1 //===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for cast expressions, including
10 // 1) C-style casts like '(int) x'
11 // 2) C++ functional casts like 'int(x)'
12 // 3) C++ named casts like 'static_cast<int>(x)'
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include <set>
29 using namespace clang;
30
31
32
33 enum TryCastResult {
34 TC_NotApplicable, ///< The cast method is not applicable.
35 TC_Success, ///< The cast method is appropriate and successful.
36 TC_Extension, ///< The cast method is appropriate and accepted as a
37 ///< language extension.
38 TC_Failed ///< The cast method is appropriate, but failed. A
39 ///< diagnostic has been emitted.
40 };
41
isValidCast(TryCastResult TCR)42 static bool isValidCast(TryCastResult TCR) {
43 return TCR == TC_Success || TCR == TC_Extension;
44 }
45
46 enum CastType {
47 CT_Const, ///< const_cast
48 CT_Static, ///< static_cast
49 CT_Reinterpret, ///< reinterpret_cast
50 CT_Dynamic, ///< dynamic_cast
51 CT_CStyle, ///< (Type)expr
52 CT_Functional, ///< Type(expr)
53 CT_Addrspace ///< addrspace_cast
54 };
55
56 namespace {
57 struct CastOperation {
CastOperation__anon4a307d300111::CastOperation58 CastOperation(Sema &S, QualType destType, ExprResult src)
59 : Self(S), SrcExpr(src), DestType(destType),
60 ResultType(destType.getNonLValueExprType(S.Context)),
61 ValueKind(Expr::getValueKindForType(destType)),
62 Kind(CK_Dependent), IsARCUnbridgedCast(false) {
63
64 // C++ [expr.type]/8.2.2:
65 // If a pr-value initially has the type cv-T, where T is a
66 // cv-unqualified non-class, non-array type, the type of the
67 // expression is adjusted to T prior to any further analysis.
68 if (!S.Context.getLangOpts().ObjC && !DestType->isRecordType() &&
69 !DestType->isArrayType()) {
70 DestType = DestType.getUnqualifiedType();
71 }
72
73 if (const BuiltinType *placeholder =
74 src.get()->getType()->getAsPlaceholderType()) {
75 PlaceholderKind = placeholder->getKind();
76 } else {
77 PlaceholderKind = (BuiltinType::Kind) 0;
78 }
79 }
80
81 Sema &Self;
82 ExprResult SrcExpr;
83 QualType DestType;
84 QualType ResultType;
85 ExprValueKind ValueKind;
86 CastKind Kind;
87 BuiltinType::Kind PlaceholderKind;
88 CXXCastPath BasePath;
89 bool IsARCUnbridgedCast;
90
91 SourceRange OpRange;
92 SourceRange DestRange;
93
94 // Top-level semantics-checking routines.
95 void CheckConstCast();
96 void CheckReinterpretCast();
97 void CheckStaticCast();
98 void CheckDynamicCast();
99 void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization);
100 void CheckCStyleCast();
101 void CheckBuiltinBitCast();
102 void CheckAddrspaceCast();
103
updatePartOfExplicitCastFlags__anon4a307d300111::CastOperation104 void updatePartOfExplicitCastFlags(CastExpr *CE) {
105 // Walk down from the CE to the OrigSrcExpr, and mark all immediate
106 // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE
107 // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched.
108 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE)
109 ICE->setIsPartOfExplicitCast(true);
110 }
111
112 /// Complete an apparently-successful cast operation that yields
113 /// the given expression.
complete__anon4a307d300111::CastOperation114 ExprResult complete(CastExpr *castExpr) {
115 // If this is an unbridged cast, wrap the result in an implicit
116 // cast that yields the unbridged-cast placeholder type.
117 if (IsARCUnbridgedCast) {
118 castExpr = ImplicitCastExpr::Create(
119 Self.Context, Self.Context.ARCUnbridgedCastTy, CK_Dependent,
120 castExpr, nullptr, castExpr->getValueKind(),
121 Self.CurFPFeatureOverrides());
122 }
123 updatePartOfExplicitCastFlags(castExpr);
124 return castExpr;
125 }
126
127 // Internal convenience methods.
128
129 /// Try to handle the given placeholder expression kind. Return
130 /// true if the source expression has the appropriate placeholder
131 /// kind. A placeholder can only be claimed once.
claimPlaceholder__anon4a307d300111::CastOperation132 bool claimPlaceholder(BuiltinType::Kind K) {
133 if (PlaceholderKind != K) return false;
134
135 PlaceholderKind = (BuiltinType::Kind) 0;
136 return true;
137 }
138
isPlaceholder__anon4a307d300111::CastOperation139 bool isPlaceholder() const {
140 return PlaceholderKind != 0;
141 }
isPlaceholder__anon4a307d300111::CastOperation142 bool isPlaceholder(BuiltinType::Kind K) const {
143 return PlaceholderKind == K;
144 }
145
146 // Language specific cast restrictions for address spaces.
147 void checkAddressSpaceCast(QualType SrcType, QualType DestType);
148
checkCastAlign__anon4a307d300111::CastOperation149 void checkCastAlign() {
150 Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange);
151 }
152
checkObjCConversion__anon4a307d300111::CastOperation153 void checkObjCConversion(Sema::CheckedConversionKind CCK) {
154 assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers());
155
156 Expr *src = SrcExpr.get();
157 if (Self.CheckObjCConversion(OpRange, DestType, src, CCK) ==
158 Sema::ACR_unbridged)
159 IsARCUnbridgedCast = true;
160 SrcExpr = src;
161 }
162
163 /// Check for and handle non-overload placeholder expressions.
checkNonOverloadPlaceholders__anon4a307d300111::CastOperation164 void checkNonOverloadPlaceholders() {
165 if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload))
166 return;
167
168 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
169 if (SrcExpr.isInvalid())
170 return;
171 PlaceholderKind = (BuiltinType::Kind) 0;
172 }
173 };
174
CheckNoDeref(Sema & S,const QualType FromType,const QualType ToType,SourceLocation OpLoc)175 void CheckNoDeref(Sema &S, const QualType FromType, const QualType ToType,
176 SourceLocation OpLoc) {
177 if (const auto *PtrType = dyn_cast<PointerType>(FromType)) {
178 if (PtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
179 if (const auto *DestType = dyn_cast<PointerType>(ToType)) {
180 if (!DestType->getPointeeType()->hasAttr(attr::NoDeref)) {
181 S.Diag(OpLoc, diag::warn_noderef_to_dereferenceable_pointer);
182 }
183 }
184 }
185 }
186 }
187
188 struct CheckNoDerefRAII {
CheckNoDerefRAII__anon4a307d300111::CheckNoDerefRAII189 CheckNoDerefRAII(CastOperation &Op) : Op(Op) {}
~CheckNoDerefRAII__anon4a307d300111::CheckNoDerefRAII190 ~CheckNoDerefRAII() {
191 if (!Op.SrcExpr.isInvalid())
192 CheckNoDeref(Op.Self, Op.SrcExpr.get()->getType(), Op.ResultType,
193 Op.OpRange.getBegin());
194 }
195
196 CastOperation &Op;
197 };
198 }
199
200 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
201 QualType DestType);
202
203 // The Try functions attempt a specific way of casting. If they succeed, they
204 // return TC_Success. If their way of casting is not appropriate for the given
205 // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic
206 // to emit if no other way succeeds. If their way of casting is appropriate but
207 // fails, they return TC_Failed and *must* set diag; they can set it to 0 if
208 // they emit a specialized diagnostic.
209 // All diagnostics returned by these functions must expect the same three
210 // arguments:
211 // %0: Cast Type (a value from the CastType enumeration)
212 // %1: Source Type
213 // %2: Destination Type
214 static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
215 QualType DestType, bool CStyle,
216 CastKind &Kind,
217 CXXCastPath &BasePath,
218 unsigned &msg);
219 static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr,
220 QualType DestType, bool CStyle,
221 SourceRange OpRange,
222 unsigned &msg,
223 CastKind &Kind,
224 CXXCastPath &BasePath);
225 static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType,
226 QualType DestType, bool CStyle,
227 SourceRange OpRange,
228 unsigned &msg,
229 CastKind &Kind,
230 CXXCastPath &BasePath);
231 static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType,
232 CanQualType DestType, bool CStyle,
233 SourceRange OpRange,
234 QualType OrigSrcType,
235 QualType OrigDestType, unsigned &msg,
236 CastKind &Kind,
237 CXXCastPath &BasePath);
238 static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr,
239 QualType SrcType,
240 QualType DestType,bool CStyle,
241 SourceRange OpRange,
242 unsigned &msg,
243 CastKind &Kind,
244 CXXCastPath &BasePath);
245
246 static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr,
247 QualType DestType,
248 Sema::CheckedConversionKind CCK,
249 SourceRange OpRange,
250 unsigned &msg, CastKind &Kind,
251 bool ListInitialization);
252 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
253 QualType DestType,
254 Sema::CheckedConversionKind CCK,
255 SourceRange OpRange,
256 unsigned &msg, CastKind &Kind,
257 CXXCastPath &BasePath,
258 bool ListInitialization);
259 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
260 QualType DestType, bool CStyle,
261 unsigned &msg);
262 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
263 QualType DestType, bool CStyle,
264 SourceRange OpRange, unsigned &msg,
265 CastKind &Kind);
266 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
267 QualType DestType, bool CStyle,
268 unsigned &msg, CastKind &Kind);
269
270 /// ActOnCXXNamedCast - Parse
271 /// {dynamic,static,reinterpret,const,addrspace}_cast's.
272 ExprResult
ActOnCXXNamedCast(SourceLocation OpLoc,tok::TokenKind Kind,SourceLocation LAngleBracketLoc,Declarator & D,SourceLocation RAngleBracketLoc,SourceLocation LParenLoc,Expr * E,SourceLocation RParenLoc)273 Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
274 SourceLocation LAngleBracketLoc, Declarator &D,
275 SourceLocation RAngleBracketLoc,
276 SourceLocation LParenLoc, Expr *E,
277 SourceLocation RParenLoc) {
278
279 assert(!D.isInvalidType());
280
281 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType());
282 if (D.isInvalidType())
283 return ExprError();
284
285 if (getLangOpts().CPlusPlus) {
286 // Check that there are no default arguments (C++ only).
287 CheckExtraCXXDefaultArguments(D);
288 }
289
290 return BuildCXXNamedCast(OpLoc, Kind, TInfo, E,
291 SourceRange(LAngleBracketLoc, RAngleBracketLoc),
292 SourceRange(LParenLoc, RParenLoc));
293 }
294
295 ExprResult
BuildCXXNamedCast(SourceLocation OpLoc,tok::TokenKind Kind,TypeSourceInfo * DestTInfo,Expr * E,SourceRange AngleBrackets,SourceRange Parens)296 Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
297 TypeSourceInfo *DestTInfo, Expr *E,
298 SourceRange AngleBrackets, SourceRange Parens) {
299 ExprResult Ex = E;
300 QualType DestType = DestTInfo->getType();
301
302 // If the type is dependent, we won't do the semantic analysis now.
303 bool TypeDependent =
304 DestType->isDependentType() || Ex.get()->isTypeDependent();
305
306 CastOperation Op(*this, DestType, E);
307 Op.OpRange = SourceRange(OpLoc, Parens.getEnd());
308 Op.DestRange = AngleBrackets;
309
310 switch (Kind) {
311 default: llvm_unreachable("Unknown C++ cast!");
312
313 case tok::kw_addrspace_cast:
314 if (!TypeDependent) {
315 Op.CheckAddrspaceCast();
316 if (Op.SrcExpr.isInvalid())
317 return ExprError();
318 }
319 return Op.complete(CXXAddrspaceCastExpr::Create(
320 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
321 DestTInfo, OpLoc, Parens.getEnd(), AngleBrackets));
322
323 case tok::kw_const_cast:
324 if (!TypeDependent) {
325 Op.CheckConstCast();
326 if (Op.SrcExpr.isInvalid())
327 return ExprError();
328 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
329 }
330 return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType,
331 Op.ValueKind, Op.SrcExpr.get(), DestTInfo,
332 OpLoc, Parens.getEnd(),
333 AngleBrackets));
334
335 case tok::kw_dynamic_cast: {
336 // dynamic_cast is not supported in C++ for OpenCL.
337 if (getLangOpts().OpenCLCPlusPlus) {
338 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
339 << "dynamic_cast");
340 }
341
342 if (!TypeDependent) {
343 Op.CheckDynamicCast();
344 if (Op.SrcExpr.isInvalid())
345 return ExprError();
346 }
347 return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType,
348 Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
349 &Op.BasePath, DestTInfo,
350 OpLoc, Parens.getEnd(),
351 AngleBrackets));
352 }
353 case tok::kw_reinterpret_cast: {
354 if (!TypeDependent) {
355 Op.CheckReinterpretCast();
356 if (Op.SrcExpr.isInvalid())
357 return ExprError();
358 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
359 }
360 return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType,
361 Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
362 nullptr, DestTInfo, OpLoc,
363 Parens.getEnd(),
364 AngleBrackets));
365 }
366 case tok::kw_static_cast: {
367 if (!TypeDependent) {
368 Op.CheckStaticCast();
369 if (Op.SrcExpr.isInvalid())
370 return ExprError();
371 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
372 }
373
374 return Op.complete(CXXStaticCastExpr::Create(
375 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
376 &Op.BasePath, DestTInfo, CurFPFeatureOverrides(), OpLoc,
377 Parens.getEnd(), AngleBrackets));
378 }
379 }
380 }
381
ActOnBuiltinBitCastExpr(SourceLocation KWLoc,Declarator & D,ExprResult Operand,SourceLocation RParenLoc)382 ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D,
383 ExprResult Operand,
384 SourceLocation RParenLoc) {
385 assert(!D.isInvalidType());
386
387 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType());
388 if (D.isInvalidType())
389 return ExprError();
390
391 return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc);
392 }
393
BuildBuiltinBitCastExpr(SourceLocation KWLoc,TypeSourceInfo * TSI,Expr * Operand,SourceLocation RParenLoc)394 ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc,
395 TypeSourceInfo *TSI, Expr *Operand,
396 SourceLocation RParenLoc) {
397 CastOperation Op(*this, TSI->getType(), Operand);
398 Op.OpRange = SourceRange(KWLoc, RParenLoc);
399 TypeLoc TL = TSI->getTypeLoc();
400 Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc());
401
402 if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) {
403 Op.CheckBuiltinBitCast();
404 if (Op.SrcExpr.isInvalid())
405 return ExprError();
406 }
407
408 BuiltinBitCastExpr *BCE =
409 new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind,
410 Op.SrcExpr.get(), TSI, KWLoc, RParenLoc);
411 return Op.complete(BCE);
412 }
413
414 /// Try to diagnose a failed overloaded cast. Returns true if
415 /// diagnostics were emitted.
tryDiagnoseOverloadedCast(Sema & S,CastType CT,SourceRange range,Expr * src,QualType destType,bool listInitialization)416 static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT,
417 SourceRange range, Expr *src,
418 QualType destType,
419 bool listInitialization) {
420 switch (CT) {
421 // These cast kinds don't consider user-defined conversions.
422 case CT_Const:
423 case CT_Reinterpret:
424 case CT_Dynamic:
425 case CT_Addrspace:
426 return false;
427
428 // These do.
429 case CT_Static:
430 case CT_CStyle:
431 case CT_Functional:
432 break;
433 }
434
435 QualType srcType = src->getType();
436 if (!destType->isRecordType() && !srcType->isRecordType())
437 return false;
438
439 InitializedEntity entity = InitializedEntity::InitializeTemporary(destType);
440 InitializationKind initKind
441 = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(),
442 range, listInitialization)
443 : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range,
444 listInitialization)
445 : InitializationKind::CreateCast(/*type range?*/ range);
446 InitializationSequence sequence(S, entity, initKind, src);
447
448 assert(sequence.Failed() && "initialization succeeded on second try?");
449 switch (sequence.getFailureKind()) {
450 default: return false;
451
452 case InitializationSequence::FK_ConstructorOverloadFailed:
453 case InitializationSequence::FK_UserConversionOverloadFailed:
454 break;
455 }
456
457 OverloadCandidateSet &candidates = sequence.getFailedCandidateSet();
458
459 unsigned msg = 0;
460 OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates;
461
462 switch (sequence.getFailedOverloadResult()) {
463 case OR_Success: llvm_unreachable("successful failed overload");
464 case OR_No_Viable_Function:
465 if (candidates.empty())
466 msg = diag::err_ovl_no_conversion_in_cast;
467 else
468 msg = diag::err_ovl_no_viable_conversion_in_cast;
469 howManyCandidates = OCD_AllCandidates;
470 break;
471
472 case OR_Ambiguous:
473 msg = diag::err_ovl_ambiguous_conversion_in_cast;
474 howManyCandidates = OCD_AmbiguousCandidates;
475 break;
476
477 case OR_Deleted:
478 msg = diag::err_ovl_deleted_conversion_in_cast;
479 howManyCandidates = OCD_ViableCandidates;
480 break;
481 }
482
483 candidates.NoteCandidates(
484 PartialDiagnosticAt(range.getBegin(),
485 S.PDiag(msg) << CT << srcType << destType << range
486 << src->getSourceRange()),
487 S, howManyCandidates, src);
488
489 return true;
490 }
491
492 /// Diagnose a failed cast.
diagnoseBadCast(Sema & S,unsigned msg,CastType castType,SourceRange opRange,Expr * src,QualType destType,bool listInitialization)493 static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType,
494 SourceRange opRange, Expr *src, QualType destType,
495 bool listInitialization) {
496 if (msg == diag::err_bad_cxx_cast_generic &&
497 tryDiagnoseOverloadedCast(S, castType, opRange, src, destType,
498 listInitialization))
499 return;
500
501 S.Diag(opRange.getBegin(), msg) << castType
502 << src->getType() << destType << opRange << src->getSourceRange();
503
504 // Detect if both types are (ptr to) class, and note any incompleteness.
505 int DifferentPtrness = 0;
506 QualType From = destType;
507 if (auto Ptr = From->getAs<PointerType>()) {
508 From = Ptr->getPointeeType();
509 DifferentPtrness++;
510 }
511 QualType To = src->getType();
512 if (auto Ptr = To->getAs<PointerType>()) {
513 To = Ptr->getPointeeType();
514 DifferentPtrness--;
515 }
516 if (!DifferentPtrness) {
517 auto RecFrom = From->getAs<RecordType>();
518 auto RecTo = To->getAs<RecordType>();
519 if (RecFrom && RecTo) {
520 auto DeclFrom = RecFrom->getAsCXXRecordDecl();
521 if (!DeclFrom->isCompleteDefinition())
522 S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete) << DeclFrom;
523 auto DeclTo = RecTo->getAsCXXRecordDecl();
524 if (!DeclTo->isCompleteDefinition())
525 S.Diag(DeclTo->getLocation(), diag::note_type_incomplete) << DeclTo;
526 }
527 }
528 }
529
530 namespace {
531 /// The kind of unwrapping we did when determining whether a conversion casts
532 /// away constness.
533 enum CastAwayConstnessKind {
534 /// The conversion does not cast away constness.
535 CACK_None = 0,
536 /// We unwrapped similar types.
537 CACK_Similar = 1,
538 /// We unwrapped dissimilar types with similar representations (eg, a pointer
539 /// versus an Objective-C object pointer).
540 CACK_SimilarKind = 2,
541 /// We unwrapped representationally-unrelated types, such as a pointer versus
542 /// a pointer-to-member.
543 CACK_Incoherent = 3,
544 };
545 }
546
547 /// Unwrap one level of types for CastsAwayConstness.
548 ///
549 /// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from
550 /// both types, provided that they're both pointer-like or array-like. Unlike
551 /// the Sema function, doesn't care if the unwrapped pieces are related.
552 ///
553 /// This function may remove additional levels as necessary for correctness:
554 /// the resulting T1 is unwrapped sufficiently that it is never an array type,
555 /// so that its qualifiers can be directly compared to those of T2 (which will
556 /// have the combined set of qualifiers from all indermediate levels of T2),
557 /// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers
558 /// with those from T2.
559 static CastAwayConstnessKind
unwrapCastAwayConstnessLevel(ASTContext & Context,QualType & T1,QualType & T2)560 unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) {
561 enum { None, Ptr, MemPtr, BlockPtr, Array };
562 auto Classify = [](QualType T) {
563 if (T->isAnyPointerType()) return Ptr;
564 if (T->isMemberPointerType()) return MemPtr;
565 if (T->isBlockPointerType()) return BlockPtr;
566 // We somewhat-arbitrarily don't look through VLA types here. This is at
567 // least consistent with the behavior of UnwrapSimilarTypes.
568 if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array;
569 return None;
570 };
571
572 auto Unwrap = [&](QualType T) {
573 if (auto *AT = Context.getAsArrayType(T))
574 return AT->getElementType();
575 return T->getPointeeType();
576 };
577
578 CastAwayConstnessKind Kind;
579
580 if (T2->isReferenceType()) {
581 // Special case: if the destination type is a reference type, unwrap it as
582 // the first level. (The source will have been an lvalue expression in this
583 // case, so there is no corresponding "reference to" in T1 to remove.) This
584 // simulates removing a "pointer to" from both sides.
585 T2 = T2->getPointeeType();
586 Kind = CastAwayConstnessKind::CACK_Similar;
587 } else if (Context.UnwrapSimilarTypes(T1, T2)) {
588 Kind = CastAwayConstnessKind::CACK_Similar;
589 } else {
590 // Try unwrapping mismatching levels.
591 int T1Class = Classify(T1);
592 if (T1Class == None)
593 return CastAwayConstnessKind::CACK_None;
594
595 int T2Class = Classify(T2);
596 if (T2Class == None)
597 return CastAwayConstnessKind::CACK_None;
598
599 T1 = Unwrap(T1);
600 T2 = Unwrap(T2);
601 Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind
602 : CastAwayConstnessKind::CACK_Incoherent;
603 }
604
605 // We've unwrapped at least one level. If the resulting T1 is a (possibly
606 // multidimensional) array type, any qualifier on any matching layer of
607 // T2 is considered to correspond to T1. Decompose down to the element
608 // type of T1 so that we can compare properly.
609 while (true) {
610 Context.UnwrapSimilarArrayTypes(T1, T2);
611
612 if (Classify(T1) != Array)
613 break;
614
615 auto T2Class = Classify(T2);
616 if (T2Class == None)
617 break;
618
619 if (T2Class != Array)
620 Kind = CastAwayConstnessKind::CACK_Incoherent;
621 else if (Kind != CastAwayConstnessKind::CACK_Incoherent)
622 Kind = CastAwayConstnessKind::CACK_SimilarKind;
623
624 T1 = Unwrap(T1);
625 T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers());
626 }
627
628 return Kind;
629 }
630
631 /// Check if the pointer conversion from SrcType to DestType casts away
632 /// constness as defined in C++ [expr.const.cast]. This is used by the cast
633 /// checkers. Both arguments must denote pointer (possibly to member) types.
634 ///
635 /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers.
636 /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers.
637 static CastAwayConstnessKind
CastsAwayConstness(Sema & Self,QualType SrcType,QualType DestType,bool CheckCVR,bool CheckObjCLifetime,QualType * TheOffendingSrcType=nullptr,QualType * TheOffendingDestType=nullptr,Qualifiers * CastAwayQualifiers=nullptr)638 CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType,
639 bool CheckCVR, bool CheckObjCLifetime,
640 QualType *TheOffendingSrcType = nullptr,
641 QualType *TheOffendingDestType = nullptr,
642 Qualifiers *CastAwayQualifiers = nullptr) {
643 // If the only checking we care about is for Objective-C lifetime qualifiers,
644 // and we're not in ObjC mode, there's nothing to check.
645 if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC)
646 return CastAwayConstnessKind::CACK_None;
647
648 if (!DestType->isReferenceType()) {
649 assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() ||
650 SrcType->isBlockPointerType()) &&
651 "Source type is not pointer or pointer to member.");
652 assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() ||
653 DestType->isBlockPointerType()) &&
654 "Destination type is not pointer or pointer to member.");
655 }
656
657 QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType),
658 UnwrappedDestType = Self.Context.getCanonicalType(DestType);
659
660 // Find the qualifiers. We only care about cvr-qualifiers for the
661 // purpose of this check, because other qualifiers (address spaces,
662 // Objective-C GC, etc.) are part of the type's identity.
663 QualType PrevUnwrappedSrcType = UnwrappedSrcType;
664 QualType PrevUnwrappedDestType = UnwrappedDestType;
665 auto WorstKind = CastAwayConstnessKind::CACK_Similar;
666 bool AllConstSoFar = true;
667 while (auto Kind = unwrapCastAwayConstnessLevel(
668 Self.Context, UnwrappedSrcType, UnwrappedDestType)) {
669 // Track the worst kind of unwrap we needed to do before we found a
670 // problem.
671 if (Kind > WorstKind)
672 WorstKind = Kind;
673
674 // Determine the relevant qualifiers at this level.
675 Qualifiers SrcQuals, DestQuals;
676 Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals);
677 Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals);
678
679 // We do not meaningfully track object const-ness of Objective-C object
680 // types. Remove const from the source type if either the source or
681 // the destination is an Objective-C object type.
682 if (UnwrappedSrcType->isObjCObjectType() ||
683 UnwrappedDestType->isObjCObjectType())
684 SrcQuals.removeConst();
685
686 if (CheckCVR) {
687 Qualifiers SrcCvrQuals =
688 Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers());
689 Qualifiers DestCvrQuals =
690 Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers());
691
692 if (SrcCvrQuals != DestCvrQuals) {
693 if (CastAwayQualifiers)
694 *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals;
695
696 // If we removed a cvr-qualifier, this is casting away 'constness'.
697 if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals)) {
698 if (TheOffendingSrcType)
699 *TheOffendingSrcType = PrevUnwrappedSrcType;
700 if (TheOffendingDestType)
701 *TheOffendingDestType = PrevUnwrappedDestType;
702 return WorstKind;
703 }
704
705 // If any prior level was not 'const', this is also casting away
706 // 'constness'. We noted the outermost type missing a 'const' already.
707 if (!AllConstSoFar)
708 return WorstKind;
709 }
710 }
711
712 if (CheckObjCLifetime &&
713 !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals))
714 return WorstKind;
715
716 // If we found our first non-const-qualified type, this may be the place
717 // where things start to go wrong.
718 if (AllConstSoFar && !DestQuals.hasConst()) {
719 AllConstSoFar = false;
720 if (TheOffendingSrcType)
721 *TheOffendingSrcType = PrevUnwrappedSrcType;
722 if (TheOffendingDestType)
723 *TheOffendingDestType = PrevUnwrappedDestType;
724 }
725
726 PrevUnwrappedSrcType = UnwrappedSrcType;
727 PrevUnwrappedDestType = UnwrappedDestType;
728 }
729
730 return CastAwayConstnessKind::CACK_None;
731 }
732
getCastAwayConstnessCastKind(CastAwayConstnessKind CACK,unsigned & DiagID)733 static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK,
734 unsigned &DiagID) {
735 switch (CACK) {
736 case CastAwayConstnessKind::CACK_None:
737 llvm_unreachable("did not cast away constness");
738
739 case CastAwayConstnessKind::CACK_Similar:
740 // FIXME: Accept these as an extension too?
741 case CastAwayConstnessKind::CACK_SimilarKind:
742 DiagID = diag::err_bad_cxx_cast_qualifiers_away;
743 return TC_Failed;
744
745 case CastAwayConstnessKind::CACK_Incoherent:
746 DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent;
747 return TC_Extension;
748 }
749
750 llvm_unreachable("unexpected cast away constness kind");
751 }
752
753 /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid.
754 /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime-
755 /// checked downcasts in class hierarchies.
CheckDynamicCast()756 void CastOperation::CheckDynamicCast() {
757 CheckNoDerefRAII NoderefCheck(*this);
758
759 if (ValueKind == VK_PRValue)
760 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
761 else if (isPlaceholder())
762 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
763 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
764 return;
765
766 QualType OrigSrcType = SrcExpr.get()->getType();
767 QualType DestType = Self.Context.getCanonicalType(this->DestType);
768
769 // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type,
770 // or "pointer to cv void".
771
772 QualType DestPointee;
773 const PointerType *DestPointer = DestType->getAs<PointerType>();
774 const ReferenceType *DestReference = nullptr;
775 if (DestPointer) {
776 DestPointee = DestPointer->getPointeeType();
777 } else if ((DestReference = DestType->getAs<ReferenceType>())) {
778 DestPointee = DestReference->getPointeeType();
779 } else {
780 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr)
781 << this->DestType << DestRange;
782 SrcExpr = ExprError();
783 return;
784 }
785
786 const RecordType *DestRecord = DestPointee->getAs<RecordType>();
787 if (DestPointee->isVoidType()) {
788 assert(DestPointer && "Reference to void is not possible");
789 } else if (DestRecord) {
790 if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee,
791 diag::err_bad_cast_incomplete,
792 DestRange)) {
793 SrcExpr = ExprError();
794 return;
795 }
796 } else {
797 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
798 << DestPointee.getUnqualifiedType() << DestRange;
799 SrcExpr = ExprError();
800 return;
801 }
802
803 // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to
804 // complete class type, [...]. If T is an lvalue reference type, v shall be
805 // an lvalue of a complete class type, [...]. If T is an rvalue reference
806 // type, v shall be an expression having a complete class type, [...]
807 QualType SrcType = Self.Context.getCanonicalType(OrigSrcType);
808 QualType SrcPointee;
809 if (DestPointer) {
810 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
811 SrcPointee = SrcPointer->getPointeeType();
812 } else {
813 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr)
814 << OrigSrcType << this->DestType << SrcExpr.get()->getSourceRange();
815 SrcExpr = ExprError();
816 return;
817 }
818 } else if (DestReference->isLValueReferenceType()) {
819 if (!SrcExpr.get()->isLValue()) {
820 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue)
821 << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
822 }
823 SrcPointee = SrcType;
824 } else {
825 // If we're dynamic_casting from a prvalue to an rvalue reference, we need
826 // to materialize the prvalue before we bind the reference to it.
827 if (SrcExpr.get()->isPRValue())
828 SrcExpr = Self.CreateMaterializeTemporaryExpr(
829 SrcType, SrcExpr.get(), /*IsLValueReference*/ false);
830 SrcPointee = SrcType;
831 }
832
833 const RecordType *SrcRecord = SrcPointee->getAs<RecordType>();
834 if (SrcRecord) {
835 if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee,
836 diag::err_bad_cast_incomplete,
837 SrcExpr.get())) {
838 SrcExpr = ExprError();
839 return;
840 }
841 } else {
842 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
843 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
844 SrcExpr = ExprError();
845 return;
846 }
847
848 assert((DestPointer || DestReference) &&
849 "Bad destination non-ptr/ref slipped through.");
850 assert((DestRecord || DestPointee->isVoidType()) &&
851 "Bad destination pointee slipped through.");
852 assert(SrcRecord && "Bad source pointee slipped through.");
853
854 // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness.
855 if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) {
856 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away)
857 << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
858 SrcExpr = ExprError();
859 return;
860 }
861
862 // C++ 5.2.7p3: If the type of v is the same as the required result type,
863 // [except for cv].
864 if (DestRecord == SrcRecord) {
865 Kind = CK_NoOp;
866 return;
867 }
868
869 // C++ 5.2.7p5
870 // Upcasts are resolved statically.
871 if (DestRecord &&
872 Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) {
873 if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee,
874 OpRange.getBegin(), OpRange,
875 &BasePath)) {
876 SrcExpr = ExprError();
877 return;
878 }
879
880 Kind = CK_DerivedToBase;
881 return;
882 }
883
884 // C++ 5.2.7p6: Otherwise, v shall be [polymorphic].
885 const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition();
886 assert(SrcDecl && "Definition missing");
887 if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) {
888 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic)
889 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
890 SrcExpr = ExprError();
891 }
892
893 // dynamic_cast is not available with -fno-rtti.
894 // As an exception, dynamic_cast to void* is available because it doesn't
895 // use RTTI.
896 if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) {
897 Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti);
898 SrcExpr = ExprError();
899 return;
900 }
901
902 // Warns when dynamic_cast is used with RTTI data disabled.
903 if (!Self.getLangOpts().RTTIData) {
904 bool MicrosoftABI =
905 Self.getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
906 bool isClangCL = Self.getDiagnostics().getDiagnosticOptions().getFormat() ==
907 DiagnosticOptions::MSVC;
908 if (MicrosoftABI || !DestPointee->isVoidType())
909 Self.Diag(OpRange.getBegin(),
910 diag::warn_no_dynamic_cast_with_rtti_disabled)
911 << isClangCL;
912 }
913
914 // Done. Everything else is run-time checks.
915 Kind = CK_Dynamic;
916 }
917
918 /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid.
919 /// Refer to C++ 5.2.11 for details. const_cast is typically used in code
920 /// like this:
921 /// const char *str = "literal";
922 /// legacy_function(const_cast\<char*\>(str));
CheckConstCast()923 void CastOperation::CheckConstCast() {
924 CheckNoDerefRAII NoderefCheck(*this);
925
926 if (ValueKind == VK_PRValue)
927 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
928 else if (isPlaceholder())
929 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
930 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
931 return;
932
933 unsigned msg = diag::err_bad_cxx_cast_generic;
934 auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg);
935 if (TCR != TC_Success && msg != 0) {
936 Self.Diag(OpRange.getBegin(), msg) << CT_Const
937 << SrcExpr.get()->getType() << DestType << OpRange;
938 }
939 if (!isValidCast(TCR))
940 SrcExpr = ExprError();
941 }
942
CheckAddrspaceCast()943 void CastOperation::CheckAddrspaceCast() {
944 unsigned msg = diag::err_bad_cxx_cast_generic;
945 auto TCR =
946 TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg, Kind);
947 if (TCR != TC_Success && msg != 0) {
948 Self.Diag(OpRange.getBegin(), msg)
949 << CT_Addrspace << SrcExpr.get()->getType() << DestType << OpRange;
950 }
951 if (!isValidCast(TCR))
952 SrcExpr = ExprError();
953 }
954
955 /// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast
956 /// or downcast between respective pointers or references.
DiagnoseReinterpretUpDownCast(Sema & Self,const Expr * SrcExpr,QualType DestType,SourceRange OpRange)957 static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr,
958 QualType DestType,
959 SourceRange OpRange) {
960 QualType SrcType = SrcExpr->getType();
961 // When casting from pointer or reference, get pointee type; use original
962 // type otherwise.
963 const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl();
964 const CXXRecordDecl *SrcRD =
965 SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl();
966
967 // Examining subobjects for records is only possible if the complete and
968 // valid definition is available. Also, template instantiation is not
969 // allowed here.
970 if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl())
971 return;
972
973 const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl();
974
975 if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl())
976 return;
977
978 enum {
979 ReinterpretUpcast,
980 ReinterpretDowncast
981 } ReinterpretKind;
982
983 CXXBasePaths BasePaths;
984
985 if (SrcRD->isDerivedFrom(DestRD, BasePaths))
986 ReinterpretKind = ReinterpretUpcast;
987 else if (DestRD->isDerivedFrom(SrcRD, BasePaths))
988 ReinterpretKind = ReinterpretDowncast;
989 else
990 return;
991
992 bool VirtualBase = true;
993 bool NonZeroOffset = false;
994 for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(),
995 E = BasePaths.end();
996 I != E; ++I) {
997 const CXXBasePath &Path = *I;
998 CharUnits Offset = CharUnits::Zero();
999 bool IsVirtual = false;
1000 for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end();
1001 IElem != EElem; ++IElem) {
1002 IsVirtual = IElem->Base->isVirtual();
1003 if (IsVirtual)
1004 break;
1005 const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl();
1006 assert(BaseRD && "Base type should be a valid unqualified class type");
1007 // Don't check if any base has invalid declaration or has no definition
1008 // since it has no layout info.
1009 const CXXRecordDecl *Class = IElem->Class,
1010 *ClassDefinition = Class->getDefinition();
1011 if (Class->isInvalidDecl() || !ClassDefinition ||
1012 !ClassDefinition->isCompleteDefinition())
1013 return;
1014
1015 const ASTRecordLayout &DerivedLayout =
1016 Self.Context.getASTRecordLayout(Class);
1017 Offset += DerivedLayout.getBaseClassOffset(BaseRD);
1018 }
1019 if (!IsVirtual) {
1020 // Don't warn if any path is a non-virtually derived base at offset zero.
1021 if (Offset.isZero())
1022 return;
1023 // Offset makes sense only for non-virtual bases.
1024 else
1025 NonZeroOffset = true;
1026 }
1027 VirtualBase = VirtualBase && IsVirtual;
1028 }
1029
1030 (void) NonZeroOffset; // Silence set but not used warning.
1031 assert((VirtualBase || NonZeroOffset) &&
1032 "Should have returned if has non-virtual base with zero offset");
1033
1034 QualType BaseType =
1035 ReinterpretKind == ReinterpretUpcast? DestType : SrcType;
1036 QualType DerivedType =
1037 ReinterpretKind == ReinterpretUpcast? SrcType : DestType;
1038
1039 SourceLocation BeginLoc = OpRange.getBegin();
1040 Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static)
1041 << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind)
1042 << OpRange;
1043 Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static)
1044 << int(ReinterpretKind)
1045 << FixItHint::CreateReplacement(BeginLoc, "static_cast");
1046 }
1047
argTypeIsABIEquivalent(QualType SrcType,QualType DestType,ASTContext & Context)1048 static bool argTypeIsABIEquivalent(QualType SrcType, QualType DestType,
1049 ASTContext &Context) {
1050 if (SrcType->isPointerType() && DestType->isPointerType())
1051 return true;
1052
1053 // Allow integral type mismatch if their size are equal.
1054 if (SrcType->isIntegralType(Context) && DestType->isIntegralType(Context))
1055 if (Context.getTypeInfoInChars(SrcType).Width ==
1056 Context.getTypeInfoInChars(DestType).Width)
1057 return true;
1058
1059 return Context.hasSameUnqualifiedType(SrcType, DestType);
1060 }
1061
checkCastFunctionType(Sema & Self,const ExprResult & SrcExpr,QualType DestType)1062 static bool checkCastFunctionType(Sema &Self, const ExprResult &SrcExpr,
1063 QualType DestType) {
1064 if (Self.Diags.isIgnored(diag::warn_cast_function_type,
1065 SrcExpr.get()->getExprLoc()))
1066 return true;
1067
1068 QualType SrcType = SrcExpr.get()->getType();
1069 const FunctionType *SrcFTy = nullptr;
1070 const FunctionType *DstFTy = nullptr;
1071 if (((SrcType->isBlockPointerType() || SrcType->isFunctionPointerType()) &&
1072 DestType->isFunctionPointerType()) ||
1073 (SrcType->isMemberFunctionPointerType() &&
1074 DestType->isMemberFunctionPointerType())) {
1075 SrcFTy = SrcType->getPointeeType()->castAs<FunctionType>();
1076 DstFTy = DestType->getPointeeType()->castAs<FunctionType>();
1077 } else if (SrcType->isFunctionType() && DestType->isFunctionReferenceType()) {
1078 SrcFTy = SrcType->castAs<FunctionType>();
1079 DstFTy = DestType.getNonReferenceType()->castAs<FunctionType>();
1080 } else {
1081 return true;
1082 }
1083 assert(SrcFTy && DstFTy);
1084
1085 auto IsVoidVoid = [](const FunctionType *T) {
1086 if (!T->getReturnType()->isVoidType())
1087 return false;
1088 if (const auto *PT = T->getAs<FunctionProtoType>())
1089 return !PT->isVariadic() && PT->getNumParams() == 0;
1090 return false;
1091 };
1092
1093 // Skip if either function type is void(*)(void)
1094 if (IsVoidVoid(SrcFTy) || IsVoidVoid(DstFTy))
1095 return true;
1096
1097 // Check return type.
1098 if (!argTypeIsABIEquivalent(SrcFTy->getReturnType(), DstFTy->getReturnType(),
1099 Self.Context))
1100 return false;
1101
1102 // Check if either has unspecified number of parameters
1103 if (SrcFTy->isFunctionNoProtoType() || DstFTy->isFunctionNoProtoType())
1104 return true;
1105
1106 // Check parameter types.
1107
1108 const auto *SrcFPTy = cast<FunctionProtoType>(SrcFTy);
1109 const auto *DstFPTy = cast<FunctionProtoType>(DstFTy);
1110
1111 // In a cast involving function types with a variable argument list only the
1112 // types of initial arguments that are provided are considered.
1113 unsigned NumParams = SrcFPTy->getNumParams();
1114 unsigned DstNumParams = DstFPTy->getNumParams();
1115 if (NumParams > DstNumParams) {
1116 if (!DstFPTy->isVariadic())
1117 return false;
1118 NumParams = DstNumParams;
1119 } else if (NumParams < DstNumParams) {
1120 if (!SrcFPTy->isVariadic())
1121 return false;
1122 }
1123
1124 for (unsigned i = 0; i < NumParams; ++i)
1125 if (!argTypeIsABIEquivalent(SrcFPTy->getParamType(i),
1126 DstFPTy->getParamType(i), Self.Context))
1127 return false;
1128
1129 return true;
1130 }
1131
1132 /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is
1133 /// valid.
1134 /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code
1135 /// like this:
1136 /// char *bytes = reinterpret_cast\<char*\>(int_ptr);
CheckReinterpretCast()1137 void CastOperation::CheckReinterpretCast() {
1138 if (ValueKind == VK_PRValue && !isPlaceholder(BuiltinType::Overload))
1139 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1140 else
1141 checkNonOverloadPlaceholders();
1142 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1143 return;
1144
1145 unsigned msg = diag::err_bad_cxx_cast_generic;
1146 TryCastResult tcr =
1147 TryReinterpretCast(Self, SrcExpr, DestType,
1148 /*CStyle*/false, OpRange, msg, Kind);
1149 if (tcr != TC_Success && msg != 0) {
1150 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1151 return;
1152 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1153 //FIXME: &f<int>; is overloaded and resolvable
1154 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload)
1155 << OverloadExpr::find(SrcExpr.get()).Expression->getName()
1156 << DestType << OpRange;
1157 Self.NoteAllOverloadCandidates(SrcExpr.get());
1158
1159 } else {
1160 diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(),
1161 DestType, /*listInitialization=*/false);
1162 }
1163 }
1164
1165 if (isValidCast(tcr)) {
1166 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1167 checkObjCConversion(Sema::CCK_OtherCast);
1168 DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange);
1169
1170 if (!checkCastFunctionType(Self, SrcExpr, DestType))
1171 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
1172 << SrcExpr.get()->getType() << DestType << OpRange;
1173 } else {
1174 SrcExpr = ExprError();
1175 }
1176 }
1177
1178
1179 /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid.
1180 /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making
1181 /// implicit conversions explicit and getting rid of data loss warnings.
CheckStaticCast()1182 void CastOperation::CheckStaticCast() {
1183 CheckNoDerefRAII NoderefCheck(*this);
1184
1185 if (isPlaceholder()) {
1186 checkNonOverloadPlaceholders();
1187 if (SrcExpr.isInvalid())
1188 return;
1189 }
1190
1191 // This test is outside everything else because it's the only case where
1192 // a non-lvalue-reference target type does not lead to decay.
1193 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1194 if (DestType->isVoidType()) {
1195 Kind = CK_ToVoid;
1196
1197 if (claimPlaceholder(BuiltinType::Overload)) {
1198 Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr,
1199 false, // Decay Function to ptr
1200 true, // Complain
1201 OpRange, DestType, diag::err_bad_static_cast_overload);
1202 if (SrcExpr.isInvalid())
1203 return;
1204 }
1205
1206 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
1207 return;
1208 }
1209
1210 if (ValueKind == VK_PRValue && !DestType->isRecordType() &&
1211 !isPlaceholder(BuiltinType::Overload)) {
1212 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1213 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1214 return;
1215 }
1216
1217 unsigned msg = diag::err_bad_cxx_cast_generic;
1218 TryCastResult tcr
1219 = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg,
1220 Kind, BasePath, /*ListInitialization=*/false);
1221 if (tcr != TC_Success && msg != 0) {
1222 if (SrcExpr.isInvalid())
1223 return;
1224 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1225 OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression;
1226 Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload)
1227 << oe->getName() << DestType << OpRange
1228 << oe->getQualifierLoc().getSourceRange();
1229 Self.NoteAllOverloadCandidates(SrcExpr.get());
1230 } else {
1231 diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType,
1232 /*listInitialization=*/false);
1233 }
1234 }
1235
1236 if (isValidCast(tcr)) {
1237 if (Kind == CK_BitCast)
1238 checkCastAlign();
1239 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1240 checkObjCConversion(Sema::CCK_OtherCast);
1241 } else {
1242 SrcExpr = ExprError();
1243 }
1244 }
1245
IsAddressSpaceConversion(QualType SrcType,QualType DestType)1246 static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) {
1247 auto *SrcPtrType = SrcType->getAs<PointerType>();
1248 if (!SrcPtrType)
1249 return false;
1250 auto *DestPtrType = DestType->getAs<PointerType>();
1251 if (!DestPtrType)
1252 return false;
1253 return SrcPtrType->getPointeeType().getAddressSpace() !=
1254 DestPtrType->getPointeeType().getAddressSpace();
1255 }
1256
1257 /// TryStaticCast - Check if a static cast can be performed, and do so if
1258 /// possible. If @p CStyle, ignore access restrictions on hierarchy casting
1259 /// and casting away constness.
TryStaticCast(Sema & Self,ExprResult & SrcExpr,QualType DestType,Sema::CheckedConversionKind CCK,SourceRange OpRange,unsigned & msg,CastKind & Kind,CXXCastPath & BasePath,bool ListInitialization)1260 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
1261 QualType DestType,
1262 Sema::CheckedConversionKind CCK,
1263 SourceRange OpRange, unsigned &msg,
1264 CastKind &Kind, CXXCastPath &BasePath,
1265 bool ListInitialization) {
1266 // Determine whether we have the semantics of a C-style cast.
1267 bool CStyle
1268 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
1269
1270 // The order the tests is not entirely arbitrary. There is one conversion
1271 // that can be handled in two different ways. Given:
1272 // struct A {};
1273 // struct B : public A {
1274 // B(); B(const A&);
1275 // };
1276 // const A &a = B();
1277 // the cast static_cast<const B&>(a) could be seen as either a static
1278 // reference downcast, or an explicit invocation of the user-defined
1279 // conversion using B's conversion constructor.
1280 // DR 427 specifies that the downcast is to be applied here.
1281
1282 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1283 // Done outside this function.
1284
1285 TryCastResult tcr;
1286
1287 // C++ 5.2.9p5, reference downcast.
1288 // See the function for details.
1289 // DR 427 specifies that this is to be applied before paragraph 2.
1290 tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle,
1291 OpRange, msg, Kind, BasePath);
1292 if (tcr != TC_NotApplicable)
1293 return tcr;
1294
1295 // C++11 [expr.static.cast]p3:
1296 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2
1297 // T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1298 tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind,
1299 BasePath, msg);
1300 if (tcr != TC_NotApplicable)
1301 return tcr;
1302
1303 // C++ 5.2.9p2: An expression e can be explicitly converted to a type T
1304 // [...] if the declaration "T t(e);" is well-formed, [...].
1305 tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg,
1306 Kind, ListInitialization);
1307 if (SrcExpr.isInvalid())
1308 return TC_Failed;
1309 if (tcr != TC_NotApplicable)
1310 return tcr;
1311
1312 // C++ 5.2.9p6: May apply the reverse of any standard conversion, except
1313 // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean
1314 // conversions, subject to further restrictions.
1315 // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal
1316 // of qualification conversions impossible. (In C++20, adding an array bound
1317 // would be the reverse of a qualification conversion, but adding permission
1318 // to add an array bound in a static_cast is a wording oversight.)
1319 // In the CStyle case, the earlier attempt to const_cast should have taken
1320 // care of reverse qualification conversions.
1321
1322 QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType());
1323
1324 // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly
1325 // converted to an integral type. [...] A value of a scoped enumeration type
1326 // can also be explicitly converted to a floating-point type [...].
1327 if (const EnumType *Enum = SrcType->getAs<EnumType>()) {
1328 if (Enum->getDecl()->isScoped()) {
1329 if (DestType->isBooleanType()) {
1330 Kind = CK_IntegralToBoolean;
1331 return TC_Success;
1332 } else if (DestType->isIntegralType(Self.Context)) {
1333 Kind = CK_IntegralCast;
1334 return TC_Success;
1335 } else if (DestType->isRealFloatingType()) {
1336 Kind = CK_IntegralToFloating;
1337 return TC_Success;
1338 }
1339 }
1340 }
1341
1342 // Reverse integral promotion/conversion. All such conversions are themselves
1343 // again integral promotions or conversions and are thus already handled by
1344 // p2 (TryDirectInitialization above).
1345 // (Note: any data loss warnings should be suppressed.)
1346 // The exception is the reverse of enum->integer, i.e. integer->enum (and
1347 // enum->enum). See also C++ 5.2.9p7.
1348 // The same goes for reverse floating point promotion/conversion and
1349 // floating-integral conversions. Again, only floating->enum is relevant.
1350 if (DestType->isEnumeralType()) {
1351 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
1352 diag::err_bad_cast_incomplete)) {
1353 SrcExpr = ExprError();
1354 return TC_Failed;
1355 }
1356 if (SrcType->isIntegralOrEnumerationType()) {
1357 // [expr.static.cast]p10 If the enumeration type has a fixed underlying
1358 // type, the value is first converted to that type by integral conversion
1359 const EnumType *Enum = DestType->castAs<EnumType>();
1360 Kind = Enum->getDecl()->isFixed() &&
1361 Enum->getDecl()->getIntegerType()->isBooleanType()
1362 ? CK_IntegralToBoolean
1363 : CK_IntegralCast;
1364 return TC_Success;
1365 } else if (SrcType->isRealFloatingType()) {
1366 Kind = CK_FloatingToIntegral;
1367 return TC_Success;
1368 }
1369 }
1370
1371 // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast.
1372 // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance.
1373 tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg,
1374 Kind, BasePath);
1375 if (tcr != TC_NotApplicable)
1376 return tcr;
1377
1378 // Reverse member pointer conversion. C++ 4.11 specifies member pointer
1379 // conversion. C++ 5.2.9p9 has additional information.
1380 // DR54's access restrictions apply here also.
1381 tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle,
1382 OpRange, msg, Kind, BasePath);
1383 if (tcr != TC_NotApplicable)
1384 return tcr;
1385
1386 // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to
1387 // void*. C++ 5.2.9p10 specifies additional restrictions, which really is
1388 // just the usual constness stuff.
1389 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
1390 QualType SrcPointee = SrcPointer->getPointeeType();
1391 if (SrcPointee->isVoidType()) {
1392 if (const PointerType *DestPointer = DestType->getAs<PointerType>()) {
1393 QualType DestPointee = DestPointer->getPointeeType();
1394 if (DestPointee->isIncompleteOrObjectType()) {
1395 // This is definitely the intended conversion, but it might fail due
1396 // to a qualifier violation. Note that we permit Objective-C lifetime
1397 // and GC qualifier mismatches here.
1398 if (!CStyle) {
1399 Qualifiers DestPointeeQuals = DestPointee.getQualifiers();
1400 Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers();
1401 DestPointeeQuals.removeObjCGCAttr();
1402 DestPointeeQuals.removeObjCLifetime();
1403 SrcPointeeQuals.removeObjCGCAttr();
1404 SrcPointeeQuals.removeObjCLifetime();
1405 if (DestPointeeQuals != SrcPointeeQuals &&
1406 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) {
1407 msg = diag::err_bad_cxx_cast_qualifiers_away;
1408 return TC_Failed;
1409 }
1410 }
1411 Kind = IsAddressSpaceConversion(SrcType, DestType)
1412 ? CK_AddressSpaceConversion
1413 : CK_BitCast;
1414 return TC_Success;
1415 }
1416
1417 // Microsoft permits static_cast from 'pointer-to-void' to
1418 // 'pointer-to-function'.
1419 if (!CStyle && Self.getLangOpts().MSVCCompat &&
1420 DestPointee->isFunctionType()) {
1421 Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange;
1422 Kind = CK_BitCast;
1423 return TC_Success;
1424 }
1425 }
1426 else if (DestType->isObjCObjectPointerType()) {
1427 // allow both c-style cast and static_cast of objective-c pointers as
1428 // they are pervasive.
1429 Kind = CK_CPointerToObjCPointerCast;
1430 return TC_Success;
1431 }
1432 else if (CStyle && DestType->isBlockPointerType()) {
1433 // allow c-style cast of void * to block pointers.
1434 Kind = CK_AnyPointerToBlockPointerCast;
1435 return TC_Success;
1436 }
1437 }
1438 }
1439 // Allow arbitrary objective-c pointer conversion with static casts.
1440 if (SrcType->isObjCObjectPointerType() &&
1441 DestType->isObjCObjectPointerType()) {
1442 Kind = CK_BitCast;
1443 return TC_Success;
1444 }
1445 // Allow ns-pointer to cf-pointer conversion in either direction
1446 // with static casts.
1447 if (!CStyle &&
1448 Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind))
1449 return TC_Success;
1450
1451 // See if it looks like the user is trying to convert between
1452 // related record types, and select a better diagnostic if so.
1453 if (auto SrcPointer = SrcType->getAs<PointerType>())
1454 if (auto DestPointer = DestType->getAs<PointerType>())
1455 if (SrcPointer->getPointeeType()->getAs<RecordType>() &&
1456 DestPointer->getPointeeType()->getAs<RecordType>())
1457 msg = diag::err_bad_cxx_cast_unrelated_class;
1458
1459 if (SrcType->isMatrixType() && DestType->isMatrixType()) {
1460 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind)) {
1461 SrcExpr = ExprError();
1462 return TC_Failed;
1463 }
1464 return TC_Success;
1465 }
1466
1467 // We tried everything. Everything! Nothing works! :-(
1468 return TC_NotApplicable;
1469 }
1470
1471 /// Tests whether a conversion according to N2844 is valid.
TryLValueToRValueCast(Sema & Self,Expr * SrcExpr,QualType DestType,bool CStyle,CastKind & Kind,CXXCastPath & BasePath,unsigned & msg)1472 TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
1473 QualType DestType, bool CStyle,
1474 CastKind &Kind, CXXCastPath &BasePath,
1475 unsigned &msg) {
1476 // C++11 [expr.static.cast]p3:
1477 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to
1478 // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1479 const RValueReferenceType *R = DestType->getAs<RValueReferenceType>();
1480 if (!R)
1481 return TC_NotApplicable;
1482
1483 if (!SrcExpr->isGLValue())
1484 return TC_NotApplicable;
1485
1486 // Because we try the reference downcast before this function, from now on
1487 // this is the only cast possibility, so we issue an error if we fail now.
1488 // FIXME: Should allow casting away constness if CStyle.
1489 QualType FromType = SrcExpr->getType();
1490 QualType ToType = R->getPointeeType();
1491 if (CStyle) {
1492 FromType = FromType.getUnqualifiedType();
1493 ToType = ToType.getUnqualifiedType();
1494 }
1495
1496 Sema::ReferenceConversions RefConv;
1497 Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship(
1498 SrcExpr->getBeginLoc(), ToType, FromType, &RefConv);
1499 if (RefResult != Sema::Ref_Compatible) {
1500 if (CStyle || RefResult == Sema::Ref_Incompatible)
1501 return TC_NotApplicable;
1502 // Diagnose types which are reference-related but not compatible here since
1503 // we can provide better diagnostics. In these cases forwarding to
1504 // [expr.static.cast]p4 should never result in a well-formed cast.
1505 msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast
1506 : diag::err_bad_rvalue_to_rvalue_cast;
1507 return TC_Failed;
1508 }
1509
1510 if (RefConv & Sema::ReferenceConversions::DerivedToBase) {
1511 Kind = CK_DerivedToBase;
1512 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1513 /*DetectVirtual=*/true);
1514 if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(),
1515 R->getPointeeType(), Paths))
1516 return TC_NotApplicable;
1517
1518 Self.BuildBasePathArray(Paths, BasePath);
1519 } else
1520 Kind = CK_NoOp;
1521
1522 return TC_Success;
1523 }
1524
1525 /// Tests whether a conversion according to C++ 5.2.9p5 is valid.
1526 TryCastResult
TryStaticReferenceDowncast(Sema & Self,Expr * SrcExpr,QualType DestType,bool CStyle,SourceRange OpRange,unsigned & msg,CastKind & Kind,CXXCastPath & BasePath)1527 TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType,
1528 bool CStyle, SourceRange OpRange,
1529 unsigned &msg, CastKind &Kind,
1530 CXXCastPath &BasePath) {
1531 // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be
1532 // cast to type "reference to cv2 D", where D is a class derived from B,
1533 // if a valid standard conversion from "pointer to D" to "pointer to B"
1534 // exists, cv2 >= cv1, and B is not a virtual base class of D.
1535 // In addition, DR54 clarifies that the base must be accessible in the
1536 // current context. Although the wording of DR54 only applies to the pointer
1537 // variant of this rule, the intent is clearly for it to apply to the this
1538 // conversion as well.
1539
1540 const ReferenceType *DestReference = DestType->getAs<ReferenceType>();
1541 if (!DestReference) {
1542 return TC_NotApplicable;
1543 }
1544 bool RValueRef = DestReference->isRValueReferenceType();
1545 if (!RValueRef && !SrcExpr->isLValue()) {
1546 // We know the left side is an lvalue reference, so we can suggest a reason.
1547 msg = diag::err_bad_cxx_cast_rvalue;
1548 return TC_NotApplicable;
1549 }
1550
1551 QualType DestPointee = DestReference->getPointeeType();
1552
1553 // FIXME: If the source is a prvalue, we should issue a warning (because the
1554 // cast always has undefined behavior), and for AST consistency, we should
1555 // materialize a temporary.
1556 return TryStaticDowncast(Self,
1557 Self.Context.getCanonicalType(SrcExpr->getType()),
1558 Self.Context.getCanonicalType(DestPointee), CStyle,
1559 OpRange, SrcExpr->getType(), DestType, msg, Kind,
1560 BasePath);
1561 }
1562
1563 /// Tests whether a conversion according to C++ 5.2.9p8 is valid.
1564 TryCastResult
TryStaticPointerDowncast(Sema & Self,QualType SrcType,QualType DestType,bool CStyle,SourceRange OpRange,unsigned & msg,CastKind & Kind,CXXCastPath & BasePath)1565 TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType,
1566 bool CStyle, SourceRange OpRange,
1567 unsigned &msg, CastKind &Kind,
1568 CXXCastPath &BasePath) {
1569 // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class
1570 // type, can be converted to an rvalue of type "pointer to cv2 D", where D
1571 // is a class derived from B, if a valid standard conversion from "pointer
1572 // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base
1573 // class of D.
1574 // In addition, DR54 clarifies that the base must be accessible in the
1575 // current context.
1576
1577 const PointerType *DestPointer = DestType->getAs<PointerType>();
1578 if (!DestPointer) {
1579 return TC_NotApplicable;
1580 }
1581
1582 const PointerType *SrcPointer = SrcType->getAs<PointerType>();
1583 if (!SrcPointer) {
1584 msg = diag::err_bad_static_cast_pointer_nonpointer;
1585 return TC_NotApplicable;
1586 }
1587
1588 return TryStaticDowncast(Self,
1589 Self.Context.getCanonicalType(SrcPointer->getPointeeType()),
1590 Self.Context.getCanonicalType(DestPointer->getPointeeType()),
1591 CStyle, OpRange, SrcType, DestType, msg, Kind,
1592 BasePath);
1593 }
1594
1595 /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and
1596 /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to
1597 /// DestType is possible and allowed.
1598 TryCastResult
TryStaticDowncast(Sema & Self,CanQualType SrcType,CanQualType DestType,bool CStyle,SourceRange OpRange,QualType OrigSrcType,QualType OrigDestType,unsigned & msg,CastKind & Kind,CXXCastPath & BasePath)1599 TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType,
1600 bool CStyle, SourceRange OpRange, QualType OrigSrcType,
1601 QualType OrigDestType, unsigned &msg,
1602 CastKind &Kind, CXXCastPath &BasePath) {
1603 // We can only work with complete types. But don't complain if it doesn't work
1604 if (!Self.isCompleteType(OpRange.getBegin(), SrcType) ||
1605 !Self.isCompleteType(OpRange.getBegin(), DestType))
1606 return TC_NotApplicable;
1607
1608 // Downcast can only happen in class hierarchies, so we need classes.
1609 if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) {
1610 return TC_NotApplicable;
1611 }
1612
1613 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1614 /*DetectVirtual=*/true);
1615 if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) {
1616 return TC_NotApplicable;
1617 }
1618
1619 // Target type does derive from source type. Now we're serious. If an error
1620 // appears now, it's not ignored.
1621 // This may not be entirely in line with the standard. Take for example:
1622 // struct A {};
1623 // struct B : virtual A {
1624 // B(A&);
1625 // };
1626 //
1627 // void f()
1628 // {
1629 // (void)static_cast<const B&>(*((A*)0));
1630 // }
1631 // As far as the standard is concerned, p5 does not apply (A is virtual), so
1632 // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid.
1633 // However, both GCC and Comeau reject this example, and accepting it would
1634 // mean more complex code if we're to preserve the nice error message.
1635 // FIXME: Being 100% compliant here would be nice to have.
1636
1637 // Must preserve cv, as always, unless we're in C-style mode.
1638 if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) {
1639 msg = diag::err_bad_cxx_cast_qualifiers_away;
1640 return TC_Failed;
1641 }
1642
1643 if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) {
1644 // This code is analoguous to that in CheckDerivedToBaseConversion, except
1645 // that it builds the paths in reverse order.
1646 // To sum up: record all paths to the base and build a nice string from
1647 // them. Use it to spice up the error message.
1648 if (!Paths.isRecordingPaths()) {
1649 Paths.clear();
1650 Paths.setRecordingPaths(true);
1651 Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths);
1652 }
1653 std::string PathDisplayStr;
1654 std::set<unsigned> DisplayedPaths;
1655 for (clang::CXXBasePath &Path : Paths) {
1656 if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) {
1657 // We haven't displayed a path to this particular base
1658 // class subobject yet.
1659 PathDisplayStr += "\n ";
1660 for (CXXBasePathElement &PE : llvm::reverse(Path))
1661 PathDisplayStr += PE.Base->getType().getAsString() + " -> ";
1662 PathDisplayStr += QualType(DestType).getAsString();
1663 }
1664 }
1665
1666 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast)
1667 << QualType(SrcType).getUnqualifiedType()
1668 << QualType(DestType).getUnqualifiedType()
1669 << PathDisplayStr << OpRange;
1670 msg = 0;
1671 return TC_Failed;
1672 }
1673
1674 if (Paths.getDetectedVirtual() != nullptr) {
1675 QualType VirtualBase(Paths.getDetectedVirtual(), 0);
1676 Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual)
1677 << OrigSrcType << OrigDestType << VirtualBase << OpRange;
1678 msg = 0;
1679 return TC_Failed;
1680 }
1681
1682 if (!CStyle) {
1683 switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1684 SrcType, DestType,
1685 Paths.front(),
1686 diag::err_downcast_from_inaccessible_base)) {
1687 case Sema::AR_accessible:
1688 case Sema::AR_delayed: // be optimistic
1689 case Sema::AR_dependent: // be optimistic
1690 break;
1691
1692 case Sema::AR_inaccessible:
1693 msg = 0;
1694 return TC_Failed;
1695 }
1696 }
1697
1698 Self.BuildBasePathArray(Paths, BasePath);
1699 Kind = CK_BaseToDerived;
1700 return TC_Success;
1701 }
1702
1703 /// TryStaticMemberPointerUpcast - Tests whether a conversion according to
1704 /// C++ 5.2.9p9 is valid:
1705 ///
1706 /// An rvalue of type "pointer to member of D of type cv1 T" can be
1707 /// converted to an rvalue of type "pointer to member of B of type cv2 T",
1708 /// where B is a base class of D [...].
1709 ///
1710 TryCastResult
TryStaticMemberPointerUpcast(Sema & Self,ExprResult & SrcExpr,QualType SrcType,QualType DestType,bool CStyle,SourceRange OpRange,unsigned & msg,CastKind & Kind,CXXCastPath & BasePath)1711 TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType,
1712 QualType DestType, bool CStyle,
1713 SourceRange OpRange,
1714 unsigned &msg, CastKind &Kind,
1715 CXXCastPath &BasePath) {
1716 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>();
1717 if (!DestMemPtr)
1718 return TC_NotApplicable;
1719
1720 bool WasOverloadedFunction = false;
1721 DeclAccessPair FoundOverload;
1722 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1723 if (FunctionDecl *Fn
1724 = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false,
1725 FoundOverload)) {
1726 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
1727 SrcType = Self.Context.getMemberPointerType(Fn->getType(),
1728 Self.Context.getTypeDeclType(M->getParent()).getTypePtr());
1729 WasOverloadedFunction = true;
1730 }
1731 }
1732
1733 const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>();
1734 if (!SrcMemPtr) {
1735 msg = diag::err_bad_static_cast_member_pointer_nonmp;
1736 return TC_NotApplicable;
1737 }
1738
1739 // Lock down the inheritance model right now in MS ABI, whether or not the
1740 // pointee types are the same.
1741 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1742 (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
1743 (void)Self.isCompleteType(OpRange.getBegin(), DestType);
1744 }
1745
1746 // T == T, modulo cv
1747 if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(),
1748 DestMemPtr->getPointeeType()))
1749 return TC_NotApplicable;
1750
1751 // B base of D
1752 QualType SrcClass(SrcMemPtr->getClass(), 0);
1753 QualType DestClass(DestMemPtr->getClass(), 0);
1754 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1755 /*DetectVirtual=*/true);
1756 if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths))
1757 return TC_NotApplicable;
1758
1759 // B is a base of D. But is it an allowed base? If not, it's a hard error.
1760 if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) {
1761 Paths.clear();
1762 Paths.setRecordingPaths(true);
1763 bool StillOkay =
1764 Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths);
1765 assert(StillOkay);
1766 (void)StillOkay;
1767 std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths);
1768 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv)
1769 << 1 << SrcClass << DestClass << PathDisplayStr << OpRange;
1770 msg = 0;
1771 return TC_Failed;
1772 }
1773
1774 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1775 Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual)
1776 << SrcClass << DestClass << QualType(VBase, 0) << OpRange;
1777 msg = 0;
1778 return TC_Failed;
1779 }
1780
1781 if (!CStyle) {
1782 switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1783 DestClass, SrcClass,
1784 Paths.front(),
1785 diag::err_upcast_to_inaccessible_base)) {
1786 case Sema::AR_accessible:
1787 case Sema::AR_delayed:
1788 case Sema::AR_dependent:
1789 // Optimistically assume that the delayed and dependent cases
1790 // will work out.
1791 break;
1792
1793 case Sema::AR_inaccessible:
1794 msg = 0;
1795 return TC_Failed;
1796 }
1797 }
1798
1799 if (WasOverloadedFunction) {
1800 // Resolve the address of the overloaded function again, this time
1801 // allowing complaints if something goes wrong.
1802 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
1803 DestType,
1804 true,
1805 FoundOverload);
1806 if (!Fn) {
1807 msg = 0;
1808 return TC_Failed;
1809 }
1810
1811 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn);
1812 if (!SrcExpr.isUsable()) {
1813 msg = 0;
1814 return TC_Failed;
1815 }
1816 }
1817
1818 Self.BuildBasePathArray(Paths, BasePath);
1819 Kind = CK_DerivedToBaseMemberPointer;
1820 return TC_Success;
1821 }
1822
1823 /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2
1824 /// is valid:
1825 ///
1826 /// An expression e can be explicitly converted to a type T using a
1827 /// @c static_cast if the declaration "T t(e);" is well-formed [...].
1828 TryCastResult
TryStaticImplicitCast(Sema & Self,ExprResult & SrcExpr,QualType DestType,Sema::CheckedConversionKind CCK,SourceRange OpRange,unsigned & msg,CastKind & Kind,bool ListInitialization)1829 TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType,
1830 Sema::CheckedConversionKind CCK,
1831 SourceRange OpRange, unsigned &msg,
1832 CastKind &Kind, bool ListInitialization) {
1833 if (DestType->isRecordType()) {
1834 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
1835 diag::err_bad_cast_incomplete) ||
1836 Self.RequireNonAbstractType(OpRange.getBegin(), DestType,
1837 diag::err_allocation_of_abstract_type)) {
1838 msg = 0;
1839 return TC_Failed;
1840 }
1841 }
1842
1843 InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType);
1844 InitializationKind InitKind
1845 = (CCK == Sema::CCK_CStyleCast)
1846 ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange,
1847 ListInitialization)
1848 : (CCK == Sema::CCK_FunctionalCast)
1849 ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization)
1850 : InitializationKind::CreateCast(OpRange);
1851 Expr *SrcExprRaw = SrcExpr.get();
1852 // FIXME: Per DR242, we should check for an implicit conversion sequence
1853 // or for a constructor that could be invoked by direct-initialization
1854 // here, not for an initialization sequence.
1855 InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw);
1856
1857 // At this point of CheckStaticCast, if the destination is a reference,
1858 // or the expression is an overload expression this has to work.
1859 // There is no other way that works.
1860 // On the other hand, if we're checking a C-style cast, we've still got
1861 // the reinterpret_cast way.
1862 bool CStyle
1863 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
1864 if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType()))
1865 return TC_NotApplicable;
1866
1867 ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw);
1868 if (Result.isInvalid()) {
1869 msg = 0;
1870 return TC_Failed;
1871 }
1872
1873 if (InitSeq.isConstructorInitialization())
1874 Kind = CK_ConstructorConversion;
1875 else
1876 Kind = CK_NoOp;
1877
1878 SrcExpr = Result;
1879 return TC_Success;
1880 }
1881
1882 /// TryConstCast - See if a const_cast from source to destination is allowed,
1883 /// and perform it if it is.
TryConstCast(Sema & Self,ExprResult & SrcExpr,QualType DestType,bool CStyle,unsigned & msg)1884 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
1885 QualType DestType, bool CStyle,
1886 unsigned &msg) {
1887 DestType = Self.Context.getCanonicalType(DestType);
1888 QualType SrcType = SrcExpr.get()->getType();
1889 bool NeedToMaterializeTemporary = false;
1890
1891 if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) {
1892 // C++11 5.2.11p4:
1893 // if a pointer to T1 can be explicitly converted to the type "pointer to
1894 // T2" using a const_cast, then the following conversions can also be
1895 // made:
1896 // -- an lvalue of type T1 can be explicitly converted to an lvalue of
1897 // type T2 using the cast const_cast<T2&>;
1898 // -- a glvalue of type T1 can be explicitly converted to an xvalue of
1899 // type T2 using the cast const_cast<T2&&>; and
1900 // -- if T1 is a class type, a prvalue of type T1 can be explicitly
1901 // converted to an xvalue of type T2 using the cast const_cast<T2&&>.
1902
1903 if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) {
1904 // Cannot const_cast non-lvalue to lvalue reference type. But if this
1905 // is C-style, static_cast might find a way, so we simply suggest a
1906 // message and tell the parent to keep searching.
1907 msg = diag::err_bad_cxx_cast_rvalue;
1908 return TC_NotApplicable;
1909 }
1910
1911 if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isPRValue()) {
1912 if (!SrcType->isRecordType()) {
1913 // Cannot const_cast non-class prvalue to rvalue reference type. But if
1914 // this is C-style, static_cast can do this.
1915 msg = diag::err_bad_cxx_cast_rvalue;
1916 return TC_NotApplicable;
1917 }
1918
1919 // Materialize the class prvalue so that the const_cast can bind a
1920 // reference to it.
1921 NeedToMaterializeTemporary = true;
1922 }
1923
1924 // It's not completely clear under the standard whether we can
1925 // const_cast bit-field gl-values. Doing so would not be
1926 // intrinsically complicated, but for now, we say no for
1927 // consistency with other compilers and await the word of the
1928 // committee.
1929 if (SrcExpr.get()->refersToBitField()) {
1930 msg = diag::err_bad_cxx_cast_bitfield;
1931 return TC_NotApplicable;
1932 }
1933
1934 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
1935 SrcType = Self.Context.getPointerType(SrcType);
1936 }
1937
1938 // C++ 5.2.11p5: For a const_cast involving pointers to data members [...]
1939 // the rules for const_cast are the same as those used for pointers.
1940
1941 if (!DestType->isPointerType() &&
1942 !DestType->isMemberPointerType() &&
1943 !DestType->isObjCObjectPointerType()) {
1944 // Cannot cast to non-pointer, non-reference type. Note that, if DestType
1945 // was a reference type, we converted it to a pointer above.
1946 // The status of rvalue references isn't entirely clear, but it looks like
1947 // conversion to them is simply invalid.
1948 // C++ 5.2.11p3: For two pointer types [...]
1949 if (!CStyle)
1950 msg = diag::err_bad_const_cast_dest;
1951 return TC_NotApplicable;
1952 }
1953 if (DestType->isFunctionPointerType() ||
1954 DestType->isMemberFunctionPointerType()) {
1955 // Cannot cast direct function pointers.
1956 // C++ 5.2.11p2: [...] where T is any object type or the void type [...]
1957 // T is the ultimate pointee of source and target type.
1958 if (!CStyle)
1959 msg = diag::err_bad_const_cast_dest;
1960 return TC_NotApplicable;
1961 }
1962
1963 // C++ [expr.const.cast]p3:
1964 // "For two similar types T1 and T2, [...]"
1965 //
1966 // We only allow a const_cast to change cvr-qualifiers, not other kinds of
1967 // type qualifiers. (Likewise, we ignore other changes when determining
1968 // whether a cast casts away constness.)
1969 if (!Self.Context.hasCvrSimilarType(SrcType, DestType))
1970 return TC_NotApplicable;
1971
1972 if (NeedToMaterializeTemporary)
1973 // This is a const_cast from a class prvalue to an rvalue reference type.
1974 // Materialize a temporary to store the result of the conversion.
1975 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(),
1976 SrcExpr.get(),
1977 /*IsLValueReference*/ false);
1978
1979 return TC_Success;
1980 }
1981
1982 // Checks for undefined behavior in reinterpret_cast.
1983 // The cases that is checked for is:
1984 // *reinterpret_cast<T*>(&a)
1985 // reinterpret_cast<T&>(a)
1986 // where accessing 'a' as type 'T' will result in undefined behavior.
CheckCompatibleReinterpretCast(QualType SrcType,QualType DestType,bool IsDereference,SourceRange Range)1987 void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
1988 bool IsDereference,
1989 SourceRange Range) {
1990 unsigned DiagID = IsDereference ?
1991 diag::warn_pointer_indirection_from_incompatible_type :
1992 diag::warn_undefined_reinterpret_cast;
1993
1994 if (Diags.isIgnored(DiagID, Range.getBegin()))
1995 return;
1996
1997 QualType SrcTy, DestTy;
1998 if (IsDereference) {
1999 if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) {
2000 return;
2001 }
2002 SrcTy = SrcType->getPointeeType();
2003 DestTy = DestType->getPointeeType();
2004 } else {
2005 if (!DestType->getAs<ReferenceType>()) {
2006 return;
2007 }
2008 SrcTy = SrcType;
2009 DestTy = DestType->getPointeeType();
2010 }
2011
2012 // Cast is compatible if the types are the same.
2013 if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) {
2014 return;
2015 }
2016 // or one of the types is a char or void type
2017 if (DestTy->isAnyCharacterType() || DestTy->isVoidType() ||
2018 SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) {
2019 return;
2020 }
2021 // or one of the types is a tag type.
2022 if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) {
2023 return;
2024 }
2025
2026 // FIXME: Scoped enums?
2027 if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) ||
2028 (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) {
2029 if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) {
2030 return;
2031 }
2032 }
2033
2034 Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range;
2035 }
2036
DiagnoseCastOfObjCSEL(Sema & Self,const ExprResult & SrcExpr,QualType DestType)2037 static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr,
2038 QualType DestType) {
2039 QualType SrcType = SrcExpr.get()->getType();
2040 if (Self.Context.hasSameType(SrcType, DestType))
2041 return;
2042 if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>())
2043 if (SrcPtrTy->isObjCSelType()) {
2044 QualType DT = DestType;
2045 if (isa<PointerType>(DestType))
2046 DT = DestType->getPointeeType();
2047 if (!DT.getUnqualifiedType()->isVoidType())
2048 Self.Diag(SrcExpr.get()->getExprLoc(),
2049 diag::warn_cast_pointer_from_sel)
2050 << SrcType << DestType << SrcExpr.get()->getSourceRange();
2051 }
2052 }
2053
2054 /// Diagnose casts that change the calling convention of a pointer to a function
2055 /// defined in the current TU.
DiagnoseCallingConvCast(Sema & Self,const ExprResult & SrcExpr,QualType DstType,SourceRange OpRange)2056 static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr,
2057 QualType DstType, SourceRange OpRange) {
2058 // Check if this cast would change the calling convention of a function
2059 // pointer type.
2060 QualType SrcType = SrcExpr.get()->getType();
2061 if (Self.Context.hasSameType(SrcType, DstType) ||
2062 !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType())
2063 return;
2064 const auto *SrcFTy =
2065 SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
2066 const auto *DstFTy =
2067 DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
2068 CallingConv SrcCC = SrcFTy->getCallConv();
2069 CallingConv DstCC = DstFTy->getCallConv();
2070 if (SrcCC == DstCC)
2071 return;
2072
2073 // We have a calling convention cast. Check if the source is a pointer to a
2074 // known, specific function that has already been defined.
2075 Expr *Src = SrcExpr.get()->IgnoreParenImpCasts();
2076 if (auto *UO = dyn_cast<UnaryOperator>(Src))
2077 if (UO->getOpcode() == UO_AddrOf)
2078 Src = UO->getSubExpr()->IgnoreParenImpCasts();
2079 auto *DRE = dyn_cast<DeclRefExpr>(Src);
2080 if (!DRE)
2081 return;
2082 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
2083 if (!FD)
2084 return;
2085
2086 // Only warn if we are casting from the default convention to a non-default
2087 // convention. This can happen when the programmer forgot to apply the calling
2088 // convention to the function declaration and then inserted this cast to
2089 // satisfy the type system.
2090 CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention(
2091 FD->isVariadic(), FD->isCXXInstanceMember());
2092 if (DstCC == DefaultCC || SrcCC != DefaultCC)
2093 return;
2094
2095 // Diagnose this cast, as it is probably bad.
2096 StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC);
2097 StringRef DstCCName = FunctionType::getNameForCallConv(DstCC);
2098 Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv)
2099 << SrcCCName << DstCCName << OpRange;
2100
2101 // The checks above are cheaper than checking if the diagnostic is enabled.
2102 // However, it's worth checking if the warning is enabled before we construct
2103 // a fixit.
2104 if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin()))
2105 return;
2106
2107 // Try to suggest a fixit to change the calling convention of the function
2108 // whose address was taken. Try to use the latest macro for the convention.
2109 // For example, users probably want to write "WINAPI" instead of "__stdcall"
2110 // to match the Windows header declarations.
2111 SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc();
2112 Preprocessor &PP = Self.getPreprocessor();
2113 SmallVector<TokenValue, 6> AttrTokens;
2114 SmallString<64> CCAttrText;
2115 llvm::raw_svector_ostream OS(CCAttrText);
2116 if (Self.getLangOpts().MicrosoftExt) {
2117 // __stdcall or __vectorcall
2118 OS << "__" << DstCCName;
2119 IdentifierInfo *II = PP.getIdentifierInfo(OS.str());
2120 AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
2121 ? TokenValue(II->getTokenID())
2122 : TokenValue(II));
2123 } else {
2124 // __attribute__((stdcall)) or __attribute__((vectorcall))
2125 OS << "__attribute__((" << DstCCName << "))";
2126 AttrTokens.push_back(tok::kw___attribute);
2127 AttrTokens.push_back(tok::l_paren);
2128 AttrTokens.push_back(tok::l_paren);
2129 IdentifierInfo *II = PP.getIdentifierInfo(DstCCName);
2130 AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
2131 ? TokenValue(II->getTokenID())
2132 : TokenValue(II));
2133 AttrTokens.push_back(tok::r_paren);
2134 AttrTokens.push_back(tok::r_paren);
2135 }
2136 StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens);
2137 if (!AttrSpelling.empty())
2138 CCAttrText = AttrSpelling;
2139 OS << ' ';
2140 Self.Diag(NameLoc, diag::note_change_calling_conv_fixit)
2141 << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText);
2142 }
2143
checkIntToPointerCast(bool CStyle,const SourceRange & OpRange,const Expr * SrcExpr,QualType DestType,Sema & Self)2144 static void checkIntToPointerCast(bool CStyle, const SourceRange &OpRange,
2145 const Expr *SrcExpr, QualType DestType,
2146 Sema &Self) {
2147 QualType SrcType = SrcExpr->getType();
2148
2149 // Not warning on reinterpret_cast, boolean, constant expressions, etc
2150 // are not explicit design choices, but consistent with GCC's behavior.
2151 // Feel free to modify them if you've reason/evidence for an alternative.
2152 if (CStyle && SrcType->isIntegralType(Self.Context)
2153 && !SrcType->isBooleanType()
2154 && !SrcType->isEnumeralType()
2155 && !SrcExpr->isIntegerConstantExpr(Self.Context)
2156 && Self.Context.getTypeSize(DestType) >
2157 Self.Context.getTypeSize(SrcType)) {
2158 // Separate between casts to void* and non-void* pointers.
2159 // Some APIs use (abuse) void* for something like a user context,
2160 // and often that value is an integer even if it isn't a pointer itself.
2161 // Having a separate warning flag allows users to control the warning
2162 // for their workflow.
2163 unsigned Diag = DestType->isVoidPointerType() ?
2164 diag::warn_int_to_void_pointer_cast
2165 : diag::warn_int_to_pointer_cast;
2166 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
2167 }
2168 }
2169
fixOverloadedReinterpretCastExpr(Sema & Self,QualType DestType,ExprResult & Result)2170 static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType,
2171 ExprResult &Result) {
2172 // We can only fix an overloaded reinterpret_cast if
2173 // - it is a template with explicit arguments that resolves to an lvalue
2174 // unambiguously, or
2175 // - it is the only function in an overload set that may have its address
2176 // taken.
2177
2178 Expr *E = Result.get();
2179 // TODO: what if this fails because of DiagnoseUseOfDecl or something
2180 // like it?
2181 if (Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2182 Result,
2183 Expr::getValueKindForType(DestType) ==
2184 VK_PRValue // Convert Fun to Ptr
2185 ) &&
2186 Result.isUsable())
2187 return true;
2188
2189 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
2190 // preserves Result.
2191 Result = E;
2192 if (!Self.resolveAndFixAddressOfSingleOverloadCandidate(
2193 Result, /*DoFunctionPointerConversion=*/true))
2194 return false;
2195 return Result.isUsable();
2196 }
2197
TryReinterpretCast(Sema & Self,ExprResult & SrcExpr,QualType DestType,bool CStyle,SourceRange OpRange,unsigned & msg,CastKind & Kind)2198 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
2199 QualType DestType, bool CStyle,
2200 SourceRange OpRange,
2201 unsigned &msg,
2202 CastKind &Kind) {
2203 bool IsLValueCast = false;
2204
2205 DestType = Self.Context.getCanonicalType(DestType);
2206 QualType SrcType = SrcExpr.get()->getType();
2207
2208 // Is the source an overloaded name? (i.e. &foo)
2209 // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5)
2210 if (SrcType == Self.Context.OverloadTy) {
2211 ExprResult FixedExpr = SrcExpr;
2212 if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr))
2213 return TC_NotApplicable;
2214
2215 assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr");
2216 SrcExpr = FixedExpr;
2217 SrcType = SrcExpr.get()->getType();
2218 }
2219
2220 if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) {
2221 if (!SrcExpr.get()->isGLValue()) {
2222 // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the
2223 // similar comment in const_cast.
2224 msg = diag::err_bad_cxx_cast_rvalue;
2225 return TC_NotApplicable;
2226 }
2227
2228 if (!CStyle) {
2229 Self.CheckCompatibleReinterpretCast(SrcType, DestType,
2230 /*IsDereference=*/false, OpRange);
2231 }
2232
2233 // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the
2234 // same effect as the conversion *reinterpret_cast<T*>(&x) with the
2235 // built-in & and * operators.
2236
2237 const char *inappropriate = nullptr;
2238 switch (SrcExpr.get()->getObjectKind()) {
2239 case OK_Ordinary:
2240 break;
2241 case OK_BitField:
2242 msg = diag::err_bad_cxx_cast_bitfield;
2243 return TC_NotApplicable;
2244 // FIXME: Use a specific diagnostic for the rest of these cases.
2245 case OK_VectorComponent: inappropriate = "vector element"; break;
2246 case OK_MatrixComponent:
2247 inappropriate = "matrix element";
2248 break;
2249 case OK_ObjCProperty: inappropriate = "property expression"; break;
2250 case OK_ObjCSubscript: inappropriate = "container subscripting expression";
2251 break;
2252 }
2253 if (inappropriate) {
2254 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference)
2255 << inappropriate << DestType
2256 << OpRange << SrcExpr.get()->getSourceRange();
2257 msg = 0; SrcExpr = ExprError();
2258 return TC_NotApplicable;
2259 }
2260
2261 // This code does this transformation for the checked types.
2262 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
2263 SrcType = Self.Context.getPointerType(SrcType);
2264
2265 IsLValueCast = true;
2266 }
2267
2268 // Canonicalize source for comparison.
2269 SrcType = Self.Context.getCanonicalType(SrcType);
2270
2271 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(),
2272 *SrcMemPtr = SrcType->getAs<MemberPointerType>();
2273 if (DestMemPtr && SrcMemPtr) {
2274 // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1"
2275 // can be explicitly converted to an rvalue of type "pointer to member
2276 // of Y of type T2" if T1 and T2 are both function types or both object
2277 // types.
2278 if (DestMemPtr->isMemberFunctionPointer() !=
2279 SrcMemPtr->isMemberFunctionPointer())
2280 return TC_NotApplicable;
2281
2282 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2283 // We need to determine the inheritance model that the class will use if
2284 // haven't yet.
2285 (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
2286 (void)Self.isCompleteType(OpRange.getBegin(), DestType);
2287 }
2288
2289 // Don't allow casting between member pointers of different sizes.
2290 if (Self.Context.getTypeSize(DestMemPtr) !=
2291 Self.Context.getTypeSize(SrcMemPtr)) {
2292 msg = diag::err_bad_cxx_cast_member_pointer_size;
2293 return TC_Failed;
2294 }
2295
2296 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away
2297 // constness.
2298 // A reinterpret_cast followed by a const_cast can, though, so in C-style,
2299 // we accept it.
2300 if (auto CACK =
2301 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2302 /*CheckObjCLifetime=*/CStyle))
2303 return getCastAwayConstnessCastKind(CACK, msg);
2304
2305 // A valid member pointer cast.
2306 assert(!IsLValueCast);
2307 Kind = CK_ReinterpretMemberPointer;
2308 return TC_Success;
2309 }
2310
2311 // See below for the enumeral issue.
2312 if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) {
2313 // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral
2314 // type large enough to hold it. A value of std::nullptr_t can be
2315 // converted to an integral type; the conversion has the same meaning
2316 // and validity as a conversion of (void*)0 to the integral type.
2317 if (Self.Context.getTypeSize(SrcType) >
2318 Self.Context.getTypeSize(DestType)) {
2319 msg = diag::err_bad_reinterpret_cast_small_int;
2320 return TC_Failed;
2321 }
2322 Kind = CK_PointerToIntegral;
2323 return TC_Success;
2324 }
2325
2326 // Allow reinterpret_casts between vectors of the same size and
2327 // between vectors and integers of the same size.
2328 bool destIsVector = DestType->isVectorType();
2329 bool srcIsVector = SrcType->isVectorType();
2330 if (srcIsVector || destIsVector) {
2331 // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa.
2332 if (Self.isValidSveBitcast(SrcType, DestType)) {
2333 Kind = CK_BitCast;
2334 return TC_Success;
2335 }
2336
2337 // The non-vector type, if any, must have integral type. This is
2338 // the same rule that C vector casts use; note, however, that enum
2339 // types are not integral in C++.
2340 if ((!destIsVector && !DestType->isIntegralType(Self.Context)) ||
2341 (!srcIsVector && !SrcType->isIntegralType(Self.Context)))
2342 return TC_NotApplicable;
2343
2344 // The size we want to consider is eltCount * eltSize.
2345 // That's exactly what the lax-conversion rules will check.
2346 if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) {
2347 Kind = CK_BitCast;
2348 return TC_Success;
2349 }
2350
2351 if (Self.LangOpts.OpenCL && !CStyle) {
2352 if (DestType->isExtVectorType() || SrcType->isExtVectorType()) {
2353 // FIXME: Allow for reinterpret cast between 3 and 4 element vectors
2354 if (Self.areVectorTypesSameSize(SrcType, DestType)) {
2355 Kind = CK_BitCast;
2356 return TC_Success;
2357 }
2358 }
2359 }
2360
2361 // Otherwise, pick a reasonable diagnostic.
2362 if (!destIsVector)
2363 msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size;
2364 else if (!srcIsVector)
2365 msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size;
2366 else
2367 msg = diag::err_bad_cxx_cast_vector_to_vector_different_size;
2368
2369 return TC_Failed;
2370 }
2371
2372 if (SrcType == DestType) {
2373 // C++ 5.2.10p2 has a note that mentions that, subject to all other
2374 // restrictions, a cast to the same type is allowed so long as it does not
2375 // cast away constness. In C++98, the intent was not entirely clear here,
2376 // since all other paragraphs explicitly forbid casts to the same type.
2377 // C++11 clarifies this case with p2.
2378 //
2379 // The only allowed types are: integral, enumeration, pointer, or
2380 // pointer-to-member types. We also won't restrict Obj-C pointers either.
2381 Kind = CK_NoOp;
2382 TryCastResult Result = TC_NotApplicable;
2383 if (SrcType->isIntegralOrEnumerationType() ||
2384 SrcType->isAnyPointerType() ||
2385 SrcType->isMemberPointerType() ||
2386 SrcType->isBlockPointerType()) {
2387 Result = TC_Success;
2388 }
2389 return Result;
2390 }
2391
2392 bool destIsPtr = DestType->isAnyPointerType() ||
2393 DestType->isBlockPointerType();
2394 bool srcIsPtr = SrcType->isAnyPointerType() ||
2395 SrcType->isBlockPointerType();
2396 if (!destIsPtr && !srcIsPtr) {
2397 // Except for std::nullptr_t->integer and lvalue->reference, which are
2398 // handled above, at least one of the two arguments must be a pointer.
2399 return TC_NotApplicable;
2400 }
2401
2402 if (DestType->isIntegralType(Self.Context)) {
2403 assert(srcIsPtr && "One type must be a pointer");
2404 // C++ 5.2.10p4: A pointer can be explicitly converted to any integral
2405 // type large enough to hold it; except in Microsoft mode, where the
2406 // integral type size doesn't matter (except we don't allow bool).
2407 if ((Self.Context.getTypeSize(SrcType) >
2408 Self.Context.getTypeSize(DestType))) {
2409 bool MicrosoftException =
2410 Self.getLangOpts().MicrosoftExt && !DestType->isBooleanType();
2411 if (MicrosoftException) {
2412 unsigned Diag = SrcType->isVoidPointerType()
2413 ? diag::warn_void_pointer_to_int_cast
2414 : diag::warn_pointer_to_int_cast;
2415 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
2416 } else {
2417 msg = diag::err_bad_reinterpret_cast_small_int;
2418 return TC_Failed;
2419 }
2420 }
2421 Kind = CK_PointerToIntegral;
2422 return TC_Success;
2423 }
2424
2425 if (SrcType->isIntegralOrEnumerationType()) {
2426 assert(destIsPtr && "One type must be a pointer");
2427 checkIntToPointerCast(CStyle, OpRange, SrcExpr.get(), DestType, Self);
2428 // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly
2429 // converted to a pointer.
2430 // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not
2431 // necessarily converted to a null pointer value.]
2432 Kind = CK_IntegralToPointer;
2433 return TC_Success;
2434 }
2435
2436 if (!destIsPtr || !srcIsPtr) {
2437 // With the valid non-pointer conversions out of the way, we can be even
2438 // more stringent.
2439 return TC_NotApplicable;
2440 }
2441
2442 // Cannot convert between block pointers and Objective-C object pointers.
2443 if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) ||
2444 (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType()))
2445 return TC_NotApplicable;
2446
2447 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness.
2448 // The C-style cast operator can.
2449 TryCastResult SuccessResult = TC_Success;
2450 if (auto CACK =
2451 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2452 /*CheckObjCLifetime=*/CStyle))
2453 SuccessResult = getCastAwayConstnessCastKind(CACK, msg);
2454
2455 if (IsAddressSpaceConversion(SrcType, DestType)) {
2456 Kind = CK_AddressSpaceConversion;
2457 assert(SrcType->isPointerType() && DestType->isPointerType());
2458 if (!CStyle &&
2459 !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf(
2460 SrcType->getPointeeType().getQualifiers())) {
2461 SuccessResult = TC_Failed;
2462 }
2463 } else if (IsLValueCast) {
2464 Kind = CK_LValueBitCast;
2465 } else if (DestType->isObjCObjectPointerType()) {
2466 Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr);
2467 } else if (DestType->isBlockPointerType()) {
2468 if (!SrcType->isBlockPointerType()) {
2469 Kind = CK_AnyPointerToBlockPointerCast;
2470 } else {
2471 Kind = CK_BitCast;
2472 }
2473 } else {
2474 Kind = CK_BitCast;
2475 }
2476
2477 // Any pointer can be cast to an Objective-C pointer type with a C-style
2478 // cast.
2479 if (CStyle && DestType->isObjCObjectPointerType()) {
2480 return SuccessResult;
2481 }
2482 if (CStyle)
2483 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
2484
2485 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
2486
2487 // Not casting away constness, so the only remaining check is for compatible
2488 // pointer categories.
2489
2490 if (SrcType->isFunctionPointerType()) {
2491 if (DestType->isFunctionPointerType()) {
2492 // C++ 5.2.10p6: A pointer to a function can be explicitly converted to
2493 // a pointer to a function of a different type.
2494 return SuccessResult;
2495 }
2496
2497 // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to
2498 // an object type or vice versa is conditionally-supported.
2499 // Compilers support it in C++03 too, though, because it's necessary for
2500 // casting the return value of dlsym() and GetProcAddress().
2501 // FIXME: Conditionally-supported behavior should be configurable in the
2502 // TargetInfo or similar.
2503 Self.Diag(OpRange.getBegin(),
2504 Self.getLangOpts().CPlusPlus11 ?
2505 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2506 << OpRange;
2507 return SuccessResult;
2508 }
2509
2510 if (DestType->isFunctionPointerType()) {
2511 // See above.
2512 Self.Diag(OpRange.getBegin(),
2513 Self.getLangOpts().CPlusPlus11 ?
2514 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2515 << OpRange;
2516 return SuccessResult;
2517 }
2518
2519 // Diagnose address space conversion in nested pointers.
2520 QualType DestPtee = DestType->getPointeeType().isNull()
2521 ? DestType->getPointeeType()
2522 : DestType->getPointeeType()->getPointeeType();
2523 QualType SrcPtee = SrcType->getPointeeType().isNull()
2524 ? SrcType->getPointeeType()
2525 : SrcType->getPointeeType()->getPointeeType();
2526 while (!DestPtee.isNull() && !SrcPtee.isNull()) {
2527 if (DestPtee.getAddressSpace() != SrcPtee.getAddressSpace()) {
2528 Self.Diag(OpRange.getBegin(),
2529 diag::warn_bad_cxx_cast_nested_pointer_addr_space)
2530 << CStyle << SrcType << DestType << SrcExpr.get()->getSourceRange();
2531 break;
2532 }
2533 DestPtee = DestPtee->getPointeeType();
2534 SrcPtee = SrcPtee->getPointeeType();
2535 }
2536
2537 // C++ 5.2.10p7: A pointer to an object can be explicitly converted to
2538 // a pointer to an object of different type.
2539 // Void pointers are not specified, but supported by every compiler out there.
2540 // So we finish by allowing everything that remains - it's got to be two
2541 // object pointers.
2542 return SuccessResult;
2543 }
2544
TryAddressSpaceCast(Sema & Self,ExprResult & SrcExpr,QualType DestType,bool CStyle,unsigned & msg,CastKind & Kind)2545 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
2546 QualType DestType, bool CStyle,
2547 unsigned &msg, CastKind &Kind) {
2548 if (!Self.getLangOpts().OpenCL && !Self.getLangOpts().SYCLIsDevice)
2549 // FIXME: As compiler doesn't have any information about overlapping addr
2550 // spaces at the moment we have to be permissive here.
2551 return TC_NotApplicable;
2552 // Even though the logic below is general enough and can be applied to
2553 // non-OpenCL mode too, we fast-path above because no other languages
2554 // define overlapping address spaces currently.
2555 auto SrcType = SrcExpr.get()->getType();
2556 // FIXME: Should this be generalized to references? The reference parameter
2557 // however becomes a reference pointee type here and therefore rejected.
2558 // Perhaps this is the right behavior though according to C++.
2559 auto SrcPtrType = SrcType->getAs<PointerType>();
2560 if (!SrcPtrType)
2561 return TC_NotApplicable;
2562 auto DestPtrType = DestType->getAs<PointerType>();
2563 if (!DestPtrType)
2564 return TC_NotApplicable;
2565 auto SrcPointeeType = SrcPtrType->getPointeeType();
2566 auto DestPointeeType = DestPtrType->getPointeeType();
2567 if (!DestPointeeType.isAddressSpaceOverlapping(SrcPointeeType)) {
2568 msg = diag::err_bad_cxx_cast_addr_space_mismatch;
2569 return TC_Failed;
2570 }
2571 auto SrcPointeeTypeWithoutAS =
2572 Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType());
2573 auto DestPointeeTypeWithoutAS =
2574 Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType());
2575 if (Self.Context.hasSameType(SrcPointeeTypeWithoutAS,
2576 DestPointeeTypeWithoutAS)) {
2577 Kind = SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace()
2578 ? CK_NoOp
2579 : CK_AddressSpaceConversion;
2580 return TC_Success;
2581 } else {
2582 return TC_NotApplicable;
2583 }
2584 }
2585
checkAddressSpaceCast(QualType SrcType,QualType DestType)2586 void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) {
2587 // In OpenCL only conversions between pointers to objects in overlapping
2588 // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps
2589 // with any named one, except for constant.
2590
2591 // Converting the top level pointee addrspace is permitted for compatible
2592 // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but
2593 // if any of the nested pointee addrspaces differ, we emit a warning
2594 // regardless of addrspace compatibility. This makes
2595 // local int ** p;
2596 // return (generic int **) p;
2597 // warn even though local -> generic is permitted.
2598 if (Self.getLangOpts().OpenCL) {
2599 const Type *DestPtr, *SrcPtr;
2600 bool Nested = false;
2601 unsigned DiagID = diag::err_typecheck_incompatible_address_space;
2602 DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()),
2603 SrcPtr = Self.getASTContext().getCanonicalType(SrcType.getTypePtr());
2604
2605 while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) {
2606 const PointerType *DestPPtr = cast<PointerType>(DestPtr);
2607 const PointerType *SrcPPtr = cast<PointerType>(SrcPtr);
2608 QualType DestPPointee = DestPPtr->getPointeeType();
2609 QualType SrcPPointee = SrcPPtr->getPointeeType();
2610 if (Nested
2611 ? DestPPointee.getAddressSpace() != SrcPPointee.getAddressSpace()
2612 : !DestPPointee.isAddressSpaceOverlapping(SrcPPointee)) {
2613 Self.Diag(OpRange.getBegin(), DiagID)
2614 << SrcType << DestType << Sema::AA_Casting
2615 << SrcExpr.get()->getSourceRange();
2616 if (!Nested)
2617 SrcExpr = ExprError();
2618 return;
2619 }
2620
2621 DestPtr = DestPPtr->getPointeeType().getTypePtr();
2622 SrcPtr = SrcPPtr->getPointeeType().getTypePtr();
2623 Nested = true;
2624 DiagID = diag::ext_nested_pointer_qualifier_mismatch;
2625 }
2626 }
2627 }
2628
ShouldSplatAltivecScalarInCast(const VectorType * VecTy)2629 bool Sema::ShouldSplatAltivecScalarInCast(const VectorType *VecTy) {
2630 bool SrcCompatXL = this->getLangOpts().getAltivecSrcCompat() ==
2631 LangOptions::AltivecSrcCompatKind::XL;
2632 VectorType::VectorKind VKind = VecTy->getVectorKind();
2633
2634 if ((VKind == VectorType::AltiVecVector) ||
2635 (SrcCompatXL && ((VKind == VectorType::AltiVecBool) ||
2636 (VKind == VectorType::AltiVecPixel)))) {
2637 return true;
2638 }
2639 return false;
2640 }
2641
CheckAltivecInitFromScalar(SourceRange R,QualType VecTy,QualType SrcTy)2642 bool Sema::CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
2643 QualType SrcTy) {
2644 bool SrcCompatGCC = this->getLangOpts().getAltivecSrcCompat() ==
2645 LangOptions::AltivecSrcCompatKind::GCC;
2646 if (this->getLangOpts().AltiVec && SrcCompatGCC) {
2647 this->Diag(R.getBegin(),
2648 diag::err_invalid_conversion_between_vector_and_integer)
2649 << VecTy << SrcTy << R;
2650 return true;
2651 }
2652 return false;
2653 }
2654
CheckCXXCStyleCast(bool FunctionalStyle,bool ListInitialization)2655 void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle,
2656 bool ListInitialization) {
2657 assert(Self.getLangOpts().CPlusPlus);
2658
2659 // Handle placeholders.
2660 if (isPlaceholder()) {
2661 // C-style casts can resolve __unknown_any types.
2662 if (claimPlaceholder(BuiltinType::UnknownAny)) {
2663 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2664 SrcExpr.get(), Kind,
2665 ValueKind, BasePath);
2666 return;
2667 }
2668
2669 checkNonOverloadPlaceholders();
2670 if (SrcExpr.isInvalid())
2671 return;
2672 }
2673
2674 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
2675 // This test is outside everything else because it's the only case where
2676 // a non-lvalue-reference target type does not lead to decay.
2677 if (DestType->isVoidType()) {
2678 Kind = CK_ToVoid;
2679
2680 if (claimPlaceholder(BuiltinType::Overload)) {
2681 Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2682 SrcExpr, /* Decay Function to ptr */ false,
2683 /* Complain */ true, DestRange, DestType,
2684 diag::err_bad_cstyle_cast_overload);
2685 if (SrcExpr.isInvalid())
2686 return;
2687 }
2688
2689 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2690 return;
2691 }
2692
2693 // If the type is dependent, we won't do any other semantic analysis now.
2694 if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2695 SrcExpr.get()->isValueDependent()) {
2696 assert(Kind == CK_Dependent);
2697 return;
2698 }
2699
2700 if (ValueKind == VK_PRValue && !DestType->isRecordType() &&
2701 !isPlaceholder(BuiltinType::Overload)) {
2702 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2703 if (SrcExpr.isInvalid())
2704 return;
2705 }
2706
2707 // AltiVec vector initialization with a single literal.
2708 if (const VectorType *vecTy = DestType->getAs<VectorType>()) {
2709 if (Self.CheckAltivecInitFromScalar(OpRange, DestType,
2710 SrcExpr.get()->getType())) {
2711 SrcExpr = ExprError();
2712 return;
2713 }
2714 if (Self.ShouldSplatAltivecScalarInCast(vecTy) &&
2715 (SrcExpr.get()->getType()->isIntegerType() ||
2716 SrcExpr.get()->getType()->isFloatingType())) {
2717 Kind = CK_VectorSplat;
2718 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
2719 return;
2720 }
2721 }
2722
2723 // C++ [expr.cast]p5: The conversions performed by
2724 // - a const_cast,
2725 // - a static_cast,
2726 // - a static_cast followed by a const_cast,
2727 // - a reinterpret_cast, or
2728 // - a reinterpret_cast followed by a const_cast,
2729 // can be performed using the cast notation of explicit type conversion.
2730 // [...] If a conversion can be interpreted in more than one of the ways
2731 // listed above, the interpretation that appears first in the list is used,
2732 // even if a cast resulting from that interpretation is ill-formed.
2733 // In plain language, this means trying a const_cast ...
2734 // Note that for address space we check compatibility after const_cast.
2735 unsigned msg = diag::err_bad_cxx_cast_generic;
2736 TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType,
2737 /*CStyle*/ true, msg);
2738 if (SrcExpr.isInvalid())
2739 return;
2740 if (isValidCast(tcr))
2741 Kind = CK_NoOp;
2742
2743 Sema::CheckedConversionKind CCK =
2744 FunctionalStyle ? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast;
2745 if (tcr == TC_NotApplicable) {
2746 tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg,
2747 Kind);
2748 if (SrcExpr.isInvalid())
2749 return;
2750
2751 if (tcr == TC_NotApplicable) {
2752 // ... or if that is not possible, a static_cast, ignoring const and
2753 // addr space, ...
2754 tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind,
2755 BasePath, ListInitialization);
2756 if (SrcExpr.isInvalid())
2757 return;
2758
2759 if (tcr == TC_NotApplicable) {
2760 // ... and finally a reinterpret_cast, ignoring const and addr space.
2761 tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true,
2762 OpRange, msg, Kind);
2763 if (SrcExpr.isInvalid())
2764 return;
2765 }
2766 }
2767 }
2768
2769 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
2770 isValidCast(tcr))
2771 checkObjCConversion(CCK);
2772
2773 if (tcr != TC_Success && msg != 0) {
2774 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2775 DeclAccessPair Found;
2776 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
2777 DestType,
2778 /*Complain*/ true,
2779 Found);
2780 if (Fn) {
2781 // If DestType is a function type (not to be confused with the function
2782 // pointer type), it will be possible to resolve the function address,
2783 // but the type cast should be considered as failure.
2784 OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression;
2785 Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload)
2786 << OE->getName() << DestType << OpRange
2787 << OE->getQualifierLoc().getSourceRange();
2788 Self.NoteAllOverloadCandidates(SrcExpr.get());
2789 }
2790 } else {
2791 diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle),
2792 OpRange, SrcExpr.get(), DestType, ListInitialization);
2793 }
2794 }
2795
2796 if (isValidCast(tcr)) {
2797 if (Kind == CK_BitCast)
2798 checkCastAlign();
2799
2800 if (!checkCastFunctionType(Self, SrcExpr, DestType))
2801 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
2802 << SrcExpr.get()->getType() << DestType << OpRange;
2803
2804 } else {
2805 SrcExpr = ExprError();
2806 }
2807 }
2808
2809 /// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a
2810 /// non-matching type. Such as enum function call to int, int call to
2811 /// pointer; etc. Cast to 'void' is an exception.
DiagnoseBadFunctionCast(Sema & Self,const ExprResult & SrcExpr,QualType DestType)2812 static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr,
2813 QualType DestType) {
2814 if (Self.Diags.isIgnored(diag::warn_bad_function_cast,
2815 SrcExpr.get()->getExprLoc()))
2816 return;
2817
2818 if (!isa<CallExpr>(SrcExpr.get()))
2819 return;
2820
2821 QualType SrcType = SrcExpr.get()->getType();
2822 if (DestType.getUnqualifiedType()->isVoidType())
2823 return;
2824 if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType())
2825 && (DestType->isAnyPointerType() || DestType->isBlockPointerType()))
2826 return;
2827 if (SrcType->isIntegerType() && DestType->isIntegerType() &&
2828 (SrcType->isBooleanType() == DestType->isBooleanType()) &&
2829 (SrcType->isEnumeralType() == DestType->isEnumeralType()))
2830 return;
2831 if (SrcType->isRealFloatingType() && DestType->isRealFloatingType())
2832 return;
2833 if (SrcType->isEnumeralType() && DestType->isEnumeralType())
2834 return;
2835 if (SrcType->isComplexType() && DestType->isComplexType())
2836 return;
2837 if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType())
2838 return;
2839 if (SrcType->isFixedPointType() && DestType->isFixedPointType())
2840 return;
2841
2842 Self.Diag(SrcExpr.get()->getExprLoc(),
2843 diag::warn_bad_function_cast)
2844 << SrcType << DestType << SrcExpr.get()->getSourceRange();
2845 }
2846
2847 /// Check the semantics of a C-style cast operation, in C.
CheckCStyleCast()2848 void CastOperation::CheckCStyleCast() {
2849 assert(!Self.getLangOpts().CPlusPlus);
2850
2851 // C-style casts can resolve __unknown_any types.
2852 if (claimPlaceholder(BuiltinType::UnknownAny)) {
2853 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2854 SrcExpr.get(), Kind,
2855 ValueKind, BasePath);
2856 return;
2857 }
2858
2859 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2860 // type needs to be scalar.
2861 if (DestType->isVoidType()) {
2862 // We don't necessarily do lvalue-to-rvalue conversions on this.
2863 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2864 if (SrcExpr.isInvalid())
2865 return;
2866
2867 // Cast to void allows any expr type.
2868 Kind = CK_ToVoid;
2869 return;
2870 }
2871
2872 // If the type is dependent, we won't do any other semantic analysis now.
2873 if (Self.getASTContext().isDependenceAllowed() &&
2874 (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2875 SrcExpr.get()->isValueDependent())) {
2876 assert((DestType->containsErrors() || SrcExpr.get()->containsErrors() ||
2877 SrcExpr.get()->containsErrors()) &&
2878 "should only occur in error-recovery path.");
2879 assert(Kind == CK_Dependent);
2880 return;
2881 }
2882
2883 // Overloads are allowed with C extensions, so we need to support them.
2884 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2885 DeclAccessPair DAP;
2886 if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction(
2887 SrcExpr.get(), DestType, /*Complain=*/true, DAP))
2888 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD);
2889 else
2890 return;
2891 assert(SrcExpr.isUsable());
2892 }
2893 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2894 if (SrcExpr.isInvalid())
2895 return;
2896 QualType SrcType = SrcExpr.get()->getType();
2897
2898 assert(!SrcType->isPlaceholderType());
2899
2900 checkAddressSpaceCast(SrcType, DestType);
2901 if (SrcExpr.isInvalid())
2902 return;
2903
2904 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
2905 diag::err_typecheck_cast_to_incomplete)) {
2906 SrcExpr = ExprError();
2907 return;
2908 }
2909
2910 // Allow casting a sizeless built-in type to itself.
2911 if (DestType->isSizelessBuiltinType() &&
2912 Self.Context.hasSameUnqualifiedType(DestType, SrcType)) {
2913 Kind = CK_NoOp;
2914 return;
2915 }
2916
2917 // Allow bitcasting between compatible SVE vector types.
2918 if ((SrcType->isVectorType() || DestType->isVectorType()) &&
2919 Self.isValidSveBitcast(SrcType, DestType)) {
2920 Kind = CK_BitCast;
2921 return;
2922 }
2923
2924 if (!DestType->isScalarType() && !DestType->isVectorType() &&
2925 !DestType->isMatrixType()) {
2926 const RecordType *DestRecordTy = DestType->getAs<RecordType>();
2927
2928 if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){
2929 // GCC struct/union extension: allow cast to self.
2930 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar)
2931 << DestType << SrcExpr.get()->getSourceRange();
2932 Kind = CK_NoOp;
2933 return;
2934 }
2935
2936 // GCC's cast to union extension.
2937 if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) {
2938 RecordDecl *RD = DestRecordTy->getDecl();
2939 if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) {
2940 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union)
2941 << SrcExpr.get()->getSourceRange();
2942 Kind = CK_ToUnion;
2943 return;
2944 } else {
2945 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2946 << SrcType << SrcExpr.get()->getSourceRange();
2947 SrcExpr = ExprError();
2948 return;
2949 }
2950 }
2951
2952 // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type.
2953 if (Self.getLangOpts().OpenCL && DestType->isEventT()) {
2954 Expr::EvalResult Result;
2955 if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) {
2956 llvm::APSInt CastInt = Result.Val.getInt();
2957 if (0 == CastInt) {
2958 Kind = CK_ZeroToOCLOpaqueType;
2959 return;
2960 }
2961 Self.Diag(OpRange.getBegin(),
2962 diag::err_opencl_cast_non_zero_to_event_t)
2963 << toString(CastInt, 10) << SrcExpr.get()->getSourceRange();
2964 SrcExpr = ExprError();
2965 return;
2966 }
2967 }
2968
2969 // Reject any other conversions to non-scalar types.
2970 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar)
2971 << DestType << SrcExpr.get()->getSourceRange();
2972 SrcExpr = ExprError();
2973 return;
2974 }
2975
2976 // The type we're casting to is known to be a scalar, a vector, or a matrix.
2977
2978 // Require the operand to be a scalar, a vector, or a matrix.
2979 if (!SrcType->isScalarType() && !SrcType->isVectorType() &&
2980 !SrcType->isMatrixType()) {
2981 Self.Diag(SrcExpr.get()->getExprLoc(),
2982 diag::err_typecheck_expect_scalar_operand)
2983 << SrcType << SrcExpr.get()->getSourceRange();
2984 SrcExpr = ExprError();
2985 return;
2986 }
2987
2988 if (DestType->isExtVectorType()) {
2989 SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind);
2990 return;
2991 }
2992
2993 if (DestType->getAs<MatrixType>() || SrcType->getAs<MatrixType>()) {
2994 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind))
2995 SrcExpr = ExprError();
2996 return;
2997 }
2998
2999 if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) {
3000 if (Self.CheckAltivecInitFromScalar(OpRange, DestType, SrcType)) {
3001 SrcExpr = ExprError();
3002 return;
3003 }
3004 if (Self.ShouldSplatAltivecScalarInCast(DestVecTy) &&
3005 (SrcType->isIntegerType() || SrcType->isFloatingType())) {
3006 Kind = CK_VectorSplat;
3007 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
3008 } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) {
3009 SrcExpr = ExprError();
3010 }
3011 return;
3012 }
3013
3014 if (SrcType->isVectorType()) {
3015 if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind))
3016 SrcExpr = ExprError();
3017 return;
3018 }
3019
3020 // The source and target types are both scalars, i.e.
3021 // - arithmetic types (fundamental, enum, and complex)
3022 // - all kinds of pointers
3023 // Note that member pointers were filtered out with C++, above.
3024
3025 if (isa<ObjCSelectorExpr>(SrcExpr.get())) {
3026 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr);
3027 SrcExpr = ExprError();
3028 return;
3029 }
3030
3031 // Can't cast to or from bfloat
3032 if (DestType->isBFloat16Type() && !SrcType->isBFloat16Type()) {
3033 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_to_bfloat16)
3034 << SrcExpr.get()->getSourceRange();
3035 SrcExpr = ExprError();
3036 return;
3037 }
3038 if (SrcType->isBFloat16Type() && !DestType->isBFloat16Type()) {
3039 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_from_bfloat16)
3040 << SrcExpr.get()->getSourceRange();
3041 SrcExpr = ExprError();
3042 return;
3043 }
3044
3045 // If either type is a pointer, the other type has to be either an
3046 // integer or a pointer.
3047 if (!DestType->isArithmeticType()) {
3048 if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) {
3049 Self.Diag(SrcExpr.get()->getExprLoc(),
3050 diag::err_cast_pointer_from_non_pointer_int)
3051 << SrcType << SrcExpr.get()->getSourceRange();
3052 SrcExpr = ExprError();
3053 return;
3054 }
3055 checkIntToPointerCast(/* CStyle */ true, OpRange, SrcExpr.get(), DestType,
3056 Self);
3057 } else if (!SrcType->isArithmeticType()) {
3058 if (!DestType->isIntegralType(Self.Context) &&
3059 DestType->isArithmeticType()) {
3060 Self.Diag(SrcExpr.get()->getBeginLoc(),
3061 diag::err_cast_pointer_to_non_pointer_int)
3062 << DestType << SrcExpr.get()->getSourceRange();
3063 SrcExpr = ExprError();
3064 return;
3065 }
3066
3067 if ((Self.Context.getTypeSize(SrcType) >
3068 Self.Context.getTypeSize(DestType)) &&
3069 !DestType->isBooleanType()) {
3070 // C 6.3.2.3p6: Any pointer type may be converted to an integer type.
3071 // Except as previously specified, the result is implementation-defined.
3072 // If the result cannot be represented in the integer type, the behavior
3073 // is undefined. The result need not be in the range of values of any
3074 // integer type.
3075 unsigned Diag;
3076 if (SrcType->isVoidPointerType())
3077 Diag = DestType->isEnumeralType() ? diag::warn_void_pointer_to_enum_cast
3078 : diag::warn_void_pointer_to_int_cast;
3079 else if (DestType->isEnumeralType())
3080 Diag = diag::warn_pointer_to_enum_cast;
3081 else
3082 Diag = diag::warn_pointer_to_int_cast;
3083 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
3084 }
3085 }
3086
3087 if (Self.getLangOpts().OpenCL && !Self.getOpenCLOptions().isAvailableOption(
3088 "cl_khr_fp16", Self.getLangOpts())) {
3089 if (DestType->isHalfType()) {
3090 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half)
3091 << DestType << SrcExpr.get()->getSourceRange();
3092 SrcExpr = ExprError();
3093 return;
3094 }
3095 }
3096
3097 // ARC imposes extra restrictions on casts.
3098 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) {
3099 checkObjCConversion(Sema::CCK_CStyleCast);
3100 if (SrcExpr.isInvalid())
3101 return;
3102
3103 const PointerType *CastPtr = DestType->getAs<PointerType>();
3104 if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) {
3105 if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) {
3106 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
3107 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
3108 if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
3109 ExprPtr->getPointeeType()->isObjCLifetimeType() &&
3110 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
3111 Self.Diag(SrcExpr.get()->getBeginLoc(),
3112 diag::err_typecheck_incompatible_ownership)
3113 << SrcType << DestType << Sema::AA_Casting
3114 << SrcExpr.get()->getSourceRange();
3115 return;
3116 }
3117 }
3118 }
3119 else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) {
3120 Self.Diag(SrcExpr.get()->getBeginLoc(),
3121 diag::err_arc_convesion_of_weak_unavailable)
3122 << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange();
3123 SrcExpr = ExprError();
3124 return;
3125 }
3126 }
3127
3128 if (!checkCastFunctionType(Self, SrcExpr, DestType))
3129 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
3130 << SrcType << DestType << OpRange;
3131
3132 if (isa<PointerType>(SrcType) && isa<PointerType>(DestType)) {
3133 QualType SrcTy = cast<PointerType>(SrcType)->getPointeeType();
3134 QualType DestTy = cast<PointerType>(DestType)->getPointeeType();
3135
3136 const RecordDecl *SrcRD = SrcTy->getAsRecordDecl();
3137 const RecordDecl *DestRD = DestTy->getAsRecordDecl();
3138
3139 if (SrcRD && DestRD && SrcRD->hasAttr<RandomizeLayoutAttr>() &&
3140 SrcRD != DestRD) {
3141 // The struct we are casting the pointer from was randomized.
3142 Self.Diag(OpRange.getBegin(), diag::err_cast_from_randomized_struct)
3143 << SrcType << DestType;
3144 SrcExpr = ExprError();
3145 return;
3146 }
3147 }
3148
3149 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
3150 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
3151 DiagnoseBadFunctionCast(Self, SrcExpr, DestType);
3152 Kind = Self.PrepareScalarCast(SrcExpr, DestType);
3153 if (SrcExpr.isInvalid())
3154 return;
3155
3156 if (Kind == CK_BitCast)
3157 checkCastAlign();
3158 }
3159
CheckBuiltinBitCast()3160 void CastOperation::CheckBuiltinBitCast() {
3161 QualType SrcType = SrcExpr.get()->getType();
3162
3163 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
3164 diag::err_typecheck_cast_to_incomplete) ||
3165 Self.RequireCompleteType(OpRange.getBegin(), SrcType,
3166 diag::err_incomplete_type)) {
3167 SrcExpr = ExprError();
3168 return;
3169 }
3170
3171 if (SrcExpr.get()->isPRValue())
3172 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(),
3173 /*IsLValueReference=*/false);
3174
3175 CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType);
3176 CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType);
3177 if (DestSize != SourceSize) {
3178 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch)
3179 << (int)SourceSize.getQuantity() << (int)DestSize.getQuantity();
3180 SrcExpr = ExprError();
3181 return;
3182 }
3183
3184 if (!DestType.isTriviallyCopyableType(Self.Context)) {
3185 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
3186 << 1;
3187 SrcExpr = ExprError();
3188 return;
3189 }
3190
3191 if (!SrcType.isTriviallyCopyableType(Self.Context)) {
3192 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
3193 << 0;
3194 SrcExpr = ExprError();
3195 return;
3196 }
3197
3198 Kind = CK_LValueToRValueBitCast;
3199 }
3200
3201 /// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either
3202 /// const, volatile or both.
DiagnoseCastQual(Sema & Self,const ExprResult & SrcExpr,QualType DestType)3203 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
3204 QualType DestType) {
3205 if (SrcExpr.isInvalid())
3206 return;
3207
3208 QualType SrcType = SrcExpr.get()->getType();
3209 if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) ||
3210 DestType->isLValueReferenceType()))
3211 return;
3212
3213 QualType TheOffendingSrcType, TheOffendingDestType;
3214 Qualifiers CastAwayQualifiers;
3215 if (CastsAwayConstness(Self, SrcType, DestType, true, false,
3216 &TheOffendingSrcType, &TheOffendingDestType,
3217 &CastAwayQualifiers) !=
3218 CastAwayConstnessKind::CACK_Similar)
3219 return;
3220
3221 // FIXME: 'restrict' is not properly handled here.
3222 int qualifiers = -1;
3223 if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) {
3224 qualifiers = 0;
3225 } else if (CastAwayQualifiers.hasConst()) {
3226 qualifiers = 1;
3227 } else if (CastAwayQualifiers.hasVolatile()) {
3228 qualifiers = 2;
3229 }
3230 // This is a variant of int **x; const int **y = (const int **)x;
3231 if (qualifiers == -1)
3232 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2)
3233 << SrcType << DestType;
3234 else
3235 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual)
3236 << TheOffendingSrcType << TheOffendingDestType << qualifiers;
3237 }
3238
BuildCStyleCastExpr(SourceLocation LPLoc,TypeSourceInfo * CastTypeInfo,SourceLocation RPLoc,Expr * CastExpr)3239 ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc,
3240 TypeSourceInfo *CastTypeInfo,
3241 SourceLocation RPLoc,
3242 Expr *CastExpr) {
3243 CastOperation Op(*this, CastTypeInfo->getType(), CastExpr);
3244 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
3245 Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc());
3246
3247 if (getLangOpts().CPlusPlus) {
3248 Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false,
3249 isa<InitListExpr>(CastExpr));
3250 } else {
3251 Op.CheckCStyleCast();
3252 }
3253
3254 if (Op.SrcExpr.isInvalid())
3255 return ExprError();
3256
3257 // -Wcast-qual
3258 DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType);
3259
3260 return Op.complete(CStyleCastExpr::Create(
3261 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
3262 &Op.BasePath, CurFPFeatureOverrides(), CastTypeInfo, LPLoc, RPLoc));
3263 }
3264
BuildCXXFunctionalCastExpr(TypeSourceInfo * CastTypeInfo,QualType Type,SourceLocation LPLoc,Expr * CastExpr,SourceLocation RPLoc)3265 ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo,
3266 QualType Type,
3267 SourceLocation LPLoc,
3268 Expr *CastExpr,
3269 SourceLocation RPLoc) {
3270 assert(LPLoc.isValid() && "List-initialization shouldn't get here.");
3271 CastOperation Op(*this, Type, CastExpr);
3272 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
3273 Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getEndLoc());
3274
3275 Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false);
3276 if (Op.SrcExpr.isInvalid())
3277 return ExprError();
3278
3279 auto *SubExpr = Op.SrcExpr.get();
3280 if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
3281 SubExpr = BindExpr->getSubExpr();
3282 if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr))
3283 ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc));
3284
3285 return Op.complete(CXXFunctionalCastExpr::Create(
3286 Context, Op.ResultType, Op.ValueKind, CastTypeInfo, Op.Kind,
3287 Op.SrcExpr.get(), &Op.BasePath, CurFPFeatureOverrides(), LPLoc, RPLoc));
3288 }
3289