2793 TheCall->setType(Context.IntTy); 2794 return false; 2795 } 2796 2797 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2798 CallExpr *TheCall) { 2799 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2800 BuiltinID == ARM::BI__builtin_arm_ldaex || 2801 BuiltinID == ARM::BI__builtin_arm_strex || 2802 BuiltinID == ARM::BI__builtin_arm_stlex) { 2803 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2804 } 2805 2806 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2807 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2808 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2809 } 2810 2811 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2812 BuiltinID == ARM::BI__builtin_arm_wsr64) 2813 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2814 2815 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2816 BuiltinID == ARM::BI__builtin_arm_rsrp || 2817 BuiltinID == ARM::BI__builtin_arm_wsr || 2818 BuiltinID == ARM::BI__builtin_arm_wsrp) 2819 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2820 2821 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2822 return true; 2823 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2824 return true; 2825 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2826 return true; 2827 2828 // For intrinsics which take an immediate value as part of the instruction, 2829 // range check them here. 2830 // FIXME: VFP Intrinsics should error if VFP not present. 2831 switch (BuiltinID) { 2832 default: return false; 2833 case ARM::BI__builtin_arm_ssat: 2834 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2835 case ARM::BI__builtin_arm_usat: 2836 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2837 case ARM::BI__builtin_arm_ssat16: 2838 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2839 case ARM::BI__builtin_arm_usat16: 2840 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2841 case ARM::BI__builtin_arm_vcvtr_f: 2842 case ARM::BI__builtin_arm_vcvtr_d: 2843 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2844 case ARM::BI__builtin_arm_dmb: 2845 case ARM::BI__builtin_arm_dsb: 2846 case ARM::BI__builtin_arm_isb: 2847 case ARM::BI__builtin_arm_dbg: 2848 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2849 case ARM::BI__builtin_arm_cdp: 2850 case ARM::BI__builtin_arm_cdp2: 2851 case ARM::BI__builtin_arm_mcr: 2852 case ARM::BI__builtin_arm_mcr2: 2853 case ARM::BI__builtin_arm_mrc: 2854 case ARM::BI__builtin_arm_mrc2: 2855 case ARM::BI__builtin_arm_mcrr: 2856 case ARM::BI__builtin_arm_mcrr2: 2857 case ARM::BI__builtin_arm_mrrc: 2858 case ARM::BI__builtin_arm_mrrc2: 2859 case ARM::BI__builtin_arm_ldc: 2860 case ARM::BI__builtin_arm_ldcl: 2861 case ARM::BI__builtin_arm_ldc2: 2862 case ARM::BI__builtin_arm_ldc2l: 2863 case ARM::BI__builtin_arm_stc: 2864 case ARM::BI__builtin_arm_stcl: 2865 case ARM::BI__builtin_arm_stc2: 2866 case ARM::BI__builtin_arm_stc2l: 2867 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2868 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), 2869 /*WantCDE*/ false); 2870 } 2871 } 2872 2873 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, 2874 unsigned BuiltinID, 2875 CallExpr *TheCall) { 2876 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2877 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2878 BuiltinID == AArch64::BI__builtin_arm_strex || 2879 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2880 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2881 } 2882 2883 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2884 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2885 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2886 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2887 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2888 } 2889 2890 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2891 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2892 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2893 2894 // Memory Tagging Extensions (MTE) Intrinsics 2895 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2896 BuiltinID == AArch64::BI__builtin_arm_addg || 2897 BuiltinID == AArch64::BI__builtin_arm_gmi || 2898 BuiltinID == AArch64::BI__builtin_arm_ldg || 2899 BuiltinID == AArch64::BI__builtin_arm_stg || 2900 BuiltinID == AArch64::BI__builtin_arm_subp) { 2901 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2902 } 2903 2904 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2905 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2906 BuiltinID == AArch64::BI__builtin_arm_wsr || 2907 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2908 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2909 2910 // Only check the valid encoding range. Any constant in this range would be 2911 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2912 // an exception for incorrect registers. This matches MSVC behavior. 2913 if (BuiltinID == AArch64::BI_ReadStatusReg || 2914 BuiltinID == AArch64::BI_WriteStatusReg) 2915 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2916 2917 if (BuiltinID == AArch64::BI__getReg) 2918 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2919 2920 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2921 return true; 2922 2923 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2924 return true; 2925 2926 // For intrinsics which take an immediate value as part of the instruction, 2927 // range check them here. 2928 unsigned i = 0, l = 0, u = 0; 2929 switch (BuiltinID) { 2930 default: return false; 2931 case AArch64::BI__builtin_arm_dmb: 2932 case AArch64::BI__builtin_arm_dsb: 2933 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2934 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2935 } 2936 2937 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2938 } 2939 2940 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) { 2941 if (Arg->getType()->getAsPlaceholderType()) 2942 return false; 2943 2944 // The first argument needs to be a record field access. 2945 // If it is an array element access, we delay decision 2946 // to BPF backend to check whether the access is a 2947 // field access or not. 2948 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField || 2949 isa<MemberExpr>(Arg->IgnoreParens()) || 2950 isa<ArraySubscriptExpr>(Arg->IgnoreParens())); 2951 } 2952 2953 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S, 2954 QualType VectorTy, QualType EltTy) { 2955 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType(); 2956 if (!Context.hasSameType(VectorEltTy, EltTy)) { 2957 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types) 2958 << Call->getSourceRange() << VectorEltTy << EltTy; 2959 return false; 2960 } 2961 return true; 2962 } 2963 2964 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) { 2965 QualType ArgType = Arg->getType(); 2966 if (ArgType->getAsPlaceholderType()) 2967 return false; 2968 2969 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type 2970 // format: 2971 // 1. __builtin_preserve_type_info(*(<type> *)0, flag); 2972 // 2. <type> var; 2973 // __builtin_preserve_type_info(var, flag); 2974 if (!isa<DeclRefExpr>(Arg->IgnoreParens()) && 2975 !isa<UnaryOperator>(Arg->IgnoreParens())) 2976 return false; 2977 2978 // Typedef type. 2979 if (ArgType->getAs<TypedefType>()) 2980 return true; 2981 2982 // Record type or Enum type. 2983 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2984 if (const auto *RT = Ty->getAs<RecordType>()) { 2985 if (!RT->getDecl()->getDeclName().isEmpty()) 2986 return true; 2987 } else if (const auto *ET = Ty->getAs<EnumType>()) { 2988 if (!ET->getDecl()->getDeclName().isEmpty()) 2989 return true; 2990 } 2991 2992 return false; 2993 } 2994 2995 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) { 2996 QualType ArgType = Arg->getType(); 2997 if (ArgType->getAsPlaceholderType()) 2998 return false; 2999 3000 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type 3001 // format: 3002 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>, 3003 // flag); 3004 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens()); 3005 if (!UO) 3006 return false; 3007 3008 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr()); 3009 if (!CE) 3010 return false; 3011 if (CE->getCastKind() != CK_IntegralToPointer && 3012 CE->getCastKind() != CK_NullToPointer) 3013 return false; 3014 3015 // The integer must be from an EnumConstantDecl. 3016 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr()); 3017 if (!DR) 3018 return false; 3019 3020 const EnumConstantDecl *Enumerator = 3021 dyn_cast<EnumConstantDecl>(DR->getDecl()); 3022 if (!Enumerator) 3023 return false; 3024 3025 // The type must be EnumType. 3026 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 3027 const auto *ET = Ty->getAs<EnumType>(); 3028 if (!ET) 3029 return false; 3030 3031 // The enum value must be supported. 3032 return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator); 3033 } 3034 3035 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 3036 CallExpr *TheCall) { 3037 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 3038 BuiltinID == BPF::BI__builtin_btf_type_id || 3039 BuiltinID == BPF::BI__builtin_preserve_type_info || 3040 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 3041 "unexpected BPF builtin"); 3042 3043 if (checkArgCount(*this, TheCall, 2)) 3044 return true; 3045 3046 // The second argument needs to be a constant int 3047 Expr *Arg = TheCall->getArg(1); 3048 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context); 3049 diag::kind kind; 3050 if (!Value) { 3051 if (BuiltinID == BPF::BI__builtin_preserve_field_info) 3052 kind = diag::err_preserve_field_info_not_const; 3053 else if (BuiltinID == BPF::BI__builtin_btf_type_id) 3054 kind = diag::err_btf_type_id_not_const; 3055 else if (BuiltinID == BPF::BI__builtin_preserve_type_info) 3056 kind = diag::err_preserve_type_info_not_const; 3057 else 3058 kind = diag::err_preserve_enum_value_not_const; 3059 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange(); 3060 return true; 3061 } 3062 3063 // The first argument 3064 Arg = TheCall->getArg(0); 3065 bool InvalidArg = false; 3066 bool ReturnUnsignedInt = true; 3067 if (BuiltinID == BPF::BI__builtin_preserve_field_info) { 3068 if (!isValidBPFPreserveFieldInfoArg(Arg)) { 3069 InvalidArg = true; 3070 kind = diag::err_preserve_field_info_not_field; 3071 } 3072 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) { 3073 if (!isValidBPFPreserveTypeInfoArg(Arg)) { 3074 InvalidArg = true; 3075 kind = diag::err_preserve_type_info_invalid; 3076 } 3077 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) { 3078 if (!isValidBPFPreserveEnumValueArg(Arg)) { 3079 InvalidArg = true; 3080 kind = diag::err_preserve_enum_value_invalid; 3081 } 3082 ReturnUnsignedInt = false; 3083 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) { 3084 ReturnUnsignedInt = false; 3085 } 3086 3087 if (InvalidArg) { 3088 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange(); 3089 return true; 3090 } 3091 3092 if (ReturnUnsignedInt) 3093 TheCall->setType(Context.UnsignedIntTy); 3094 else 3095 TheCall->setType(Context.UnsignedLongTy); 3096 return false; 3097 } 3098 3099 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 3100 struct ArgInfo { 3101 uint8_t OpNum; 3102 bool IsSigned; 3103 uint8_t BitWidth; 3104 uint8_t Align; 3105 }; 3106 struct BuiltinInfo { 3107 unsigned BuiltinID; 3108 ArgInfo Infos[2]; 3109 }; 3110 3111 static BuiltinInfo Infos[] = { 3112 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 3113 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 3114 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 3115 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 3116 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 3117 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 3118 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 3119 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 3120 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 3121 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 3122 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 3123 3124 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 3125 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 3126 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 3127 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 3128 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 3129 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 3130 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 3131 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 3132 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 3133 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 3134 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 3135 3136 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 3137 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 3138 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 3139 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 3140 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 3141 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 3142 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 3143 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 3144 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 3145 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 3146 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 3147 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 3148 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 3149 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 3150 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 3151 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 3152 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 3153 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 3154 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 3155 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 3156 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 3157 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 3158 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 3159 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 3160 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 3161 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 3162 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 3163 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 3164 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 3165 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 3166 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 3167 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 3168 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 3169 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 3170 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 3171 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 3172 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 3173 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 3174 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 3175 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 3176 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 3177 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 3178 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 3179 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 3180 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 3181 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 3182 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 3183 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 3184 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 3185 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 3186 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 3187 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 3188 {{ 1, false, 6, 0 }} }, 3189 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 3190 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 3191 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 3192 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 3193 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 3194 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 3195 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 3196 {{ 1, false, 5, 0 }} }, 3197 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 3198 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 3199 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 3200 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 3201 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 3202 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 3203 { 2, false, 5, 0 }} }, 3204 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 3205 { 2, false, 6, 0 }} }, 3206 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 3207 { 3, false, 5, 0 }} }, 3208 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 3209 { 3, false, 6, 0 }} }, 3210 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 3211 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 3212 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 3213 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 3214 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 3215 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 3216 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 3217 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 3218 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 3219 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 3220 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 3221 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 3222 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 3223 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 3224 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 3225 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 3226 {{ 2, false, 4, 0 }, 3227 { 3, false, 5, 0 }} }, 3228 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 3229 {{ 2, false, 4, 0 }, 3230 { 3, false, 5, 0 }} }, 3231 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 3232 {{ 2, false, 4, 0 }, 3233 { 3, false, 5, 0 }} }, 3234 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 3235 {{ 2, false, 4, 0 }, 3236 { 3, false, 5, 0 }} }, 3237 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 3238 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 3239 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 3240 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 3241 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 3242 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 3243 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 3244 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 3245 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 3246 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 3247 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 3248 { 2, false, 5, 0 }} }, 3249 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 3250 { 2, false, 6, 0 }} }, 3251 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 3252 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 3253 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 3254 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 3255 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 3256 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 3257 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 3258 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 3259 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 3260 {{ 1, false, 4, 0 }} }, 3261 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 3262 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 3263 {{ 1, false, 4, 0 }} }, 3264 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 3265 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 3266 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 3267 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 3268 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 3269 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 3270 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 3271 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 3272 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 3273 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 3274 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 3275 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 3276 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 3277 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 3278 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 3279 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 3280 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 3281 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 3282 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 3283 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 3284 {{ 3, false, 1, 0 }} }, 3285 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 3286 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 3287 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 3288 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 3289 {{ 3, false, 1, 0 }} }, 3290 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 3291 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 3292 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 3293 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 3294 {{ 3, false, 1, 0 }} }, 3295 }; 3296 3297 // Use a dynamically initialized static to sort the table exactly once on 3298 // first run. 3299 static const bool SortOnce = 3300 (llvm::sort(Infos, 3301 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 3302 return LHS.BuiltinID < RHS.BuiltinID; 3303 }), 3304 true); 3305 (void)SortOnce; 3306 3307 const BuiltinInfo *F = llvm::partition_point( 3308 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 3309 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 3310 return false; 3311 3312 bool Error = false; 3313 3314 for (const ArgInfo &A : F->Infos) { 3315 // Ignore empty ArgInfo elements. 3316 if (A.BitWidth == 0) 3317 continue; 3318 3319 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 3320 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 3321 if (!A.Align) { 3322 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 3323 } else { 3324 unsigned M = 1 << A.Align; 3325 Min *= M; 3326 Max *= M; 3327 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 3328 Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 3329 } 3330 } 3331 return Error; 3332 } 3333 3334 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 3335 CallExpr *TheCall) { 3336 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 3337 } 3338 3339 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, 3340 unsigned BuiltinID, CallExpr *TheCall) { 3341 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || 3342 CheckMipsBuiltinArgument(BuiltinID, TheCall); 3343 } 3344 3345 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, 3346 CallExpr *TheCall) { 3347 3348 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 3349 BuiltinID <= Mips::BI__builtin_mips_lwx) { 3350 if (!TI.hasFeature("dsp")) 3351 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 3352 } 3353 3354 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 3355 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 3356 if (!TI.hasFeature("dspr2")) 3357 return Diag(TheCall->getBeginLoc(), 3358 diag::err_mips_builtin_requires_dspr2); 3359 } 3360 3361 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 3362 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 3363 if (!TI.hasFeature("msa")) 3364 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 3365 } 3366 3367 return false; 3368 } 3369 3370 // CheckMipsBuiltinArgument - Checks the constant value passed to the 3371 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 3372 // ordering for DSP is unspecified. MSA is ordered by the data format used 3373 // by the underlying instruction i.e., df/m, df/n and then by size. 3374 // 3375 // FIXME: The size tests here should instead be tablegen'd along with the 3376 // definitions from include/clang/Basic/BuiltinsMips.def. 3377 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 3378 // be too. 3379 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 3380 unsigned i = 0, l = 0, u = 0, m = 0; 3381 switch (BuiltinID) { 3382 default: return false; 3383 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 3384 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 3385 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 3386 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 3387 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 3388 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 3389 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 3390 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 3391 // df/m field. 3392 // These intrinsics take an unsigned 3 bit immediate. 3393 case Mips::BI__builtin_msa_bclri_b: 3394 case Mips::BI__builtin_msa_bnegi_b: 3395 case Mips::BI__builtin_msa_bseti_b: 3396 case Mips::BI__builtin_msa_sat_s_b: 3397 case Mips::BI__builtin_msa_sat_u_b: 3398 case Mips::BI__builtin_msa_slli_b: 3399 case Mips::BI__builtin_msa_srai_b: 3400 case Mips::BI__builtin_msa_srari_b: 3401 case Mips::BI__builtin_msa_srli_b: 3402 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 3403 case Mips::BI__builtin_msa_binsli_b: 3404 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 3405 // These intrinsics take an unsigned 4 bit immediate. 3406 case Mips::BI__builtin_msa_bclri_h: 3407 case Mips::BI__builtin_msa_bnegi_h: 3408 case Mips::BI__builtin_msa_bseti_h: 3409 case Mips::BI__builtin_msa_sat_s_h: 3410 case Mips::BI__builtin_msa_sat_u_h: 3411 case Mips::BI__builtin_msa_slli_h: 3412 case Mips::BI__builtin_msa_srai_h: 3413 case Mips::BI__builtin_msa_srari_h: 3414 case Mips::BI__builtin_msa_srli_h: 3415 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 3416 case Mips::BI__builtin_msa_binsli_h: 3417 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 3418 // These intrinsics take an unsigned 5 bit immediate. 3419 // The first block of intrinsics actually have an unsigned 5 bit field, 3420 // not a df/n field. 3421 case Mips::BI__builtin_msa_cfcmsa: 3422 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 3423 case Mips::BI__builtin_msa_clei_u_b: 3424 case Mips::BI__builtin_msa_clei_u_h: 3425 case Mips::BI__builtin_msa_clei_u_w: 3426 case Mips::BI__builtin_msa_clei_u_d: 3427 case Mips::BI__builtin_msa_clti_u_b: 3428 case Mips::BI__builtin_msa_clti_u_h: 3429 case Mips::BI__builtin_msa_clti_u_w: 3430 case Mips::BI__builtin_msa_clti_u_d: 3431 case Mips::BI__builtin_msa_maxi_u_b: 3432 case Mips::BI__builtin_msa_maxi_u_h: 3433 case Mips::BI__builtin_msa_maxi_u_w: 3434 case Mips::BI__builtin_msa_maxi_u_d: 3435 case Mips::BI__builtin_msa_mini_u_b: 3436 case Mips::BI__builtin_msa_mini_u_h: 3437 case Mips::BI__builtin_msa_mini_u_w: 3438 case Mips::BI__builtin_msa_mini_u_d: 3439 case Mips::BI__builtin_msa_addvi_b: 3440 case Mips::BI__builtin_msa_addvi_h: 3441 case Mips::BI__builtin_msa_addvi_w: 3442 case Mips::BI__builtin_msa_addvi_d: 3443 case Mips::BI__builtin_msa_bclri_w: 3444 case Mips::BI__builtin_msa_bnegi_w: 3445 case Mips::BI__builtin_msa_bseti_w: 3446 case Mips::BI__builtin_msa_sat_s_w: 3447 case Mips::BI__builtin_msa_sat_u_w: 3448 case Mips::BI__builtin_msa_slli_w: 3449 case Mips::BI__builtin_msa_srai_w: 3450 case Mips::BI__builtin_msa_srari_w: 3451 case Mips::BI__builtin_msa_srli_w: 3452 case Mips::BI__builtin_msa_srlri_w: 3453 case Mips::BI__builtin_msa_subvi_b: 3454 case Mips::BI__builtin_msa_subvi_h: 3455 case Mips::BI__builtin_msa_subvi_w: 3456 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 3457 case Mips::BI__builtin_msa_binsli_w: 3458 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 3459 // These intrinsics take an unsigned 6 bit immediate. 3460 case Mips::BI__builtin_msa_bclri_d: 3461 case Mips::BI__builtin_msa_bnegi_d: 3462 case Mips::BI__builtin_msa_bseti_d: 3463 case Mips::BI__builtin_msa_sat_s_d: 3464 case Mips::BI__builtin_msa_sat_u_d: 3465 case Mips::BI__builtin_msa_slli_d: 3466 case Mips::BI__builtin_msa_srai_d: 3467 case Mips::BI__builtin_msa_srari_d: 3468 case Mips::BI__builtin_msa_srli_d: 3469 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 3470 case Mips::BI__builtin_msa_binsli_d: 3471 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 3472 // These intrinsics take a signed 5 bit immediate. 3473 case Mips::BI__builtin_msa_ceqi_b: 3474 case Mips::BI__builtin_msa_ceqi_h: 3475 case Mips::BI__builtin_msa_ceqi_w: 3476 case Mips::BI__builtin_msa_ceqi_d: 3477 case Mips::BI__builtin_msa_clti_s_b: 3478 case Mips::BI__builtin_msa_clti_s_h: 3479 case Mips::BI__builtin_msa_clti_s_w: 3480 case Mips::BI__builtin_msa_clti_s_d: 3481 case Mips::BI__builtin_msa_clei_s_b: 3482 case Mips::BI__builtin_msa_clei_s_h: 3483 case Mips::BI__builtin_msa_clei_s_w: 3484 case Mips::BI__builtin_msa_clei_s_d: 3485 case Mips::BI__builtin_msa_maxi_s_b: 3486 case Mips::BI__builtin_msa_maxi_s_h: 3487 case Mips::BI__builtin_msa_maxi_s_w: 3488 case Mips::BI__builtin_msa_maxi_s_d: 3489 case Mips::BI__builtin_msa_mini_s_b: 3490 case Mips::BI__builtin_msa_mini_s_h: 3491 case Mips::BI__builtin_msa_mini_s_w: 3492 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3493 // These intrinsics take an unsigned 8 bit immediate. 3494 case Mips::BI__builtin_msa_andi_b: 3495 case Mips::BI__builtin_msa_nori_b: 3496 case Mips::BI__builtin_msa_ori_b: 3497 case Mips::BI__builtin_msa_shf_b: 3498 case Mips::BI__builtin_msa_shf_h: 3499 case Mips::BI__builtin_msa_shf_w: 3500 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3501 case Mips::BI__builtin_msa_bseli_b: 3502 case Mips::BI__builtin_msa_bmnzi_b: 3503 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3504 // df/n format 3505 // These intrinsics take an unsigned 4 bit immediate. 3506 case Mips::BI__builtin_msa_copy_s_b: 3507 case Mips::BI__builtin_msa_copy_u_b: 3508 case Mips::BI__builtin_msa_insve_b: 3509 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3510 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3511 // These intrinsics take an unsigned 3 bit immediate. 3512 case Mips::BI__builtin_msa_copy_s_h: 3513 case Mips::BI__builtin_msa_copy_u_h: 3514 case Mips::BI__builtin_msa_insve_h: 3515 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3516 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3517 // These intrinsics take an unsigned 2 bit immediate. 3518 case Mips::BI__builtin_msa_copy_s_w: 3519 case Mips::BI__builtin_msa_copy_u_w: 3520 case Mips::BI__builtin_msa_insve_w: 3521 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3522 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3523 // These intrinsics take an unsigned 1 bit immediate. 3524 case Mips::BI__builtin_msa_copy_s_d: 3525 case Mips::BI__builtin_msa_copy_u_d: 3526 case Mips::BI__builtin_msa_insve_d: 3527 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3528 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3529 // Memory offsets and immediate loads. 3530 // These intrinsics take a signed 10 bit immediate. 3531 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3532 case Mips::BI__builtin_msa_ldi_h: 3533 case Mips::BI__builtin_msa_ldi_w: 3534 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3535 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3536 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3537 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3538 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3539 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 3540 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 3541 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3542 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3543 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3544 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3545 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 3546 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 3547 } 3548 3549 if (!m) 3550 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3551 3552 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3553 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3554 } 3555 3556 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str, 3557 /// advancing the pointer over the consumed characters. The decoded type is 3558 /// returned. If the decoded type represents a constant integer with a 3559 /// constraint on its value then Mask is set to that value. The type descriptors 3560 /// used in Str are specific to PPC MMA builtins and are documented in the file 3561 /// defining the PPC builtins. 3562 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str, 3563 unsigned &Mask) { 3564 bool RequireICE = false; 3565 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 3566 switch (*Str++) { 3567 case 'V': 3568 return Context.getVectorType(Context.UnsignedCharTy, 16, 3569 VectorType::VectorKind::AltiVecVector); 3570 case 'i': { 3571 char *End; 3572 unsigned size = strtoul(Str, &End, 10); 3573 assert(End != Str && "Missing constant parameter constraint"); 3574 Str = End; 3575 Mask = size; 3576 return Context.IntTy; 3577 } 3578 case 'W': { 3579 char *End; 3580 unsigned size = strtoul(Str, &End, 10); 3581 assert(End != Str && "Missing PowerPC MMA type size"); 3582 Str = End; 3583 QualType Type; 3584 switch (size) { 3585 #define PPC_VECTOR_TYPE(typeName, Id, size) \ 3586 case size: Type = Context.Id##Ty; break; 3587 #include "clang/Basic/PPCTypes.def" 3588 default: llvm_unreachable("Invalid PowerPC MMA vector type"); 3589 } 3590 bool CheckVectorArgs = false; 3591 while (!CheckVectorArgs) { 3592 switch (*Str++) { 3593 case '*': 3594 Type = Context.getPointerType(Type); 3595 break; 3596 case 'C': 3597 Type = Type.withConst(); 3598 break; 3599 default: 3600 CheckVectorArgs = true; 3601 --Str; 3602 break; 3603 } 3604 } 3605 return Type; 3606 } 3607 default: 3608 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true); 3609 } 3610 } 3611 3612 static bool isPPC_64Builtin(unsigned BuiltinID) { 3613 // These builtins only work on PPC 64bit targets. 3614 switch (BuiltinID) { 3615 case PPC::BI__builtin_divde: 3616 case PPC::BI__builtin_divdeu: 3617 case PPC::BI__builtin_bpermd: 3618 case PPC::BI__builtin_pdepd: 3619 case PPC::BI__builtin_pextd: 3620 case PPC::BI__builtin_ppc_ldarx: 3621 case PPC::BI__builtin_ppc_stdcx: 3622 case PPC::BI__builtin_ppc_tdw: 3623 case PPC::BI__builtin_ppc_trapd: 3624 case PPC::BI__builtin_ppc_cmpeqb: 3625 case PPC::BI__builtin_ppc_setb: 3626 case PPC::BI__builtin_ppc_mulhd: 3627 case PPC::BI__builtin_ppc_mulhdu: 3628 case PPC::BI__builtin_ppc_maddhd: 3629 case PPC::BI__builtin_ppc_maddhdu: 3630 case PPC::BI__builtin_ppc_maddld: 3631 case PPC::BI__builtin_ppc_load8r: 3632 case PPC::BI__builtin_ppc_store8r: 3633 case PPC::BI__builtin_ppc_insert_exp: 3634 case PPC::BI__builtin_ppc_extract_sig: 3635 case PPC::BI__builtin_ppc_addex: 3636 case PPC::BI__builtin_darn: 3637 case PPC::BI__builtin_darn_raw: 3638 case PPC::BI__builtin_ppc_compare_and_swaplp: 3639 case PPC::BI__builtin_ppc_fetch_and_addlp: 3640 case PPC::BI__builtin_ppc_fetch_and_andlp: 3641 case PPC::BI__builtin_ppc_fetch_and_orlp: 3642 case PPC::BI__builtin_ppc_fetch_and_swaplp: 3643 return true; 3644 } 3645 return false; 3646 } 3647 3648 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall, 3649 StringRef FeatureToCheck, unsigned DiagID, 3650 StringRef DiagArg = "") { 3651 if (S.Context.getTargetInfo().hasFeature(FeatureToCheck)) 3652 return false; 3653 3654 if (DiagArg.empty()) 3655 S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange(); 3656 else 3657 S.Diag(TheCall->getBeginLoc(), DiagID) 3658 << DiagArg << TheCall->getSourceRange(); 3659 3660 return true; 3661 } 3662 3663 /// Returns true if the argument consists of one contiguous run of 1s with any 3664 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so 3665 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not, 3666 /// since all 1s are not contiguous. 3667 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) { 3668 llvm::APSInt Result; 3669 // We can't check the value of a dependent argument. 3670 Expr *Arg = TheCall->getArg(ArgNum); 3671 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3672 return false; 3673 3674 // Check constant-ness first. 3675 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3676 return true; 3677 3678 // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s. 3679 if (Result.isShiftedMask() || (~Result).isShiftedMask()) 3680 return false; 3681 3682 return Diag(TheCall->getBeginLoc(), 3683 diag::err_argument_not_contiguous_bit_field) 3684 << ArgNum << Arg->getSourceRange(); 3685 } 3686 3687 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3688 CallExpr *TheCall) { 3689 unsigned i = 0, l = 0, u = 0; 3690 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; 3691 llvm::APSInt Result; 3692 3693 if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit) 3694 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3695 << TheCall->getSourceRange(); 3696 3697 switch (BuiltinID) { 3698 default: return false; 3699 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3700 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3701 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3702 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3703 case PPC::BI__builtin_altivec_dss: 3704 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3705 case PPC::BI__builtin_tbegin: 3706 case PPC::BI__builtin_tend: 3707 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1) || 3708 SemaFeatureCheck(*this, TheCall, "htm", 3709 diag::err_ppc_builtin_requires_htm); 3710 case PPC::BI__builtin_tsr: 3711 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) || 3712 SemaFeatureCheck(*this, TheCall, "htm", 3713 diag::err_ppc_builtin_requires_htm); 3714 case PPC::BI__builtin_tabortwc: 3715 case PPC::BI__builtin_tabortdc: 3716 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3717 SemaFeatureCheck(*this, TheCall, "htm", 3718 diag::err_ppc_builtin_requires_htm); 3719 case PPC::BI__builtin_tabortwci: 3720 case PPC::BI__builtin_tabortdci: 3721 return SemaFeatureCheck(*this, TheCall, "htm", 3722 diag::err_ppc_builtin_requires_htm) || 3723 (SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3724 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31)); 3725 case PPC::BI__builtin_tabort: 3726 case PPC::BI__builtin_tcheck: 3727 case PPC::BI__builtin_treclaim: 3728 case PPC::BI__builtin_trechkpt: 3729 case PPC::BI__builtin_tendall: 3730 case PPC::BI__builtin_tresume: 3731 case PPC::BI__builtin_tsuspend: 3732 case PPC::BI__builtin_get_texasr: 3733 case PPC::BI__builtin_get_texasru: 3734 case PPC::BI__builtin_get_tfhar: 3735 case PPC::BI__builtin_get_tfiar: 3736 case PPC::BI__builtin_set_texasr: 3737 case PPC::BI__builtin_set_texasru: 3738 case PPC::BI__builtin_set_tfhar: 3739 case PPC::BI__builtin_set_tfiar: 3740 case PPC::BI__builtin_ttest: 3741 return SemaFeatureCheck(*this, TheCall, "htm", 3742 diag::err_ppc_builtin_requires_htm); 3743 // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05', 3744 // __builtin_(un)pack_longdouble are available only if long double uses IBM 3745 // extended double representation. 3746 case PPC::BI__builtin_unpack_longdouble: 3747 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1)) 3748 return true; 3749 LLVM_FALLTHROUGH; 3750 case PPC::BI__builtin_pack_longdouble: 3751 if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble()) 3752 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi) 3753 << "ibmlongdouble"; 3754 return false; 3755 case PPC::BI__builtin_altivec_dst: 3756 case PPC::BI__builtin_altivec_dstt: 3757 case PPC::BI__builtin_altivec_dstst: 3758 case PPC::BI__builtin_altivec_dststt: 3759 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3760 case PPC::BI__builtin_vsx_xxpermdi: 3761 case PPC::BI__builtin_vsx_xxsldwi: 3762 return SemaBuiltinVSX(TheCall); 3763 case PPC::BI__builtin_divwe: 3764 case PPC::BI__builtin_divweu: 3765 case PPC::BI__builtin_divde: 3766 case PPC::BI__builtin_divdeu: 3767 return SemaFeatureCheck(*this, TheCall, "extdiv", 3768 diag::err_ppc_builtin_only_on_arch, "7"); 3769 case PPC::BI__builtin_bpermd: 3770 return SemaFeatureCheck(*this, TheCall, "bpermd", 3771 diag::err_ppc_builtin_only_on_arch, "7"); 3772 case PPC::BI__builtin_unpack_vector_int128: 3773 return SemaFeatureCheck(*this, TheCall, "vsx", 3774 diag::err_ppc_builtin_only_on_arch, "7") || 3775 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3776 case PPC::BI__builtin_pack_vector_int128: 3777 return SemaFeatureCheck(*this, TheCall, "vsx", 3778 diag::err_ppc_builtin_only_on_arch, "7"); 3779 case PPC::BI__builtin_pdepd: 3780 case PPC::BI__builtin_pextd: 3781 return SemaFeatureCheck(*this, TheCall, "isa-v31-instructions", 3782 diag::err_ppc_builtin_only_on_arch, "10"); 3783 case PPC::BI__builtin_altivec_vgnb: 3784 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); 3785 case PPC::BI__builtin_altivec_vec_replace_elt: 3786 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 3787 QualType VecTy = TheCall->getArg(0)->getType(); 3788 QualType EltTy = TheCall->getArg(1)->getType(); 3789 unsigned Width = Context.getIntWidth(EltTy); 3790 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) || 3791 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy); 3792 } 3793 case PPC::BI__builtin_vsx_xxeval: 3794 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); 3795 case PPC::BI__builtin_altivec_vsldbi: 3796 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3797 case PPC::BI__builtin_altivec_vsrdbi: 3798 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3799 case PPC::BI__builtin_vsx_xxpermx: 3800 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); 3801 case PPC::BI__builtin_ppc_tw: 3802 case PPC::BI__builtin_ppc_tdw: 3803 return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31); 3804 case PPC::BI__builtin_ppc_cmpeqb: 3805 case PPC::BI__builtin_ppc_setb: 3806 case PPC::BI__builtin_ppc_maddhd: 3807 case PPC::BI__builtin_ppc_maddhdu: 3808 case PPC::BI__builtin_ppc_maddld: 3809 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3810 diag::err_ppc_builtin_only_on_arch, "9"); 3811 case PPC::BI__builtin_ppc_cmprb: 3812 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3813 diag::err_ppc_builtin_only_on_arch, "9") || 3814 SemaBuiltinConstantArgRange(TheCall, 0, 0, 1); 3815 // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must 3816 // be a constant that represents a contiguous bit field. 3817 case PPC::BI__builtin_ppc_rlwnm: 3818 return SemaValueIsRunOfOnes(TheCall, 2); 3819 case PPC::BI__builtin_ppc_rlwimi: 3820 case PPC::BI__builtin_ppc_rldimi: 3821 return SemaBuiltinConstantArg(TheCall, 2, Result) || 3822 SemaValueIsRunOfOnes(TheCall, 3); 3823 case PPC::BI__builtin_ppc_extract_exp: 3824 case PPC::BI__builtin_ppc_extract_sig: 3825 case PPC::BI__builtin_ppc_insert_exp: 3826 return SemaFeatureCheck(*this, TheCall, "power9-vector", 3827 diag::err_ppc_builtin_only_on_arch, "9"); 3828 case PPC::BI__builtin_ppc_addex: { 3829 if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3830 diag::err_ppc_builtin_only_on_arch, "9") || 3831 SemaBuiltinConstantArgRange(TheCall, 2, 0, 3)) 3832 return true; 3833 // Output warning for reserved values 1 to 3. 3834 int ArgValue = 3835 TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue(); 3836 if (ArgValue != 0) 3837 Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour) 3838 << ArgValue; 3839 return false; 3840 } 3841 case PPC::BI__builtin_ppc_mtfsb0: 3842 case PPC::BI__builtin_ppc_mtfsb1: 3843 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 3844 case PPC::BI__builtin_ppc_mtfsf: 3845 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255); 3846 case PPC::BI__builtin_ppc_mtfsfi: 3847 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) || 3848 SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 3849 case PPC::BI__builtin_ppc_alignx: 3850 return SemaBuiltinConstantArgPower2(TheCall, 0); 3851 case PPC::BI__builtin_ppc_rdlam: 3852 return SemaValueIsRunOfOnes(TheCall, 2); 3853 case PPC::BI__builtin_ppc_icbt: 3854 case PPC::BI__builtin_ppc_sthcx: 3855 case PPC::BI__builtin_ppc_stbcx: 3856 case PPC::BI__builtin_ppc_lharx: 3857 case PPC::BI__builtin_ppc_lbarx: 3858 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions", 3859 diag::err_ppc_builtin_only_on_arch, "8"); 3860 case PPC::BI__builtin_vsx_ldrmb: 3861 case PPC::BI__builtin_vsx_strmb: 3862 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions", 3863 diag::err_ppc_builtin_only_on_arch, "8") || 3864 SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 3865 case PPC::BI__builtin_altivec_vcntmbb: 3866 case PPC::BI__builtin_altivec_vcntmbh: 3867 case PPC::BI__builtin_altivec_vcntmbw: 3868 case PPC::BI__builtin_altivec_vcntmbd: 3869 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3870 case PPC::BI__builtin_darn: 3871 case PPC::BI__builtin_darn_raw: 3872 case PPC::BI__builtin_darn_32: 3873 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3874 diag::err_ppc_builtin_only_on_arch, "9"); 3875 case PPC::BI__builtin_vsx_xxgenpcvbm: 3876 case PPC::BI__builtin_vsx_xxgenpcvhm: 3877 case PPC::BI__builtin_vsx_xxgenpcvwm: 3878 case PPC::BI__builtin_vsx_xxgenpcvdm: 3879 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3); 3880 case PPC::BI__builtin_ppc_compare_exp_uo: 3881 case PPC::BI__builtin_ppc_compare_exp_lt: 3882 case PPC::BI__builtin_ppc_compare_exp_gt: 3883 case PPC::BI__builtin_ppc_compare_exp_eq: 3884 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3885 diag::err_ppc_builtin_only_on_arch, "9") || 3886 SemaFeatureCheck(*this, TheCall, "vsx", 3887 diag::err_ppc_builtin_requires_vsx); 3888 case PPC::BI__builtin_ppc_test_data_class: { 3889 // Check if the first argument of the __builtin_ppc_test_data_class call is 3890 // valid. The argument must be either a 'float' or a 'double'. 3891 QualType ArgType = TheCall->getArg(0)->getType(); 3892 if (ArgType != QualType(Context.FloatTy) && 3893 ArgType != QualType(Context.DoubleTy)) 3894 return Diag(TheCall->getBeginLoc(), 3895 diag::err_ppc_invalid_test_data_class_type); 3896 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3897 diag::err_ppc_builtin_only_on_arch, "9") || 3898 SemaFeatureCheck(*this, TheCall, "vsx", 3899 diag::err_ppc_builtin_requires_vsx) || 3900 SemaBuiltinConstantArgRange(TheCall, 1, 0, 127); 3901 } 3902 case PPC::BI__builtin_ppc_load8r: 3903 case PPC::BI__builtin_ppc_store8r: 3904 return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions", 3905 diag::err_ppc_builtin_only_on_arch, "7"); 3906 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \ 3907 case PPC::BI__builtin_##Name: \ 3908 return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types); 3909 #include "clang/Basic/BuiltinsPPC.def" 3910 } 3911 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3912 } 3913 3914 // Check if the given type is a non-pointer PPC MMA type. This function is used 3915 // in Sema to prevent invalid uses of restricted PPC MMA types. 3916 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) { 3917 if (Type->isPointerType() || Type->isArrayType()) 3918 return false; 3919 3920 QualType CoreType = Type.getCanonicalType().getUnqualifiedType(); 3921 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty 3922 if (false 3923 #include "clang/Basic/PPCTypes.def" 3924 ) { 3925 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type); 3926 return true; 3927 } 3928 return false; 3929 } 3930 3931 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3932 CallExpr *TheCall) { 3933 // position of memory order and scope arguments in the builtin 3934 unsigned OrderIndex, ScopeIndex; 3935 switch (BuiltinID) { 3936 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 3937 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 3938 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 3939 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 3940 OrderIndex = 2; 3941 ScopeIndex = 3; 3942 break; 3943 case AMDGPU::BI__builtin_amdgcn_fence: 3944 OrderIndex = 0; 3945 ScopeIndex = 1; 3946 break; 3947 default: 3948 return false; 3949 } 3950 3951 ExprResult Arg = TheCall->getArg(OrderIndex); 3952 auto ArgExpr = Arg.get(); 3953 Expr::EvalResult ArgResult; 3954 3955 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3956 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3957 << ArgExpr->getType(); 3958 auto Ord = ArgResult.Val.getInt().getZExtValue(); 3959 3960 // Check validity of memory ordering as per C11 / C++11's memody model. 3961 // Only fence needs check. Atomic dec/inc allow all memory orders. 3962 if (!llvm::isValidAtomicOrderingCABI(Ord)) 3963 return Diag(ArgExpr->getBeginLoc(), 3964 diag::warn_atomic_op_has_invalid_memory_order) 3965 << ArgExpr->getSourceRange(); 3966 switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) { 3967 case llvm::AtomicOrderingCABI::relaxed: 3968 case llvm::AtomicOrderingCABI::consume: 3969 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence) 3970 return Diag(ArgExpr->getBeginLoc(), 3971 diag::warn_atomic_op_has_invalid_memory_order) 3972 << ArgExpr->getSourceRange(); 3973 break; 3974 case llvm::AtomicOrderingCABI::acquire: 3975 case llvm::AtomicOrderingCABI::release: 3976 case llvm::AtomicOrderingCABI::acq_rel: 3977 case llvm::AtomicOrderingCABI::seq_cst: 3978 break; 3979 } 3980 3981 Arg = TheCall->getArg(ScopeIndex); 3982 ArgExpr = Arg.get(); 3983 Expr::EvalResult ArgResult1; 3984 // Check that sync scope is a constant literal 3985 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context)) 3986 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3987 << ArgExpr->getType(); 3988 3989 return false; 3990 } 3991 3992 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) { 3993 llvm::APSInt Result; 3994 3995 // We can't check the value of a dependent argument. 3996 Expr *Arg = TheCall->getArg(ArgNum); 3997 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3998 return false; 3999 4000 // Check constant-ness first. 4001 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4002 return true; 4003 4004 int64_t Val = Result.getSExtValue(); 4005 if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7)) 4006 return false; 4007 4008 return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul) 4009 << Arg->getSourceRange(); 4010 } 4011 4012 static bool isRISCV32Builtin(unsigned BuiltinID) { 4013 // These builtins only work on riscv32 targets. 4014 switch (BuiltinID) { 4015 case RISCV::BI__builtin_riscv_zip_32: 4016 case RISCV::BI__builtin_riscv_unzip_32: 4017 case RISCV::BI__builtin_riscv_aes32dsi_32: 4018 case RISCV::BI__builtin_riscv_aes32dsmi_32: 4019 case RISCV::BI__builtin_riscv_aes32esi_32: 4020 case RISCV::BI__builtin_riscv_aes32esmi_32: 4021 case RISCV::BI__builtin_riscv_sha512sig0h_32: 4022 case RISCV::BI__builtin_riscv_sha512sig0l_32: 4023 case RISCV::BI__builtin_riscv_sha512sig1h_32: 4024 case RISCV::BI__builtin_riscv_sha512sig1l_32: 4025 case RISCV::BI__builtin_riscv_sha512sum0r_32: 4026 case RISCV::BI__builtin_riscv_sha512sum1r_32: 4027 return true; 4028 } 4029 4030 return false; 4031 } 4032 4033 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, 4034 unsigned BuiltinID, 4035 CallExpr *TheCall) { 4036 // CodeGenFunction can also detect this, but this gives a better error 4037 // message. 4038 bool FeatureMissing = false; 4039 SmallVector<StringRef> ReqFeatures; 4040 StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID); 4041 Features.split(ReqFeatures, ','); 4042 4043 // Check for 32-bit only builtins on a 64-bit target. 4044 const llvm::Triple &TT = TI.getTriple(); 4045 if (TT.getArch() != llvm::Triple::riscv32 && isRISCV32Builtin(BuiltinID)) 4046 return Diag(TheCall->getCallee()->getBeginLoc(), 4047 diag::err_32_bit_builtin_64_bit_tgt); 4048 4049 // Check if each required feature is included 4050 for (StringRef F : ReqFeatures) { 4051 SmallVector<StringRef> ReqOpFeatures; 4052 F.split(ReqOpFeatures, '|'); 4053 bool HasFeature = false; 4054 for (StringRef OF : ReqOpFeatures) { 4055 if (TI.hasFeature(OF)) { 4056 HasFeature = true; 4057 continue; 4058 } 4059 } 4060 4061 if (!HasFeature) { 4062 std::string FeatureStrs; 4063 for (StringRef OF : ReqOpFeatures) { 4064 // If the feature is 64bit, alter the string so it will print better in 4065 // the diagnostic. 4066 if (OF == "64bit") 4067 OF = "RV64"; 4068 4069 // Convert features like "zbr" and "experimental-zbr" to "Zbr". 4070 OF.consume_front("experimental-"); 4071 std::string FeatureStr = OF.str(); 4072 FeatureStr[0] = std::toupper(FeatureStr[0]); 4073 // Combine strings. 4074 FeatureStrs += FeatureStrs == "" ? "" : ", "; 4075 FeatureStrs += "'"; 4076 FeatureStrs += FeatureStr; 4077 FeatureStrs += "'"; 4078 } 4079 // Error message 4080 FeatureMissing = true; 4081 Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension) 4082 << TheCall->getSourceRange() << StringRef(FeatureStrs); 4083 } 4084 } 4085 4086 if (FeatureMissing) 4087 return true; 4088 4089 switch (BuiltinID) { 4090 case RISCVVector::BI__builtin_rvv_vsetvli: 4091 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) || 4092 CheckRISCVLMUL(TheCall, 2); 4093 case RISCVVector::BI__builtin_rvv_vsetvlimax: 4094 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) || 4095 CheckRISCVLMUL(TheCall, 1); 4096 // Check if byteselect is in [0, 3] 4097 case RISCV::BI__builtin_riscv_aes32dsi_32: 4098 case RISCV::BI__builtin_riscv_aes32dsmi_32: 4099 case RISCV::BI__builtin_riscv_aes32esi_32: 4100 case RISCV::BI__builtin_riscv_aes32esmi_32: 4101 case RISCV::BI__builtin_riscv_sm4ks: 4102 case RISCV::BI__builtin_riscv_sm4ed: 4103 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 4104 // Check if rnum is in [0, 10] 4105 case RISCV::BI__builtin_riscv_aes64ks1i_64: 4106 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 10); 4107 } 4108 4109 return false; 4110 } 4111 4112 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 4113 CallExpr *TheCall) { 4114 if (BuiltinID == SystemZ::BI__builtin_tabort) { 4115 Expr *Arg = TheCall->getArg(0); 4116 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context)) 4117 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256) 4118 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 4119 << Arg->getSourceRange(); 4120 } 4121 4122 // For intrinsics which take an immediate value as part of the instruction, 4123 // range check them here. 4124 unsigned i = 0, l = 0, u = 0; 4125 switch (BuiltinID) { 4126 default: return false; 4127 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 4128 case SystemZ::BI__builtin_s390_verimb: 4129 case SystemZ::BI__builtin_s390_verimh: 4130 case SystemZ::BI__builtin_s390_verimf: 4131 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 4132 case SystemZ::BI__builtin_s390_vfaeb: 4133 case SystemZ::BI__builtin_s390_vfaeh: 4134 case SystemZ::BI__builtin_s390_vfaef: 4135 case SystemZ::BI__builtin_s390_vfaebs: 4136 case SystemZ::BI__builtin_s390_vfaehs: 4137 case SystemZ::BI__builtin_s390_vfaefs: 4138 case SystemZ::BI__builtin_s390_vfaezb: 4139 case SystemZ::BI__builtin_s390_vfaezh: 4140 case SystemZ::BI__builtin_s390_vfaezf: 4141 case SystemZ::BI__builtin_s390_vfaezbs: 4142 case SystemZ::BI__builtin_s390_vfaezhs: 4143 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 4144 case SystemZ::BI__builtin_s390_vfisb: 4145 case SystemZ::BI__builtin_s390_vfidb: 4146 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 4147 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 4148 case SystemZ::BI__builtin_s390_vftcisb: 4149 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 4150 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 4151 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 4152 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 4153 case SystemZ::BI__builtin_s390_vstrcb: 4154 case SystemZ::BI__builtin_s390_vstrch: 4155 case SystemZ::BI__builtin_s390_vstrcf: 4156 case SystemZ::BI__builtin_s390_vstrczb: 4157 case SystemZ::BI__builtin_s390_vstrczh: 4158 case SystemZ::BI__builtin_s390_vstrczf: 4159 case SystemZ::BI__builtin_s390_vstrcbs: 4160 case SystemZ::BI__builtin_s390_vstrchs: 4161 case SystemZ::BI__builtin_s390_vstrcfs: 4162 case SystemZ::BI__builtin_s390_vstrczbs: 4163 case SystemZ::BI__builtin_s390_vstrczhs: 4164 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 4165 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 4166 case SystemZ::BI__builtin_s390_vfminsb: 4167 case SystemZ::BI__builtin_s390_vfmaxsb: 4168 case SystemZ::BI__builtin_s390_vfmindb: 4169 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 4170 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 4171 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 4172 case SystemZ::BI__builtin_s390_vclfnhs: 4173 case SystemZ::BI__builtin_s390_vclfnls: 4174 case SystemZ::BI__builtin_s390_vcfn: 4175 case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break; 4176 case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break; 4177 } 4178 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 4179 } 4180 4181 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 4182 /// This checks that the target supports __builtin_cpu_supports and 4183 /// that the string argument is constant and valid. 4184 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, 4185 CallExpr *TheCall) { 4186 Expr *Arg = TheCall->getArg(0); 4187 4188 // Check if the argument is a string literal. 4189 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 4190 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 4191 << Arg->getSourceRange(); 4192 4193 // Check the contents of the string. 4194 StringRef Feature = 4195 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 4196 if (!TI.validateCpuSupports(Feature)) 4197 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 4198 << Arg->getSourceRange(); 4199 return false; 4200 } 4201 4202 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 4203 /// This checks that the target supports __builtin_cpu_is and 4204 /// that the string argument is constant and valid. 4205 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { 4206 Expr *Arg = TheCall->getArg(0); 4207 4208 // Check if the argument is a string literal. 4209 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 4210 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 4211 << Arg->getSourceRange(); 4212 4213 // Check the contents of the string. 4214 StringRef Feature = 4215 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 4216 if (!TI.validateCpuIs(Feature)) 4217 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 4218 << Arg->getSourceRange(); 4219 return false; 4220 } 4221 4222 // Check if the rounding mode is legal. 4223 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 4224 // Indicates if this instruction has rounding control or just SAE. 4225 bool HasRC = false; 4226 4227 unsigned ArgNum = 0; 4228 switch (BuiltinID) { 4229 default: 4230 return false; 4231 case X86::BI__builtin_ia32_vcvttsd2si32: 4232 case X86::BI__builtin_ia32_vcvttsd2si64: 4233 case X86::BI__builtin_ia32_vcvttsd2usi32: 4234 case X86::BI__builtin_ia32_vcvttsd2usi64: 4235 case X86::BI__builtin_ia32_vcvttss2si32: 4236 case X86::BI__builtin_ia32_vcvttss2si64: 4237 case X86::BI__builtin_ia32_vcvttss2usi32: 4238 case X86::BI__builtin_ia32_vcvttss2usi64: 4239 case X86::BI__builtin_ia32_vcvttsh2si32: 4240 case X86::BI__builtin_ia32_vcvttsh2si64: 4241 case X86::BI__builtin_ia32_vcvttsh2usi32: 4242 case X86::BI__builtin_ia32_vcvttsh2usi64: 4243 ArgNum = 1; 4244 break; 4245 case X86::BI__builtin_ia32_maxpd512: 4246 case X86::BI__builtin_ia32_maxps512: 4247 case X86::BI__builtin_ia32_minpd512: 4248 case X86::BI__builtin_ia32_minps512: 4249 case X86::BI__builtin_ia32_maxph512: 4250 case X86::BI__builtin_ia32_minph512: 4251 ArgNum = 2; 4252 break; 4253 case X86::BI__builtin_ia32_vcvtph2pd512_mask: 4254 case X86::BI__builtin_ia32_vcvtph2psx512_mask: 4255 case X86::BI__builtin_ia32_cvtps2pd512_mask: 4256 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 4257 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 4258 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 4259 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 4260 case X86::BI__builtin_ia32_cvttps2dq512_mask: 4261 case X86::BI__builtin_ia32_cvttps2qq512_mask: 4262 case X86::BI__builtin_ia32_cvttps2udq512_mask: 4263 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 4264 case X86::BI__builtin_ia32_vcvttph2w512_mask: 4265 case X86::BI__builtin_ia32_vcvttph2uw512_mask: 4266 case X86::BI__builtin_ia32_vcvttph2dq512_mask: 4267 case X86::BI__builtin_ia32_vcvttph2udq512_mask: 4268 case X86::BI__builtin_ia32_vcvttph2qq512_mask: 4269 case X86::BI__builtin_ia32_vcvttph2uqq512_mask: 4270 case X86::BI__builtin_ia32_exp2pd_mask: 4271 case X86::BI__builtin_ia32_exp2ps_mask: 4272 case X86::BI__builtin_ia32_getexppd512_mask: 4273 case X86::BI__builtin_ia32_getexpps512_mask: 4274 case X86::BI__builtin_ia32_getexpph512_mask: 4275 case X86::BI__builtin_ia32_rcp28pd_mask: 4276 case X86::BI__builtin_ia32_rcp28ps_mask: 4277 case X86::BI__builtin_ia32_rsqrt28pd_mask: 4278 case X86::BI__builtin_ia32_rsqrt28ps_mask: 4279 case X86::BI__builtin_ia32_vcomisd: 4280 case X86::BI__builtin_ia32_vcomiss: 4281 case X86::BI__builtin_ia32_vcomish: 4282 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 4283 ArgNum = 3; 4284 break; 4285 case X86::BI__builtin_ia32_cmppd512_mask: 4286 case X86::BI__builtin_ia32_cmpps512_mask: 4287 case X86::BI__builtin_ia32_cmpsd_mask: 4288 case X86::BI__builtin_ia32_cmpss_mask: 4289 case X86::BI__builtin_ia32_cmpsh_mask: 4290 case X86::BI__builtin_ia32_vcvtsh2sd_round_mask: 4291 case X86::BI__builtin_ia32_vcvtsh2ss_round_mask: 4292 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 4293 case X86::BI__builtin_ia32_getexpsd128_round_mask: 4294 case X86::BI__builtin_ia32_getexpss128_round_mask: 4295 case X86::BI__builtin_ia32_getexpsh128_round_mask: 4296 case X86::BI__builtin_ia32_getmantpd512_mask: 4297 case X86::BI__builtin_ia32_getmantps512_mask: 4298 case X86::BI__builtin_ia32_getmantph512_mask: 4299 case X86::BI__builtin_ia32_maxsd_round_mask: 4300 case X86::BI__builtin_ia32_maxss_round_mask: 4301 case X86::BI__builtin_ia32_maxsh_round_mask: 4302 case X86::BI__builtin_ia32_minsd_round_mask: 4303 case X86::BI__builtin_ia32_minss_round_mask: 4304 case X86::BI__builtin_ia32_minsh_round_mask: 4305 case X86::BI__builtin_ia32_rcp28sd_round_mask: 4306 case X86::BI__builtin_ia32_rcp28ss_round_mask: 4307 case X86::BI__builtin_ia32_reducepd512_mask: 4308 case X86::BI__builtin_ia32_reduceps512_mask: 4309 case X86::BI__builtin_ia32_reduceph512_mask: 4310 case X86::BI__builtin_ia32_rndscalepd_mask: 4311 case X86::BI__builtin_ia32_rndscaleps_mask: 4312 case X86::BI__builtin_ia32_rndscaleph_mask: 4313 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 4314 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 4315 ArgNum = 4; 4316 break; 4317 case X86::BI__builtin_ia32_fixupimmpd512_mask: 4318 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 4319 case X86::BI__builtin_ia32_fixupimmps512_mask: 4320 case X86::BI__builtin_ia32_fixupimmps512_maskz: 4321 case X86::BI__builtin_ia32_fixupimmsd_mask: 4322 case X86::BI__builtin_ia32_fixupimmsd_maskz: 4323 case X86::BI__builtin_ia32_fixupimmss_mask: 4324 case X86::BI__builtin_ia32_fixupimmss_maskz: 4325 case X86::BI__builtin_ia32_getmantsd_round_mask: 4326 case X86::BI__builtin_ia32_getmantss_round_mask: 4327 case X86::BI__builtin_ia32_getmantsh_round_mask: 4328 case X86::BI__builtin_ia32_rangepd512_mask: 4329 case X86::BI__builtin_ia32_rangeps512_mask: 4330 case X86::BI__builtin_ia32_rangesd128_round_mask: 4331 case X86::BI__builtin_ia32_rangess128_round_mask: 4332 case X86::BI__builtin_ia32_reducesd_mask: 4333 case X86::BI__builtin_ia32_reducess_mask: 4334 case X86::BI__builtin_ia32_reducesh_mask: 4335 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4336 case X86::BI__builtin_ia32_rndscaless_round_mask: 4337 case X86::BI__builtin_ia32_rndscalesh_round_mask: 4338 ArgNum = 5; 4339 break; 4340 case X86::BI__builtin_ia32_vcvtsd2si64: 4341 case X86::BI__builtin_ia32_vcvtsd2si32: 4342 case X86::BI__builtin_ia32_vcvtsd2usi32: 4343 case X86::BI__builtin_ia32_vcvtsd2usi64: 4344 case X86::BI__builtin_ia32_vcvtss2si32: 4345 case X86::BI__builtin_ia32_vcvtss2si64: 4346 case X86::BI__builtin_ia32_vcvtss2usi32: 4347 case X86::BI__builtin_ia32_vcvtss2usi64: 4348 case X86::BI__builtin_ia32_vcvtsh2si32: 4349 case X86::BI__builtin_ia32_vcvtsh2si64: 4350 case X86::BI__builtin_ia32_vcvtsh2usi32: 4351 case X86::BI__builtin_ia32_vcvtsh2usi64: 4352 case X86::BI__builtin_ia32_sqrtpd512: 4353 case X86::BI__builtin_ia32_sqrtps512: 4354 case X86::BI__builtin_ia32_sqrtph512: 4355 ArgNum = 1; 4356 HasRC = true; 4357 break; 4358 case X86::BI__builtin_ia32_addph512: 4359 case X86::BI__builtin_ia32_divph512: 4360 case X86::BI__builtin_ia32_mulph512: 4361 case X86::BI__builtin_ia32_subph512: 4362 case X86::BI__builtin_ia32_addpd512: 4363 case X86::BI__builtin_ia32_addps512: 4364 case X86::BI__builtin_ia32_divpd512: 4365 case X86::BI__builtin_ia32_divps512: 4366 case X86::BI__builtin_ia32_mulpd512: 4367 case X86::BI__builtin_ia32_mulps512: 4368 case X86::BI__builtin_ia32_subpd512: 4369 case X86::BI__builtin_ia32_subps512: 4370 case X86::BI__builtin_ia32_cvtsi2sd64: 4371 case X86::BI__builtin_ia32_cvtsi2ss32: 4372 case X86::BI__builtin_ia32_cvtsi2ss64: 4373 case X86::BI__builtin_ia32_cvtusi2sd64: 4374 case X86::BI__builtin_ia32_cvtusi2ss32: 4375 case X86::BI__builtin_ia32_cvtusi2ss64: 4376 case X86::BI__builtin_ia32_vcvtusi2sh: 4377 case X86::BI__builtin_ia32_vcvtusi642sh: 4378 case X86::BI__builtin_ia32_vcvtsi2sh: 4379 case X86::BI__builtin_ia32_vcvtsi642sh: 4380 ArgNum = 2; 4381 HasRC = true; 4382 break; 4383 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 4384 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 4385 case X86::BI__builtin_ia32_vcvtpd2ph512_mask: 4386 case X86::BI__builtin_ia32_vcvtps2phx512_mask: 4387 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 4388 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 4389 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 4390 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 4391 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 4392 case X86::BI__builtin_ia32_cvtps2dq512_mask: 4393 case X86::BI__builtin_ia32_cvtps2qq512_mask: 4394 case X86::BI__builtin_ia32_cvtps2udq512_mask: 4395 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 4396 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 4397 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 4398 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 4399 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 4400 case X86::BI__builtin_ia32_vcvtdq2ph512_mask: 4401 case X86::BI__builtin_ia32_vcvtudq2ph512_mask: 4402 case X86::BI__builtin_ia32_vcvtw2ph512_mask: 4403 case X86::BI__builtin_ia32_vcvtuw2ph512_mask: 4404 case X86::BI__builtin_ia32_vcvtph2w512_mask: 4405 case X86::BI__builtin_ia32_vcvtph2uw512_mask: 4406 case X86::BI__builtin_ia32_vcvtph2dq512_mask: 4407 case X86::BI__builtin_ia32_vcvtph2udq512_mask: 4408 case X86::BI__builtin_ia32_vcvtph2qq512_mask: 4409 case X86::BI__builtin_ia32_vcvtph2uqq512_mask: 4410 case X86::BI__builtin_ia32_vcvtqq2ph512_mask: 4411 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask: 4412 ArgNum = 3; 4413 HasRC = true; 4414 break; 4415 case X86::BI__builtin_ia32_addsh_round_mask: 4416 case X86::BI__builtin_ia32_addss_round_mask: 4417 case X86::BI__builtin_ia32_addsd_round_mask: 4418 case X86::BI__builtin_ia32_divsh_round_mask: 4419 case X86::BI__builtin_ia32_divss_round_mask: 4420 case X86::BI__builtin_ia32_divsd_round_mask: 4421 case X86::BI__builtin_ia32_mulsh_round_mask: 4422 case X86::BI__builtin_ia32_mulss_round_mask: 4423 case X86::BI__builtin_ia32_mulsd_round_mask: 4424 case X86::BI__builtin_ia32_subsh_round_mask: 4425 case X86::BI__builtin_ia32_subss_round_mask: 4426 case X86::BI__builtin_ia32_subsd_round_mask: 4427 case X86::BI__builtin_ia32_scalefph512_mask: 4428 case X86::BI__builtin_ia32_scalefpd512_mask: 4429 case X86::BI__builtin_ia32_scalefps512_mask: 4430 case X86::BI__builtin_ia32_scalefsd_round_mask: 4431 case X86::BI__builtin_ia32_scalefss_round_mask: 4432 case X86::BI__builtin_ia32_scalefsh_round_mask: 4433 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 4434 case X86::BI__builtin_ia32_vcvtss2sh_round_mask: 4435 case X86::BI__builtin_ia32_vcvtsd2sh_round_mask: 4436 case X86::BI__builtin_ia32_sqrtsd_round_mask: 4437 case X86::BI__builtin_ia32_sqrtss_round_mask: 4438 case X86::BI__builtin_ia32_sqrtsh_round_mask: 4439 case X86::BI__builtin_ia32_vfmaddsd3_mask: 4440 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 4441 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 4442 case X86::BI__builtin_ia32_vfmaddss3_mask: 4443 case X86::BI__builtin_ia32_vfmaddss3_maskz: 4444 case X86::BI__builtin_ia32_vfmaddss3_mask3: 4445 case X86::BI__builtin_ia32_vfmaddsh3_mask: 4446 case X86::BI__builtin_ia32_vfmaddsh3_maskz: 4447 case X86::BI__builtin_ia32_vfmaddsh3_mask3: 4448 case X86::BI__builtin_ia32_vfmaddpd512_mask: 4449 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 4450 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 4451 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 4452 case X86::BI__builtin_ia32_vfmaddps512_mask: 4453 case X86::BI__builtin_ia32_vfmaddps512_maskz: 4454 case X86::BI__builtin_ia32_vfmaddps512_mask3: 4455 case X86::BI__builtin_ia32_vfmsubps512_mask3: 4456 case X86::BI__builtin_ia32_vfmaddph512_mask: 4457 case X86::BI__builtin_ia32_vfmaddph512_maskz: 4458 case X86::BI__builtin_ia32_vfmaddph512_mask3: 4459 case X86::BI__builtin_ia32_vfmsubph512_mask3: 4460 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 4461 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 4462 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 4463 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 4464 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 4465 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 4466 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 4467 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 4468 case X86::BI__builtin_ia32_vfmaddsubph512_mask: 4469 case X86::BI__builtin_ia32_vfmaddsubph512_maskz: 4470 case X86::BI__builtin_ia32_vfmaddsubph512_mask3: 4471 case X86::BI__builtin_ia32_vfmsubaddph512_mask3: 4472 case X86::BI__builtin_ia32_vfmaddcsh_mask: 4473 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: 4474 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: 4475 case X86::BI__builtin_ia32_vfmaddcph512_mask: 4476 case X86::BI__builtin_ia32_vfmaddcph512_maskz: 4477 case X86::BI__builtin_ia32_vfmaddcph512_mask3: 4478 case X86::BI__builtin_ia32_vfcmaddcsh_mask: 4479 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask: 4480 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3: 4481 case X86::BI__builtin_ia32_vfcmaddcph512_mask: 4482 case X86::BI__builtin_ia32_vfcmaddcph512_maskz: 4483 case X86::BI__builtin_ia32_vfcmaddcph512_mask3: 4484 case X86::BI__builtin_ia32_vfmulcsh_mask: 4485 case X86::BI__builtin_ia32_vfmulcph512_mask: 4486 case X86::BI__builtin_ia32_vfcmulcsh_mask: 4487 case X86::BI__builtin_ia32_vfcmulcph512_mask: 4488 ArgNum = 4; 4489 HasRC = true; 4490 break; 4491 } 4492 4493 llvm::APSInt Result; 4494 4495 // We can't check the value of a dependent argument. 4496 Expr *Arg = TheCall->getArg(ArgNum); 4497 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4498 return false; 4499 4500 // Check constant-ness first. 4501 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4502 return true; 4503 4504 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 4505 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 4506 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 4507 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 4508 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 4509 Result == 8/*ROUND_NO_EXC*/ || 4510 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 4511 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 4512 return false; 4513 4514 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 4515 << Arg->getSourceRange(); 4516 } 4517 4518 // Check if the gather/scatter scale is legal. 4519 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 4520 CallExpr *TheCall) { 4521 unsigned ArgNum = 0; 4522 switch (BuiltinID) { 4523 default: 4524 return false; 4525 case X86::BI__builtin_ia32_gatherpfdpd: 4526 case X86::BI__builtin_ia32_gatherpfdps: 4527 case X86::BI__builtin_ia32_gatherpfqpd: 4528 case X86::BI__builtin_ia32_gatherpfqps: 4529 case X86::BI__builtin_ia32_scatterpfdpd: 4530 case X86::BI__builtin_ia32_scatterpfdps: 4531 case X86::BI__builtin_ia32_scatterpfqpd: 4532 case X86::BI__builtin_ia32_scatterpfqps: 4533 ArgNum = 3; 4534 break; 4535 case X86::BI__builtin_ia32_gatherd_pd: 4536 case X86::BI__builtin_ia32_gatherd_pd256: 4537 case X86::BI__builtin_ia32_gatherq_pd: 4538 case X86::BI__builtin_ia32_gatherq_pd256: 4539 case X86::BI__builtin_ia32_gatherd_ps: 4540 case X86::BI__builtin_ia32_gatherd_ps256: 4541 case X86::BI__builtin_ia32_gatherq_ps: 4542 case X86::BI__builtin_ia32_gatherq_ps256: 4543 case X86::BI__builtin_ia32_gatherd_q: 4544 case X86::BI__builtin_ia32_gatherd_q256: 4545 case X86::BI__builtin_ia32_gatherq_q: 4546 case X86::BI__builtin_ia32_gatherq_q256: 4547 case X86::BI__builtin_ia32_gatherd_d: 4548 case X86::BI__builtin_ia32_gatherd_d256: 4549 case X86::BI__builtin_ia32_gatherq_d: 4550 case X86::BI__builtin_ia32_gatherq_d256: 4551 case X86::BI__builtin_ia32_gather3div2df: 4552 case X86::BI__builtin_ia32_gather3div2di: 4553 case X86::BI__builtin_ia32_gather3div4df: 4554 case X86::BI__builtin_ia32_gather3div4di: 4555 case X86::BI__builtin_ia32_gather3div4sf: 4556 case X86::BI__builtin_ia32_gather3div4si: 4557 case X86::BI__builtin_ia32_gather3div8sf: 4558 case X86::BI__builtin_ia32_gather3div8si: 4559 case X86::BI__builtin_ia32_gather3siv2df: 4560 case X86::BI__builtin_ia32_gather3siv2di: 4561 case X86::BI__builtin_ia32_gather3siv4df: 4562 case X86::BI__builtin_ia32_gather3siv4di: 4563 case X86::BI__builtin_ia32_gather3siv4sf: 4564 case X86::BI__builtin_ia32_gather3siv4si: 4565 case X86::BI__builtin_ia32_gather3siv8sf: 4566 case X86::BI__builtin_ia32_gather3siv8si: 4567 case X86::BI__builtin_ia32_gathersiv8df: 4568 case X86::BI__builtin_ia32_gathersiv16sf: 4569 case X86::BI__builtin_ia32_gatherdiv8df: 4570 case X86::BI__builtin_ia32_gatherdiv16sf: 4571 case X86::BI__builtin_ia32_gathersiv8di: 4572 case X86::BI__builtin_ia32_gathersiv16si: 4573 case X86::BI__builtin_ia32_gatherdiv8di: 4574 case X86::BI__builtin_ia32_gatherdiv16si: 4575 case X86::BI__builtin_ia32_scatterdiv2df: 4576 case X86::BI__builtin_ia32_scatterdiv2di: 4577 case X86::BI__builtin_ia32_scatterdiv4df: 4578 case X86::BI__builtin_ia32_scatterdiv4di: 4579 case X86::BI__builtin_ia32_scatterdiv4sf: 4580 case X86::BI__builtin_ia32_scatterdiv4si: 4581 case X86::BI__builtin_ia32_scatterdiv8sf: 4582 case X86::BI__builtin_ia32_scatterdiv8si: 4583 case X86::BI__builtin_ia32_scattersiv2df: 4584 case X86::BI__builtin_ia32_scattersiv2di: 4585 case X86::BI__builtin_ia32_scattersiv4df: 4586 case X86::BI__builtin_ia32_scattersiv4di: 4587 case X86::BI__builtin_ia32_scattersiv4sf: 4588 case X86::BI__builtin_ia32_scattersiv4si: 4589 case X86::BI__builtin_ia32_scattersiv8sf: 4590 case X86::BI__builtin_ia32_scattersiv8si: 4591 case X86::BI__builtin_ia32_scattersiv8df: 4592 case X86::BI__builtin_ia32_scattersiv16sf: 4593 case X86::BI__builtin_ia32_scatterdiv8df: 4594 case X86::BI__builtin_ia32_scatterdiv16sf: 4595 case X86::BI__builtin_ia32_scattersiv8di: 4596 case X86::BI__builtin_ia32_scattersiv16si: 4597 case X86::BI__builtin_ia32_scatterdiv8di: 4598 case X86::BI__builtin_ia32_scatterdiv16si: 4599 ArgNum = 4; 4600 break; 4601 } 4602 4603 llvm::APSInt Result; 4604 4605 // We can't check the value of a dependent argument. 4606 Expr *Arg = TheCall->getArg(ArgNum); 4607 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4608 return false; 4609 4610 // Check constant-ness first. 4611 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4612 return true; 4613 4614 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 4615 return false; 4616 4617 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 4618 << Arg->getSourceRange(); 4619 } 4620 4621 enum { TileRegLow = 0, TileRegHigh = 7 }; 4622 4623 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, 4624 ArrayRef<int> ArgNums) { 4625 for (int ArgNum : ArgNums) { 4626 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) 4627 return true; 4628 } 4629 return false; 4630 } 4631 4632 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, 4633 ArrayRef<int> ArgNums) { 4634 // Because the max number of tile register is TileRegHigh + 1, so here we use 4635 // each bit to represent the usage of them in bitset. 4636 std::bitset<TileRegHigh + 1> ArgValues; 4637 for (int ArgNum : ArgNums) { 4638 Expr *Arg = TheCall->getArg(ArgNum); 4639 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4640 continue; 4641 4642 llvm::APSInt Result; 4643 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4644 return true; 4645 int ArgExtValue = Result.getExtValue(); 4646 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && 4647 "Incorrect tile register num."); 4648 if (ArgValues.test(ArgExtValue)) 4649 return Diag(TheCall->getBeginLoc(), 4650 diag::err_x86_builtin_tile_arg_duplicate) 4651 << TheCall->getArg(ArgNum)->getSourceRange(); 4652 ArgValues.set(ArgExtValue); 4653 } 4654 return false; 4655 } 4656 4657 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, 4658 ArrayRef<int> ArgNums) { 4659 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || 4660 CheckX86BuiltinTileDuplicate(TheCall, ArgNums); 4661 } 4662 4663 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { 4664 switch (BuiltinID) { 4665 default: 4666 return false; 4667 case X86::BI__builtin_ia32_tileloadd64: 4668 case X86::BI__builtin_ia32_tileloaddt164: 4669 case X86::BI__builtin_ia32_tilestored64: 4670 case X86::BI__builtin_ia32_tilezero: 4671 return CheckX86BuiltinTileArgumentsRange(TheCall, 0); 4672 case X86::BI__builtin_ia32_tdpbssd: 4673 case X86::BI__builtin_ia32_tdpbsud: 4674 case X86::BI__builtin_ia32_tdpbusd: 4675 case X86::BI__builtin_ia32_tdpbuud: 4676 case X86::BI__builtin_ia32_tdpbf16ps: 4677 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); 4678 } 4679 } 4680 static bool isX86_32Builtin(unsigned BuiltinID) { 4681 // These builtins only work on x86-32 targets. 4682 switch (BuiltinID) { 4683 case X86::BI__builtin_ia32_readeflags_u32: 4684 case X86::BI__builtin_ia32_writeeflags_u32: 4685 return true; 4686 } 4687 4688 return false; 4689 } 4690 4691 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 4692 CallExpr *TheCall) { 4693 if (BuiltinID == X86::BI__builtin_cpu_supports) 4694 return SemaBuiltinCpuSupports(*this, TI, TheCall); 4695 4696 if (BuiltinID == X86::BI__builtin_cpu_is) 4697 return SemaBuiltinCpuIs(*this, TI, TheCall); 4698 4699 // Check for 32-bit only builtins on a 64-bit target. 4700 const llvm::Triple &TT = TI.getTriple(); 4701 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 4702 return Diag(TheCall->getCallee()->getBeginLoc(), 4703 diag::err_32_bit_builtin_64_bit_tgt); 4704 4705 // If the intrinsic has rounding or SAE make sure its valid. 4706 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 4707 return true; 4708 4709 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 4710 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 4711 return true; 4712 4713 // If the intrinsic has a tile arguments, make sure they are valid. 4714 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) 4715 return true; 4716 4717 // For intrinsics which take an immediate value as part of the instruction, 4718 // range check them here. 4719 int i = 0, l = 0, u = 0; 4720 switch (BuiltinID) { 4721 default: 4722 return false; 4723 case X86::BI__builtin_ia32_vec_ext_v2si: 4724 case X86::BI__builtin_ia32_vec_ext_v2di: 4725 case X86::BI__builtin_ia32_vextractf128_pd256: 4726 case X86::BI__builtin_ia32_vextractf128_ps256: 4727 case X86::BI__builtin_ia32_vextractf128_si256: 4728 case X86::BI__builtin_ia32_extract128i256: 4729 case X86::BI__builtin_ia32_extractf64x4_mask: 4730 case X86::BI__builtin_ia32_extracti64x4_mask: 4731 case X86::BI__builtin_ia32_extractf32x8_mask: 4732 case X86::BI__builtin_ia32_extracti32x8_mask: 4733 case X86::BI__builtin_ia32_extractf64x2_256_mask: 4734 case X86::BI__builtin_ia32_extracti64x2_256_mask: 4735 case X86::BI__builtin_ia32_extractf32x4_256_mask: 4736 case X86::BI__builtin_ia32_extracti32x4_256_mask: 4737 i = 1; l = 0; u = 1; 4738 break; 4739 case X86::BI__builtin_ia32_vec_set_v2di: 4740 case X86::BI__builtin_ia32_vinsertf128_pd256: 4741 case X86::BI__builtin_ia32_vinsertf128_ps256: 4742 case X86::BI__builtin_ia32_vinsertf128_si256: 4743 case X86::BI__builtin_ia32_insert128i256: 4744 case X86::BI__builtin_ia32_insertf32x8: 4745 case X86::BI__builtin_ia32_inserti32x8: 4746 case X86::BI__builtin_ia32_insertf64x4: 4747 case X86::BI__builtin_ia32_inserti64x4: 4748 case X86::BI__builtin_ia32_insertf64x2_256: 4749 case X86::BI__builtin_ia32_inserti64x2_256: 4750 case X86::BI__builtin_ia32_insertf32x4_256: 4751 case X86::BI__builtin_ia32_inserti32x4_256: 4752 i = 2; l = 0; u = 1; 4753 break; 4754 case X86::BI__builtin_ia32_vpermilpd: 4755 case X86::BI__builtin_ia32_vec_ext_v4hi: 4756 case X86::BI__builtin_ia32_vec_ext_v4si: 4757 case X86::BI__builtin_ia32_vec_ext_v4sf: 4758 case X86::BI__builtin_ia32_vec_ext_v4di: 4759 case X86::BI__builtin_ia32_extractf32x4_mask: 4760 case X86::BI__builtin_ia32_extracti32x4_mask: 4761 case X86::BI__builtin_ia32_extractf64x2_512_mask: 4762 case X86::BI__builtin_ia32_extracti64x2_512_mask: 4763 i = 1; l = 0; u = 3; 4764 break; 4765 case X86::BI_mm_prefetch: 4766 case X86::BI__builtin_ia32_vec_ext_v8hi: 4767 case X86::BI__builtin_ia32_vec_ext_v8si: 4768 i = 1; l = 0; u = 7; 4769 break; 4770 case X86::BI__builtin_ia32_sha1rnds4: 4771 case X86::BI__builtin_ia32_blendpd: 4772 case X86::BI__builtin_ia32_shufpd: 4773 case X86::BI__builtin_ia32_vec_set_v4hi: 4774 case X86::BI__builtin_ia32_vec_set_v4si: 4775 case X86::BI__builtin_ia32_vec_set_v4di: 4776 case X86::BI__builtin_ia32_shuf_f32x4_256: 4777 case X86::BI__builtin_ia32_shuf_f64x2_256: 4778 case X86::BI__builtin_ia32_shuf_i32x4_256: 4779 case X86::BI__builtin_ia32_shuf_i64x2_256: 4780 case X86::BI__builtin_ia32_insertf64x2_512: 4781 case X86::BI__builtin_ia32_inserti64x2_512: 4782 case X86::BI__builtin_ia32_insertf32x4: 4783 case X86::BI__builtin_ia32_inserti32x4: 4784 i = 2; l = 0; u = 3; 4785 break; 4786 case X86::BI__builtin_ia32_vpermil2pd: 4787 case X86::BI__builtin_ia32_vpermil2pd256: 4788 case X86::BI__builtin_ia32_vpermil2ps: 4789 case X86::BI__builtin_ia32_vpermil2ps256: 4790 i = 3; l = 0; u = 3; 4791 break; 4792 case X86::BI__builtin_ia32_cmpb128_mask: 4793 case X86::BI__builtin_ia32_cmpw128_mask: 4794 case X86::BI__builtin_ia32_cmpd128_mask: 4795 case X86::BI__builtin_ia32_cmpq128_mask: 4796 case X86::BI__builtin_ia32_cmpb256_mask: 4797 case X86::BI__builtin_ia32_cmpw256_mask: 4798 case X86::BI__builtin_ia32_cmpd256_mask: 4799 case X86::BI__builtin_ia32_cmpq256_mask: 4800 case X86::BI__builtin_ia32_cmpb512_mask: 4801 case X86::BI__builtin_ia32_cmpw512_mask: 4802 case X86::BI__builtin_ia32_cmpd512_mask: 4803 case X86::BI__builtin_ia32_cmpq512_mask: 4804 case X86::BI__builtin_ia32_ucmpb128_mask: 4805 case X86::BI__builtin_ia32_ucmpw128_mask: 4806 case X86::BI__builtin_ia32_ucmpd128_mask: 4807 case X86::BI__builtin_ia32_ucmpq128_mask: 4808 case X86::BI__builtin_ia32_ucmpb256_mask: 4809 case X86::BI__builtin_ia32_ucmpw256_mask: 4810 case X86::BI__builtin_ia32_ucmpd256_mask: 4811 case X86::BI__builtin_ia32_ucmpq256_mask: 4812 case X86::BI__builtin_ia32_ucmpb512_mask: 4813 case X86::BI__builtin_ia32_ucmpw512_mask: 4814 case X86::BI__builtin_ia32_ucmpd512_mask: 4815 case X86::BI__builtin_ia32_ucmpq512_mask: 4816 case X86::BI__builtin_ia32_vpcomub: 4817 case X86::BI__builtin_ia32_vpcomuw: 4818 case X86::BI__builtin_ia32_vpcomud: 4819 case X86::BI__builtin_ia32_vpcomuq: 4820 case X86::BI__builtin_ia32_vpcomb: 4821 case X86::BI__builtin_ia32_vpcomw: 4822 case X86::BI__builtin_ia32_vpcomd: 4823 case X86::BI__builtin_ia32_vpcomq: 4824 case X86::BI__builtin_ia32_vec_set_v8hi: 4825 case X86::BI__builtin_ia32_vec_set_v8si: 4826 i = 2; l = 0; u = 7; 4827 break; 4828 case X86::BI__builtin_ia32_vpermilpd256: 4829 case X86::BI__builtin_ia32_roundps: 4830 case X86::BI__builtin_ia32_roundpd: 4831 case X86::BI__builtin_ia32_roundps256: 4832 case X86::BI__builtin_ia32_roundpd256: 4833 case X86::BI__builtin_ia32_getmantpd128_mask: 4834 case X86::BI__builtin_ia32_getmantpd256_mask: 4835 case X86::BI__builtin_ia32_getmantps128_mask: 4836 case X86::BI__builtin_ia32_getmantps256_mask: 4837 case X86::BI__builtin_ia32_getmantpd512_mask: 4838 case X86::BI__builtin_ia32_getmantps512_mask: 4839 case X86::BI__builtin_ia32_getmantph128_mask: 4840 case X86::BI__builtin_ia32_getmantph256_mask: 4841 case X86::BI__builtin_ia32_getmantph512_mask: 4842 case X86::BI__builtin_ia32_vec_ext_v16qi: 4843 case X86::BI__builtin_ia32_vec_ext_v16hi: 4844 i = 1; l = 0; u = 15; 4845 break; 4846 case X86::BI__builtin_ia32_pblendd128: 4847 case X86::BI__builtin_ia32_blendps: 4848 case X86::BI__builtin_ia32_blendpd256: 4849 case X86::BI__builtin_ia32_shufpd256: 4850 case X86::BI__builtin_ia32_roundss: 4851 case X86::BI__builtin_ia32_roundsd: 4852 case X86::BI__builtin_ia32_rangepd128_mask: 4853 case X86::BI__builtin_ia32_rangepd256_mask: 4854 case X86::BI__builtin_ia32_rangepd512_mask: 4855 case X86::BI__builtin_ia32_rangeps128_mask: 4856 case X86::BI__builtin_ia32_rangeps256_mask: 4857 case X86::BI__builtin_ia32_rangeps512_mask: 4858 case X86::BI__builtin_ia32_getmantsd_round_mask: 4859 case X86::BI__builtin_ia32_getmantss_round_mask: 4860 case X86::BI__builtin_ia32_getmantsh_round_mask: 4861 case X86::BI__builtin_ia32_vec_set_v16qi: 4862 case X86::BI__builtin_ia32_vec_set_v16hi: 4863 i = 2; l = 0; u = 15; 4864 break; 4865 case X86::BI__builtin_ia32_vec_ext_v32qi: 4866 i = 1; l = 0; u = 31; 4867 break; 4868 case X86::BI__builtin_ia32_cmpps: 4869 case X86::BI__builtin_ia32_cmpss: 4870 case X86::BI__builtin_ia32_cmppd: 4871 case X86::BI__builtin_ia32_cmpsd: 4872 case X86::BI__builtin_ia32_cmpps256: 4873 case X86::BI__builtin_ia32_cmppd256: 4874 case X86::BI__builtin_ia32_cmpps128_mask: 4875 case X86::BI__builtin_ia32_cmppd128_mask: 4876 case X86::BI__builtin_ia32_cmpps256_mask: 4877 case X86::BI__builtin_ia32_cmppd256_mask: 4878 case X86::BI__builtin_ia32_cmpps512_mask: 4879 case X86::BI__builtin_ia32_cmppd512_mask: 4880 case X86::BI__builtin_ia32_cmpsd_mask: 4881 case X86::BI__builtin_ia32_cmpss_mask: 4882 case X86::BI__builtin_ia32_vec_set_v32qi: 4883 i = 2; l = 0; u = 31; 4884 break; 4885 case X86::BI__builtin_ia32_permdf256: 4886 case X86::BI__builtin_ia32_permdi256: 4887 case X86::BI__builtin_ia32_permdf512: 4888 case X86::BI__builtin_ia32_permdi512: 4889 case X86::BI__builtin_ia32_vpermilps: 4890 case X86::BI__builtin_ia32_vpermilps256: 4891 case X86::BI__builtin_ia32_vpermilpd512: 4892 case X86::BI__builtin_ia32_vpermilps512: 4893 case X86::BI__builtin_ia32_pshufd: 4894 case X86::BI__builtin_ia32_pshufd256: 4895 case X86::BI__builtin_ia32_pshufd512: 4896 case X86::BI__builtin_ia32_pshufhw: 4897 case X86::BI__builtin_ia32_pshufhw256: 4898 case X86::BI__builtin_ia32_pshufhw512: 4899 case X86::BI__builtin_ia32_pshuflw: 4900 case X86::BI__builtin_ia32_pshuflw256: 4901 case X86::BI__builtin_ia32_pshuflw512: 4902 case X86::BI__builtin_ia32_vcvtps2ph: 4903 case X86::BI__builtin_ia32_vcvtps2ph_mask: 4904 case X86::BI__builtin_ia32_vcvtps2ph256: 4905 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 4906 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 4907 case X86::BI__builtin_ia32_rndscaleps_128_mask: 4908 case X86::BI__builtin_ia32_rndscalepd_128_mask: 4909 case X86::BI__builtin_ia32_rndscaleps_256_mask: 4910 case X86::BI__builtin_ia32_rndscalepd_256_mask: 4911 case X86::BI__builtin_ia32_rndscaleps_mask: 4912 case X86::BI__builtin_ia32_rndscalepd_mask: 4913 case X86::BI__builtin_ia32_rndscaleph_mask: 4914 case X86::BI__builtin_ia32_reducepd128_mask: 4915 case X86::BI__builtin_ia32_reducepd256_mask: 4916 case X86::BI__builtin_ia32_reducepd512_mask: 4917 case X86::BI__builtin_ia32_reduceps128_mask: 4918 case X86::BI__builtin_ia32_reduceps256_mask: 4919 case X86::BI__builtin_ia32_reduceps512_mask: 4920 case X86::BI__builtin_ia32_reduceph128_mask: 4921 case X86::BI__builtin_ia32_reduceph256_mask: 4922 case X86::BI__builtin_ia32_reduceph512_mask: 4923 case X86::BI__builtin_ia32_prold512: 4924 case X86::BI__builtin_ia32_prolq512: 4925 case X86::BI__builtin_ia32_prold128: 4926 case X86::BI__builtin_ia32_prold256: 4927 case X86::BI__builtin_ia32_prolq128: 4928 case X86::BI__builtin_ia32_prolq256: 4929 case X86::BI__builtin_ia32_prord512: 4930 case X86::BI__builtin_ia32_prorq512: 4931 case X86::BI__builtin_ia32_prord128: 4932 case X86::BI__builtin_ia32_prord256: 4933 case X86::BI__builtin_ia32_prorq128: 4934 case X86::BI__builtin_ia32_prorq256: 4935 case X86::BI__builtin_ia32_fpclasspd128_mask: 4936 case X86::BI__builtin_ia32_fpclasspd256_mask: 4937 case X86::BI__builtin_ia32_fpclassps128_mask: 4938 case X86::BI__builtin_ia32_fpclassps256_mask: 4939 case X86::BI__builtin_ia32_fpclassps512_mask: 4940 case X86::BI__builtin_ia32_fpclasspd512_mask: 4941 case X86::BI__builtin_ia32_fpclassph128_mask: 4942 case X86::BI__builtin_ia32_fpclassph256_mask: 4943 case X86::BI__builtin_ia32_fpclassph512_mask: 4944 case X86::BI__builtin_ia32_fpclasssd_mask: 4945 case X86::BI__builtin_ia32_fpclassss_mask: 4946 case X86::BI__builtin_ia32_fpclasssh_mask: 4947 case X86::BI__builtin_ia32_pslldqi128_byteshift: 4948 case X86::BI__builtin_ia32_pslldqi256_byteshift: 4949 case X86::BI__builtin_ia32_pslldqi512_byteshift: 4950 case X86::BI__builtin_ia32_psrldqi128_byteshift: 4951 case X86::BI__builtin_ia32_psrldqi256_byteshift: 4952 case X86::BI__builtin_ia32_psrldqi512_byteshift: 4953 case X86::BI__builtin_ia32_kshiftliqi: 4954 case X86::BI__builtin_ia32_kshiftlihi: 4955 case X86::BI__builtin_ia32_kshiftlisi: 4956 case X86::BI__builtin_ia32_kshiftlidi: 4957 case X86::BI__builtin_ia32_kshiftriqi: 4958 case X86::BI__builtin_ia32_kshiftrihi: 4959 case X86::BI__builtin_ia32_kshiftrisi: 4960 case X86::BI__builtin_ia32_kshiftridi: 4961 i = 1; l = 0; u = 255; 4962 break; 4963 case X86::BI__builtin_ia32_vperm2f128_pd256: 4964 case X86::BI__builtin_ia32_vperm2f128_ps256: 4965 case X86::BI__builtin_ia32_vperm2f128_si256: 4966 case X86::BI__builtin_ia32_permti256: 4967 case X86::BI__builtin_ia32_pblendw128: 4968 case X86::BI__builtin_ia32_pblendw256: 4969 case X86::BI__builtin_ia32_blendps256: 4970 case X86::BI__builtin_ia32_pblendd256: 4971 case X86::BI__builtin_ia32_palignr128: 4972 case X86::BI__builtin_ia32_palignr256: 4973 case X86::BI__builtin_ia32_palignr512: 4974 case X86::BI__builtin_ia32_alignq512: 4975 case X86::BI__builtin_ia32_alignd512: 4976 case X86::BI__builtin_ia32_alignd128: 4977 case X86::BI__builtin_ia32_alignd256: 4978 case X86::BI__builtin_ia32_alignq128: 4979 case X86::BI__builtin_ia32_alignq256: 4980 case X86::BI__builtin_ia32_vcomisd: 4981 case X86::BI__builtin_ia32_vcomiss: 4982 case X86::BI__builtin_ia32_shuf_f32x4: 4983 case X86::BI__builtin_ia32_shuf_f64x2: 4984 case X86::BI__builtin_ia32_shuf_i32x4: 4985 case X86::BI__builtin_ia32_shuf_i64x2: 4986 case X86::BI__builtin_ia32_shufpd512: 4987 case X86::BI__builtin_ia32_shufps: 4988 case X86::BI__builtin_ia32_shufps256: 4989 case X86::BI__builtin_ia32_shufps512: 4990 case X86::BI__builtin_ia32_dbpsadbw128: 4991 case X86::BI__builtin_ia32_dbpsadbw256: 4992 case X86::BI__builtin_ia32_dbpsadbw512: 4993 case X86::BI__builtin_ia32_vpshldd128: 4994 case X86::BI__builtin_ia32_vpshldd256: 4995 case X86::BI__builtin_ia32_vpshldd512: 4996 case X86::BI__builtin_ia32_vpshldq128: 4997 case X86::BI__builtin_ia32_vpshldq256: 4998 case X86::BI__builtin_ia32_vpshldq512: 4999 case X86::BI__builtin_ia32_vpshldw128: 5000 case X86::BI__builtin_ia32_vpshldw256: 5001 case X86::BI__builtin_ia32_vpshldw512: 5002 case X86::BI__builtin_ia32_vpshrdd128: 5003 case X86::BI__builtin_ia32_vpshrdd256: 5004 case X86::BI__builtin_ia32_vpshrdd512: 5005 case X86::BI__builtin_ia32_vpshrdq128: 5006 case X86::BI__builtin_ia32_vpshrdq256: 5007 case X86::BI__builtin_ia32_vpshrdq512: 5008 case X86::BI__builtin_ia32_vpshrdw128: 5009 case X86::BI__builtin_ia32_vpshrdw256: 5010 case X86::BI__builtin_ia32_vpshrdw512: 5011 i = 2; l = 0; u = 255; 5012 break; 5013 case X86::BI__builtin_ia32_fixupimmpd512_mask: 5014 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 5015 case X86::BI__builtin_ia32_fixupimmps512_mask: 5016 case X86::BI__builtin_ia32_fixupimmps512_maskz: 5017 case X86::BI__builtin_ia32_fixupimmsd_mask: 5018 case X86::BI__builtin_ia32_fixupimmsd_maskz: 5019 case X86::BI__builtin_ia32_fixupimmss_mask: 5020 case X86::BI__builtin_ia32_fixupimmss_maskz: 5021 case X86::BI__builtin_ia32_fixupimmpd128_mask: 5022 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 5023 case X86::BI__builtin_ia32_fixupimmpd256_mask: 5024 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 5025 case X86::BI__builtin_ia32_fixupimmps128_mask: 5026 case X86::BI__builtin_ia32_fixupimmps128_maskz: 5027 case X86::BI__builtin_ia32_fixupimmps256_mask: 5028 case X86::BI__builtin_ia32_fixupimmps256_maskz: 5029 case X86::BI__builtin_ia32_pternlogd512_mask: 5030 case X86::BI__builtin_ia32_pternlogd512_maskz: 5031 case X86::BI__builtin_ia32_pternlogq512_mask: 5032 case X86::BI__builtin_ia32_pternlogq512_maskz: 5033 case X86::BI__builtin_ia32_pternlogd128_mask: 5034 case X86::BI__builtin_ia32_pternlogd128_maskz: 5035 case X86::BI__builtin_ia32_pternlogd256_mask: 5036 case X86::BI__builtin_ia32_pternlogd256_maskz: 5037 case X86::BI__builtin_ia32_pternlogq128_mask: 5038 case X86::BI__builtin_ia32_pternlogq128_maskz: 5039 case X86::BI__builtin_ia32_pternlogq256_mask: 5040 case X86::BI__builtin_ia32_pternlogq256_maskz: 5041 i = 3; l = 0; u = 255; 5042 break; 5043 case X86::BI__builtin_ia32_gatherpfdpd: 5044 case X86::BI__builtin_ia32_gatherpfdps: 5045 case X86::BI__builtin_ia32_gatherpfqpd: 5046 case X86::BI__builtin_ia32_gatherpfqps: 5047 case X86::BI__builtin_ia32_scatterpfdpd: 5048 case X86::BI__builtin_ia32_scatterpfdps: 5049 case X86::BI__builtin_ia32_scatterpfqpd: 5050 case X86::BI__builtin_ia32_scatterpfqps: 5051 i = 4; l = 2; u = 3; 5052 break; 5053 case X86::BI__builtin_ia32_reducesd_mask: 5054 case X86::BI__builtin_ia32_reducess_mask: 5055 case X86::BI__builtin_ia32_rndscalesd_round_mask: 5056 case X86::BI__builtin_ia32_rndscaless_round_mask: 5057 case X86::BI__builtin_ia32_rndscalesh_round_mask: 5058 case X86::BI__builtin_ia32_reducesh_mask: 5059 i = 4; l = 0; u = 255; 5060 break; 5061 } 5062 5063 // Note that we don't force a hard error on the range check here, allowing 5064 // template-generated or macro-generated dead code to potentially have out-of- 5065 // range values. These need to code generate, but don't need to necessarily 5066 // make any sense. We use a warning that defaults to an error. 5067 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 5068 } 5069 5070 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 5071 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 5072 /// Returns true when the format fits the function and the FormatStringInfo has 5073 /// been populated. 5074 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 5075 FormatStringInfo *FSI) { 5076 FSI->HasVAListArg = Format->getFirstArg() == 0; 5077 FSI->FormatIdx = Format->getFormatIdx() - 1; 5078 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 5079 5080 // The way the format attribute works in GCC, the implicit this argument 5081 // of member functions is counted. However, it doesn't appear in our own 5082 // lists, so decrement format_idx in that case. 5083 if (IsCXXMember) { 5084 if(FSI->FormatIdx == 0) 5085 return false; 5086 --FSI->FormatIdx; 5087 if (FSI->FirstDataArg != 0) 5088 --FSI->FirstDataArg; 5089 } 5090 return true; 5091 } 5092 5093 /// Checks if a the given expression evaluates to null. 5094 /// 5095 /// Returns true if the value evaluates to null. 5096 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 5097 // If the expression has non-null type, it doesn't evaluate to null. 5098 if (auto nullability 5099 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 5100 if (*nullability == NullabilityKind::NonNull) 5101 return false; 5102 } 5103 5104 // As a special case, transparent unions initialized with zero are 5105 // considered null for the purposes of the nonnull attribute. 5106 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 5107 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 5108 if (const CompoundLiteralExpr *CLE = 5109 dyn_cast<CompoundLiteralExpr>(Expr)) 5110 if (const InitListExpr *ILE = 5111 dyn_cast<InitListExpr>(CLE->getInitializer())) 5112 Expr = ILE->getInit(0); 5113 } 5114 5115 bool Result; 5116 return (!Expr->isValueDependent() && 5117 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 5118 !Result); 5119 } 5120 5121 static void CheckNonNullArgument(Sema &S, 5122 const Expr *ArgExpr, 5123 SourceLocation CallSiteLoc) { 5124 if (CheckNonNullExpr(S, ArgExpr)) 5125 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 5126 S.PDiag(diag::warn_null_arg) 5127 << ArgExpr->getSourceRange()); 5128 } 5129 5130 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 5131 FormatStringInfo FSI; 5132 if ((GetFormatStringType(Format) == FST_NSString) && 5133 getFormatStringInfo(Format, false, &FSI)) { 5134 Idx = FSI.FormatIdx; 5135 return true; 5136 } 5137 return false; 5138 } 5139 5140 /// Diagnose use of %s directive in an NSString which is being passed 5141 /// as formatting string to formatting method. 5142 static void 5143 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 5144 const NamedDecl *FDecl, 5145 Expr **Args, 5146 unsigned NumArgs) { 5147 unsigned Idx = 0; 5148 bool Format = false; 5149 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 5150 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 5151 Idx = 2; 5152 Format = true; 5153 } 5154 else 5155 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 5156 if (S.GetFormatNSStringIdx(I, Idx)) { 5157 Format = true; 5158 break; 5159 } 5160 } 5161 if (!Format || NumArgs <= Idx) 5162 return; 5163 const Expr *FormatExpr = Args[Idx]; 5164 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 5165 FormatExpr = CSCE->getSubExpr(); 5166 const StringLiteral *FormatString; 5167 if (const ObjCStringLiteral *OSL = 5168 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 5169 FormatString = OSL->getString(); 5170 else 5171 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 5172 if (!FormatString) 5173 return; 5174 if (S.FormatStringHasSArg(FormatString)) { 5175 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 5176 << "%s" << 1 << 1; 5177 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 5178 << FDecl->getDeclName(); 5179 } 5180 } 5181 5182 /// Determine whether the given type has a non-null nullability annotation. 5183 static bool isNonNullType(ASTContext &ctx, QualType type) { 5184 if (auto nullability = type->getNullability(ctx)) 5185 return *nullability == NullabilityKind::NonNull; 5186 5187 return false; 5188 } 5189 5190 static void CheckNonNullArguments(Sema &S, 5191 const NamedDecl *FDecl, 5192 const FunctionProtoType *Proto, 5193 ArrayRef<const Expr *> Args, 5194 SourceLocation CallSiteLoc) { 5195 assert((FDecl || Proto) && "Need a function declaration or prototype"); 5196 5197 // Already checked by by constant evaluator. 5198 if (S.isConstantEvaluated()) 5199 return; 5200 // Check the attributes attached to the method/function itself. 5201 llvm::SmallBitVector NonNullArgs; 5202 if (FDecl) { 5203 // Handle the nonnull attribute on the function/method declaration itself. 5204 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 5205 if (!NonNull->args_size()) { 5206 // Easy case: all pointer arguments are nonnull. 5207 for (const auto *Arg : Args) 5208 if (S.isValidPointerAttrType(Arg->getType())) 5209 CheckNonNullArgument(S, Arg, CallSiteLoc); 5210 return; 5211 } 5212 5213 for (const ParamIdx &Idx : NonNull->args()) { 5214 unsigned IdxAST = Idx.getASTIndex(); 5215 if (IdxAST >= Args.size()) 5216 continue; 5217 if (NonNullArgs.empty()) 5218 NonNullArgs.resize(Args.size()); 5219 NonNullArgs.set(IdxAST); 5220 } 5221 } 5222 } 5223 5224 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 5225 // Handle the nonnull attribute on the parameters of the 5226 // function/method. 5227 ArrayRef<ParmVarDecl*> parms; 5228 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 5229 parms = FD->parameters(); 5230 else 5231 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 5232 5233 unsigned ParamIndex = 0; 5234 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 5235 I != E; ++I, ++ParamIndex) { 5236 const ParmVarDecl *PVD = *I; 5237 if (PVD->hasAttr<NonNullAttr>() || 5238 isNonNullType(S.Context, PVD->getType())) { 5239 if (NonNullArgs.empty()) 5240 NonNullArgs.resize(Args.size()); 5241 5242 NonNullArgs.set(ParamIndex); 5243 } 5244 } 5245 } else { 5246 // If we have a non-function, non-method declaration but no 5247 // function prototype, try to dig out the function prototype. 5248 if (!Proto) { 5249 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 5250 QualType type = VD->getType().getNonReferenceType(); 5251 if (auto pointerType = type->getAs<PointerType>()) 5252 type = pointerType->getPointeeType(); 5253 else if (auto blockType = type->getAs<BlockPointerType>()) 5254 type = blockType->getPointeeType(); 5255 // FIXME: data member pointers? 5256 5257 // Dig out the function prototype, if there is one. 5258 Proto = type->getAs<FunctionProtoType>(); 5259 } 5260 } 5261 5262 // Fill in non-null argument information from the nullability 5263 // information on the parameter types (if we have them). 5264 if (Proto) { 5265 unsigned Index = 0; 5266 for (auto paramType : Proto->getParamTypes()) { 5267 if (isNonNullType(S.Context, paramType)) { 5268 if (NonNullArgs.empty()) 5269 NonNullArgs.resize(Args.size()); 5270 5271 NonNullArgs.set(Index); 5272 } 5273 5274 ++Index; 5275 } 5276 } 5277 } 5278 5279 // Check for non-null arguments. 5280 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 5281 ArgIndex != ArgIndexEnd; ++ArgIndex) { 5282 if (NonNullArgs[ArgIndex]) 5283 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 5284 } 5285 } 5286 5287 /// Warn if a pointer or reference argument passed to a function points to an 5288 /// object that is less aligned than the parameter. This can happen when 5289 /// creating a typedef with a lower alignment than the original type and then 5290 /// calling functions defined in terms of the original type. 5291 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, 5292 StringRef ParamName, QualType ArgTy, 5293 QualType ParamTy) { 5294 5295 // If a function accepts a pointer or reference type 5296 if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) 5297 return; 5298 5299 // If the parameter is a pointer type, get the pointee type for the 5300 // argument too. If the parameter is a reference type, don't try to get 5301 // the pointee type for the argument. 5302 if (ParamTy->isPointerType()) 5303 ArgTy = ArgTy->getPointeeType(); 5304 5305 // Remove reference or pointer 5306 ParamTy = ParamTy->getPointeeType(); 5307 5308 // Find expected alignment, and the actual alignment of the passed object. 5309 // getTypeAlignInChars requires complete types 5310 if (ArgTy.isNull() || ParamTy->isIncompleteType() || 5311 ArgTy->isIncompleteType() || ParamTy->isUndeducedType() || 5312 ArgTy->isUndeducedType()) 5313 return; 5314 5315 CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy); 5316 CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy); 5317 5318 // If the argument is less aligned than the parameter, there is a 5319 // potential alignment issue. 5320 if (ArgAlign < ParamAlign) 5321 Diag(Loc, diag::warn_param_mismatched_alignment) 5322 << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() 5323 << ParamName << (FDecl != nullptr) << FDecl; 5324 } 5325 5326 /// Handles the checks for format strings, non-POD arguments to vararg 5327 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 5328 /// attributes. 5329 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 5330 const Expr *ThisArg, ArrayRef<const Expr *> Args, 5331 bool IsMemberFunction, SourceLocation Loc, 5332 SourceRange Range, VariadicCallType CallType) { 5333 // FIXME: We should check as much as we can in the template definition. 5334 if (CurContext->isDependentContext()) 5335 return; 5336 5337 // Printf and scanf checking. 5338 llvm::SmallBitVector CheckedVarArgs; 5339 if (FDecl) { 5340 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 5341 // Only create vector if there are format attributes. 5342 CheckedVarArgs.resize(Args.size()); 5343 5344 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 5345 CheckedVarArgs); 5346 } 5347 } 5348 5349 // Refuse POD arguments that weren't caught by the format string 5350 // checks above. 5351 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 5352 if (CallType != VariadicDoesNotApply && 5353 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 5354 unsigned NumParams = Proto ? Proto->getNumParams() 5355 : FDecl && isa<FunctionDecl>(FDecl) 5356 ? cast<FunctionDecl>(FDecl)->getNumParams() 5357 : FDecl && isa<ObjCMethodDecl>(FDecl) 5358 ? cast<ObjCMethodDecl>(FDecl)->param_size() 5359 : 0; 5360 5361 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 5362 // Args[ArgIdx] can be null in malformed code. 5363 if (const Expr *Arg = Args[ArgIdx]) { 5364 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 5365 checkVariadicArgument(Arg, CallType); 5366 } 5367 } 5368 } 5369 5370 if (FDecl || Proto) { 5371 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 5372 5373 // Type safety checking. 5374 if (FDecl) { 5375 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 5376 CheckArgumentWithTypeTag(I, Args, Loc); 5377 } 5378 } 5379 5380 // Check that passed arguments match the alignment of original arguments. 5381 // Try to get the missing prototype from the declaration. 5382 if (!Proto && FDecl) { 5383 const auto *FT = FDecl->getFunctionType(); 5384 if (isa_and_nonnull<FunctionProtoType>(FT)) 5385 Proto = cast<FunctionProtoType>(FDecl->getFunctionType()); 5386 } 5387 if (Proto) { 5388 // For variadic functions, we may have more args than parameters. 5389 // For some K&R functions, we may have less args than parameters. 5390 const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size()); 5391 for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { 5392 // Args[ArgIdx] can be null in malformed code. 5393 if (const Expr *Arg = Args[ArgIdx]) { 5394 if (Arg->containsErrors()) 5395 continue; 5396 5397 QualType ParamTy = Proto->getParamType(ArgIdx); 5398 QualType ArgTy = Arg->getType(); 5399 CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1), 5400 ArgTy, ParamTy); 5401 } 5402 } 5403 } 5404 5405 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 5406 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 5407 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 5408 if (!Arg->isValueDependent()) { 5409 Expr::EvalResult Align; 5410 if (Arg->EvaluateAsInt(Align, Context)) { 5411 const llvm::APSInt &I = Align.Val.getInt(); 5412 if (!I.isPowerOf2()) 5413 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 5414 << Arg->getSourceRange(); 5415 5416 if (I > Sema::MaximumAlignment) 5417 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 5418 << Arg->getSourceRange() << Sema::MaximumAlignment; 5419 } 5420 } 5421 } 5422 5423 if (FD) 5424 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 5425 } 5426 5427 /// CheckConstructorCall - Check a constructor call for correctness and safety 5428 /// properties not enforced by the C type system. 5429 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, 5430 ArrayRef<const Expr *> Args, 5431 const FunctionProtoType *Proto, 5432 SourceLocation Loc) { 5433 VariadicCallType CallType = 5434 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 5435 5436 auto *Ctor = cast<CXXConstructorDecl>(FDecl); 5437 CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType), 5438 Context.getPointerType(Ctor->getThisObjectType())); 5439 5440 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 5441 Loc, SourceRange(), CallType); 5442 } 5443 5444 /// CheckFunctionCall - Check a direct function call for various correctness 5445 /// and safety properties not strictly enforced by the C type system. 5446 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 5447 const FunctionProtoType *Proto) { 5448 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 5449 isa<CXXMethodDecl>(FDecl); 5450 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 5451 IsMemberOperatorCall; 5452 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 5453 TheCall->getCallee()); 5454 Expr** Args = TheCall->getArgs(); 5455 unsigned NumArgs = TheCall->getNumArgs(); 5456 5457 Expr *ImplicitThis = nullptr; 5458 if (IsMemberOperatorCall) { 5459 // If this is a call to a member operator, hide the first argument 5460 // from checkCall. 5461 // FIXME: Our choice of AST representation here is less than ideal. 5462 ImplicitThis = Args[0]; 5463 ++Args; 5464 --NumArgs; 5465 } else if (IsMemberFunction) 5466 ImplicitThis = 5467 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 5468 5469 if (ImplicitThis) { 5470 // ImplicitThis may or may not be a pointer, depending on whether . or -> is 5471 // used. 5472 QualType ThisType = ImplicitThis->getType(); 5473 if (!ThisType->isPointerType()) { 5474 assert(!ThisType->isReferenceType()); 5475 ThisType = Context.getPointerType(ThisType); 5476 } 5477 5478 QualType ThisTypeFromDecl = 5479 Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType()); 5480 5481 CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType, 5482 ThisTypeFromDecl); 5483 } 5484 5485 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 5486 IsMemberFunction, TheCall->getRParenLoc(), 5487 TheCall->getCallee()->getSourceRange(), CallType); 5488 5489 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 5490 // None of the checks below are needed for functions that don't have 5491 // simple names (e.g., C++ conversion functions). 5492 if (!FnInfo) 5493 return false; 5494 5495 CheckTCBEnforcement(TheCall, FDecl); 5496 5497 CheckAbsoluteValueFunction(TheCall, FDecl); 5498 CheckMaxUnsignedZero(TheCall, FDecl); 5499 5500 if (getLangOpts().ObjC) 5501 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 5502 5503 unsigned CMId = FDecl->getMemoryFunctionKind(); 5504 5505 // Handle memory setting and copying functions. 5506 switch (CMId) { 5507 case 0: 5508 return false; 5509 case Builtin::BIstrlcpy: // fallthrough 5510 case Builtin::BIstrlcat: 5511 CheckStrlcpycatArguments(TheCall, FnInfo); 5512 break; 5513 case Builtin::BIstrncat: 5514 CheckStrncatArguments(TheCall, FnInfo); 5515 break; 5516 case Builtin::BIfree: 5517 CheckFreeArguments(TheCall); 5518 break; 5519 default: 5520 CheckMemaccessArguments(TheCall, CMId, FnInfo); 5521 } 5522 5523 return false; 5524 } 5525 5526 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 5527 ArrayRef<const Expr *> Args) { 5528 VariadicCallType CallType = 5529 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 5530 5531 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 5532 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 5533 CallType); 5534 5535 return false; 5536 } 5537 5538 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 5539 const FunctionProtoType *Proto) { 5540 QualType Ty; 5541 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 5542 Ty = V->getType().getNonReferenceType(); 5543 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 5544 Ty = F->getType().getNonReferenceType(); 5545 else 5546 return false; 5547 5548 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 5549 !Ty->isFunctionProtoType()) 5550 return false; 5551 5552 VariadicCallType CallType; 5553 if (!Proto || !Proto->isVariadic()) { 5554 CallType = VariadicDoesNotApply; 5555 } else if (Ty->isBlockPointerType()) { 5556 CallType = VariadicBlock; 5557 } else { // Ty->isFunctionPointerType() 5558 CallType = VariadicFunction; 5559 } 5560 5561 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 5562 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 5563 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 5564 TheCall->getCallee()->getSourceRange(), CallType); 5565 5566 return false; 5567 } 5568 5569 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 5570 /// such as function pointers returned from functions. 5571 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 5572 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 5573 TheCall->getCallee()); 5574 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 5575 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 5576 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 5577 TheCall->getCallee()->getSourceRange(), CallType); 5578 5579 return false; 5580 } 5581 5582 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 5583 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 5584 return false; 5585 5586 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 5587 switch (Op) { 5588 case AtomicExpr::AO__c11_atomic_init: 5589 case AtomicExpr::AO__opencl_atomic_init: 5590 llvm_unreachable("There is no ordering argument for an init"); 5591 5592 case AtomicExpr::AO__c11_atomic_load: 5593 case AtomicExpr::AO__opencl_atomic_load: 5594 case AtomicExpr::AO__hip_atomic_load: 5595 case AtomicExpr::AO__atomic_load_n: 5596 case AtomicExpr::AO__atomic_load: 5597 return OrderingCABI != llvm::AtomicOrderingCABI::release && 5598 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 5599 5600 case AtomicExpr::AO__c11_atomic_store: 5601 case AtomicExpr::AO__opencl_atomic_store: 5602 case AtomicExpr::AO__hip_atomic_store: 5603 case AtomicExpr::AO__atomic_store: 5604 case AtomicExpr::AO__atomic_store_n: 5605 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 5606 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 5607 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 5608 5609 default: 5610 return true; 5611 } 5612 } 5613 5614 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 5615 AtomicExpr::AtomicOp Op) { 5616 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 5617 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5618 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 5619 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 5620 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 5621 Op); 5622 } 5623 5624 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 5625 SourceLocation RParenLoc, MultiExprArg Args, 5626 AtomicExpr::AtomicOp Op, 5627 AtomicArgumentOrder ArgOrder) { 5628 // All the non-OpenCL operations take one of the following forms. 5629 // The OpenCL operations take the __c11 forms with one extra argument for 5630 // synchronization scope. 5631 enum { 5632 // C __c11_atomic_init(A *, C) 5633 Init, 5634 5635 // C __c11_atomic_load(A *, int) 5636 Load, 5637 5638 // void __atomic_load(A *, CP, int) 5639 LoadCopy, 5640 5641 // void __atomic_store(A *, CP, int) 5642 Copy, 5643 5644 // C __c11_atomic_add(A *, M, int) 5645 Arithmetic, 5646 5647 // C __atomic_exchange_n(A *, CP, int) 5648 Xchg, 5649 5650 // void __atomic_exchange(A *, C *, CP, int) 5651 GNUXchg, 5652 5653 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 5654 C11CmpXchg, 5655 5656 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 5657 GNUCmpXchg 5658 } Form = Init; 5659 5660 const unsigned NumForm = GNUCmpXchg + 1; 5661 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 5662 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 5663 // where: 5664 // C is an appropriate type, 5665 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 5666 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 5667 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 5668 // the int parameters are for orderings. 5669 5670 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 5671 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 5672 "need to update code for modified forms"); 5673 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 5674 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 5675 AtomicExpr::AO__atomic_load, 5676 "need to update code for modified C11 atomics"); 5677 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 5678 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 5679 bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_load && 5680 Op <= AtomicExpr::AO__hip_atomic_fetch_max; 5681 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 5682 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 5683 IsOpenCL; 5684 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 5685 Op == AtomicExpr::AO__atomic_store_n || 5686 Op == AtomicExpr::AO__atomic_exchange_n || 5687 Op == AtomicExpr::AO__atomic_compare_exchange_n; 5688 bool IsAddSub = false; 5689 5690 switch (Op) { 5691 case AtomicExpr::AO__c11_atomic_init: 5692 case AtomicExpr::AO__opencl_atomic_init: 5693 Form = Init; 5694 break; 5695 5696 case AtomicExpr::AO__c11_atomic_load: 5697 case AtomicExpr::AO__opencl_atomic_load: 5698 case AtomicExpr::AO__hip_atomic_load: 5699 case AtomicExpr::AO__atomic_load_n: 5700 Form = Load; 5701 break; 5702 5703 case AtomicExpr::AO__atomic_load: 5704 Form = LoadCopy; 5705 break; 5706 5707 case AtomicExpr::AO__c11_atomic_store: 5708 case AtomicExpr::AO__opencl_atomic_store: 5709 case AtomicExpr::AO__hip_atomic_store: 5710 case AtomicExpr::AO__atomic_store: 5711 case AtomicExpr::AO__atomic_store_n: 5712 Form = Copy; 5713 break; 5714 case AtomicExpr::AO__hip_atomic_fetch_add: 5715 case AtomicExpr::AO__hip_atomic_fetch_min: 5716 case AtomicExpr::AO__hip_atomic_fetch_max: 5717 case AtomicExpr::AO__c11_atomic_fetch_add: 5718 case AtomicExpr::AO__c11_atomic_fetch_sub: 5719 case AtomicExpr::AO__opencl_atomic_fetch_add: 5720 case AtomicExpr::AO__opencl_atomic_fetch_sub: 5721 case AtomicExpr::AO__atomic_fetch_add: 5722 case AtomicExpr::AO__atomic_fetch_sub: 5723 case AtomicExpr::AO__atomic_add_fetch: 5724 case AtomicExpr::AO__atomic_sub_fetch: 5725 IsAddSub = true; 5726 Form = Arithmetic; 5727 break; 5728 case AtomicExpr::AO__c11_atomic_fetch_and: 5729 case AtomicExpr::AO__c11_atomic_fetch_or: 5730 case AtomicExpr::AO__c11_atomic_fetch_xor: 5731 case AtomicExpr::AO__hip_atomic_fetch_and: 5732 case AtomicExpr::AO__hip_atomic_fetch_or: 5733 case AtomicExpr::AO__hip_atomic_fetch_xor: 5734 case AtomicExpr::AO__c11_atomic_fetch_nand: 5735 case AtomicExpr::AO__opencl_atomic_fetch_and: 5736 case AtomicExpr::AO__opencl_atomic_fetch_or: 5737 case AtomicExpr::AO__opencl_atomic_fetch_xor: 5738 case AtomicExpr::AO__atomic_fetch_and: 5739 case AtomicExpr::AO__atomic_fetch_or: 5740 case AtomicExpr::AO__atomic_fetch_xor: 5741 case AtomicExpr::AO__atomic_fetch_nand: 5742 case AtomicExpr::AO__atomic_and_fetch: 5743 case AtomicExpr::AO__atomic_or_fetch: 5744 case AtomicExpr::AO__atomic_xor_fetch: 5745 case AtomicExpr::AO__atomic_nand_fetch: 5746 Form = Arithmetic; 5747 break; 5748 case AtomicExpr::AO__c11_atomic_fetch_min: 5749 case AtomicExpr::AO__c11_atomic_fetch_max: 5750 case AtomicExpr::AO__opencl_atomic_fetch_min: 5751 case AtomicExpr::AO__opencl_atomic_fetch_max: 5752 case AtomicExpr::AO__atomic_min_fetch: 5753 case AtomicExpr::AO__atomic_max_fetch: 5754 case AtomicExpr::AO__atomic_fetch_min: 5755 case AtomicExpr::AO__atomic_fetch_max: 5756 Form = Arithmetic; 5757 break; 5758 5759 case AtomicExpr::AO__c11_atomic_exchange: 5760 case AtomicExpr::AO__hip_atomic_exchange: 5761 case AtomicExpr::AO__opencl_atomic_exchange: 5762 case AtomicExpr::AO__atomic_exchange_n: 5763 Form = Xchg; 5764 break; 5765 5766 case AtomicExpr::AO__atomic_exchange: 5767 Form = GNUXchg; 5768 break; 5769 5770 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 5771 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 5772 case AtomicExpr::AO__hip_atomic_compare_exchange_strong: 5773 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 5774 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 5775 case AtomicExpr::AO__hip_atomic_compare_exchange_weak: 5776 Form = C11CmpXchg; 5777 break; 5778 5779 case AtomicExpr::AO__atomic_compare_exchange: 5780 case AtomicExpr::AO__atomic_compare_exchange_n: 5781 Form = GNUCmpXchg; 5782 break; 5783 } 5784 5785 unsigned AdjustedNumArgs = NumArgs[Form]; 5786 if ((IsOpenCL || IsHIP) && Op != AtomicExpr::AO__opencl_atomic_init) 5787 ++AdjustedNumArgs; 5788 // Check we have the right number of arguments. 5789 if (Args.size() < AdjustedNumArgs) { 5790 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 5791 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 5792 << ExprRange; 5793 return ExprError(); 5794 } else if (Args.size() > AdjustedNumArgs) { 5795 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 5796 diag::err_typecheck_call_too_many_args) 5797 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 5798 << ExprRange; 5799 return ExprError(); 5800 } 5801 5802 // Inspect the first argument of the atomic operation. 5803 Expr *Ptr = Args[0]; 5804 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 5805 if (ConvertedPtr.isInvalid()) 5806 return ExprError(); 5807 5808 Ptr = ConvertedPtr.get(); 5809 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 5810 if (!pointerType) { 5811 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 5812 << Ptr->getType() << Ptr->getSourceRange(); 5813 return ExprError(); 5814 } 5815 5816 // For a __c11 builtin, this should be a pointer to an _Atomic type. 5817 QualType AtomTy = pointerType->getPointeeType(); // 'A' 5818 QualType ValType = AtomTy; // 'C' 5819 if (IsC11) { 5820 if (!AtomTy->isAtomicType()) { 5821 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 5822 << Ptr->getType() << Ptr->getSourceRange(); 5823 return ExprError(); 5824 } 5825 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 5826 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 5827 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 5828 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 5829 << Ptr->getSourceRange(); 5830 return ExprError(); 5831 } 5832 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 5833 } else if (Form != Load && Form != LoadCopy) { 5834 if (ValType.isConstQualified()) { 5835 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 5836 << Ptr->getType() << Ptr->getSourceRange(); 5837 return ExprError(); 5838 } 5839 } 5840 5841 // For an arithmetic operation, the implied arithmetic must be well-formed. 5842 if (Form == Arithmetic) { 5843 // GCC does not enforce these rules for GNU atomics, but we do to help catch 5844 // trivial type errors. 5845 auto IsAllowedValueType = [&](QualType ValType) { 5846 if (ValType->isIntegerType()) 5847 return true; 5848 if (ValType->isPointerType()) 5849 return true; 5850 if (!ValType->isFloatingType()) 5851 return false; 5852 // LLVM Parser does not allow atomicrmw with x86_fp80 type. 5853 if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) && 5854 &Context.getTargetInfo().getLongDoubleFormat() == 5855 &llvm::APFloat::x87DoubleExtended()) 5856 return false; 5857 return true; 5858 }; 5859 if (IsAddSub && !IsAllowedValueType(ValType)) { 5860 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp) 5861 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5862 return ExprError(); 5863 } 5864 if (!IsAddSub && !ValType->isIntegerType()) { 5865 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 5866 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5867 return ExprError(); 5868 } 5869 if (IsC11 && ValType->isPointerType() && 5870 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 5871 diag::err_incomplete_type)) { 5872 return ExprError(); 5873 } 5874 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 5875 // For __atomic_*_n operations, the value type must be a scalar integral or 5876 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 5877 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 5878 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5879 return ExprError(); 5880 } 5881 5882 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 5883 !AtomTy->isScalarType()) { 5884 // For GNU atomics, require a trivially-copyable type. This is not part of 5885 // the GNU atomics specification but we enforce it for consistency with 5886 // other atomics which generally all require a trivially-copyable type. This 5887 // is because atomics just copy bits. 5888 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 5889 << Ptr->getType() << Ptr->getSourceRange(); 5890 return ExprError(); 5891 } 5892 5893 switch (ValType.getObjCLifetime()) { 5894 case Qualifiers::OCL_None: 5895 case Qualifiers::OCL_ExplicitNone: 5896 // okay 5897 break; 5898 5899 case Qualifiers::OCL_Weak: 5900 case Qualifiers::OCL_Strong: 5901 case Qualifiers::OCL_Autoreleasing: 5902 // FIXME: Can this happen? By this point, ValType should be known 5903 // to be trivially copyable. 5904 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 5905 << ValType << Ptr->getSourceRange(); 5906 return ExprError(); 5907 } 5908 5909 // All atomic operations have an overload which takes a pointer to a volatile 5910 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 5911 // into the result or the other operands. Similarly atomic_load takes a 5912 // pointer to a const 'A'. 5913 ValType.removeLocalVolatile(); 5914 ValType.removeLocalConst(); 5915 QualType ResultType = ValType; 5916 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 5917 Form == Init) 5918 ResultType = Context.VoidTy; 5919 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 5920 ResultType = Context.BoolTy; 5921 5922 // The type of a parameter passed 'by value'. In the GNU atomics, such 5923 // arguments are actually passed as pointers. 5924 QualType ByValType = ValType; // 'CP' 5925 bool IsPassedByAddress = false; 5926 if (!IsC11 && !IsHIP && !IsN) { 5927 ByValType = Ptr->getType(); 5928 IsPassedByAddress = true; 5929 } 5930 5931 SmallVector<Expr *, 5> APIOrderedArgs; 5932 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 5933 APIOrderedArgs.push_back(Args[0]); 5934 switch (Form) { 5935 case Init: 5936 case Load: 5937 APIOrderedArgs.push_back(Args[1]); // Val1/Order 5938 break; 5939 case LoadCopy: 5940 case Copy: 5941 case Arithmetic: 5942 case Xchg: 5943 APIOrderedArgs.push_back(Args[2]); // Val1 5944 APIOrderedArgs.push_back(Args[1]); // Order 5945 break; 5946 case GNUXchg: 5947 APIOrderedArgs.push_back(Args[2]); // Val1 5948 APIOrderedArgs.push_back(Args[3]); // Val2 5949 APIOrderedArgs.push_back(Args[1]); // Order 5950 break; 5951 case C11CmpXchg: 5952 APIOrderedArgs.push_back(Args[2]); // Val1 5953 APIOrderedArgs.push_back(Args[4]); // Val2 5954 APIOrderedArgs.push_back(Args[1]); // Order 5955 APIOrderedArgs.push_back(Args[3]); // OrderFail 5956 break; 5957 case GNUCmpXchg: 5958 APIOrderedArgs.push_back(Args[2]); // Val1 5959 APIOrderedArgs.push_back(Args[4]); // Val2 5960 APIOrderedArgs.push_back(Args[5]); // Weak 5961 APIOrderedArgs.push_back(Args[1]); // Order 5962 APIOrderedArgs.push_back(Args[3]); // OrderFail 5963 break; 5964 } 5965 } else 5966 APIOrderedArgs.append(Args.begin(), Args.end()); 5967 5968 // The first argument's non-CV pointer type is used to deduce the type of 5969 // subsequent arguments, except for: 5970 // - weak flag (always converted to bool) 5971 // - memory order (always converted to int) 5972 // - scope (always converted to int) 5973 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 5974 QualType Ty; 5975 if (i < NumVals[Form] + 1) { 5976 switch (i) { 5977 case 0: 5978 // The first argument is always a pointer. It has a fixed type. 5979 // It is always dereferenced, a nullptr is undefined. 5980 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5981 // Nothing else to do: we already know all we want about this pointer. 5982 continue; 5983 case 1: 5984 // The second argument is the non-atomic operand. For arithmetic, this 5985 // is always passed by value, and for a compare_exchange it is always 5986 // passed by address. For the rest, GNU uses by-address and C11 uses 5987 // by-value. 5988 assert(Form != Load); 5989 if (Form == Arithmetic && ValType->isPointerType()) 5990 Ty = Context.getPointerDiffType(); 5991 else if (Form == Init || Form == Arithmetic) 5992 Ty = ValType; 5993 else if (Form == Copy || Form == Xchg) { 5994 if (IsPassedByAddress) { 5995 // The value pointer is always dereferenced, a nullptr is undefined. 5996 CheckNonNullArgument(*this, APIOrderedArgs[i], 5997 ExprRange.getBegin()); 5998 } 5999 Ty = ByValType; 6000 } else { 6001 Expr *ValArg = APIOrderedArgs[i]; 6002 // The value pointer is always dereferenced, a nullptr is undefined. 6003 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 6004 LangAS AS = LangAS::Default; 6005 // Keep address space of non-atomic pointer type. 6006 if (const PointerType *PtrTy = 6007 ValArg->getType()->getAs<PointerType>()) { 6008 AS = PtrTy->getPointeeType().getAddressSpace(); 6009 } 6010 Ty = Context.getPointerType( 6011 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 6012 } 6013 break; 6014 case 2: 6015 // The third argument to compare_exchange / GNU exchange is the desired 6016 // value, either by-value (for the C11 and *_n variant) or as a pointer. 6017 if (IsPassedByAddress) 6018 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 6019 Ty = ByValType; 6020 break; 6021 case 3: 6022 // The fourth argument to GNU compare_exchange is a 'weak' flag. 6023 Ty = Context.BoolTy; 6024 break; 6025 } 6026 } else { 6027 // The order(s) and scope are always converted to int. 6028 Ty = Context.IntTy; 6029 } 6030 6031 InitializedEntity Entity = 6032 InitializedEntity::InitializeParameter(Context, Ty, false); 6033 ExprResult Arg = APIOrderedArgs[i]; 6034 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6035 if (Arg.isInvalid()) 6036 return true; 6037 APIOrderedArgs[i] = Arg.get(); 6038 } 6039 6040 // Permute the arguments into a 'consistent' order. 6041 SmallVector<Expr*, 5> SubExprs; 6042 SubExprs.push_back(Ptr); 6043 switch (Form) { 6044 case Init: 6045 // Note, AtomicExpr::getVal1() has a special case for this atomic. 6046 SubExprs.push_back(APIOrderedArgs[1]); // Val1 6047 break; 6048 case Load: 6049 SubExprs.push_back(APIOrderedArgs[1]); // Order 6050 break; 6051 case LoadCopy: 6052 case Copy: 6053 case Arithmetic: 6054 case Xchg: 6055 SubExprs.push_back(APIOrderedArgs[2]); // Order 6056 SubExprs.push_back(APIOrderedArgs[1]); // Val1 6057 break; 6058 case GNUXchg: 6059 // Note, AtomicExpr::getVal2() has a special case for this atomic. 6060 SubExprs.push_back(APIOrderedArgs[3]); // Order 6061 SubExprs.push_back(APIOrderedArgs[1]); // Val1 6062 SubExprs.push_back(APIOrderedArgs[2]); // Val2 6063 break; 6064 case C11CmpXchg: 6065 SubExprs.push_back(APIOrderedArgs[3]); // Order 6066 SubExprs.push_back(APIOrderedArgs[1]); // Val1 6067 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 6068 SubExprs.push_back(APIOrderedArgs[2]); // Val2 6069 break; 6070 case GNUCmpXchg: 6071 SubExprs.push_back(APIOrderedArgs[4]); // Order 6072 SubExprs.push_back(APIOrderedArgs[1]); // Val1 6073 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 6074 SubExprs.push_back(APIOrderedArgs[2]); // Val2 6075 SubExprs.push_back(APIOrderedArgs[3]); // Weak 6076 break; 6077 } 6078 6079 if (SubExprs.size() >= 2 && Form != Init) { 6080 if (Optional<llvm::APSInt> Result = 6081 SubExprs[1]->getIntegerConstantExpr(Context)) 6082 if (!isValidOrderingForOp(Result->getSExtValue(), Op)) 6083 Diag(SubExprs[1]->getBeginLoc(), 6084 diag::warn_atomic_op_has_invalid_memory_order) 6085 << SubExprs[1]->getSourceRange(); 6086 } 6087 6088 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 6089 auto *Scope = Args[Args.size() - 1]; 6090 if (Optional<llvm::APSInt> Result = 6091 Scope->getIntegerConstantExpr(Context)) { 6092 if (!ScopeModel->isValid(Result->getZExtValue())) 6093 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 6094 << Scope->getSourceRange(); 6095 } 6096 SubExprs.push_back(Scope); 6097 } 6098 6099 AtomicExpr *AE = new (Context) 6100 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 6101 6102 if ((Op == AtomicExpr::AO__c11_atomic_load || 6103 Op == AtomicExpr::AO__c11_atomic_store || 6104 Op == AtomicExpr::AO__opencl_atomic_load || 6105 Op == AtomicExpr::AO__hip_atomic_load || 6106 Op == AtomicExpr::AO__opencl_atomic_store || 6107 Op == AtomicExpr::AO__hip_atomic_store) && 6108 Context.AtomicUsesUnsupportedLibcall(AE)) 6109 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 6110 << ((Op == AtomicExpr::AO__c11_atomic_load || 6111 Op == AtomicExpr::AO__opencl_atomic_load || 6112 Op == AtomicExpr::AO__hip_atomic_load) 6113 ? 0 6114 : 1); 6115 6116 if (ValType->isBitIntType()) { 6117 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit); 6118 return ExprError(); 6119 } 6120 6121 return AE; 6122 } 6123 6124 /// checkBuiltinArgument - Given a call to a builtin function, perform 6125 /// normal type-checking on the given argument, updating the call in 6126 /// place. This is useful when a builtin function requires custom 6127 /// type-checking for some of its arguments but not necessarily all of 6128 /// them. 6129 /// 6130 /// Returns true on error. 6131 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 6132 FunctionDecl *Fn = E->getDirectCallee(); 6133 assert(Fn && "builtin call without direct callee!"); 6134 6135 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 6136 InitializedEntity Entity = 6137 InitializedEntity::InitializeParameter(S.Context, Param); 6138 6139 ExprResult Arg = E->getArg(0); 6140 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 6141 if (Arg.isInvalid()) 6142 return true; 6143 6144 E->setArg(ArgIndex, Arg.get()); 6145 return false; 6146 } 6147 6148 /// We have a call to a function like __sync_fetch_and_add, which is an 6149 /// overloaded function based on the pointer type of its first argument. 6150 /// The main BuildCallExpr routines have already promoted the types of 6151 /// arguments because all of these calls are prototyped as void(...). 6152 /// 6153 /// This function goes through and does final semantic checking for these 6154 /// builtins, as well as generating any warnings. 6155 ExprResult 6156 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 6157 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 6158 Expr *Callee = TheCall->getCallee(); 6159 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 6160 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6161 6162 // Ensure that we have at least one argument to do type inference from. 6163 if (TheCall->getNumArgs() < 1) { 6164 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 6165 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 6166 return ExprError(); 6167 } 6168 6169 // Inspect the first argument of the atomic builtin. This should always be 6170 // a pointer type, whose element is an integral scalar or pointer type. 6171 // Because it is a pointer type, we don't have to worry about any implicit 6172 // casts here. 6173 // FIXME: We don't allow floating point scalars as input. 6174 Expr *FirstArg = TheCall->getArg(0); 6175 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 6176 if (FirstArgResult.isInvalid()) 6177 return ExprError(); 6178 FirstArg = FirstArgResult.get(); 6179 TheCall->setArg(0, FirstArg); 6180 6181 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 6182 if (!pointerType) { 6183 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 6184 << FirstArg->getType() << FirstArg->getSourceRange(); 6185 return ExprError(); 6186 } 6187 6188 QualType ValType = pointerType->getPointeeType(); 6189 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 6190 !ValType->isBlockPointerType()) { 6191 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 6192 << FirstArg->getType() << FirstArg->getSourceRange(); 6193 return ExprError(); 6194 } 6195 6196 if (ValType.isConstQualified()) { 6197 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 6198 << FirstArg->getType() << FirstArg->getSourceRange(); 6199 return ExprError(); 6200 } 6201 6202 switch (ValType.getObjCLifetime()) { 6203 case Qualifiers::OCL_None: 6204 case Qualifiers::OCL_ExplicitNone: 6205 // okay 6206 break; 6207 6208 case Qualifiers::OCL_Weak: 6209 case Qualifiers::OCL_Strong: 6210 case Qualifiers::OCL_Autoreleasing: 6211 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 6212 << ValType << FirstArg->getSourceRange(); 6213 return ExprError(); 6214 } 6215 6216 // Strip any qualifiers off ValType. 6217 ValType = ValType.getUnqualifiedType(); 6218 6219 // The majority of builtins return a value, but a few have special return 6220 // types, so allow them to override appropriately below. 6221 QualType ResultType = ValType; 6222 6223 // We need to figure out which concrete builtin this maps onto. For example, 6224 // __sync_fetch_and_add with a 2 byte object turns into 6225 // __sync_fetch_and_add_2. 6226 #define BUILTIN_ROW(x) \ 6227 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 6228 Builtin::BI##x##_8, Builtin::BI##x##_16 } 6229 6230 static const unsigned BuiltinIndices[][5] = { 6231 BUILTIN_ROW(__sync_fetch_and_add), 6232 BUILTIN_ROW(__sync_fetch_and_sub), 6233 BUILTIN_ROW(__sync_fetch_and_or), 6234 BUILTIN_ROW(__sync_fetch_and_and), 6235 BUILTIN_ROW(__sync_fetch_and_xor), 6236 BUILTIN_ROW(__sync_fetch_and_nand), 6237 6238 BUILTIN_ROW(__sync_add_and_fetch), 6239 BUILTIN_ROW(__sync_sub_and_fetch), 6240 BUILTIN_ROW(__sync_and_and_fetch), 6241 BUILTIN_ROW(__sync_or_and_fetch), 6242 BUILTIN_ROW(__sync_xor_and_fetch), 6243 BUILTIN_ROW(__sync_nand_and_fetch), 6244 6245 BUILTIN_ROW(__sync_val_compare_and_swap), 6246 BUILTIN_ROW(__sync_bool_compare_and_swap), 6247 BUILTIN_ROW(__sync_lock_test_and_set), 6248 BUILTIN_ROW(__sync_lock_release), 6249 BUILTIN_ROW(__sync_swap) 6250 }; 6251 #undef BUILTIN_ROW 6252 6253 // Determine the index of the size. 6254 unsigned SizeIndex; 6255 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 6256 case 1: SizeIndex = 0; break; 6257 case 2: SizeIndex = 1; break; 6258 case 4: SizeIndex = 2; break; 6259 case 8: SizeIndex = 3; break; 6260 case 16: SizeIndex = 4; break; 6261 default: 6262 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 6263 << FirstArg->getType() << FirstArg->getSourceRange(); 6264 return ExprError(); 6265 } 6266 6267 // Each of these builtins has one pointer argument, followed by some number of 6268 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 6269 // that we ignore. Find out which row of BuiltinIndices to read from as well 6270 // as the number of fixed args. 6271 unsigned BuiltinID = FDecl->getBuiltinID(); 6272 unsigned BuiltinIndex, NumFixed = 1; 6273 bool WarnAboutSemanticsChange = false; 6274 switch (BuiltinID) { 6275 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 6276 case Builtin::BI__sync_fetch_and_add: 6277 case Builtin::BI__sync_fetch_and_add_1: 6278 case Builtin::BI__sync_fetch_and_add_2: 6279 case Builtin::BI__sync_fetch_and_add_4: 6280 case Builtin::BI__sync_fetch_and_add_8: 6281 case Builtin::BI__sync_fetch_and_add_16: 6282 BuiltinIndex = 0; 6283 break; 6284 6285 case Builtin::BI__sync_fetch_and_sub: 6286 case Builtin::BI__sync_fetch_and_sub_1: 6287 case Builtin::BI__sync_fetch_and_sub_2: 6288 case Builtin::BI__sync_fetch_and_sub_4: 6289 case Builtin::BI__sync_fetch_and_sub_8: 6290 case Builtin::BI__sync_fetch_and_sub_16: 6291 BuiltinIndex = 1; 6292 break; 6293 6294 case Builtin::BI__sync_fetch_and_or: 6295 case Builtin::BI__sync_fetch_and_or_1: 6296 case Builtin::BI__sync_fetch_and_or_2: 6297 case Builtin::BI__sync_fetch_and_or_4: 6298 case Builtin::BI__sync_fetch_and_or_8: 6299 case Builtin::BI__sync_fetch_and_or_16: 6300 BuiltinIndex = 2; 6301 break; 6302 6303 case Builtin::BI__sync_fetch_and_and: 6304 case Builtin::BI__sync_fetch_and_and_1: 6305 case Builtin::BI__sync_fetch_and_and_2: 6306 case Builtin::BI__sync_fetch_and_and_4: 6307 case Builtin::BI__sync_fetch_and_and_8: 6308 case Builtin::BI__sync_fetch_and_and_16: 6309 BuiltinIndex = 3; 6310 break; 6311 6312 case Builtin::BI__sync_fetch_and_xor: 6313 case Builtin::BI__sync_fetch_and_xor_1: 6314 case Builtin::BI__sync_fetch_and_xor_2: 6315 case Builtin::BI__sync_fetch_and_xor_4: 6316 case Builtin::BI__sync_fetch_and_xor_8: 6317 case Builtin::BI__sync_fetch_and_xor_16: 6318 BuiltinIndex = 4; 6319 break; 6320 6321 case Builtin::BI__sync_fetch_and_nand: 6322 case Builtin::BI__sync_fetch_and_nand_1: 6323 case Builtin::BI__sync_fetch_and_nand_2: 6324 case Builtin::BI__sync_fetch_and_nand_4: 6325 case Builtin::BI__sync_fetch_and_nand_8: 6326 case Builtin::BI__sync_fetch_and_nand_16: 6327 BuiltinIndex = 5; 6328 WarnAboutSemanticsChange = true; 6329 break; 6330 6331 case Builtin::BI__sync_add_and_fetch: 6332 case Builtin::BI__sync_add_and_fetch_1: 6333 case Builtin::BI__sync_add_and_fetch_2: 6334 case Builtin::BI__sync_add_and_fetch_4: 6335 case Builtin::BI__sync_add_and_fetch_8: 6336 case Builtin::BI__sync_add_and_fetch_16: 6337 BuiltinIndex = 6; 6338 break; 6339 6340 case Builtin::BI__sync_sub_and_fetch: 6341 case Builtin::BI__sync_sub_and_fetch_1: 6342 case Builtin::BI__sync_sub_and_fetch_2: 6343 case Builtin::BI__sync_sub_and_fetch_4: 6344 case Builtin::BI__sync_sub_and_fetch_8: 6345 case Builtin::BI__sync_sub_and_fetch_16: 6346 BuiltinIndex = 7; 6347 break; 6348 6349 case Builtin::BI__sync_and_and_fetch: 6350 case Builtin::BI__sync_and_and_fetch_1: 6351 case Builtin::BI__sync_and_and_fetch_2: 6352 case Builtin::BI__sync_and_and_fetch_4: 6353 case Builtin::BI__sync_and_and_fetch_8: 6354 case Builtin::BI__sync_and_and_fetch_16: 6355 BuiltinIndex = 8; 6356 break; 6357 6358 case Builtin::BI__sync_or_and_fetch: 6359 case Builtin::BI__sync_or_and_fetch_1: 6360 case Builtin::BI__sync_or_and_fetch_2: 6361 case Builtin::BI__sync_or_and_fetch_4: 6362 case Builtin::BI__sync_or_and_fetch_8: 6363 case Builtin::BI__sync_or_and_fetch_16: 6364 BuiltinIndex = 9; 6365 break; 6366 6367 case Builtin::BI__sync_xor_and_fetch: 6368 case Builtin::BI__sync_xor_and_fetch_1: 6369 case Builtin::BI__sync_xor_and_fetch_2: 6370 case Builtin::BI__sync_xor_and_fetch_4: 6371 case Builtin::BI__sync_xor_and_fetch_8: 6372 case Builtin::BI__sync_xor_and_fetch_16: 6373 BuiltinIndex = 10; 6374 break; 6375 6376 case Builtin::BI__sync_nand_and_fetch: 6377 case Builtin::BI__sync_nand_and_fetch_1: 6378 case Builtin::BI__sync_nand_and_fetch_2: 6379 case Builtin::BI__sync_nand_and_fetch_4: 6380 case Builtin::BI__sync_nand_and_fetch_8: 6381 case Builtin::BI__sync_nand_and_fetch_16: 6382 BuiltinIndex = 11; 6383 WarnAboutSemanticsChange = true; 6384 break; 6385 6386 case Builtin::BI__sync_val_compare_and_swap: 6387 case Builtin::BI__sync_val_compare_and_swap_1: 6388 case Builtin::BI__sync_val_compare_and_swap_2: 6389 case Builtin::BI__sync_val_compare_and_swap_4: 6390 case Builtin::BI__sync_val_compare_and_swap_8: 6391 case Builtin::BI__sync_val_compare_and_swap_16: 6392 BuiltinIndex = 12; 6393 NumFixed = 2; 6394 break; 6395 6396 case Builtin::BI__sync_bool_compare_and_swap: 6397 case Builtin::BI__sync_bool_compare_and_swap_1: 6398 case Builtin::BI__sync_bool_compare_and_swap_2: 6399 case Builtin::BI__sync_bool_compare_and_swap_4: 6400 case Builtin::BI__sync_bool_compare_and_swap_8: 6401 case Builtin::BI__sync_bool_compare_and_swap_16: 6402 BuiltinIndex = 13; 6403 NumFixed = 2; 6404 ResultType = Context.BoolTy; 6405 break; 6406 6407 case Builtin::BI__sync_lock_test_and_set: 6408 case Builtin::BI__sync_lock_test_and_set_1: 6409 case Builtin::BI__sync_lock_test_and_set_2: 6410 case Builtin::BI__sync_lock_test_and_set_4: 6411 case Builtin::BI__sync_lock_test_and_set_8: 6412 case Builtin::BI__sync_lock_test_and_set_16: 6413 BuiltinIndex = 14; 6414 break; 6415 6416 case Builtin::BI__sync_lock_release: 6417 case Builtin::BI__sync_lock_release_1: 6418 case Builtin::BI__sync_lock_release_2: 6419 case Builtin::BI__sync_lock_release_4: 6420 case Builtin::BI__sync_lock_release_8: 6421 case Builtin::BI__sync_lock_release_16: 6422 BuiltinIndex = 15; 6423 NumFixed = 0; 6424 ResultType = Context.VoidTy; 6425 break; 6426 6427 case Builtin::BI__sync_swap: 6428 case Builtin::BI__sync_swap_1: 6429 case Builtin::BI__sync_swap_2: 6430 case Builtin::BI__sync_swap_4: 6431 case Builtin::BI__sync_swap_8: 6432 case Builtin::BI__sync_swap_16: 6433 BuiltinIndex = 16; 6434 break; 6435 } 6436 6437 // Now that we know how many fixed arguments we expect, first check that we 6438 // have at least that many. 6439 if (TheCall->getNumArgs() < 1+NumFixed) { 6440 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 6441 << 0 << 1 + NumFixed << TheCall->getNumArgs() 6442 << Callee->getSourceRange(); 6443 return ExprError(); 6444 } 6445 6446 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 6447 << Callee->getSourceRange(); 6448 6449 if (WarnAboutSemanticsChange) { 6450 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 6451 << Callee->getSourceRange(); 6452 } 6453 6454 // Get the decl for the concrete builtin from this, we can tell what the 6455 // concrete integer type we should convert to is. 6456 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 6457 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 6458 FunctionDecl *NewBuiltinDecl; 6459 if (NewBuiltinID == BuiltinID) 6460 NewBuiltinDecl = FDecl; 6461 else { 6462 // Perform builtin lookup to avoid redeclaring it. 6463 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 6464 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 6465 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 6466 assert(Res.getFoundDecl()); 6467 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 6468 if (!NewBuiltinDecl) 6469 return ExprError(); 6470 } 6471 6472 // The first argument --- the pointer --- has a fixed type; we 6473 // deduce the types of the rest of the arguments accordingly. Walk 6474 // the remaining arguments, converting them to the deduced value type. 6475 for (unsigned i = 0; i != NumFixed; ++i) { 6476 ExprResult Arg = TheCall->getArg(i+1); 6477 6478 // GCC does an implicit conversion to the pointer or integer ValType. This 6479 // can fail in some cases (1i -> int**), check for this error case now. 6480 // Initialize the argument. 6481 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6482 ValType, /*consume*/ false); 6483 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6484 if (Arg.isInvalid()) 6485 return ExprError(); 6486 6487 // Okay, we have something that *can* be converted to the right type. Check 6488 // to see if there is a potentially weird extension going on here. This can 6489 // happen when you do an atomic operation on something like an char* and 6490 // pass in 42. The 42 gets converted to char. This is even more strange 6491 // for things like 45.123 -> char, etc. 6492 // FIXME: Do this check. 6493 TheCall->setArg(i+1, Arg.get()); 6494 } 6495 6496 // Create a new DeclRefExpr to refer to the new decl. 6497 DeclRefExpr *NewDRE = DeclRefExpr::Create( 6498 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 6499 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 6500 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 6501 6502 // Set the callee in the CallExpr. 6503 // FIXME: This loses syntactic information. 6504 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 6505 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 6506 CK_BuiltinFnToFnPtr); 6507 TheCall->setCallee(PromotedCall.get()); 6508 6509 // Change the result type of the call to match the original value type. This 6510 // is arbitrary, but the codegen for these builtins ins design to handle it 6511 // gracefully. 6512 TheCall->setType(ResultType); 6513 6514 // Prohibit problematic uses of bit-precise integer types with atomic 6515 // builtins. The arguments would have already been converted to the first 6516 // argument's type, so only need to check the first argument. 6517 const auto *BitIntValType = ValType->getAs<BitIntType>(); 6518 if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) { 6519 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); 6520 return ExprError(); 6521 } 6522 6523 return TheCallResult; 6524 } 6525 6526 /// SemaBuiltinNontemporalOverloaded - We have a call to 6527 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 6528 /// overloaded function based on the pointer type of its last argument. 6529 /// 6530 /// This function goes through and does final semantic checking for these 6531 /// builtins. 6532 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 6533 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 6534 DeclRefExpr *DRE = 6535 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6536 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6537 unsigned BuiltinID = FDecl->getBuiltinID(); 6538 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 6539 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 6540 "Unexpected nontemporal load/store builtin!"); 6541 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 6542 unsigned numArgs = isStore ? 2 : 1; 6543 6544 // Ensure that we have the proper number of arguments. 6545 if (checkArgCount(*this, TheCall, numArgs)) 6546 return ExprError(); 6547 6548 // Inspect the last argument of the nontemporal builtin. This should always 6549 // be a pointer type, from which we imply the type of the memory access. 6550 // Because it is a pointer type, we don't have to worry about any implicit 6551 // casts here. 6552 Expr *PointerArg = TheCall->getArg(numArgs - 1); 6553 ExprResult PointerArgResult = 6554 DefaultFunctionArrayLvalueConversion(PointerArg); 6555 6556 if (PointerArgResult.isInvalid()) 6557 return ExprError(); 6558 PointerArg = PointerArgResult.get(); 6559 TheCall->setArg(numArgs - 1, PointerArg); 6560 6561 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 6562 if (!pointerType) { 6563 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 6564 << PointerArg->getType() << PointerArg->getSourceRange(); 6565 return ExprError(); 6566 } 6567 6568 QualType ValType = pointerType->getPointeeType(); 6569 6570 // Strip any qualifiers off ValType. 6571 ValType = ValType.getUnqualifiedType(); 6572 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 6573 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 6574 !ValType->isVectorType()) { 6575 Diag(DRE->getBeginLoc(), 6576 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 6577 << PointerArg->getType() << PointerArg->getSourceRange(); 6578 return ExprError(); 6579 } 6580 6581 if (!isStore) { 6582 TheCall->setType(ValType); 6583 return TheCallResult; 6584 } 6585 6586 ExprResult ValArg = TheCall->getArg(0); 6587 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6588 Context, ValType, /*consume*/ false); 6589 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 6590 if (ValArg.isInvalid()) 6591 return ExprError(); 6592 6593 TheCall->setArg(0, ValArg.get()); 6594 TheCall->setType(Context.VoidTy); 6595 return TheCallResult; 6596 } 6597 6598 /// CheckObjCString - Checks that the argument to the builtin 6599 /// CFString constructor is correct 6600 /// Note: It might also make sense to do the UTF-16 conversion here (would 6601 /// simplify the backend). 6602 bool Sema::CheckObjCString(Expr *Arg) { 6603 Arg = Arg->IgnoreParenCasts(); 6604 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 6605 6606 if (!Literal || !Literal->isAscii()) { 6607 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 6608 << Arg->getSourceRange(); 6609 return true; 6610 } 6611 6612 if (Literal->containsNonAsciiOrNull()) { 6613 StringRef String = Literal->getString(); 6614 unsigned NumBytes = String.size(); 6615 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 6616 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6617 llvm::UTF16 *ToPtr = &ToBuf[0]; 6618 6619 llvm::ConversionResult Result = 6620 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6621 ToPtr + NumBytes, llvm::strictConversion); 6622 // Check for conversion failure. 6623 if (Result != llvm::conversionOK) 6624 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 6625 << Arg->getSourceRange(); 6626 } 6627 return false; 6628 } 6629 6630 /// CheckObjCString - Checks that the format string argument to the os_log() 6631 /// and os_trace() functions is correct, and converts it to const char *. 6632 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 6633 Arg = Arg->IgnoreParenCasts(); 6634 auto *Literal = dyn_cast<StringLiteral>(Arg); 6635 if (!Literal) { 6636 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 6637 Literal = ObjcLiteral->getString(); 6638 } 6639 } 6640 6641 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 6642 return ExprError( 6643 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 6644 << Arg->getSourceRange()); 6645 } 6646 6647 ExprResult Result(Literal); 6648 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 6649 InitializedEntity Entity = 6650 InitializedEntity::InitializeParameter(Context, ResultTy, false); 6651 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 6652 return Result; 6653 } 6654 6655 /// Check that the user is calling the appropriate va_start builtin for the 6656 /// target and calling convention. 6657 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 6658 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 6659 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 6660 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 6661 TT.getArch() == llvm::Triple::aarch64_32); 6662 bool IsWindows = TT.isOSWindows(); 6663 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 6664 if (IsX64 || IsAArch64) { 6665 CallingConv CC = CC_C; 6666 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 6667 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 6668 if (IsMSVAStart) { 6669 // Don't allow this in System V ABI functions. 6670 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 6671 return S.Diag(Fn->getBeginLoc(), 6672 diag::err_ms_va_start_used_in_sysv_function); 6673 } else { 6674 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 6675 // On x64 Windows, don't allow this in System V ABI functions. 6676 // (Yes, that means there's no corresponding way to support variadic 6677 // System V ABI functions on Windows.) 6678 if ((IsWindows && CC == CC_X86_64SysV) || 6679 (!IsWindows && CC == CC_Win64)) 6680 return S.Diag(Fn->getBeginLoc(), 6681 diag::err_va_start_used_in_wrong_abi_function) 6682 << !IsWindows; 6683 } 6684 return false; 6685 } 6686 6687 if (IsMSVAStart) 6688 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 6689 return false; 6690 } 6691 6692 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 6693 ParmVarDecl **LastParam = nullptr) { 6694 // Determine whether the current function, block, or obj-c method is variadic 6695 // and get its parameter list. 6696 bool IsVariadic = false; 6697 ArrayRef<ParmVarDecl *> Params; 6698 DeclContext *Caller = S.CurContext; 6699 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 6700 IsVariadic = Block->isVariadic(); 6701 Params = Block->parameters(); 6702 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 6703 IsVariadic = FD->isVariadic(); 6704 Params = FD->parameters(); 6705 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 6706 IsVariadic = MD->isVariadic(); 6707 // FIXME: This isn't correct for methods (results in bogus warning). 6708 Params = MD->parameters(); 6709 } else if (isa<CapturedDecl>(Caller)) { 6710 // We don't support va_start in a CapturedDecl. 6711 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 6712 return true; 6713 } else { 6714 // This must be some other declcontext that parses exprs. 6715 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 6716 return true; 6717 } 6718 6719 if (!IsVariadic) { 6720 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 6721 return true; 6722 } 6723 6724 if (LastParam) 6725 *LastParam = Params.empty() ? nullptr : Params.back(); 6726 6727 return false; 6728 } 6729 6730 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 6731 /// for validity. Emit an error and return true on failure; return false 6732 /// on success. 6733 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 6734 Expr *Fn = TheCall->getCallee(); 6735 6736 if (checkVAStartABI(*this, BuiltinID, Fn)) 6737 return true; 6738 6739 if (checkArgCount(*this, TheCall, 2)) 6740 return true; 6741 6742 // Type-check the first argument normally. 6743 if (checkBuiltinArgument(*this, TheCall, 0)) 6744 return true; 6745 6746 // Check that the current function is variadic, and get its last parameter. 6747 ParmVarDecl *LastParam; 6748 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 6749 return true; 6750 6751 // Verify that the second argument to the builtin is the last argument of the 6752 // current function or method. 6753 bool SecondArgIsLastNamedArgument = false; 6754 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 6755 6756 // These are valid if SecondArgIsLastNamedArgument is false after the next 6757 // block. 6758 QualType Type; 6759 SourceLocation ParamLoc; 6760 bool IsCRegister = false; 6761 6762 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 6763 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 6764 SecondArgIsLastNamedArgument = PV == LastParam; 6765 6766 Type = PV->getType(); 6767 ParamLoc = PV->getLocation(); 6768 IsCRegister = 6769 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 6770 } 6771 } 6772 6773 if (!SecondArgIsLastNamedArgument) 6774 Diag(TheCall->getArg(1)->getBeginLoc(), 6775 diag::warn_second_arg_of_va_start_not_last_named_param); 6776 else if (IsCRegister || Type->isReferenceType() || 6777 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 6778 // Promotable integers are UB, but enumerations need a bit of 6779 // extra checking to see what their promotable type actually is. 6780 if (!Type->isPromotableIntegerType()) 6781 return false; 6782 if (!Type->isEnumeralType()) 6783 return true; 6784 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 6785 return !(ED && 6786 Context.typesAreCompatible(ED->getPromotionType(), Type)); 6787 }()) { 6788 unsigned Reason = 0; 6789 if (Type->isReferenceType()) Reason = 1; 6790 else if (IsCRegister) Reason = 2; 6791 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 6792 Diag(ParamLoc, diag::note_parameter_type) << Type; 6793 } 6794 6795 TheCall->setType(Context.VoidTy); 6796 return false; 6797 } 6798 6799 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 6800 auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool { 6801 const LangOptions &LO = getLangOpts(); 6802 6803 if (LO.CPlusPlus) 6804 return Arg->getType() 6805 .getCanonicalType() 6806 .getTypePtr() 6807 ->getPointeeType() 6808 .withoutLocalFastQualifiers() == Context.CharTy; 6809 6810 // In C, allow aliasing through `char *`, this is required for AArch64 at 6811 // least. 6812 return true; 6813 }; 6814 6815 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 6816 // const char *named_addr); 6817 6818 Expr *Func = Call->getCallee(); 6819 6820 if (Call->getNumArgs() < 3) 6821 return Diag(Call->getEndLoc(), 6822 diag::err_typecheck_call_too_few_args_at_least) 6823 << 0 /*function call*/ << 3 << Call->getNumArgs(); 6824 6825 // Type-check the first argument normally. 6826 if (checkBuiltinArgument(*this, Call, 0)) 6827 return true; 6828 6829 // Check that the current function is variadic. 6830 if (checkVAStartIsInVariadicFunction(*this, Func)) 6831 return true; 6832 6833 // __va_start on Windows does not validate the parameter qualifiers 6834 6835 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 6836 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 6837 6838 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 6839 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 6840 6841 const QualType &ConstCharPtrTy = 6842 Context.getPointerType(Context.CharTy.withConst()); 6843 if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1)) 6844 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6845 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 6846 << 0 /* qualifier difference */ 6847 << 3 /* parameter mismatch */ 6848 << 2 << Arg1->getType() << ConstCharPtrTy; 6849 6850 const QualType SizeTy = Context.getSizeType(); 6851 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 6852 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6853 << Arg2->getType() << SizeTy << 1 /* different class */ 6854 << 0 /* qualifier difference */ 6855 << 3 /* parameter mismatch */ 6856 << 3 << Arg2->getType() << SizeTy; 6857 6858 return false; 6859 } 6860 6861 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 6862 /// friends. This is declared to take (...), so we have to check everything. 6863 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 6864 if (checkArgCount(*this, TheCall, 2)) 6865 return true; 6866 6867 ExprResult OrigArg0 = TheCall->getArg(0); 6868 ExprResult OrigArg1 = TheCall->getArg(1); 6869 6870 // Do standard promotions between the two arguments, returning their common 6871 // type. 6872 QualType Res = UsualArithmeticConversions( 6873 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 6874 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 6875 return true; 6876 6877 // Make sure any conversions are pushed back into the call; this is 6878 // type safe since unordered compare builtins are declared as "_Bool 6879 // foo(...)". 6880 TheCall->setArg(0, OrigArg0.get()); 6881 TheCall->setArg(1, OrigArg1.get()); 6882 6883 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 6884 return false; 6885 6886 // If the common type isn't a real floating type, then the arguments were 6887 // invalid for this operation. 6888 if (Res.isNull() || !Res->isRealFloatingType()) 6889 return Diag(OrigArg0.get()->getBeginLoc(), 6890 diag::err_typecheck_call_invalid_ordered_compare) 6891 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 6892 << SourceRange(OrigArg0.get()->getBeginLoc(), 6893 OrigArg1.get()->getEndLoc()); 6894 6895 return false; 6896 } 6897 6898 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 6899 /// __builtin_isnan and friends. This is declared to take (...), so we have 6900 /// to check everything. We expect the last argument to be a floating point 6901 /// value. 6902 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 6903 if (checkArgCount(*this, TheCall, NumArgs)) 6904 return true; 6905 6906 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 6907 // on all preceding parameters just being int. Try all of those. 6908 for (unsigned i = 0; i < NumArgs - 1; ++i) { 6909 Expr *Arg = TheCall->getArg(i); 6910 6911 if (Arg->isTypeDependent()) 6912 return false; 6913 6914 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 6915 6916 if (Res.isInvalid()) 6917 return true; 6918 TheCall->setArg(i, Res.get()); 6919 } 6920 6921 Expr *OrigArg = TheCall->getArg(NumArgs-1); 6922 6923 if (OrigArg->isTypeDependent()) 6924 return false; 6925 6926 // Usual Unary Conversions will convert half to float, which we want for 6927 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 6928 // type how it is, but do normal L->Rvalue conversions. 6929 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 6930 OrigArg = UsualUnaryConversions(OrigArg).get(); 6931 else 6932 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 6933 TheCall->setArg(NumArgs - 1, OrigArg); 6934 6935 // This operation requires a non-_Complex floating-point number. 6936 if (!OrigArg->getType()->isRealFloatingType()) 6937 return Diag(OrigArg->getBeginLoc(), 6938 diag::err_typecheck_call_invalid_unary_fp) 6939 << OrigArg->getType() << OrigArg->getSourceRange(); 6940 6941 return false; 6942 } 6943 6944 /// Perform semantic analysis for a call to __builtin_complex. 6945 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) { 6946 if (checkArgCount(*this, TheCall, 2)) 6947 return true; 6948 6949 bool Dependent = false; 6950 for (unsigned I = 0; I != 2; ++I) { 6951 Expr *Arg = TheCall->getArg(I); 6952 QualType T = Arg->getType(); 6953 if (T->isDependentType()) { 6954 Dependent = true; 6955 continue; 6956 } 6957 6958 // Despite supporting _Complex int, GCC requires a real floating point type 6959 // for the operands of __builtin_complex. 6960 if (!T->isRealFloatingType()) { 6961 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) 6962 << Arg->getType() << Arg->getSourceRange(); 6963 } 6964 6965 ExprResult Converted = DefaultLvalueConversion(Arg); 6966 if (Converted.isInvalid()) 6967 return true; 6968 TheCall->setArg(I, Converted.get()); 6969 } 6970 6971 if (Dependent) { 6972 TheCall->setType(Context.DependentTy); 6973 return false; 6974 } 6975 6976 Expr *Real = TheCall->getArg(0); 6977 Expr *Imag = TheCall->getArg(1); 6978 if (!Context.hasSameType(Real->getType(), Imag->getType())) { 6979 return Diag(Real->getBeginLoc(), 6980 diag::err_typecheck_call_different_arg_types) 6981 << Real->getType() << Imag->getType() 6982 << Real->getSourceRange() << Imag->getSourceRange(); 6983 } 6984 6985 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; 6986 // don't allow this builtin to form those types either. 6987 // FIXME: Should we allow these types? 6988 if (Real->getType()->isFloat16Type()) 6989 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6990 << "_Float16"; 6991 if (Real->getType()->isHalfType()) 6992 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6993 << "half"; 6994 6995 TheCall->setType(Context.getComplexType(Real->getType())); 6996 return false; 6997 } 6998 6999 // Customized Sema Checking for VSX builtins that have the following signature: 7000 // vector [...] builtinName(vector [...], vector [...], const int); 7001 // Which takes the same type of vectors (any legal vector type) for the first 7002 // two arguments and takes compile time constant for the third argument. 7003 // Example builtins are : 7004 // vector double vec_xxpermdi(vector double, vector double, int); 7005 // vector short vec_xxsldwi(vector short, vector short, int); 7006 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 7007 unsigned ExpectedNumArgs = 3; 7008 if (checkArgCount(*this, TheCall, ExpectedNumArgs)) 7009 return true; 7010 7011 // Check the third argument is a compile time constant 7012 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context)) 7013 return Diag(TheCall->getBeginLoc(), 7014 diag::err_vsx_builtin_nonconstant_argument) 7015 << 3 /* argument index */ << TheCall->getDirectCallee() 7016 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 7017 TheCall->getArg(2)->getEndLoc()); 7018 7019 QualType Arg1Ty = TheCall->getArg(0)->getType(); 7020 QualType Arg2Ty = TheCall->getArg(1)->getType(); 7021 7022 // Check the type of argument 1 and argument 2 are vectors. 7023 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 7024 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 7025 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 7026 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 7027 << TheCall->getDirectCallee() 7028 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 7029 TheCall->getArg(1)->getEndLoc()); 7030 } 7031 7032 // Check the first two arguments are the same type. 7033 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 7034 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 7035 << TheCall->getDirectCallee() 7036 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 7037 TheCall->getArg(1)->getEndLoc()); 7038 } 7039 7040 // When default clang type checking is turned off and the customized type 7041 // checking is used, the returning type of the function must be explicitly 7042 // set. Otherwise it is _Bool by default. 7043 TheCall->setType(Arg1Ty); 7044 7045 return false; 7046 } 7047 7048 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 7049 // This is declared to take (...), so we have to check everything. 7050 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 7051 if (TheCall->getNumArgs() < 2) 7052 return ExprError(Diag(TheCall->getEndLoc(), 7053 diag::err_typecheck_call_too_few_args_at_least) 7054 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 7055 << TheCall->getSourceRange()); 7056 7057 // Determine which of the following types of shufflevector we're checking: 7058 // 1) unary, vector mask: (lhs, mask) 7059 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 7060 QualType resType = TheCall->getArg(0)->getType(); 7061 unsigned numElements = 0; 7062 7063 if (!TheCall->getArg(0)->isTypeDependent() && 7064 !TheCall->getArg(1)->isTypeDependent()) { 7065 QualType LHSType = TheCall->getArg(0)->getType(); 7066 QualType RHSType = TheCall->getArg(1)->getType(); 7067 7068 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 7069 return ExprError( 7070 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 7071 << TheCall->getDirectCallee() 7072 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 7073 TheCall->getArg(1)->getEndLoc())); 7074 7075 numElements = LHSType->castAs<VectorType>()->getNumElements(); 7076 unsigned numResElements = TheCall->getNumArgs() - 2; 7077 7078 // Check to see if we have a call with 2 vector arguments, the unary shuffle 7079 // with mask. If so, verify that RHS is an integer vector type with the 7080 // same number of elts as lhs. 7081 if (TheCall->getNumArgs() == 2) { 7082 if (!RHSType->hasIntegerRepresentation() || 7083 RHSType->castAs<VectorType>()->getNumElements() != numElements) 7084 return ExprError(Diag(TheCall->getBeginLoc(), 7085 diag::err_vec_builtin_incompatible_vector) 7086 << TheCall->getDirectCallee() 7087 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 7088 TheCall->getArg(1)->getEndLoc())); 7089 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 7090 return ExprError(Diag(TheCall->getBeginLoc(), 7091 diag::err_vec_builtin_incompatible_vector) 7092 << TheCall->getDirectCallee() 7093 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 7094 TheCall->getArg(1)->getEndLoc())); 7095 } else if (numElements != numResElements) { 7096 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 7097 resType = Context.getVectorType(eltType, numResElements, 7098 VectorType::GenericVector); 7099 } 7100 } 7101 7102 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 7103 if (TheCall->getArg(i)->isTypeDependent() || 7104 TheCall->getArg(i)->isValueDependent()) 7105 continue; 7106 7107 Optional<llvm::APSInt> Result; 7108 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) 7109 return ExprError(Diag(TheCall->getBeginLoc(), 7110 diag::err_shufflevector_nonconstant_argument) 7111 << TheCall->getArg(i)->getSourceRange()); 7112 7113 // Allow -1 which will be translated to undef in the IR. 7114 if (Result->isSigned() && Result->isAllOnes()) 7115 continue; 7116 7117 if (Result->getActiveBits() > 64 || 7118 Result->getZExtValue() >= numElements * 2) 7119 return ExprError(Diag(TheCall->getBeginLoc(), 7120 diag::err_shufflevector_argument_too_large) 7121 << TheCall->getArg(i)->getSourceRange()); 7122 } 7123 7124 SmallVector<Expr*, 32> exprs; 7125 7126 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 7127 exprs.push_back(TheCall->getArg(i)); 7128 TheCall->setArg(i, nullptr); 7129 } 7130 7131 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 7132 TheCall->getCallee()->getBeginLoc(), 7133 TheCall->getRParenLoc()); 7134 } 7135 7136 /// SemaConvertVectorExpr - Handle __builtin_convertvector 7137 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 7138 SourceLocation BuiltinLoc, 7139 SourceLocation RParenLoc) { 7140 ExprValueKind VK = VK_PRValue; 7141 ExprObjectKind OK = OK_Ordinary; 7142 QualType DstTy = TInfo->getType(); 7143 QualType SrcTy = E->getType(); 7144 7145 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 7146 return ExprError(Diag(BuiltinLoc, 7147 diag::err_convertvector_non_vector) 7148 << E->getSourceRange()); 7149 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 7150 return ExprError(Diag(BuiltinLoc, 7151 diag::err_convertvector_non_vector_type)); 7152 7153 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 7154 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 7155 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 7156 if (SrcElts != DstElts) 7157 return ExprError(Diag(BuiltinLoc, 7158 diag::err_convertvector_incompatible_vector) 7159 << E->getSourceRange()); 7160 } 7161 7162 return new (Context) 7163 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 7164 } 7165 7166 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 7167 // This is declared to take (const void*, ...) and can take two 7168 // optional constant int args. 7169 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 7170 unsigned NumArgs = TheCall->getNumArgs(); 7171 7172 if (NumArgs > 3) 7173 return Diag(TheCall->getEndLoc(), 7174 diag::err_typecheck_call_too_many_args_at_most) 7175 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 7176 7177 // Argument 0 is checked for us and the remaining arguments must be 7178 // constant integers. 7179 for (unsigned i = 1; i != NumArgs; ++i) 7180 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 7181 return true; 7182 7183 return false; 7184 } 7185 7186 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence. 7187 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) { 7188 if (!Context.getTargetInfo().checkArithmeticFenceSupported()) 7189 return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 7190 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7191 if (checkArgCount(*this, TheCall, 1)) 7192 return true; 7193 Expr *Arg = TheCall->getArg(0); 7194 if (Arg->isInstantiationDependent()) 7195 return false; 7196 7197 QualType ArgTy = Arg->getType(); 7198 if (!ArgTy->hasFloatingRepresentation()) 7199 return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector) 7200 << ArgTy; 7201 if (Arg->isLValue()) { 7202 ExprResult FirstArg = DefaultLvalueConversion(Arg); 7203 TheCall->setArg(0, FirstArg.get()); 7204 } 7205 TheCall->setType(TheCall->getArg(0)->getType()); 7206 return false; 7207 } 7208 7209 /// SemaBuiltinAssume - Handle __assume (MS Extension). 7210 // __assume does not evaluate its arguments, and should warn if its argument 7211 // has side effects. 7212 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 7213 Expr *Arg = TheCall->getArg(0); 7214 if (Arg->isInstantiationDependent()) return false; 7215 7216 if (Arg->HasSideEffects(Context)) 7217 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 7218 << Arg->getSourceRange() 7219 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 7220 7221 return false; 7222 } 7223 7224 /// Handle __builtin_alloca_with_align. This is declared 7225 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 7226 /// than 8. 7227 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 7228 // The alignment must be a constant integer. 7229 Expr *Arg = TheCall->getArg(1); 7230 7231 // We can't check the value of a dependent argument. 7232 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 7233 if (const auto *UE = 7234 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 7235 if (UE->getKind() == UETT_AlignOf || 7236 UE->getKind() == UETT_PreferredAlignOf) 7237 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 7238 << Arg->getSourceRange(); 7239 7240 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 7241 7242 if (!Result.isPowerOf2()) 7243 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 7244 << Arg->getSourceRange(); 7245 7246 if (Result < Context.getCharWidth()) 7247 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 7248 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 7249 7250 if (Result > std::numeric_limits<int32_t>::max()) 7251 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 7252 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 7253 } 7254 7255 return false; 7256 } 7257 7258 /// Handle __builtin_assume_aligned. This is declared 7259 /// as (const void*, size_t, ...) and can take one optional constant int arg. 7260 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 7261 unsigned NumArgs = TheCall->getNumArgs(); 7262 7263 if (NumArgs > 3) 7264 return Diag(TheCall->getEndLoc(), 7265 diag::err_typecheck_call_too_many_args_at_most) 7266 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 7267 7268 // The alignment must be a constant integer. 7269 Expr *Arg = TheCall->getArg(1); 7270 7271 // We can't check the value of a dependent argument. 7272 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 7273 llvm::APSInt Result; 7274 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 7275 return true; 7276 7277 if (!Result.isPowerOf2()) 7278 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 7279 << Arg->getSourceRange(); 7280 7281 if (Result > Sema::MaximumAlignment) 7282 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 7283 << Arg->getSourceRange() << Sema::MaximumAlignment; 7284 } 7285 7286 if (NumArgs > 2) { 7287 ExprResult Arg(TheCall->getArg(2)); 7288 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 7289 Context.getSizeType(), false); 7290 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 7291 if (Arg.isInvalid()) return true; 7292 TheCall->setArg(2, Arg.get()); 7293 } 7294 7295 return false; 7296 } 7297 7298 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 7299 unsigned BuiltinID = 7300 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 7301 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 7302 7303 unsigned NumArgs = TheCall->getNumArgs(); 7304 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 7305 if (NumArgs < NumRequiredArgs) { 7306 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 7307 << 0 /* function call */ << NumRequiredArgs << NumArgs 7308 << TheCall->getSourceRange(); 7309 } 7310 if (NumArgs >= NumRequiredArgs + 0x100) { 7311 return Diag(TheCall->getEndLoc(), 7312 diag::err_typecheck_call_too_many_args_at_most) 7313 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 7314 << TheCall->getSourceRange(); 7315 } 7316 unsigned i = 0; 7317 7318 // For formatting call, check buffer arg. 7319 if (!IsSizeCall) { 7320 ExprResult Arg(TheCall->getArg(i)); 7321 InitializedEntity Entity = InitializedEntity::InitializeParameter( 7322 Context, Context.VoidPtrTy, false); 7323 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 7324 if (Arg.isInvalid()) 7325 return true; 7326 TheCall->setArg(i, Arg.get()); 7327 i++; 7328 } 7329 7330 // Check string literal arg. 7331 unsigned FormatIdx = i; 7332 { 7333 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 7334 if (Arg.isInvalid()) 7335 return true; 7336 TheCall->setArg(i, Arg.get()); 7337 i++; 7338 } 7339 7340 // Make sure variadic args are scalar. 7341 unsigned FirstDataArg = i; 7342 while (i < NumArgs) { 7343 ExprResult Arg = DefaultVariadicArgumentPromotion( 7344 TheCall->getArg(i), VariadicFunction, nullptr); 7345 if (Arg.isInvalid()) 7346 return true; 7347 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 7348 if (ArgSize.getQuantity() >= 0x100) { 7349 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 7350 << i << (int)ArgSize.getQuantity() << 0xff 7351 << TheCall->getSourceRange(); 7352 } 7353 TheCall->setArg(i, Arg.get()); 7354 i++; 7355 } 7356 7357 // Check formatting specifiers. NOTE: We're only doing this for the non-size 7358 // call to avoid duplicate diagnostics. 7359 if (!IsSizeCall) { 7360 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 7361 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 7362 bool Success = CheckFormatArguments( 7363 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 7364 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 7365 CheckedVarArgs); 7366 if (!Success) 7367 return true; 7368 } 7369 7370 if (IsSizeCall) { 7371 TheCall->setType(Context.getSizeType()); 7372 } else { 7373 TheCall->setType(Context.VoidPtrTy); 7374 } 7375 return false; 7376 } 7377 7378 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 7379 /// TheCall is a constant expression. 7380 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 7381 llvm::APSInt &Result) { 7382 Expr *Arg = TheCall->getArg(ArgNum); 7383 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 7384 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 7385 7386 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 7387 7388 Optional<llvm::APSInt> R; 7389 if (!(R = Arg->getIntegerConstantExpr(Context))) 7390 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 7391 << FDecl->getDeclName() << Arg->getSourceRange(); 7392 Result = *R; 7393 return false; 7394 } 7395 7396 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 7397 /// TheCall is a constant expression in the range [Low, High]. 7398 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 7399 int Low, int High, bool RangeIsError) { 7400 if (isConstantEvaluated()) 7401 return false; 7402 llvm::APSInt Result; 7403 7404 // We can't check the value of a dependent argument. 7405 Expr *Arg = TheCall->getArg(ArgNum); 7406 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7407 return false; 7408 7409 // Check constant-ness first. 7410 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7411 return true; 7412 7413 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 7414 if (RangeIsError) 7415 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 7416 << toString(Result, 10) << Low << High << Arg->getSourceRange(); 7417 else 7418 // Defer the warning until we know if the code will be emitted so that 7419 // dead code can ignore this. 7420 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 7421 PDiag(diag::warn_argument_invalid_range) 7422 << toString(Result, 10) << Low << High 7423 << Arg->getSourceRange()); 7424 } 7425 7426 return false; 7427 } 7428 7429 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 7430 /// TheCall is a constant expression is a multiple of Num.. 7431 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 7432 unsigned Num) { 7433 llvm::APSInt Result; 7434 7435 // We can't check the value of a dependent argument. 7436 Expr *Arg = TheCall->getArg(ArgNum); 7437 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7438 return false; 7439 7440 // Check constant-ness first. 7441 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7442 return true; 7443 7444 if (Result.getSExtValue() % Num != 0) 7445 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 7446 << Num << Arg->getSourceRange(); 7447 7448 return false; 7449 } 7450 7451 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 7452 /// constant expression representing a power of 2. 7453 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 7454 llvm::APSInt Result; 7455 7456 // We can't check the value of a dependent argument. 7457 Expr *Arg = TheCall->getArg(ArgNum); 7458 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7459 return false; 7460 7461 // Check constant-ness first. 7462 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7463 return true; 7464 7465 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 7466 // and only if x is a power of 2. 7467 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 7468 return false; 7469 7470 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 7471 << Arg->getSourceRange(); 7472 } 7473 7474 static bool IsShiftedByte(llvm::APSInt Value) { 7475 if (Value.isNegative()) 7476 return false; 7477 7478 // Check if it's a shifted byte, by shifting it down 7479 while (true) { 7480 // If the value fits in the bottom byte, the check passes. 7481 if (Value < 0x100) 7482 return true; 7483 7484 // Otherwise, if the value has _any_ bits in the bottom byte, the check 7485 // fails. 7486 if ((Value & 0xFF) != 0) 7487 return false; 7488 7489 // If the bottom 8 bits are all 0, but something above that is nonzero, 7490 // then shifting the value right by 8 bits won't affect whether it's a 7491 // shifted byte or not. So do that, and go round again. 7492 Value >>= 8; 7493 } 7494 } 7495 7496 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 7497 /// a constant expression representing an arbitrary byte value shifted left by 7498 /// a multiple of 8 bits. 7499 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 7500 unsigned ArgBits) { 7501 llvm::APSInt Result; 7502 7503 // We can't check the value of a dependent argument. 7504 Expr *Arg = TheCall->getArg(ArgNum); 7505 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7506 return false; 7507 7508 // Check constant-ness first. 7509 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7510 return true; 7511 7512 // Truncate to the given size. 7513 Result = Result.getLoBits(ArgBits); 7514 Result.setIsUnsigned(true); 7515 7516 if (IsShiftedByte(Result)) 7517 return false; 7518 7519 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 7520 << Arg->getSourceRange(); 7521 } 7522 7523 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 7524 /// TheCall is a constant expression representing either a shifted byte value, 7525 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 7526 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 7527 /// Arm MVE intrinsics. 7528 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 7529 int ArgNum, 7530 unsigned ArgBits) { 7531 llvm::APSInt Result; 7532 7533 // We can't check the value of a dependent argument. 7534 Expr *Arg = TheCall->getArg(ArgNum); 7535 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7536 return false; 7537 7538 // Check constant-ness first. 7539 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7540 return true; 7541 7542 // Truncate to the given size. 7543 Result = Result.getLoBits(ArgBits); 7544 Result.setIsUnsigned(true); 7545 7546 // Check to see if it's in either of the required forms. 7547 if (IsShiftedByte(Result) || 7548 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 7549 return false; 7550 7551 return Diag(TheCall->getBeginLoc(), 7552 diag::err_argument_not_shifted_byte_or_xxff) 7553 << Arg->getSourceRange(); 7554 } 7555 7556 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 7557 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 7558 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 7559 if (checkArgCount(*this, TheCall, 2)) 7560 return true; 7561 Expr *Arg0 = TheCall->getArg(0); 7562 Expr *Arg1 = TheCall->getArg(1); 7563 7564 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7565 if (FirstArg.isInvalid()) 7566 return true; 7567 QualType FirstArgType = FirstArg.get()->getType(); 7568 if (!FirstArgType->isAnyPointerType()) 7569 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7570 << "first" << FirstArgType << Arg0->getSourceRange(); 7571 TheCall->setArg(0, FirstArg.get()); 7572 7573 ExprResult SecArg = DefaultLvalueConversion(Arg1); 7574 if (SecArg.isInvalid()) 7575 return true; 7576 QualType SecArgType = SecArg.get()->getType(); 7577 if (!SecArgType->isIntegerType()) 7578 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 7579 << "second" << SecArgType << Arg1->getSourceRange(); 7580 7581 // Derive the return type from the pointer argument. 7582 TheCall->setType(FirstArgType); 7583 return false; 7584 } 7585 7586 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 7587 if (checkArgCount(*this, TheCall, 2)) 7588 return true; 7589 7590 Expr *Arg0 = TheCall->getArg(0); 7591 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7592 if (FirstArg.isInvalid()) 7593 return true; 7594 QualType FirstArgType = FirstArg.get()->getType(); 7595 if (!FirstArgType->isAnyPointerType()) 7596 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7597 << "first" << FirstArgType << Arg0->getSourceRange(); 7598 TheCall->setArg(0, FirstArg.get()); 7599 7600 // Derive the return type from the pointer argument. 7601 TheCall->setType(FirstArgType); 7602 7603 // Second arg must be an constant in range [0,15] 7604 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 7605 } 7606 7607 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 7608 if (checkArgCount(*this, TheCall, 2)) 7609 return true; 7610 Expr *Arg0 = TheCall->getArg(0); 7611 Expr *Arg1 = TheCall->getArg(1); 7612 7613 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7614 if (FirstArg.isInvalid()) 7615 return true; 7616 QualType FirstArgType = FirstArg.get()->getType(); 7617 if (!FirstArgType->isAnyPointerType()) 7618 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7619 << "first" << FirstArgType << Arg0->getSourceRange(); 7620 7621 QualType SecArgType = Arg1->getType(); 7622 if (!SecArgType->isIntegerType()) 7623 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 7624 << "second" << SecArgType << Arg1->getSourceRange(); 7625 TheCall->setType(Context.IntTy); 7626 return false; 7627 } 7628 7629 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 7630 BuiltinID == AArch64::BI__builtin_arm_stg) { 7631 if (checkArgCount(*this, TheCall, 1)) 7632 return true; 7633 Expr *Arg0 = TheCall->getArg(0); 7634 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7635 if (FirstArg.isInvalid()) 7636 return true; 7637 7638 QualType FirstArgType = FirstArg.get()->getType(); 7639 if (!FirstArgType->isAnyPointerType()) 7640 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7641 << "first" << FirstArgType << Arg0->getSourceRange(); 7642 TheCall->setArg(0, FirstArg.get()); 7643 7644 // Derive the return type from the pointer argument. 7645 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 7646 TheCall->setType(FirstArgType); 7647 return false; 7648 } 7649 7650 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 7651 Expr *ArgA = TheCall->getArg(0); 7652 Expr *ArgB = TheCall->getArg(1); 7653 7654 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 7655 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 7656 7657 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 7658 return true; 7659 7660 QualType ArgTypeA = ArgExprA.get()->getType(); 7661 QualType ArgTypeB = ArgExprB.get()->getType(); 7662 7663 auto isNull = [&] (Expr *E) -> bool { 7664 return E->isNullPointerConstant( 7665 Context, Expr::NPC_ValueDependentIsNotNull); }; 7666 7667 // argument should be either a pointer or null 7668 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 7669 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 7670 << "first" << ArgTypeA << ArgA->getSourceRange(); 7671 7672 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 7673 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 7674 << "second" << ArgTypeB << ArgB->getSourceRange(); 7675 7676 // Ensure Pointee types are compatible 7677 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 7678 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 7679 QualType pointeeA = ArgTypeA->getPointeeType(); 7680 QualType pointeeB = ArgTypeB->getPointeeType(); 7681 if (!Context.typesAreCompatible( 7682 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 7683 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 7684 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 7685 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 7686 << ArgB->getSourceRange(); 7687 } 7688 } 7689 7690 // at least one argument should be pointer type 7691 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 7692 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 7693 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 7694 7695 if (isNull(ArgA)) // adopt type of the other pointer 7696 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 7697 7698 if (isNull(ArgB)) 7699 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 7700 7701 TheCall->setArg(0, ArgExprA.get()); 7702 TheCall->setArg(1, ArgExprB.get()); 7703 TheCall->setType(Context.LongLongTy); 7704 return false; 7705 } 7706 assert(false && "Unhandled ARM MTE intrinsic"); 7707 return true; 7708 } 7709 7710 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 7711 /// TheCall is an ARM/AArch64 special register string literal. 7712 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 7713 int ArgNum, unsigned ExpectedFieldNum, 7714 bool AllowName) { 7715 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 7716 BuiltinID == ARM::BI__builtin_arm_wsr64 || 7717 BuiltinID == ARM::BI__builtin_arm_rsr || 7718 BuiltinID == ARM::BI__builtin_arm_rsrp || 7719 BuiltinID == ARM::BI__builtin_arm_wsr || 7720 BuiltinID == ARM::BI__builtin_arm_wsrp; 7721 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 7722 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 7723 BuiltinID == AArch64::BI__builtin_arm_rsr || 7724 BuiltinID == AArch64::BI__builtin_arm_rsrp || 7725 BuiltinID == AArch64::BI__builtin_arm_wsr || 7726 BuiltinID == AArch64::BI__builtin_arm_wsrp; 7727 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 7728 7729 // We can't check the value of a dependent argument. 7730 Expr *Arg = TheCall->getArg(ArgNum); 7731 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7732 return false; 7733 7734 // Check if the argument is a string literal. 7735 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 7736 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 7737 << Arg->getSourceRange(); 7738 7739 // Check the type of special register given. 7740 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 7741 SmallVector<StringRef, 6> Fields; 7742 Reg.split(Fields, ":"); 7743 7744 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 7745 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 7746 << Arg->getSourceRange(); 7747 7748 // If the string is the name of a register then we cannot check that it is 7749 // valid here but if the string is of one the forms described in ACLE then we 7750 // can check that the supplied fields are integers and within the valid 7751 // ranges. 7752 if (Fields.size() > 1) { 7753 bool FiveFields = Fields.size() == 5; 7754 7755 bool ValidString = true; 7756 if (IsARMBuiltin) { 7757 ValidString &= Fields[0].startswith_insensitive("cp") || 7758 Fields[0].startswith_insensitive("p"); 7759 if (ValidString) 7760 Fields[0] = Fields[0].drop_front( 7761 Fields[0].startswith_insensitive("cp") ? 2 : 1); 7762 7763 ValidString &= Fields[2].startswith_insensitive("c"); 7764 if (ValidString) 7765 Fields[2] = Fields[2].drop_front(1); 7766 7767 if (FiveFields) { 7768 ValidString &= Fields[3].startswith_insensitive("c"); 7769 if (ValidString) 7770 Fields[3] = Fields[3].drop_front(1); 7771 } 7772 } 7773 7774 SmallVector<int, 5> Ranges; 7775 if (FiveFields) 7776 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 7777 else 7778 Ranges.append({15, 7, 15}); 7779 7780 for (unsigned i=0; i<Fields.size(); ++i) { 7781 int IntField; 7782 ValidString &= !Fields[i].getAsInteger(10, IntField); 7783 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 7784 } 7785 7786 if (!ValidString) 7787 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 7788 << Arg->getSourceRange(); 7789 } else if (IsAArch64Builtin && Fields.size() == 1) { 7790 // If the register name is one of those that appear in the condition below 7791 // and the special register builtin being used is one of the write builtins, 7792 // then we require that the argument provided for writing to the register 7793 // is an integer constant expression. This is because it will be lowered to 7794 // an MSR (immediate) instruction, so we need to know the immediate at 7795 // compile time. 7796 if (TheCall->getNumArgs() != 2) 7797 return false; 7798 7799 std::string RegLower = Reg.lower(); 7800 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 7801 RegLower != "pan" && RegLower != "uao") 7802 return false; 7803 7804 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 7805 } 7806 7807 return false; 7808 } 7809 7810 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity. 7811 /// Emit an error and return true on failure; return false on success. 7812 /// TypeStr is a string containing the type descriptor of the value returned by 7813 /// the builtin and the descriptors of the expected type of the arguments. 7814 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID, 7815 const char *TypeStr) { 7816 7817 assert((TypeStr[0] != '\0') && 7818 "Invalid types in PPC MMA builtin declaration"); 7819 7820 switch (BuiltinID) { 7821 default: 7822 // This function is called in CheckPPCBuiltinFunctionCall where the 7823 // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here 7824 // we are isolating the pair vector memop builtins that can be used with mma 7825 // off so the default case is every builtin that requires mma and paired 7826 // vector memops. 7827 if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops", 7828 diag::err_ppc_builtin_only_on_arch, "10") || 7829 SemaFeatureCheck(*this, TheCall, "mma", 7830 diag::err_ppc_builtin_only_on_arch, "10")) 7831 return true; 7832 break; 7833 case PPC::BI__builtin_vsx_lxvp: 7834 case PPC::BI__builtin_vsx_stxvp: 7835 case PPC::BI__builtin_vsx_assemble_pair: 7836 case PPC::BI__builtin_vsx_disassemble_pair: 7837 if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops", 7838 diag::err_ppc_builtin_only_on_arch, "10")) 7839 return true; 7840 break; 7841 } 7842 7843 unsigned Mask = 0; 7844 unsigned ArgNum = 0; 7845 7846 // The first type in TypeStr is the type of the value returned by the 7847 // builtin. So we first read that type and change the type of TheCall. 7848 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7849 TheCall->setType(type); 7850 7851 while (*TypeStr != '\0') { 7852 Mask = 0; 7853 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7854 if (ArgNum >= TheCall->getNumArgs()) { 7855 ArgNum++; 7856 break; 7857 } 7858 7859 Expr *Arg = TheCall->getArg(ArgNum); 7860 QualType PassedType = Arg->getType(); 7861 QualType StrippedRVType = PassedType.getCanonicalType(); 7862 7863 // Strip Restrict/Volatile qualifiers. 7864 if (StrippedRVType.isRestrictQualified() || 7865 StrippedRVType.isVolatileQualified()) 7866 StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType(); 7867 7868 // The only case where the argument type and expected type are allowed to 7869 // mismatch is if the argument type is a non-void pointer (or array) and 7870 // expected type is a void pointer. 7871 if (StrippedRVType != ExpectedType) 7872 if (!(ExpectedType->isVoidPointerType() && 7873 (StrippedRVType->isPointerType() || StrippedRVType->isArrayType()))) 7874 return Diag(Arg->getBeginLoc(), 7875 diag::err_typecheck_convert_incompatible) 7876 << PassedType << ExpectedType << 1 << 0 << 0; 7877 7878 // If the value of the Mask is not 0, we have a constraint in the size of 7879 // the integer argument so here we ensure the argument is a constant that 7880 // is in the valid range. 7881 if (Mask != 0 && 7882 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true)) 7883 return true; 7884 7885 ArgNum++; 7886 } 7887 7888 // In case we exited early from the previous loop, there are other types to 7889 // read from TypeStr. So we need to read them all to ensure we have the right 7890 // number of arguments in TheCall and if it is not the case, to display a 7891 // better error message. 7892 while (*TypeStr != '\0') { 7893 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7894 ArgNum++; 7895 } 7896 if (checkArgCount(*this, TheCall, ArgNum)) 7897 return true; 7898 7899 return false; 7900 } 7901 7902 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 7903 /// This checks that the target supports __builtin_longjmp and 7904 /// that val is a constant 1. 7905 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 7906 if (!Context.getTargetInfo().hasSjLjLowering()) 7907 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 7908 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7909 7910 Expr *Arg = TheCall->getArg(1); 7911 llvm::APSInt Result; 7912 7913 // TODO: This is less than ideal. Overload this to take a value. 7914 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 7915 return true; 7916 7917 if (Result != 1) 7918 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 7919 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 7920 7921 return false; 7922 } 7923 7924 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 7925 /// This checks that the target supports __builtin_setjmp. 7926 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 7927 if (!Context.getTargetInfo().hasSjLjLowering()) 7928 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 7929 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7930 return false; 7931 } 7932 7933 namespace { 7934 7935 class UncoveredArgHandler { 7936 enum { Unknown = -1, AllCovered = -2 }; 7937 7938 signed FirstUncoveredArg = Unknown; 7939 SmallVector<const Expr *, 4> DiagnosticExprs; 7940 7941 public: 7942 UncoveredArgHandler() = default; 7943 7944 bool hasUncoveredArg() const { 7945 return (FirstUncoveredArg >= 0); 7946 } 7947 7948 unsigned getUncoveredArg() const { 7949 assert(hasUncoveredArg() && "no uncovered argument"); 7950 return FirstUncoveredArg; 7951 } 7952 7953 void setAllCovered() { 7954 // A string has been found with all arguments covered, so clear out 7955 // the diagnostics. 7956 DiagnosticExprs.clear(); 7957 FirstUncoveredArg = AllCovered; 7958 } 7959 7960 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 7961 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 7962 7963 // Don't update if a previous string covers all arguments. 7964 if (FirstUncoveredArg == AllCovered) 7965 return; 7966 7967 // UncoveredArgHandler tracks the highest uncovered argument index 7968 // and with it all the strings that match this index. 7969 if (NewFirstUncoveredArg == FirstUncoveredArg) 7970 DiagnosticExprs.push_back(StrExpr); 7971 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 7972 DiagnosticExprs.clear(); 7973 DiagnosticExprs.push_back(StrExpr); 7974 FirstUncoveredArg = NewFirstUncoveredArg; 7975 } 7976 } 7977 7978 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 7979 }; 7980 7981 enum StringLiteralCheckType { 7982 SLCT_NotALiteral, 7983 SLCT_UncheckedLiteral, 7984 SLCT_CheckedLiteral 7985 }; 7986 7987 } // namespace 7988 7989 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 7990 BinaryOperatorKind BinOpKind, 7991 bool AddendIsRight) { 7992 unsigned BitWidth = Offset.getBitWidth(); 7993 unsigned AddendBitWidth = Addend.getBitWidth(); 7994 // There might be negative interim results. 7995 if (Addend.isUnsigned()) { 7996 Addend = Addend.zext(++AddendBitWidth); 7997 Addend.setIsSigned(true); 7998 } 7999 // Adjust the bit width of the APSInts. 8000 if (AddendBitWidth > BitWidth) { 8001 Offset = Offset.sext(AddendBitWidth); 8002 BitWidth = AddendBitWidth; 8003 } else if (BitWidth > AddendBitWidth) { 8004 Addend = Addend.sext(BitWidth); 8005 } 8006 8007 bool Ov = false; 8008 llvm::APSInt ResOffset = Offset; 8009 if (BinOpKind == BO_Add) 8010 ResOffset = Offset.sadd_ov(Addend, Ov); 8011 else { 8012 assert(AddendIsRight && BinOpKind == BO_Sub && 8013 "operator must be add or sub with addend on the right"); 8014 ResOffset = Offset.ssub_ov(Addend, Ov); 8015 } 8016 8017 // We add an offset to a pointer here so we should support an offset as big as 8018 // possible. 8019 if (Ov) { 8020 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 8021 "index (intermediate) result too big"); 8022 Offset = Offset.sext(2 * BitWidth); 8023 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 8024 return; 8025 } 8026 8027 Offset = ResOffset; 8028 } 8029 8030 namespace { 8031 8032 // This is a wrapper class around StringLiteral to support offsetted string 8033 // literals as format strings. It takes the offset into account when returning 8034 // the string and its length or the source locations to display notes correctly. 8035 class FormatStringLiteral { 8036 const StringLiteral *FExpr; 8037 int64_t Offset; 8038 8039 public: 8040 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 8041 : FExpr(fexpr), Offset(Offset) {} 8042 8043 StringRef getString() const { 8044 return FExpr->getString().drop_front(Offset); 8045 } 8046 8047 unsigned getByteLength() const { 8048 return FExpr->getByteLength() - getCharByteWidth() * Offset; 8049 } 8050 8051 unsigned getLength() const { return FExpr->getLength() - Offset; } 8052 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 8053 8054 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 8055 8056 QualType getType() const { return FExpr->getType(); } 8057 8058 bool isAscii() const { return FExpr->isAscii(); } 8059 bool isWide() const { return FExpr->isWide(); } 8060 bool isUTF8() const { return FExpr->isUTF8(); } 8061 bool isUTF16() const { return FExpr->isUTF16(); } 8062 bool isUTF32() const { return FExpr->isUTF32(); } 8063 bool isPascal() const { return FExpr->isPascal(); } 8064 8065 SourceLocation getLocationOfByte( 8066 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 8067 const TargetInfo &Target, unsigned *StartToken = nullptr, 8068 unsigned *StartTokenByteOffset = nullptr) const { 8069 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 8070 StartToken, StartTokenByteOffset); 8071 } 8072 8073 SourceLocation getBeginLoc() const LLVM_READONLY { 8074 return FExpr->getBeginLoc().getLocWithOffset(Offset); 8075 } 8076 8077 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 8078 }; 8079 8080 } // namespace 8081 8082 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 8083 const Expr *OrigFormatExpr, 8084 ArrayRef<const Expr *> Args, 8085 bool HasVAListArg, unsigned format_idx, 8086 unsigned firstDataArg, 8087 Sema::FormatStringType Type, 8088 bool inFunctionCall, 8089 Sema::VariadicCallType CallType, 8090 llvm::SmallBitVector &CheckedVarArgs, 8091 UncoveredArgHandler &UncoveredArg, 8092 bool IgnoreStringsWithoutSpecifiers); 8093 8094 // Determine if an expression is a string literal or constant string. 8095 // If this function returns false on the arguments to a function expecting a 8096 // format string, we will usually need to emit a warning. 8097 // True string literals are then checked by CheckFormatString. 8098 static StringLiteralCheckType 8099 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 8100 bool HasVAListArg, unsigned format_idx, 8101 unsigned firstDataArg, Sema::FormatStringType Type, 8102 Sema::VariadicCallType CallType, bool InFunctionCall, 8103 llvm::SmallBitVector &CheckedVarArgs, 8104 UncoveredArgHandler &UncoveredArg, 8105 llvm::APSInt Offset, 8106 bool IgnoreStringsWithoutSpecifiers = false) { 8107 if (S.isConstantEvaluated()) 8108 return SLCT_NotALiteral; 8109 tryAgain: 8110 assert(Offset.isSigned() && "invalid offset"); 8111 8112 if (E->isTypeDependent() || E->isValueDependent()) 8113 return SLCT_NotALiteral; 8114 8115 E = E->IgnoreParenCasts(); 8116 8117 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 8118 // Technically -Wformat-nonliteral does not warn about this case. 8119 // The behavior of printf and friends in this case is implementation 8120 // dependent. Ideally if the format string cannot be null then 8121 // it should have a 'nonnull' attribute in the function prototype. 8122 return SLCT_UncheckedLiteral; 8123 8124 switch (E->getStmtClass()) { 8125 case Stmt::BinaryConditionalOperatorClass: 8126 case Stmt::ConditionalOperatorClass: { 8127 // The expression is a literal if both sub-expressions were, and it was 8128 // completely checked only if both sub-expressions were checked. 8129 const AbstractConditionalOperator *C = 8130 cast<AbstractConditionalOperator>(E); 8131 8132 // Determine whether it is necessary to check both sub-expressions, for 8133 // example, because the condition expression is a constant that can be 8134 // evaluated at compile time. 8135 bool CheckLeft = true, CheckRight = true; 8136 8137 bool Cond; 8138 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 8139 S.isConstantEvaluated())) { 8140 if (Cond) 8141 CheckRight = false; 8142 else 8143 CheckLeft = false; 8144 } 8145 8146 // We need to maintain the offsets for the right and the left hand side 8147 // separately to check if every possible indexed expression is a valid 8148 // string literal. They might have different offsets for different string 8149 // literals in the end. 8150 StringLiteralCheckType Left; 8151 if (!CheckLeft) 8152 Left = SLCT_UncheckedLiteral; 8153 else { 8154 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 8155 HasVAListArg, format_idx, firstDataArg, 8156 Type, CallType, InFunctionCall, 8157 CheckedVarArgs, UncoveredArg, Offset, 8158 IgnoreStringsWithoutSpecifiers); 8159 if (Left == SLCT_NotALiteral || !CheckRight) { 8160 return Left; 8161 } 8162 } 8163 8164 StringLiteralCheckType Right = checkFormatStringExpr( 8165 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 8166 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 8167 IgnoreStringsWithoutSpecifiers); 8168 8169 return (CheckLeft && Left < Right) ? Left : Right; 8170 } 8171 8172 case Stmt::ImplicitCastExprClass: 8173 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 8174 goto tryAgain; 8175 8176 case Stmt::OpaqueValueExprClass: 8177 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 8178 E = src; 8179 goto tryAgain; 8180 } 8181 return SLCT_NotALiteral; 8182 8183 case Stmt::PredefinedExprClass: 8184 // While __func__, etc., are technically not string literals, they 8185 // cannot contain format specifiers and thus are not a security 8186 // liability. 8187 return SLCT_UncheckedLiteral; 8188 8189 case Stmt::DeclRefExprClass: { 8190 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 8191 8192 // As an exception, do not flag errors for variables binding to 8193 // const string literals. 8194 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 8195 bool isConstant = false; 8196 QualType T = DR->getType(); 8197 8198 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 8199 isConstant = AT->getElementType().isConstant(S.Context); 8200 } else if (const PointerType *PT = T->getAs<PointerType>()) { 8201 isConstant = T.isConstant(S.Context) && 8202 PT->getPointeeType().isConstant(S.Context); 8203 } else if (T->isObjCObjectPointerType()) { 8204 // In ObjC, there is usually no "const ObjectPointer" type, 8205 // so don't check if the pointee type is constant. 8206 isConstant = T.isConstant(S.Context); 8207 } 8208 8209 if (isConstant) { 8210 if (const Expr *Init = VD->getAnyInitializer()) { 8211 // Look through initializers like const char c[] = { "foo" } 8212 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 8213 if (InitList->isStringLiteralInit()) 8214 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 8215 } 8216 return checkFormatStringExpr(S, Init, Args, 8217 HasVAListArg, format_idx, 8218 firstDataArg, Type, CallType, 8219 /*InFunctionCall*/ false, CheckedVarArgs, 8220 UncoveredArg, Offset); 8221 } 8222 } 8223 8224 // For vprintf* functions (i.e., HasVAListArg==true), we add a 8225 // special check to see if the format string is a function parameter 8226 // of the function calling the printf function. If the function 8227 // has an attribute indicating it is a printf-like function, then we 8228 // should suppress warnings concerning non-literals being used in a call 8229 // to a vprintf function. For example: 8230 // 8231 // void 8232 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 8233 // va_list ap; 8234 // va_start(ap, fmt); 8235 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 8236 // ... 8237 // } 8238 if (HasVAListArg) { 8239 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 8240 if (const Decl *D = dyn_cast<Decl>(PV->getDeclContext())) { 8241 int PVIndex = PV->getFunctionScopeIndex() + 1; 8242 for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) { 8243 // adjust for implicit parameter 8244 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 8245 if (MD->isInstance()) 8246 ++PVIndex; 8247 // We also check if the formats are compatible. 8248 // We can't pass a 'scanf' string to a 'printf' function. 8249 if (PVIndex == PVFormat->getFormatIdx() && 8250 Type == S.GetFormatStringType(PVFormat)) 8251 return SLCT_UncheckedLiteral; 8252 } 8253 } 8254 } 8255 } 8256 } 8257 8258 return SLCT_NotALiteral; 8259 } 8260 8261 case Stmt::CallExprClass: 8262 case Stmt::CXXMemberCallExprClass: { 8263 const CallExpr *CE = cast<CallExpr>(E); 8264 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 8265 bool IsFirst = true; 8266 StringLiteralCheckType CommonResult; 8267 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 8268 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 8269 StringLiteralCheckType Result = checkFormatStringExpr( 8270 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 8271 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 8272 IgnoreStringsWithoutSpecifiers); 8273 if (IsFirst) { 8274 CommonResult = Result; 8275 IsFirst = false; 8276 } 8277 } 8278 if (!IsFirst) 8279 return CommonResult; 8280 8281 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 8282 unsigned BuiltinID = FD->getBuiltinID(); 8283 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 8284 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 8285 const Expr *Arg = CE->getArg(0); 8286 return checkFormatStringExpr(S, Arg, Args, 8287 HasVAListArg, format_idx, 8288 firstDataArg, Type, CallType, 8289 InFunctionCall, CheckedVarArgs, 8290 UncoveredArg, Offset, 8291 IgnoreStringsWithoutSpecifiers); 8292 } 8293 } 8294 } 8295 8296 return SLCT_NotALiteral; 8297 } 8298 case Stmt::ObjCMessageExprClass: { 8299 const auto *ME = cast<ObjCMessageExpr>(E); 8300 if (const auto *MD = ME->getMethodDecl()) { 8301 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 8302 // As a special case heuristic, if we're using the method -[NSBundle 8303 // localizedStringForKey:value:table:], ignore any key strings that lack 8304 // format specifiers. The idea is that if the key doesn't have any 8305 // format specifiers then its probably just a key to map to the 8306 // localized strings. If it does have format specifiers though, then its 8307 // likely that the text of the key is the format string in the 8308 // programmer's language, and should be checked. 8309 const ObjCInterfaceDecl *IFace; 8310 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 8311 IFace->getIdentifier()->isStr("NSBundle") && 8312 MD->getSelector().isKeywordSelector( 8313 {"localizedStringForKey", "value", "table"})) { 8314 IgnoreStringsWithoutSpecifiers = true; 8315 } 8316 8317 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 8318 return checkFormatStringExpr( 8319 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 8320 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 8321 IgnoreStringsWithoutSpecifiers); 8322 } 8323 } 8324 8325 return SLCT_NotALiteral; 8326 } 8327 case Stmt::ObjCStringLiteralClass: 8328 case Stmt::StringLiteralClass: { 8329 const StringLiteral *StrE = nullptr; 8330 8331 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 8332 StrE = ObjCFExpr->getString(); 8333 else 8334 StrE = cast<StringLiteral>(E); 8335 8336 if (StrE) { 8337 if (Offset.isNegative() || Offset > StrE->getLength()) { 8338 // TODO: It would be better to have an explicit warning for out of 8339 // bounds literals. 8340 return SLCT_NotALiteral; 8341 } 8342 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 8343 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 8344 firstDataArg, Type, InFunctionCall, CallType, 8345 CheckedVarArgs, UncoveredArg, 8346 IgnoreStringsWithoutSpecifiers); 8347 return SLCT_CheckedLiteral; 8348 } 8349 8350 return SLCT_NotALiteral; 8351 } 8352 case Stmt::BinaryOperatorClass: { 8353 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 8354 8355 // A string literal + an int offset is still a string literal. 8356 if (BinOp->isAdditiveOp()) { 8357 Expr::EvalResult LResult, RResult; 8358 8359 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 8360 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 8361 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 8362 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 8363 8364 if (LIsInt != RIsInt) { 8365 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 8366 8367 if (LIsInt) { 8368 if (BinOpKind == BO_Add) { 8369 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 8370 E = BinOp->getRHS(); 8371 goto tryAgain; 8372 } 8373 } else { 8374 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 8375 E = BinOp->getLHS(); 8376 goto tryAgain; 8377 } 8378 } 8379 } 8380 8381 return SLCT_NotALiteral; 8382 } 8383 case Stmt::UnaryOperatorClass: { 8384 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 8385 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 8386 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 8387 Expr::EvalResult IndexResult; 8388 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 8389 Expr::SE_NoSideEffects, 8390 S.isConstantEvaluated())) { 8391 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 8392 /*RHS is int*/ true); 8393 E = ASE->getBase(); 8394 goto tryAgain; 8395 } 8396 } 8397 8398 return SLCT_NotALiteral; 8399 } 8400 8401 default: 8402 return SLCT_NotALiteral; 8403 } 8404 } 8405 8406 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 8407 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 8408 .Case("scanf", FST_Scanf) 8409 .Cases("printf", "printf0", FST_Printf) 8410 .Cases("NSString", "CFString", FST_NSString) 8411 .Case("strftime", FST_Strftime) 8412 .Case("strfmon", FST_Strfmon) 8413 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 8414 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 8415 .Case("os_trace", FST_OSLog) 8416 .Case("os_log", FST_OSLog) 8417 .Default(FST_Unknown); 8418 } 8419 8420 /// CheckFormatArguments - Check calls to printf and scanf (and similar 8421 /// functions) for correct use of format strings. 8422 /// Returns true if a format string has been fully checked. 8423 bool Sema::CheckFormatArguments(const FormatAttr *Format, 8424 ArrayRef<const Expr *> Args, 8425 bool IsCXXMember, 8426 VariadicCallType CallType, 8427 SourceLocation Loc, SourceRange Range, 8428 llvm::SmallBitVector &CheckedVarArgs) { 8429 FormatStringInfo FSI; 8430 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 8431 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 8432 FSI.FirstDataArg, GetFormatStringType(Format), 8433 CallType, Loc, Range, CheckedVarArgs); 8434 return false; 8435 } 8436 8437 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 8438 bool HasVAListArg, unsigned format_idx, 8439 unsigned firstDataArg, FormatStringType Type, 8440 VariadicCallType CallType, 8441 SourceLocation Loc, SourceRange Range, 8442 llvm::SmallBitVector &CheckedVarArgs) { 8443 // CHECK: printf/scanf-like function is called with no format string. 8444 if (format_idx >= Args.size()) { 8445 Diag(Loc, diag::warn_missing_format_string) << Range; 8446 return false; 8447 } 8448 8449 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 8450 8451 // CHECK: format string is not a string literal. 8452 // 8453 // Dynamically generated format strings are difficult to 8454 // automatically vet at compile time. Requiring that format strings 8455 // are string literals: (1) permits the checking of format strings by 8456 // the compiler and thereby (2) can practically remove the source of 8457 // many format string exploits. 8458 8459 // Format string can be either ObjC string (e.g. @"%d") or 8460 // C string (e.g. "%d") 8461 // ObjC string uses the same format specifiers as C string, so we can use 8462 // the same format string checking logic for both ObjC and C strings. 8463 UncoveredArgHandler UncoveredArg; 8464 StringLiteralCheckType CT = 8465 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 8466 format_idx, firstDataArg, Type, CallType, 8467 /*IsFunctionCall*/ true, CheckedVarArgs, 8468 UncoveredArg, 8469 /*no string offset*/ llvm::APSInt(64, false) = 0); 8470 8471 // Generate a diagnostic where an uncovered argument is detected. 8472 if (UncoveredArg.hasUncoveredArg()) { 8473 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 8474 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 8475 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 8476 } 8477 8478 if (CT != SLCT_NotALiteral) 8479 // Literal format string found, check done! 8480 return CT == SLCT_CheckedLiteral; 8481 8482 // Strftime is particular as it always uses a single 'time' argument, 8483 // so it is safe to pass a non-literal string. 8484 if (Type == FST_Strftime) 8485 return false; 8486 8487 // Do not emit diag when the string param is a macro expansion and the 8488 // format is either NSString or CFString. This is a hack to prevent 8489 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 8490 // which are usually used in place of NS and CF string literals. 8491 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 8492 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 8493 return false; 8494 8495 // If there are no arguments specified, warn with -Wformat-security, otherwise 8496 // warn only with -Wformat-nonliteral. 8497 if (Args.size() == firstDataArg) { 8498 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 8499 << OrigFormatExpr->getSourceRange(); 8500 switch (Type) { 8501 default: 8502 break; 8503 case FST_Kprintf: 8504 case FST_FreeBSDKPrintf: 8505 case FST_Printf: 8506 Diag(FormatLoc, diag::note_format_security_fixit) 8507 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 8508 break; 8509 case FST_NSString: 8510 Diag(FormatLoc, diag::note_format_security_fixit) 8511 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 8512 break; 8513 } 8514 } else { 8515 Diag(FormatLoc, diag::warn_format_nonliteral) 8516 << OrigFormatExpr->getSourceRange(); 8517 } 8518 return false; 8519 } 8520 8521 namespace { 8522 8523 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 8524 protected: 8525 Sema &S; 8526 const FormatStringLiteral *FExpr; 8527 const Expr *OrigFormatExpr; 8528 const Sema::FormatStringType FSType; 8529 const unsigned FirstDataArg; 8530 const unsigned NumDataArgs; 8531 const char *Beg; // Start of format string. 8532 const bool HasVAListArg; 8533 ArrayRef<const Expr *> Args; 8534 unsigned FormatIdx; 8535 llvm::SmallBitVector CoveredArgs; 8536 bool usesPositionalArgs = false; 8537 bool atFirstArg = true; 8538 bool inFunctionCall; 8539 Sema::VariadicCallType CallType; 8540 llvm::SmallBitVector &CheckedVarArgs; 8541 UncoveredArgHandler &UncoveredArg; 8542 8543 public: 8544 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 8545 const Expr *origFormatExpr, 8546 const Sema::FormatStringType type, unsigned firstDataArg, 8547 unsigned numDataArgs, const char *beg, bool hasVAListArg, 8548 ArrayRef<const Expr *> Args, unsigned formatIdx, 8549 bool inFunctionCall, Sema::VariadicCallType callType, 8550 llvm::SmallBitVector &CheckedVarArgs, 8551 UncoveredArgHandler &UncoveredArg) 8552 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 8553 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 8554 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 8555 inFunctionCall(inFunctionCall), CallType(callType), 8556 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 8557 CoveredArgs.resize(numDataArgs); 8558 CoveredArgs.reset(); 8559 } 8560 8561 void DoneProcessing(); 8562 8563 void HandleIncompleteSpecifier(const char *startSpecifier, 8564 unsigned specifierLen) override; 8565 8566 void HandleInvalidLengthModifier( 8567 const analyze_format_string::FormatSpecifier &FS, 8568 const analyze_format_string::ConversionSpecifier &CS, 8569 const char *startSpecifier, unsigned specifierLen, 8570 unsigned DiagID); 8571 8572 void HandleNonStandardLengthModifier( 8573 const analyze_format_string::FormatSpecifier &FS, 8574 const char *startSpecifier, unsigned specifierLen); 8575 8576 void HandleNonStandardConversionSpecifier( 8577 const analyze_format_string::ConversionSpecifier &CS, 8578 const char *startSpecifier, unsigned specifierLen); 8579 8580 void HandlePosition(const char *startPos, unsigned posLen) override; 8581 8582 void HandleInvalidPosition(const char *startSpecifier, 8583 unsigned specifierLen, 8584 analyze_format_string::PositionContext p) override; 8585 8586 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 8587 8588 void HandleNullChar(const char *nullCharacter) override; 8589 8590 template <typename Range> 8591 static void 8592 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 8593 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 8594 bool IsStringLocation, Range StringRange, 8595 ArrayRef<FixItHint> Fixit = None); 8596 8597 protected: 8598 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 8599 const char *startSpec, 8600 unsigned specifierLen, 8601 const char *csStart, unsigned csLen); 8602 8603 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 8604 const char *startSpec, 8605 unsigned specifierLen); 8606 8607 SourceRange getFormatStringRange(); 8608 CharSourceRange getSpecifierRange(const char *startSpecifier, 8609 unsigned specifierLen); 8610 SourceLocation getLocationOfByte(const char *x); 8611 8612 const Expr *getDataArg(unsigned i) const; 8613 8614 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 8615 const analyze_format_string::ConversionSpecifier &CS, 8616 const char *startSpecifier, unsigned specifierLen, 8617 unsigned argIndex); 8618 8619 template <typename Range> 8620 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 8621 bool IsStringLocation, Range StringRange, 8622 ArrayRef<FixItHint> Fixit = None); 8623 }; 8624 8625 } // namespace 8626 8627 SourceRange CheckFormatHandler::getFormatStringRange() { 8628 return OrigFormatExpr->getSourceRange(); 8629 } 8630 8631 CharSourceRange CheckFormatHandler:: 8632 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 8633 SourceLocation Start = getLocationOfByte(startSpecifier); 8634 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 8635 8636 // Advance the end SourceLocation by one due to half-open ranges. 8637 End = End.getLocWithOffset(1); 8638 8639 return CharSourceRange::getCharRange(Start, End); 8640 } 8641 8642 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 8643 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 8644 S.getLangOpts(), S.Context.getTargetInfo()); 8645 } 8646 8647 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 8648 unsigned specifierLen){ 8649 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 8650 getLocationOfByte(startSpecifier), 8651 /*IsStringLocation*/true, 8652 getSpecifierRange(startSpecifier, specifierLen)); 8653 } 8654 8655 void CheckFormatHandler::HandleInvalidLengthModifier( 8656 const analyze_format_string::FormatSpecifier &FS, 8657 const analyze_format_string::ConversionSpecifier &CS, 8658 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 8659 using namespace analyze_format_string; 8660 8661 const LengthModifier &LM = FS.getLengthModifier(); 8662 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 8663 8664 // See if we know how to fix this length modifier. 8665 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 8666 if (FixedLM) { 8667 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 8668 getLocationOfByte(LM.getStart()), 8669 /*IsStringLocation*/true, 8670 getSpecifierRange(startSpecifier, specifierLen)); 8671 8672 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 8673 << FixedLM->toString() 8674 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 8675 8676 } else { 8677 FixItHint Hint; 8678 if (DiagID == diag::warn_format_nonsensical_length) 8679 Hint = FixItHint::CreateRemoval(LMRange); 8680 8681 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 8682 getLocationOfByte(LM.getStart()), 8683 /*IsStringLocation*/true, 8684 getSpecifierRange(startSpecifier, specifierLen), 8685 Hint); 8686 } 8687 } 8688 8689 void CheckFormatHandler::HandleNonStandardLengthModifier( 8690 const analyze_format_string::FormatSpecifier &FS, 8691 const char *startSpecifier, unsigned specifierLen) { 8692 using namespace analyze_format_string; 8693 8694 const LengthModifier &LM = FS.getLengthModifier(); 8695 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 8696 8697 // See if we know how to fix this length modifier. 8698 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 8699 if (FixedLM) { 8700 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8701 << LM.toString() << 0, 8702 getLocationOfByte(LM.getStart()), 8703 /*IsStringLocation*/true, 8704 getSpecifierRange(startSpecifier, specifierLen)); 8705 8706 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 8707 << FixedLM->toString() 8708 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 8709 8710 } else { 8711 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8712 << LM.toString() << 0, 8713 getLocationOfByte(LM.getStart()), 8714 /*IsStringLocation*/true, 8715 getSpecifierRange(startSpecifier, specifierLen)); 8716 } 8717 } 8718 8719 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 8720 const analyze_format_string::ConversionSpecifier &CS, 8721 const char *startSpecifier, unsigned specifierLen) { 8722 using namespace analyze_format_string; 8723 8724 // See if we know how to fix this conversion specifier. 8725 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 8726 if (FixedCS) { 8727 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8728 << CS.toString() << /*conversion specifier*/1, 8729 getLocationOfByte(CS.getStart()), 8730 /*IsStringLocation*/true, 8731 getSpecifierRange(startSpecifier, specifierLen)); 8732 8733 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 8734 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 8735 << FixedCS->toString() 8736 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 8737 } else { 8738 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8739 << CS.toString() << /*conversion specifier*/1, 8740 getLocationOfByte(CS.getStart()), 8741 /*IsStringLocation*/true, 8742 getSpecifierRange(startSpecifier, specifierLen)); 8743 } 8744 } 8745 8746 void CheckFormatHandler::HandlePosition(const char *startPos, 8747 unsigned posLen) { 8748 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 8749 getLocationOfByte(startPos), 8750 /*IsStringLocation*/true, 8751 getSpecifierRange(startPos, posLen)); 8752 } 8753 8754 void 8755 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 8756 analyze_format_string::PositionContext p) { 8757 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 8758 << (unsigned) p, 8759 getLocationOfByte(startPos), /*IsStringLocation*/true, 8760 getSpecifierRange(startPos, posLen)); 8761 } 8762 8763 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 8764 unsigned posLen) { 8765 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 8766 getLocationOfByte(startPos), 8767 /*IsStringLocation*/true, 8768 getSpecifierRange(startPos, posLen)); 8769 } 8770 8771 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 8772 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 8773 // The presence of a null character is likely an error. 8774 EmitFormatDiagnostic( 8775 S.PDiag(diag::warn_printf_format_string_contains_null_char), 8776 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 8777 getFormatStringRange()); 8778 } 8779 } 8780 8781 // Note that this may return NULL if there was an error parsing or building 8782 // one of the argument expressions. 8783 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 8784 return Args[FirstDataArg + i]; 8785 } 8786 8787 void CheckFormatHandler::DoneProcessing() { 8788 // Does the number of data arguments exceed the number of 8789 // format conversions in the format string? 8790 if (!HasVAListArg) { 8791 // Find any arguments that weren't covered. 8792 CoveredArgs.flip(); 8793 signed notCoveredArg = CoveredArgs.find_first(); 8794 if (notCoveredArg >= 0) { 8795 assert((unsigned)notCoveredArg < NumDataArgs); 8796 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 8797 } else { 8798 UncoveredArg.setAllCovered(); 8799 } 8800 } 8801 } 8802 8803 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 8804 const Expr *ArgExpr) { 8805 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 8806 "Invalid state"); 8807 8808 if (!ArgExpr) 8809 return; 8810 8811 SourceLocation Loc = ArgExpr->getBeginLoc(); 8812 8813 if (S.getSourceManager().isInSystemMacro(Loc)) 8814 return; 8815 8816 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 8817 for (auto E : DiagnosticExprs) 8818 PDiag << E->getSourceRange(); 8819 8820 CheckFormatHandler::EmitFormatDiagnostic( 8821 S, IsFunctionCall, DiagnosticExprs[0], 8822 PDiag, Loc, /*IsStringLocation*/false, 8823 DiagnosticExprs[0]->getSourceRange()); 8824 } 8825 8826 bool 8827 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 8828 SourceLocation Loc, 8829 const char *startSpec, 8830 unsigned specifierLen, 8831 const char *csStart, 8832 unsigned csLen) { 8833 bool keepGoing = true; 8834 if (argIndex < NumDataArgs) { 8835 // Consider the argument coverered, even though the specifier doesn't 8836 // make sense. 8837 CoveredArgs.set(argIndex); 8838 } 8839 else { 8840 // If argIndex exceeds the number of data arguments we 8841 // don't issue a warning because that is just a cascade of warnings (and 8842 // they may have intended '%%' anyway). We don't want to continue processing 8843 // the format string after this point, however, as we will like just get 8844 // gibberish when trying to match arguments. 8845 keepGoing = false; 8846 } 8847 8848 StringRef Specifier(csStart, csLen); 8849 8850 // If the specifier in non-printable, it could be the first byte of a UTF-8 8851 // sequence. In that case, print the UTF-8 code point. If not, print the byte 8852 // hex value. 8853 std::string CodePointStr; 8854 if (!llvm::sys::locale::isPrint(*csStart)) { 8855 llvm::UTF32 CodePoint; 8856 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 8857 const llvm::UTF8 *E = 8858 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 8859 llvm::ConversionResult Result = 8860 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 8861 8862 if (Result != llvm::conversionOK) { 8863 unsigned char FirstChar = *csStart; 8864 CodePoint = (llvm::UTF32)FirstChar; 8865 } 8866 8867 llvm::raw_string_ostream OS(CodePointStr); 8868 if (CodePoint < 256) 8869 OS << "\\x" << llvm::format("%02x", CodePoint); 8870 else if (CodePoint <= 0xFFFF) 8871 OS << "\\u" << llvm::format("%04x", CodePoint); 8872 else 8873 OS << "\\U" << llvm::format("%08x", CodePoint); 8874 OS.flush(); 8875 Specifier = CodePointStr; 8876 } 8877 8878 EmitFormatDiagnostic( 8879 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 8880 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 8881 8882 return keepGoing; 8883 } 8884 8885 void 8886 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 8887 const char *startSpec, 8888 unsigned specifierLen) { 8889 EmitFormatDiagnostic( 8890 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 8891 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 8892 } 8893 8894 bool 8895 CheckFormatHandler::CheckNumArgs( 8896 const analyze_format_string::FormatSpecifier &FS, 8897 const analyze_format_string::ConversionSpecifier &CS, 8898 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 8899 8900 if (argIndex >= NumDataArgs) { 8901 PartialDiagnostic PDiag = FS.usesPositionalArg() 8902 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 8903 << (argIndex+1) << NumDataArgs) 8904 : S.PDiag(diag::warn_printf_insufficient_data_args); 8905 EmitFormatDiagnostic( 8906 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 8907 getSpecifierRange(startSpecifier, specifierLen)); 8908 8909 // Since more arguments than conversion tokens are given, by extension 8910 // all arguments are covered, so mark this as so. 8911 UncoveredArg.setAllCovered(); 8912 return false; 8913 } 8914 return true; 8915 } 8916 8917 template<typename Range> 8918 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 8919 SourceLocation Loc, 8920 bool IsStringLocation, 8921 Range StringRange, 8922 ArrayRef<FixItHint> FixIt) { 8923 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 8924 Loc, IsStringLocation, StringRange, FixIt); 8925 } 8926 8927 /// If the format string is not within the function call, emit a note 8928 /// so that the function call and string are in diagnostic messages. 8929 /// 8930 /// \param InFunctionCall if true, the format string is within the function 8931 /// call and only one diagnostic message will be produced. Otherwise, an 8932 /// extra note will be emitted pointing to location of the format string. 8933 /// 8934 /// \param ArgumentExpr the expression that is passed as the format string 8935 /// argument in the function call. Used for getting locations when two 8936 /// diagnostics are emitted. 8937 /// 8938 /// \param PDiag the callee should already have provided any strings for the 8939 /// diagnostic message. This function only adds locations and fixits 8940 /// to diagnostics. 8941 /// 8942 /// \param Loc primary location for diagnostic. If two diagnostics are 8943 /// required, one will be at Loc and a new SourceLocation will be created for 8944 /// the other one. 8945 /// 8946 /// \param IsStringLocation if true, Loc points to the format string should be 8947 /// used for the note. Otherwise, Loc points to the argument list and will 8948 /// be used with PDiag. 8949 /// 8950 /// \param StringRange some or all of the string to highlight. This is 8951 /// templated so it can accept either a CharSourceRange or a SourceRange. 8952 /// 8953 /// \param FixIt optional fix it hint for the format string. 8954 template <typename Range> 8955 void CheckFormatHandler::EmitFormatDiagnostic( 8956 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 8957 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 8958 Range StringRange, ArrayRef<FixItHint> FixIt) { 8959 if (InFunctionCall) { 8960 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 8961 D << StringRange; 8962 D << FixIt; 8963 } else { 8964 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 8965 << ArgumentExpr->getSourceRange(); 8966 8967 const Sema::SemaDiagnosticBuilder &Note = 8968 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 8969 diag::note_format_string_defined); 8970 8971 Note << StringRange; 8972 Note << FixIt; 8973 } 8974 } 8975 8976 //===--- CHECK: Printf format string checking ------------------------------===// 8977 8978 namespace { 8979 8980 class CheckPrintfHandler : public CheckFormatHandler { 8981 public: 8982 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 8983 const Expr *origFormatExpr, 8984 const Sema::FormatStringType type, unsigned firstDataArg, 8985 unsigned numDataArgs, bool isObjC, const char *beg, 8986 bool hasVAListArg, ArrayRef<const Expr *> Args, 8987 unsigned formatIdx, bool inFunctionCall, 8988 Sema::VariadicCallType CallType, 8989 llvm::SmallBitVector &CheckedVarArgs, 8990 UncoveredArgHandler &UncoveredArg) 8991 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8992 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8993 inFunctionCall, CallType, CheckedVarArgs, 8994 UncoveredArg) {} 8995 8996 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 8997 8998 /// Returns true if '%@' specifiers are allowed in the format string. 8999 bool allowsObjCArg() const { 9000 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 9001 FSType == Sema::FST_OSTrace; 9002 } 9003 9004 bool HandleInvalidPrintfConversionSpecifier( 9005 const analyze_printf::PrintfSpecifier &FS, 9006 const char *startSpecifier, 9007 unsigned specifierLen) override; 9008 9009 void handleInvalidMaskType(StringRef MaskType) override; 9010 9011 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 9012 const char *startSpecifier, unsigned specifierLen, 9013 const TargetInfo &Target) override; 9014 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 9015 const char *StartSpecifier, 9016 unsigned SpecifierLen, 9017 const Expr *E); 9018 9019 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 9020 const char *startSpecifier, unsigned specifierLen); 9021 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 9022 const analyze_printf::OptionalAmount &Amt, 9023 unsigned type, 9024 const char *startSpecifier, unsigned specifierLen); 9025 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 9026 const analyze_printf::OptionalFlag &flag, 9027 const char *startSpecifier, unsigned specifierLen); 9028 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 9029 const analyze_printf::OptionalFlag &ignoredFlag, 9030 const analyze_printf::OptionalFlag &flag, 9031 const char *startSpecifier, unsigned specifierLen); 9032 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 9033 const Expr *E); 9034 9035 void HandleEmptyObjCModifierFlag(const char *startFlag, 9036 unsigned flagLen) override; 9037 9038 void HandleInvalidObjCModifierFlag(const char *startFlag, 9039 unsigned flagLen) override; 9040 9041 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 9042 const char *flagsEnd, 9043 const char *conversionPosition) 9044 override; 9045 }; 9046 9047 } // namespace 9048 9049 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 9050 const analyze_printf::PrintfSpecifier &FS, 9051 const char *startSpecifier, 9052 unsigned specifierLen) { 9053 const analyze_printf::PrintfConversionSpecifier &CS = 9054 FS.getConversionSpecifier(); 9055 9056 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 9057 getLocationOfByte(CS.getStart()), 9058 startSpecifier, specifierLen, 9059 CS.getStart(), CS.getLength()); 9060 } 9061 9062 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 9063 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 9064 } 9065 9066 bool CheckPrintfHandler::HandleAmount( 9067 const analyze_format_string::OptionalAmount &Amt, 9068 unsigned k, const char *startSpecifier, 9069 unsigned specifierLen) { 9070 if (Amt.hasDataArgument()) { 9071 if (!HasVAListArg) { 9072 unsigned argIndex = Amt.getArgIndex(); 9073 if (argIndex >= NumDataArgs) { 9074 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 9075 << k, 9076 getLocationOfByte(Amt.getStart()), 9077 /*IsStringLocation*/true, 9078 getSpecifierRange(startSpecifier, specifierLen)); 9079 // Don't do any more checking. We will just emit 9080 // spurious errors. 9081 return false; 9082 } 9083 9084 // Type check the data argument. It should be an 'int'. 9085 // Although not in conformance with C99, we also allow the argument to be 9086 // an 'unsigned int' as that is a reasonably safe case. GCC also 9087 // doesn't emit a warning for that case. 9088 CoveredArgs.set(argIndex); 9089 const Expr *Arg = getDataArg(argIndex); 9090 if (!Arg) 9091 return false; 9092 9093 QualType T = Arg->getType(); 9094 9095 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 9096 assert(AT.isValid()); 9097 9098 if (!AT.matchesType(S.Context, T)) { 9099 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 9100 << k << AT.getRepresentativeTypeName(S.Context) 9101 << T << Arg->getSourceRange(), 9102 getLocationOfByte(Amt.getStart()), 9103 /*IsStringLocation*/true, 9104 getSpecifierRange(startSpecifier, specifierLen)); 9105 // Don't do any more checking. We will just emit 9106 // spurious errors. 9107 return false; 9108 } 9109 } 9110 } 9111 return true; 9112 } 9113 9114 void CheckPrintfHandler::HandleInvalidAmount( 9115 const analyze_printf::PrintfSpecifier &FS, 9116 const analyze_printf::OptionalAmount &Amt, 9117 unsigned type, 9118 const char *startSpecifier, 9119 unsigned specifierLen) { 9120 const analyze_printf::PrintfConversionSpecifier &CS = 9121 FS.getConversionSpecifier(); 9122 9123 FixItHint fixit = 9124 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 9125 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 9126 Amt.getConstantLength())) 9127 : FixItHint(); 9128 9129 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 9130 << type << CS.toString(), 9131 getLocationOfByte(Amt.getStart()), 9132 /*IsStringLocation*/true, 9133 getSpecifierRange(startSpecifier, specifierLen), 9134 fixit); 9135 } 9136 9137 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 9138 const analyze_printf::OptionalFlag &flag, 9139 const char *startSpecifier, 9140 unsigned specifierLen) { 9141 // Warn about pointless flag with a fixit removal. 9142 const analyze_printf::PrintfConversionSpecifier &CS = 9143 FS.getConversionSpecifier(); 9144 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 9145 << flag.toString() << CS.toString(), 9146 getLocationOfByte(flag.getPosition()), 9147 /*IsStringLocation*/true, 9148 getSpecifierRange(startSpecifier, specifierLen), 9149 FixItHint::CreateRemoval( 9150 getSpecifierRange(flag.getPosition(), 1))); 9151 } 9152 9153 void CheckPrintfHandler::HandleIgnoredFlag( 9154 const analyze_printf::PrintfSpecifier &FS, 9155 const analyze_printf::OptionalFlag &ignoredFlag, 9156 const analyze_printf::OptionalFlag &flag, 9157 const char *startSpecifier, 9158 unsigned specifierLen) { 9159 // Warn about ignored flag with a fixit removal. 9160 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 9161 << ignoredFlag.toString() << flag.toString(), 9162 getLocationOfByte(ignoredFlag.getPosition()), 9163 /*IsStringLocation*/true, 9164 getSpecifierRange(startSpecifier, specifierLen), 9165 FixItHint::CreateRemoval( 9166 getSpecifierRange(ignoredFlag.getPosition(), 1))); 9167 } 9168 9169 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 9170 unsigned flagLen) { 9171 // Warn about an empty flag. 9172 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 9173 getLocationOfByte(startFlag), 9174 /*IsStringLocation*/true, 9175 getSpecifierRange(startFlag, flagLen)); 9176 } 9177 9178 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 9179 unsigned flagLen) { 9180 // Warn about an invalid flag. 9181 auto Range = getSpecifierRange(startFlag, flagLen); 9182 StringRef flag(startFlag, flagLen); 9183 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 9184 getLocationOfByte(startFlag), 9185 /*IsStringLocation*/true, 9186 Range, FixItHint::CreateRemoval(Range)); 9187 } 9188 9189 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 9190 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 9191 // Warn about using '[...]' without a '@' conversion. 9192 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 9193 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 9194 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 9195 getLocationOfByte(conversionPosition), 9196 /*IsStringLocation*/true, 9197 Range, FixItHint::CreateRemoval(Range)); 9198 } 9199 9200 // Determines if the specified is a C++ class or struct containing 9201 // a member with the specified name and kind (e.g. a CXXMethodDecl named 9202 // "c_str()"). 9203 template<typename MemberKind> 9204 static llvm::SmallPtrSet<MemberKind*, 1> 9205 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 9206 const RecordType *RT = Ty->getAs<RecordType>(); 9207 llvm::SmallPtrSet<MemberKind*, 1> Results; 9208 9209 if (!RT) 9210 return Results; 9211 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 9212 if (!RD || !RD->getDefinition()) 9213 return Results; 9214 9215 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 9216 Sema::LookupMemberName); 9217 R.suppressDiagnostics(); 9218 9219 // We just need to include all members of the right kind turned up by the 9220 // filter, at this point. 9221 if (S.LookupQualifiedName(R, RT->getDecl())) 9222 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 9223 NamedDecl *decl = (*I)->getUnderlyingDecl(); 9224 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 9225 Results.insert(FK); 9226 } 9227 return Results; 9228 } 9229 9230 /// Check if we could call '.c_str()' on an object. 9231 /// 9232 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 9233 /// allow the call, or if it would be ambiguous). 9234 bool Sema::hasCStrMethod(const Expr *E) { 9235 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 9236 9237 MethodSet Results = 9238 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 9239 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 9240 MI != ME; ++MI) 9241 if ((*MI)->getMinRequiredArguments() == 0) 9242 return true; 9243 return false; 9244 } 9245 9246 // Check if a (w)string was passed when a (w)char* was needed, and offer a 9247 // better diagnostic if so. AT is assumed to be valid. 9248 // Returns true when a c_str() conversion method is found. 9249 bool CheckPrintfHandler::checkForCStrMembers( 9250 const analyze_printf::ArgType &AT, const Expr *E) { 9251 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 9252 9253 MethodSet Results = 9254 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 9255 9256 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 9257 MI != ME; ++MI) { 9258 const CXXMethodDecl *Method = *MI; 9259 if (Method->getMinRequiredArguments() == 0 && 9260 AT.matchesType(S.Context, Method->getReturnType())) { 9261 // FIXME: Suggest parens if the expression needs them. 9262 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 9263 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 9264 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 9265 return true; 9266 } 9267 } 9268 9269 return false; 9270 } 9271 9272 bool CheckPrintfHandler::HandlePrintfSpecifier( 9273 const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, 9274 unsigned specifierLen, const TargetInfo &Target) { 9275 using namespace analyze_format_string; 9276 using namespace analyze_printf; 9277 9278 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 9279 9280 if (FS.consumesDataArgument()) { 9281 if (atFirstArg) { 9282 atFirstArg = false; 9283 usesPositionalArgs = FS.usesPositionalArg(); 9284 } 9285 else if (usesPositionalArgs != FS.usesPositionalArg()) { 9286 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 9287 startSpecifier, specifierLen); 9288 return false; 9289 } 9290 } 9291 9292 // First check if the field width, precision, and conversion specifier 9293 // have matching data arguments. 9294 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 9295 startSpecifier, specifierLen)) { 9296 return false; 9297 } 9298 9299 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 9300 startSpecifier, specifierLen)) { 9301 return false; 9302 } 9303 9304 if (!CS.consumesDataArgument()) { 9305 // FIXME: Technically specifying a precision or field width here 9306 // makes no sense. Worth issuing a warning at some point. 9307 return true; 9308 } 9309 9310 // Consume the argument. 9311 unsigned argIndex = FS.getArgIndex(); 9312 if (argIndex < NumDataArgs) { 9313 // The check to see if the argIndex is valid will come later. 9314 // We set the bit here because we may exit early from this 9315 // function if we encounter some other error. 9316 CoveredArgs.set(argIndex); 9317 } 9318 9319 // FreeBSD kernel extensions. 9320 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 9321 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 9322 // We need at least two arguments. 9323 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 9324 return false; 9325 9326 // Claim the second argument. 9327 CoveredArgs.set(argIndex + 1); 9328 9329 // Type check the first argument (int for %b, pointer for %D) 9330 const Expr *Ex = getDataArg(argIndex); 9331 const analyze_printf::ArgType &AT = 9332 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 9333 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 9334 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 9335 EmitFormatDiagnostic( 9336 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 9337 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 9338 << false << Ex->getSourceRange(), 9339 Ex->getBeginLoc(), /*IsStringLocation*/ false, 9340 getSpecifierRange(startSpecifier, specifierLen)); 9341 9342 // Type check the second argument (char * for both %b and %D) 9343 Ex = getDataArg(argIndex + 1); 9344 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 9345 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 9346 EmitFormatDiagnostic( 9347 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 9348 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 9349 << false << Ex->getSourceRange(), 9350 Ex->getBeginLoc(), /*IsStringLocation*/ false, 9351 getSpecifierRange(startSpecifier, specifierLen)); 9352 9353 return true; 9354 } 9355 9356 // Check for using an Objective-C specific conversion specifier 9357 // in a non-ObjC literal. 9358 if (!allowsObjCArg() && CS.isObjCArg()) { 9359 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 9360 specifierLen); 9361 } 9362 9363 // %P can only be used with os_log. 9364 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 9365 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 9366 specifierLen); 9367 } 9368 9369 // %n is not allowed with os_log. 9370 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 9371 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 9372 getLocationOfByte(CS.getStart()), 9373 /*IsStringLocation*/ false, 9374 getSpecifierRange(startSpecifier, specifierLen)); 9375 9376 return true; 9377 } 9378 9379 // Only scalars are allowed for os_trace. 9380 if (FSType == Sema::FST_OSTrace && 9381 (CS.getKind() == ConversionSpecifier::PArg || 9382 CS.getKind() == ConversionSpecifier::sArg || 9383 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 9384 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 9385 specifierLen); 9386 } 9387 9388 // Check for use of public/private annotation outside of os_log(). 9389 if (FSType != Sema::FST_OSLog) { 9390 if (FS.isPublic().isSet()) { 9391 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 9392 << "public", 9393 getLocationOfByte(FS.isPublic().getPosition()), 9394 /*IsStringLocation*/ false, 9395 getSpecifierRange(startSpecifier, specifierLen)); 9396 } 9397 if (FS.isPrivate().isSet()) { 9398 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 9399 << "private", 9400 getLocationOfByte(FS.isPrivate().getPosition()), 9401 /*IsStringLocation*/ false, 9402 getSpecifierRange(startSpecifier, specifierLen)); 9403 } 9404 } 9405 9406 const llvm::Triple &Triple = Target.getTriple(); 9407 if (CS.getKind() == ConversionSpecifier::nArg && 9408 (Triple.isAndroid() || Triple.isOSFuchsia())) { 9409 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported), 9410 getLocationOfByte(CS.getStart()), 9411 /*IsStringLocation*/ false, 9412 getSpecifierRange(startSpecifier, specifierLen)); 9413 } 9414 9415 // Check for invalid use of field width 9416 if (!FS.hasValidFieldWidth()) { 9417 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 9418 startSpecifier, specifierLen); 9419 } 9420 9421 // Check for invalid use of precision 9422 if (!FS.hasValidPrecision()) { 9423 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 9424 startSpecifier, specifierLen); 9425 } 9426 9427 // Precision is mandatory for %P specifier. 9428 if (CS.getKind() == ConversionSpecifier::PArg && 9429 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 9430 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 9431 getLocationOfByte(startSpecifier), 9432 /*IsStringLocation*/ false, 9433 getSpecifierRange(startSpecifier, specifierLen)); 9434 } 9435 9436 // Check each flag does not conflict with any other component. 9437 if (!FS.hasValidThousandsGroupingPrefix()) 9438 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 9439 if (!FS.hasValidLeadingZeros()) 9440 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 9441 if (!FS.hasValidPlusPrefix()) 9442 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 9443 if (!FS.hasValidSpacePrefix()) 9444 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 9445 if (!FS.hasValidAlternativeForm()) 9446 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 9447 if (!FS.hasValidLeftJustified()) 9448 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 9449 9450 // Check that flags are not ignored by another flag 9451 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 9452 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 9453 startSpecifier, specifierLen); 9454 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 9455 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 9456 startSpecifier, specifierLen); 9457 9458 // Check the length modifier is valid with the given conversion specifier. 9459 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 9460 S.getLangOpts())) 9461 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9462 diag::warn_format_nonsensical_length); 9463 else if (!FS.hasStandardLengthModifier()) 9464 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 9465 else if (!FS.hasStandardLengthConversionCombination()) 9466 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9467 diag::warn_format_non_standard_conversion_spec); 9468 9469 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 9470 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 9471 9472 // The remaining checks depend on the data arguments. 9473 if (HasVAListArg) 9474 return true; 9475 9476 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 9477 return false; 9478 9479 const Expr *Arg = getDataArg(argIndex); 9480 if (!Arg) 9481 return true; 9482 9483 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 9484 } 9485 9486 static bool requiresParensToAddCast(const Expr *E) { 9487 // FIXME: We should have a general way to reason about operator 9488 // precedence and whether parens are actually needed here. 9489 // Take care of a few common cases where they aren't. 9490 const Expr *Inside = E->IgnoreImpCasts(); 9491 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 9492 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 9493 9494 switch (Inside->getStmtClass()) { 9495 case Stmt::ArraySubscriptExprClass: 9496 case Stmt::CallExprClass: 9497 case Stmt::CharacterLiteralClass: 9498 case Stmt::CXXBoolLiteralExprClass: 9499 case Stmt::DeclRefExprClass: 9500 case Stmt::FloatingLiteralClass: 9501 case Stmt::IntegerLiteralClass: 9502 case Stmt::MemberExprClass: 9503 case Stmt::ObjCArrayLiteralClass: 9504 case Stmt::ObjCBoolLiteralExprClass: 9505 case Stmt::ObjCBoxedExprClass: 9506 case Stmt::ObjCDictionaryLiteralClass: 9507 case Stmt::ObjCEncodeExprClass: 9508 case Stmt::ObjCIvarRefExprClass: 9509 case Stmt::ObjCMessageExprClass: 9510 case Stmt::ObjCPropertyRefExprClass: 9511 case Stmt::ObjCStringLiteralClass: 9512 case Stmt::ObjCSubscriptRefExprClass: 9513 case Stmt::ParenExprClass: 9514 case Stmt::StringLiteralClass: 9515 case Stmt::UnaryOperatorClass: 9516 return false; 9517 default: 9518 return true; 9519 } 9520 } 9521 9522 static std::pair<QualType, StringRef> 9523 shouldNotPrintDirectly(const ASTContext &Context, 9524 QualType IntendedTy, 9525 const Expr *E) { 9526 // Use a 'while' to peel off layers of typedefs. 9527 QualType TyTy = IntendedTy; 9528 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 9529 StringRef Name = UserTy->getDecl()->getName(); 9530 QualType CastTy = llvm::StringSwitch<QualType>(Name) 9531 .Case("CFIndex", Context.getNSIntegerType()) 9532 .Case("NSInteger", Context.getNSIntegerType()) 9533 .Case("NSUInteger", Context.getNSUIntegerType()) 9534 .Case("SInt32", Context.IntTy) 9535 .Case("UInt32", Context.UnsignedIntTy) 9536 .Default(QualType()); 9537 9538 if (!CastTy.isNull()) 9539 return std::make_pair(CastTy, Name); 9540 9541 TyTy = UserTy->desugar(); 9542 } 9543 9544 // Strip parens if necessary. 9545 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 9546 return shouldNotPrintDirectly(Context, 9547 PE->getSubExpr()->getType(), 9548 PE->getSubExpr()); 9549 9550 // If this is a conditional expression, then its result type is constructed 9551 // via usual arithmetic conversions and thus there might be no necessary 9552 // typedef sugar there. Recurse to operands to check for NSInteger & 9553 // Co. usage condition. 9554 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 9555 QualType TrueTy, FalseTy; 9556 StringRef TrueName, FalseName; 9557 9558 std::tie(TrueTy, TrueName) = 9559 shouldNotPrintDirectly(Context, 9560 CO->getTrueExpr()->getType(), 9561 CO->getTrueExpr()); 9562 std::tie(FalseTy, FalseName) = 9563 shouldNotPrintDirectly(Context, 9564 CO->getFalseExpr()->getType(), 9565 CO->getFalseExpr()); 9566 9567 if (TrueTy == FalseTy) 9568 return std::make_pair(TrueTy, TrueName); 9569 else if (TrueTy.isNull()) 9570 return std::make_pair(FalseTy, FalseName); 9571 else if (FalseTy.isNull()) 9572 return std::make_pair(TrueTy, TrueName); 9573 } 9574 9575 return std::make_pair(QualType(), StringRef()); 9576 } 9577 9578 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 9579 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 9580 /// type do not count. 9581 static bool 9582 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 9583 QualType From = ICE->getSubExpr()->getType(); 9584 QualType To = ICE->getType(); 9585 // It's an integer promotion if the destination type is the promoted 9586 // source type. 9587 if (ICE->getCastKind() == CK_IntegralCast && 9588 From->isPromotableIntegerType() && 9589 S.Context.getPromotedIntegerType(From) == To) 9590 return true; 9591 // Look through vector types, since we do default argument promotion for 9592 // those in OpenCL. 9593 if (const auto *VecTy = From->getAs<ExtVectorType>()) 9594 From = VecTy->getElementType(); 9595 if (const auto *VecTy = To->getAs<ExtVectorType>()) 9596 To = VecTy->getElementType(); 9597 // It's a floating promotion if the source type is a lower rank. 9598 return ICE->getCastKind() == CK_FloatingCast && 9599 S.Context.getFloatingTypeOrder(From, To) < 0; 9600 } 9601 9602 bool 9603 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 9604 const char *StartSpecifier, 9605 unsigned SpecifierLen, 9606 const Expr *E) { 9607 using namespace analyze_format_string; 9608 using namespace analyze_printf; 9609 9610 // Now type check the data expression that matches the 9611 // format specifier. 9612 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 9613 if (!AT.isValid()) 9614 return true; 9615 9616 QualType ExprTy = E->getType(); 9617 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 9618 ExprTy = TET->getUnderlyingExpr()->getType(); 9619 } 9620 9621 // Diagnose attempts to print a boolean value as a character. Unlike other 9622 // -Wformat diagnostics, this is fine from a type perspective, but it still 9623 // doesn't make sense. 9624 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 9625 E->isKnownToHaveBooleanValue()) { 9626 const CharSourceRange &CSR = 9627 getSpecifierRange(StartSpecifier, SpecifierLen); 9628 SmallString<4> FSString; 9629 llvm::raw_svector_ostream os(FSString); 9630 FS.toString(os); 9631 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 9632 << FSString, 9633 E->getExprLoc(), false, CSR); 9634 return true; 9635 } 9636 9637 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 9638 if (Match == analyze_printf::ArgType::Match) 9639 return true; 9640 9641 // Look through argument promotions for our error message's reported type. 9642 // This includes the integral and floating promotions, but excludes array 9643 // and function pointer decay (seeing that an argument intended to be a 9644 // string has type 'char [6]' is probably more confusing than 'char *') and 9645 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 9646 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 9647 if (isArithmeticArgumentPromotion(S, ICE)) { 9648 E = ICE->getSubExpr(); 9649 ExprTy = E->getType(); 9650 9651 // Check if we didn't match because of an implicit cast from a 'char' 9652 // or 'short' to an 'int'. This is done because printf is a varargs 9653 // function. 9654 if (ICE->getType() == S.Context.IntTy || 9655 ICE->getType() == S.Context.UnsignedIntTy) { 9656 // All further checking is done on the subexpression 9657 const analyze_printf::ArgType::MatchKind ImplicitMatch = 9658 AT.matchesType(S.Context, ExprTy); 9659 if (ImplicitMatch == analyze_printf::ArgType::Match) 9660 return true; 9661 if (ImplicitMatch == ArgType::NoMatchPedantic || 9662 ImplicitMatch == ArgType::NoMatchTypeConfusion) 9663 Match = ImplicitMatch; 9664 } 9665 } 9666 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 9667 // Special case for 'a', which has type 'int' in C. 9668 // Note, however, that we do /not/ want to treat multibyte constants like 9669 // 'MooV' as characters! This form is deprecated but still exists. In 9670 // addition, don't treat expressions as of type 'char' if one byte length 9671 // modifier is provided. 9672 if (ExprTy == S.Context.IntTy && 9673 FS.getLengthModifier().getKind() != LengthModifier::AsChar) 9674 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 9675 ExprTy = S.Context.CharTy; 9676 } 9677 9678 // Look through enums to their underlying type. 9679 bool IsEnum = false; 9680 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 9681 ExprTy = EnumTy->getDecl()->getIntegerType(); 9682 IsEnum = true; 9683 } 9684 9685 // %C in an Objective-C context prints a unichar, not a wchar_t. 9686 // If the argument is an integer of some kind, believe the %C and suggest 9687 // a cast instead of changing the conversion specifier. 9688 QualType IntendedTy = ExprTy; 9689 if (isObjCContext() && 9690 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 9691 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 9692 !ExprTy->isCharType()) { 9693 // 'unichar' is defined as a typedef of unsigned short, but we should 9694 // prefer using the typedef if it is visible. 9695 IntendedTy = S.Context.UnsignedShortTy; 9696 9697 // While we are here, check if the value is an IntegerLiteral that happens 9698 // to be within the valid range. 9699 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 9700 const llvm::APInt &V = IL->getValue(); 9701 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 9702 return true; 9703 } 9704 9705 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 9706 Sema::LookupOrdinaryName); 9707 if (S.LookupName(Result, S.getCurScope())) { 9708 NamedDecl *ND = Result.getFoundDecl(); 9709 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 9710 if (TD->getUnderlyingType() == IntendedTy) 9711 IntendedTy = S.Context.getTypedefType(TD); 9712 } 9713 } 9714 } 9715 9716 // Special-case some of Darwin's platform-independence types by suggesting 9717 // casts to primitive types that are known to be large enough. 9718 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 9719 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 9720 QualType CastTy; 9721 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 9722 if (!CastTy.isNull()) { 9723 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 9724 // (long in ASTContext). Only complain to pedants. 9725 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 9726 (AT.isSizeT() || AT.isPtrdiffT()) && 9727 AT.matchesType(S.Context, CastTy)) 9728 Match = ArgType::NoMatchPedantic; 9729 IntendedTy = CastTy; 9730 ShouldNotPrintDirectly = true; 9731 } 9732 } 9733 9734 // We may be able to offer a FixItHint if it is a supported type. 9735 PrintfSpecifier fixedFS = FS; 9736 bool Success = 9737 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 9738 9739 if (Success) { 9740 // Get the fix string from the fixed format specifier 9741 SmallString<16> buf; 9742 llvm::raw_svector_ostream os(buf); 9743 fixedFS.toString(os); 9744 9745 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 9746 9747 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 9748 unsigned Diag; 9749 switch (Match) { 9750 case ArgType::Match: llvm_unreachable("expected non-matching"); 9751 case ArgType::NoMatchPedantic: 9752 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 9753 break; 9754 case ArgType::NoMatchTypeConfusion: 9755 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 9756 break; 9757 case ArgType::NoMatch: 9758 Diag = diag::warn_format_conversion_argument_type_mismatch; 9759 break; 9760 } 9761 9762 // In this case, the specifier is wrong and should be changed to match 9763 // the argument. 9764 EmitFormatDiagnostic(S.PDiag(Diag) 9765 << AT.getRepresentativeTypeName(S.Context) 9766 << IntendedTy << IsEnum << E->getSourceRange(), 9767 E->getBeginLoc(), 9768 /*IsStringLocation*/ false, SpecRange, 9769 FixItHint::CreateReplacement(SpecRange, os.str())); 9770 } else { 9771 // The canonical type for formatting this value is different from the 9772 // actual type of the expression. (This occurs, for example, with Darwin's 9773 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 9774 // should be printed as 'long' for 64-bit compatibility.) 9775 // Rather than emitting a normal format/argument mismatch, we want to 9776 // add a cast to the recommended type (and correct the format string 9777 // if necessary). 9778 SmallString<16> CastBuf; 9779 llvm::raw_svector_ostream CastFix(CastBuf); 9780 CastFix << "("; 9781 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 9782 CastFix << ")"; 9783 9784 SmallVector<FixItHint,4> Hints; 9785 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 9786 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 9787 9788 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 9789 // If there's already a cast present, just replace it. 9790 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 9791 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 9792 9793 } else if (!requiresParensToAddCast(E)) { 9794 // If the expression has high enough precedence, 9795 // just write the C-style cast. 9796 Hints.push_back( 9797 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 9798 } else { 9799 // Otherwise, add parens around the expression as well as the cast. 9800 CastFix << "("; 9801 Hints.push_back( 9802 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 9803 9804 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 9805 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 9806 } 9807 9808 if (ShouldNotPrintDirectly) { 9809 // The expression has a type that should not be printed directly. 9810 // We extract the name from the typedef because we don't want to show 9811 // the underlying type in the diagnostic. 9812 StringRef Name; 9813 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 9814 Name = TypedefTy->getDecl()->getName(); 9815 else 9816 Name = CastTyName; 9817 unsigned Diag = Match == ArgType::NoMatchPedantic 9818 ? diag::warn_format_argument_needs_cast_pedantic 9819 : diag::warn_format_argument_needs_cast; 9820 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 9821 << E->getSourceRange(), 9822 E->getBeginLoc(), /*IsStringLocation=*/false, 9823 SpecRange, Hints); 9824 } else { 9825 // In this case, the expression could be printed using a different 9826 // specifier, but we've decided that the specifier is probably correct 9827 // and we should cast instead. Just use the normal warning message. 9828 EmitFormatDiagnostic( 9829 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 9830 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 9831 << E->getSourceRange(), 9832 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 9833 } 9834 } 9835 } else { 9836 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 9837 SpecifierLen); 9838 // Since the warning for passing non-POD types to variadic functions 9839 // was deferred until now, we emit a warning for non-POD 9840 // arguments here. 9841 switch (S.isValidVarArgType(ExprTy)) { 9842 case Sema::VAK_Valid: 9843 case Sema::VAK_ValidInCXX11: { 9844 unsigned Diag; 9845 switch (Match) { 9846 case ArgType::Match: llvm_unreachable("expected non-matching"); 9847 case ArgType::NoMatchPedantic: 9848 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 9849 break; 9850 case ArgType::NoMatchTypeConfusion: 9851 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 9852 break; 9853 case ArgType::NoMatch: 9854 Diag = diag::warn_format_conversion_argument_type_mismatch; 9855 break; 9856 } 9857 9858 EmitFormatDiagnostic( 9859 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 9860 << IsEnum << CSR << E->getSourceRange(), 9861 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9862 break; 9863 } 9864 case Sema::VAK_Undefined: 9865 case Sema::VAK_MSVCUndefined: 9866 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 9867 << S.getLangOpts().CPlusPlus11 << ExprTy 9868 << CallType 9869 << AT.getRepresentativeTypeName(S.Context) << CSR 9870 << E->getSourceRange(), 9871 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9872 checkForCStrMembers(AT, E); 9873 break; 9874 9875 case Sema::VAK_Invalid: 9876 if (ExprTy->isObjCObjectType()) 9877 EmitFormatDiagnostic( 9878 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 9879 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 9880 << AT.getRepresentativeTypeName(S.Context) << CSR 9881 << E->getSourceRange(), 9882 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9883 else 9884 // FIXME: If this is an initializer list, suggest removing the braces 9885 // or inserting a cast to the target type. 9886 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 9887 << isa<InitListExpr>(E) << ExprTy << CallType 9888 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 9889 break; 9890 } 9891 9892 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 9893 "format string specifier index out of range"); 9894 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 9895 } 9896 9897 return true; 9898 } 9899 9900 //===--- CHECK: Scanf format string checking ------------------------------===// 9901 9902 namespace { 9903 9904 class CheckScanfHandler : public CheckFormatHandler { 9905 public: 9906 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 9907 const Expr *origFormatExpr, Sema::FormatStringType type, 9908 unsigned firstDataArg, unsigned numDataArgs, 9909 const char *beg, bool hasVAListArg, 9910 ArrayRef<const Expr *> Args, unsigned formatIdx, 9911 bool inFunctionCall, Sema::VariadicCallType CallType, 9912 llvm::SmallBitVector &CheckedVarArgs, 9913 UncoveredArgHandler &UncoveredArg) 9914 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 9915 numDataArgs, beg, hasVAListArg, Args, formatIdx, 9916 inFunctionCall, CallType, CheckedVarArgs, 9917 UncoveredArg) {} 9918 9919 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 9920 const char *startSpecifier, 9921 unsigned specifierLen) override; 9922 9923 bool HandleInvalidScanfConversionSpecifier( 9924 const analyze_scanf::ScanfSpecifier &FS, 9925 const char *startSpecifier, 9926 unsigned specifierLen) override; 9927 9928 void HandleIncompleteScanList(const char *start, const char *end) override; 9929 }; 9930 9931 } // namespace 9932 9933 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 9934 const char *end) { 9935 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 9936 getLocationOfByte(end), /*IsStringLocation*/true, 9937 getSpecifierRange(start, end - start)); 9938 } 9939 9940 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 9941 const analyze_scanf::ScanfSpecifier &FS, 9942 const char *startSpecifier, 9943 unsigned specifierLen) { 9944 const analyze_scanf::ScanfConversionSpecifier &CS = 9945 FS.getConversionSpecifier(); 9946 9947 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 9948 getLocationOfByte(CS.getStart()), 9949 startSpecifier, specifierLen, 9950 CS.getStart(), CS.getLength()); 9951 } 9952 9953 bool CheckScanfHandler::HandleScanfSpecifier( 9954 const analyze_scanf::ScanfSpecifier &FS, 9955 const char *startSpecifier, 9956 unsigned specifierLen) { 9957 using namespace analyze_scanf; 9958 using namespace analyze_format_string; 9959 9960 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 9961 9962 // Handle case where '%' and '*' don't consume an argument. These shouldn't 9963 // be used to decide if we are using positional arguments consistently. 9964 if (FS.consumesDataArgument()) { 9965 if (atFirstArg) { 9966 atFirstArg = false; 9967 usesPositionalArgs = FS.usesPositionalArg(); 9968 } 9969 else if (usesPositionalArgs != FS.usesPositionalArg()) { 9970 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 9971 startSpecifier, specifierLen); 9972 return false; 9973 } 9974 } 9975 9976 // Check if the field with is non-zero. 9977 const OptionalAmount &Amt = FS.getFieldWidth(); 9978 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 9979 if (Amt.getConstantAmount() == 0) { 9980 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 9981 Amt.getConstantLength()); 9982 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 9983 getLocationOfByte(Amt.getStart()), 9984 /*IsStringLocation*/true, R, 9985 FixItHint::CreateRemoval(R)); 9986 } 9987 } 9988 9989 if (!FS.consumesDataArgument()) { 9990 // FIXME: Technically specifying a precision or field width here 9991 // makes no sense. Worth issuing a warning at some point. 9992 return true; 9993 } 9994 9995 // Consume the argument. 9996 unsigned argIndex = FS.getArgIndex(); 9997 if (argIndex < NumDataArgs) { 9998 // The check to see if the argIndex is valid will come later. 9999 // We set the bit here because we may exit early from this 10000 // function if we encounter some other error. 10001 CoveredArgs.set(argIndex); 10002 } 10003 10004 // Check the length modifier is valid with the given conversion specifier. 10005 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 10006 S.getLangOpts())) 10007 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 10008 diag::warn_format_nonsensical_length); 10009 else if (!FS.hasStandardLengthModifier()) 10010 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 10011 else if (!FS.hasStandardLengthConversionCombination()) 10012 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 10013 diag::warn_format_non_standard_conversion_spec); 10014 10015 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 10016 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 10017 10018 // The remaining checks depend on the data arguments. 10019 if (HasVAListArg) 10020 return true; 10021 10022 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 10023 return false; 10024 10025 // Check that the argument type matches the format specifier. 10026 const Expr *Ex = getDataArg(argIndex); 10027 if (!Ex) 10028 return true; 10029 10030 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 10031 10032 if (!AT.isValid()) { 10033 return true; 10034 } 10035 10036 analyze_format_string::ArgType::MatchKind Match = 10037 AT.matchesType(S.Context, Ex->getType()); 10038 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 10039 if (Match == analyze_format_string::ArgType::Match) 10040 return true; 10041 10042 ScanfSpecifier fixedFS = FS; 10043 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 10044 S.getLangOpts(), S.Context); 10045 10046 unsigned Diag = 10047 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 10048 : diag::warn_format_conversion_argument_type_mismatch; 10049 10050 if (Success) { 10051 // Get the fix string from the fixed format specifier. 10052 SmallString<128> buf; 10053 llvm::raw_svector_ostream os(buf); 10054 fixedFS.toString(os); 10055 10056 EmitFormatDiagnostic( 10057 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 10058 << Ex->getType() << false << Ex->getSourceRange(), 10059 Ex->getBeginLoc(), 10060 /*IsStringLocation*/ false, 10061 getSpecifierRange(startSpecifier, specifierLen), 10062 FixItHint::CreateReplacement( 10063 getSpecifierRange(startSpecifier, specifierLen), os.str())); 10064 } else { 10065 EmitFormatDiagnostic(S.PDiag(Diag) 10066 << AT.getRepresentativeTypeName(S.Context) 10067 << Ex->getType() << false << Ex->getSourceRange(), 10068 Ex->getBeginLoc(), 10069 /*IsStringLocation*/ false, 10070 getSpecifierRange(startSpecifier, specifierLen)); 10071 } 10072 10073 return true; 10074 } 10075 10076 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 10077 const Expr *OrigFormatExpr, 10078 ArrayRef<const Expr *> Args, 10079 bool HasVAListArg, unsigned format_idx, 10080 unsigned firstDataArg, 10081 Sema::FormatStringType Type, 10082 bool inFunctionCall, 10083 Sema::VariadicCallType CallType, 10084 llvm::SmallBitVector &CheckedVarArgs, 10085 UncoveredArgHandler &UncoveredArg, 10086 bool IgnoreStringsWithoutSpecifiers) { 10087 // CHECK: is the format string a wide literal? 10088 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 10089 CheckFormatHandler::EmitFormatDiagnostic( 10090 S, inFunctionCall, Args[format_idx], 10091 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 10092 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 10093 return; 10094 } 10095 10096 // Str - The format string. NOTE: this is NOT null-terminated! 10097 StringRef StrRef = FExpr->getString(); 10098 const char *Str = StrRef.data(); 10099 // Account for cases where the string literal is truncated in a declaration. 10100 const ConstantArrayType *T = 10101 S.Context.getAsConstantArrayType(FExpr->getType()); 10102 assert(T && "String literal not of constant array type!"); 10103 size_t TypeSize = T->getSize().getZExtValue(); 10104 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 10105 const unsigned numDataArgs = Args.size() - firstDataArg; 10106 10107 if (IgnoreStringsWithoutSpecifiers && 10108 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 10109 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 10110 return; 10111 10112 // Emit a warning if the string literal is truncated and does not contain an 10113 // embedded null character. 10114 if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) { 10115 CheckFormatHandler::EmitFormatDiagnostic( 10116 S, inFunctionCall, Args[format_idx], 10117 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 10118 FExpr->getBeginLoc(), 10119 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 10120 return; 10121 } 10122 10123 // CHECK: empty format string? 10124 if (StrLen == 0 && numDataArgs > 0) { 10125 CheckFormatHandler::EmitFormatDiagnostic( 10126 S, inFunctionCall, Args[format_idx], 10127 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 10128 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 10129 return; 10130 } 10131 10132 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 10133 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 10134 Type == Sema::FST_OSTrace) { 10135 CheckPrintfHandler H( 10136 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 10137 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 10138 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 10139 CheckedVarArgs, UncoveredArg); 10140 10141 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 10142 S.getLangOpts(), 10143 S.Context.getTargetInfo(), 10144 Type == Sema::FST_FreeBSDKPrintf)) 10145 H.DoneProcessing(); 10146 } else if (Type == Sema::FST_Scanf) { 10147 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 10148 numDataArgs, Str, HasVAListArg, Args, format_idx, 10149 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 10150 10151 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 10152 S.getLangOpts(), 10153 S.Context.getTargetInfo())) 10154 H.DoneProcessing(); 10155 } // TODO: handle other formats 10156 } 10157 10158 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 10159 // Str - The format string. NOTE: this is NOT null-terminated! 10160 StringRef StrRef = FExpr->getString(); 10161 const char *Str = StrRef.data(); 10162 // Account for cases where the string literal is truncated in a declaration. 10163 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 10164 assert(T && "String literal not of constant array type!"); 10165 size_t TypeSize = T->getSize().getZExtValue(); 10166 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 10167 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 10168 getLangOpts(), 10169 Context.getTargetInfo()); 10170 } 10171 10172 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 10173 10174 // Returns the related absolute value function that is larger, of 0 if one 10175 // does not exist. 10176 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 10177 switch (AbsFunction) { 10178 default: 10179 return 0; 10180 10181 case Builtin::BI__builtin_abs: 10182 return Builtin::BI__builtin_labs; 10183 case Builtin::BI__builtin_labs: 10184 return Builtin::BI__builtin_llabs; 10185 case Builtin::BI__builtin_llabs: 10186 return 0; 10187 10188 case Builtin::BI__builtin_fabsf: 10189 return Builtin::BI__builtin_fabs; 10190 case Builtin::BI__builtin_fabs: 10191 return Builtin::BI__builtin_fabsl; 10192 case Builtin::BI__builtin_fabsl: 10193 return 0; 10194 10195 case Builtin::BI__builtin_cabsf: 10196 return Builtin::BI__builtin_cabs; 10197 case Builtin::BI__builtin_cabs: 10198 return Builtin::BI__builtin_cabsl; 10199 case Builtin::BI__builtin_cabsl: 10200 return 0; 10201 10202 case Builtin::BIabs: 10203 return Builtin::BIlabs; 10204 case Builtin::BIlabs: 10205 return Builtin::BIllabs; 10206 case Builtin::BIllabs: 10207 return 0; 10208 10209 case Builtin::BIfabsf: 10210 return Builtin::BIfabs; 10211 case Builtin::BIfabs: 10212 return Builtin::BIfabsl; 10213 case Builtin::BIfabsl: 10214 return 0; 10215 10216 case Builtin::BIcabsf: 10217 return Builtin::BIcabs; 10218 case Builtin::BIcabs: 10219 return Builtin::BIcabsl; 10220 case Builtin::BIcabsl: 10221 return 0; 10222 } 10223 } 10224 10225 // Returns the argument type of the absolute value function. 10226 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 10227 unsigned AbsType) { 10228 if (AbsType == 0) 10229 return QualType(); 10230 10231 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 10232 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 10233 if (Error != ASTContext::GE_None) 10234 return QualType(); 10235 10236 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 10237 if (!FT) 10238 return QualType(); 10239 10240 if (FT->getNumParams() != 1) 10241 return QualType(); 10242 10243 return FT->getParamType(0); 10244 } 10245 10246 // Returns the best absolute value function, or zero, based on type and 10247 // current absolute value function. 10248 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 10249 unsigned AbsFunctionKind) { 10250 unsigned BestKind = 0; 10251 uint64_t ArgSize = Context.getTypeSize(ArgType); 10252 for (unsigned Kind = AbsFunctionKind; Kind != 0; 10253 Kind = getLargerAbsoluteValueFunction(Kind)) { 10254 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 10255 if (Context.getTypeSize(ParamType) >= ArgSize) { 10256 if (BestKind == 0) 10257 BestKind = Kind; 10258 else if (Context.hasSameType(ParamType, ArgType)) { 10259 BestKind = Kind; 10260 break; 10261 } 10262 } 10263 } 10264 return BestKind; 10265 } 10266 10267 enum AbsoluteValueKind { 10268 AVK_Integer, 10269 AVK_Floating, 10270 AVK_Complex 10271 }; 10272 10273 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 10274 if (T->isIntegralOrEnumerationType()) 10275 return AVK_Integer; 10276 if (T->isRealFloatingType()) 10277 return AVK_Floating; 10278 if (T->isAnyComplexType()) 10279 return AVK_Complex; 10280 10281 llvm_unreachable("Type not integer, floating, or complex"); 10282 } 10283 10284 // Changes the absolute value function to a different type. Preserves whether 10285 // the function is a builtin. 10286 static unsigned changeAbsFunction(unsigned AbsKind, 10287 AbsoluteValueKind ValueKind) { 10288 switch (ValueKind) { 10289 case AVK_Integer: 10290 switch (AbsKind) { 10291 default: 10292 return 0; 10293 case Builtin::BI__builtin_fabsf: 10294 case Builtin::BI__builtin_fabs: 10295 case Builtin::BI__builtin_fabsl: 10296 case Builtin::BI__builtin_cabsf: 10297 case Builtin::BI__builtin_cabs: 10298 case Builtin::BI__builtin_cabsl: 10299 return Builtin::BI__builtin_abs; 10300 case Builtin::BIfabsf: 10301 case Builtin::BIfabs: 10302 case Builtin::BIfabsl: 10303 case Builtin::BIcabsf: 10304 case Builtin::BIcabs: 10305 case Builtin::BIcabsl: 10306 return Builtin::BIabs; 10307 } 10308 case AVK_Floating: 10309 switch (AbsKind) { 10310 default: 10311 return 0; 10312 case Builtin::BI__builtin_abs: 10313 case Builtin::BI__builtin_labs: 10314 case Builtin::BI__builtin_llabs: 10315 case Builtin::BI__builtin_cabsf: 10316 case Builtin::BI__builtin_cabs: 10317 case Builtin::BI__builtin_cabsl: 10318 return Builtin::BI__builtin_fabsf; 10319 case Builtin::BIabs: 10320 case Builtin::BIlabs: 10321 case Builtin::BIllabs: 10322 case Builtin::BIcabsf: 10323 case Builtin::BIcabs: 10324 case Builtin::BIcabsl: 10325 return Builtin::BIfabsf; 10326 } 10327 case AVK_Complex: 10328 switch (AbsKind) { 10329 default: 10330 return 0; 10331 case Builtin::BI__builtin_abs: 10332 case Builtin::BI__builtin_labs: 10333 case Builtin::BI__builtin_llabs: 10334 case Builtin::BI__builtin_fabsf: 10335 case Builtin::BI__builtin_fabs: 10336 case Builtin::BI__builtin_fabsl: 10337 return Builtin::BI__builtin_cabsf; 10338 case Builtin::BIabs: 10339 case Builtin::BIlabs: 10340 case Builtin::BIllabs: 10341 case Builtin::BIfabsf: 10342 case Builtin::BIfabs: 10343 case Builtin::BIfabsl: 10344 return Builtin::BIcabsf; 10345 } 10346 } 10347 llvm_unreachable("Unable to convert function"); 10348 } 10349 10350 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 10351 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 10352 if (!FnInfo) 10353 return 0; 10354 10355 switch (FDecl->getBuiltinID()) { 10356 default: 10357 return 0; 10358 case Builtin::BI__builtin_abs: 10359 case Builtin::BI__builtin_fabs: 10360 case Builtin::BI__builtin_fabsf: 10361 case Builtin::BI__builtin_fabsl: 10362 case Builtin::BI__builtin_labs: 10363 case Builtin::BI__builtin_llabs: 10364 case Builtin::BI__builtin_cabs: 10365 case Builtin::BI__builtin_cabsf: 10366 case Builtin::BI__builtin_cabsl: 10367 case Builtin::BIabs: 10368 case Builtin::BIlabs: 10369 case Builtin::BIllabs: 10370 case Builtin::BIfabs: 10371 case Builtin::BIfabsf: 10372 case Builtin::BIfabsl: 10373 case Builtin::BIcabs: 10374 case Builtin::BIcabsf: 10375 case Builtin::BIcabsl: 10376 return FDecl->getBuiltinID(); 10377 } 10378 llvm_unreachable("Unknown Builtin type"); 10379 } 10380 10381 // If the replacement is valid, emit a note with replacement function. 10382 // Additionally, suggest including the proper header if not already included. 10383 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 10384 unsigned AbsKind, QualType ArgType) { 10385 bool EmitHeaderHint = true; 10386 const char *HeaderName = nullptr; 10387 const char *FunctionName = nullptr; 10388 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 10389 FunctionName = "std::abs"; 10390 if (ArgType->isIntegralOrEnumerationType()) { 10391 HeaderName = "cstdlib"; 10392 } else if (ArgType->isRealFloatingType()) { 10393 HeaderName = "cmath"; 10394 } else { 10395 llvm_unreachable("Invalid Type"); 10396 } 10397 10398 // Lookup all std::abs 10399 if (NamespaceDecl *Std = S.getStdNamespace()) { 10400 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 10401 R.suppressDiagnostics(); 10402 S.LookupQualifiedName(R, Std); 10403 10404 for (const auto *I : R) { 10405 const FunctionDecl *FDecl = nullptr; 10406 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 10407 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 10408 } else { 10409 FDecl = dyn_cast<FunctionDecl>(I); 10410 } 10411 if (!FDecl) 10412 continue; 10413 10414 // Found std::abs(), check that they are the right ones. 10415 if (FDecl->getNumParams() != 1) 10416 continue; 10417 10418 // Check that the parameter type can handle the argument. 10419 QualType ParamType = FDecl->getParamDecl(0)->getType(); 10420 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 10421 S.Context.getTypeSize(ArgType) <= 10422 S.Context.getTypeSize(ParamType)) { 10423 // Found a function, don't need the header hint. 10424 EmitHeaderHint = false; 10425 break; 10426 } 10427 } 10428 } 10429 } else { 10430 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 10431 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 10432 10433 if (HeaderName) { 10434 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 10435 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 10436 R.suppressDiagnostics(); 10437 S.LookupName(R, S.getCurScope()); 10438 10439 if (R.isSingleResult()) { 10440 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 10441 if (FD && FD->getBuiltinID() == AbsKind) { 10442 EmitHeaderHint = false; 10443 } else { 10444 return; 10445 } 10446 } else if (!R.empty()) { 10447 return; 10448 } 10449 } 10450 } 10451 10452 S.Diag(Loc, diag::note_replace_abs_function) 10453 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 10454 10455 if (!HeaderName) 10456 return; 10457 10458 if (!EmitHeaderHint) 10459 return; 10460 10461 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 10462 << FunctionName; 10463 } 10464 10465 template <std::size_t StrLen> 10466 static bool IsStdFunction(const FunctionDecl *FDecl, 10467 const char (&Str)[StrLen]) { 10468 if (!FDecl) 10469 return false; 10470 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 10471 return false; 10472 if (!FDecl->isInStdNamespace()) 10473 return false; 10474 10475 return true; 10476 } 10477 10478 // Warn when using the wrong abs() function. 10479 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 10480 const FunctionDecl *FDecl) { 10481 if (Call->getNumArgs() != 1) 10482 return; 10483 10484 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 10485 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 10486 if (AbsKind == 0 && !IsStdAbs) 10487 return; 10488 10489 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 10490 QualType ParamType = Call->getArg(0)->getType(); 10491 10492 // Unsigned types cannot be negative. Suggest removing the absolute value 10493 // function call. 10494 if (ArgType->isUnsignedIntegerType()) { 10495 const char *FunctionName = 10496 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 10497 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 10498 Diag(Call->getExprLoc(), diag::note_remove_abs) 10499 << FunctionName 10500 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 10501 return; 10502 } 10503 10504 // Taking the absolute value of a pointer is very suspicious, they probably 10505 // wanted to index into an array, dereference a pointer, call a function, etc. 10506 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 10507 unsigned DiagType = 0; 10508 if (ArgType->isFunctionType()) 10509 DiagType = 1; 10510 else if (ArgType->isArrayType()) 10511 DiagType = 2; 10512 10513 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 10514 return; 10515 } 10516 10517 // std::abs has overloads which prevent most of the absolute value problems 10518 // from occurring. 10519 if (IsStdAbs) 10520 return; 10521 10522 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 10523 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 10524 10525 // The argument and parameter are the same kind. Check if they are the right 10526 // size. 10527 if (ArgValueKind == ParamValueKind) { 10528 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 10529 return; 10530 10531 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 10532 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 10533 << FDecl << ArgType << ParamType; 10534 10535 if (NewAbsKind == 0) 10536 return; 10537 10538 emitReplacement(*this, Call->getExprLoc(), 10539 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 10540 return; 10541 } 10542 10543 // ArgValueKind != ParamValueKind 10544 // The wrong type of absolute value function was used. Attempt to find the 10545 // proper one. 10546 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 10547 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 10548 if (NewAbsKind == 0) 10549 return; 10550 10551 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 10552 << FDecl << ParamValueKind << ArgValueKind; 10553 10554 emitReplacement(*this, Call->getExprLoc(), 10555 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 10556 } 10557 10558 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 10559 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 10560 const FunctionDecl *FDecl) { 10561 if (!Call || !FDecl) return; 10562 10563 // Ignore template specializations and macros. 10564 if (inTemplateInstantiation()) return; 10565 if (Call->getExprLoc().isMacroID()) return; 10566 10567 // Only care about the one template argument, two function parameter std::max 10568 if (Call->getNumArgs() != 2) return; 10569 if (!IsStdFunction(FDecl, "max")) return; 10570 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 10571 if (!ArgList) return; 10572 if (ArgList->size() != 1) return; 10573 10574 // Check that template type argument is unsigned integer. 10575 const auto& TA = ArgList->get(0); 10576 if (TA.getKind() != TemplateArgument::Type) return; 10577 QualType ArgType = TA.getAsType(); 10578 if (!ArgType->isUnsignedIntegerType()) return; 10579 10580 // See if either argument is a literal zero. 10581 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 10582 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 10583 if (!MTE) return false; 10584 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 10585 if (!Num) return false; 10586 if (Num->getValue() != 0) return false; 10587 return true; 10588 }; 10589 10590 const Expr *FirstArg = Call->getArg(0); 10591 const Expr *SecondArg = Call->getArg(1); 10592 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 10593 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 10594 10595 // Only warn when exactly one argument is zero. 10596 if (IsFirstArgZero == IsSecondArgZero) return; 10597 10598 SourceRange FirstRange = FirstArg->getSourceRange(); 10599 SourceRange SecondRange = SecondArg->getSourceRange(); 10600 10601 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 10602 10603 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 10604 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 10605 10606 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 10607 SourceRange RemovalRange; 10608 if (IsFirstArgZero) { 10609 RemovalRange = SourceRange(FirstRange.getBegin(), 10610 SecondRange.getBegin().getLocWithOffset(-1)); 10611 } else { 10612 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 10613 SecondRange.getEnd()); 10614 } 10615 10616 Diag(Call->getExprLoc(), diag::note_remove_max_call) 10617 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 10618 << FixItHint::CreateRemoval(RemovalRange); 10619 } 10620 10621 //===--- CHECK: Standard memory functions ---------------------------------===// 10622 10623 /// Takes the expression passed to the size_t parameter of functions 10624 /// such as memcmp, strncat, etc and warns if it's a comparison. 10625 /// 10626 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 10627 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 10628 IdentifierInfo *FnName, 10629 SourceLocation FnLoc, 10630 SourceLocation RParenLoc) { 10631 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 10632 if (!Size) 10633 return false; 10634 10635 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 10636 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 10637 return false; 10638 10639 SourceRange SizeRange = Size->getSourceRange(); 10640 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 10641 << SizeRange << FnName; 10642 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 10643 << FnName 10644 << FixItHint::CreateInsertion( 10645 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 10646 << FixItHint::CreateRemoval(RParenLoc); 10647 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 10648 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 10649 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 10650 ")"); 10651 10652 return true; 10653 } 10654 10655 /// Determine whether the given type is or contains a dynamic class type 10656 /// (e.g., whether it has a vtable). 10657 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 10658 bool &IsContained) { 10659 // Look through array types while ignoring qualifiers. 10660 const Type *Ty = T->getBaseElementTypeUnsafe(); 10661 IsContained = false; 10662 10663 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 10664 RD = RD ? RD->getDefinition() : nullptr; 10665 if (!RD || RD->isInvalidDecl()) 10666 return nullptr; 10667 10668 if (RD->isDynamicClass()) 10669 return RD; 10670 10671 // Check all the fields. If any bases were dynamic, the class is dynamic. 10672 // It's impossible for a class to transitively contain itself by value, so 10673 // infinite recursion is impossible. 10674 for (auto *FD : RD->fields()) { 10675 bool SubContained; 10676 if (const CXXRecordDecl *ContainedRD = 10677 getContainedDynamicClass(FD->getType(), SubContained)) { 10678 IsContained = true; 10679 return ContainedRD; 10680 } 10681 } 10682 10683 return nullptr; 10684 } 10685 10686 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 10687 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 10688 if (Unary->getKind() == UETT_SizeOf) 10689 return Unary; 10690 return nullptr; 10691 } 10692 10693 /// If E is a sizeof expression, returns its argument expression, 10694 /// otherwise returns NULL. 10695 static const Expr *getSizeOfExprArg(const Expr *E) { 10696 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 10697 if (!SizeOf->isArgumentType()) 10698 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 10699 return nullptr; 10700 } 10701 10702 /// If E is a sizeof expression, returns its argument type. 10703 static QualType getSizeOfArgType(const Expr *E) { 10704 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 10705 return SizeOf->getTypeOfArgument(); 10706 return QualType(); 10707 } 10708 10709 namespace { 10710 10711 struct SearchNonTrivialToInitializeField 10712 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 10713 using Super = 10714 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 10715 10716 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 10717 10718 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 10719 SourceLocation SL) { 10720 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 10721 asDerived().visitArray(PDIK, AT, SL); 10722 return; 10723 } 10724 10725 Super::visitWithKind(PDIK, FT, SL); 10726 } 10727 10728 void visitARCStrong(QualType FT, SourceLocation SL) { 10729 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 10730 } 10731 void visitARCWeak(QualType FT, SourceLocation SL) { 10732 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 10733 } 10734 void visitStruct(QualType FT, SourceLocation SL) { 10735 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 10736 visit(FD->getType(), FD->getLocation()); 10737 } 10738 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 10739 const ArrayType *AT, SourceLocation SL) { 10740 visit(getContext().getBaseElementType(AT), SL); 10741 } 10742 void visitTrivial(QualType FT, SourceLocation SL) {} 10743 10744 static void diag(QualType RT, const Expr *E, Sema &S) { 10745 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 10746 } 10747 10748 ASTContext &getContext() { return S.getASTContext(); } 10749 10750 const Expr *E; 10751 Sema &S; 10752 }; 10753 10754 struct SearchNonTrivialToCopyField 10755 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 10756 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 10757 10758 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 10759 10760 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 10761 SourceLocation SL) { 10762 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 10763 asDerived().visitArray(PCK, AT, SL); 10764 return; 10765 } 10766 10767 Super::visitWithKind(PCK, FT, SL); 10768 } 10769 10770 void visitARCStrong(QualType FT, SourceLocation SL) { 10771 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 10772 } 10773 void visitARCWeak(QualType FT, SourceLocation SL) { 10774 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 10775 } 10776 void visitStruct(QualType FT, SourceLocation SL) { 10777 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 10778 visit(FD->getType(), FD->getLocation()); 10779 } 10780 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 10781 SourceLocation SL) { 10782 visit(getContext().getBaseElementType(AT), SL); 10783 } 10784 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 10785 SourceLocation SL) {} 10786 void visitTrivial(QualType FT, SourceLocation SL) {} 10787 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 10788 10789 static void diag(QualType RT, const Expr *E, Sema &S) { 10790 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 10791 } 10792 10793 ASTContext &getContext() { return S.getASTContext(); } 10794 10795 const Expr *E; 10796 Sema &S; 10797 }; 10798 10799 } 10800 10801 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 10802 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 10803 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 10804 10805 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 10806 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 10807 return false; 10808 10809 return doesExprLikelyComputeSize(BO->getLHS()) || 10810 doesExprLikelyComputeSize(BO->getRHS()); 10811 } 10812 10813 return getAsSizeOfExpr(SizeofExpr) != nullptr; 10814 } 10815 10816 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 10817 /// 10818 /// \code 10819 /// #define MACRO 0 10820 /// foo(MACRO); 10821 /// foo(0); 10822 /// \endcode 10823 /// 10824 /// This should return true for the first call to foo, but not for the second 10825 /// (regardless of whether foo is a macro or function). 10826 static bool isArgumentExpandedFromMacro(SourceManager &SM, 10827 SourceLocation CallLoc, 10828 SourceLocation ArgLoc) { 10829 if (!CallLoc.isMacroID()) 10830 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 10831 10832 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 10833 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 10834 } 10835 10836 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 10837 /// last two arguments transposed. 10838 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 10839 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 10840 return; 10841 10842 const Expr *SizeArg = 10843 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 10844 10845 auto isLiteralZero = [](const Expr *E) { 10846 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 10847 }; 10848 10849 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 10850 SourceLocation CallLoc = Call->getRParenLoc(); 10851 SourceManager &SM = S.getSourceManager(); 10852 if (isLiteralZero(SizeArg) && 10853 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 10854 10855 SourceLocation DiagLoc = SizeArg->getExprLoc(); 10856 10857 // Some platforms #define bzero to __builtin_memset. See if this is the 10858 // case, and if so, emit a better diagnostic. 10859 if (BId == Builtin::BIbzero || 10860 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 10861 CallLoc, SM, S.getLangOpts()) == "bzero")) { 10862 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 10863 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 10864 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 10865 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 10866 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 10867 } 10868 return; 10869 } 10870 10871 // If the second argument to a memset is a sizeof expression and the third 10872 // isn't, this is also likely an error. This should catch 10873 // 'memset(buf, sizeof(buf), 0xff)'. 10874 if (BId == Builtin::BImemset && 10875 doesExprLikelyComputeSize(Call->getArg(1)) && 10876 !doesExprLikelyComputeSize(Call->getArg(2))) { 10877 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 10878 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 10879 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 10880 return; 10881 } 10882 } 10883 10884 /// Check for dangerous or invalid arguments to memset(). 10885 /// 10886 /// This issues warnings on known problematic, dangerous or unspecified 10887 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 10888 /// function calls. 10889 /// 10890 /// \param Call The call expression to diagnose. 10891 void Sema::CheckMemaccessArguments(const CallExpr *Call, 10892 unsigned BId, 10893 IdentifierInfo *FnName) { 10894 assert(BId != 0); 10895 10896 // It is possible to have a non-standard definition of memset. Validate 10897 // we have enough arguments, and if not, abort further checking. 10898 unsigned ExpectedNumArgs = 10899 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 10900 if (Call->getNumArgs() < ExpectedNumArgs) 10901 return; 10902 10903 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 10904 BId == Builtin::BIstrndup ? 1 : 2); 10905 unsigned LenArg = 10906 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 10907 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 10908 10909 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 10910 Call->getBeginLoc(), Call->getRParenLoc())) 10911 return; 10912 10913 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 10914 CheckMemaccessSize(*this, BId, Call); 10915 10916 // We have special checking when the length is a sizeof expression. 10917 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 10918 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 10919 llvm::FoldingSetNodeID SizeOfArgID; 10920 10921 // Although widely used, 'bzero' is not a standard function. Be more strict 10922 // with the argument types before allowing diagnostics and only allow the 10923 // form bzero(ptr, sizeof(...)). 10924 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 10925 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 10926 return; 10927 10928 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 10929 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 10930 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 10931 10932 QualType DestTy = Dest->getType(); 10933 QualType PointeeTy; 10934 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 10935 PointeeTy = DestPtrTy->getPointeeType(); 10936 10937 // Never warn about void type pointers. This can be used to suppress 10938 // false positives. 10939 if (PointeeTy->isVoidType()) 10940 continue; 10941 10942 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 10943 // actually comparing the expressions for equality. Because computing the 10944 // expression IDs can be expensive, we only do this if the diagnostic is 10945 // enabled. 10946 if (SizeOfArg && 10947 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 10948 SizeOfArg->getExprLoc())) { 10949 // We only compute IDs for expressions if the warning is enabled, and 10950 // cache the sizeof arg's ID. 10951 if (SizeOfArgID == llvm::FoldingSetNodeID()) 10952 SizeOfArg->Profile(SizeOfArgID, Context, true); 10953 llvm::FoldingSetNodeID DestID; 10954 Dest->Profile(DestID, Context, true); 10955 if (DestID == SizeOfArgID) { 10956 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 10957 // over sizeof(src) as well. 10958 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 10959 StringRef ReadableName = FnName->getName(); 10960 10961 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 10962 if (UnaryOp->getOpcode() == UO_AddrOf) 10963 ActionIdx = 1; // If its an address-of operator, just remove it. 10964 if (!PointeeTy->isIncompleteType() && 10965 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 10966 ActionIdx = 2; // If the pointee's size is sizeof(char), 10967 // suggest an explicit length. 10968 10969 // If the function is defined as a builtin macro, do not show macro 10970 // expansion. 10971 SourceLocation SL = SizeOfArg->getExprLoc(); 10972 SourceRange DSR = Dest->getSourceRange(); 10973 SourceRange SSR = SizeOfArg->getSourceRange(); 10974 SourceManager &SM = getSourceManager(); 10975 10976 if (SM.isMacroArgExpansion(SL)) { 10977 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 10978 SL = SM.getSpellingLoc(SL); 10979 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 10980 SM.getSpellingLoc(DSR.getEnd())); 10981 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 10982 SM.getSpellingLoc(SSR.getEnd())); 10983 } 10984 10985 DiagRuntimeBehavior(SL, SizeOfArg, 10986 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 10987 << ReadableName 10988 << PointeeTy 10989 << DestTy 10990 << DSR 10991 << SSR); 10992 DiagRuntimeBehavior(SL, SizeOfArg, 10993 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 10994 << ActionIdx 10995 << SSR); 10996 10997 break; 10998 } 10999 } 11000 11001 // Also check for cases where the sizeof argument is the exact same 11002 // type as the memory argument, and where it points to a user-defined 11003 // record type. 11004 if (SizeOfArgTy != QualType()) { 11005 if (PointeeTy->isRecordType() && 11006 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 11007 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 11008 PDiag(diag::warn_sizeof_pointer_type_memaccess) 11009 << FnName << SizeOfArgTy << ArgIdx 11010 << PointeeTy << Dest->getSourceRange() 11011 << LenExpr->getSourceRange()); 11012 break; 11013 } 11014 } 11015 } else if (DestTy->isArrayType()) { 11016 PointeeTy = DestTy; 11017 } 11018 11019 if (PointeeTy == QualType()) 11020 continue; 11021 11022 // Always complain about dynamic classes. 11023 bool IsContained; 11024 if (const CXXRecordDecl *ContainedRD = 11025 getContainedDynamicClass(PointeeTy, IsContained)) { 11026 11027 unsigned OperationType = 0; 11028 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 11029 // "overwritten" if we're warning about the destination for any call 11030 // but memcmp; otherwise a verb appropriate to the call. 11031 if (ArgIdx != 0 || IsCmp) { 11032 if (BId == Builtin::BImemcpy) 11033 OperationType = 1; 11034 else if(BId == Builtin::BImemmove) 11035 OperationType = 2; 11036 else if (IsCmp) 11037 OperationType = 3; 11038 } 11039 11040 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 11041 PDiag(diag::warn_dyn_class_memaccess) 11042 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 11043 << IsContained << ContainedRD << OperationType 11044 << Call->getCallee()->getSourceRange()); 11045 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 11046 BId != Builtin::BImemset) 11047 DiagRuntimeBehavior( 11048 Dest->getExprLoc(), Dest, 11049 PDiag(diag::warn_arc_object_memaccess) 11050 << ArgIdx << FnName << PointeeTy 11051 << Call->getCallee()->getSourceRange()); 11052 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 11053 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 11054 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 11055 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 11056 PDiag(diag::warn_cstruct_memaccess) 11057 << ArgIdx << FnName << PointeeTy << 0); 11058 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 11059 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 11060 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 11061 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 11062 PDiag(diag::warn_cstruct_memaccess) 11063 << ArgIdx << FnName << PointeeTy << 1); 11064 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 11065 } else { 11066 continue; 11067 } 11068 } else 11069 continue; 11070 11071 DiagRuntimeBehavior( 11072 Dest->getExprLoc(), Dest, 11073 PDiag(diag::note_bad_memaccess_silence) 11074 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 11075 break; 11076 } 11077 } 11078 11079 // A little helper routine: ignore addition and subtraction of integer literals. 11080 // This intentionally does not ignore all integer constant expressions because 11081 // we don't want to remove sizeof(). 11082 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 11083 Ex = Ex->IgnoreParenCasts(); 11084 11085 while (true) { 11086 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 11087 if (!BO || !BO->isAdditiveOp()) 11088 break; 11089 11090 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 11091 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 11092 11093 if (isa<IntegerLiteral>(RHS)) 11094 Ex = LHS; 11095 else if (isa<IntegerLiteral>(LHS)) 11096 Ex = RHS; 11097 else 11098 break; 11099 } 11100 11101 return Ex; 11102 } 11103 11104 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 11105 ASTContext &Context) { 11106 // Only handle constant-sized or VLAs, but not flexible members. 11107 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 11108 // Only issue the FIXIT for arrays of size > 1. 11109 if (CAT->getSize().getSExtValue() <= 1) 11110 return false; 11111 } else if (!Ty->isVariableArrayType()) { 11112 return false; 11113 } 11114 return true; 11115 } 11116 11117 // Warn if the user has made the 'size' argument to strlcpy or strlcat 11118 // be the size of the source, instead of the destination. 11119 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 11120 IdentifierInfo *FnName) { 11121 11122 // Don't crash if the user has the wrong number of arguments 11123 unsigned NumArgs = Call->getNumArgs(); 11124 if ((NumArgs != 3) && (NumArgs != 4)) 11125 return; 11126 11127 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 11128 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 11129 const Expr *CompareWithSrc = nullptr; 11130 11131 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 11132 Call->getBeginLoc(), Call->getRParenLoc())) 11133 return; 11134 11135 // Look for 'strlcpy(dst, x, sizeof(x))' 11136 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 11137 CompareWithSrc = Ex; 11138 else { 11139 // Look for 'strlcpy(dst, x, strlen(x))' 11140 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 11141 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 11142 SizeCall->getNumArgs() == 1) 11143 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 11144 } 11145 } 11146 11147 if (!CompareWithSrc) 11148 return; 11149 11150 // Determine if the argument to sizeof/strlen is equal to the source 11151 // argument. In principle there's all kinds of things you could do 11152 // here, for instance creating an == expression and evaluating it with 11153 // EvaluateAsBooleanCondition, but this uses a more direct technique: 11154 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 11155 if (!SrcArgDRE) 11156 return; 11157 11158 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 11159 if (!CompareWithSrcDRE || 11160 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 11161 return; 11162 11163 const Expr *OriginalSizeArg = Call->getArg(2); 11164 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 11165 << OriginalSizeArg->getSourceRange() << FnName; 11166 11167 // Output a FIXIT hint if the destination is an array (rather than a 11168 // pointer to an array). This could be enhanced to handle some 11169 // pointers if we know the actual size, like if DstArg is 'array+2' 11170 // we could say 'sizeof(array)-2'. 11171 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 11172 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 11173 return; 11174 11175 SmallString<128> sizeString; 11176 llvm::raw_svector_ostream OS(sizeString); 11177 OS << "sizeof("; 11178 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 11179 OS << ")"; 11180 11181 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 11182 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 11183 OS.str()); 11184 } 11185 11186 /// Check if two expressions refer to the same declaration. 11187 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 11188 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 11189 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 11190 return D1->getDecl() == D2->getDecl(); 11191 return false; 11192 } 11193 11194 static const Expr *getStrlenExprArg(const Expr *E) { 11195 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 11196 const FunctionDecl *FD = CE->getDirectCallee(); 11197 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 11198 return nullptr; 11199 return CE->getArg(0)->IgnoreParenCasts(); 11200 } 11201 return nullptr; 11202 } 11203 11204 // Warn on anti-patterns as the 'size' argument to strncat. 11205 // The correct size argument should look like following: 11206 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 11207 void Sema::CheckStrncatArguments(const CallExpr *CE, 11208 IdentifierInfo *FnName) { 11209 // Don't crash if the user has the wrong number of arguments. 11210 if (CE->getNumArgs() < 3) 11211 return; 11212 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 11213 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 11214 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 11215 11216 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 11217 CE->getRParenLoc())) 11218 return; 11219 11220 // Identify common expressions, which are wrongly used as the size argument 11221 // to strncat and may lead to buffer overflows. 11222 unsigned PatternType = 0; 11223 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 11224 // - sizeof(dst) 11225 if (referToTheSameDecl(SizeOfArg, DstArg)) 11226 PatternType = 1; 11227 // - sizeof(src) 11228 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 11229 PatternType = 2; 11230 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 11231 if (BE->getOpcode() == BO_Sub) { 11232 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 11233 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 11234 // - sizeof(dst) - strlen(dst) 11235 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 11236 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 11237 PatternType = 1; 11238 // - sizeof(src) - (anything) 11239 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 11240 PatternType = 2; 11241 } 11242 } 11243 11244 if (PatternType == 0) 11245 return; 11246 11247 // Generate the diagnostic. 11248 SourceLocation SL = LenArg->getBeginLoc(); 11249 SourceRange SR = LenArg->getSourceRange(); 11250 SourceManager &SM = getSourceManager(); 11251 11252 // If the function is defined as a builtin macro, do not show macro expansion. 11253 if (SM.isMacroArgExpansion(SL)) { 11254 SL = SM.getSpellingLoc(SL); 11255 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 11256 SM.getSpellingLoc(SR.getEnd())); 11257 } 11258 11259 // Check if the destination is an array (rather than a pointer to an array). 11260 QualType DstTy = DstArg->getType(); 11261 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 11262 Context); 11263 if (!isKnownSizeArray) { 11264 if (PatternType == 1) 11265 Diag(SL, diag::warn_strncat_wrong_size) << SR; 11266 else 11267 Diag(SL, diag::warn_strncat_src_size) << SR; 11268 return; 11269 } 11270 11271 if (PatternType == 1) 11272 Diag(SL, diag::warn_strncat_large_size) << SR; 11273 else 11274 Diag(SL, diag::warn_strncat_src_size) << SR; 11275 11276 SmallString<128> sizeString; 11277 llvm::raw_svector_ostream OS(sizeString); 11278 OS << "sizeof("; 11279 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 11280 OS << ") - "; 11281 OS << "strlen("; 11282 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 11283 OS << ") - 1"; 11284 11285 Diag(SL, diag::note_strncat_wrong_size) 11286 << FixItHint::CreateReplacement(SR, OS.str()); 11287 } 11288 11289 namespace { 11290 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, 11291 const UnaryOperator *UnaryExpr, const Decl *D) { 11292 if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) { 11293 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) 11294 << CalleeName << 0 /*object: */ << cast<NamedDecl>(D); 11295 return; 11296 } 11297 } 11298 11299 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, 11300 const UnaryOperator *UnaryExpr) { 11301 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) { 11302 const Decl *D = Lvalue->getDecl(); 11303 if (isa<DeclaratorDecl>(D)) 11304 if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType()) 11305 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); 11306 } 11307 11308 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr())) 11309 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, 11310 Lvalue->getMemberDecl()); 11311 } 11312 11313 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, 11314 const UnaryOperator *UnaryExpr) { 11315 const auto *Lambda = dyn_cast<LambdaExpr>( 11316 UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); 11317 if (!Lambda) 11318 return; 11319 11320 S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object) 11321 << CalleeName << 2 /*object: lambda expression*/; 11322 } 11323 11324 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, 11325 const DeclRefExpr *Lvalue) { 11326 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()); 11327 if (Var == nullptr) 11328 return; 11329 11330 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) 11331 << CalleeName << 0 /*object: */ << Var; 11332 } 11333 11334 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, 11335 const CastExpr *Cast) { 11336 SmallString<128> SizeString; 11337 llvm::raw_svector_ostream OS(SizeString); 11338 11339 clang::CastKind Kind = Cast->getCastKind(); 11340 if (Kind == clang::CK_BitCast && 11341 !Cast->getSubExpr()->getType()->isFunctionPointerType()) 11342 return; 11343 if (Kind == clang::CK_IntegralToPointer && 11344 !isa<IntegerLiteral>( 11345 Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) 11346 return; 11347 11348 switch (Cast->getCastKind()) { 11349 case clang::CK_BitCast: 11350 case clang::CK_IntegralToPointer: 11351 case clang::CK_FunctionToPointerDecay: 11352 OS << '\''; 11353 Cast->printPretty(OS, nullptr, S.getPrintingPolicy()); 11354 OS << '\''; 11355 break; 11356 default: 11357 return; 11358 } 11359 11360 S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object) 11361 << CalleeName << 0 /*object: */ << OS.str(); 11362 } 11363 } // namespace 11364 11365 /// Alerts the user that they are attempting to free a non-malloc'd object. 11366 void Sema::CheckFreeArguments(const CallExpr *E) { 11367 const std::string CalleeName = 11368 cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString(); 11369 11370 { // Prefer something that doesn't involve a cast to make things simpler. 11371 const Expr *Arg = E->getArg(0)->IgnoreParenCasts(); 11372 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg)) 11373 switch (UnaryExpr->getOpcode()) { 11374 case UnaryOperator::Opcode::UO_AddrOf: 11375 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr); 11376 case UnaryOperator::Opcode::UO_Plus: 11377 return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr); 11378 default: 11379 break; 11380 } 11381 11382 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg)) 11383 if (Lvalue->getType()->isArrayType()) 11384 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue); 11385 11386 if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) { 11387 Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object) 11388 << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); 11389 return; 11390 } 11391 11392 if (isa<BlockExpr>(Arg)) { 11393 Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object) 11394 << CalleeName << 1 /*object: block*/; 11395 return; 11396 } 11397 } 11398 // Maybe the cast was important, check after the other cases. 11399 if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0))) 11400 return CheckFreeArgumentsCast(*this, CalleeName, Cast); 11401 } 11402 11403 void 11404 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 11405 SourceLocation ReturnLoc, 11406 bool isObjCMethod, 11407 const AttrVec *Attrs, 11408 const FunctionDecl *FD) { 11409 // Check if the return value is null but should not be. 11410 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 11411 (!isObjCMethod && isNonNullType(Context, lhsType))) && 11412 CheckNonNullExpr(*this, RetValExp)) 11413 Diag(ReturnLoc, diag::warn_null_ret) 11414 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 11415 11416 // C++11 [basic.stc.dynamic.allocation]p4: 11417 // If an allocation function declared with a non-throwing 11418 // exception-specification fails to allocate storage, it shall return 11419 // a null pointer. Any other allocation function that fails to allocate 11420 // storage shall indicate failure only by throwing an exception [...] 11421 if (FD) { 11422 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 11423 if (Op == OO_New || Op == OO_Array_New) { 11424 const FunctionProtoType *Proto 11425 = FD->getType()->castAs<FunctionProtoType>(); 11426 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 11427 CheckNonNullExpr(*this, RetValExp)) 11428 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 11429 << FD << getLangOpts().CPlusPlus11; 11430 } 11431 } 11432 11433 // PPC MMA non-pointer types are not allowed as return type. Checking the type 11434 // here prevent the user from using a PPC MMA type as trailing return type. 11435 if (Context.getTargetInfo().getTriple().isPPC64()) 11436 CheckPPCMMAType(RetValExp->getType(), ReturnLoc); 11437 } 11438 11439 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 11440 11441 /// Check for comparisons of floating point operands using != and ==. 11442 /// Issue a warning if these are no self-comparisons, as they are not likely 11443 /// to do what the programmer intended. 11444 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 11445 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 11446 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 11447 11448 // Special case: check for x == x (which is OK). 11449 // Do not emit warnings for such cases. 11450 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 11451 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 11452 if (DRL->getDecl() == DRR->getDecl()) 11453 return; 11454 11455 // Special case: check for comparisons against literals that can be exactly 11456 // represented by APFloat. In such cases, do not emit a warning. This 11457 // is a heuristic: often comparison against such literals are used to 11458 // detect if a value in a variable has not changed. This clearly can 11459 // lead to false negatives. 11460 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 11461 if (FLL->isExact()) 11462 return; 11463 } else 11464 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 11465 if (FLR->isExact()) 11466 return; 11467 11468 // Check for comparisons with builtin types. 11469 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 11470 if (CL->getBuiltinCallee()) 11471 return; 11472 11473 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 11474 if (CR->getBuiltinCallee()) 11475 return; 11476 11477 // Emit the diagnostic. 11478 Diag(Loc, diag::warn_floatingpoint_eq) 11479 << LHS->getSourceRange() << RHS->getSourceRange(); 11480 } 11481 11482 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 11483 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 11484 11485 namespace { 11486 11487 /// Structure recording the 'active' range of an integer-valued 11488 /// expression. 11489 struct IntRange { 11490 /// The number of bits active in the int. Note that this includes exactly one 11491 /// sign bit if !NonNegative. 11492 unsigned Width; 11493 11494 /// True if the int is known not to have negative values. If so, all leading 11495 /// bits before Width are known zero, otherwise they are known to be the 11496 /// same as the MSB within Width. 11497 bool NonNegative; 11498 11499 IntRange(unsigned Width, bool NonNegative) 11500 : Width(Width), NonNegative(NonNegative) {} 11501 11502 /// Number of bits excluding the sign bit. 11503 unsigned valueBits() const { 11504 return NonNegative ? Width : Width - 1; 11505 } 11506 11507 /// Returns the range of the bool type. 11508 static IntRange forBoolType() { 11509 return IntRange(1, true); 11510 } 11511 11512 /// Returns the range of an opaque value of the given integral type. 11513 static IntRange forValueOfType(ASTContext &C, QualType T) { 11514 return forValueOfCanonicalType(C, 11515 T->getCanonicalTypeInternal().getTypePtr()); 11516 } 11517 11518 /// Returns the range of an opaque value of a canonical integral type. 11519 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 11520 assert(T->isCanonicalUnqualified()); 11521 11522 if (const VectorType *VT = dyn_cast<VectorType>(T)) 11523 T = VT->getElementType().getTypePtr(); 11524 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 11525 T = CT->getElementType().getTypePtr(); 11526 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 11527 T = AT->getValueType().getTypePtr(); 11528 11529 if (!C.getLangOpts().CPlusPlus) { 11530 // For enum types in C code, use the underlying datatype. 11531 if (const EnumType *ET = dyn_cast<EnumType>(T)) 11532 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 11533 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 11534 // For enum types in C++, use the known bit width of the enumerators. 11535 EnumDecl *Enum = ET->getDecl(); 11536 // In C++11, enums can have a fixed underlying type. Use this type to 11537 // compute the range. 11538 if (Enum->isFixed()) { 11539 return IntRange(C.getIntWidth(QualType(T, 0)), 11540 !ET->isSignedIntegerOrEnumerationType()); 11541 } 11542 11543 unsigned NumPositive = Enum->getNumPositiveBits(); 11544 unsigned NumNegative = Enum->getNumNegativeBits(); 11545 11546 if (NumNegative == 0) 11547 return IntRange(NumPositive, true/*NonNegative*/); 11548 else 11549 return IntRange(std::max(NumPositive + 1, NumNegative), 11550 false/*NonNegative*/); 11551 } 11552 11553 if (const auto *EIT = dyn_cast<BitIntType>(T)) 11554 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 11555 11556 const BuiltinType *BT = cast<BuiltinType>(T); 11557 assert(BT->isInteger()); 11558 11559 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 11560 } 11561 11562 /// Returns the "target" range of a canonical integral type, i.e. 11563 /// the range of values expressible in the type. 11564 /// 11565 /// This matches forValueOfCanonicalType except that enums have the 11566 /// full range of their type, not the range of their enumerators. 11567 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 11568 assert(T->isCanonicalUnqualified()); 11569 11570 if (const VectorType *VT = dyn_cast<VectorType>(T)) 11571 T = VT->getElementType().getTypePtr(); 11572 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 11573 T = CT->getElementType().getTypePtr(); 11574 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 11575 T = AT->getValueType().getTypePtr(); 11576 if (const EnumType *ET = dyn_cast<EnumType>(T)) 11577 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 11578 11579 if (const auto *EIT = dyn_cast<BitIntType>(T)) 11580 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 11581 11582 const BuiltinType *BT = cast<BuiltinType>(T); 11583 assert(BT->isInteger()); 11584 11585 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 11586 } 11587 11588 /// Returns the supremum of two ranges: i.e. their conservative merge. 11589 static IntRange join(IntRange L, IntRange R) { 11590 bool Unsigned = L.NonNegative && R.NonNegative; 11591 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned, 11592 L.NonNegative && R.NonNegative); 11593 } 11594 11595 /// Return the range of a bitwise-AND of the two ranges. 11596 static IntRange bit_and(IntRange L, IntRange R) { 11597 unsigned Bits = std::max(L.Width, R.Width); 11598 bool NonNegative = false; 11599 if (L.NonNegative) { 11600 Bits = std::min(Bits, L.Width); 11601 NonNegative = true; 11602 } 11603 if (R.NonNegative) { 11604 Bits = std::min(Bits, R.Width); 11605 NonNegative = true; 11606 } 11607 return IntRange(Bits, NonNegative); 11608 } 11609 11610 /// Return the range of a sum of the two ranges. 11611 static IntRange sum(IntRange L, IntRange R) { 11612 bool Unsigned = L.NonNegative && R.NonNegative; 11613 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned, 11614 Unsigned); 11615 } 11616 11617 /// Return the range of a difference of the two ranges. 11618 static IntRange difference(IntRange L, IntRange R) { 11619 // We need a 1-bit-wider range if: 11620 // 1) LHS can be negative: least value can be reduced. 11621 // 2) RHS can be negative: greatest value can be increased. 11622 bool CanWiden = !L.NonNegative || !R.NonNegative; 11623 bool Unsigned = L.NonNegative && R.Width == 0; 11624 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden + 11625 !Unsigned, 11626 Unsigned); 11627 } 11628 11629 /// Return the range of a product of the two ranges. 11630 static IntRange product(IntRange L, IntRange R) { 11631 // If both LHS and RHS can be negative, we can form 11632 // -2^L * -2^R = 2^(L + R) 11633 // which requires L + R + 1 value bits to represent. 11634 bool CanWiden = !L.NonNegative && !R.NonNegative; 11635 bool Unsigned = L.NonNegative && R.NonNegative; 11636 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, 11637 Unsigned); 11638 } 11639 11640 /// Return the range of a remainder operation between the two ranges. 11641 static IntRange rem(IntRange L, IntRange R) { 11642 // The result of a remainder can't be larger than the result of 11643 // either side. The sign of the result is the sign of the LHS. 11644 bool Unsigned = L.NonNegative; 11645 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned, 11646 Unsigned); 11647 } 11648 }; 11649 11650 } // namespace 11651 11652 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 11653 unsigned MaxWidth) { 11654 if (value.isSigned() && value.isNegative()) 11655 return IntRange(value.getMinSignedBits(), false); 11656 11657 if (value.getBitWidth() > MaxWidth) 11658 value = value.trunc(MaxWidth); 11659 11660 // isNonNegative() just checks the sign bit without considering 11661 // signedness. 11662 return IntRange(value.getActiveBits(), true); 11663 } 11664 11665 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 11666 unsigned MaxWidth) { 11667 if (result.isInt()) 11668 return GetValueRange(C, result.getInt(), MaxWidth); 11669 11670 if (result.isVector()) { 11671 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 11672 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 11673 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 11674 R = IntRange::join(R, El); 11675 } 11676 return R; 11677 } 11678 11679 if (result.isComplexInt()) { 11680 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 11681 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 11682 return IntRange::join(R, I); 11683 } 11684 11685 // This can happen with lossless casts to intptr_t of "based" lvalues. 11686 // Assume it might use arbitrary bits. 11687 // FIXME: The only reason we need to pass the type in here is to get 11688 // the sign right on this one case. It would be nice if APValue 11689 // preserved this. 11690 assert(result.isLValue() || result.isAddrLabelDiff()); 11691 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 11692 } 11693 11694 static QualType GetExprType(const Expr *E) { 11695 QualType Ty = E->getType(); 11696 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 11697 Ty = AtomicRHS->getValueType(); 11698 return Ty; 11699 } 11700 11701 /// Pseudo-evaluate the given integer expression, estimating the 11702 /// range of values it might take. 11703 /// 11704 /// \param MaxWidth The width to which the value will be truncated. 11705 /// \param Approximate If \c true, return a likely range for the result: in 11706 /// particular, assume that arithmetic on narrower types doesn't leave 11707 /// those types. If \c false, return a range including all possible 11708 /// result values. 11709 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 11710 bool InConstantContext, bool Approximate) { 11711 E = E->IgnoreParens(); 11712 11713 // Try a full evaluation first. 11714 Expr::EvalResult result; 11715 if (E->EvaluateAsRValue(result, C, InConstantContext)) 11716 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 11717 11718 // I think we only want to look through implicit casts here; if the 11719 // user has an explicit widening cast, we should treat the value as 11720 // being of the new, wider type. 11721 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 11722 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 11723 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, 11724 Approximate); 11725 11726 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 11727 11728 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 11729 CE->getCastKind() == CK_BooleanToSignedIntegral; 11730 11731 // Assume that non-integer casts can span the full range of the type. 11732 if (!isIntegerCast) 11733 return OutputTypeRange; 11734 11735 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 11736 std::min(MaxWidth, OutputTypeRange.Width), 11737 InConstantContext, Approximate); 11738 11739 // Bail out if the subexpr's range is as wide as the cast type. 11740 if (SubRange.Width >= OutputTypeRange.Width) 11741 return OutputTypeRange; 11742 11743 // Otherwise, we take the smaller width, and we're non-negative if 11744 // either the output type or the subexpr is. 11745 return IntRange(SubRange.Width, 11746 SubRange.NonNegative || OutputTypeRange.NonNegative); 11747 } 11748 11749 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11750 // If we can fold the condition, just take that operand. 11751 bool CondResult; 11752 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 11753 return GetExprRange(C, 11754 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 11755 MaxWidth, InConstantContext, Approximate); 11756 11757 // Otherwise, conservatively merge. 11758 // GetExprRange requires an integer expression, but a throw expression 11759 // results in a void type. 11760 Expr *E = CO->getTrueExpr(); 11761 IntRange L = E->getType()->isVoidType() 11762 ? IntRange{0, true} 11763 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 11764 E = CO->getFalseExpr(); 11765 IntRange R = E->getType()->isVoidType() 11766 ? IntRange{0, true} 11767 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 11768 return IntRange::join(L, R); 11769 } 11770 11771 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11772 IntRange (*Combine)(IntRange, IntRange) = IntRange::join; 11773 11774 switch (BO->getOpcode()) { 11775 case BO_Cmp: 11776 llvm_unreachable("builtin <=> should have class type"); 11777 11778 // Boolean-valued operations are single-bit and positive. 11779 case BO_LAnd: 11780 case BO_LOr: 11781 case BO_LT: 11782 case BO_GT: 11783 case BO_LE: 11784 case BO_GE: 11785 case BO_EQ: 11786 case BO_NE: 11787 return IntRange::forBoolType(); 11788 11789 // The type of the assignments is the type of the LHS, so the RHS 11790 // is not necessarily the same type. 11791 case BO_MulAssign: 11792 case BO_DivAssign: 11793 case BO_RemAssign: 11794 case BO_AddAssign: 11795 case BO_SubAssign: 11796 case BO_XorAssign: 11797 case BO_OrAssign: 11798 // TODO: bitfields? 11799 return IntRange::forValueOfType(C, GetExprType(E)); 11800 11801 // Simple assignments just pass through the RHS, which will have 11802 // been coerced to the LHS type. 11803 case BO_Assign: 11804 // TODO: bitfields? 11805 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 11806 Approximate); 11807 11808 // Operations with opaque sources are black-listed. 11809 case BO_PtrMemD: 11810 case BO_PtrMemI: 11811 return IntRange::forValueOfType(C, GetExprType(E)); 11812 11813 // Bitwise-and uses the *infinum* of the two source ranges. 11814 case BO_And: 11815 case BO_AndAssign: 11816 Combine = IntRange::bit_and; 11817 break; 11818 11819 // Left shift gets black-listed based on a judgement call. 11820 case BO_Shl: 11821 // ...except that we want to treat '1 << (blah)' as logically 11822 // positive. It's an important idiom. 11823 if (IntegerLiteral *I 11824 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 11825 if (I->getValue() == 1) { 11826 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 11827 return IntRange(R.Width, /*NonNegative*/ true); 11828 } 11829 } 11830 LLVM_FALLTHROUGH; 11831 11832 case BO_ShlAssign: 11833 return IntRange::forValueOfType(C, GetExprType(E)); 11834 11835 // Right shift by a constant can narrow its left argument. 11836 case BO_Shr: 11837 case BO_ShrAssign: { 11838 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext, 11839 Approximate); 11840 11841 // If the shift amount is a positive constant, drop the width by 11842 // that much. 11843 if (Optional<llvm::APSInt> shift = 11844 BO->getRHS()->getIntegerConstantExpr(C)) { 11845 if (shift->isNonNegative()) { 11846 unsigned zext = shift->getZExtValue(); 11847 if (zext >= L.Width) 11848 L.Width = (L.NonNegative ? 0 : 1); 11849 else 11850 L.Width -= zext; 11851 } 11852 } 11853 11854 return L; 11855 } 11856 11857 // Comma acts as its right operand. 11858 case BO_Comma: 11859 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 11860 Approximate); 11861 11862 case BO_Add: 11863 if (!Approximate) 11864 Combine = IntRange::sum; 11865 break; 11866 11867 case BO_Sub: 11868 if (BO->getLHS()->getType()->isPointerType()) 11869 return IntRange::forValueOfType(C, GetExprType(E)); 11870 if (!Approximate) 11871 Combine = IntRange::difference; 11872 break; 11873 11874 case BO_Mul: 11875 if (!Approximate) 11876 Combine = IntRange::product; 11877 break; 11878 11879 // The width of a division result is mostly determined by the size 11880 // of the LHS. 11881 case BO_Div: { 11882 // Don't 'pre-truncate' the operands. 11883 unsigned opWidth = C.getIntWidth(GetExprType(E)); 11884 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, 11885 Approximate); 11886 11887 // If the divisor is constant, use that. 11888 if (Optional<llvm::APSInt> divisor = 11889 BO->getRHS()->getIntegerConstantExpr(C)) { 11890 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) 11891 if (log2 >= L.Width) 11892 L.Width = (L.NonNegative ? 0 : 1); 11893 else 11894 L.Width = std::min(L.Width - log2, MaxWidth); 11895 return L; 11896 } 11897 11898 // Otherwise, just use the LHS's width. 11899 // FIXME: This is wrong if the LHS could be its minimal value and the RHS 11900 // could be -1. 11901 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, 11902 Approximate); 11903 return IntRange(L.Width, L.NonNegative && R.NonNegative); 11904 } 11905 11906 case BO_Rem: 11907 Combine = IntRange::rem; 11908 break; 11909 11910 // The default behavior is okay for these. 11911 case BO_Xor: 11912 case BO_Or: 11913 break; 11914 } 11915 11916 // Combine the two ranges, but limit the result to the type in which we 11917 // performed the computation. 11918 QualType T = GetExprType(E); 11919 unsigned opWidth = C.getIntWidth(T); 11920 IntRange L = 11921 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); 11922 IntRange R = 11923 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); 11924 IntRange C = Combine(L, R); 11925 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); 11926 C.Width = std::min(C.Width, MaxWidth); 11927 return C; 11928 } 11929 11930 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 11931 switch (UO->getOpcode()) { 11932 // Boolean-valued operations are white-listed. 11933 case UO_LNot: 11934 return IntRange::forBoolType(); 11935 11936 // Operations with opaque sources are black-listed. 11937 case UO_Deref: 11938 case UO_AddrOf: // should be impossible 11939 return IntRange::forValueOfType(C, GetExprType(E)); 11940 11941 default: 11942 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext, 11943 Approximate); 11944 } 11945 } 11946 11947 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 11948 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext, 11949 Approximate); 11950 11951 if (const auto *BitField = E->getSourceBitField()) 11952 return IntRange(BitField->getBitWidthValue(C), 11953 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 11954 11955 return IntRange::forValueOfType(C, GetExprType(E)); 11956 } 11957 11958 static IntRange GetExprRange(ASTContext &C, const Expr *E, 11959 bool InConstantContext, bool Approximate) { 11960 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext, 11961 Approximate); 11962 } 11963 11964 /// Checks whether the given value, which currently has the given 11965 /// source semantics, has the same value when coerced through the 11966 /// target semantics. 11967 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 11968 const llvm::fltSemantics &Src, 11969 const llvm::fltSemantics &Tgt) { 11970 llvm::APFloat truncated = value; 11971 11972 bool ignored; 11973 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 11974 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 11975 11976 return truncated.bitwiseIsEqual(value); 11977 } 11978 11979 /// Checks whether the given value, which currently has the given 11980 /// source semantics, has the same value when coerced through the 11981 /// target semantics. 11982 /// 11983 /// The value might be a vector of floats (or a complex number). 11984 static bool IsSameFloatAfterCast(const APValue &value, 11985 const llvm::fltSemantics &Src, 11986 const llvm::fltSemantics &Tgt) { 11987 if (value.isFloat()) 11988 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 11989 11990 if (value.isVector()) { 11991 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 11992 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 11993 return false; 11994 return true; 11995 } 11996 11997 assert(value.isComplexFloat()); 11998 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 11999 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 12000 } 12001 12002 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 12003 bool IsListInit = false); 12004 12005 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 12006 // Suppress cases where we are comparing against an enum constant. 12007 if (const DeclRefExpr *DR = 12008 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 12009 if (isa<EnumConstantDecl>(DR->getDecl())) 12010 return true; 12011 12012 // Suppress cases where the value is expanded from a macro, unless that macro 12013 // is how a language represents a boolean literal. This is the case in both C 12014 // and Objective-C. 12015 SourceLocation BeginLoc = E->getBeginLoc(); 12016 if (BeginLoc.isMacroID()) { 12017 StringRef MacroName = Lexer::getImmediateMacroName( 12018 BeginLoc, S.getSourceManager(), S.getLangOpts()); 12019 return MacroName != "YES" && MacroName != "NO" && 12020 MacroName != "true" && MacroName != "false"; 12021 } 12022 12023 return false; 12024 } 12025 12026 static bool isKnownToHaveUnsignedValue(Expr *E) { 12027 return E->getType()->isIntegerType() && 12028 (!E->getType()->isSignedIntegerType() || 12029 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 12030 } 12031 12032 namespace { 12033 /// The promoted range of values of a type. In general this has the 12034 /// following structure: 12035 /// 12036 /// |-----------| . . . |-----------| 12037 /// ^ ^ ^ ^ 12038 /// Min HoleMin HoleMax Max 12039 /// 12040 /// ... where there is only a hole if a signed type is promoted to unsigned 12041 /// (in which case Min and Max are the smallest and largest representable 12042 /// values). 12043 struct PromotedRange { 12044 // Min, or HoleMax if there is a hole. 12045 llvm::APSInt PromotedMin; 12046 // Max, or HoleMin if there is a hole. 12047 llvm::APSInt PromotedMax; 12048 12049 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 12050 if (R.Width == 0) 12051 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 12052 else if (R.Width >= BitWidth && !Unsigned) { 12053 // Promotion made the type *narrower*. This happens when promoting 12054 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 12055 // Treat all values of 'signed int' as being in range for now. 12056 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 12057 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 12058 } else { 12059 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 12060 .extOrTrunc(BitWidth); 12061 PromotedMin.setIsUnsigned(Unsigned); 12062 12063 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 12064 .extOrTrunc(BitWidth); 12065 PromotedMax.setIsUnsigned(Unsigned); 12066 } 12067 } 12068 12069 // Determine whether this range is contiguous (has no hole). 12070 bool isContiguous() const { return PromotedMin <= PromotedMax; } 12071 12072 // Where a constant value is within the range. 12073 enum ComparisonResult { 12074 LT = 0x1, 12075 LE = 0x2, 12076 GT = 0x4, 12077 GE = 0x8, 12078 EQ = 0x10, 12079 NE = 0x20, 12080 InRangeFlag = 0x40, 12081 12082 Less = LE | LT | NE, 12083 Min = LE | InRangeFlag, 12084 InRange = InRangeFlag, 12085 Max = GE | InRangeFlag, 12086 Greater = GE | GT | NE, 12087 12088 OnlyValue = LE | GE | EQ | InRangeFlag, 12089 InHole = NE 12090 }; 12091 12092 ComparisonResult compare(const llvm::APSInt &Value) const { 12093 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 12094 Value.isUnsigned() == PromotedMin.isUnsigned()); 12095 if (!isContiguous()) { 12096 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 12097 if (Value.isMinValue()) return Min; 12098 if (Value.isMaxValue()) return Max; 12099 if (Value >= PromotedMin) return InRange; 12100 if (Value <= PromotedMax) return InRange; 12101 return InHole; 12102 } 12103 12104 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 12105 case -1: return Less; 12106 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 12107 case 1: 12108 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 12109 case -1: return InRange; 12110 case 0: return Max; 12111 case 1: return Greater; 12112 } 12113 } 12114 12115 llvm_unreachable("impossible compare result"); 12116 } 12117 12118 static llvm::Optional<StringRef> 12119 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 12120 if (Op == BO_Cmp) { 12121 ComparisonResult LTFlag = LT, GTFlag = GT; 12122 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 12123 12124 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 12125 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 12126 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 12127 return llvm::None; 12128 } 12129 12130 ComparisonResult TrueFlag, FalseFlag; 12131 if (Op == BO_EQ) { 12132 TrueFlag = EQ; 12133 FalseFlag = NE; 12134 } else if (Op == BO_NE) { 12135 TrueFlag = NE; 12136 FalseFlag = EQ; 12137 } else { 12138 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 12139 TrueFlag = LT; 12140 FalseFlag = GE; 12141 } else { 12142 TrueFlag = GT; 12143 FalseFlag = LE; 12144 } 12145 if (Op == BO_GE || Op == BO_LE) 12146 std::swap(TrueFlag, FalseFlag); 12147 } 12148 if (R & TrueFlag) 12149 return StringRef("true"); 12150 if (R & FalseFlag) 12151 return StringRef("false"); 12152 return llvm::None; 12153 } 12154 }; 12155 } 12156 12157 static bool HasEnumType(Expr *E) { 12158 // Strip off implicit integral promotions. 12159 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 12160 if (ICE->getCastKind() != CK_IntegralCast && 12161 ICE->getCastKind() != CK_NoOp) 12162 break; 12163 E = ICE->getSubExpr(); 12164 } 12165 12166 return E->getType()->isEnumeralType(); 12167 } 12168 12169 static int classifyConstantValue(Expr *Constant) { 12170 // The values of this enumeration are used in the diagnostics 12171 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 12172 enum ConstantValueKind { 12173 Miscellaneous = 0, 12174 LiteralTrue, 12175 LiteralFalse 12176 }; 12177 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 12178 return BL->getValue() ? ConstantValueKind::LiteralTrue 12179 : ConstantValueKind::LiteralFalse; 12180 return ConstantValueKind::Miscellaneous; 12181 } 12182 12183 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 12184 Expr *Constant, Expr *Other, 12185 const llvm::APSInt &Value, 12186 bool RhsConstant) { 12187 if (S.inTemplateInstantiation()) 12188 return false; 12189 12190 Expr *OriginalOther = Other; 12191 12192 Constant = Constant->IgnoreParenImpCasts(); 12193 Other = Other->IgnoreParenImpCasts(); 12194 12195 // Suppress warnings on tautological comparisons between values of the same 12196 // enumeration type. There are only two ways we could warn on this: 12197 // - If the constant is outside the range of representable values of 12198 // the enumeration. In such a case, we should warn about the cast 12199 // to enumeration type, not about the comparison. 12200 // - If the constant is the maximum / minimum in-range value. For an 12201 // enumeratin type, such comparisons can be meaningful and useful. 12202 if (Constant->getType()->isEnumeralType() && 12203 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 12204 return false; 12205 12206 IntRange OtherValueRange = GetExprRange( 12207 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false); 12208 12209 QualType OtherT = Other->getType(); 12210 if (const auto *AT = OtherT->getAs<AtomicType>()) 12211 OtherT = AT->getValueType(); 12212 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT); 12213 12214 // Special case for ObjC BOOL on targets where its a typedef for a signed char 12215 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. 12216 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 12217 S.NSAPIObj->isObjCBOOLType(OtherT) && 12218 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 12219 12220 // Whether we're treating Other as being a bool because of the form of 12221 // expression despite it having another type (typically 'int' in C). 12222 bool OtherIsBooleanDespiteType = 12223 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 12224 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 12225 OtherTypeRange = OtherValueRange = IntRange::forBoolType(); 12226 12227 // Check if all values in the range of possible values of this expression 12228 // lead to the same comparison outcome. 12229 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), 12230 Value.isUnsigned()); 12231 auto Cmp = OtherPromotedValueRange.compare(Value); 12232 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 12233 if (!Result) 12234 return false; 12235 12236 // Also consider the range determined by the type alone. This allows us to 12237 // classify the warning under the proper diagnostic group. 12238 bool TautologicalTypeCompare = false; 12239 { 12240 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), 12241 Value.isUnsigned()); 12242 auto TypeCmp = OtherPromotedTypeRange.compare(Value); 12243 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp, 12244 RhsConstant)) { 12245 TautologicalTypeCompare = true; 12246 Cmp = TypeCmp; 12247 Result = TypeResult; 12248 } 12249 } 12250 12251 // Don't warn if the non-constant operand actually always evaluates to the 12252 // same value. 12253 if (!TautologicalTypeCompare && OtherValueRange.Width == 0) 12254 return false; 12255 12256 // Suppress the diagnostic for an in-range comparison if the constant comes 12257 // from a macro or enumerator. We don't want to diagnose 12258 // 12259 // some_long_value <= INT_MAX 12260 // 12261 // when sizeof(int) == sizeof(long). 12262 bool InRange = Cmp & PromotedRange::InRangeFlag; 12263 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 12264 return false; 12265 12266 // A comparison of an unsigned bit-field against 0 is really a type problem, 12267 // even though at the type level the bit-field might promote to 'signed int'. 12268 if (Other->refersToBitField() && InRange && Value == 0 && 12269 Other->getType()->isUnsignedIntegerOrEnumerationType()) 12270 TautologicalTypeCompare = true; 12271 12272 // If this is a comparison to an enum constant, include that 12273 // constant in the diagnostic. 12274 const EnumConstantDecl *ED = nullptr; 12275 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 12276 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 12277 12278 // Should be enough for uint128 (39 decimal digits) 12279 SmallString<64> PrettySourceValue; 12280 llvm::raw_svector_ostream OS(PrettySourceValue); 12281 if (ED) { 12282 OS << '\'' << *ED << "' (" << Value << ")"; 12283 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 12284 Constant->IgnoreParenImpCasts())) { 12285 OS << (BL->getValue() ? "YES" : "NO"); 12286 } else { 12287 OS << Value; 12288 } 12289 12290 if (!TautologicalTypeCompare) { 12291 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) 12292 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative 12293 << E->getOpcodeStr() << OS.str() << *Result 12294 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 12295 return true; 12296 } 12297 12298 if (IsObjCSignedCharBool) { 12299 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 12300 S.PDiag(diag::warn_tautological_compare_objc_bool) 12301 << OS.str() << *Result); 12302 return true; 12303 } 12304 12305 // FIXME: We use a somewhat different formatting for the in-range cases and 12306 // cases involving boolean values for historical reasons. We should pick a 12307 // consistent way of presenting these diagnostics. 12308 if (!InRange || Other->isKnownToHaveBooleanValue()) { 12309 12310 S.DiagRuntimeBehavior( 12311 E->getOperatorLoc(), E, 12312 S.PDiag(!InRange ? diag::warn_out_of_range_compare 12313 : diag::warn_tautological_bool_compare) 12314 << OS.str() << classifyConstantValue(Constant) << OtherT 12315 << OtherIsBooleanDespiteType << *Result 12316 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 12317 } else { 12318 bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; 12319 unsigned Diag = 12320 (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 12321 ? (HasEnumType(OriginalOther) 12322 ? diag::warn_unsigned_enum_always_true_comparison 12323 : IsCharTy ? diag::warn_unsigned_char_always_true_comparison 12324 : diag::warn_unsigned_always_true_comparison) 12325 : diag::warn_tautological_constant_compare; 12326 12327 S.Diag(E->getOperatorLoc(), Diag) 12328 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 12329 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 12330 } 12331 12332 return true; 12333 } 12334 12335 /// Analyze the operands of the given comparison. Implements the 12336 /// fallback case from AnalyzeComparison. 12337 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 12338 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 12339 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 12340 } 12341 12342 /// Implements -Wsign-compare. 12343 /// 12344 /// \param E the binary operator to check for warnings 12345 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 12346 // The type the comparison is being performed in. 12347 QualType T = E->getLHS()->getType(); 12348 12349 // Only analyze comparison operators where both sides have been converted to 12350 // the same type. 12351 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 12352 return AnalyzeImpConvsInComparison(S, E); 12353 12354 // Don't analyze value-dependent comparisons directly. 12355 if (E->isValueDependent()) 12356 return AnalyzeImpConvsInComparison(S, E); 12357 12358 Expr *LHS = E->getLHS(); 12359 Expr *RHS = E->getRHS(); 12360 12361 if (T->isIntegralType(S.Context)) { 12362 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context); 12363 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context); 12364 12365 // We don't care about expressions whose result is a constant. 12366 if (RHSValue && LHSValue) 12367 return AnalyzeImpConvsInComparison(S, E); 12368 12369 // We only care about expressions where just one side is literal 12370 if ((bool)RHSValue ^ (bool)LHSValue) { 12371 // Is the constant on the RHS or LHS? 12372 const bool RhsConstant = (bool)RHSValue; 12373 Expr *Const = RhsConstant ? RHS : LHS; 12374 Expr *Other = RhsConstant ? LHS : RHS; 12375 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; 12376 12377 // Check whether an integer constant comparison results in a value 12378 // of 'true' or 'false'. 12379 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 12380 return AnalyzeImpConvsInComparison(S, E); 12381 } 12382 } 12383 12384 if (!T->hasUnsignedIntegerRepresentation()) { 12385 // We don't do anything special if this isn't an unsigned integral 12386 // comparison: we're only interested in integral comparisons, and 12387 // signed comparisons only happen in cases we don't care to warn about. 12388 return AnalyzeImpConvsInComparison(S, E); 12389 } 12390 12391 LHS = LHS->IgnoreParenImpCasts(); 12392 RHS = RHS->IgnoreParenImpCasts(); 12393 12394 if (!S.getLangOpts().CPlusPlus) { 12395 // Avoid warning about comparison of integers with different signs when 12396 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 12397 // the type of `E`. 12398 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 12399 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 12400 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 12401 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 12402 } 12403 12404 // Check to see if one of the (unmodified) operands is of different 12405 // signedness. 12406 Expr *signedOperand, *unsignedOperand; 12407 if (LHS->getType()->hasSignedIntegerRepresentation()) { 12408 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 12409 "unsigned comparison between two signed integer expressions?"); 12410 signedOperand = LHS; 12411 unsignedOperand = RHS; 12412 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 12413 signedOperand = RHS; 12414 unsignedOperand = LHS; 12415 } else { 12416 return AnalyzeImpConvsInComparison(S, E); 12417 } 12418 12419 // Otherwise, calculate the effective range of the signed operand. 12420 IntRange signedRange = GetExprRange( 12421 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true); 12422 12423 // Go ahead and analyze implicit conversions in the operands. Note 12424 // that we skip the implicit conversions on both sides. 12425 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 12426 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 12427 12428 // If the signed range is non-negative, -Wsign-compare won't fire. 12429 if (signedRange.NonNegative) 12430 return; 12431 12432 // For (in)equality comparisons, if the unsigned operand is a 12433 // constant which cannot collide with a overflowed signed operand, 12434 // then reinterpreting the signed operand as unsigned will not 12435 // change the result of the comparison. 12436 if (E->isEqualityOp()) { 12437 unsigned comparisonWidth = S.Context.getIntWidth(T); 12438 IntRange unsignedRange = 12439 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(), 12440 /*Approximate*/ true); 12441 12442 // We should never be unable to prove that the unsigned operand is 12443 // non-negative. 12444 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 12445 12446 if (unsignedRange.Width < comparisonWidth) 12447 return; 12448 } 12449 12450 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 12451 S.PDiag(diag::warn_mixed_sign_comparison) 12452 << LHS->getType() << RHS->getType() 12453 << LHS->getSourceRange() << RHS->getSourceRange()); 12454 } 12455 12456 /// Analyzes an attempt to assign the given value to a bitfield. 12457 /// 12458 /// Returns true if there was something fishy about the attempt. 12459 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 12460 SourceLocation InitLoc) { 12461 assert(Bitfield->isBitField()); 12462 if (Bitfield->isInvalidDecl()) 12463 return false; 12464 12465 // White-list bool bitfields. 12466 QualType BitfieldType = Bitfield->getType(); 12467 if (BitfieldType->isBooleanType()) 12468 return false; 12469 12470 if (BitfieldType->isEnumeralType()) { 12471 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 12472 // If the underlying enum type was not explicitly specified as an unsigned 12473 // type and the enum contain only positive values, MSVC++ will cause an 12474 // inconsistency by storing this as a signed type. 12475 if (S.getLangOpts().CPlusPlus11 && 12476 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 12477 BitfieldEnumDecl->getNumPositiveBits() > 0 && 12478 BitfieldEnumDecl->getNumNegativeBits() == 0) { 12479 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 12480 << BitfieldEnumDecl; 12481 } 12482 } 12483 12484 if (Bitfield->getType()->isBooleanType()) 12485 return false; 12486 12487 // Ignore value- or type-dependent expressions. 12488 if (Bitfield->getBitWidth()->isValueDependent() || 12489 Bitfield->getBitWidth()->isTypeDependent() || 12490 Init->isValueDependent() || 12491 Init->isTypeDependent()) 12492 return false; 12493 12494 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 12495 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 12496 12497 Expr::EvalResult Result; 12498 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 12499 Expr::SE_AllowSideEffects)) { 12500 // The RHS is not constant. If the RHS has an enum type, make sure the 12501 // bitfield is wide enough to hold all the values of the enum without 12502 // truncation. 12503 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 12504 EnumDecl *ED = EnumTy->getDecl(); 12505 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 12506 12507 // Enum types are implicitly signed on Windows, so check if there are any 12508 // negative enumerators to see if the enum was intended to be signed or 12509 // not. 12510 bool SignedEnum = ED->getNumNegativeBits() > 0; 12511 12512 // Check for surprising sign changes when assigning enum values to a 12513 // bitfield of different signedness. If the bitfield is signed and we 12514 // have exactly the right number of bits to store this unsigned enum, 12515 // suggest changing the enum to an unsigned type. This typically happens 12516 // on Windows where unfixed enums always use an underlying type of 'int'. 12517 unsigned DiagID = 0; 12518 if (SignedEnum && !SignedBitfield) { 12519 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 12520 } else if (SignedBitfield && !SignedEnum && 12521 ED->getNumPositiveBits() == FieldWidth) { 12522 DiagID = diag::warn_signed_bitfield_enum_conversion; 12523 } 12524 12525 if (DiagID) { 12526 S.Diag(InitLoc, DiagID) << Bitfield << ED; 12527 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 12528 SourceRange TypeRange = 12529 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 12530 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 12531 << SignedEnum << TypeRange; 12532 } 12533 12534 // Compute the required bitwidth. If the enum has negative values, we need 12535 // one more bit than the normal number of positive bits to represent the 12536 // sign bit. 12537 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 12538 ED->getNumNegativeBits()) 12539 : ED->getNumPositiveBits(); 12540 12541 // Check the bitwidth. 12542 if (BitsNeeded > FieldWidth) { 12543 Expr *WidthExpr = Bitfield->getBitWidth(); 12544 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 12545 << Bitfield << ED; 12546 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 12547 << BitsNeeded << ED << WidthExpr->getSourceRange(); 12548 } 12549 } 12550 12551 return false; 12552 } 12553 12554 llvm::APSInt Value = Result.Val.getInt(); 12555 12556 unsigned OriginalWidth = Value.getBitWidth(); 12557 12558 if (!Value.isSigned() || Value.isNegative()) 12559 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 12560 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 12561 OriginalWidth = Value.getMinSignedBits(); 12562 12563 if (OriginalWidth <= FieldWidth) 12564 return false; 12565 12566 // Compute the value which the bitfield will contain. 12567 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 12568 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 12569 12570 // Check whether the stored value is equal to the original value. 12571 TruncatedValue = TruncatedValue.extend(OriginalWidth); 12572 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 12573 return false; 12574 12575 // Special-case bitfields of width 1: booleans are naturally 0/1, and 12576 // therefore don't strictly fit into a signed bitfield of width 1. 12577 if (FieldWidth == 1 && Value == 1) 12578 return false; 12579 12580 std::string PrettyValue = toString(Value, 10); 12581 std::string PrettyTrunc = toString(TruncatedValue, 10); 12582 12583 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 12584 << PrettyValue << PrettyTrunc << OriginalInit->getType() 12585 << Init->getSourceRange(); 12586 12587 return true; 12588 } 12589 12590 /// Analyze the given simple or compound assignment for warning-worthy 12591 /// operations. 12592 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 12593 // Just recurse on the LHS. 12594 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 12595 12596 // We want to recurse on the RHS as normal unless we're assigning to 12597 // a bitfield. 12598 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 12599 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 12600 E->getOperatorLoc())) { 12601 // Recurse, ignoring any implicit conversions on the RHS. 12602 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 12603 E->getOperatorLoc()); 12604 } 12605 } 12606 12607 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 12608 12609 // Diagnose implicitly sequentially-consistent atomic assignment. 12610 if (E->getLHS()->getType()->isAtomicType()) 12611 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 12612 } 12613 12614 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 12615 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 12616 SourceLocation CContext, unsigned diag, 12617 bool pruneControlFlow = false) { 12618 if (pruneControlFlow) { 12619 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12620 S.PDiag(diag) 12621 << SourceType << T << E->getSourceRange() 12622 << SourceRange(CContext)); 12623 return; 12624 } 12625 S.Diag(E->getExprLoc(), diag) 12626 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 12627 } 12628 12629 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 12630 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 12631 SourceLocation CContext, 12632 unsigned diag, bool pruneControlFlow = false) { 12633 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 12634 } 12635 12636 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 12637 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 12638 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 12639 } 12640 12641 static void adornObjCBoolConversionDiagWithTernaryFixit( 12642 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 12643 Expr *Ignored = SourceExpr->IgnoreImplicit(); 12644 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 12645 Ignored = OVE->getSourceExpr(); 12646 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 12647 isa<BinaryOperator>(Ignored) || 12648 isa<CXXOperatorCallExpr>(Ignored); 12649 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 12650 if (NeedsParens) 12651 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 12652 << FixItHint::CreateInsertion(EndLoc, ")"); 12653 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 12654 } 12655 12656 /// Diagnose an implicit cast from a floating point value to an integer value. 12657 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 12658 SourceLocation CContext) { 12659 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 12660 const bool PruneWarnings = S.inTemplateInstantiation(); 12661 12662 Expr *InnerE = E->IgnoreParenImpCasts(); 12663 // We also want to warn on, e.g., "int i = -1.234" 12664 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 12665 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 12666 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 12667 12668 const bool IsLiteral = 12669 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 12670 12671 llvm::APFloat Value(0.0); 12672 bool IsConstant = 12673 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 12674 if (!IsConstant) { 12675 if (isObjCSignedCharBool(S, T)) { 12676 return adornObjCBoolConversionDiagWithTernaryFixit( 12677 S, E, 12678 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 12679 << E->getType()); 12680 } 12681 12682 return DiagnoseImpCast(S, E, T, CContext, 12683 diag::warn_impcast_float_integer, PruneWarnings); 12684 } 12685 12686 bool isExact = false; 12687 12688 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 12689 T->hasUnsignedIntegerRepresentation()); 12690 llvm::APFloat::opStatus Result = Value.convertToInteger( 12691 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 12692 12693 // FIXME: Force the precision of the source value down so we don't print 12694 // digits which are usually useless (we don't really care here if we 12695 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 12696 // would automatically print the shortest representation, but it's a bit 12697 // tricky to implement. 12698 SmallString<16> PrettySourceValue; 12699 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 12700 precision = (precision * 59 + 195) / 196; 12701 Value.toString(PrettySourceValue, precision); 12702 12703 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 12704 return adornObjCBoolConversionDiagWithTernaryFixit( 12705 S, E, 12706 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 12707 << PrettySourceValue); 12708 } 12709 12710 if (Result == llvm::APFloat::opOK && isExact) { 12711 if (IsLiteral) return; 12712 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 12713 PruneWarnings); 12714 } 12715 12716 // Conversion of a floating-point value to a non-bool integer where the 12717 // integral part cannot be represented by the integer type is undefined. 12718 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 12719 return DiagnoseImpCast( 12720 S, E, T, CContext, 12721 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 12722 : diag::warn_impcast_float_to_integer_out_of_range, 12723 PruneWarnings); 12724 12725 unsigned DiagID = 0; 12726 if (IsLiteral) { 12727 // Warn on floating point literal to integer. 12728 DiagID = diag::warn_impcast_literal_float_to_integer; 12729 } else if (IntegerValue == 0) { 12730 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 12731 return DiagnoseImpCast(S, E, T, CContext, 12732 diag::warn_impcast_float_integer, PruneWarnings); 12733 } 12734 // Warn on non-zero to zero conversion. 12735 DiagID = diag::warn_impcast_float_to_integer_zero; 12736 } else { 12737 if (IntegerValue.isUnsigned()) { 12738 if (!IntegerValue.isMaxValue()) { 12739 return DiagnoseImpCast(S, E, T, CContext, 12740 diag::warn_impcast_float_integer, PruneWarnings); 12741 } 12742 } else { // IntegerValue.isSigned() 12743 if (!IntegerValue.isMaxSignedValue() && 12744 !IntegerValue.isMinSignedValue()) { 12745 return DiagnoseImpCast(S, E, T, CContext, 12746 diag::warn_impcast_float_integer, PruneWarnings); 12747 } 12748 } 12749 // Warn on evaluatable floating point expression to integer conversion. 12750 DiagID = diag::warn_impcast_float_to_integer; 12751 } 12752 12753 SmallString<16> PrettyTargetValue; 12754 if (IsBool) 12755 PrettyTargetValue = Value.isZero() ? "false" : "true"; 12756 else 12757 IntegerValue.toString(PrettyTargetValue); 12758 12759 if (PruneWarnings) { 12760 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12761 S.PDiag(DiagID) 12762 << E->getType() << T.getUnqualifiedType() 12763 << PrettySourceValue << PrettyTargetValue 12764 << E->getSourceRange() << SourceRange(CContext)); 12765 } else { 12766 S.Diag(E->getExprLoc(), DiagID) 12767 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 12768 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 12769 } 12770 } 12771 12772 /// Analyze the given compound assignment for the possible losing of 12773 /// floating-point precision. 12774 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 12775 assert(isa<CompoundAssignOperator>(E) && 12776 "Must be compound assignment operation"); 12777 // Recurse on the LHS and RHS in here 12778 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 12779 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 12780 12781 if (E->getLHS()->getType()->isAtomicType()) 12782 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 12783 12784 // Now check the outermost expression 12785 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 12786 const auto *RBT = cast<CompoundAssignOperator>(E) 12787 ->getComputationResultType() 12788 ->getAs<BuiltinType>(); 12789 12790 // The below checks assume source is floating point. 12791 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 12792 12793 // If source is floating point but target is an integer. 12794 if (ResultBT->isInteger()) 12795 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 12796 E->getExprLoc(), diag::warn_impcast_float_integer); 12797 12798 if (!ResultBT->isFloatingPoint()) 12799 return; 12800 12801 // If both source and target are floating points, warn about losing precision. 12802 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 12803 QualType(ResultBT, 0), QualType(RBT, 0)); 12804 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 12805 // warn about dropping FP rank. 12806 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 12807 diag::warn_impcast_float_result_precision); 12808 } 12809 12810 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 12811 IntRange Range) { 12812 if (!Range.Width) return "0"; 12813 12814 llvm::APSInt ValueInRange = Value; 12815 ValueInRange.setIsSigned(!Range.NonNegative); 12816 ValueInRange = ValueInRange.trunc(Range.Width); 12817 return toString(ValueInRange, 10); 12818 } 12819 12820 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 12821 if (!isa<ImplicitCastExpr>(Ex)) 12822 return false; 12823 12824 Expr *InnerE = Ex->IgnoreParenImpCasts(); 12825 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 12826 const Type *Source = 12827 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 12828 if (Target->isDependentType()) 12829 return false; 12830 12831 const BuiltinType *FloatCandidateBT = 12832 dyn_cast<BuiltinType>(ToBool ? Source : Target); 12833 const Type *BoolCandidateType = ToBool ? Target : Source; 12834 12835 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 12836 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 12837 } 12838 12839 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 12840 SourceLocation CC) { 12841 unsigned NumArgs = TheCall->getNumArgs(); 12842 for (unsigned i = 0; i < NumArgs; ++i) { 12843 Expr *CurrA = TheCall->getArg(i); 12844 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 12845 continue; 12846 12847 bool IsSwapped = ((i > 0) && 12848 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 12849 IsSwapped |= ((i < (NumArgs - 1)) && 12850 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 12851 if (IsSwapped) { 12852 // Warn on this floating-point to bool conversion. 12853 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 12854 CurrA->getType(), CC, 12855 diag::warn_impcast_floating_point_to_bool); 12856 } 12857 } 12858 } 12859 12860 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 12861 SourceLocation CC) { 12862 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 12863 E->getExprLoc())) 12864 return; 12865 12866 // Don't warn on functions which have return type nullptr_t. 12867 if (isa<CallExpr>(E)) 12868 return; 12869 12870 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 12871 const Expr::NullPointerConstantKind NullKind = 12872 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 12873 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 12874 return; 12875 12876 // Return if target type is a safe conversion. 12877 if (T->isAnyPointerType() || T->isBlockPointerType() || 12878 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 12879 return; 12880 12881 SourceLocation Loc = E->getSourceRange().getBegin(); 12882 12883 // Venture through the macro stacks to get to the source of macro arguments. 12884 // The new location is a better location than the complete location that was 12885 // passed in. 12886 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 12887 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 12888 12889 // __null is usually wrapped in a macro. Go up a macro if that is the case. 12890 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 12891 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 12892 Loc, S.SourceMgr, S.getLangOpts()); 12893 if (MacroName == "NULL") 12894 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 12895 } 12896 12897 // Only warn if the null and context location are in the same macro expansion. 12898 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 12899 return; 12900 12901 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 12902 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 12903 << FixItHint::CreateReplacement(Loc, 12904 S.getFixItZeroLiteralForType(T, Loc)); 12905 } 12906 12907 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 12908 ObjCArrayLiteral *ArrayLiteral); 12909 12910 static void 12911 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 12912 ObjCDictionaryLiteral *DictionaryLiteral); 12913 12914 /// Check a single element within a collection literal against the 12915 /// target element type. 12916 static void checkObjCCollectionLiteralElement(Sema &S, 12917 QualType TargetElementType, 12918 Expr *Element, 12919 unsigned ElementKind) { 12920 // Skip a bitcast to 'id' or qualified 'id'. 12921 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 12922 if (ICE->getCastKind() == CK_BitCast && 12923 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 12924 Element = ICE->getSubExpr(); 12925 } 12926 12927 QualType ElementType = Element->getType(); 12928 ExprResult ElementResult(Element); 12929 if (ElementType->getAs<ObjCObjectPointerType>() && 12930 S.CheckSingleAssignmentConstraints(TargetElementType, 12931 ElementResult, 12932 false, false) 12933 != Sema::Compatible) { 12934 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 12935 << ElementType << ElementKind << TargetElementType 12936 << Element->getSourceRange(); 12937 } 12938 12939 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 12940 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 12941 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 12942 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 12943 } 12944 12945 /// Check an Objective-C array literal being converted to the given 12946 /// target type. 12947 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 12948 ObjCArrayLiteral *ArrayLiteral) { 12949 if (!S.NSArrayDecl) 12950 return; 12951 12952 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 12953 if (!TargetObjCPtr) 12954 return; 12955 12956 if (TargetObjCPtr->isUnspecialized() || 12957 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 12958 != S.NSArrayDecl->getCanonicalDecl()) 12959 return; 12960 12961 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 12962 if (TypeArgs.size() != 1) 12963 return; 12964 12965 QualType TargetElementType = TypeArgs[0]; 12966 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 12967 checkObjCCollectionLiteralElement(S, TargetElementType, 12968 ArrayLiteral->getElement(I), 12969 0); 12970 } 12971 } 12972 12973 /// Check an Objective-C dictionary literal being converted to the given 12974 /// target type. 12975 static void 12976 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 12977 ObjCDictionaryLiteral *DictionaryLiteral) { 12978 if (!S.NSDictionaryDecl) 12979 return; 12980 12981 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 12982 if (!TargetObjCPtr) 12983 return; 12984 12985 if (TargetObjCPtr->isUnspecialized() || 12986 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 12987 != S.NSDictionaryDecl->getCanonicalDecl()) 12988 return; 12989 12990 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 12991 if (TypeArgs.size() != 2) 12992 return; 12993 12994 QualType TargetKeyType = TypeArgs[0]; 12995 QualType TargetObjectType = TypeArgs[1]; 12996 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 12997 auto Element = DictionaryLiteral->getKeyValueElement(I); 12998 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 12999 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 13000 } 13001 } 13002 13003 // Helper function to filter out cases for constant width constant conversion. 13004 // Don't warn on char array initialization or for non-decimal values. 13005 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 13006 SourceLocation CC) { 13007 // If initializing from a constant, and the constant starts with '0', 13008 // then it is a binary, octal, or hexadecimal. Allow these constants 13009 // to fill all the bits, even if there is a sign change. 13010 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 13011 const char FirstLiteralCharacter = 13012 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 13013 if (FirstLiteralCharacter == '0') 13014 return false; 13015 } 13016 13017 // If the CC location points to a '{', and the type is char, then assume 13018 // assume it is an array initialization. 13019 if (CC.isValid() && T->isCharType()) { 13020 const char FirstContextCharacter = 13021 S.getSourceManager().getCharacterData(CC)[0]; 13022 if (FirstContextCharacter == '{') 13023 return false; 13024 } 13025 13026 return true; 13027 } 13028 13029 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 13030 const auto *IL = dyn_cast<IntegerLiteral>(E); 13031 if (!IL) { 13032 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 13033 if (UO->getOpcode() == UO_Minus) 13034 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 13035 } 13036 } 13037 13038 return IL; 13039 } 13040 13041 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 13042 E = E->IgnoreParenImpCasts(); 13043 SourceLocation ExprLoc = E->getExprLoc(); 13044 13045 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 13046 BinaryOperator::Opcode Opc = BO->getOpcode(); 13047 Expr::EvalResult Result; 13048 // Do not diagnose unsigned shifts. 13049 if (Opc == BO_Shl) { 13050 const auto *LHS = getIntegerLiteral(BO->getLHS()); 13051 const auto *RHS = getIntegerLiteral(BO->getRHS()); 13052 if (LHS && LHS->getValue() == 0) 13053 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 13054 else if (!E->isValueDependent() && LHS && RHS && 13055 RHS->getValue().isNonNegative() && 13056 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 13057 S.Diag(ExprLoc, diag::warn_left_shift_always) 13058 << (Result.Val.getInt() != 0); 13059 else if (E->getType()->isSignedIntegerType()) 13060 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 13061 } 13062 } 13063 13064 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 13065 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 13066 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 13067 if (!LHS || !RHS) 13068 return; 13069 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 13070 (RHS->getValue() == 0 || RHS->getValue() == 1)) 13071 // Do not diagnose common idioms. 13072 return; 13073 if (LHS->getValue() != 0 && RHS->getValue() != 0) 13074 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 13075 } 13076 } 13077 13078 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 13079 SourceLocation CC, 13080 bool *ICContext = nullptr, 13081 bool IsListInit = false) { 13082 if (E->isTypeDependent() || E->isValueDependent()) return; 13083 13084 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 13085 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 13086 if (Source == Target) return; 13087 if (Target->isDependentType()) return; 13088 13089 // If the conversion context location is invalid don't complain. We also 13090 // don't want to emit a warning if the issue occurs from the expansion of 13091 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 13092 // delay this check as long as possible. Once we detect we are in that 13093 // scenario, we just return. 13094 if (CC.isInvalid()) 13095 return; 13096 13097 if (Source->isAtomicType()) 13098 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 13099 13100 // Diagnose implicit casts to bool. 13101 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 13102 if (isa<StringLiteral>(E)) 13103 // Warn on string literal to bool. Checks for string literals in logical 13104 // and expressions, for instance, assert(0 && "error here"), are 13105 // prevented by a check in AnalyzeImplicitConversions(). 13106 return DiagnoseImpCast(S, E, T, CC, 13107 diag::warn_impcast_string_literal_to_bool); 13108 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 13109 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 13110 // This covers the literal expressions that evaluate to Objective-C 13111 // objects. 13112 return DiagnoseImpCast(S, E, T, CC, 13113 diag::warn_impcast_objective_c_literal_to_bool); 13114 } 13115 if (Source->isPointerType() || Source->canDecayToPointerType()) { 13116 // Warn on pointer to bool conversion that is always true. 13117 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 13118 SourceRange(CC)); 13119 } 13120 } 13121 13122 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 13123 // is a typedef for signed char (macOS), then that constant value has to be 1 13124 // or 0. 13125 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 13126 Expr::EvalResult Result; 13127 if (E->EvaluateAsInt(Result, S.getASTContext(), 13128 Expr::SE_AllowSideEffects)) { 13129 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 13130 adornObjCBoolConversionDiagWithTernaryFixit( 13131 S, E, 13132 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 13133 << toString(Result.Val.getInt(), 10)); 13134 } 13135 return; 13136 } 13137 } 13138 13139 // Check implicit casts from Objective-C collection literals to specialized 13140 // collection types, e.g., NSArray<NSString *> *. 13141 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 13142 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 13143 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 13144 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 13145 13146 // Strip vector types. 13147 if (isa<VectorType>(Source)) { 13148 if (Target->isVLSTBuiltinType() && 13149 (S.Context.areCompatibleSveTypes(QualType(Target, 0), 13150 QualType(Source, 0)) || 13151 S.Context.areLaxCompatibleSveTypes(QualType(Target, 0), 13152 QualType(Source, 0)))) 13153 return; 13154 13155 if (!isa<VectorType>(Target)) { 13156 if (S.SourceMgr.isInSystemMacro(CC)) 13157 return; 13158 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 13159 } 13160 13161 // If the vector cast is cast between two vectors of the same size, it is 13162 // a bitcast, not a conversion. 13163 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 13164 return; 13165 13166 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 13167 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 13168 } 13169 if (auto VecTy = dyn_cast<VectorType>(Target)) 13170 Target = VecTy->getElementType().getTypePtr(); 13171 13172 // Strip complex types. 13173 if (isa<ComplexType>(Source)) { 13174 if (!isa<ComplexType>(Target)) { 13175 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 13176 return; 13177 13178 return DiagnoseImpCast(S, E, T, CC, 13179 S.getLangOpts().CPlusPlus 13180 ? diag::err_impcast_complex_scalar 13181 : diag::warn_impcast_complex_scalar); 13182 } 13183 13184 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 13185 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 13186 } 13187 13188 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 13189 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 13190 13191 // If the source is floating point... 13192 if (SourceBT && SourceBT->isFloatingPoint()) { 13193 // ...and the target is floating point... 13194 if (TargetBT && TargetBT->isFloatingPoint()) { 13195 // ...then warn if we're dropping FP rank. 13196 13197 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 13198 QualType(SourceBT, 0), QualType(TargetBT, 0)); 13199 if (Order > 0) { 13200 // Don't warn about float constants that are precisely 13201 // representable in the target type. 13202 Expr::EvalResult result; 13203 if (E->EvaluateAsRValue(result, S.Context)) { 13204 // Value might be a float, a float vector, or a float complex. 13205 if (IsSameFloatAfterCast(result.Val, 13206 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 13207 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 13208 return; 13209 } 13210 13211 if (S.SourceMgr.isInSystemMacro(CC)) 13212 return; 13213 13214 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 13215 } 13216 // ... or possibly if we're increasing rank, too 13217 else if (Order < 0) { 13218 if (S.SourceMgr.isInSystemMacro(CC)) 13219 return; 13220 13221 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 13222 } 13223 return; 13224 } 13225 13226 // If the target is integral, always warn. 13227 if (TargetBT && TargetBT->isInteger()) { 13228 if (S.SourceMgr.isInSystemMacro(CC)) 13229 return; 13230 13231 DiagnoseFloatingImpCast(S, E, T, CC); 13232 } 13233 13234 // Detect the case where a call result is converted from floating-point to 13235 // to bool, and the final argument to the call is converted from bool, to 13236 // discover this typo: 13237 // 13238 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 13239 // 13240 // FIXME: This is an incredibly special case; is there some more general 13241 // way to detect this class of misplaced-parentheses bug? 13242 if (Target->isBooleanType() && isa<CallExpr>(E)) { 13243 // Check last argument of function call to see if it is an 13244 // implicit cast from a type matching the type the result 13245 // is being cast to. 13246 CallExpr *CEx = cast<CallExpr>(E); 13247 if (unsigned NumArgs = CEx->getNumArgs()) { 13248 Expr *LastA = CEx->getArg(NumArgs - 1); 13249 Expr *InnerE = LastA->IgnoreParenImpCasts(); 13250 if (isa<ImplicitCastExpr>(LastA) && 13251 InnerE->getType()->isBooleanType()) { 13252 // Warn on this floating-point to bool conversion 13253 DiagnoseImpCast(S, E, T, CC, 13254 diag::warn_impcast_floating_point_to_bool); 13255 } 13256 } 13257 } 13258 return; 13259 } 13260 13261 // Valid casts involving fixed point types should be accounted for here. 13262 if (Source->isFixedPointType()) { 13263 if (Target->isUnsaturatedFixedPointType()) { 13264 Expr::EvalResult Result; 13265 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 13266 S.isConstantEvaluated())) { 13267 llvm::APFixedPoint Value = Result.Val.getFixedPoint(); 13268 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 13269 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T); 13270 if (Value > MaxVal || Value < MinVal) { 13271 S.DiagRuntimeBehavior(E->getExprLoc(), E, 13272 S.PDiag(diag::warn_impcast_fixed_point_range) 13273 << Value.toString() << T 13274 << E->getSourceRange() 13275 << clang::SourceRange(CC)); 13276 return; 13277 } 13278 } 13279 } else if (Target->isIntegerType()) { 13280 Expr::EvalResult Result; 13281 if (!S.isConstantEvaluated() && 13282 E->EvaluateAsFixedPoint(Result, S.Context, 13283 Expr::SE_AllowSideEffects)) { 13284 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); 13285 13286 bool Overflowed; 13287 llvm::APSInt IntResult = FXResult.convertToInt( 13288 S.Context.getIntWidth(T), 13289 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 13290 13291 if (Overflowed) { 13292 S.DiagRuntimeBehavior(E->getExprLoc(), E, 13293 S.PDiag(diag::warn_impcast_fixed_point_range) 13294 << FXResult.toString() << T 13295 << E->getSourceRange() 13296 << clang::SourceRange(CC)); 13297 return; 13298 } 13299 } 13300 } 13301 } else if (Target->isUnsaturatedFixedPointType()) { 13302 if (Source->isIntegerType()) { 13303 Expr::EvalResult Result; 13304 if (!S.isConstantEvaluated() && 13305 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 13306 llvm::APSInt Value = Result.Val.getInt(); 13307 13308 bool Overflowed; 13309 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( 13310 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 13311 13312 if (Overflowed) { 13313 S.DiagRuntimeBehavior(E->getExprLoc(), E, 13314 S.PDiag(diag::warn_impcast_fixed_point_range) 13315 << toString(Value, /*Radix=*/10) << T 13316 << E->getSourceRange() 13317 << clang::SourceRange(CC)); 13318 return; 13319 } 13320 } 13321 } 13322 } 13323 13324 // If we are casting an integer type to a floating point type without 13325 // initialization-list syntax, we might lose accuracy if the floating 13326 // point type has a narrower significand than the integer type. 13327 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 13328 TargetBT->isFloatingType() && !IsListInit) { 13329 // Determine the number of precision bits in the source integer type. 13330 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(), 13331 /*Approximate*/ true); 13332 unsigned int SourcePrecision = SourceRange.Width; 13333 13334 // Determine the number of precision bits in the 13335 // target floating point type. 13336 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 13337 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 13338 13339 if (SourcePrecision > 0 && TargetPrecision > 0 && 13340 SourcePrecision > TargetPrecision) { 13341 13342 if (Optional<llvm::APSInt> SourceInt = 13343 E->getIntegerConstantExpr(S.Context)) { 13344 // If the source integer is a constant, convert it to the target 13345 // floating point type. Issue a warning if the value changes 13346 // during the whole conversion. 13347 llvm::APFloat TargetFloatValue( 13348 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 13349 llvm::APFloat::opStatus ConversionStatus = 13350 TargetFloatValue.convertFromAPInt( 13351 *SourceInt, SourceBT->isSignedInteger(), 13352 llvm::APFloat::rmNearestTiesToEven); 13353 13354 if (ConversionStatus != llvm::APFloat::opOK) { 13355 SmallString<32> PrettySourceValue; 13356 SourceInt->toString(PrettySourceValue, 10); 13357 SmallString<32> PrettyTargetValue; 13358 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 13359 13360 S.DiagRuntimeBehavior( 13361 E->getExprLoc(), E, 13362 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 13363 << PrettySourceValue << PrettyTargetValue << E->getType() << T 13364 << E->getSourceRange() << clang::SourceRange(CC)); 13365 } 13366 } else { 13367 // Otherwise, the implicit conversion may lose precision. 13368 DiagnoseImpCast(S, E, T, CC, 13369 diag::warn_impcast_integer_float_precision); 13370 } 13371 } 13372 } 13373 13374 DiagnoseNullConversion(S, E, T, CC); 13375 13376 S.DiscardMisalignedMemberAddress(Target, E); 13377 13378 if (Target->isBooleanType()) 13379 DiagnoseIntInBoolContext(S, E); 13380 13381 if (!Source->isIntegerType() || !Target->isIntegerType()) 13382 return; 13383 13384 // TODO: remove this early return once the false positives for constant->bool 13385 // in templates, macros, etc, are reduced or removed. 13386 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 13387 return; 13388 13389 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 13390 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 13391 return adornObjCBoolConversionDiagWithTernaryFixit( 13392 S, E, 13393 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 13394 << E->getType()); 13395 } 13396 13397 IntRange SourceTypeRange = 13398 IntRange::forTargetOfCanonicalType(S.Context, Source); 13399 IntRange LikelySourceRange = 13400 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true); 13401 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 13402 13403 if (LikelySourceRange.Width > TargetRange.Width) { 13404 // If the source is a constant, use a default-on diagnostic. 13405 // TODO: this should happen for bitfield stores, too. 13406 Expr::EvalResult Result; 13407 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 13408 S.isConstantEvaluated())) { 13409 llvm::APSInt Value(32); 13410 Value = Result.Val.getInt(); 13411 13412 if (S.SourceMgr.isInSystemMacro(CC)) 13413 return; 13414 13415 std::string PrettySourceValue = toString(Value, 10); 13416 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 13417 13418 S.DiagRuntimeBehavior( 13419 E->getExprLoc(), E, 13420 S.PDiag(diag::warn_impcast_integer_precision_constant) 13421 << PrettySourceValue << PrettyTargetValue << E->getType() << T 13422 << E->getSourceRange() << SourceRange(CC)); 13423 return; 13424 } 13425 13426 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 13427 if (S.SourceMgr.isInSystemMacro(CC)) 13428 return; 13429 13430 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 13431 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 13432 /* pruneControlFlow */ true); 13433 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 13434 } 13435 13436 if (TargetRange.Width > SourceTypeRange.Width) { 13437 if (auto *UO = dyn_cast<UnaryOperator>(E)) 13438 if (UO->getOpcode() == UO_Minus) 13439 if (Source->isUnsignedIntegerType()) { 13440 if (Target->isUnsignedIntegerType()) 13441 return DiagnoseImpCast(S, E, T, CC, 13442 diag::warn_impcast_high_order_zero_bits); 13443 if (Target->isSignedIntegerType()) 13444 return DiagnoseImpCast(S, E, T, CC, 13445 diag::warn_impcast_nonnegative_result); 13446 } 13447 } 13448 13449 if (TargetRange.Width == LikelySourceRange.Width && 13450 !TargetRange.NonNegative && LikelySourceRange.NonNegative && 13451 Source->isSignedIntegerType()) { 13452 // Warn when doing a signed to signed conversion, warn if the positive 13453 // source value is exactly the width of the target type, which will 13454 // cause a negative value to be stored. 13455 13456 Expr::EvalResult Result; 13457 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 13458 !S.SourceMgr.isInSystemMacro(CC)) { 13459 llvm::APSInt Value = Result.Val.getInt(); 13460 if (isSameWidthConstantConversion(S, E, T, CC)) { 13461 std::string PrettySourceValue = toString(Value, 10); 13462 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 13463 13464 S.DiagRuntimeBehavior( 13465 E->getExprLoc(), E, 13466 S.PDiag(diag::warn_impcast_integer_precision_constant) 13467 << PrettySourceValue << PrettyTargetValue << E->getType() << T 13468 << E->getSourceRange() << SourceRange(CC)); 13469 return; 13470 } 13471 } 13472 13473 // Fall through for non-constants to give a sign conversion warning. 13474 } 13475 13476 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || 13477 (!TargetRange.NonNegative && LikelySourceRange.NonNegative && 13478 LikelySourceRange.Width == TargetRange.Width)) { 13479 if (S.SourceMgr.isInSystemMacro(CC)) 13480 return; 13481 13482 unsigned DiagID = diag::warn_impcast_integer_sign; 13483 13484 // Traditionally, gcc has warned about this under -Wsign-compare. 13485 // We also want to warn about it in -Wconversion. 13486 // So if -Wconversion is off, use a completely identical diagnostic 13487 // in the sign-compare group. 13488 // The conditional-checking code will 13489 if (ICContext) { 13490 DiagID = diag::warn_impcast_integer_sign_conditional; 13491 *ICContext = true; 13492 } 13493 13494 return DiagnoseImpCast(S, E, T, CC, DiagID); 13495 } 13496 13497 // Diagnose conversions between different enumeration types. 13498 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 13499 // type, to give us better diagnostics. 13500 QualType SourceType = E->getType(); 13501 if (!S.getLangOpts().CPlusPlus) { 13502 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 13503 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 13504 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 13505 SourceType = S.Context.getTypeDeclType(Enum); 13506 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 13507 } 13508 } 13509 13510 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 13511 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 13512 if (SourceEnum->getDecl()->hasNameForLinkage() && 13513 TargetEnum->getDecl()->hasNameForLinkage() && 13514 SourceEnum != TargetEnum) { 13515 if (S.SourceMgr.isInSystemMacro(CC)) 13516 return; 13517 13518 return DiagnoseImpCast(S, E, SourceType, T, CC, 13519 diag::warn_impcast_different_enum_types); 13520 } 13521 } 13522 13523 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 13524 SourceLocation CC, QualType T); 13525 13526 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 13527 SourceLocation CC, bool &ICContext) { 13528 E = E->IgnoreParenImpCasts(); 13529 13530 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) 13531 return CheckConditionalOperator(S, CO, CC, T); 13532 13533 AnalyzeImplicitConversions(S, E, CC); 13534 if (E->getType() != T) 13535 return CheckImplicitConversion(S, E, T, CC, &ICContext); 13536 } 13537 13538 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 13539 SourceLocation CC, QualType T) { 13540 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 13541 13542 Expr *TrueExpr = E->getTrueExpr(); 13543 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) 13544 TrueExpr = BCO->getCommon(); 13545 13546 bool Suspicious = false; 13547 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); 13548 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 13549 13550 if (T->isBooleanType()) 13551 DiagnoseIntInBoolContext(S, E); 13552 13553 // If -Wconversion would have warned about either of the candidates 13554 // for a signedness conversion to the context type... 13555 if (!Suspicious) return; 13556 13557 // ...but it's currently ignored... 13558 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 13559 return; 13560 13561 // ...then check whether it would have warned about either of the 13562 // candidates for a signedness conversion to the condition type. 13563 if (E->getType() == T) return; 13564 13565 Suspicious = false; 13566 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), 13567 E->getType(), CC, &Suspicious); 13568 if (!Suspicious) 13569 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 13570 E->getType(), CC, &Suspicious); 13571 } 13572 13573 /// Check conversion of given expression to boolean. 13574 /// Input argument E is a logical expression. 13575 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 13576 if (S.getLangOpts().Bool) 13577 return; 13578 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 13579 return; 13580 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 13581 } 13582 13583 namespace { 13584 struct AnalyzeImplicitConversionsWorkItem { 13585 Expr *E; 13586 SourceLocation CC; 13587 bool IsListInit; 13588 }; 13589 } 13590 13591 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 13592 /// that should be visited are added to WorkList. 13593 static void AnalyzeImplicitConversions( 13594 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 13595 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 13596 Expr *OrigE = Item.E; 13597 SourceLocation CC = Item.CC; 13598 13599 QualType T = OrigE->getType(); 13600 Expr *E = OrigE->IgnoreParenImpCasts(); 13601 13602 // Propagate whether we are in a C++ list initialization expression. 13603 // If so, we do not issue warnings for implicit int-float conversion 13604 // precision loss, because C++11 narrowing already handles it. 13605 bool IsListInit = Item.IsListInit || 13606 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 13607 13608 if (E->isTypeDependent() || E->isValueDependent()) 13609 return; 13610 13611 Expr *SourceExpr = E; 13612 // Examine, but don't traverse into the source expression of an 13613 // OpaqueValueExpr, since it may have multiple parents and we don't want to 13614 // emit duplicate diagnostics. Its fine to examine the form or attempt to 13615 // evaluate it in the context of checking the specific conversion to T though. 13616 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 13617 if (auto *Src = OVE->getSourceExpr()) 13618 SourceExpr = Src; 13619 13620 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 13621 if (UO->getOpcode() == UO_Not && 13622 UO->getSubExpr()->isKnownToHaveBooleanValue()) 13623 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 13624 << OrigE->getSourceRange() << T->isBooleanType() 13625 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 13626 13627 if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr)) 13628 if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) && 13629 BO->getLHS()->isKnownToHaveBooleanValue() && 13630 BO->getRHS()->isKnownToHaveBooleanValue() && 13631 BO->getLHS()->HasSideEffects(S.Context) && 13632 BO->getRHS()->HasSideEffects(S.Context)) { 13633 S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical) 13634 << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange() 13635 << FixItHint::CreateReplacement( 13636 BO->getOperatorLoc(), 13637 (BO->getOpcode() == BO_And ? "&&" : "||")); 13638 S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int); 13639 } 13640 13641 // For conditional operators, we analyze the arguments as if they 13642 // were being fed directly into the output. 13643 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { 13644 CheckConditionalOperator(S, CO, CC, T); 13645 return; 13646 } 13647 13648 // Check implicit argument conversions for function calls. 13649 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 13650 CheckImplicitArgumentConversions(S, Call, CC); 13651 13652 // Go ahead and check any implicit conversions we might have skipped. 13653 // The non-canonical typecheck is just an optimization; 13654 // CheckImplicitConversion will filter out dead implicit conversions. 13655 if (SourceExpr->getType() != T) 13656 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 13657 13658 // Now continue drilling into this expression. 13659 13660 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 13661 // The bound subexpressions in a PseudoObjectExpr are not reachable 13662 // as transitive children. 13663 // FIXME: Use a more uniform representation for this. 13664 for (auto *SE : POE->semantics()) 13665 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 13666 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 13667 } 13668 13669 // Skip past explicit casts. 13670 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 13671 E = CE->getSubExpr()->IgnoreParenImpCasts(); 13672 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 13673 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 13674 WorkList.push_back({E, CC, IsListInit}); 13675 return; 13676 } 13677 13678 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 13679 // Do a somewhat different check with comparison operators. 13680 if (BO->isComparisonOp()) 13681 return AnalyzeComparison(S, BO); 13682 13683 // And with simple assignments. 13684 if (BO->getOpcode() == BO_Assign) 13685 return AnalyzeAssignment(S, BO); 13686 // And with compound assignments. 13687 if (BO->isAssignmentOp()) 13688 return AnalyzeCompoundAssignment(S, BO); 13689 } 13690 13691 // These break the otherwise-useful invariant below. Fortunately, 13692 // we don't really need to recurse into them, because any internal 13693 // expressions should have been analyzed already when they were 13694 // built into statements. 13695 if (isa<StmtExpr>(E)) return; 13696 13697 // Don't descend into unevaluated contexts. 13698 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 13699 13700 // Now just recurse over the expression's children. 13701 CC = E->getExprLoc(); 13702 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 13703 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 13704 for (Stmt *SubStmt : E->children()) { 13705 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 13706 if (!ChildExpr) 13707 continue; 13708 13709 if (IsLogicalAndOperator && 13710 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 13711 // Ignore checking string literals that are in logical and operators. 13712 // This is a common pattern for asserts. 13713 continue; 13714 WorkList.push_back({ChildExpr, CC, IsListInit}); 13715 } 13716 13717 if (BO && BO->isLogicalOp()) { 13718 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 13719 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 13720 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 13721 13722 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 13723 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 13724 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 13725 } 13726 13727 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 13728 if (U->getOpcode() == UO_LNot) { 13729 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 13730 } else if (U->getOpcode() != UO_AddrOf) { 13731 if (U->getSubExpr()->getType()->isAtomicType()) 13732 S.Diag(U->getSubExpr()->getBeginLoc(), 13733 diag::warn_atomic_implicit_seq_cst); 13734 } 13735 } 13736 } 13737 13738 /// AnalyzeImplicitConversions - Find and report any interesting 13739 /// implicit conversions in the given expression. There are a couple 13740 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 13741 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 13742 bool IsListInit/*= false*/) { 13743 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 13744 WorkList.push_back({OrigE, CC, IsListInit}); 13745 while (!WorkList.empty()) 13746 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 13747 } 13748 13749 /// Diagnose integer type and any valid implicit conversion to it. 13750 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 13751 // Taking into account implicit conversions, 13752 // allow any integer. 13753 if (!E->getType()->isIntegerType()) { 13754 S.Diag(E->getBeginLoc(), 13755 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 13756 return true; 13757 } 13758 // Potentially emit standard warnings for implicit conversions if enabled 13759 // using -Wconversion. 13760 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 13761 return false; 13762 } 13763 13764 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 13765 // Returns true when emitting a warning about taking the address of a reference. 13766 static bool CheckForReference(Sema &SemaRef, const Expr *E, 13767 const PartialDiagnostic &PD) { 13768 E = E->IgnoreParenImpCasts(); 13769 13770 const FunctionDecl *FD = nullptr; 13771 13772 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 13773 if (!DRE->getDecl()->getType()->isReferenceType()) 13774 return false; 13775 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 13776 if (!M->getMemberDecl()->getType()->isReferenceType()) 13777 return false; 13778 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 13779 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 13780 return false; 13781 FD = Call->getDirectCallee(); 13782 } else { 13783 return false; 13784 } 13785 13786 SemaRef.Diag(E->getExprLoc(), PD); 13787 13788 // If possible, point to location of function. 13789 if (FD) { 13790 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 13791 } 13792 13793 return true; 13794 } 13795 13796 // Returns true if the SourceLocation is expanded from any macro body. 13797 // Returns false if the SourceLocation is invalid, is from not in a macro 13798 // expansion, or is from expanded from a top-level macro argument. 13799 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 13800 if (Loc.isInvalid()) 13801 return false; 13802 13803 while (Loc.isMacroID()) { 13804 if (SM.isMacroBodyExpansion(Loc)) 13805 return true; 13806 Loc = SM.getImmediateMacroCallerLoc(Loc); 13807 } 13808 13809 return false; 13810 } 13811 13812 /// Diagnose pointers that are always non-null. 13813 /// \param E the expression containing the pointer 13814 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 13815 /// compared to a null pointer 13816 /// \param IsEqual True when the comparison is equal to a null pointer 13817 /// \param Range Extra SourceRange to highlight in the diagnostic 13818 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 13819 Expr::NullPointerConstantKind NullKind, 13820 bool IsEqual, SourceRange Range) { 13821 if (!E) 13822 return; 13823 13824 // Don't warn inside macros. 13825 if (E->getExprLoc().isMacroID()) { 13826 const SourceManager &SM = getSourceManager(); 13827 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 13828 IsInAnyMacroBody(SM, Range.getBegin())) 13829 return; 13830 } 13831 E = E->IgnoreImpCasts(); 13832 13833 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 13834 13835 if (isa<CXXThisExpr>(E)) { 13836 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 13837 : diag::warn_this_bool_conversion; 13838 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 13839 return; 13840 } 13841 13842 bool IsAddressOf = false; 13843 13844 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 13845 if (UO->getOpcode() != UO_AddrOf) 13846 return; 13847 IsAddressOf = true; 13848 E = UO->getSubExpr(); 13849 } 13850 13851 if (IsAddressOf) { 13852 unsigned DiagID = IsCompare 13853 ? diag::warn_address_of_reference_null_compare 13854 : diag::warn_address_of_reference_bool_conversion; 13855 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 13856 << IsEqual; 13857 if (CheckForReference(*this, E, PD)) { 13858 return; 13859 } 13860 } 13861 13862 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 13863 bool IsParam = isa<NonNullAttr>(NonnullAttr); 13864 std::string Str; 13865 llvm::raw_string_ostream S(Str); 13866 E->printPretty(S, nullptr, getPrintingPolicy()); 13867 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 13868 : diag::warn_cast_nonnull_to_bool; 13869 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 13870 << E->getSourceRange() << Range << IsEqual; 13871 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 13872 }; 13873 13874 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 13875 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 13876 if (auto *Callee = Call->getDirectCallee()) { 13877 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 13878 ComplainAboutNonnullParamOrCall(A); 13879 return; 13880 } 13881 } 13882 } 13883 13884 // Expect to find a single Decl. Skip anything more complicated. 13885 ValueDecl *D = nullptr; 13886 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 13887 D = R->getDecl(); 13888 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 13889 D = M->getMemberDecl(); 13890 } 13891 13892 // Weak Decls can be null. 13893 if (!D || D->isWeak()) 13894 return; 13895 13896 // Check for parameter decl with nonnull attribute 13897 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 13898 if (getCurFunction() && 13899 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 13900 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 13901 ComplainAboutNonnullParamOrCall(A); 13902 return; 13903 } 13904 13905 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 13906 // Skip function template not specialized yet. 13907 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 13908 return; 13909 auto ParamIter = llvm::find(FD->parameters(), PV); 13910 assert(ParamIter != FD->param_end()); 13911 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 13912 13913 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 13914 if (!NonNull->args_size()) { 13915 ComplainAboutNonnullParamOrCall(NonNull); 13916 return; 13917 } 13918 13919 for (const ParamIdx &ArgNo : NonNull->args()) { 13920 if (ArgNo.getASTIndex() == ParamNo) { 13921 ComplainAboutNonnullParamOrCall(NonNull); 13922 return; 13923 } 13924 } 13925 } 13926 } 13927 } 13928 } 13929 13930 QualType T = D->getType(); 13931 const bool IsArray = T->isArrayType(); 13932 const bool IsFunction = T->isFunctionType(); 13933 13934 // Address of function is used to silence the function warning. 13935 if (IsAddressOf && IsFunction) { 13936 return; 13937 } 13938 13939 // Found nothing. 13940 if (!IsAddressOf && !IsFunction && !IsArray) 13941 return; 13942 13943 // Pretty print the expression for the diagnostic. 13944 std::string Str; 13945 llvm::raw_string_ostream S(Str); 13946 E->printPretty(S, nullptr, getPrintingPolicy()); 13947 13948 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 13949 : diag::warn_impcast_pointer_to_bool; 13950 enum { 13951 AddressOf, 13952 FunctionPointer, 13953 ArrayPointer 13954 } DiagType; 13955 if (IsAddressOf) 13956 DiagType = AddressOf; 13957 else if (IsFunction) 13958 DiagType = FunctionPointer; 13959 else if (IsArray) 13960 DiagType = ArrayPointer; 13961 else 13962 llvm_unreachable("Could not determine diagnostic."); 13963 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 13964 << Range << IsEqual; 13965 13966 if (!IsFunction) 13967 return; 13968 13969 // Suggest '&' to silence the function warning. 13970 Diag(E->getExprLoc(), diag::note_function_warning_silence) 13971 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 13972 13973 // Check to see if '()' fixit should be emitted. 13974 QualType ReturnType; 13975 UnresolvedSet<4> NonTemplateOverloads; 13976 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 13977 if (ReturnType.isNull()) 13978 return; 13979 13980 if (IsCompare) { 13981 // There are two cases here. If there is null constant, the only suggest 13982 // for a pointer return type. If the null is 0, then suggest if the return 13983 // type is a pointer or an integer type. 13984 if (!ReturnType->isPointerType()) { 13985 if (NullKind == Expr::NPCK_ZeroExpression || 13986 NullKind == Expr::NPCK_ZeroLiteral) { 13987 if (!ReturnType->isIntegerType()) 13988 return; 13989 } else { 13990 return; 13991 } 13992 } 13993 } else { // !IsCompare 13994 // For function to bool, only suggest if the function pointer has bool 13995 // return type. 13996 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 13997 return; 13998 } 13999 Diag(E->getExprLoc(), diag::note_function_to_function_call) 14000 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 14001 } 14002 14003 /// Diagnoses "dangerous" implicit conversions within the given 14004 /// expression (which is a full expression). Implements -Wconversion 14005 /// and -Wsign-compare. 14006 /// 14007 /// \param CC the "context" location of the implicit conversion, i.e. 14008 /// the most location of the syntactic entity requiring the implicit 14009 /// conversion 14010 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 14011 // Don't diagnose in unevaluated contexts. 14012 if (isUnevaluatedContext()) 14013 return; 14014 14015 // Don't diagnose for value- or type-dependent expressions. 14016 if (E->isTypeDependent() || E->isValueDependent()) 14017 return; 14018 14019 // Check for array bounds violations in cases where the check isn't triggered 14020 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 14021 // ArraySubscriptExpr is on the RHS of a variable initialization. 14022 CheckArrayAccess(E); 14023 14024 // This is not the right CC for (e.g.) a variable initialization. 14025 AnalyzeImplicitConversions(*this, E, CC); 14026 } 14027 14028 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 14029 /// Input argument E is a logical expression. 14030 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 14031 ::CheckBoolLikeConversion(*this, E, CC); 14032 } 14033 14034 /// Diagnose when expression is an integer constant expression and its evaluation 14035 /// results in integer overflow 14036 void Sema::CheckForIntOverflow (Expr *E) { 14037 // Use a work list to deal with nested struct initializers. 14038 SmallVector<Expr *, 2> Exprs(1, E); 14039 14040 do { 14041 Expr *OriginalE = Exprs.pop_back_val(); 14042 Expr *E = OriginalE->IgnoreParenCasts(); 14043 14044 if (isa<BinaryOperator>(E)) { 14045 E->EvaluateForOverflow(Context); 14046 continue; 14047 } 14048 14049 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 14050 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 14051 else if (isa<ObjCBoxedExpr>(OriginalE)) 14052 E->EvaluateForOverflow(Context); 14053 else if (auto Call = dyn_cast<CallExpr>(E)) 14054 Exprs.append(Call->arg_begin(), Call->arg_end()); 14055 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 14056 Exprs.append(Message->arg_begin(), Message->arg_end()); 14057 } while (!Exprs.empty()); 14058 } 14059 14060 namespace { 14061 14062 /// Visitor for expressions which looks for unsequenced operations on the 14063 /// same object. 14064 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 14065 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 14066 14067 /// A tree of sequenced regions within an expression. Two regions are 14068 /// unsequenced if one is an ancestor or a descendent of the other. When we 14069 /// finish processing an expression with sequencing, such as a comma 14070 /// expression, we fold its tree nodes into its parent, since they are 14071 /// unsequenced with respect to nodes we will visit later. 14072 class SequenceTree { 14073 struct Value { 14074 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 14075 unsigned Parent : 31; 14076 unsigned Merged : 1; 14077 }; 14078 SmallVector<Value, 8> Values; 14079 14080 public: 14081 /// A region within an expression which may be sequenced with respect 14082 /// to some other region. 14083 class Seq { 14084 friend class SequenceTree; 14085 14086 unsigned Index; 14087 14088 explicit Seq(unsigned N) : Index(N) {} 14089 14090 public: 14091 Seq() : Index(0) {} 14092 }; 14093 14094 SequenceTree() { Values.push_back(Value(0)); } 14095 Seq root() const { return Seq(0); } 14096 14097 /// Create a new sequence of operations, which is an unsequenced 14098 /// subset of \p Parent. This sequence of operations is sequenced with 14099 /// respect to other children of \p Parent. 14100 Seq allocate(Seq Parent) { 14101 Values.push_back(Value(Parent.Index)); 14102 return Seq(Values.size() - 1); 14103 } 14104 14105 /// Merge a sequence of operations into its parent. 14106 void merge(Seq S) { 14107 Values[S.Index].Merged = true; 14108 } 14109 14110 /// Determine whether two operations are unsequenced. This operation 14111 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 14112 /// should have been merged into its parent as appropriate. 14113 bool isUnsequenced(Seq Cur, Seq Old) { 14114 unsigned C = representative(Cur.Index); 14115 unsigned Target = representative(Old.Index); 14116 while (C >= Target) { 14117 if (C == Target) 14118 return true; 14119 C = Values[C].Parent; 14120 } 14121 return false; 14122 } 14123 14124 private: 14125 /// Pick a representative for a sequence. 14126 unsigned representative(unsigned K) { 14127 if (Values[K].Merged) 14128 // Perform path compression as we go. 14129 return Values[K].Parent = representative(Values[K].Parent); 14130 return K; 14131 } 14132 }; 14133 14134 /// An object for which we can track unsequenced uses. 14135 using Object = const NamedDecl *; 14136 14137 /// Different flavors of object usage which we track. We only track the 14138 /// least-sequenced usage of each kind. 14139 enum UsageKind { 14140 /// A read of an object. Multiple unsequenced reads are OK. 14141 UK_Use, 14142 14143 /// A modification of an object which is sequenced before the value 14144 /// computation of the expression, such as ++n in C++. 14145 UK_ModAsValue, 14146 14147 /// A modification of an object which is not sequenced before the value 14148 /// computation of the expression, such as n++. 14149 UK_ModAsSideEffect, 14150 14151 UK_Count = UK_ModAsSideEffect + 1 14152 }; 14153 14154 /// Bundle together a sequencing region and the expression corresponding 14155 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 14156 struct Usage { 14157 const Expr *UsageExpr; 14158 SequenceTree::Seq Seq; 14159 14160 Usage() : UsageExpr(nullptr) {} 14161 }; 14162 14163 struct UsageInfo { 14164 Usage Uses[UK_Count]; 14165 14166 /// Have we issued a diagnostic for this object already? 14167 bool Diagnosed; 14168 14169 UsageInfo() : Diagnosed(false) {} 14170 }; 14171 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 14172 14173 Sema &SemaRef; 14174 14175 /// Sequenced regions within the expression. 14176 SequenceTree Tree; 14177 14178 /// Declaration modifications and references which we have seen. 14179 UsageInfoMap UsageMap; 14180 14181 /// The region we are currently within. 14182 SequenceTree::Seq Region; 14183 14184 /// Filled in with declarations which were modified as a side-effect 14185 /// (that is, post-increment operations). 14186 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 14187 14188 /// Expressions to check later. We defer checking these to reduce 14189 /// stack usage. 14190 SmallVectorImpl<const Expr *> &WorkList; 14191 14192 /// RAII object wrapping the visitation of a sequenced subexpression of an 14193 /// expression. At the end of this process, the side-effects of the evaluation 14194 /// become sequenced with respect to the value computation of the result, so 14195 /// we downgrade any UK_ModAsSideEffect within the evaluation to 14196 /// UK_ModAsValue. 14197 struct SequencedSubexpression { 14198 SequencedSubexpression(SequenceChecker &Self) 14199 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 14200 Self.ModAsSideEffect = &ModAsSideEffect; 14201 } 14202 14203 ~SequencedSubexpression() { 14204 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 14205 // Add a new usage with usage kind UK_ModAsValue, and then restore 14206 // the previous usage with UK_ModAsSideEffect (thus clearing it if 14207 // the previous one was empty). 14208 UsageInfo &UI = Self.UsageMap[M.first]; 14209 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 14210 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 14211 SideEffectUsage = M.second; 14212 } 14213 Self.ModAsSideEffect = OldModAsSideEffect; 14214 } 14215 14216 SequenceChecker &Self; 14217 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 14218 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 14219 }; 14220 14221 /// RAII object wrapping the visitation of a subexpression which we might 14222 /// choose to evaluate as a constant. If any subexpression is evaluated and 14223 /// found to be non-constant, this allows us to suppress the evaluation of 14224 /// the outer expression. 14225 class EvaluationTracker { 14226 public: 14227 EvaluationTracker(SequenceChecker &Self) 14228 : Self(Self), Prev(Self.EvalTracker) { 14229 Self.EvalTracker = this; 14230 } 14231 14232 ~EvaluationTracker() { 14233 Self.EvalTracker = Prev; 14234 if (Prev) 14235 Prev->EvalOK &= EvalOK; 14236 } 14237 14238 bool evaluate(const Expr *E, bool &Result) { 14239 if (!EvalOK || E->isValueDependent()) 14240 return false; 14241 EvalOK = E->EvaluateAsBooleanCondition( 14242 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 14243 return EvalOK; 14244 } 14245 14246 private: 14247 SequenceChecker &Self; 14248 EvaluationTracker *Prev; 14249 bool EvalOK = true; 14250 } *EvalTracker = nullptr; 14251 14252 /// Find the object which is produced by the specified expression, 14253 /// if any. 14254 Object getObject(const Expr *E, bool Mod) const { 14255 E = E->IgnoreParenCasts(); 14256 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 14257 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 14258 return getObject(UO->getSubExpr(), Mod); 14259 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 14260 if (BO->getOpcode() == BO_Comma) 14261 return getObject(BO->getRHS(), Mod); 14262 if (Mod && BO->isAssignmentOp()) 14263 return getObject(BO->getLHS(), Mod); 14264 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 14265 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 14266 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 14267 return ME->getMemberDecl(); 14268 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 14269 // FIXME: If this is a reference, map through to its value. 14270 return DRE->getDecl(); 14271 return nullptr; 14272 } 14273 14274 /// Note that an object \p O was modified or used by an expression 14275 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 14276 /// the object \p O as obtained via the \p UsageMap. 14277 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 14278 // Get the old usage for the given object and usage kind. 14279 Usage &U = UI.Uses[UK]; 14280 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 14281 // If we have a modification as side effect and are in a sequenced 14282 // subexpression, save the old Usage so that we can restore it later 14283 // in SequencedSubexpression::~SequencedSubexpression. 14284 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 14285 ModAsSideEffect->push_back(std::make_pair(O, U)); 14286 // Then record the new usage with the current sequencing region. 14287 U.UsageExpr = UsageExpr; 14288 U.Seq = Region; 14289 } 14290 } 14291 14292 /// Check whether a modification or use of an object \p O in an expression 14293 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 14294 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 14295 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 14296 /// usage and false we are checking for a mod-use unsequenced usage. 14297 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 14298 UsageKind OtherKind, bool IsModMod) { 14299 if (UI.Diagnosed) 14300 return; 14301 14302 const Usage &U = UI.Uses[OtherKind]; 14303 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 14304 return; 14305 14306 const Expr *Mod = U.UsageExpr; 14307 const Expr *ModOrUse = UsageExpr; 14308 if (OtherKind == UK_Use) 14309 std::swap(Mod, ModOrUse); 14310 14311 SemaRef.DiagRuntimeBehavior( 14312 Mod->getExprLoc(), {Mod, ModOrUse}, 14313 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 14314 : diag::warn_unsequenced_mod_use) 14315 << O << SourceRange(ModOrUse->getExprLoc())); 14316 UI.Diagnosed = true; 14317 } 14318 14319 // A note on note{Pre, Post}{Use, Mod}: 14320 // 14321 // (It helps to follow the algorithm with an expression such as 14322 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 14323 // operations before C++17 and both are well-defined in C++17). 14324 // 14325 // When visiting a node which uses/modify an object we first call notePreUse 14326 // or notePreMod before visiting its sub-expression(s). At this point the 14327 // children of the current node have not yet been visited and so the eventual 14328 // uses/modifications resulting from the children of the current node have not 14329 // been recorded yet. 14330 // 14331 // We then visit the children of the current node. After that notePostUse or 14332 // notePostMod is called. These will 1) detect an unsequenced modification 14333 // as side effect (as in "k++ + k") and 2) add a new usage with the 14334 // appropriate usage kind. 14335 // 14336 // We also have to be careful that some operation sequences modification as 14337 // side effect as well (for example: || or ,). To account for this we wrap 14338 // the visitation of such a sub-expression (for example: the LHS of || or ,) 14339 // with SequencedSubexpression. SequencedSubexpression is an RAII object 14340 // which record usages which are modifications as side effect, and then 14341 // downgrade them (or more accurately restore the previous usage which was a 14342 // modification as side effect) when exiting the scope of the sequenced 14343 // subexpression. 14344 14345 void notePreUse(Object O, const Expr *UseExpr) { 14346 UsageInfo &UI = UsageMap[O]; 14347 // Uses conflict with other modifications. 14348 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 14349 } 14350 14351 void notePostUse(Object O, const Expr *UseExpr) { 14352 UsageInfo &UI = UsageMap[O]; 14353 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 14354 /*IsModMod=*/false); 14355 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 14356 } 14357 14358 void notePreMod(Object O, const Expr *ModExpr) { 14359 UsageInfo &UI = UsageMap[O]; 14360 // Modifications conflict with other modifications and with uses. 14361 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 14362 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 14363 } 14364 14365 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 14366 UsageInfo &UI = UsageMap[O]; 14367 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 14368 /*IsModMod=*/true); 14369 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 14370 } 14371 14372 public: 14373 SequenceChecker(Sema &S, const Expr *E, 14374 SmallVectorImpl<const Expr *> &WorkList) 14375 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 14376 Visit(E); 14377 // Silence a -Wunused-private-field since WorkList is now unused. 14378 // TODO: Evaluate if it can be used, and if not remove it. 14379 (void)this->WorkList; 14380 } 14381 14382 void VisitStmt(const Stmt *S) { 14383 // Skip all statements which aren't expressions for now. 14384 } 14385 14386 void VisitExpr(const Expr *E) { 14387 // By default, just recurse to evaluated subexpressions. 14388 Base::VisitStmt(E); 14389 } 14390 14391 void VisitCastExpr(const CastExpr *E) { 14392 Object O = Object(); 14393 if (E->getCastKind() == CK_LValueToRValue) 14394 O = getObject(E->getSubExpr(), false); 14395 14396 if (O) 14397 notePreUse(O, E); 14398 VisitExpr(E); 14399 if (O) 14400 notePostUse(O, E); 14401 } 14402 14403 void VisitSequencedExpressions(const Expr *SequencedBefore, 14404 const Expr *SequencedAfter) { 14405 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 14406 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 14407 SequenceTree::Seq OldRegion = Region; 14408 14409 { 14410 SequencedSubexpression SeqBefore(*this); 14411 Region = BeforeRegion; 14412 Visit(SequencedBefore); 14413 } 14414 14415 Region = AfterRegion; 14416 Visit(SequencedAfter); 14417 14418 Region = OldRegion; 14419 14420 Tree.merge(BeforeRegion); 14421 Tree.merge(AfterRegion); 14422 } 14423 14424 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 14425 // C++17 [expr.sub]p1: 14426 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 14427 // expression E1 is sequenced before the expression E2. 14428 if (SemaRef.getLangOpts().CPlusPlus17) 14429 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 14430 else { 14431 Visit(ASE->getLHS()); 14432 Visit(ASE->getRHS()); 14433 } 14434 } 14435 14436 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 14437 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 14438 void VisitBinPtrMem(const BinaryOperator *BO) { 14439 // C++17 [expr.mptr.oper]p4: 14440 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 14441 // the expression E1 is sequenced before the expression E2. 14442 if (SemaRef.getLangOpts().CPlusPlus17) 14443 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 14444 else { 14445 Visit(BO->getLHS()); 14446 Visit(BO->getRHS()); 14447 } 14448 } 14449 14450 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 14451 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 14452 void VisitBinShlShr(const BinaryOperator *BO) { 14453 // C++17 [expr.shift]p4: 14454 // The expression E1 is sequenced before the expression E2. 14455 if (SemaRef.getLangOpts().CPlusPlus17) 14456 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 14457 else { 14458 Visit(BO->getLHS()); 14459 Visit(BO->getRHS()); 14460 } 14461 } 14462 14463 void VisitBinComma(const BinaryOperator *BO) { 14464 // C++11 [expr.comma]p1: 14465 // Every value computation and side effect associated with the left 14466 // expression is sequenced before every value computation and side 14467 // effect associated with the right expression. 14468 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 14469 } 14470 14471 void VisitBinAssign(const BinaryOperator *BO) { 14472 SequenceTree::Seq RHSRegion; 14473 SequenceTree::Seq LHSRegion; 14474 if (SemaRef.getLangOpts().CPlusPlus17) { 14475 RHSRegion = Tree.allocate(Region); 14476 LHSRegion = Tree.allocate(Region); 14477 } else { 14478 RHSRegion = Region; 14479 LHSRegion = Region; 14480 } 14481 SequenceTree::Seq OldRegion = Region; 14482 14483 // C++11 [expr.ass]p1: 14484 // [...] the assignment is sequenced after the value computation 14485 // of the right and left operands, [...] 14486 // 14487 // so check it before inspecting the operands and update the 14488 // map afterwards. 14489 Object O = getObject(BO->getLHS(), /*Mod=*/true); 14490 if (O) 14491 notePreMod(O, BO); 14492 14493 if (SemaRef.getLangOpts().CPlusPlus17) { 14494 // C++17 [expr.ass]p1: 14495 // [...] The right operand is sequenced before the left operand. [...] 14496 { 14497 SequencedSubexpression SeqBefore(*this); 14498 Region = RHSRegion; 14499 Visit(BO->getRHS()); 14500 } 14501 14502 Region = LHSRegion; 14503 Visit(BO->getLHS()); 14504 14505 if (O && isa<CompoundAssignOperator>(BO)) 14506 notePostUse(O, BO); 14507 14508 } else { 14509 // C++11 does not specify any sequencing between the LHS and RHS. 14510 Region = LHSRegion; 14511 Visit(BO->getLHS()); 14512 14513 if (O && isa<CompoundAssignOperator>(BO)) 14514 notePostUse(O, BO); 14515 14516 Region = RHSRegion; 14517 Visit(BO->getRHS()); 14518 } 14519 14520 // C++11 [expr.ass]p1: 14521 // the assignment is sequenced [...] before the value computation of the 14522 // assignment expression. 14523 // C11 6.5.16/3 has no such rule. 14524 Region = OldRegion; 14525 if (O) 14526 notePostMod(O, BO, 14527 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 14528 : UK_ModAsSideEffect); 14529 if (SemaRef.getLangOpts().CPlusPlus17) { 14530 Tree.merge(RHSRegion); 14531 Tree.merge(LHSRegion); 14532 } 14533 } 14534 14535 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 14536 VisitBinAssign(CAO); 14537 } 14538 14539 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 14540 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 14541 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 14542 Object O = getObject(UO->getSubExpr(), true); 14543 if (!O) 14544 return VisitExpr(UO); 14545 14546 notePreMod(O, UO); 14547 Visit(UO->getSubExpr()); 14548 // C++11 [expr.pre.incr]p1: 14549 // the expression ++x is equivalent to x+=1 14550 notePostMod(O, UO, 14551 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 14552 : UK_ModAsSideEffect); 14553 } 14554 14555 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 14556 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 14557 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 14558 Object O = getObject(UO->getSubExpr(), true); 14559 if (!O) 14560 return VisitExpr(UO); 14561 14562 notePreMod(O, UO); 14563 Visit(UO->getSubExpr()); 14564 notePostMod(O, UO, UK_ModAsSideEffect); 14565 } 14566 14567 void VisitBinLOr(const BinaryOperator *BO) { 14568 // C++11 [expr.log.or]p2: 14569 // If the second expression is evaluated, every value computation and 14570 // side effect associated with the first expression is sequenced before 14571 // every value computation and side effect associated with the 14572 // second expression. 14573 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 14574 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 14575 SequenceTree::Seq OldRegion = Region; 14576 14577 EvaluationTracker Eval(*this); 14578 { 14579 SequencedSubexpression Sequenced(*this); 14580 Region = LHSRegion; 14581 Visit(BO->getLHS()); 14582 } 14583 14584 // C++11 [expr.log.or]p1: 14585 // [...] the second operand is not evaluated if the first operand 14586 // evaluates to true. 14587 bool EvalResult = false; 14588 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 14589 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 14590 if (ShouldVisitRHS) { 14591 Region = RHSRegion; 14592 Visit(BO->getRHS()); 14593 } 14594 14595 Region = OldRegion; 14596 Tree.merge(LHSRegion); 14597 Tree.merge(RHSRegion); 14598 } 14599 14600 void VisitBinLAnd(const BinaryOperator *BO) { 14601 // C++11 [expr.log.and]p2: 14602 // If the second expression is evaluated, every value computation and 14603 // side effect associated with the first expression is sequenced before 14604 // every value computation and side effect associated with the 14605 // second expression. 14606 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 14607 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 14608 SequenceTree::Seq OldRegion = Region; 14609 14610 EvaluationTracker Eval(*this); 14611 { 14612 SequencedSubexpression Sequenced(*this); 14613 Region = LHSRegion; 14614 Visit(BO->getLHS()); 14615 } 14616 14617 // C++11 [expr.log.and]p1: 14618 // [...] the second operand is not evaluated if the first operand is false. 14619 bool EvalResult = false; 14620 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 14621 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 14622 if (ShouldVisitRHS) { 14623 Region = RHSRegion; 14624 Visit(BO->getRHS()); 14625 } 14626 14627 Region = OldRegion; 14628 Tree.merge(LHSRegion); 14629 Tree.merge(RHSRegion); 14630 } 14631 14632 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 14633 // C++11 [expr.cond]p1: 14634 // [...] Every value computation and side effect associated with the first 14635 // expression is sequenced before every value computation and side effect 14636 // associated with the second or third expression. 14637 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 14638 14639 // No sequencing is specified between the true and false expression. 14640 // However since exactly one of both is going to be evaluated we can 14641 // consider them to be sequenced. This is needed to avoid warning on 14642 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 14643 // both the true and false expressions because we can't evaluate x. 14644 // This will still allow us to detect an expression like (pre C++17) 14645 // "(x ? y += 1 : y += 2) = y". 14646 // 14647 // We don't wrap the visitation of the true and false expression with 14648 // SequencedSubexpression because we don't want to downgrade modifications 14649 // as side effect in the true and false expressions after the visition 14650 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 14651 // not warn between the two "y++", but we should warn between the "y++" 14652 // and the "y". 14653 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 14654 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 14655 SequenceTree::Seq OldRegion = Region; 14656 14657 EvaluationTracker Eval(*this); 14658 { 14659 SequencedSubexpression Sequenced(*this); 14660 Region = ConditionRegion; 14661 Visit(CO->getCond()); 14662 } 14663 14664 // C++11 [expr.cond]p1: 14665 // [...] The first expression is contextually converted to bool (Clause 4). 14666 // It is evaluated and if it is true, the result of the conditional 14667 // expression is the value of the second expression, otherwise that of the 14668 // third expression. Only one of the second and third expressions is 14669 // evaluated. [...] 14670 bool EvalResult = false; 14671 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 14672 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 14673 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 14674 if (ShouldVisitTrueExpr) { 14675 Region = TrueRegion; 14676 Visit(CO->getTrueExpr()); 14677 } 14678 if (ShouldVisitFalseExpr) { 14679 Region = FalseRegion; 14680 Visit(CO->getFalseExpr()); 14681 } 14682 14683 Region = OldRegion; 14684 Tree.merge(ConditionRegion); 14685 Tree.merge(TrueRegion); 14686 Tree.merge(FalseRegion); 14687 } 14688 14689 void VisitCallExpr(const CallExpr *CE) { 14690 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 14691 14692 if (CE->isUnevaluatedBuiltinCall(Context)) 14693 return; 14694 14695 // C++11 [intro.execution]p15: 14696 // When calling a function [...], every value computation and side effect 14697 // associated with any argument expression, or with the postfix expression 14698 // designating the called function, is sequenced before execution of every 14699 // expression or statement in the body of the function [and thus before 14700 // the value computation of its result]. 14701 SequencedSubexpression Sequenced(*this); 14702 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { 14703 // C++17 [expr.call]p5 14704 // The postfix-expression is sequenced before each expression in the 14705 // expression-list and any default argument. [...] 14706 SequenceTree::Seq CalleeRegion; 14707 SequenceTree::Seq OtherRegion; 14708 if (SemaRef.getLangOpts().CPlusPlus17) { 14709 CalleeRegion = Tree.allocate(Region); 14710 OtherRegion = Tree.allocate(Region); 14711 } else { 14712 CalleeRegion = Region; 14713 OtherRegion = Region; 14714 } 14715 SequenceTree::Seq OldRegion = Region; 14716 14717 // Visit the callee expression first. 14718 Region = CalleeRegion; 14719 if (SemaRef.getLangOpts().CPlusPlus17) { 14720 SequencedSubexpression Sequenced(*this); 14721 Visit(CE->getCallee()); 14722 } else { 14723 Visit(CE->getCallee()); 14724 } 14725 14726 // Then visit the argument expressions. 14727 Region = OtherRegion; 14728 for (const Expr *Argument : CE->arguments()) 14729 Visit(Argument); 14730 14731 Region = OldRegion; 14732 if (SemaRef.getLangOpts().CPlusPlus17) { 14733 Tree.merge(CalleeRegion); 14734 Tree.merge(OtherRegion); 14735 } 14736 }); 14737 } 14738 14739 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { 14740 // C++17 [over.match.oper]p2: 14741 // [...] the operator notation is first transformed to the equivalent 14742 // function-call notation as summarized in Table 12 (where @ denotes one 14743 // of the operators covered in the specified subclause). However, the 14744 // operands are sequenced in the order prescribed for the built-in 14745 // operator (Clause 8). 14746 // 14747 // From the above only overloaded binary operators and overloaded call 14748 // operators have sequencing rules in C++17 that we need to handle 14749 // separately. 14750 if (!SemaRef.getLangOpts().CPlusPlus17 || 14751 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) 14752 return VisitCallExpr(CXXOCE); 14753 14754 enum { 14755 NoSequencing, 14756 LHSBeforeRHS, 14757 RHSBeforeLHS, 14758 LHSBeforeRest 14759 } SequencingKind; 14760 switch (CXXOCE->getOperator()) { 14761 case OO_Equal: 14762 case OO_PlusEqual: 14763 case OO_MinusEqual: 14764 case OO_StarEqual: 14765 case OO_SlashEqual: 14766 case OO_PercentEqual: 14767 case OO_CaretEqual: 14768 case OO_AmpEqual: 14769 case OO_PipeEqual: 14770 case OO_LessLessEqual: 14771 case OO_GreaterGreaterEqual: 14772 SequencingKind = RHSBeforeLHS; 14773 break; 14774 14775 case OO_LessLess: 14776 case OO_GreaterGreater: 14777 case OO_AmpAmp: 14778 case OO_PipePipe: 14779 case OO_Comma: 14780 case OO_ArrowStar: 14781 case OO_Subscript: 14782 SequencingKind = LHSBeforeRHS; 14783 break; 14784 14785 case OO_Call: 14786 SequencingKind = LHSBeforeRest; 14787 break; 14788 14789 default: 14790 SequencingKind = NoSequencing; 14791 break; 14792 } 14793 14794 if (SequencingKind == NoSequencing) 14795 return VisitCallExpr(CXXOCE); 14796 14797 // This is a call, so all subexpressions are sequenced before the result. 14798 SequencedSubexpression Sequenced(*this); 14799 14800 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { 14801 assert(SemaRef.getLangOpts().CPlusPlus17 && 14802 "Should only get there with C++17 and above!"); 14803 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && 14804 "Should only get there with an overloaded binary operator" 14805 " or an overloaded call operator!"); 14806 14807 if (SequencingKind == LHSBeforeRest) { 14808 assert(CXXOCE->getOperator() == OO_Call && 14809 "We should only have an overloaded call operator here!"); 14810 14811 // This is very similar to VisitCallExpr, except that we only have the 14812 // C++17 case. The postfix-expression is the first argument of the 14813 // CXXOperatorCallExpr. The expressions in the expression-list, if any, 14814 // are in the following arguments. 14815 // 14816 // Note that we intentionally do not visit the callee expression since 14817 // it is just a decayed reference to a function. 14818 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); 14819 SequenceTree::Seq ArgsRegion = Tree.allocate(Region); 14820 SequenceTree::Seq OldRegion = Region; 14821 14822 assert(CXXOCE->getNumArgs() >= 1 && 14823 "An overloaded call operator must have at least one argument" 14824 " for the postfix-expression!"); 14825 const Expr *PostfixExpr = CXXOCE->getArgs()[0]; 14826 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, 14827 CXXOCE->getNumArgs() - 1); 14828 14829 // Visit the postfix-expression first. 14830 { 14831 Region = PostfixExprRegion; 14832 SequencedSubexpression Sequenced(*this); 14833 Visit(PostfixExpr); 14834 } 14835 14836 // Then visit the argument expressions. 14837 Region = ArgsRegion; 14838 for (const Expr *Arg : Args) 14839 Visit(Arg); 14840 14841 Region = OldRegion; 14842 Tree.merge(PostfixExprRegion); 14843 Tree.merge(ArgsRegion); 14844 } else { 14845 assert(CXXOCE->getNumArgs() == 2 && 14846 "Should only have two arguments here!"); 14847 assert((SequencingKind == LHSBeforeRHS || 14848 SequencingKind == RHSBeforeLHS) && 14849 "Unexpected sequencing kind!"); 14850 14851 // We do not visit the callee expression since it is just a decayed 14852 // reference to a function. 14853 const Expr *E1 = CXXOCE->getArg(0); 14854 const Expr *E2 = CXXOCE->getArg(1); 14855 if (SequencingKind == RHSBeforeLHS) 14856 std::swap(E1, E2); 14857 14858 return VisitSequencedExpressions(E1, E2); 14859 } 14860 }); 14861 } 14862 14863 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 14864 // This is a call, so all subexpressions are sequenced before the result. 14865 SequencedSubexpression Sequenced(*this); 14866 14867 if (!CCE->isListInitialization()) 14868 return VisitExpr(CCE); 14869 14870 // In C++11, list initializations are sequenced. 14871 SmallVector<SequenceTree::Seq, 32> Elts; 14872 SequenceTree::Seq Parent = Region; 14873 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 14874 E = CCE->arg_end(); 14875 I != E; ++I) { 14876 Region = Tree.allocate(Parent); 14877 Elts.push_back(Region); 14878 Visit(*I); 14879 } 14880 14881 // Forget that the initializers are sequenced. 14882 Region = Parent; 14883 for (unsigned I = 0; I < Elts.size(); ++I) 14884 Tree.merge(Elts[I]); 14885 } 14886 14887 void VisitInitListExpr(const InitListExpr *ILE) { 14888 if (!SemaRef.getLangOpts().CPlusPlus11) 14889 return VisitExpr(ILE); 14890 14891 // In C++11, list initializations are sequenced. 14892 SmallVector<SequenceTree::Seq, 32> Elts; 14893 SequenceTree::Seq Parent = Region; 14894 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 14895 const Expr *E = ILE->getInit(I); 14896 if (!E) 14897 continue; 14898 Region = Tree.allocate(Parent); 14899 Elts.push_back(Region); 14900 Visit(E); 14901 } 14902 14903 // Forget that the initializers are sequenced. 14904 Region = Parent; 14905 for (unsigned I = 0; I < Elts.size(); ++I) 14906 Tree.merge(Elts[I]); 14907 } 14908 }; 14909 14910 } // namespace 14911 14912 void Sema::CheckUnsequencedOperations(const Expr *E) { 14913 SmallVector<const Expr *, 8> WorkList; 14914 WorkList.push_back(E); 14915 while (!WorkList.empty()) { 14916 const Expr *Item = WorkList.pop_back_val(); 14917 SequenceChecker(*this, Item, WorkList); 14918 } 14919 } 14920 14921 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 14922 bool IsConstexpr) { 14923 llvm::SaveAndRestore<bool> ConstantContext( 14924 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 14925 CheckImplicitConversions(E, CheckLoc); 14926 if (!E->isInstantiationDependent()) 14927 CheckUnsequencedOperations(E); 14928 if (!IsConstexpr && !E->isValueDependent()) 14929 CheckForIntOverflow(E); 14930 DiagnoseMisalignedMembers(); 14931 } 14932 14933 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 14934 FieldDecl *BitField, 14935 Expr *Init) { 14936 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 14937 } 14938 14939 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 14940 SourceLocation Loc) { 14941 if (!PType->isVariablyModifiedType()) 14942 return; 14943 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 14944 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 14945 return; 14946 } 14947 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 14948 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 14949 return; 14950 } 14951 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 14952 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 14953 return; 14954 } 14955 14956 const ArrayType *AT = S.Context.getAsArrayType(PType); 14957 if (!AT) 14958 return; 14959 14960 if (AT->getSizeModifier() != ArrayType::Star) { 14961 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 14962 return; 14963 } 14964 14965 S.Diag(Loc, diag::err_array_star_in_function_definition); 14966 } 14967 14968 /// CheckParmsForFunctionDef - Check that the parameters of the given 14969 /// function are appropriate for the definition of a function. This 14970 /// takes care of any checks that cannot be performed on the 14971 /// declaration itself, e.g., that the types of each of the function 14972 /// parameters are complete. 14973 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 14974 bool CheckParameterNames) { 14975 bool HasInvalidParm = false; 14976 for (ParmVarDecl *Param : Parameters) { 14977 // C99 6.7.5.3p4: the parameters in a parameter type list in a 14978 // function declarator that is part of a function definition of 14979 // that function shall not have incomplete type. 14980 // 14981 // This is also C++ [dcl.fct]p6. 14982 if (!Param->isInvalidDecl() && 14983 RequireCompleteType(Param->getLocation(), Param->getType(), 14984 diag::err_typecheck_decl_incomplete_type)) { 14985 Param->setInvalidDecl(); 14986 HasInvalidParm = true; 14987 } 14988 14989 // C99 6.9.1p5: If the declarator includes a parameter type list, the 14990 // declaration of each parameter shall include an identifier. 14991 if (CheckParameterNames && Param->getIdentifier() == nullptr && 14992 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 14993 // Diagnose this as an extension in C17 and earlier. 14994 if (!getLangOpts().C2x) 14995 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 14996 } 14997 14998 // C99 6.7.5.3p12: 14999 // If the function declarator is not part of a definition of that 15000 // function, parameters may have incomplete type and may use the [*] 15001 // notation in their sequences of declarator specifiers to specify 15002 // variable length array types. 15003 QualType PType = Param->getOriginalType(); 15004 // FIXME: This diagnostic should point the '[*]' if source-location 15005 // information is added for it. 15006 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 15007 15008 // If the parameter is a c++ class type and it has to be destructed in the 15009 // callee function, declare the destructor so that it can be called by the 15010 // callee function. Do not perform any direct access check on the dtor here. 15011 if (!Param->isInvalidDecl()) { 15012 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 15013 if (!ClassDecl->isInvalidDecl() && 15014 !ClassDecl->hasIrrelevantDestructor() && 15015 !ClassDecl->isDependentContext() && 15016 ClassDecl->isParamDestroyedInCallee()) { 15017 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 15018 MarkFunctionReferenced(Param->getLocation(), Destructor); 15019 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 15020 } 15021 } 15022 } 15023 15024 // Parameters with the pass_object_size attribute only need to be marked 15025 // constant at function definitions. Because we lack information about 15026 // whether we're on a declaration or definition when we're instantiating the 15027 // attribute, we need to check for constness here. 15028 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 15029 if (!Param->getType().isConstQualified()) 15030 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 15031 << Attr->getSpelling() << 1; 15032 15033 // Check for parameter names shadowing fields from the class. 15034 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 15035 // The owning context for the parameter should be the function, but we 15036 // want to see if this function's declaration context is a record. 15037 DeclContext *DC = Param->getDeclContext(); 15038 if (DC && DC->isFunctionOrMethod()) { 15039 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 15040 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 15041 RD, /*DeclIsField*/ false); 15042 } 15043 } 15044 } 15045 15046 return HasInvalidParm; 15047 } 15048 15049 Optional<std::pair<CharUnits, CharUnits>> 15050 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); 15051 15052 /// Compute the alignment and offset of the base class object given the 15053 /// derived-to-base cast expression and the alignment and offset of the derived 15054 /// class object. 15055 static std::pair<CharUnits, CharUnits> 15056 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, 15057 CharUnits BaseAlignment, CharUnits Offset, 15058 ASTContext &Ctx) { 15059 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; 15060 ++PathI) { 15061 const CXXBaseSpecifier *Base = *PathI; 15062 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 15063 if (Base->isVirtual()) { 15064 // The complete object may have a lower alignment than the non-virtual 15065 // alignment of the base, in which case the base may be misaligned. Choose 15066 // the smaller of the non-virtual alignment and BaseAlignment, which is a 15067 // conservative lower bound of the complete object alignment. 15068 CharUnits NonVirtualAlignment = 15069 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); 15070 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); 15071 Offset = CharUnits::Zero(); 15072 } else { 15073 const ASTRecordLayout &RL = 15074 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); 15075 Offset += RL.getBaseClassOffset(BaseDecl); 15076 } 15077 DerivedType = Base->getType(); 15078 } 15079 15080 return std::make_pair(BaseAlignment, Offset); 15081 } 15082 15083 /// Compute the alignment and offset of a binary additive operator. 15084 static Optional<std::pair<CharUnits, CharUnits>> 15085 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, 15086 bool IsSub, ASTContext &Ctx) { 15087 QualType PointeeType = PtrE->getType()->getPointeeType(); 15088 15089 if (!PointeeType->isConstantSizeType()) 15090 return llvm::None; 15091 15092 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); 15093 15094 if (!P) 15095 return llvm::None; 15096 15097 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); 15098 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { 15099 CharUnits Offset = EltSize * IdxRes->getExtValue(); 15100 if (IsSub) 15101 Offset = -Offset; 15102 return std::make_pair(P->first, P->second + Offset); 15103 } 15104 15105 // If the integer expression isn't a constant expression, compute the lower 15106 // bound of the alignment using the alignment and offset of the pointer 15107 // expression and the element size. 15108 return std::make_pair( 15109 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), 15110 CharUnits::Zero()); 15111 } 15112 15113 /// This helper function takes an lvalue expression and returns the alignment of 15114 /// a VarDecl and a constant offset from the VarDecl. 15115 Optional<std::pair<CharUnits, CharUnits>> 15116 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { 15117 E = E->IgnoreParens(); 15118 switch (E->getStmtClass()) { 15119 default: 15120 break; 15121 case Stmt::CStyleCastExprClass: 15122 case Stmt::CXXStaticCastExprClass: 15123 case Stmt::ImplicitCastExprClass: { 15124 auto *CE = cast<CastExpr>(E); 15125 const Expr *From = CE->getSubExpr(); 15126 switch (CE->getCastKind()) { 15127 default: 15128 break; 15129 case CK_NoOp: 15130 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 15131 case CK_UncheckedDerivedToBase: 15132 case CK_DerivedToBase: { 15133 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); 15134 if (!P) 15135 break; 15136 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, 15137 P->second, Ctx); 15138 } 15139 } 15140 break; 15141 } 15142 case Stmt::ArraySubscriptExprClass: { 15143 auto *ASE = cast<ArraySubscriptExpr>(E); 15144 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), 15145 false, Ctx); 15146 } 15147 case Stmt::DeclRefExprClass: { 15148 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 15149 // FIXME: If VD is captured by copy or is an escaping __block variable, 15150 // use the alignment of VD's type. 15151 if (!VD->getType()->isReferenceType()) 15152 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); 15153 if (VD->hasInit()) 15154 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); 15155 } 15156 break; 15157 } 15158 case Stmt::MemberExprClass: { 15159 auto *ME = cast<MemberExpr>(E); 15160 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 15161 if (!FD || FD->getType()->isReferenceType() || 15162 FD->getParent()->isInvalidDecl()) 15163 break; 15164 Optional<std::pair<CharUnits, CharUnits>> P; 15165 if (ME->isArrow()) 15166 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); 15167 else 15168 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); 15169 if (!P) 15170 break; 15171 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 15172 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); 15173 return std::make_pair(P->first, 15174 P->second + CharUnits::fromQuantity(Offset)); 15175 } 15176 case Stmt::UnaryOperatorClass: { 15177 auto *UO = cast<UnaryOperator>(E); 15178 switch (UO->getOpcode()) { 15179 default: 15180 break; 15181 case UO_Deref: 15182 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); 15183 } 15184 break; 15185 } 15186 case Stmt::BinaryOperatorClass: { 15187 auto *BO = cast<BinaryOperator>(E); 15188 auto Opcode = BO->getOpcode(); 15189 switch (Opcode) { 15190 default: 15191 break; 15192 case BO_Comma: 15193 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); 15194 } 15195 break; 15196 } 15197 } 15198 return llvm::None; 15199 } 15200 15201 /// This helper function takes a pointer expression and returns the alignment of 15202 /// a VarDecl and a constant offset from the VarDecl. 15203 Optional<std::pair<CharUnits, CharUnits>> 15204 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { 15205 E = E->IgnoreParens(); 15206 switch (E->getStmtClass()) { 15207 default: 15208 break; 15209 case Stmt::CStyleCastExprClass: 15210 case Stmt::CXXStaticCastExprClass: 15211 case Stmt::ImplicitCastExprClass: { 15212 auto *CE = cast<CastExpr>(E); 15213 const Expr *From = CE->getSubExpr(); 15214 switch (CE->getCastKind()) { 15215 default: 15216 break; 15217 case CK_NoOp: 15218 return getBaseAlignmentAndOffsetFromPtr(From, Ctx); 15219 case CK_ArrayToPointerDecay: 15220 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 15221 case CK_UncheckedDerivedToBase: 15222 case CK_DerivedToBase: { 15223 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); 15224 if (!P) 15225 break; 15226 return getDerivedToBaseAlignmentAndOffset( 15227 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); 15228 } 15229 } 15230 break; 15231 } 15232 case Stmt::CXXThisExprClass: { 15233 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); 15234 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); 15235 return std::make_pair(Alignment, CharUnits::Zero()); 15236 } 15237 case Stmt::UnaryOperatorClass: { 15238 auto *UO = cast<UnaryOperator>(E); 15239 if (UO->getOpcode() == UO_AddrOf) 15240 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); 15241 break; 15242 } 15243 case Stmt::BinaryOperatorClass: { 15244 auto *BO = cast<BinaryOperator>(E); 15245 auto Opcode = BO->getOpcode(); 15246 switch (Opcode) { 15247 default: 15248 break; 15249 case BO_Add: 15250 case BO_Sub: { 15251 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); 15252 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) 15253 std::swap(LHS, RHS); 15254 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, 15255 Ctx); 15256 } 15257 case BO_Comma: 15258 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); 15259 } 15260 break; 15261 } 15262 } 15263 return llvm::None; 15264 } 15265 15266 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { 15267 // See if we can compute the alignment of a VarDecl and an offset from it. 15268 Optional<std::pair<CharUnits, CharUnits>> P = 15269 getBaseAlignmentAndOffsetFromPtr(E, S.Context); 15270 15271 if (P) 15272 return P->first.alignmentAtOffset(P->second); 15273 15274 // If that failed, return the type's alignment. 15275 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); 15276 } 15277 15278 /// CheckCastAlign - Implements -Wcast-align, which warns when a 15279 /// pointer cast increases the alignment requirements. 15280 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 15281 // This is actually a lot of work to potentially be doing on every 15282 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 15283 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 15284 return; 15285 15286 // Ignore dependent types. 15287 if (T->isDependentType() || Op->getType()->isDependentType()) 15288 return; 15289 15290 // Require that the destination be a pointer type. 15291 const PointerType *DestPtr = T->getAs<PointerType>(); 15292 if (!DestPtr) return; 15293 15294 // If the destination has alignment 1, we're done. 15295 QualType DestPointee = DestPtr->getPointeeType(); 15296 if (DestPointee->isIncompleteType()) return; 15297 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 15298 if (DestAlign.isOne()) return; 15299 15300 // Require that the source be a pointer type. 15301 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 15302 if (!SrcPtr) return; 15303 QualType SrcPointee = SrcPtr->getPointeeType(); 15304 15305 // Explicitly allow casts from cv void*. We already implicitly 15306 // allowed casts to cv void*, since they have alignment 1. 15307 // Also allow casts involving incomplete types, which implicitly 15308 // includes 'void'. 15309 if (SrcPointee->isIncompleteType()) return; 15310 15311 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); 15312 15313 if (SrcAlign >= DestAlign) return; 15314 15315 Diag(TRange.getBegin(), diag::warn_cast_align) 15316 << Op->getType() << T 15317 << static_cast<unsigned>(SrcAlign.getQuantity()) 15318 << static_cast<unsigned>(DestAlign.getQuantity()) 15319 << TRange << Op->getSourceRange(); 15320 } 15321 15322 /// Check whether this array fits the idiom of a size-one tail padded 15323 /// array member of a struct. 15324 /// 15325 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 15326 /// commonly used to emulate flexible arrays in C89 code. 15327 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 15328 const NamedDecl *ND) { 15329 if (Size != 1 || !ND) return false; 15330 15331 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 15332 if (!FD) return false; 15333 15334 // Don't consider sizes resulting from macro expansions or template argument 15335 // substitution to form C89 tail-padded arrays. 15336 15337 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 15338 while (TInfo) { 15339 TypeLoc TL = TInfo->getTypeLoc(); 15340 // Look through typedefs. 15341 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 15342 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 15343 TInfo = TDL->getTypeSourceInfo(); 15344 continue; 15345 } 15346 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 15347 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 15348 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 15349 return false; 15350 } 15351 break; 15352 } 15353 15354 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 15355 if (!RD) return false; 15356 if (RD->isUnion()) return false; 15357 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 15358 if (!CRD->isStandardLayout()) return false; 15359 } 15360 15361 // See if this is the last field decl in the record. 15362 const Decl *D = FD; 15363 while ((D = D->getNextDeclInContext())) 15364 if (isa<FieldDecl>(D)) 15365 return false; 15366 return true; 15367 } 15368 15369 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 15370 const ArraySubscriptExpr *ASE, 15371 bool AllowOnePastEnd, bool IndexNegated) { 15372 // Already diagnosed by the constant evaluator. 15373 if (isConstantEvaluated()) 15374 return; 15375 15376 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 15377 if (IndexExpr->isValueDependent()) 15378 return; 15379 15380 const Type *EffectiveType = 15381 BaseExpr->getType()->getPointeeOrArrayElementType(); 15382 BaseExpr = BaseExpr->IgnoreParenCasts(); 15383 const ConstantArrayType *ArrayTy = 15384 Context.getAsConstantArrayType(BaseExpr->getType()); 15385 15386 const Type *BaseType = 15387 ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr(); 15388 bool IsUnboundedArray = (BaseType == nullptr); 15389 if (EffectiveType->isDependentType() || 15390 (!IsUnboundedArray && BaseType->isDependentType())) 15391 return; 15392 15393 Expr::EvalResult Result; 15394 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 15395 return; 15396 15397 llvm::APSInt index = Result.Val.getInt(); 15398 if (IndexNegated) { 15399 index.setIsUnsigned(false); 15400 index = -index; 15401 } 15402 15403 const NamedDecl *ND = nullptr; 15404 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 15405 ND = DRE->getDecl(); 15406 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 15407 ND = ME->getMemberDecl(); 15408 15409 if (IsUnboundedArray) { 15410 if (index.isUnsigned() || !index.isNegative()) { 15411 const auto &ASTC = getASTContext(); 15412 unsigned AddrBits = 15413 ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace( 15414 EffectiveType->getCanonicalTypeInternal())); 15415 if (index.getBitWidth() < AddrBits) 15416 index = index.zext(AddrBits); 15417 Optional<CharUnits> ElemCharUnits = 15418 ASTC.getTypeSizeInCharsIfKnown(EffectiveType); 15419 // PR50741 - If EffectiveType has unknown size (e.g., if it's a void 15420 // pointer) bounds-checking isn't meaningful. 15421 if (!ElemCharUnits) 15422 return; 15423 llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity()); 15424 // If index has more active bits than address space, we already know 15425 // we have a bounds violation to warn about. Otherwise, compute 15426 // address of (index + 1)th element, and warn about bounds violation 15427 // only if that address exceeds address space. 15428 if (index.getActiveBits() <= AddrBits) { 15429 bool Overflow; 15430 llvm::APInt Product(index); 15431 Product += 1; 15432 Product = Product.umul_ov(ElemBytes, Overflow); 15433 if (!Overflow && Product.getActiveBits() <= AddrBits) 15434 return; 15435 } 15436 15437 // Need to compute max possible elements in address space, since that 15438 // is included in diag message. 15439 llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits); 15440 MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth())); 15441 MaxElems += 1; 15442 ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth()); 15443 MaxElems = MaxElems.udiv(ElemBytes); 15444 15445 unsigned DiagID = 15446 ASE ? diag::warn_array_index_exceeds_max_addressable_bounds 15447 : diag::warn_ptr_arith_exceeds_max_addressable_bounds; 15448 15449 // Diag message shows element size in bits and in "bytes" (platform- 15450 // dependent CharUnits) 15451 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 15452 PDiag(DiagID) 15453 << toString(index, 10, true) << AddrBits 15454 << (unsigned)ASTC.toBits(*ElemCharUnits) 15455 << toString(ElemBytes, 10, false) 15456 << toString(MaxElems, 10, false) 15457 << (unsigned)MaxElems.getLimitedValue(~0U) 15458 << IndexExpr->getSourceRange()); 15459 15460 if (!ND) { 15461 // Try harder to find a NamedDecl to point at in the note. 15462 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr)) 15463 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 15464 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 15465 ND = DRE->getDecl(); 15466 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr)) 15467 ND = ME->getMemberDecl(); 15468 } 15469 15470 if (ND) 15471 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 15472 PDiag(diag::note_array_declared_here) << ND); 15473 } 15474 return; 15475 } 15476 15477 if (index.isUnsigned() || !index.isNegative()) { 15478 // It is possible that the type of the base expression after 15479 // IgnoreParenCasts is incomplete, even though the type of the base 15480 // expression before IgnoreParenCasts is complete (see PR39746 for an 15481 // example). In this case we have no information about whether the array 15482 // access exceeds the array bounds. However we can still diagnose an array 15483 // access which precedes the array bounds. 15484 if (BaseType->isIncompleteType()) 15485 return; 15486 15487 llvm::APInt size = ArrayTy->getSize(); 15488 if (!size.isStrictlyPositive()) 15489 return; 15490 15491 if (BaseType != EffectiveType) { 15492 // Make sure we're comparing apples to apples when comparing index to size 15493 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 15494 uint64_t array_typesize = Context.getTypeSize(BaseType); 15495 // Handle ptrarith_typesize being zero, such as when casting to void* 15496 if (!ptrarith_typesize) ptrarith_typesize = 1; 15497 if (ptrarith_typesize != array_typesize) { 15498 // There's a cast to a different size type involved 15499 uint64_t ratio = array_typesize / ptrarith_typesize; 15500 // TODO: Be smarter about handling cases where array_typesize is not a 15501 // multiple of ptrarith_typesize 15502 if (ptrarith_typesize * ratio == array_typesize) 15503 size *= llvm::APInt(size.getBitWidth(), ratio); 15504 } 15505 } 15506 15507 if (size.getBitWidth() > index.getBitWidth()) 15508 index = index.zext(size.getBitWidth()); 15509 else if (size.getBitWidth() < index.getBitWidth()) 15510 size = size.zext(index.getBitWidth()); 15511 15512 // For array subscripting the index must be less than size, but for pointer 15513 // arithmetic also allow the index (offset) to be equal to size since 15514 // computing the next address after the end of the array is legal and 15515 // commonly done e.g. in C++ iterators and range-based for loops. 15516 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 15517 return; 15518 15519 // Also don't warn for arrays of size 1 which are members of some 15520 // structure. These are often used to approximate flexible arrays in C89 15521 // code. 15522 if (IsTailPaddedMemberArray(*this, size, ND)) 15523 return; 15524 15525 // Suppress the warning if the subscript expression (as identified by the 15526 // ']' location) and the index expression are both from macro expansions 15527 // within a system header. 15528 if (ASE) { 15529 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 15530 ASE->getRBracketLoc()); 15531 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 15532 SourceLocation IndexLoc = 15533 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 15534 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 15535 return; 15536 } 15537 } 15538 15539 unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds 15540 : diag::warn_ptr_arith_exceeds_bounds; 15541 15542 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 15543 PDiag(DiagID) << toString(index, 10, true) 15544 << toString(size, 10, true) 15545 << (unsigned)size.getLimitedValue(~0U) 15546 << IndexExpr->getSourceRange()); 15547 } else { 15548 unsigned DiagID = diag::warn_array_index_precedes_bounds; 15549 if (!ASE) { 15550 DiagID = diag::warn_ptr_arith_precedes_bounds; 15551 if (index.isNegative()) index = -index; 15552 } 15553 15554 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 15555 PDiag(DiagID) << toString(index, 10, true) 15556 << IndexExpr->getSourceRange()); 15557 } 15558 15559 if (!ND) { 15560 // Try harder to find a NamedDecl to point at in the note. 15561 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr)) 15562 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 15563 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 15564 ND = DRE->getDecl(); 15565 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr)) 15566 ND = ME->getMemberDecl(); 15567 } 15568 15569 if (ND) 15570 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 15571 PDiag(diag::note_array_declared_here) << ND); 15572 } 15573 15574 void Sema::CheckArrayAccess(const Expr *expr) { 15575 int AllowOnePastEnd = 0; 15576 while (expr) { 15577 expr = expr->IgnoreParenImpCasts(); 15578 switch (expr->getStmtClass()) { 15579 case Stmt::ArraySubscriptExprClass: { 15580 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 15581 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 15582 AllowOnePastEnd > 0); 15583 expr = ASE->getBase(); 15584 break; 15585 } 15586 case Stmt::MemberExprClass: { 15587 expr = cast<MemberExpr>(expr)->getBase(); 15588 break; 15589 } 15590 case Stmt::OMPArraySectionExprClass: { 15591 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 15592 if (ASE->getLowerBound()) 15593 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 15594 /*ASE=*/nullptr, AllowOnePastEnd > 0); 15595 return; 15596 } 15597 case Stmt::UnaryOperatorClass: { 15598 // Only unwrap the * and & unary operators 15599 const UnaryOperator *UO = cast<UnaryOperator>(expr); 15600 expr = UO->getSubExpr(); 15601 switch (UO->getOpcode()) { 15602 case UO_AddrOf: 15603 AllowOnePastEnd++; 15604 break; 15605 case UO_Deref: 15606 AllowOnePastEnd--; 15607 break; 15608 default: 15609 return; 15610 } 15611 break; 15612 } 15613 case Stmt::ConditionalOperatorClass: { 15614 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 15615 if (const Expr *lhs = cond->getLHS()) 15616 CheckArrayAccess(lhs); 15617 if (const Expr *rhs = cond->getRHS()) 15618 CheckArrayAccess(rhs); 15619 return; 15620 } 15621 case Stmt::CXXOperatorCallExprClass: { 15622 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 15623 for (const auto *Arg : OCE->arguments()) 15624 CheckArrayAccess(Arg); 15625 return; 15626 } 15627 default: 15628 return; 15629 } 15630 } 15631 } 15632 15633 //===--- CHECK: Objective-C retain cycles ----------------------------------// 15634 15635 namespace { 15636 15637 struct RetainCycleOwner { 15638 VarDecl *Variable = nullptr; 15639 SourceRange Range; 15640 SourceLocation Loc; 15641 bool Indirect = false; 15642 15643 RetainCycleOwner() = default; 15644 15645 void setLocsFrom(Expr *e) { 15646 Loc = e->getExprLoc(); 15647 Range = e->getSourceRange(); 15648 } 15649 }; 15650 15651 } // namespace 15652 15653 /// Consider whether capturing the given variable can possibly lead to 15654 /// a retain cycle. 15655 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 15656 // In ARC, it's captured strongly iff the variable has __strong 15657 // lifetime. In MRR, it's captured strongly if the variable is 15658 // __block and has an appropriate type. 15659 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 15660 return false; 15661 15662 owner.Variable = var; 15663 if (ref) 15664 owner.setLocsFrom(ref); 15665 return true; 15666 } 15667 15668 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 15669 while (true) { 15670 e = e->IgnoreParens(); 15671 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 15672 switch (cast->getCastKind()) { 15673 case CK_BitCast: 15674 case CK_LValueBitCast: 15675 case CK_LValueToRValue: 15676 case CK_ARCReclaimReturnedObject: 15677 e = cast->getSubExpr(); 15678 continue; 15679 15680 default: 15681 return false; 15682 } 15683 } 15684 15685 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 15686 ObjCIvarDecl *ivar = ref->getDecl(); 15687 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 15688 return false; 15689 15690 // Try to find a retain cycle in the base. 15691 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 15692 return false; 15693 15694 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 15695 owner.Indirect = true; 15696 return true; 15697 } 15698 15699 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 15700 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 15701 if (!var) return false; 15702 return considerVariable(var, ref, owner); 15703 } 15704 15705 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 15706 if (member->isArrow()) return false; 15707 15708 // Don't count this as an indirect ownership. 15709 e = member->getBase(); 15710 continue; 15711 } 15712 15713 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 15714 // Only pay attention to pseudo-objects on property references. 15715 ObjCPropertyRefExpr *pre 15716 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 15717 ->IgnoreParens()); 15718 if (!pre) return false; 15719 if (pre->isImplicitProperty()) return false; 15720 ObjCPropertyDecl *property = pre->getExplicitProperty(); 15721 if (!property->isRetaining() && 15722 !(property->getPropertyIvarDecl() && 15723 property->getPropertyIvarDecl()->getType() 15724 .getObjCLifetime() == Qualifiers::OCL_Strong)) 15725 return false; 15726 15727 owner.Indirect = true; 15728 if (pre->isSuperReceiver()) { 15729 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 15730 if (!owner.Variable) 15731 return false; 15732 owner.Loc = pre->getLocation(); 15733 owner.Range = pre->getSourceRange(); 15734 return true; 15735 } 15736 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 15737 ->getSourceExpr()); 15738 continue; 15739 } 15740 15741 // Array ivars? 15742 15743 return false; 15744 } 15745 } 15746 15747 namespace { 15748 15749 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 15750 ASTContext &Context; 15751 VarDecl *Variable; 15752 Expr *Capturer = nullptr; 15753 bool VarWillBeReased = false; 15754 15755 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 15756 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 15757 Context(Context), Variable(variable) {} 15758 15759 void VisitDeclRefExpr(DeclRefExpr *ref) { 15760 if (ref->getDecl() == Variable && !Capturer) 15761 Capturer = ref; 15762 } 15763 15764 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 15765 if (Capturer) return; 15766 Visit(ref->getBase()); 15767 if (Capturer && ref->isFreeIvar()) 15768 Capturer = ref; 15769 } 15770 15771 void VisitBlockExpr(BlockExpr *block) { 15772 // Look inside nested blocks 15773 if (block->getBlockDecl()->capturesVariable(Variable)) 15774 Visit(block->getBlockDecl()->getBody()); 15775 } 15776 15777 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 15778 if (Capturer) return; 15779 if (OVE->getSourceExpr()) 15780 Visit(OVE->getSourceExpr()); 15781 } 15782 15783 void VisitBinaryOperator(BinaryOperator *BinOp) { 15784 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 15785 return; 15786 Expr *LHS = BinOp->getLHS(); 15787 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 15788 if (DRE->getDecl() != Variable) 15789 return; 15790 if (Expr *RHS = BinOp->getRHS()) { 15791 RHS = RHS->IgnoreParenCasts(); 15792 Optional<llvm::APSInt> Value; 15793 VarWillBeReased = 15794 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) && 15795 *Value == 0); 15796 } 15797 } 15798 } 15799 }; 15800 15801 } // namespace 15802 15803 /// Check whether the given argument is a block which captures a 15804 /// variable. 15805 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 15806 assert(owner.Variable && owner.Loc.isValid()); 15807 15808 e = e->IgnoreParenCasts(); 15809 15810 // Look through [^{...} copy] and Block_copy(^{...}). 15811 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 15812 Selector Cmd = ME->getSelector(); 15813 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 15814 e = ME->getInstanceReceiver(); 15815 if (!e) 15816 return nullptr; 15817 e = e->IgnoreParenCasts(); 15818 } 15819 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 15820 if (CE->getNumArgs() == 1) { 15821 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 15822 if (Fn) { 15823 const IdentifierInfo *FnI = Fn->getIdentifier(); 15824 if (FnI && FnI->isStr("_Block_copy")) { 15825 e = CE->getArg(0)->IgnoreParenCasts(); 15826 } 15827 } 15828 } 15829 } 15830 15831 BlockExpr *block = dyn_cast<BlockExpr>(e); 15832 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 15833 return nullptr; 15834 15835 FindCaptureVisitor visitor(S.Context, owner.Variable); 15836 visitor.Visit(block->getBlockDecl()->getBody()); 15837 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 15838 } 15839 15840 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 15841 RetainCycleOwner &owner) { 15842 assert(capturer); 15843 assert(owner.Variable && owner.Loc.isValid()); 15844 15845 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 15846 << owner.Variable << capturer->getSourceRange(); 15847 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 15848 << owner.Indirect << owner.Range; 15849 } 15850 15851 /// Check for a keyword selector that starts with the word 'add' or 15852 /// 'set'. 15853 static bool isSetterLikeSelector(Selector sel) { 15854 if (sel.isUnarySelector()) return false; 15855 15856 StringRef str = sel.getNameForSlot(0); 15857 while (!str.empty() && str.front() == '_') str = str.substr(1); 15858 if (str.startswith("set")) 15859 str = str.substr(3); 15860 else if (str.startswith("add")) { 15861 // Specially allow 'addOperationWithBlock:'. 15862 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 15863 return false; 15864 str = str.substr(3); 15865 } 15866 else 15867 return false; 15868 15869 if (str.empty()) return true; 15870 return !isLowercase(str.front()); 15871 } 15872 15873 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 15874 ObjCMessageExpr *Message) { 15875 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 15876 Message->getReceiverInterface(), 15877 NSAPI::ClassId_NSMutableArray); 15878 if (!IsMutableArray) { 15879 return None; 15880 } 15881 15882 Selector Sel = Message->getSelector(); 15883 15884 Optional<NSAPI::NSArrayMethodKind> MKOpt = 15885 S.NSAPIObj->getNSArrayMethodKind(Sel); 15886 if (!MKOpt) { 15887 return None; 15888 } 15889 15890 NSAPI::NSArrayMethodKind MK = *MKOpt; 15891 15892 switch (MK) { 15893 case NSAPI::NSMutableArr_addObject: 15894 case NSAPI::NSMutableArr_insertObjectAtIndex: 15895 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 15896 return 0; 15897 case NSAPI::NSMutableArr_replaceObjectAtIndex: 15898 return 1; 15899 15900 default: 15901 return None; 15902 } 15903 15904 return None; 15905 } 15906 15907 static 15908 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 15909 ObjCMessageExpr *Message) { 15910 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 15911 Message->getReceiverInterface(), 15912 NSAPI::ClassId_NSMutableDictionary); 15913 if (!IsMutableDictionary) { 15914 return None; 15915 } 15916 15917 Selector Sel = Message->getSelector(); 15918 15919 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 15920 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 15921 if (!MKOpt) { 15922 return None; 15923 } 15924 15925 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 15926 15927 switch (MK) { 15928 case NSAPI::NSMutableDict_setObjectForKey: 15929 case NSAPI::NSMutableDict_setValueForKey: 15930 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 15931 return 0; 15932 15933 default: 15934 return None; 15935 } 15936 15937 return None; 15938 } 15939 15940 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 15941 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 15942 Message->getReceiverInterface(), 15943 NSAPI::ClassId_NSMutableSet); 15944 15945 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 15946 Message->getReceiverInterface(), 15947 NSAPI::ClassId_NSMutableOrderedSet); 15948 if (!IsMutableSet && !IsMutableOrderedSet) { 15949 return None; 15950 } 15951 15952 Selector Sel = Message->getSelector(); 15953 15954 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 15955 if (!MKOpt) { 15956 return None; 15957 } 15958 15959 NSAPI::NSSetMethodKind MK = *MKOpt; 15960 15961 switch (MK) { 15962 case NSAPI::NSMutableSet_addObject: 15963 case NSAPI::NSOrderedSet_setObjectAtIndex: 15964 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 15965 case NSAPI::NSOrderedSet_insertObjectAtIndex: 15966 return 0; 15967 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 15968 return 1; 15969 } 15970 15971 return None; 15972 } 15973 15974 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 15975 if (!Message->isInstanceMessage()) { 15976 return; 15977 } 15978 15979 Optional<int> ArgOpt; 15980 15981 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 15982 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 15983 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 15984 return; 15985 } 15986 15987 int ArgIndex = *ArgOpt; 15988 15989 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 15990 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 15991 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 15992 } 15993 15994 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 15995 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 15996 if (ArgRE->isObjCSelfExpr()) { 15997 Diag(Message->getSourceRange().getBegin(), 15998 diag::warn_objc_circular_container) 15999 << ArgRE->getDecl() << StringRef("'super'"); 16000 } 16001 } 16002 } else { 16003 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 16004 16005 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 16006 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 16007 } 16008 16009 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 16010 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 16011 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 16012 ValueDecl *Decl = ReceiverRE->getDecl(); 16013 Diag(Message->getSourceRange().getBegin(), 16014 diag::warn_objc_circular_container) 16015 << Decl << Decl; 16016 if (!ArgRE->isObjCSelfExpr()) { 16017 Diag(Decl->getLocation(), 16018 diag::note_objc_circular_container_declared_here) 16019 << Decl; 16020 } 16021 } 16022 } 16023 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 16024 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 16025 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 16026 ObjCIvarDecl *Decl = IvarRE->getDecl(); 16027 Diag(Message->getSourceRange().getBegin(), 16028 diag::warn_objc_circular_container) 16029 << Decl << Decl; 16030 Diag(Decl->getLocation(), 16031 diag::note_objc_circular_container_declared_here) 16032 << Decl; 16033 } 16034 } 16035 } 16036 } 16037 } 16038 16039 /// Check a message send to see if it's likely to cause a retain cycle. 16040 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 16041 // Only check instance methods whose selector looks like a setter. 16042 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 16043 return; 16044 16045 // Try to find a variable that the receiver is strongly owned by. 16046 RetainCycleOwner owner; 16047 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 16048 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 16049 return; 16050 } else { 16051 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 16052 owner.Variable = getCurMethodDecl()->getSelfDecl(); 16053 owner.Loc = msg->getSuperLoc(); 16054 owner.Range = msg->getSuperLoc(); 16055 } 16056 16057 // Check whether the receiver is captured by any of the arguments. 16058 const ObjCMethodDecl *MD = msg->getMethodDecl(); 16059 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 16060 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 16061 // noescape blocks should not be retained by the method. 16062 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 16063 continue; 16064 return diagnoseRetainCycle(*this, capturer, owner); 16065 } 16066 } 16067 } 16068 16069 /// Check a property assign to see if it's likely to cause a retain cycle. 16070 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 16071 RetainCycleOwner owner; 16072 if (!findRetainCycleOwner(*this, receiver, owner)) 16073 return; 16074 16075 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 16076 diagnoseRetainCycle(*this, capturer, owner); 16077 } 16078 16079 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 16080 RetainCycleOwner Owner; 16081 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 16082 return; 16083 16084 // Because we don't have an expression for the variable, we have to set the 16085 // location explicitly here. 16086 Owner.Loc = Var->getLocation(); 16087 Owner.Range = Var->getSourceRange(); 16088 16089 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 16090 diagnoseRetainCycle(*this, Capturer, Owner); 16091 } 16092 16093 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 16094 Expr *RHS, bool isProperty) { 16095 // Check if RHS is an Objective-C object literal, which also can get 16096 // immediately zapped in a weak reference. Note that we explicitly 16097 // allow ObjCStringLiterals, since those are designed to never really die. 16098 RHS = RHS->IgnoreParenImpCasts(); 16099 16100 // This enum needs to match with the 'select' in 16101 // warn_objc_arc_literal_assign (off-by-1). 16102 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 16103 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 16104 return false; 16105 16106 S.Diag(Loc, diag::warn_arc_literal_assign) 16107 << (unsigned) Kind 16108 << (isProperty ? 0 : 1) 16109 << RHS->getSourceRange(); 16110 16111 return true; 16112 } 16113 16114 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 16115 Qualifiers::ObjCLifetime LT, 16116 Expr *RHS, bool isProperty) { 16117 // Strip off any implicit cast added to get to the one ARC-specific. 16118 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 16119 if (cast->getCastKind() == CK_ARCConsumeObject) { 16120 S.Diag(Loc, diag::warn_arc_retained_assign) 16121 << (LT == Qualifiers::OCL_ExplicitNone) 16122 << (isProperty ? 0 : 1) 16123 << RHS->getSourceRange(); 16124 return true; 16125 } 16126 RHS = cast->getSubExpr(); 16127 } 16128 16129 if (LT == Qualifiers::OCL_Weak && 16130 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 16131 return true; 16132 16133 return false; 16134 } 16135 16136 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 16137 QualType LHS, Expr *RHS) { 16138 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 16139 16140 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 16141 return false; 16142 16143 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 16144 return true; 16145 16146 return false; 16147 } 16148 16149 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 16150 Expr *LHS, Expr *RHS) { 16151 QualType LHSType; 16152 // PropertyRef on LHS type need be directly obtained from 16153 // its declaration as it has a PseudoType. 16154 ObjCPropertyRefExpr *PRE 16155 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 16156 if (PRE && !PRE->isImplicitProperty()) { 16157 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 16158 if (PD) 16159 LHSType = PD->getType(); 16160 } 16161 16162 if (LHSType.isNull()) 16163 LHSType = LHS->getType(); 16164 16165 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 16166 16167 if (LT == Qualifiers::OCL_Weak) { 16168 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 16169 getCurFunction()->markSafeWeakUse(LHS); 16170 } 16171 16172 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 16173 return; 16174 16175 // FIXME. Check for other life times. 16176 if (LT != Qualifiers::OCL_None) 16177 return; 16178 16179 if (PRE) { 16180 if (PRE->isImplicitProperty()) 16181 return; 16182 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 16183 if (!PD) 16184 return; 16185 16186 unsigned Attributes = PD->getPropertyAttributes(); 16187 if (Attributes & ObjCPropertyAttribute::kind_assign) { 16188 // when 'assign' attribute was not explicitly specified 16189 // by user, ignore it and rely on property type itself 16190 // for lifetime info. 16191 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 16192 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 16193 LHSType->isObjCRetainableType()) 16194 return; 16195 16196 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 16197 if (cast->getCastKind() == CK_ARCConsumeObject) { 16198 Diag(Loc, diag::warn_arc_retained_property_assign) 16199 << RHS->getSourceRange(); 16200 return; 16201 } 16202 RHS = cast->getSubExpr(); 16203 } 16204 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 16205 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 16206 return; 16207 } 16208 } 16209 } 16210 16211 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 16212 16213 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 16214 SourceLocation StmtLoc, 16215 const NullStmt *Body) { 16216 // Do not warn if the body is a macro that expands to nothing, e.g: 16217 // 16218 // #define CALL(x) 16219 // if (condition) 16220 // CALL(0); 16221 if (Body->hasLeadingEmptyMacro()) 16222 return false; 16223 16224 // Get line numbers of statement and body. 16225 bool StmtLineInvalid; 16226 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 16227 &StmtLineInvalid); 16228 if (StmtLineInvalid) 16229 return false; 16230 16231 bool BodyLineInvalid; 16232 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 16233 &BodyLineInvalid); 16234 if (BodyLineInvalid) 16235 return false; 16236 16237 // Warn if null statement and body are on the same line. 16238 if (StmtLine != BodyLine) 16239 return false; 16240 16241 return true; 16242 } 16243 16244 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 16245 const Stmt *Body, 16246 unsigned DiagID) { 16247 // Since this is a syntactic check, don't emit diagnostic for template 16248 // instantiations, this just adds noise. 16249 if (CurrentInstantiationScope) 16250 return; 16251 16252 // The body should be a null statement. 16253 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 16254 if (!NBody) 16255 return; 16256 16257 // Do the usual checks. 16258 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 16259 return; 16260 16261 Diag(NBody->getSemiLoc(), DiagID); 16262 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 16263 } 16264 16265 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 16266 const Stmt *PossibleBody) { 16267 assert(!CurrentInstantiationScope); // Ensured by caller 16268 16269 SourceLocation StmtLoc; 16270 const Stmt *Body; 16271 unsigned DiagID; 16272 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 16273 StmtLoc = FS->getRParenLoc(); 16274 Body = FS->getBody(); 16275 DiagID = diag::warn_empty_for_body; 16276 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 16277 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 16278 Body = WS->getBody(); 16279 DiagID = diag::warn_empty_while_body; 16280 } else 16281 return; // Neither `for' nor `while'. 16282 16283 // The body should be a null statement. 16284 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 16285 if (!NBody) 16286 return; 16287 16288 // Skip expensive checks if diagnostic is disabled. 16289 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 16290 return; 16291 16292 // Do the usual checks. 16293 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 16294 return; 16295 16296 // `for(...);' and `while(...);' are popular idioms, so in order to keep 16297 // noise level low, emit diagnostics only if for/while is followed by a 16298 // CompoundStmt, e.g.: 16299 // for (int i = 0; i < n; i++); 16300 // { 16301 // a(i); 16302 // } 16303 // or if for/while is followed by a statement with more indentation 16304 // than for/while itself: 16305 // for (int i = 0; i < n; i++); 16306 // a(i); 16307 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 16308 if (!ProbableTypo) { 16309 bool BodyColInvalid; 16310 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 16311 PossibleBody->getBeginLoc(), &BodyColInvalid); 16312 if (BodyColInvalid) 16313 return; 16314 16315 bool StmtColInvalid; 16316 unsigned StmtCol = 16317 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 16318 if (StmtColInvalid) 16319 return; 16320 16321 if (BodyCol > StmtCol) 16322 ProbableTypo = true; 16323 } 16324 16325 if (ProbableTypo) { 16326 Diag(NBody->getSemiLoc(), DiagID); 16327 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 16328 } 16329 } 16330 16331 //===--- CHECK: Warn on self move with std::move. -------------------------===// 16332 16333 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 16334 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 16335 SourceLocation OpLoc) { 16336 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 16337 return; 16338 16339 if (inTemplateInstantiation()) 16340 return; 16341 16342 // Strip parens and casts away. 16343 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 16344 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 16345 16346 // Check for a call expression 16347 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 16348 if (!CE || CE->getNumArgs() != 1) 16349 return; 16350 16351 // Check for a call to std::move 16352 if (!CE->isCallToStdMove()) 16353 return; 16354 16355 // Get argument from std::move 16356 RHSExpr = CE->getArg(0); 16357 16358 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 16359 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 16360 16361 // Two DeclRefExpr's, check that the decls are the same. 16362 if (LHSDeclRef && RHSDeclRef) { 16363 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 16364 return; 16365 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 16366 RHSDeclRef->getDecl()->getCanonicalDecl()) 16367 return; 16368 16369 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 16370 << LHSExpr->getSourceRange() 16371 << RHSExpr->getSourceRange(); 16372 return; 16373 } 16374 16375 // Member variables require a different approach to check for self moves. 16376 // MemberExpr's are the same if every nested MemberExpr refers to the same 16377 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 16378 // the base Expr's are CXXThisExpr's. 16379 const Expr *LHSBase = LHSExpr; 16380 const Expr *RHSBase = RHSExpr; 16381 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 16382 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 16383 if (!LHSME || !RHSME) 16384 return; 16385 16386 while (LHSME && RHSME) { 16387 if (LHSME->getMemberDecl()->getCanonicalDecl() != 16388 RHSME->getMemberDecl()->getCanonicalDecl()) 16389 return; 16390 16391 LHSBase = LHSME->getBase(); 16392 RHSBase = RHSME->getBase(); 16393 LHSME = dyn_cast<MemberExpr>(LHSBase); 16394 RHSME = dyn_cast<MemberExpr>(RHSBase); 16395 } 16396 16397 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 16398 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 16399 if (LHSDeclRef && RHSDeclRef) { 16400 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 16401 return; 16402 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 16403 RHSDeclRef->getDecl()->getCanonicalDecl()) 16404 return; 16405 16406 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 16407 << LHSExpr->getSourceRange() 16408 << RHSExpr->getSourceRange(); 16409 return; 16410 } 16411 16412 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 16413 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 16414 << LHSExpr->getSourceRange() 16415 << RHSExpr->getSourceRange(); 16416 } 16417 16418 //===--- Layout compatibility ----------------------------------------------// 16419 16420 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 16421 16422 /// Check if two enumeration types are layout-compatible. 16423 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 16424 // C++11 [dcl.enum] p8: 16425 // Two enumeration types are layout-compatible if they have the same 16426 // underlying type. 16427 return ED1->isComplete() && ED2->isComplete() && 16428 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 16429 } 16430 16431 /// Check if two fields are layout-compatible. 16432 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 16433 FieldDecl *Field2) { 16434 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 16435 return false; 16436 16437 if (Field1->isBitField() != Field2->isBitField()) 16438 return false; 16439 16440 if (Field1->isBitField()) { 16441 // Make sure that the bit-fields are the same length. 16442 unsigned Bits1 = Field1->getBitWidthValue(C); 16443 unsigned Bits2 = Field2->getBitWidthValue(C); 16444 16445 if (Bits1 != Bits2) 16446 return false; 16447 } 16448 16449 return true; 16450 } 16451 16452 /// Check if two standard-layout structs are layout-compatible. 16453 /// (C++11 [class.mem] p17) 16454 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 16455 RecordDecl *RD2) { 16456 // If both records are C++ classes, check that base classes match. 16457 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 16458 // If one of records is a CXXRecordDecl we are in C++ mode, 16459 // thus the other one is a CXXRecordDecl, too. 16460 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 16461 // Check number of base classes. 16462 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 16463 return false; 16464 16465 // Check the base classes. 16466 for (CXXRecordDecl::base_class_const_iterator 16467 Base1 = D1CXX->bases_begin(), 16468 BaseEnd1 = D1CXX->bases_end(), 16469 Base2 = D2CXX->bases_begin(); 16470 Base1 != BaseEnd1; 16471 ++Base1, ++Base2) { 16472 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 16473 return false; 16474 } 16475 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 16476 // If only RD2 is a C++ class, it should have zero base classes. 16477 if (D2CXX->getNumBases() > 0) 16478 return false; 16479 } 16480 16481 // Check the fields. 16482 RecordDecl::field_iterator Field2 = RD2->field_begin(), 16483 Field2End = RD2->field_end(), 16484 Field1 = RD1->field_begin(), 16485 Field1End = RD1->field_end(); 16486 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 16487 if (!isLayoutCompatible(C, *Field1, *Field2)) 16488 return false; 16489 } 16490 if (Field1 != Field1End || Field2 != Field2End) 16491 return false; 16492 16493 return true; 16494 } 16495 16496 /// Check if two standard-layout unions are layout-compatible. 16497 /// (C++11 [class.mem] p18) 16498 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 16499 RecordDecl *RD2) { 16500 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 16501 for (auto *Field2 : RD2->fields()) 16502 UnmatchedFields.insert(Field2); 16503 16504 for (auto *Field1 : RD1->fields()) { 16505 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 16506 I = UnmatchedFields.begin(), 16507 E = UnmatchedFields.end(); 16508 16509 for ( ; I != E; ++I) { 16510 if (isLayoutCompatible(C, Field1, *I)) { 16511 bool Result = UnmatchedFields.erase(*I); 16512 (void) Result; 16513 assert(Result); 16514 break; 16515 } 16516 } 16517 if (I == E) 16518 return false; 16519 } 16520 16521 return UnmatchedFields.empty(); 16522 } 16523 16524 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 16525 RecordDecl *RD2) { 16526 if (RD1->isUnion() != RD2->isUnion()) 16527 return false; 16528 16529 if (RD1->isUnion()) 16530 return isLayoutCompatibleUnion(C, RD1, RD2); 16531 else 16532 return isLayoutCompatibleStruct(C, RD1, RD2); 16533 } 16534 16535 /// Check if two types are layout-compatible in C++11 sense. 16536 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 16537 if (T1.isNull() || T2.isNull()) 16538 return false; 16539 16540 // C++11 [basic.types] p11: 16541 // If two types T1 and T2 are the same type, then T1 and T2 are 16542 // layout-compatible types. 16543 if (C.hasSameType(T1, T2)) 16544 return true; 16545 16546 T1 = T1.getCanonicalType().getUnqualifiedType(); 16547 T2 = T2.getCanonicalType().getUnqualifiedType(); 16548 16549 const Type::TypeClass TC1 = T1->getTypeClass(); 16550 const Type::TypeClass TC2 = T2->getTypeClass(); 16551 16552 if (TC1 != TC2) 16553 return false; 16554 16555 if (TC1 == Type::Enum) { 16556 return isLayoutCompatible(C, 16557 cast<EnumType>(T1)->getDecl(), 16558 cast<EnumType>(T2)->getDecl()); 16559 } else if (TC1 == Type::Record) { 16560 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 16561 return false; 16562 16563 return isLayoutCompatible(C, 16564 cast<RecordType>(T1)->getDecl(), 16565 cast<RecordType>(T2)->getDecl()); 16566 } 16567 16568 return false; 16569 } 16570 16571 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 16572 16573 /// Given a type tag expression find the type tag itself. 16574 /// 16575 /// \param TypeExpr Type tag expression, as it appears in user's code. 16576 /// 16577 /// \param VD Declaration of an identifier that appears in a type tag. 16578 /// 16579 /// \param MagicValue Type tag magic value. 16580 /// 16581 /// \param isConstantEvaluated whether the evalaution should be performed in 16582 16583 /// constant context. 16584 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 16585 const ValueDecl **VD, uint64_t *MagicValue, 16586 bool isConstantEvaluated) { 16587 while(true) { 16588 if (!TypeExpr) 16589 return false; 16590 16591 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 16592 16593 switch (TypeExpr->getStmtClass()) { 16594 case Stmt::UnaryOperatorClass: { 16595 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 16596 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 16597 TypeExpr = UO->getSubExpr(); 16598 continue; 16599 } 16600 return false; 16601 } 16602 16603 case Stmt::DeclRefExprClass: { 16604 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 16605 *VD = DRE->getDecl(); 16606 return true; 16607 } 16608 16609 case Stmt::IntegerLiteralClass: { 16610 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 16611 llvm::APInt MagicValueAPInt = IL->getValue(); 16612 if (MagicValueAPInt.getActiveBits() <= 64) { 16613 *MagicValue = MagicValueAPInt.getZExtValue(); 16614 return true; 16615 } else 16616 return false; 16617 } 16618 16619 case Stmt::BinaryConditionalOperatorClass: 16620 case Stmt::ConditionalOperatorClass: { 16621 const AbstractConditionalOperator *ACO = 16622 cast<AbstractConditionalOperator>(TypeExpr); 16623 bool Result; 16624 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 16625 isConstantEvaluated)) { 16626 if (Result) 16627 TypeExpr = ACO->getTrueExpr(); 16628 else 16629 TypeExpr = ACO->getFalseExpr(); 16630 continue; 16631 } 16632 return false; 16633 } 16634 16635 case Stmt::BinaryOperatorClass: { 16636 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 16637 if (BO->getOpcode() == BO_Comma) { 16638 TypeExpr = BO->getRHS(); 16639 continue; 16640 } 16641 return false; 16642 } 16643 16644 default: 16645 return false; 16646 } 16647 } 16648 } 16649 16650 /// Retrieve the C type corresponding to type tag TypeExpr. 16651 /// 16652 /// \param TypeExpr Expression that specifies a type tag. 16653 /// 16654 /// \param MagicValues Registered magic values. 16655 /// 16656 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 16657 /// kind. 16658 /// 16659 /// \param TypeInfo Information about the corresponding C type. 16660 /// 16661 /// \param isConstantEvaluated whether the evalaution should be performed in 16662 /// constant context. 16663 /// 16664 /// \returns true if the corresponding C type was found. 16665 static bool GetMatchingCType( 16666 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 16667 const ASTContext &Ctx, 16668 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 16669 *MagicValues, 16670 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 16671 bool isConstantEvaluated) { 16672 FoundWrongKind = false; 16673 16674 // Variable declaration that has type_tag_for_datatype attribute. 16675 const ValueDecl *VD = nullptr; 16676 16677 uint64_t MagicValue; 16678 16679 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 16680 return false; 16681 16682 if (VD) { 16683 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 16684 if (I->getArgumentKind() != ArgumentKind) { 16685 FoundWrongKind = true; 16686 return false; 16687 } 16688 TypeInfo.Type = I->getMatchingCType(); 16689 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 16690 TypeInfo.MustBeNull = I->getMustBeNull(); 16691 return true; 16692 } 16693 return false; 16694 } 16695 16696 if (!MagicValues) 16697 return false; 16698 16699 llvm::DenseMap<Sema::TypeTagMagicValue, 16700 Sema::TypeTagData>::const_iterator I = 16701 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 16702 if (I == MagicValues->end()) 16703 return false; 16704 16705 TypeInfo = I->second; 16706 return true; 16707 } 16708 16709 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 16710 uint64_t MagicValue, QualType Type, 16711 bool LayoutCompatible, 16712 bool MustBeNull) { 16713 if (!TypeTagForDatatypeMagicValues) 16714 TypeTagForDatatypeMagicValues.reset( 16715 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 16716 16717 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 16718 (*TypeTagForDatatypeMagicValues)[Magic] = 16719 TypeTagData(Type, LayoutCompatible, MustBeNull); 16720 } 16721 16722 static bool IsSameCharType(QualType T1, QualType T2) { 16723 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 16724 if (!BT1) 16725 return false; 16726 16727 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 16728 if (!BT2) 16729 return false; 16730 16731 BuiltinType::Kind T1Kind = BT1->getKind(); 16732 BuiltinType::Kind T2Kind = BT2->getKind(); 16733 16734 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 16735 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 16736 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 16737 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 16738 } 16739 16740 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 16741 const ArrayRef<const Expr *> ExprArgs, 16742 SourceLocation CallSiteLoc) { 16743 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 16744 bool IsPointerAttr = Attr->getIsPointer(); 16745 16746 // Retrieve the argument representing the 'type_tag'. 16747 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 16748 if (TypeTagIdxAST >= ExprArgs.size()) { 16749 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 16750 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 16751 return; 16752 } 16753 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 16754 bool FoundWrongKind; 16755 TypeTagData TypeInfo; 16756 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 16757 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 16758 TypeInfo, isConstantEvaluated())) { 16759 if (FoundWrongKind) 16760 Diag(TypeTagExpr->getExprLoc(), 16761 diag::warn_type_tag_for_datatype_wrong_kind) 16762 << TypeTagExpr->getSourceRange(); 16763 return; 16764 } 16765 16766 // Retrieve the argument representing the 'arg_idx'. 16767 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 16768 if (ArgumentIdxAST >= ExprArgs.size()) { 16769 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 16770 << 1 << Attr->getArgumentIdx().getSourceIndex(); 16771 return; 16772 } 16773 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 16774 if (IsPointerAttr) { 16775 // Skip implicit cast of pointer to `void *' (as a function argument). 16776 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 16777 if (ICE->getType()->isVoidPointerType() && 16778 ICE->getCastKind() == CK_BitCast) 16779 ArgumentExpr = ICE->getSubExpr(); 16780 } 16781 QualType ArgumentType = ArgumentExpr->getType(); 16782 16783 // Passing a `void*' pointer shouldn't trigger a warning. 16784 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 16785 return; 16786 16787 if (TypeInfo.MustBeNull) { 16788 // Type tag with matching void type requires a null pointer. 16789 if (!ArgumentExpr->isNullPointerConstant(Context, 16790 Expr::NPC_ValueDependentIsNotNull)) { 16791 Diag(ArgumentExpr->getExprLoc(), 16792 diag::warn_type_safety_null_pointer_required) 16793 << ArgumentKind->getName() 16794 << ArgumentExpr->getSourceRange() 16795 << TypeTagExpr->getSourceRange(); 16796 } 16797 return; 16798 } 16799 16800 QualType RequiredType = TypeInfo.Type; 16801 if (IsPointerAttr) 16802 RequiredType = Context.getPointerType(RequiredType); 16803 16804 bool mismatch = false; 16805 if (!TypeInfo.LayoutCompatible) { 16806 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 16807 16808 // C++11 [basic.fundamental] p1: 16809 // Plain char, signed char, and unsigned char are three distinct types. 16810 // 16811 // But we treat plain `char' as equivalent to `signed char' or `unsigned 16812 // char' depending on the current char signedness mode. 16813 if (mismatch) 16814 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 16815 RequiredType->getPointeeType())) || 16816 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 16817 mismatch = false; 16818 } else 16819 if (IsPointerAttr) 16820 mismatch = !isLayoutCompatible(Context, 16821 ArgumentType->getPointeeType(), 16822 RequiredType->getPointeeType()); 16823 else 16824 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 16825 16826 if (mismatch) 16827 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 16828 << ArgumentType << ArgumentKind 16829 << TypeInfo.LayoutCompatible << RequiredType 16830 << ArgumentExpr->getSourceRange() 16831 << TypeTagExpr->getSourceRange(); 16832 } 16833 16834 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 16835 CharUnits Alignment) { 16836 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 16837 } 16838 16839 void Sema::DiagnoseMisalignedMembers() { 16840 for (MisalignedMember &m : MisalignedMembers) { 16841 const NamedDecl *ND = m.RD; 16842 if (ND->getName().empty()) { 16843 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 16844 ND = TD; 16845 } 16846 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 16847 << m.MD << ND << m.E->getSourceRange(); 16848 } 16849 MisalignedMembers.clear(); 16850 } 16851 16852 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 16853 E = E->IgnoreParens(); 16854 if (!T->isPointerType() && !T->isIntegerType()) 16855 return; 16856 if (isa<UnaryOperator>(E) && 16857 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 16858 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 16859 if (isa<MemberExpr>(Op)) { 16860 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 16861 if (MA != MisalignedMembers.end() && 16862 (T->isIntegerType() || 16863 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 16864 Context.getTypeAlignInChars( 16865 T->getPointeeType()) <= MA->Alignment)))) 16866 MisalignedMembers.erase(MA); 16867 } 16868 } 16869 } 16870 16871 void Sema::RefersToMemberWithReducedAlignment( 16872 Expr *E, 16873 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 16874 Action) { 16875 const auto *ME = dyn_cast<MemberExpr>(E); 16876 if (!ME) 16877 return; 16878 16879 // No need to check expressions with an __unaligned-qualified type. 16880 if (E->getType().getQualifiers().hasUnaligned()) 16881 return; 16882 16883 // For a chain of MemberExpr like "a.b.c.d" this list 16884 // will keep FieldDecl's like [d, c, b]. 16885 SmallVector<FieldDecl *, 4> ReverseMemberChain; 16886 const MemberExpr *TopME = nullptr; 16887 bool AnyIsPacked = false; 16888 do { 16889 QualType BaseType = ME->getBase()->getType(); 16890 if (BaseType->isDependentType()) 16891 return; 16892 if (ME->isArrow()) 16893 BaseType = BaseType->getPointeeType(); 16894 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 16895 if (RD->isInvalidDecl()) 16896 return; 16897 16898 ValueDecl *MD = ME->getMemberDecl(); 16899 auto *FD = dyn_cast<FieldDecl>(MD); 16900 // We do not care about non-data members. 16901 if (!FD || FD->isInvalidDecl()) 16902 return; 16903 16904 AnyIsPacked = 16905 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 16906 ReverseMemberChain.push_back(FD); 16907 16908 TopME = ME; 16909 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 16910 } while (ME); 16911 assert(TopME && "We did not compute a topmost MemberExpr!"); 16912 16913 // Not the scope of this diagnostic. 16914 if (!AnyIsPacked) 16915 return; 16916 16917 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 16918 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 16919 // TODO: The innermost base of the member expression may be too complicated. 16920 // For now, just disregard these cases. This is left for future 16921 // improvement. 16922 if (!DRE && !isa<CXXThisExpr>(TopBase)) 16923 return; 16924 16925 // Alignment expected by the whole expression. 16926 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 16927 16928 // No need to do anything else with this case. 16929 if (ExpectedAlignment.isOne()) 16930 return; 16931 16932 // Synthesize offset of the whole access. 16933 CharUnits Offset; 16934 for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain)) 16935 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD)); 16936 16937 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 16938 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 16939 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 16940 16941 // The base expression of the innermost MemberExpr may give 16942 // stronger guarantees than the class containing the member. 16943 if (DRE && !TopME->isArrow()) { 16944 const ValueDecl *VD = DRE->getDecl(); 16945 if (!VD->getType()->isReferenceType()) 16946 CompleteObjectAlignment = 16947 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 16948 } 16949 16950 // Check if the synthesized offset fulfills the alignment. 16951 if (Offset % ExpectedAlignment != 0 || 16952 // It may fulfill the offset it but the effective alignment may still be 16953 // lower than the expected expression alignment. 16954 CompleteObjectAlignment < ExpectedAlignment) { 16955 // If this happens, we want to determine a sensible culprit of this. 16956 // Intuitively, watching the chain of member expressions from right to 16957 // left, we start with the required alignment (as required by the field 16958 // type) but some packed attribute in that chain has reduced the alignment. 16959 // It may happen that another packed structure increases it again. But if 16960 // we are here such increase has not been enough. So pointing the first 16961 // FieldDecl that either is packed or else its RecordDecl is, 16962 // seems reasonable. 16963 FieldDecl *FD = nullptr; 16964 CharUnits Alignment; 16965 for (FieldDecl *FDI : ReverseMemberChain) { 16966 if (FDI->hasAttr<PackedAttr>() || 16967 FDI->getParent()->hasAttr<PackedAttr>()) { 16968 FD = FDI; 16969 Alignment = std::min( 16970 Context.getTypeAlignInChars(FD->getType()), 16971 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 16972 break; 16973 } 16974 } 16975 assert(FD && "We did not find a packed FieldDecl!"); 16976 Action(E, FD->getParent(), FD, Alignment); 16977 } 16978 } 16979 16980 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 16981 using namespace std::placeholders; 16982 16983 RefersToMemberWithReducedAlignment( 16984 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 16985 _2, _3, _4)); 16986 } 16987 16988 // Check if \p Ty is a valid type for the elementwise math builtins. If it is 16989 // not a valid type, emit an error message and return true. Otherwise return 16990 // false. 16991 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc, 16992 QualType Ty) { 16993 if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) { 16994 S.Diag(Loc, diag::err_builtin_invalid_arg_type) 16995 << 1 << /* vector, integer or float ty*/ 0 << Ty; 16996 return true; 16997 } 16998 return false; 16999 } 17000 17001 bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) { 17002 if (checkArgCount(*this, TheCall, 1)) 17003 return true; 17004 17005 ExprResult A = UsualUnaryConversions(TheCall->getArg(0)); 17006 if (A.isInvalid()) 17007 return true; 17008 17009 TheCall->setArg(0, A.get()); 17010 QualType TyA = A.get()->getType(); 17011 17012 if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA)) 17013 return true; 17014 17015 TheCall->setType(TyA); 17016 return false; 17017 } 17018 17019 bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) { 17020 if (checkArgCount(*this, TheCall, 2)) 17021 return true; 17022 17023 ExprResult A = TheCall->getArg(0); 17024 ExprResult B = TheCall->getArg(1); 17025 // Do standard promotions between the two arguments, returning their common 17026 // type. 17027 QualType Res = 17028 UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison); 17029 if (A.isInvalid() || B.isInvalid()) 17030 return true; 17031 17032 QualType TyA = A.get()->getType(); 17033 QualType TyB = B.get()->getType(); 17034 17035 if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType()) 17036 return Diag(A.get()->getBeginLoc(), 17037 diag::err_typecheck_call_different_arg_types) 17038 << TyA << TyB; 17039 17040 if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA)) 17041 return true; 17042 17043 TheCall->setArg(0, A.get()); 17044 TheCall->setArg(1, B.get()); 17045 TheCall->setType(Res); 17046 return false; 17047 } 17048 17049 bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) { 17050 if (checkArgCount(*this, TheCall, 1)) 17051 return true; 17052 17053 ExprResult A = UsualUnaryConversions(TheCall->getArg(0)); 17054 if (A.isInvalid()) 17055 return true; 17056 17057 TheCall->setArg(0, A.get()); 17058 return false; 17059 } 17060 17061 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, 17062 ExprResult CallResult) { 17063 if (checkArgCount(*this, TheCall, 1)) 17064 return ExprError(); 17065 17066 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); 17067 if (MatrixArg.isInvalid()) 17068 return MatrixArg; 17069 Expr *Matrix = MatrixArg.get(); 17070 17071 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); 17072 if (!MType) { 17073 Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type) 17074 << 1 << /* matrix ty*/ 1 << Matrix->getType(); 17075 return ExprError(); 17076 } 17077 17078 // Create returned matrix type by swapping rows and columns of the argument 17079 // matrix type. 17080 QualType ResultType = Context.getConstantMatrixType( 17081 MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); 17082 17083 // Change the return type to the type of the returned matrix. 17084 TheCall->setType(ResultType); 17085 17086 // Update call argument to use the possibly converted matrix argument. 17087 TheCall->setArg(0, Matrix); 17088 return CallResult; 17089 } 17090 17091 // Get and verify the matrix dimensions. 17092 static llvm::Optional<unsigned> 17093 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { 17094 SourceLocation ErrorPos; 17095 Optional<llvm::APSInt> Value = 17096 Expr->getIntegerConstantExpr(S.Context, &ErrorPos); 17097 if (!Value) { 17098 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) 17099 << Name; 17100 return {}; 17101 } 17102 uint64_t Dim = Value->getZExtValue(); 17103 if (!ConstantMatrixType::isDimensionValid(Dim)) { 17104 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) 17105 << Name << ConstantMatrixType::getMaxElementsPerDimension(); 17106 return {}; 17107 } 17108 return Dim; 17109 } 17110 17111 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, 17112 ExprResult CallResult) { 17113 if (!getLangOpts().MatrixTypes) { 17114 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); 17115 return ExprError(); 17116 } 17117 17118 if (checkArgCount(*this, TheCall, 4)) 17119 return ExprError(); 17120 17121 unsigned PtrArgIdx = 0; 17122 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 17123 Expr *RowsExpr = TheCall->getArg(1); 17124 Expr *ColumnsExpr = TheCall->getArg(2); 17125 Expr *StrideExpr = TheCall->getArg(3); 17126 17127 bool ArgError = false; 17128 17129 // Check pointer argument. 17130 { 17131 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 17132 if (PtrConv.isInvalid()) 17133 return PtrConv; 17134 PtrExpr = PtrConv.get(); 17135 TheCall->setArg(0, PtrExpr); 17136 if (PtrExpr->isTypeDependent()) { 17137 TheCall->setType(Context.DependentTy); 17138 return TheCall; 17139 } 17140 } 17141 17142 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 17143 QualType ElementTy; 17144 if (!PtrTy) { 17145 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) 17146 << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); 17147 ArgError = true; 17148 } else { 17149 ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); 17150 17151 if (!ConstantMatrixType::isValidElementType(ElementTy)) { 17152 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) 17153 << PtrArgIdx + 1 << /* pointer to element ty*/ 2 17154 << PtrExpr->getType(); 17155 ArgError = true; 17156 } 17157 } 17158 17159 // Apply default Lvalue conversions and convert the expression to size_t. 17160 auto ApplyArgumentConversions = [this](Expr *E) { 17161 ExprResult Conv = DefaultLvalueConversion(E); 17162 if (Conv.isInvalid()) 17163 return Conv; 17164 17165 return tryConvertExprToType(Conv.get(), Context.getSizeType()); 17166 }; 17167 17168 // Apply conversion to row and column expressions. 17169 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); 17170 if (!RowsConv.isInvalid()) { 17171 RowsExpr = RowsConv.get(); 17172 TheCall->setArg(1, RowsExpr); 17173 } else 17174 RowsExpr = nullptr; 17175 17176 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); 17177 if (!ColumnsConv.isInvalid()) { 17178 ColumnsExpr = ColumnsConv.get(); 17179 TheCall->setArg(2, ColumnsExpr); 17180 } else 17181 ColumnsExpr = nullptr; 17182 17183 // If any any part of the result matrix type is still pending, just use 17184 // Context.DependentTy, until all parts are resolved. 17185 if ((RowsExpr && RowsExpr->isTypeDependent()) || 17186 (ColumnsExpr && ColumnsExpr->isTypeDependent())) { 17187 TheCall->setType(Context.DependentTy); 17188 return CallResult; 17189 } 17190 17191 // Check row and column dimensions. 17192 llvm::Optional<unsigned> MaybeRows; 17193 if (RowsExpr) 17194 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); 17195 17196 llvm::Optional<unsigned> MaybeColumns; 17197 if (ColumnsExpr) 17198 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); 17199 17200 // Check stride argument. 17201 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); 17202 if (StrideConv.isInvalid()) 17203 return ExprError(); 17204 StrideExpr = StrideConv.get(); 17205 TheCall->setArg(3, StrideExpr); 17206 17207 if (MaybeRows) { 17208 if (Optional<llvm::APSInt> Value = 17209 StrideExpr->getIntegerConstantExpr(Context)) { 17210 uint64_t Stride = Value->getZExtValue(); 17211 if (Stride < *MaybeRows) { 17212 Diag(StrideExpr->getBeginLoc(), 17213 diag::err_builtin_matrix_stride_too_small); 17214 ArgError = true; 17215 } 17216 } 17217 } 17218 17219 if (ArgError || !MaybeRows || !MaybeColumns) 17220 return ExprError(); 17221 17222 TheCall->setType( 17223 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); 17224 return CallResult; 17225 } 17226 17227 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, 17228 ExprResult CallResult) { 17229 if (checkArgCount(*this, TheCall, 3)) 17230 return ExprError(); 17231 17232 unsigned PtrArgIdx = 1; 17233 Expr *MatrixExpr = TheCall->getArg(0); 17234 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 17235 Expr *StrideExpr = TheCall->getArg(2); 17236 17237 bool ArgError = false; 17238 17239 { 17240 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); 17241 if (MatrixConv.isInvalid()) 17242 return MatrixConv; 17243 MatrixExpr = MatrixConv.get(); 17244 TheCall->setArg(0, MatrixExpr); 17245 } 17246 if (MatrixExpr->isTypeDependent()) { 17247 TheCall->setType(Context.DependentTy); 17248 return TheCall; 17249 } 17250 17251 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); 17252 if (!MatrixTy) { 17253 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) 17254 << 1 << /*matrix ty */ 1 << MatrixExpr->getType(); 17255 ArgError = true; 17256 } 17257 17258 { 17259 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 17260 if (PtrConv.isInvalid()) 17261 return PtrConv; 17262 PtrExpr = PtrConv.get(); 17263 TheCall->setArg(1, PtrExpr); 17264 if (PtrExpr->isTypeDependent()) { 17265 TheCall->setType(Context.DependentTy); 17266 return TheCall; 17267 } 17268 } 17269 17270 // Check pointer argument. 17271 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 17272 if (!PtrTy) { 17273 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type) 17274 << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); 17275 ArgError = true; 17276 } else { 17277 QualType ElementTy = PtrTy->getPointeeType(); 17278 if (ElementTy.isConstQualified()) { 17279 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); 17280 ArgError = true; 17281 } 17282 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); 17283 if (MatrixTy && 17284 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { 17285 Diag(PtrExpr->getBeginLoc(), 17286 diag::err_builtin_matrix_pointer_arg_mismatch) 17287 << ElementTy << MatrixTy->getElementType(); 17288 ArgError = true; 17289 } 17290 } 17291 17292 // Apply default Lvalue conversions and convert the stride expression to 17293 // size_t. 17294 { 17295 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); 17296 if (StrideConv.isInvalid()) 17297 return StrideConv; 17298 17299 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); 17300 if (StrideConv.isInvalid()) 17301 return StrideConv; 17302 StrideExpr = StrideConv.get(); 17303 TheCall->setArg(2, StrideExpr); 17304 } 17305 17306 // Check stride argument. 17307 if (MatrixTy) { 17308 if (Optional<llvm::APSInt> Value = 17309 StrideExpr->getIntegerConstantExpr(Context)) { 17310 uint64_t Stride = Value->getZExtValue(); 17311 if (Stride < MatrixTy->getNumRows()) { 17312 Diag(StrideExpr->getBeginLoc(), 17313 diag::err_builtin_matrix_stride_too_small); 17314 ArgError = true; 17315 } 17316 } 17317 } 17318 17319 if (ArgError) 17320 return ExprError(); 17321 17322 return CallResult; 17323 } 17324 17325 /// \brief Enforce the bounds of a TCB 17326 /// CheckTCBEnforcement - Enforces that every function in a named TCB only 17327 /// directly calls other functions in the same TCB as marked by the enforce_tcb 17328 /// and enforce_tcb_leaf attributes. 17329 void Sema::CheckTCBEnforcement(const CallExpr *TheCall, 17330 const FunctionDecl *Callee) { 17331 const FunctionDecl *Caller = getCurFunctionDecl(); 17332 17333 // Calls to builtins are not enforced. 17334 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() || 17335 Callee->getBuiltinID() != 0) 17336 return; 17337 17338 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find 17339 // all TCBs the callee is a part of. 17340 llvm::StringSet<> CalleeTCBs; 17341 for_each(Callee->specific_attrs<EnforceTCBAttr>(), 17342 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 17343 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(), 17344 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 17345 17346 // Go through the TCBs the caller is a part of and emit warnings if Caller 17347 // is in a TCB that the Callee is not. 17348 for_each( 17349 Caller->specific_attrs<EnforceTCBAttr>(), 17350 [&](const auto *A) { 17351 StringRef CallerTCB = A->getTCBName(); 17352 if (CalleeTCBs.count(CallerTCB) == 0) { 17353 this->Diag(TheCall->getExprLoc(), 17354 diag::warn_tcb_enforcement_violation) << Callee 17355 << CallerTCB; 17356 } 17357 }); 17358 } 17359