1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AVR.h"
13 #include "ToolChains/Ananas.h"
14 #include "ToolChains/BareMetal.h"
15 #include "ToolChains/Clang.h"
16 #include "ToolChains/CloudABI.h"
17 #include "ToolChains/Contiki.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIP.h"
26 #include "ToolChains/Haiku.h"
27 #include "ToolChains/Hexagon.h"
28 #include "ToolChains/Hurd.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSP430.h"
32 #include "ToolChains/MSVC.h"
33 #include "ToolChains/MinGW.h"
34 #include "ToolChains/Minix.h"
35 #include "ToolChains/MipsLinux.h"
36 #include "ToolChains/Myriad.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OpenBSD.h"
40 #include "ToolChains/PS4CPU.h"
41 #include "ToolChains/PPCLinux.h"
42 #include "ToolChains/RISCVToolchain.h"
43 #include "ToolChains/Solaris.h"
44 #include "ToolChains/TCE.h"
45 #include "ToolChains/WebAssembly.h"
46 #include "ToolChains/XCore.h"
47 #include "clang/Basic/Version.h"
48 #include "clang/Config/config.h"
49 #include "clang/Driver/Action.h"
50 #include "clang/Driver/Compilation.h"
51 #include "clang/Driver/DriverDiagnostic.h"
52 #include "clang/Driver/Job.h"
53 #include "clang/Driver/Options.h"
54 #include "clang/Driver/SanitizerArgs.h"
55 #include "clang/Driver/Tool.h"
56 #include "clang/Driver/ToolChain.h"
57 #include "llvm/ADT/ArrayRef.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringSet.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/Config/llvm-config.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/OptSpecifier.h"
67 #include "llvm/Option/OptTable.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/Path.h"
74 #include "llvm/Support/PrettyStackTrace.h"
75 #include "llvm/Support/Process.h"
76 #include "llvm/Support/Program.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetRegistry.h"
79 #include "llvm/Support/VirtualFileSystem.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <map>
82 #include <memory>
83 #include <utility>
84 #if LLVM_ON_UNIX
85 #include <unistd.h> // getpid
86 #include <sysexits.h> // EX_IOERR
87 #endif
88 
89 using namespace clang::driver;
90 using namespace clang;
91 using namespace llvm::opt;
92 
93 // static
94 std::string Driver::GetResourcesPath(StringRef BinaryPath,
95                                      StringRef CustomResourceDir) {
96   // Since the resource directory is embedded in the module hash, it's important
97   // that all places that need it call this function, so that they get the
98   // exact same string ("a/../b/" and "b/" get different hashes, for example).
99 
100   // Dir is bin/ or lib/, depending on where BinaryPath is.
101   std::string Dir = llvm::sys::path::parent_path(BinaryPath);
102 
103   SmallString<128> P(Dir);
104   if (CustomResourceDir != "") {
105     llvm::sys::path::append(P, CustomResourceDir);
106   } else {
107     // On Windows, libclang.dll is in bin/.
108     // On non-Windows, libclang.so/.dylib is in lib/.
109     // With a static-library build of libclang, LibClangPath will contain the
110     // path of the embedding binary, which for LLVM binaries will be in bin/.
111     // ../lib gets us to lib/ in both cases.
112     P = llvm::sys::path::parent_path(Dir);
113     llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
114                             CLANG_VERSION_STRING);
115   }
116 
117   return P.str();
118 }
119 
120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
121                DiagnosticsEngine &Diags,
122                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
123     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
124       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
125       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
126       DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr),
127       CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr),
128       CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
129       CCLogDiagnostics(false), CCGenDiagnostics(false),
130       TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc),
131       CheckInputsExist(true), GenReproducer(false),
132       SuppressMissingInputWarning(false) {
133 
134   // Provide a sane fallback if no VFS is specified.
135   if (!this->VFS)
136     this->VFS = llvm::vfs::getRealFileSystem();
137 
138   Name = llvm::sys::path::filename(ClangExecutable);
139   Dir = llvm::sys::path::parent_path(ClangExecutable);
140   InstalledDir = Dir; // Provide a sensible default installed dir.
141 
142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
143   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
144 #endif
145 #if defined(CLANG_CONFIG_FILE_USER_DIR)
146   UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
147 #endif
148 
149   // Compute the path to the resource directory.
150   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
151 }
152 
153 void Driver::ParseDriverMode(StringRef ProgramName,
154                              ArrayRef<const char *> Args) {
155   if (ClangNameParts.isEmpty())
156     ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
157   setDriverModeFromOption(ClangNameParts.DriverMode);
158 
159   for (const char *ArgPtr : Args) {
160     // Ignore nullptrs, they are the response file's EOL markers.
161     if (ArgPtr == nullptr)
162       continue;
163     const StringRef Arg = ArgPtr;
164     setDriverModeFromOption(Arg);
165   }
166 }
167 
168 void Driver::setDriverModeFromOption(StringRef Opt) {
169   const std::string OptName =
170       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
171   if (!Opt.startswith(OptName))
172     return;
173   StringRef Value = Opt.drop_front(OptName.size());
174 
175   if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
176                    .Case("gcc", GCCMode)
177                    .Case("g++", GXXMode)
178                    .Case("cpp", CPPMode)
179                    .Case("cl", CLMode)
180                    .Default(None))
181     Mode = *M;
182   else
183     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
184 }
185 
186 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
187                                      bool IsClCompatMode,
188                                      bool &ContainsError) {
189   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
190   ContainsError = false;
191 
192   unsigned IncludedFlagsBitmask;
193   unsigned ExcludedFlagsBitmask;
194   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
195       getIncludeExcludeOptionFlagMasks(IsClCompatMode);
196 
197   unsigned MissingArgIndex, MissingArgCount;
198   InputArgList Args =
199       getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
200                           IncludedFlagsBitmask, ExcludedFlagsBitmask);
201 
202   // Check for missing argument error.
203   if (MissingArgCount) {
204     Diag(diag::err_drv_missing_argument)
205         << Args.getArgString(MissingArgIndex) << MissingArgCount;
206     ContainsError |=
207         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
208                                  SourceLocation()) > DiagnosticsEngine::Warning;
209   }
210 
211   // Check for unsupported options.
212   for (const Arg *A : Args) {
213     if (A->getOption().hasFlag(options::Unsupported)) {
214       unsigned DiagID;
215       auto ArgString = A->getAsString(Args);
216       std::string Nearest;
217       if (getOpts().findNearest(
218             ArgString, Nearest, IncludedFlagsBitmask,
219             ExcludedFlagsBitmask | options::Unsupported) > 1) {
220         DiagID = diag::err_drv_unsupported_opt;
221         Diag(DiagID) << ArgString;
222       } else {
223         DiagID = diag::err_drv_unsupported_opt_with_suggestion;
224         Diag(DiagID) << ArgString << Nearest;
225       }
226       ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
227                        DiagnosticsEngine::Warning;
228       continue;
229     }
230 
231     // Warn about -mcpu= without an argument.
232     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
233       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
234       ContainsError |= Diags.getDiagnosticLevel(
235                            diag::warn_drv_empty_joined_argument,
236                            SourceLocation()) > DiagnosticsEngine::Warning;
237     }
238   }
239 
240   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
241     unsigned DiagID;
242     auto ArgString = A->getAsString(Args);
243     std::string Nearest;
244     if (getOpts().findNearest(
245           ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
246       DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
247                           : diag::err_drv_unknown_argument;
248       Diags.Report(DiagID) << ArgString;
249     } else {
250       DiagID = IsCLMode()
251                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
252                    : diag::err_drv_unknown_argument_with_suggestion;
253       Diags.Report(DiagID) << ArgString << Nearest;
254     }
255     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
256                      DiagnosticsEngine::Warning;
257   }
258 
259   return Args;
260 }
261 
262 // Determine which compilation mode we are in. We look for options which
263 // affect the phase, starting with the earliest phases, and record which
264 // option we used to determine the final phase.
265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
266                                  Arg **FinalPhaseArg) const {
267   Arg *PhaseArg = nullptr;
268   phases::ID FinalPhase;
269 
270   // -{E,EP,P,M,MM} only run the preprocessor.
271   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
272       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
273       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
274       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
275     FinalPhase = phases::Preprocess;
276 
277     // --precompile only runs up to precompilation.
278   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
279     FinalPhase = phases::Precompile;
280 
281     // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
282   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
283              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
284              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
285              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
286              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
287              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
288              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
289              (PhaseArg = DAL.getLastArg(options::OPT_emit_iterface_stubs)) ||
290              (PhaseArg = DAL.getLastArg(options::OPT__analyze,
291                                         options::OPT__analyze_auto)) ||
292              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
293     FinalPhase = phases::Compile;
294 
295     // -S only runs up to the backend.
296   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
297     FinalPhase = phases::Backend;
298 
299     // -c compilation only runs up to the assembler.
300   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
301     FinalPhase = phases::Assemble;
302 
303     // Otherwise do everything.
304   } else
305     FinalPhase = phases::Link;
306 
307   if (FinalPhaseArg)
308     *FinalPhaseArg = PhaseArg;
309 
310   return FinalPhase;
311 }
312 
313 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
314                          StringRef Value, bool Claim = true) {
315   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
316                    Args.getBaseArgs().MakeIndex(Value), Value.data());
317   Args.AddSynthesizedArg(A);
318   if (Claim)
319     A->claim();
320   return A;
321 }
322 
323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
324   const llvm::opt::OptTable &Opts = getOpts();
325   DerivedArgList *DAL = new DerivedArgList(Args);
326 
327   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
328   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
329   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
330   for (Arg *A : Args) {
331     // Unfortunately, we have to parse some forwarding options (-Xassembler,
332     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
333     // (assembler and preprocessor), or bypass a previous driver ('collect2').
334 
335     // Rewrite linker options, to replace --no-demangle with a custom internal
336     // option.
337     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
338          A->getOption().matches(options::OPT_Xlinker)) &&
339         A->containsValue("--no-demangle")) {
340       // Add the rewritten no-demangle argument.
341       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
342 
343       // Add the remaining values as Xlinker arguments.
344       for (StringRef Val : A->getValues())
345         if (Val != "--no-demangle")
346           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
347 
348       continue;
349     }
350 
351     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
352     // some build systems. We don't try to be complete here because we don't
353     // care to encourage this usage model.
354     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
355         (A->getValue(0) == StringRef("-MD") ||
356          A->getValue(0) == StringRef("-MMD"))) {
357       // Rewrite to -MD/-MMD along with -MF.
358       if (A->getValue(0) == StringRef("-MD"))
359         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
360       else
361         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
362       if (A->getNumValues() == 2)
363         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
364       continue;
365     }
366 
367     // Rewrite reserved library names.
368     if (A->getOption().matches(options::OPT_l)) {
369       StringRef Value = A->getValue();
370 
371       // Rewrite unless -nostdlib is present.
372       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
373           Value == "stdc++") {
374         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
375         continue;
376       }
377 
378       // Rewrite unconditionally.
379       if (Value == "cc_kext") {
380         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
381         continue;
382       }
383     }
384 
385     // Pick up inputs via the -- option.
386     if (A->getOption().matches(options::OPT__DASH_DASH)) {
387       A->claim();
388       for (StringRef Val : A->getValues())
389         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
390       continue;
391     }
392 
393     DAL->append(A);
394   }
395 
396   // Enforce -static if -miamcu is present.
397   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
398     DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
399 
400 // Add a default value of -mlinker-version=, if one was given and the user
401 // didn't specify one.
402 #if defined(HOST_LINK_VERSION)
403   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
404       strlen(HOST_LINK_VERSION) > 0) {
405     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
406                       HOST_LINK_VERSION);
407     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
408   }
409 #endif
410 
411   return DAL;
412 }
413 
414 /// Compute target triple from args.
415 ///
416 /// This routine provides the logic to compute a target triple from various
417 /// args passed to the driver and the default triple string.
418 static llvm::Triple computeTargetTriple(const Driver &D,
419                                         StringRef TargetTriple,
420                                         const ArgList &Args,
421                                         StringRef DarwinArchName = "") {
422   // FIXME: Already done in Compilation *Driver::BuildCompilation
423   if (const Arg *A = Args.getLastArg(options::OPT_target))
424     TargetTriple = A->getValue();
425 
426   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
427 
428   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
429   // -gnu* only, and we can not change this, so we have to detect that case as
430   // being the Hurd OS.
431   if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
432       TargetTriple.find("-pc-gnu") != StringRef::npos)
433     Target.setOSName("hurd");
434 
435   // Handle Apple-specific options available here.
436   if (Target.isOSBinFormatMachO()) {
437     // If an explicit Darwin arch name is given, that trumps all.
438     if (!DarwinArchName.empty()) {
439       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
440       return Target;
441     }
442 
443     // Handle the Darwin '-arch' flag.
444     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
445       StringRef ArchName = A->getValue();
446       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
447     }
448   }
449 
450   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
451   // '-mbig-endian'/'-EB'.
452   if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
453                                options::OPT_mbig_endian)) {
454     if (A->getOption().matches(options::OPT_mlittle_endian)) {
455       llvm::Triple LE = Target.getLittleEndianArchVariant();
456       if (LE.getArch() != llvm::Triple::UnknownArch)
457         Target = std::move(LE);
458     } else {
459       llvm::Triple BE = Target.getBigEndianArchVariant();
460       if (BE.getArch() != llvm::Triple::UnknownArch)
461         Target = std::move(BE);
462     }
463   }
464 
465   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
466   if (Target.getArch() == llvm::Triple::tce ||
467       Target.getOS() == llvm::Triple::Minix)
468     return Target;
469 
470   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
471   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
472                            options::OPT_m32, options::OPT_m16);
473   if (A) {
474     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
475 
476     if (A->getOption().matches(options::OPT_m64)) {
477       AT = Target.get64BitArchVariant().getArch();
478       if (Target.getEnvironment() == llvm::Triple::GNUX32)
479         Target.setEnvironment(llvm::Triple::GNU);
480     } else if (A->getOption().matches(options::OPT_mx32) &&
481                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
482       AT = llvm::Triple::x86_64;
483       Target.setEnvironment(llvm::Triple::GNUX32);
484     } else if (A->getOption().matches(options::OPT_m32)) {
485       AT = Target.get32BitArchVariant().getArch();
486       if (Target.getEnvironment() == llvm::Triple::GNUX32)
487         Target.setEnvironment(llvm::Triple::GNU);
488     } else if (A->getOption().matches(options::OPT_m16) &&
489                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
490       AT = llvm::Triple::x86;
491       Target.setEnvironment(llvm::Triple::CODE16);
492     }
493 
494     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
495       Target.setArch(AT);
496   }
497 
498   // Handle -miamcu flag.
499   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
500     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
501       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
502                                                        << Target.str();
503 
504     if (A && !A->getOption().matches(options::OPT_m32))
505       D.Diag(diag::err_drv_argument_not_allowed_with)
506           << "-miamcu" << A->getBaseArg().getAsString(Args);
507 
508     Target.setArch(llvm::Triple::x86);
509     Target.setArchName("i586");
510     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
511     Target.setEnvironmentName("");
512     Target.setOS(llvm::Triple::ELFIAMCU);
513     Target.setVendor(llvm::Triple::UnknownVendor);
514     Target.setVendorName("intel");
515   }
516 
517   // If target is MIPS adjust the target triple
518   // accordingly to provided ABI name.
519   A = Args.getLastArg(options::OPT_mabi_EQ);
520   if (A && Target.isMIPS()) {
521     StringRef ABIName = A->getValue();
522     if (ABIName == "32") {
523       Target = Target.get32BitArchVariant();
524       if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
525           Target.getEnvironment() == llvm::Triple::GNUABIN32)
526         Target.setEnvironment(llvm::Triple::GNU);
527     } else if (ABIName == "n32") {
528       Target = Target.get64BitArchVariant();
529       if (Target.getEnvironment() == llvm::Triple::GNU ||
530           Target.getEnvironment() == llvm::Triple::GNUABI64)
531         Target.setEnvironment(llvm::Triple::GNUABIN32);
532     } else if (ABIName == "64") {
533       Target = Target.get64BitArchVariant();
534       if (Target.getEnvironment() == llvm::Triple::GNU ||
535           Target.getEnvironment() == llvm::Triple::GNUABIN32)
536         Target.setEnvironment(llvm::Triple::GNUABI64);
537     }
538   }
539 
540   return Target;
541 }
542 
543 // Parse the LTO options and record the type of LTO compilation
544 // based on which -f(no-)?lto(=.*)? option occurs last.
545 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
546   LTOMode = LTOK_None;
547   if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
548                     options::OPT_fno_lto, false))
549     return;
550 
551   StringRef LTOName("full");
552 
553   const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
554   if (A)
555     LTOName = A->getValue();
556 
557   LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
558                 .Case("full", LTOK_Full)
559                 .Case("thin", LTOK_Thin)
560                 .Default(LTOK_Unknown);
561 
562   if (LTOMode == LTOK_Unknown) {
563     assert(A);
564     Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
565                                                     << A->getValue();
566   }
567 }
568 
569 /// Compute the desired OpenMP runtime from the flags provided.
570 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
571   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
572 
573   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
574   if (A)
575     RuntimeName = A->getValue();
576 
577   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
578                 .Case("libomp", OMPRT_OMP)
579                 .Case("libgomp", OMPRT_GOMP)
580                 .Case("libiomp5", OMPRT_IOMP5)
581                 .Default(OMPRT_Unknown);
582 
583   if (RT == OMPRT_Unknown) {
584     if (A)
585       Diag(diag::err_drv_unsupported_option_argument)
586           << A->getOption().getName() << A->getValue();
587     else
588       // FIXME: We could use a nicer diagnostic here.
589       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
590   }
591 
592   return RT;
593 }
594 
595 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
596                                               InputList &Inputs) {
597 
598   //
599   // CUDA/HIP
600   //
601   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
602   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
603   bool IsCuda =
604       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
605         return types::isCuda(I.first);
606       });
607   bool IsHIP =
608       llvm::any_of(Inputs,
609                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
610                      return types::isHIP(I.first);
611                    }) ||
612       C.getInputArgs().hasArg(options::OPT_hip_link);
613   if (IsCuda && IsHIP) {
614     Diag(clang::diag::err_drv_mix_cuda_hip);
615     return;
616   }
617   if (IsCuda) {
618     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
619     const llvm::Triple &HostTriple = HostTC->getTriple();
620     StringRef DeviceTripleStr;
621     auto OFK = Action::OFK_Cuda;
622     DeviceTripleStr =
623         HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
624     llvm::Triple CudaTriple(DeviceTripleStr);
625     // Use the CUDA and host triples as the key into the ToolChains map,
626     // because the device toolchain we create depends on both.
627     auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
628     if (!CudaTC) {
629       CudaTC = std::make_unique<toolchains::CudaToolChain>(
630           *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
631     }
632     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
633   } else if (IsHIP) {
634     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
635     const llvm::Triple &HostTriple = HostTC->getTriple();
636     StringRef DeviceTripleStr;
637     auto OFK = Action::OFK_HIP;
638     DeviceTripleStr = "amdgcn-amd-amdhsa";
639     llvm::Triple HIPTriple(DeviceTripleStr);
640     // Use the HIP and host triples as the key into the ToolChains map,
641     // because the device toolchain we create depends on both.
642     auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
643     if (!HIPTC) {
644       HIPTC = std::make_unique<toolchains::HIPToolChain>(
645           *this, HIPTriple, *HostTC, C.getInputArgs());
646     }
647     C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
648   }
649 
650   //
651   // OpenMP
652   //
653   // We need to generate an OpenMP toolchain if the user specified targets with
654   // the -fopenmp-targets option.
655   if (Arg *OpenMPTargets =
656           C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
657     if (OpenMPTargets->getNumValues()) {
658       // We expect that -fopenmp-targets is always used in conjunction with the
659       // option -fopenmp specifying a valid runtime with offloading support,
660       // i.e. libomp or libiomp.
661       bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
662           options::OPT_fopenmp, options::OPT_fopenmp_EQ,
663           options::OPT_fno_openmp, false);
664       if (HasValidOpenMPRuntime) {
665         OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
666         HasValidOpenMPRuntime =
667             OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
668       }
669 
670       if (HasValidOpenMPRuntime) {
671         llvm::StringMap<const char *> FoundNormalizedTriples;
672         for (const char *Val : OpenMPTargets->getValues()) {
673           llvm::Triple TT(Val);
674           std::string NormalizedName = TT.normalize();
675 
676           // Make sure we don't have a duplicate triple.
677           auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
678           if (Duplicate != FoundNormalizedTriples.end()) {
679             Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
680                 << Val << Duplicate->second;
681             continue;
682           }
683 
684           // Store the current triple so that we can check for duplicates in the
685           // following iterations.
686           FoundNormalizedTriples[NormalizedName] = Val;
687 
688           // If the specified target is invalid, emit a diagnostic.
689           if (TT.getArch() == llvm::Triple::UnknownArch)
690             Diag(clang::diag::err_drv_invalid_omp_target) << Val;
691           else {
692             const ToolChain *TC;
693             // CUDA toolchains have to be selected differently. They pair host
694             // and device in their implementation.
695             if (TT.isNVPTX()) {
696               const ToolChain *HostTC =
697                   C.getSingleOffloadToolChain<Action::OFK_Host>();
698               assert(HostTC && "Host toolchain should be always defined.");
699               auto &CudaTC =
700                   ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
701               if (!CudaTC)
702                 CudaTC = std::make_unique<toolchains::CudaToolChain>(
703                     *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
704               TC = CudaTC.get();
705             } else
706               TC = &getToolChain(C.getInputArgs(), TT);
707             C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
708           }
709         }
710       } else
711         Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
712     } else
713       Diag(clang::diag::warn_drv_empty_joined_argument)
714           << OpenMPTargets->getAsString(C.getInputArgs());
715   }
716 
717   //
718   // TODO: Add support for other offloading programming models here.
719   //
720 }
721 
722 /// Looks the given directories for the specified file.
723 ///
724 /// \param[out] FilePath File path, if the file was found.
725 /// \param[in]  Dirs Directories used for the search.
726 /// \param[in]  FileName Name of the file to search for.
727 /// \return True if file was found.
728 ///
729 /// Looks for file specified by FileName sequentially in directories specified
730 /// by Dirs.
731 ///
732 static bool searchForFile(SmallVectorImpl<char> &FilePath,
733                           ArrayRef<std::string> Dirs,
734                           StringRef FileName) {
735   SmallString<128> WPath;
736   for (const StringRef &Dir : Dirs) {
737     if (Dir.empty())
738       continue;
739     WPath.clear();
740     llvm::sys::path::append(WPath, Dir, FileName);
741     llvm::sys::path::native(WPath);
742     if (llvm::sys::fs::is_regular_file(WPath)) {
743       FilePath = std::move(WPath);
744       return true;
745     }
746   }
747   return false;
748 }
749 
750 bool Driver::readConfigFile(StringRef FileName) {
751   // Try reading the given file.
752   SmallVector<const char *, 32> NewCfgArgs;
753   if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
754     Diag(diag::err_drv_cannot_read_config_file) << FileName;
755     return true;
756   }
757 
758   // Read options from config file.
759   llvm::SmallString<128> CfgFileName(FileName);
760   llvm::sys::path::native(CfgFileName);
761   ConfigFile = CfgFileName.str();
762   bool ContainErrors;
763   CfgOptions = std::make_unique<InputArgList>(
764       ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
765   if (ContainErrors) {
766     CfgOptions.reset();
767     return true;
768   }
769 
770   if (CfgOptions->hasArg(options::OPT_config)) {
771     CfgOptions.reset();
772     Diag(diag::err_drv_nested_config_file);
773     return true;
774   }
775 
776   // Claim all arguments that come from a configuration file so that the driver
777   // does not warn on any that is unused.
778   for (Arg *A : *CfgOptions)
779     A->claim();
780   return false;
781 }
782 
783 bool Driver::loadConfigFile() {
784   std::string CfgFileName;
785   bool FileSpecifiedExplicitly = false;
786 
787   // Process options that change search path for config files.
788   if (CLOptions) {
789     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
790       SmallString<128> CfgDir;
791       CfgDir.append(
792           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
793       if (!CfgDir.empty()) {
794         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
795           SystemConfigDir.clear();
796         else
797           SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
798       }
799     }
800     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
801       SmallString<128> CfgDir;
802       CfgDir.append(
803           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
804       if (!CfgDir.empty()) {
805         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
806           UserConfigDir.clear();
807         else
808           UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
809       }
810     }
811   }
812 
813   // First try to find config file specified in command line.
814   if (CLOptions) {
815     std::vector<std::string> ConfigFiles =
816         CLOptions->getAllArgValues(options::OPT_config);
817     if (ConfigFiles.size() > 1) {
818       Diag(diag::err_drv_duplicate_config);
819       return true;
820     }
821 
822     if (!ConfigFiles.empty()) {
823       CfgFileName = ConfigFiles.front();
824       assert(!CfgFileName.empty());
825 
826       // If argument contains directory separator, treat it as a path to
827       // configuration file.
828       if (llvm::sys::path::has_parent_path(CfgFileName)) {
829         SmallString<128> CfgFilePath;
830         if (llvm::sys::path::is_relative(CfgFileName))
831           llvm::sys::fs::current_path(CfgFilePath);
832         llvm::sys::path::append(CfgFilePath, CfgFileName);
833         if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
834           Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
835           return true;
836         }
837         return readConfigFile(CfgFilePath);
838       }
839 
840       FileSpecifiedExplicitly = true;
841     }
842   }
843 
844   // If config file is not specified explicitly, try to deduce configuration
845   // from executable name. For instance, an executable 'armv7l-clang' will
846   // search for config file 'armv7l-clang.cfg'.
847   if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
848     CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
849 
850   if (CfgFileName.empty())
851     return false;
852 
853   // Determine architecture part of the file name, if it is present.
854   StringRef CfgFileArch = CfgFileName;
855   size_t ArchPrefixLen = CfgFileArch.find('-');
856   if (ArchPrefixLen == StringRef::npos)
857     ArchPrefixLen = CfgFileArch.size();
858   llvm::Triple CfgTriple;
859   CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
860   CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
861   if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
862     ArchPrefixLen = 0;
863 
864   if (!StringRef(CfgFileName).endswith(".cfg"))
865     CfgFileName += ".cfg";
866 
867   // If config file starts with architecture name and command line options
868   // redefine architecture (with options like -m32 -LE etc), try finding new
869   // config file with that architecture.
870   SmallString<128> FixedConfigFile;
871   size_t FixedArchPrefixLen = 0;
872   if (ArchPrefixLen) {
873     // Get architecture name from config file name like 'i386.cfg' or
874     // 'armv7l-clang.cfg'.
875     // Check if command line options changes effective triple.
876     llvm::Triple EffectiveTriple = computeTargetTriple(*this,
877                                              CfgTriple.getTriple(), *CLOptions);
878     if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
879       FixedConfigFile = EffectiveTriple.getArchName();
880       FixedArchPrefixLen = FixedConfigFile.size();
881       // Append the rest of original file name so that file name transforms
882       // like: i386-clang.cfg -> x86_64-clang.cfg.
883       if (ArchPrefixLen < CfgFileName.size())
884         FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
885     }
886   }
887 
888   // Prepare list of directories where config file is searched for.
889   SmallVector<std::string, 3> CfgFileSearchDirs;
890   CfgFileSearchDirs.push_back(UserConfigDir);
891   CfgFileSearchDirs.push_back(SystemConfigDir);
892   CfgFileSearchDirs.push_back(Dir);
893 
894   // Try to find config file. First try file with corrected architecture.
895   llvm::SmallString<128> CfgFilePath;
896   if (!FixedConfigFile.empty()) {
897     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
898       return readConfigFile(CfgFilePath);
899     // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
900     FixedConfigFile.resize(FixedArchPrefixLen);
901     FixedConfigFile.append(".cfg");
902     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
903       return readConfigFile(CfgFilePath);
904   }
905 
906   // Then try original file name.
907   if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
908     return readConfigFile(CfgFilePath);
909 
910   // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
911   if (!ClangNameParts.ModeSuffix.empty() &&
912       !ClangNameParts.TargetPrefix.empty()) {
913     CfgFileName.assign(ClangNameParts.TargetPrefix);
914     CfgFileName.append(".cfg");
915     if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
916       return readConfigFile(CfgFilePath);
917   }
918 
919   // Report error but only if config file was specified explicitly, by option
920   // --config. If it was deduced from executable name, it is not an error.
921   if (FileSpecifiedExplicitly) {
922     Diag(diag::err_drv_config_file_not_found) << CfgFileName;
923     for (const std::string &SearchDir : CfgFileSearchDirs)
924       if (!SearchDir.empty())
925         Diag(diag::note_drv_config_file_searched_in) << SearchDir;
926     return true;
927   }
928 
929   return false;
930 }
931 
932 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
933   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
934 
935   // FIXME: Handle environment options which affect driver behavior, somewhere
936   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
937 
938   if (Optional<std::string> CompilerPathValue =
939           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
940     StringRef CompilerPath = *CompilerPathValue;
941     while (!CompilerPath.empty()) {
942       std::pair<StringRef, StringRef> Split =
943           CompilerPath.split(llvm::sys::EnvPathSeparator);
944       PrefixDirs.push_back(Split.first);
945       CompilerPath = Split.second;
946     }
947   }
948 
949   // We look for the driver mode option early, because the mode can affect
950   // how other options are parsed.
951   ParseDriverMode(ClangExecutable, ArgList.slice(1));
952 
953   // FIXME: What are we going to do with -V and -b?
954 
955   // Arguments specified in command line.
956   bool ContainsError;
957   CLOptions = std::make_unique<InputArgList>(
958       ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
959 
960   // Try parsing configuration file.
961   if (!ContainsError)
962     ContainsError = loadConfigFile();
963   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
964 
965   // All arguments, from both config file and command line.
966   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
967                                               : std::move(*CLOptions));
968 
969   // The args for config files or /clang: flags belong to different InputArgList
970   // objects than Args. This copies an Arg from one of those other InputArgLists
971   // to the ownership of Args.
972   auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
973       unsigned Index = Args.MakeIndex(Opt->getSpelling());
974       Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
975                                      Index, BaseArg);
976       Copy->getValues() = Opt->getValues();
977       if (Opt->isClaimed())
978         Copy->claim();
979       Args.append(Copy);
980   };
981 
982   if (HasConfigFile)
983     for (auto *Opt : *CLOptions) {
984       if (Opt->getOption().matches(options::OPT_config))
985         continue;
986       const Arg *BaseArg = &Opt->getBaseArg();
987       if (BaseArg == Opt)
988         BaseArg = nullptr;
989       appendOneArg(Opt, BaseArg);
990     }
991 
992   // In CL mode, look for any pass-through arguments
993   if (IsCLMode() && !ContainsError) {
994     SmallVector<const char *, 16> CLModePassThroughArgList;
995     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
996       A->claim();
997       CLModePassThroughArgList.push_back(A->getValue());
998     }
999 
1000     if (!CLModePassThroughArgList.empty()) {
1001       // Parse any pass through args using default clang processing rather
1002       // than clang-cl processing.
1003       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1004           ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1005 
1006       if (!ContainsError)
1007         for (auto *Opt : *CLModePassThroughOptions) {
1008           appendOneArg(Opt, nullptr);
1009         }
1010     }
1011   }
1012 
1013   // FIXME: This stuff needs to go into the Compilation, not the driver.
1014   bool CCCPrintPhases;
1015 
1016   // Silence driver warnings if requested
1017   Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1018 
1019   // -no-canonical-prefixes is used very early in main.
1020   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1021 
1022   // Ignore -pipe.
1023   Args.ClaimAllArgs(options::OPT_pipe);
1024 
1025   // Extract -ccc args.
1026   //
1027   // FIXME: We need to figure out where this behavior should live. Most of it
1028   // should be outside in the client; the parts that aren't should have proper
1029   // options, either by introducing new ones or by overloading gcc ones like -V
1030   // or -b.
1031   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1032   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1033   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1034     CCCGenericGCCName = A->getValue();
1035   GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1036                                options::OPT_fno_crash_diagnostics,
1037                                !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1038   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1039   // and getToolChain is const.
1040   if (IsCLMode()) {
1041     // clang-cl targets MSVC-style Win32.
1042     llvm::Triple T(TargetTriple);
1043     T.setOS(llvm::Triple::Win32);
1044     T.setVendor(llvm::Triple::PC);
1045     T.setEnvironment(llvm::Triple::MSVC);
1046     T.setObjectFormat(llvm::Triple::COFF);
1047     TargetTriple = T.str();
1048   }
1049   if (const Arg *A = Args.getLastArg(options::OPT_target))
1050     TargetTriple = A->getValue();
1051   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1052     Dir = InstalledDir = A->getValue();
1053   for (const Arg *A : Args.filtered(options::OPT_B)) {
1054     A->claim();
1055     PrefixDirs.push_back(A->getValue(0));
1056   }
1057   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1058     SysRoot = A->getValue();
1059   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1060     DyldPrefix = A->getValue();
1061 
1062   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1063     ResourceDir = A->getValue();
1064 
1065   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1066     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1067                     .Case("cwd", SaveTempsCwd)
1068                     .Case("obj", SaveTempsObj)
1069                     .Default(SaveTempsCwd);
1070   }
1071 
1072   setLTOMode(Args);
1073 
1074   // Process -fembed-bitcode= flags.
1075   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1076     StringRef Name = A->getValue();
1077     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1078         .Case("off", EmbedNone)
1079         .Case("all", EmbedBitcode)
1080         .Case("bitcode", EmbedBitcode)
1081         .Case("marker", EmbedMarker)
1082         .Default(~0U);
1083     if (Model == ~0U) {
1084       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1085                                                 << Name;
1086     } else
1087       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1088   }
1089 
1090   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1091       std::make_unique<InputArgList>(std::move(Args));
1092 
1093   // Perform the default argument translations.
1094   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1095 
1096   // Owned by the host.
1097   const ToolChain &TC = getToolChain(
1098       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1099 
1100   // The compilation takes ownership of Args.
1101   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1102                                    ContainsError);
1103 
1104   if (!HandleImmediateArgs(*C))
1105     return C;
1106 
1107   // Construct the list of inputs.
1108   InputList Inputs;
1109   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1110 
1111   // Populate the tool chains for the offloading devices, if any.
1112   CreateOffloadingDeviceToolChains(*C, Inputs);
1113 
1114   // Construct the list of abstract actions to perform for this compilation. On
1115   // MachO targets this uses the driver-driver and universal actions.
1116   if (TC.getTriple().isOSBinFormatMachO())
1117     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1118   else
1119     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1120 
1121   if (CCCPrintPhases) {
1122     PrintActions(*C);
1123     return C;
1124   }
1125 
1126   BuildJobs(*C);
1127 
1128   return C;
1129 }
1130 
1131 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1132   llvm::opt::ArgStringList ASL;
1133   for (const auto *A : Args)
1134     A->render(Args, ASL);
1135 
1136   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1137     if (I != ASL.begin())
1138       OS << ' ';
1139     Command::printArg(OS, *I, true);
1140   }
1141   OS << '\n';
1142 }
1143 
1144 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1145                                     SmallString<128> &CrashDiagDir) {
1146   using namespace llvm::sys;
1147   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1148          "Only knows about .crash files on Darwin");
1149 
1150   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1151   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1152   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1153   path::home_directory(CrashDiagDir);
1154   if (CrashDiagDir.startswith("/var/root"))
1155     CrashDiagDir = "/";
1156   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1157   int PID =
1158 #if LLVM_ON_UNIX
1159       getpid();
1160 #else
1161       0;
1162 #endif
1163   std::error_code EC;
1164   fs::file_status FileStatus;
1165   TimePoint<> LastAccessTime;
1166   SmallString<128> CrashFilePath;
1167   // Lookup the .crash files and get the one generated by a subprocess spawned
1168   // by this driver invocation.
1169   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1170        File != FileEnd && !EC; File.increment(EC)) {
1171     StringRef FileName = path::filename(File->path());
1172     if (!FileName.startswith(Name))
1173       continue;
1174     if (fs::status(File->path(), FileStatus))
1175       continue;
1176     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1177         llvm::MemoryBuffer::getFile(File->path());
1178     if (!CrashFile)
1179       continue;
1180     // The first line should start with "Process:", otherwise this isn't a real
1181     // .crash file.
1182     StringRef Data = CrashFile.get()->getBuffer();
1183     if (!Data.startswith("Process:"))
1184       continue;
1185     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1186     size_t ParentProcPos = Data.find("Parent Process:");
1187     if (ParentProcPos == StringRef::npos)
1188       continue;
1189     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1190     if (LineEnd == StringRef::npos)
1191       continue;
1192     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1193     int OpenBracket = -1, CloseBracket = -1;
1194     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1195       if (ParentProcess[i] == '[')
1196         OpenBracket = i;
1197       if (ParentProcess[i] == ']')
1198         CloseBracket = i;
1199     }
1200     // Extract the parent process PID from the .crash file and check whether
1201     // it matches this driver invocation pid.
1202     int CrashPID;
1203     if (OpenBracket < 0 || CloseBracket < 0 ||
1204         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1205             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1206       continue;
1207     }
1208 
1209     // Found a .crash file matching the driver pid. To avoid getting an older
1210     // and misleading crash file, continue looking for the most recent.
1211     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1212     // multiple crashes poiting to the same parent process. Since the driver
1213     // does not collect pid information for the dispatched invocation there's
1214     // currently no way to distinguish among them.
1215     const auto FileAccessTime = FileStatus.getLastModificationTime();
1216     if (FileAccessTime > LastAccessTime) {
1217       CrashFilePath.assign(File->path());
1218       LastAccessTime = FileAccessTime;
1219     }
1220   }
1221 
1222   // If found, copy it over to the location of other reproducer files.
1223   if (!CrashFilePath.empty()) {
1224     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1225     if (EC)
1226       return false;
1227     return true;
1228   }
1229 
1230   return false;
1231 }
1232 
1233 // When clang crashes, produce diagnostic information including the fully
1234 // preprocessed source file(s).  Request that the developer attach the
1235 // diagnostic information to a bug report.
1236 void Driver::generateCompilationDiagnostics(
1237     Compilation &C, const Command &FailingCommand,
1238     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1239   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1240     return;
1241 
1242   // Don't try to generate diagnostics for link or dsymutil jobs.
1243   if (FailingCommand.getCreator().isLinkJob() ||
1244       FailingCommand.getCreator().isDsymutilJob())
1245     return;
1246 
1247   // Print the version of the compiler.
1248   PrintVersion(C, llvm::errs());
1249 
1250   Diag(clang::diag::note_drv_command_failed_diag_msg)
1251       << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1252          "crash backtrace, preprocessed source, and associated run script.";
1253 
1254   // Suppress driver output and emit preprocessor output to temp file.
1255   Mode = CPPMode;
1256   CCGenDiagnostics = true;
1257 
1258   // Save the original job command(s).
1259   Command Cmd = FailingCommand;
1260 
1261   // Keep track of whether we produce any errors while trying to produce
1262   // preprocessed sources.
1263   DiagnosticErrorTrap Trap(Diags);
1264 
1265   // Suppress tool output.
1266   C.initCompilationForDiagnostics();
1267 
1268   // Construct the list of inputs.
1269   InputList Inputs;
1270   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1271 
1272   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1273     bool IgnoreInput = false;
1274 
1275     // Ignore input from stdin or any inputs that cannot be preprocessed.
1276     // Check type first as not all linker inputs have a value.
1277     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1278       IgnoreInput = true;
1279     } else if (!strcmp(it->second->getValue(), "-")) {
1280       Diag(clang::diag::note_drv_command_failed_diag_msg)
1281           << "Error generating preprocessed source(s) - "
1282              "ignoring input from stdin.";
1283       IgnoreInput = true;
1284     }
1285 
1286     if (IgnoreInput) {
1287       it = Inputs.erase(it);
1288       ie = Inputs.end();
1289     } else {
1290       ++it;
1291     }
1292   }
1293 
1294   if (Inputs.empty()) {
1295     Diag(clang::diag::note_drv_command_failed_diag_msg)
1296         << "Error generating preprocessed source(s) - "
1297            "no preprocessable inputs.";
1298     return;
1299   }
1300 
1301   // Don't attempt to generate preprocessed files if multiple -arch options are
1302   // used, unless they're all duplicates.
1303   llvm::StringSet<> ArchNames;
1304   for (const Arg *A : C.getArgs()) {
1305     if (A->getOption().matches(options::OPT_arch)) {
1306       StringRef ArchName = A->getValue();
1307       ArchNames.insert(ArchName);
1308     }
1309   }
1310   if (ArchNames.size() > 1) {
1311     Diag(clang::diag::note_drv_command_failed_diag_msg)
1312         << "Error generating preprocessed source(s) - cannot generate "
1313            "preprocessed source with multiple -arch options.";
1314     return;
1315   }
1316 
1317   // Construct the list of abstract actions to perform for this compilation. On
1318   // Darwin OSes this uses the driver-driver and builds universal actions.
1319   const ToolChain &TC = C.getDefaultToolChain();
1320   if (TC.getTriple().isOSBinFormatMachO())
1321     BuildUniversalActions(C, TC, Inputs);
1322   else
1323     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1324 
1325   BuildJobs(C);
1326 
1327   // If there were errors building the compilation, quit now.
1328   if (Trap.hasErrorOccurred()) {
1329     Diag(clang::diag::note_drv_command_failed_diag_msg)
1330         << "Error generating preprocessed source(s).";
1331     return;
1332   }
1333 
1334   // Generate preprocessed output.
1335   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1336   C.ExecuteJobs(C.getJobs(), FailingCommands);
1337 
1338   // If any of the preprocessing commands failed, clean up and exit.
1339   if (!FailingCommands.empty()) {
1340     Diag(clang::diag::note_drv_command_failed_diag_msg)
1341         << "Error generating preprocessed source(s).";
1342     return;
1343   }
1344 
1345   const ArgStringList &TempFiles = C.getTempFiles();
1346   if (TempFiles.empty()) {
1347     Diag(clang::diag::note_drv_command_failed_diag_msg)
1348         << "Error generating preprocessed source(s).";
1349     return;
1350   }
1351 
1352   Diag(clang::diag::note_drv_command_failed_diag_msg)
1353       << "\n********************\n\n"
1354          "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1355          "Preprocessed source(s) and associated run script(s) are located at:";
1356 
1357   SmallString<128> VFS;
1358   SmallString<128> ReproCrashFilename;
1359   for (const char *TempFile : TempFiles) {
1360     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1361     if (Report)
1362       Report->TemporaryFiles.push_back(TempFile);
1363     if (ReproCrashFilename.empty()) {
1364       ReproCrashFilename = TempFile;
1365       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1366     }
1367     if (StringRef(TempFile).endswith(".cache")) {
1368       // In some cases (modules) we'll dump extra data to help with reproducing
1369       // the crash into a directory next to the output.
1370       VFS = llvm::sys::path::filename(TempFile);
1371       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1372     }
1373   }
1374 
1375   // Assume associated files are based off of the first temporary file.
1376   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1377 
1378   llvm::SmallString<128> Script(CrashInfo.Filename);
1379   llvm::sys::path::replace_extension(Script, "sh");
1380   std::error_code EC;
1381   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1382   if (EC) {
1383     Diag(clang::diag::note_drv_command_failed_diag_msg)
1384         << "Error generating run script: " << Script << " " << EC.message();
1385   } else {
1386     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1387              << "# Driver args: ";
1388     printArgList(ScriptOS, C.getInputArgs());
1389     ScriptOS << "# Original command: ";
1390     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1391     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1392     if (!AdditionalInformation.empty())
1393       ScriptOS << "\n# Additional information: " << AdditionalInformation
1394                << "\n";
1395     if (Report)
1396       Report->TemporaryFiles.push_back(Script.str());
1397     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1398   }
1399 
1400   // On darwin, provide information about the .crash diagnostic report.
1401   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1402     SmallString<128> CrashDiagDir;
1403     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1404       Diag(clang::diag::note_drv_command_failed_diag_msg)
1405           << ReproCrashFilename.str();
1406     } else { // Suggest a directory for the user to look for .crash files.
1407       llvm::sys::path::append(CrashDiagDir, Name);
1408       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1409       Diag(clang::diag::note_drv_command_failed_diag_msg)
1410           << "Crash backtrace is located in";
1411       Diag(clang::diag::note_drv_command_failed_diag_msg)
1412           << CrashDiagDir.str();
1413       Diag(clang::diag::note_drv_command_failed_diag_msg)
1414           << "(choose the .crash file that corresponds to your crash)";
1415     }
1416   }
1417 
1418   for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1419                                             options::OPT_frewrite_map_file_EQ))
1420     Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1421 
1422   Diag(clang::diag::note_drv_command_failed_diag_msg)
1423       << "\n\n********************";
1424 }
1425 
1426 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1427   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1428   // capacity if the tool does not support response files, there is a chance/
1429   // that things will just work without a response file, so we silently just
1430   // skip it.
1431   if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None ||
1432       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1433                                                    Cmd.getArguments()))
1434     return;
1435 
1436   std::string TmpName = GetTemporaryPath("response", "txt");
1437   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1438 }
1439 
1440 int Driver::ExecuteCompilation(
1441     Compilation &C,
1442     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1443   // Just print if -### was present.
1444   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1445     C.getJobs().Print(llvm::errs(), "\n", true);
1446     return 0;
1447   }
1448 
1449   // If there were errors building the compilation, quit now.
1450   if (Diags.hasErrorOccurred())
1451     return 1;
1452 
1453   // Set up response file names for each command, if necessary
1454   for (auto &Job : C.getJobs())
1455     setUpResponseFiles(C, Job);
1456 
1457   C.ExecuteJobs(C.getJobs(), FailingCommands);
1458 
1459   // If the command succeeded, we are done.
1460   if (FailingCommands.empty())
1461     return 0;
1462 
1463   // Otherwise, remove result files and print extra information about abnormal
1464   // failures.
1465   int Res = 0;
1466   for (const auto &CmdPair : FailingCommands) {
1467     int CommandRes = CmdPair.first;
1468     const Command *FailingCommand = CmdPair.second;
1469 
1470     // Remove result files if we're not saving temps.
1471     if (!isSaveTempsEnabled()) {
1472       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1473       C.CleanupFileMap(C.getResultFiles(), JA, true);
1474 
1475       // Failure result files are valid unless we crashed.
1476       if (CommandRes < 0)
1477         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1478     }
1479 
1480 #if LLVM_ON_UNIX
1481     // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1482     // for SIGPIPE. Do not print diagnostics for this case.
1483     if (CommandRes == EX_IOERR) {
1484       Res = CommandRes;
1485       continue;
1486     }
1487 #endif
1488 
1489     // Print extra information about abnormal failures, if possible.
1490     //
1491     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1492     // status was 1, assume the command failed normally. In particular, if it
1493     // was the compiler then assume it gave a reasonable error code. Failures
1494     // in other tools are less common, and they generally have worse
1495     // diagnostics, so always print the diagnostic there.
1496     const Tool &FailingTool = FailingCommand->getCreator();
1497 
1498     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1499       // FIXME: See FIXME above regarding result code interpretation.
1500       if (CommandRes < 0)
1501         Diag(clang::diag::err_drv_command_signalled)
1502             << FailingTool.getShortName();
1503       else
1504         Diag(clang::diag::err_drv_command_failed)
1505             << FailingTool.getShortName() << CommandRes;
1506     }
1507   }
1508   return Res;
1509 }
1510 
1511 void Driver::PrintHelp(bool ShowHidden) const {
1512   unsigned IncludedFlagsBitmask;
1513   unsigned ExcludedFlagsBitmask;
1514   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1515       getIncludeExcludeOptionFlagMasks(IsCLMode());
1516 
1517   ExcludedFlagsBitmask |= options::NoDriverOption;
1518   if (!ShowHidden)
1519     ExcludedFlagsBitmask |= HelpHidden;
1520 
1521   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1522   getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1523                       IncludedFlagsBitmask, ExcludedFlagsBitmask,
1524                       /*ShowAllAliases=*/false);
1525 }
1526 
1527 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1528   // FIXME: The following handlers should use a callback mechanism, we don't
1529   // know what the client would like to do.
1530   OS << getClangFullVersion() << '\n';
1531   const ToolChain &TC = C.getDefaultToolChain();
1532   OS << "Target: " << TC.getTripleString() << '\n';
1533 
1534   // Print the threading model.
1535   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1536     // Don't print if the ToolChain would have barfed on it already
1537     if (TC.isThreadModelSupported(A->getValue()))
1538       OS << "Thread model: " << A->getValue();
1539   } else
1540     OS << "Thread model: " << TC.getThreadModel();
1541   OS << '\n';
1542 
1543   // Print out the install directory.
1544   OS << "InstalledDir: " << InstalledDir << '\n';
1545 
1546   // If configuration file was used, print its path.
1547   if (!ConfigFile.empty())
1548     OS << "Configuration file: " << ConfigFile << '\n';
1549 }
1550 
1551 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1552 /// option.
1553 static void PrintDiagnosticCategories(raw_ostream &OS) {
1554   // Skip the empty category.
1555   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1556        ++i)
1557     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1558 }
1559 
1560 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1561   if (PassedFlags == "")
1562     return;
1563   // Print out all options that start with a given argument. This is used for
1564   // shell autocompletion.
1565   std::vector<std::string> SuggestedCompletions;
1566   std::vector<std::string> Flags;
1567 
1568   unsigned short DisableFlags =
1569       options::NoDriverOption | options::Unsupported | options::Ignored;
1570 
1571   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1572   // because the latter indicates that the user put space before pushing tab
1573   // which should end up in a file completion.
1574   const bool HasSpace = PassedFlags.endswith(",");
1575 
1576   // Parse PassedFlags by "," as all the command-line flags are passed to this
1577   // function separated by ","
1578   StringRef TargetFlags = PassedFlags;
1579   while (TargetFlags != "") {
1580     StringRef CurFlag;
1581     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1582     Flags.push_back(std::string(CurFlag));
1583   }
1584 
1585   // We want to show cc1-only options only when clang is invoked with -cc1 or
1586   // -Xclang.
1587   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1588     DisableFlags &= ~options::NoDriverOption;
1589 
1590   const llvm::opt::OptTable &Opts = getOpts();
1591   StringRef Cur;
1592   Cur = Flags.at(Flags.size() - 1);
1593   StringRef Prev;
1594   if (Flags.size() >= 2) {
1595     Prev = Flags.at(Flags.size() - 2);
1596     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1597   }
1598 
1599   if (SuggestedCompletions.empty())
1600     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1601 
1602   // If Flags were empty, it means the user typed `clang [tab]` where we should
1603   // list all possible flags. If there was no value completion and the user
1604   // pressed tab after a space, we should fall back to a file completion.
1605   // We're printing a newline to be consistent with what we print at the end of
1606   // this function.
1607   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1608     llvm::outs() << '\n';
1609     return;
1610   }
1611 
1612   // When flag ends with '=' and there was no value completion, return empty
1613   // string and fall back to the file autocompletion.
1614   if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1615     // If the flag is in the form of "--autocomplete=-foo",
1616     // we were requested to print out all option names that start with "-foo".
1617     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1618     SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1619 
1620     // We have to query the -W flags manually as they're not in the OptTable.
1621     // TODO: Find a good way to add them to OptTable instead and them remove
1622     // this code.
1623     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1624       if (S.startswith(Cur))
1625         SuggestedCompletions.push_back(S);
1626   }
1627 
1628   // Sort the autocomplete candidates so that shells print them out in a
1629   // deterministic order. We could sort in any way, but we chose
1630   // case-insensitive sorting for consistency with the -help option
1631   // which prints out options in the case-insensitive alphabetical order.
1632   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1633     if (int X = A.compare_lower(B))
1634       return X < 0;
1635     return A.compare(B) > 0;
1636   });
1637 
1638   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1639 }
1640 
1641 bool Driver::HandleImmediateArgs(const Compilation &C) {
1642   // The order these options are handled in gcc is all over the place, but we
1643   // don't expect inconsistencies w.r.t. that to matter in practice.
1644 
1645   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1646     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1647     return false;
1648   }
1649 
1650   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1651     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1652     // return an answer which matches our definition of __VERSION__.
1653     llvm::outs() << CLANG_VERSION_STRING << "\n";
1654     return false;
1655   }
1656 
1657   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1658     PrintDiagnosticCategories(llvm::outs());
1659     return false;
1660   }
1661 
1662   if (C.getArgs().hasArg(options::OPT_help) ||
1663       C.getArgs().hasArg(options::OPT__help_hidden)) {
1664     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1665     return false;
1666   }
1667 
1668   if (C.getArgs().hasArg(options::OPT__version)) {
1669     // Follow gcc behavior and use stdout for --version and stderr for -v.
1670     PrintVersion(C, llvm::outs());
1671     return false;
1672   }
1673 
1674   if (C.getArgs().hasArg(options::OPT_v) ||
1675       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1676       C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1677     PrintVersion(C, llvm::errs());
1678     SuppressMissingInputWarning = true;
1679   }
1680 
1681   if (C.getArgs().hasArg(options::OPT_v)) {
1682     if (!SystemConfigDir.empty())
1683       llvm::errs() << "System configuration file directory: "
1684                    << SystemConfigDir << "\n";
1685     if (!UserConfigDir.empty())
1686       llvm::errs() << "User configuration file directory: "
1687                    << UserConfigDir << "\n";
1688   }
1689 
1690   const ToolChain &TC = C.getDefaultToolChain();
1691 
1692   if (C.getArgs().hasArg(options::OPT_v))
1693     TC.printVerboseInfo(llvm::errs());
1694 
1695   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1696     llvm::outs() << ResourceDir << '\n';
1697     return false;
1698   }
1699 
1700   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1701     llvm::outs() << "programs: =";
1702     bool separator = false;
1703     for (const std::string &Path : TC.getProgramPaths()) {
1704       if (separator)
1705         llvm::outs() << llvm::sys::EnvPathSeparator;
1706       llvm::outs() << Path;
1707       separator = true;
1708     }
1709     llvm::outs() << "\n";
1710     llvm::outs() << "libraries: =" << ResourceDir;
1711 
1712     StringRef sysroot = C.getSysRoot();
1713 
1714     for (const std::string &Path : TC.getFilePaths()) {
1715       // Always print a separator. ResourceDir was the first item shown.
1716       llvm::outs() << llvm::sys::EnvPathSeparator;
1717       // Interpretation of leading '=' is needed only for NetBSD.
1718       if (Path[0] == '=')
1719         llvm::outs() << sysroot << Path.substr(1);
1720       else
1721         llvm::outs() << Path;
1722     }
1723     llvm::outs() << "\n";
1724     return false;
1725   }
1726 
1727   // FIXME: The following handlers should use a callback mechanism, we don't
1728   // know what the client would like to do.
1729   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1730     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1731     return false;
1732   }
1733 
1734   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1735     StringRef ProgName = A->getValue();
1736 
1737     // Null program name cannot have a path.
1738     if (! ProgName.empty())
1739       llvm::outs() << GetProgramPath(ProgName, TC);
1740 
1741     llvm::outs() << "\n";
1742     return false;
1743   }
1744 
1745   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1746     StringRef PassedFlags = A->getValue();
1747     HandleAutocompletions(PassedFlags);
1748     return false;
1749   }
1750 
1751   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1752     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1753     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1754     RegisterEffectiveTriple TripleRAII(TC, Triple);
1755     switch (RLT) {
1756     case ToolChain::RLT_CompilerRT:
1757       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1758       break;
1759     case ToolChain::RLT_Libgcc:
1760       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1761       break;
1762     }
1763     return false;
1764   }
1765 
1766   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1767     for (const Multilib &Multilib : TC.getMultilibs())
1768       llvm::outs() << Multilib << "\n";
1769     return false;
1770   }
1771 
1772   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1773     const Multilib &Multilib = TC.getMultilib();
1774     if (Multilib.gccSuffix().empty())
1775       llvm::outs() << ".\n";
1776     else {
1777       StringRef Suffix(Multilib.gccSuffix());
1778       assert(Suffix.front() == '/');
1779       llvm::outs() << Suffix.substr(1) << "\n";
1780     }
1781     return false;
1782   }
1783 
1784   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1785     llvm::outs() << TC.getTripleString() << "\n";
1786     return false;
1787   }
1788 
1789   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1790     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1791     llvm::outs() << Triple.getTriple() << "\n";
1792     return false;
1793   }
1794 
1795   return true;
1796 }
1797 
1798 // Display an action graph human-readably.  Action A is the "sink" node
1799 // and latest-occuring action. Traversal is in pre-order, visiting the
1800 // inputs to each action before printing the action itself.
1801 static unsigned PrintActions1(const Compilation &C, Action *A,
1802                               std::map<Action *, unsigned> &Ids) {
1803   if (Ids.count(A)) // A was already visited.
1804     return Ids[A];
1805 
1806   std::string str;
1807   llvm::raw_string_ostream os(str);
1808 
1809   os << Action::getClassName(A->getKind()) << ", ";
1810   if (InputAction *IA = dyn_cast<InputAction>(A)) {
1811     os << "\"" << IA->getInputArg().getValue() << "\"";
1812   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1813     os << '"' << BIA->getArchName() << '"' << ", {"
1814        << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1815   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1816     bool IsFirst = true;
1817     OA->doOnEachDependence(
1818         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1819           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1820           // sm_35 this will generate:
1821           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1822           // (nvptx64-nvidia-cuda:sm_35) {#ID}
1823           if (!IsFirst)
1824             os << ", ";
1825           os << '"';
1826           if (TC)
1827             os << A->getOffloadingKindPrefix();
1828           else
1829             os << "host";
1830           os << " (";
1831           os << TC->getTriple().normalize();
1832 
1833           if (BoundArch)
1834             os << ":" << BoundArch;
1835           os << ")";
1836           os << '"';
1837           os << " {" << PrintActions1(C, A, Ids) << "}";
1838           IsFirst = false;
1839         });
1840   } else {
1841     const ActionList *AL = &A->getInputs();
1842 
1843     if (AL->size()) {
1844       const char *Prefix = "{";
1845       for (Action *PreRequisite : *AL) {
1846         os << Prefix << PrintActions1(C, PreRequisite, Ids);
1847         Prefix = ", ";
1848       }
1849       os << "}";
1850     } else
1851       os << "{}";
1852   }
1853 
1854   // Append offload info for all options other than the offloading action
1855   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1856   std::string offload_str;
1857   llvm::raw_string_ostream offload_os(offload_str);
1858   if (!isa<OffloadAction>(A)) {
1859     auto S = A->getOffloadingKindPrefix();
1860     if (!S.empty()) {
1861       offload_os << ", (" << S;
1862       if (A->getOffloadingArch())
1863         offload_os << ", " << A->getOffloadingArch();
1864       offload_os << ")";
1865     }
1866   }
1867 
1868   unsigned Id = Ids.size();
1869   Ids[A] = Id;
1870   llvm::errs() << Id << ": " << os.str() << ", "
1871                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1872 
1873   return Id;
1874 }
1875 
1876 // Print the action graphs in a compilation C.
1877 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1878 void Driver::PrintActions(const Compilation &C) const {
1879   std::map<Action *, unsigned> Ids;
1880   for (Action *A : C.getActions())
1881     PrintActions1(C, A, Ids);
1882 }
1883 
1884 /// Check whether the given input tree contains any compilation or
1885 /// assembly actions.
1886 static bool ContainsCompileOrAssembleAction(const Action *A) {
1887   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1888       isa<AssembleJobAction>(A))
1889     return true;
1890 
1891   for (const Action *Input : A->inputs())
1892     if (ContainsCompileOrAssembleAction(Input))
1893       return true;
1894 
1895   return false;
1896 }
1897 
1898 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
1899                                    const InputList &BAInputs) const {
1900   DerivedArgList &Args = C.getArgs();
1901   ActionList &Actions = C.getActions();
1902   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1903   // Collect the list of architectures. Duplicates are allowed, but should only
1904   // be handled once (in the order seen).
1905   llvm::StringSet<> ArchNames;
1906   SmallVector<const char *, 4> Archs;
1907   for (Arg *A : Args) {
1908     if (A->getOption().matches(options::OPT_arch)) {
1909       // Validate the option here; we don't save the type here because its
1910       // particular spelling may participate in other driver choices.
1911       llvm::Triple::ArchType Arch =
1912           tools::darwin::getArchTypeForMachOArchName(A->getValue());
1913       if (Arch == llvm::Triple::UnknownArch) {
1914         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1915         continue;
1916       }
1917 
1918       A->claim();
1919       if (ArchNames.insert(A->getValue()).second)
1920         Archs.push_back(A->getValue());
1921     }
1922   }
1923 
1924   // When there is no explicit arch for this platform, make sure we still bind
1925   // the architecture (to the default) so that -Xarch_ is handled correctly.
1926   if (!Archs.size())
1927     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1928 
1929   ActionList SingleActions;
1930   BuildActions(C, Args, BAInputs, SingleActions);
1931 
1932   // Add in arch bindings for every top level action, as well as lipo and
1933   // dsymutil steps if needed.
1934   for (Action* Act : SingleActions) {
1935     // Make sure we can lipo this kind of output. If not (and it is an actual
1936     // output) then we disallow, since we can't create an output file with the
1937     // right name without overwriting it. We could remove this oddity by just
1938     // changing the output names to include the arch, which would also fix
1939     // -save-temps. Compatibility wins for now.
1940 
1941     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1942       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1943           << types::getTypeName(Act->getType());
1944 
1945     ActionList Inputs;
1946     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1947       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1948 
1949     // Lipo if necessary, we do it this way because we need to set the arch flag
1950     // so that -Xarch_ gets overwritten.
1951     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1952       Actions.append(Inputs.begin(), Inputs.end());
1953     else
1954       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1955 
1956     // Handle debug info queries.
1957     Arg *A = Args.getLastArg(options::OPT_g_Group);
1958     if (A && !A->getOption().matches(options::OPT_g0) &&
1959         !A->getOption().matches(options::OPT_gstabs) &&
1960         ContainsCompileOrAssembleAction(Actions.back())) {
1961 
1962       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1963       // have a compile input. We need to run 'dsymutil' ourselves in such cases
1964       // because the debug info will refer to a temporary object file which
1965       // will be removed at the end of the compilation process.
1966       if (Act->getType() == types::TY_Image) {
1967         ActionList Inputs;
1968         Inputs.push_back(Actions.back());
1969         Actions.pop_back();
1970         Actions.push_back(
1971             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1972       }
1973 
1974       // Verify the debug info output.
1975       if (Args.hasArg(options::OPT_verify_debug_info)) {
1976         Action* LastAction = Actions.back();
1977         Actions.pop_back();
1978         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1979             LastAction, types::TY_Nothing));
1980       }
1981     }
1982   }
1983 }
1984 
1985 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
1986                                     types::ID Ty, bool TypoCorrect) const {
1987   if (!getCheckInputsExist())
1988     return true;
1989 
1990   // stdin always exists.
1991   if (Value == "-")
1992     return true;
1993 
1994   SmallString<64> Path(Value);
1995   if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1996     if (!llvm::sys::path::is_absolute(Path)) {
1997       SmallString<64> Directory(WorkDir->getValue());
1998       llvm::sys::path::append(Directory, Value);
1999       Path.assign(Directory);
2000     }
2001   }
2002 
2003   if (getVFS().exists(Path))
2004     return true;
2005 
2006   if (IsCLMode()) {
2007     if (!llvm::sys::path::is_absolute(Twine(Path)) &&
2008         llvm::sys::Process::FindInEnvPath("LIB", Value))
2009       return true;
2010 
2011     if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2012       // Arguments to the /link flag might cause the linker to search for object
2013       // and library files in paths we don't know about. Don't error in such
2014       // cases.
2015       return true;
2016     }
2017   }
2018 
2019   if (TypoCorrect) {
2020     // Check if the filename is a typo for an option flag. OptTable thinks
2021     // that all args that are not known options and that start with / are
2022     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2023     // the option `/diagnostics:caret` than a reference to a file in the root
2024     // directory.
2025     unsigned IncludedFlagsBitmask;
2026     unsigned ExcludedFlagsBitmask;
2027     std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2028         getIncludeExcludeOptionFlagMasks(IsCLMode());
2029     std::string Nearest;
2030     if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2031                               ExcludedFlagsBitmask) <= 1) {
2032       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2033           << Path << Nearest;
2034       return false;
2035     }
2036   }
2037 
2038   Diag(clang::diag::err_drv_no_such_file) << Path;
2039   return false;
2040 }
2041 
2042 // Construct a the list of inputs and their types.
2043 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2044                          InputList &Inputs) const {
2045   const llvm::opt::OptTable &Opts = getOpts();
2046   // Track the current user specified (-x) input. We also explicitly track the
2047   // argument used to set the type; we only want to claim the type when we
2048   // actually use it, so we warn about unused -x arguments.
2049   types::ID InputType = types::TY_Nothing;
2050   Arg *InputTypeArg = nullptr;
2051 
2052   // The last /TC or /TP option sets the input type to C or C++ globally.
2053   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2054                                          options::OPT__SLASH_TP)) {
2055     InputTypeArg = TCTP;
2056     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2057                     ? types::TY_C
2058                     : types::TY_CXX;
2059 
2060     Arg *Previous = nullptr;
2061     bool ShowNote = false;
2062     for (Arg *A :
2063          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2064       if (Previous) {
2065         Diag(clang::diag::warn_drv_overriding_flag_option)
2066           << Previous->getSpelling() << A->getSpelling();
2067         ShowNote = true;
2068       }
2069       Previous = A;
2070     }
2071     if (ShowNote)
2072       Diag(clang::diag::note_drv_t_option_is_global);
2073 
2074     // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2075     assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2076   }
2077 
2078   for (Arg *A : Args) {
2079     if (A->getOption().getKind() == Option::InputClass) {
2080       const char *Value = A->getValue();
2081       types::ID Ty = types::TY_INVALID;
2082 
2083       // Infer the input type if necessary.
2084       if (InputType == types::TY_Nothing) {
2085         // If there was an explicit arg for this, claim it.
2086         if (InputTypeArg)
2087           InputTypeArg->claim();
2088 
2089         // stdin must be handled specially.
2090         if (memcmp(Value, "-", 2) == 0) {
2091           // If running with -E, treat as a C input (this changes the builtin
2092           // macros, for example). This may be overridden by -ObjC below.
2093           //
2094           // Otherwise emit an error but still use a valid type to avoid
2095           // spurious errors (e.g., no inputs).
2096           if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2097             Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2098                             : clang::diag::err_drv_unknown_stdin_type);
2099           Ty = types::TY_C;
2100         } else {
2101           // Otherwise lookup by extension.
2102           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2103           // clang-cl /E, or Object otherwise.
2104           // We use a host hook here because Darwin at least has its own
2105           // idea of what .s is.
2106           if (const char *Ext = strrchr(Value, '.'))
2107             Ty = TC.LookupTypeForExtension(Ext + 1);
2108 
2109           if (Ty == types::TY_INVALID) {
2110             if (CCCIsCPP())
2111               Ty = types::TY_C;
2112             else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2113               Ty = types::TY_CXX;
2114             else
2115               Ty = types::TY_Object;
2116           }
2117 
2118           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2119           // should autodetect some input files as C++ for g++ compatibility.
2120           if (CCCIsCXX()) {
2121             types::ID OldTy = Ty;
2122             Ty = types::lookupCXXTypeForCType(Ty);
2123 
2124             if (Ty != OldTy)
2125               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2126                   << getTypeName(OldTy) << getTypeName(Ty);
2127           }
2128 
2129           // If running with -fthinlto-index=, extensions that normally identify
2130           // native object files actually identify LLVM bitcode files.
2131           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2132               Ty == types::TY_Object)
2133             Ty = types::TY_LLVM_BC;
2134         }
2135 
2136         // -ObjC and -ObjC++ override the default language, but only for "source
2137         // files". We just treat everything that isn't a linker input as a
2138         // source file.
2139         //
2140         // FIXME: Clean this up if we move the phase sequence into the type.
2141         if (Ty != types::TY_Object) {
2142           if (Args.hasArg(options::OPT_ObjC))
2143             Ty = types::TY_ObjC;
2144           else if (Args.hasArg(options::OPT_ObjCXX))
2145             Ty = types::TY_ObjCXX;
2146         }
2147       } else {
2148         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2149         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2150           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2151           // object files.
2152           const char *Ext = strrchr(Value, '.');
2153           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2154             Ty = types::TY_Object;
2155         }
2156         if (Ty == types::TY_INVALID) {
2157           Ty = InputType;
2158           InputTypeArg->claim();
2159         }
2160       }
2161 
2162       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2163         Inputs.push_back(std::make_pair(Ty, A));
2164 
2165     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2166       StringRef Value = A->getValue();
2167       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2168                                  /*TypoCorrect=*/false)) {
2169         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2170         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2171       }
2172       A->claim();
2173     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2174       StringRef Value = A->getValue();
2175       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2176                                  /*TypoCorrect=*/false)) {
2177         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2178         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2179       }
2180       A->claim();
2181     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2182       // Just treat as object type, we could make a special type for this if
2183       // necessary.
2184       Inputs.push_back(std::make_pair(types::TY_Object, A));
2185 
2186     } else if (A->getOption().matches(options::OPT_x)) {
2187       InputTypeArg = A;
2188       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2189       A->claim();
2190 
2191       // Follow gcc behavior and treat as linker input for invalid -x
2192       // options. Its not clear why we shouldn't just revert to unknown; but
2193       // this isn't very important, we might as well be bug compatible.
2194       if (!InputType) {
2195         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2196         InputType = types::TY_Object;
2197       }
2198     } else if (A->getOption().getID() == options::OPT_U) {
2199       assert(A->getNumValues() == 1 && "The /U option has one value.");
2200       StringRef Val = A->getValue(0);
2201       if (Val.find_first_of("/\\") != StringRef::npos) {
2202         // Warn about e.g. "/Users/me/myfile.c".
2203         Diag(diag::warn_slash_u_filename) << Val;
2204         Diag(diag::note_use_dashdash);
2205       }
2206     }
2207   }
2208   if (CCCIsCPP() && Inputs.empty()) {
2209     // If called as standalone preprocessor, stdin is processed
2210     // if no other input is present.
2211     Arg *A = MakeInputArg(Args, Opts, "-");
2212     Inputs.push_back(std::make_pair(types::TY_C, A));
2213   }
2214 }
2215 
2216 namespace {
2217 /// Provides a convenient interface for different programming models to generate
2218 /// the required device actions.
2219 class OffloadingActionBuilder final {
2220   /// Flag used to trace errors in the builder.
2221   bool IsValid = false;
2222 
2223   /// The compilation that is using this builder.
2224   Compilation &C;
2225 
2226   /// Map between an input argument and the offload kinds used to process it.
2227   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2228 
2229   /// Builder interface. It doesn't build anything or keep any state.
2230   class DeviceActionBuilder {
2231   public:
2232     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2233 
2234     enum ActionBuilderReturnCode {
2235       // The builder acted successfully on the current action.
2236       ABRT_Success,
2237       // The builder didn't have to act on the current action.
2238       ABRT_Inactive,
2239       // The builder was successful and requested the host action to not be
2240       // generated.
2241       ABRT_Ignore_Host,
2242     };
2243 
2244   protected:
2245     /// Compilation associated with this builder.
2246     Compilation &C;
2247 
2248     /// Tool chains associated with this builder. The same programming
2249     /// model may have associated one or more tool chains.
2250     SmallVector<const ToolChain *, 2> ToolChains;
2251 
2252     /// The derived arguments associated with this builder.
2253     DerivedArgList &Args;
2254 
2255     /// The inputs associated with this builder.
2256     const Driver::InputList &Inputs;
2257 
2258     /// The associated offload kind.
2259     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2260 
2261   public:
2262     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2263                         const Driver::InputList &Inputs,
2264                         Action::OffloadKind AssociatedOffloadKind)
2265         : C(C), Args(Args), Inputs(Inputs),
2266           AssociatedOffloadKind(AssociatedOffloadKind) {}
2267     virtual ~DeviceActionBuilder() {}
2268 
2269     /// Fill up the array \a DA with all the device dependences that should be
2270     /// added to the provided host action \a HostAction. By default it is
2271     /// inactive.
2272     virtual ActionBuilderReturnCode
2273     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2274                          phases::ID CurPhase, phases::ID FinalPhase,
2275                          PhasesTy &Phases) {
2276       return ABRT_Inactive;
2277     }
2278 
2279     /// Update the state to include the provided host action \a HostAction as a
2280     /// dependency of the current device action. By default it is inactive.
2281     virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2282       return ABRT_Inactive;
2283     }
2284 
2285     /// Append top level actions generated by the builder. Return true if errors
2286     /// were found.
2287     virtual void appendTopLevelActions(ActionList &AL) {}
2288 
2289     /// Append linker actions generated by the builder. Return true if errors
2290     /// were found.
2291     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2292 
2293     /// Initialize the builder. Return true if any initialization errors are
2294     /// found.
2295     virtual bool initialize() { return false; }
2296 
2297     /// Return true if the builder can use bundling/unbundling.
2298     virtual bool canUseBundlerUnbundler() const { return false; }
2299 
2300     /// Return true if this builder is valid. We have a valid builder if we have
2301     /// associated device tool chains.
2302     bool isValid() { return !ToolChains.empty(); }
2303 
2304     /// Return the associated offload kind.
2305     Action::OffloadKind getAssociatedOffloadKind() {
2306       return AssociatedOffloadKind;
2307     }
2308   };
2309 
2310   /// Base class for CUDA/HIP action builder. It injects device code in
2311   /// the host backend action.
2312   class CudaActionBuilderBase : public DeviceActionBuilder {
2313   protected:
2314     /// Flags to signal if the user requested host-only or device-only
2315     /// compilation.
2316     bool CompileHostOnly = false;
2317     bool CompileDeviceOnly = false;
2318 
2319     /// List of GPU architectures to use in this compilation.
2320     SmallVector<CudaArch, 4> GpuArchList;
2321 
2322     /// The CUDA actions for the current input.
2323     ActionList CudaDeviceActions;
2324 
2325     /// The CUDA fat binary if it was generated for the current input.
2326     Action *CudaFatBinary = nullptr;
2327 
2328     /// Flag that is set to true if this builder acted on the current input.
2329     bool IsActive = false;
2330 
2331     /// Flag for -fgpu-rdc.
2332     bool Relocatable = false;
2333   public:
2334     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2335                           const Driver::InputList &Inputs,
2336                           Action::OffloadKind OFKind)
2337         : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2338 
2339     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2340       // While generating code for CUDA, we only depend on the host input action
2341       // to trigger the creation of all the CUDA device actions.
2342 
2343       // If we are dealing with an input action, replicate it for each GPU
2344       // architecture. If we are in host-only mode we return 'success' so that
2345       // the host uses the CUDA offload kind.
2346       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2347         assert(!GpuArchList.empty() &&
2348                "We should have at least one GPU architecture.");
2349 
2350         // If the host input is not CUDA or HIP, we don't need to bother about
2351         // this input.
2352         if (IA->getType() != types::TY_CUDA &&
2353             IA->getType() != types::TY_HIP) {
2354           // The builder will ignore this input.
2355           IsActive = false;
2356           return ABRT_Inactive;
2357         }
2358 
2359         // Set the flag to true, so that the builder acts on the current input.
2360         IsActive = true;
2361 
2362         if (CompileHostOnly)
2363           return ABRT_Success;
2364 
2365         // Replicate inputs for each GPU architecture.
2366         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2367                                                  : types::TY_CUDA_DEVICE;
2368         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2369           CudaDeviceActions.push_back(
2370               C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2371         }
2372 
2373         return ABRT_Success;
2374       }
2375 
2376       // If this is an unbundling action use it as is for each CUDA toolchain.
2377       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2378 
2379         // If -fgpu-rdc is disabled, should not unbundle since there is no
2380         // device code to link.
2381         if (!Relocatable)
2382           return ABRT_Inactive;
2383 
2384         CudaDeviceActions.clear();
2385         auto *IA = cast<InputAction>(UA->getInputs().back());
2386         std::string FileName = IA->getInputArg().getAsString(Args);
2387         // Check if the type of the file is the same as the action. Do not
2388         // unbundle it if it is not. Do not unbundle .so files, for example,
2389         // which are not object files.
2390         if (IA->getType() == types::TY_Object &&
2391             (!llvm::sys::path::has_extension(FileName) ||
2392              types::lookupTypeForExtension(
2393                  llvm::sys::path::extension(FileName).drop_front()) !=
2394                  types::TY_Object))
2395           return ABRT_Inactive;
2396 
2397         for (auto Arch : GpuArchList) {
2398           CudaDeviceActions.push_back(UA);
2399           UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2400                                           AssociatedOffloadKind);
2401         }
2402         return ABRT_Success;
2403       }
2404 
2405       return IsActive ? ABRT_Success : ABRT_Inactive;
2406     }
2407 
2408     void appendTopLevelActions(ActionList &AL) override {
2409       // Utility to append actions to the top level list.
2410       auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2411         OffloadAction::DeviceDependences Dep;
2412         Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2413                 AssociatedOffloadKind);
2414         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2415       };
2416 
2417       // If we have a fat binary, add it to the list.
2418       if (CudaFatBinary) {
2419         AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2420         CudaDeviceActions.clear();
2421         CudaFatBinary = nullptr;
2422         return;
2423       }
2424 
2425       if (CudaDeviceActions.empty())
2426         return;
2427 
2428       // If we have CUDA actions at this point, that's because we have a have
2429       // partial compilation, so we should have an action for each GPU
2430       // architecture.
2431       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2432              "Expecting one action per GPU architecture.");
2433       assert(ToolChains.size() == 1 &&
2434              "Expecting to have a sing CUDA toolchain.");
2435       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2436         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2437 
2438       CudaDeviceActions.clear();
2439     }
2440 
2441     bool initialize() override {
2442       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2443              AssociatedOffloadKind == Action::OFK_HIP);
2444 
2445       // We don't need to support CUDA.
2446       if (AssociatedOffloadKind == Action::OFK_Cuda &&
2447           !C.hasOffloadToolChain<Action::OFK_Cuda>())
2448         return false;
2449 
2450       // We don't need to support HIP.
2451       if (AssociatedOffloadKind == Action::OFK_HIP &&
2452           !C.hasOffloadToolChain<Action::OFK_HIP>())
2453         return false;
2454 
2455       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2456           options::OPT_fno_gpu_rdc, /*Default=*/false);
2457 
2458       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2459       assert(HostTC && "No toolchain for host compilation.");
2460       if (HostTC->getTriple().isNVPTX() ||
2461           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2462         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2463         // an error and abort pipeline construction early so we don't trip
2464         // asserts that assume device-side compilation.
2465         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2466             << HostTC->getTriple().getArchName();
2467         return true;
2468       }
2469 
2470       ToolChains.push_back(
2471           AssociatedOffloadKind == Action::OFK_Cuda
2472               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2473               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2474 
2475       Arg *PartialCompilationArg = Args.getLastArg(
2476           options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2477           options::OPT_cuda_compile_host_device);
2478       CompileHostOnly = PartialCompilationArg &&
2479                         PartialCompilationArg->getOption().matches(
2480                             options::OPT_cuda_host_only);
2481       CompileDeviceOnly = PartialCompilationArg &&
2482                           PartialCompilationArg->getOption().matches(
2483                               options::OPT_cuda_device_only);
2484 
2485       // Collect all cuda_gpu_arch parameters, removing duplicates.
2486       std::set<CudaArch> GpuArchs;
2487       bool Error = false;
2488       for (Arg *A : Args) {
2489         if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2490               A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2491           continue;
2492         A->claim();
2493 
2494         const StringRef ArchStr = A->getValue();
2495         if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2496             ArchStr == "all") {
2497           GpuArchs.clear();
2498           continue;
2499         }
2500         CudaArch Arch = StringToCudaArch(ArchStr);
2501         if (Arch == CudaArch::UNKNOWN) {
2502           C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2503           Error = true;
2504         } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2505           GpuArchs.insert(Arch);
2506         else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2507           GpuArchs.erase(Arch);
2508         else
2509           llvm_unreachable("Unexpected option.");
2510       }
2511 
2512       // Collect list of GPUs remaining in the set.
2513       for (CudaArch Arch : GpuArchs)
2514         GpuArchList.push_back(Arch);
2515 
2516       // Default to sm_20 which is the lowest common denominator for
2517       // supported GPUs.  sm_20 code should work correctly, if
2518       // suboptimally, on all newer GPUs.
2519       if (GpuArchList.empty())
2520         GpuArchList.push_back(CudaArch::SM_20);
2521 
2522       return Error;
2523     }
2524   };
2525 
2526   /// \brief CUDA action builder. It injects device code in the host backend
2527   /// action.
2528   class CudaActionBuilder final : public CudaActionBuilderBase {
2529   public:
2530     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2531                       const Driver::InputList &Inputs)
2532         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2533 
2534     ActionBuilderReturnCode
2535     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2536                          phases::ID CurPhase, phases::ID FinalPhase,
2537                          PhasesTy &Phases) override {
2538       if (!IsActive)
2539         return ABRT_Inactive;
2540 
2541       // If we don't have more CUDA actions, we don't have any dependences to
2542       // create for the host.
2543       if (CudaDeviceActions.empty())
2544         return ABRT_Success;
2545 
2546       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2547              "Expecting one action per GPU architecture.");
2548       assert(!CompileHostOnly &&
2549              "Not expecting CUDA actions in host-only compilation.");
2550 
2551       // If we are generating code for the device or we are in a backend phase,
2552       // we attempt to generate the fat binary. We compile each arch to ptx and
2553       // assemble to cubin, then feed the cubin *and* the ptx into a device
2554       // "link" action, which uses fatbinary to combine these cubins into one
2555       // fatbin.  The fatbin is then an input to the host action if not in
2556       // device-only mode.
2557       if (CompileDeviceOnly || CurPhase == phases::Backend) {
2558         ActionList DeviceActions;
2559         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2560           // Produce the device action from the current phase up to the assemble
2561           // phase.
2562           for (auto Ph : Phases) {
2563             // Skip the phases that were already dealt with.
2564             if (Ph < CurPhase)
2565               continue;
2566             // We have to be consistent with the host final phase.
2567             if (Ph > FinalPhase)
2568               break;
2569 
2570             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2571                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2572 
2573             if (Ph == phases::Assemble)
2574               break;
2575           }
2576 
2577           // If we didn't reach the assemble phase, we can't generate the fat
2578           // binary. We don't need to generate the fat binary if we are not in
2579           // device-only mode.
2580           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2581               CompileDeviceOnly)
2582             continue;
2583 
2584           Action *AssembleAction = CudaDeviceActions[I];
2585           assert(AssembleAction->getType() == types::TY_Object);
2586           assert(AssembleAction->getInputs().size() == 1);
2587 
2588           Action *BackendAction = AssembleAction->getInputs()[0];
2589           assert(BackendAction->getType() == types::TY_PP_Asm);
2590 
2591           for (auto &A : {AssembleAction, BackendAction}) {
2592             OffloadAction::DeviceDependences DDep;
2593             DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2594                      Action::OFK_Cuda);
2595             DeviceActions.push_back(
2596                 C.MakeAction<OffloadAction>(DDep, A->getType()));
2597           }
2598         }
2599 
2600         // We generate the fat binary if we have device input actions.
2601         if (!DeviceActions.empty()) {
2602           CudaFatBinary =
2603               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2604 
2605           if (!CompileDeviceOnly) {
2606             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2607                    Action::OFK_Cuda);
2608             // Clear the fat binary, it is already a dependence to an host
2609             // action.
2610             CudaFatBinary = nullptr;
2611           }
2612 
2613           // Remove the CUDA actions as they are already connected to an host
2614           // action or fat binary.
2615           CudaDeviceActions.clear();
2616         }
2617 
2618         // We avoid creating host action in device-only mode.
2619         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2620       } else if (CurPhase > phases::Backend) {
2621         // If we are past the backend phase and still have a device action, we
2622         // don't have to do anything as this action is already a device
2623         // top-level action.
2624         return ABRT_Success;
2625       }
2626 
2627       assert(CurPhase < phases::Backend && "Generating single CUDA "
2628                                            "instructions should only occur "
2629                                            "before the backend phase!");
2630 
2631       // By default, we produce an action for each device arch.
2632       for (Action *&A : CudaDeviceActions)
2633         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2634 
2635       return ABRT_Success;
2636     }
2637   };
2638   /// \brief HIP action builder. It injects device code in the host backend
2639   /// action.
2640   class HIPActionBuilder final : public CudaActionBuilderBase {
2641     /// The linker inputs obtained for each device arch.
2642     SmallVector<ActionList, 8> DeviceLinkerInputs;
2643 
2644   public:
2645     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2646                      const Driver::InputList &Inputs)
2647         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2648 
2649     bool canUseBundlerUnbundler() const override { return true; }
2650 
2651     ActionBuilderReturnCode
2652     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2653                          phases::ID CurPhase, phases::ID FinalPhase,
2654                          PhasesTy &Phases) override {
2655       // amdgcn does not support linking of object files, therefore we skip
2656       // backend and assemble phases to output LLVM IR. Except for generating
2657       // non-relocatable device coee, where we generate fat binary for device
2658       // code and pass to host in Backend phase.
2659       if (CudaDeviceActions.empty() ||
2660           (CurPhase == phases::Backend && Relocatable) ||
2661           CurPhase == phases::Assemble)
2662         return ABRT_Success;
2663 
2664       assert(((CurPhase == phases::Link && Relocatable) ||
2665               CudaDeviceActions.size() == GpuArchList.size()) &&
2666              "Expecting one action per GPU architecture.");
2667       assert(!CompileHostOnly &&
2668              "Not expecting CUDA actions in host-only compilation.");
2669 
2670       if (!Relocatable && CurPhase == phases::Backend) {
2671         // If we are in backend phase, we attempt to generate the fat binary.
2672         // We compile each arch to IR and use a link action to generate code
2673         // object containing ISA. Then we use a special "link" action to create
2674         // a fat binary containing all the code objects for different GPU's.
2675         // The fat binary is then an input to the host action.
2676         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2677           // Create a link action to link device IR with device library
2678           // and generate ISA.
2679           ActionList AL;
2680           AL.push_back(CudaDeviceActions[I]);
2681           CudaDeviceActions[I] =
2682               C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2683 
2684           // OffloadingActionBuilder propagates device arch until an offload
2685           // action. Since the next action for creating fatbin does
2686           // not have device arch, whereas the above link action and its input
2687           // have device arch, an offload action is needed to stop the null
2688           // device arch of the next action being propagated to the above link
2689           // action.
2690           OffloadAction::DeviceDependences DDep;
2691           DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2692                    CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2693           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2694               DDep, CudaDeviceActions[I]->getType());
2695         }
2696         // Create HIP fat binary with a special "link" action.
2697         CudaFatBinary =
2698             C.MakeAction<LinkJobAction>(CudaDeviceActions,
2699                 types::TY_HIP_FATBIN);
2700 
2701         if (!CompileDeviceOnly) {
2702           DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2703                  AssociatedOffloadKind);
2704           // Clear the fat binary, it is already a dependence to an host
2705           // action.
2706           CudaFatBinary = nullptr;
2707         }
2708 
2709         // Remove the CUDA actions as they are already connected to an host
2710         // action or fat binary.
2711         CudaDeviceActions.clear();
2712 
2713         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2714       } else if (CurPhase == phases::Link) {
2715         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2716         // This happens to each device action originated from each input file.
2717         // Later on, device actions in DeviceLinkerInputs are used to create
2718         // device link actions in appendLinkDependences and the created device
2719         // link actions are passed to the offload action as device dependence.
2720         DeviceLinkerInputs.resize(CudaDeviceActions.size());
2721         auto LI = DeviceLinkerInputs.begin();
2722         for (auto *A : CudaDeviceActions) {
2723           LI->push_back(A);
2724           ++LI;
2725         }
2726 
2727         // We will pass the device action as a host dependence, so we don't
2728         // need to do anything else with them.
2729         CudaDeviceActions.clear();
2730         return ABRT_Success;
2731       }
2732 
2733       // By default, we produce an action for each device arch.
2734       for (Action *&A : CudaDeviceActions)
2735         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2736                                                AssociatedOffloadKind);
2737 
2738       return ABRT_Success;
2739     }
2740 
2741     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2742       // Append a new link action for each device.
2743       unsigned I = 0;
2744       for (auto &LI : DeviceLinkerInputs) {
2745         auto *DeviceLinkAction =
2746             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2747         DA.add(*DeviceLinkAction, *ToolChains[0],
2748                CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2749         ++I;
2750       }
2751     }
2752   };
2753 
2754   /// OpenMP action builder. The host bitcode is passed to the device frontend
2755   /// and all the device linked images are passed to the host link phase.
2756   class OpenMPActionBuilder final : public DeviceActionBuilder {
2757     /// The OpenMP actions for the current input.
2758     ActionList OpenMPDeviceActions;
2759 
2760     /// The linker inputs obtained for each toolchain.
2761     SmallVector<ActionList, 8> DeviceLinkerInputs;
2762 
2763   public:
2764     OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2765                         const Driver::InputList &Inputs)
2766         : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2767 
2768     ActionBuilderReturnCode
2769     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2770                          phases::ID CurPhase, phases::ID FinalPhase,
2771                          PhasesTy &Phases) override {
2772       if (OpenMPDeviceActions.empty())
2773         return ABRT_Inactive;
2774 
2775       // We should always have an action for each input.
2776       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2777              "Number of OpenMP actions and toolchains do not match.");
2778 
2779       // The host only depends on device action in the linking phase, when all
2780       // the device images have to be embedded in the host image.
2781       if (CurPhase == phases::Link) {
2782         assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2783                "Toolchains and linker inputs sizes do not match.");
2784         auto LI = DeviceLinkerInputs.begin();
2785         for (auto *A : OpenMPDeviceActions) {
2786           LI->push_back(A);
2787           ++LI;
2788         }
2789 
2790         // We passed the device action as a host dependence, so we don't need to
2791         // do anything else with them.
2792         OpenMPDeviceActions.clear();
2793         return ABRT_Success;
2794       }
2795 
2796       // By default, we produce an action for each device arch.
2797       for (Action *&A : OpenMPDeviceActions)
2798         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2799 
2800       return ABRT_Success;
2801     }
2802 
2803     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2804 
2805       // If this is an input action replicate it for each OpenMP toolchain.
2806       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2807         OpenMPDeviceActions.clear();
2808         for (unsigned I = 0; I < ToolChains.size(); ++I)
2809           OpenMPDeviceActions.push_back(
2810               C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2811         return ABRT_Success;
2812       }
2813 
2814       // If this is an unbundling action use it as is for each OpenMP toolchain.
2815       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2816         OpenMPDeviceActions.clear();
2817         auto *IA = cast<InputAction>(UA->getInputs().back());
2818         std::string FileName = IA->getInputArg().getAsString(Args);
2819         // Check if the type of the file is the same as the action. Do not
2820         // unbundle it if it is not. Do not unbundle .so files, for example,
2821         // which are not object files.
2822         if (IA->getType() == types::TY_Object &&
2823             (!llvm::sys::path::has_extension(FileName) ||
2824              types::lookupTypeForExtension(
2825                  llvm::sys::path::extension(FileName).drop_front()) !=
2826                  types::TY_Object))
2827           return ABRT_Inactive;
2828         for (unsigned I = 0; I < ToolChains.size(); ++I) {
2829           OpenMPDeviceActions.push_back(UA);
2830           UA->registerDependentActionInfo(
2831               ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2832         }
2833         return ABRT_Success;
2834       }
2835 
2836       // When generating code for OpenMP we use the host compile phase result as
2837       // a dependence to the device compile phase so that it can learn what
2838       // declarations should be emitted. However, this is not the only use for
2839       // the host action, so we prevent it from being collapsed.
2840       if (isa<CompileJobAction>(HostAction)) {
2841         HostAction->setCannotBeCollapsedWithNextDependentAction();
2842         assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2843                "Toolchains and device action sizes do not match.");
2844         OffloadAction::HostDependence HDep(
2845             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2846             /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2847         auto TC = ToolChains.begin();
2848         for (Action *&A : OpenMPDeviceActions) {
2849           assert(isa<CompileJobAction>(A));
2850           OffloadAction::DeviceDependences DDep;
2851           DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2852           A = C.MakeAction<OffloadAction>(HDep, DDep);
2853           ++TC;
2854         }
2855       }
2856       return ABRT_Success;
2857     }
2858 
2859     void appendTopLevelActions(ActionList &AL) override {
2860       if (OpenMPDeviceActions.empty())
2861         return;
2862 
2863       // We should always have an action for each input.
2864       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2865              "Number of OpenMP actions and toolchains do not match.");
2866 
2867       // Append all device actions followed by the proper offload action.
2868       auto TI = ToolChains.begin();
2869       for (auto *A : OpenMPDeviceActions) {
2870         OffloadAction::DeviceDependences Dep;
2871         Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2872         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2873         ++TI;
2874       }
2875       // We no longer need the action stored in this builder.
2876       OpenMPDeviceActions.clear();
2877     }
2878 
2879     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2880       assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2881              "Toolchains and linker inputs sizes do not match.");
2882 
2883       // Append a new link action for each device.
2884       auto TC = ToolChains.begin();
2885       for (auto &LI : DeviceLinkerInputs) {
2886         auto *DeviceLinkAction =
2887             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2888         DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2889                Action::OFK_OpenMP);
2890         ++TC;
2891       }
2892     }
2893 
2894     bool initialize() override {
2895       // Get the OpenMP toolchains. If we don't get any, the action builder will
2896       // know there is nothing to do related to OpenMP offloading.
2897       auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2898       for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2899            ++TI)
2900         ToolChains.push_back(TI->second);
2901 
2902       DeviceLinkerInputs.resize(ToolChains.size());
2903       return false;
2904     }
2905 
2906     bool canUseBundlerUnbundler() const override {
2907       // OpenMP should use bundled files whenever possible.
2908       return true;
2909     }
2910   };
2911 
2912   ///
2913   /// TODO: Add the implementation for other specialized builders here.
2914   ///
2915 
2916   /// Specialized builders being used by this offloading action builder.
2917   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2918 
2919   /// Flag set to true if all valid builders allow file bundling/unbundling.
2920   bool CanUseBundler;
2921 
2922 public:
2923   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2924                           const Driver::InputList &Inputs)
2925       : C(C) {
2926     // Create a specialized builder for each device toolchain.
2927 
2928     IsValid = true;
2929 
2930     // Create a specialized builder for CUDA.
2931     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2932 
2933     // Create a specialized builder for HIP.
2934     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2935 
2936     // Create a specialized builder for OpenMP.
2937     SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2938 
2939     //
2940     // TODO: Build other specialized builders here.
2941     //
2942 
2943     // Initialize all the builders, keeping track of errors. If all valid
2944     // builders agree that we can use bundling, set the flag to true.
2945     unsigned ValidBuilders = 0u;
2946     unsigned ValidBuildersSupportingBundling = 0u;
2947     for (auto *SB : SpecializedBuilders) {
2948       IsValid = IsValid && !SB->initialize();
2949 
2950       // Update the counters if the builder is valid.
2951       if (SB->isValid()) {
2952         ++ValidBuilders;
2953         if (SB->canUseBundlerUnbundler())
2954           ++ValidBuildersSupportingBundling;
2955       }
2956     }
2957     CanUseBundler =
2958         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2959   }
2960 
2961   ~OffloadingActionBuilder() {
2962     for (auto *SB : SpecializedBuilders)
2963       delete SB;
2964   }
2965 
2966   /// Generate an action that adds device dependences (if any) to a host action.
2967   /// If no device dependence actions exist, just return the host action \a
2968   /// HostAction. If an error is found or if no builder requires the host action
2969   /// to be generated, return nullptr.
2970   Action *
2971   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2972                                    phases::ID CurPhase, phases::ID FinalPhase,
2973                                    DeviceActionBuilder::PhasesTy &Phases) {
2974     if (!IsValid)
2975       return nullptr;
2976 
2977     if (SpecializedBuilders.empty())
2978       return HostAction;
2979 
2980     assert(HostAction && "Invalid host action!");
2981 
2982     OffloadAction::DeviceDependences DDeps;
2983     // Check if all the programming models agree we should not emit the host
2984     // action. Also, keep track of the offloading kinds employed.
2985     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2986     unsigned InactiveBuilders = 0u;
2987     unsigned IgnoringBuilders = 0u;
2988     for (auto *SB : SpecializedBuilders) {
2989       if (!SB->isValid()) {
2990         ++InactiveBuilders;
2991         continue;
2992       }
2993 
2994       auto RetCode =
2995           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2996 
2997       // If the builder explicitly says the host action should be ignored,
2998       // we need to increment the variable that tracks the builders that request
2999       // the host object to be ignored.
3000       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3001         ++IgnoringBuilders;
3002 
3003       // Unless the builder was inactive for this action, we have to record the
3004       // offload kind because the host will have to use it.
3005       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3006         OffloadKind |= SB->getAssociatedOffloadKind();
3007     }
3008 
3009     // If all builders agree that the host object should be ignored, just return
3010     // nullptr.
3011     if (IgnoringBuilders &&
3012         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3013       return nullptr;
3014 
3015     if (DDeps.getActions().empty())
3016       return HostAction;
3017 
3018     // We have dependences we need to bundle together. We use an offload action
3019     // for that.
3020     OffloadAction::HostDependence HDep(
3021         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3022         /*BoundArch=*/nullptr, DDeps);
3023     return C.MakeAction<OffloadAction>(HDep, DDeps);
3024   }
3025 
3026   /// Generate an action that adds a host dependence to a device action. The
3027   /// results will be kept in this action builder. Return true if an error was
3028   /// found.
3029   bool addHostDependenceToDeviceActions(Action *&HostAction,
3030                                         const Arg *InputArg) {
3031     if (!IsValid)
3032       return true;
3033 
3034     // If we are supporting bundling/unbundling and the current action is an
3035     // input action of non-source file, we replace the host action by the
3036     // unbundling action. The bundler tool has the logic to detect if an input
3037     // is a bundle or not and if the input is not a bundle it assumes it is a
3038     // host file. Therefore it is safe to create an unbundling action even if
3039     // the input is not a bundle.
3040     if (CanUseBundler && isa<InputAction>(HostAction) &&
3041         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3042         !types::isSrcFile(HostAction->getType())) {
3043       auto UnbundlingHostAction =
3044           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3045       UnbundlingHostAction->registerDependentActionInfo(
3046           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3047           /*BoundArch=*/StringRef(), Action::OFK_Host);
3048       HostAction = UnbundlingHostAction;
3049     }
3050 
3051     assert(HostAction && "Invalid host action!");
3052 
3053     // Register the offload kinds that are used.
3054     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3055     for (auto *SB : SpecializedBuilders) {
3056       if (!SB->isValid())
3057         continue;
3058 
3059       auto RetCode = SB->addDeviceDepences(HostAction);
3060 
3061       // Host dependences for device actions are not compatible with that same
3062       // action being ignored.
3063       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3064              "Host dependence not expected to be ignored.!");
3065 
3066       // Unless the builder was inactive for this action, we have to record the
3067       // offload kind because the host will have to use it.
3068       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3069         OffloadKind |= SB->getAssociatedOffloadKind();
3070     }
3071 
3072     // Do not use unbundler if the Host does not depend on device action.
3073     if (OffloadKind == Action::OFK_None && CanUseBundler)
3074       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3075         HostAction = UA->getInputs().back();
3076 
3077     return false;
3078   }
3079 
3080   /// Add the offloading top level actions to the provided action list. This
3081   /// function can replace the host action by a bundling action if the
3082   /// programming models allow it.
3083   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3084                              const Arg *InputArg) {
3085     // Get the device actions to be appended.
3086     ActionList OffloadAL;
3087     for (auto *SB : SpecializedBuilders) {
3088       if (!SB->isValid())
3089         continue;
3090       SB->appendTopLevelActions(OffloadAL);
3091     }
3092 
3093     // If we can use the bundler, replace the host action by the bundling one in
3094     // the resulting list. Otherwise, just append the device actions. For
3095     // device only compilation, HostAction is a null pointer, therefore only do
3096     // this when HostAction is not a null pointer.
3097     if (CanUseBundler && HostAction && !OffloadAL.empty()) {
3098       // Add the host action to the list in order to create the bundling action.
3099       OffloadAL.push_back(HostAction);
3100 
3101       // We expect that the host action was just appended to the action list
3102       // before this method was called.
3103       assert(HostAction == AL.back() && "Host action not in the list??");
3104       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3105       AL.back() = HostAction;
3106     } else
3107       AL.append(OffloadAL.begin(), OffloadAL.end());
3108 
3109     // Propagate to the current host action (if any) the offload information
3110     // associated with the current input.
3111     if (HostAction)
3112       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3113                                            /*BoundArch=*/nullptr);
3114     return false;
3115   }
3116 
3117   /// Processes the host linker action. This currently consists of replacing it
3118   /// with an offload action if there are device link objects and propagate to
3119   /// the host action all the offload kinds used in the current compilation. The
3120   /// resulting action is returned.
3121   Action *processHostLinkAction(Action *HostAction) {
3122     // Add all the dependences from the device linking actions.
3123     OffloadAction::DeviceDependences DDeps;
3124     for (auto *SB : SpecializedBuilders) {
3125       if (!SB->isValid())
3126         continue;
3127 
3128       SB->appendLinkDependences(DDeps);
3129     }
3130 
3131     // Calculate all the offload kinds used in the current compilation.
3132     unsigned ActiveOffloadKinds = 0u;
3133     for (auto &I : InputArgToOffloadKindMap)
3134       ActiveOffloadKinds |= I.second;
3135 
3136     // If we don't have device dependencies, we don't have to create an offload
3137     // action.
3138     if (DDeps.getActions().empty()) {
3139       // Propagate all the active kinds to host action. Given that it is a link
3140       // action it is assumed to depend on all actions generated so far.
3141       HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3142                                            /*BoundArch=*/nullptr);
3143       return HostAction;
3144     }
3145 
3146     // Create the offload action with all dependences. When an offload action
3147     // is created the kinds are propagated to the host action, so we don't have
3148     // to do that explicitly here.
3149     OffloadAction::HostDependence HDep(
3150         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3151         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3152     return C.MakeAction<OffloadAction>(HDep, DDeps);
3153   }
3154 };
3155 } // anonymous namespace.
3156 
3157 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3158                              const InputList &Inputs,
3159                              ActionList &Actions) const {
3160 
3161   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3162   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3163   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3164   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3165     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3166     Args.eraseArg(options::OPT__SLASH_Yc);
3167     Args.eraseArg(options::OPT__SLASH_Yu);
3168     YcArg = YuArg = nullptr;
3169   }
3170   if (YcArg && Inputs.size() > 1) {
3171     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3172     Args.eraseArg(options::OPT__SLASH_Yc);
3173     YcArg = nullptr;
3174   }
3175 
3176   Arg *FinalPhaseArg;
3177   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3178 
3179   if (FinalPhase == phases::Link) {
3180     if (Args.hasArg(options::OPT_emit_llvm))
3181       Diag(clang::diag::err_drv_emit_llvm_link);
3182     if (IsCLMode() && LTOMode != LTOK_None &&
3183         !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3184       Diag(clang::diag::err_drv_lto_without_lld);
3185   }
3186 
3187   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3188     // If only preprocessing or /Y- is used, all pch handling is disabled.
3189     // Rather than check for it everywhere, just remove clang-cl pch-related
3190     // flags here.
3191     Args.eraseArg(options::OPT__SLASH_Fp);
3192     Args.eraseArg(options::OPT__SLASH_Yc);
3193     Args.eraseArg(options::OPT__SLASH_Yu);
3194     YcArg = YuArg = nullptr;
3195   }
3196 
3197   unsigned LastPLSize = 0;
3198   for (auto &I : Inputs) {
3199     types::ID InputType = I.first;
3200     const Arg *InputArg = I.second;
3201 
3202     llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
3203     types::getCompilationPhases(InputType, PL);
3204     LastPLSize = PL.size();
3205 
3206     // If the first step comes after the final phase we are doing as part of
3207     // this compilation, warn the user about it.
3208     phases::ID InitialPhase = PL[0];
3209     if (InitialPhase > FinalPhase) {
3210       if (InputArg->isClaimed())
3211         continue;
3212 
3213       // Claim here to avoid the more general unused warning.
3214       InputArg->claim();
3215 
3216       // Suppress all unused style warnings with -Qunused-arguments
3217       if (Args.hasArg(options::OPT_Qunused_arguments))
3218         continue;
3219 
3220       // Special case when final phase determined by binary name, rather than
3221       // by a command-line argument with a corresponding Arg.
3222       if (CCCIsCPP())
3223         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3224             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3225       // Special case '-E' warning on a previously preprocessed file to make
3226       // more sense.
3227       else if (InitialPhase == phases::Compile &&
3228                (Args.getLastArg(options::OPT__SLASH_EP,
3229                                 options::OPT__SLASH_P) ||
3230                 Args.getLastArg(options::OPT_E) ||
3231                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3232                getPreprocessedType(InputType) == types::TY_INVALID)
3233         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3234             << InputArg->getAsString(Args) << !!FinalPhaseArg
3235             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3236       else
3237         Diag(clang::diag::warn_drv_input_file_unused)
3238             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3239             << !!FinalPhaseArg
3240             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3241       continue;
3242     }
3243 
3244     if (YcArg) {
3245       // Add a separate precompile phase for the compile phase.
3246       if (FinalPhase >= phases::Compile) {
3247         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3248         llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL;
3249         types::getCompilationPhases(HeaderType, PCHPL);
3250         // Build the pipeline for the pch file.
3251         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3252         for (phases::ID Phase : PCHPL)
3253           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3254         assert(ClangClPch);
3255         Actions.push_back(ClangClPch);
3256         // The driver currently exits after the first failed command.  This
3257         // relies on that behavior, to make sure if the pch generation fails,
3258         // the main compilation won't run.
3259         // FIXME: If the main compilation fails, the PCH generation should
3260         // probably not be considered successful either.
3261       }
3262     }
3263   }
3264 
3265   // If we are linking, claim any options which are obviously only used for
3266   // compilation.
3267   // FIXME: Understand why the last Phase List length is used here.
3268   if (FinalPhase == phases::Link && LastPLSize == 1) {
3269     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3270     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3271   }
3272 }
3273 
3274 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3275                           const InputList &Inputs, ActionList &Actions) const {
3276   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3277 
3278   if (!SuppressMissingInputWarning && Inputs.empty()) {
3279     Diag(clang::diag::err_drv_no_input_files);
3280     return;
3281   }
3282 
3283   // Reject -Z* at the top level, these options should never have been exposed
3284   // by gcc.
3285   if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3286     Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3287 
3288   // Diagnose misuse of /Fo.
3289   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3290     StringRef V = A->getValue();
3291     if (Inputs.size() > 1 && !V.empty() &&
3292         !llvm::sys::path::is_separator(V.back())) {
3293       // Check whether /Fo tries to name an output file for multiple inputs.
3294       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3295           << A->getSpelling() << V;
3296       Args.eraseArg(options::OPT__SLASH_Fo);
3297     }
3298   }
3299 
3300   // Diagnose misuse of /Fa.
3301   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3302     StringRef V = A->getValue();
3303     if (Inputs.size() > 1 && !V.empty() &&
3304         !llvm::sys::path::is_separator(V.back())) {
3305       // Check whether /Fa tries to name an asm file for multiple inputs.
3306       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3307           << A->getSpelling() << V;
3308       Args.eraseArg(options::OPT__SLASH_Fa);
3309     }
3310   }
3311 
3312   // Diagnose misuse of /o.
3313   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3314     if (A->getValue()[0] == '\0') {
3315       // It has to have a value.
3316       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3317       Args.eraseArg(options::OPT__SLASH_o);
3318     }
3319   }
3320 
3321   handleArguments(C, Args, Inputs, Actions);
3322 
3323   // Builder to be used to build offloading actions.
3324   OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3325 
3326   // Construct the actions to perform.
3327   HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3328   ActionList LinkerInputs;
3329 
3330   for (auto &I : Inputs) {
3331     types::ID InputType = I.first;
3332     const Arg *InputArg = I.second;
3333 
3334     llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
3335     types::getCompilationPhases(*this, Args, InputType, PL);
3336     if (PL.empty())
3337       continue;
3338 
3339     llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> FullPL;
3340     types::getCompilationPhases(InputType, FullPL);
3341 
3342     // Build the pipeline for this file.
3343     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3344 
3345     // Use the current host action in any of the offloading actions, if
3346     // required.
3347     if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3348       break;
3349 
3350     for (phases::ID Phase : PL) {
3351 
3352       // Add any offload action the host action depends on.
3353       Current = OffloadBuilder.addDeviceDependencesToHostAction(
3354           Current, InputArg, Phase, PL.back(), FullPL);
3355       if (!Current)
3356         break;
3357 
3358       // Queue linker inputs.
3359       if (Phase == phases::Link) {
3360         assert(Phase == PL.back() && "linking must be final compilation step.");
3361         LinkerInputs.push_back(Current);
3362         Current = nullptr;
3363         break;
3364       }
3365 
3366       // Each precompiled header file after a module file action is a module
3367       // header of that same module file, rather than being compiled to a
3368       // separate PCH.
3369       if (Phase == phases::Precompile && HeaderModuleAction &&
3370           getPrecompiledType(InputType) == types::TY_PCH) {
3371         HeaderModuleAction->addModuleHeaderInput(Current);
3372         Current = nullptr;
3373         break;
3374       }
3375 
3376       // FIXME: Should we include any prior module file outputs as inputs of
3377       // later actions in the same command line?
3378 
3379       // Otherwise construct the appropriate action.
3380       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3381 
3382       // We didn't create a new action, so we will just move to the next phase.
3383       if (NewCurrent == Current)
3384         continue;
3385 
3386       if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3387         HeaderModuleAction = HMA;
3388 
3389       Current = NewCurrent;
3390 
3391       // Use the current host action in any of the offloading actions, if
3392       // required.
3393       if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3394         break;
3395 
3396       if (Current->getType() == types::TY_Nothing)
3397         break;
3398     }
3399 
3400     // If we ended with something, add to the output list.
3401     if (Current)
3402       Actions.push_back(Current);
3403 
3404     // Add any top level actions generated for offloading.
3405     OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3406   }
3407 
3408   // Add a link action if necessary.
3409   if (!LinkerInputs.empty()) {
3410     Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3411     LA = OffloadBuilder.processHostLinkAction(LA);
3412     Actions.push_back(LA);
3413   }
3414 
3415   // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3416   // Compile phase that prints out supported cpu models and quits.
3417   if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3418     // Use the -mcpu=? flag as the dummy input to cc1.
3419     Actions.clear();
3420     Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3421     Actions.push_back(
3422         C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3423     for (auto &I : Inputs)
3424       I.second->claim();
3425   }
3426 
3427   // Claim ignored clang-cl options.
3428   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3429 
3430   // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3431   // to non-CUDA compilations and should not trigger warnings there.
3432   Args.ClaimAllArgs(options::OPT_cuda_host_only);
3433   Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3434 }
3435 
3436 Action *Driver::ConstructPhaseAction(
3437     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3438     Action::OffloadKind TargetDeviceOffloadKind) const {
3439   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3440 
3441   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3442   // encode this in the steps because the intermediate type depends on
3443   // arguments. Just special case here.
3444   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3445     return Input;
3446 
3447   // Build the appropriate action.
3448   switch (Phase) {
3449   case phases::Link:
3450     llvm_unreachable("link action invalid here.");
3451   case phases::Preprocess: {
3452     types::ID OutputTy;
3453     // -M and -MM specify the dependency file name by altering the output type,
3454     // -if -MD and -MMD are not specified.
3455     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3456         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3457       OutputTy = types::TY_Dependencies;
3458     } else {
3459       OutputTy = Input->getType();
3460       if (!Args.hasFlag(options::OPT_frewrite_includes,
3461                         options::OPT_fno_rewrite_includes, false) &&
3462           !Args.hasFlag(options::OPT_frewrite_imports,
3463                         options::OPT_fno_rewrite_imports, false) &&
3464           !CCGenDiagnostics)
3465         OutputTy = types::getPreprocessedType(OutputTy);
3466       assert(OutputTy != types::TY_INVALID &&
3467              "Cannot preprocess this input type!");
3468     }
3469     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3470   }
3471   case phases::Precompile: {
3472     types::ID OutputTy = getPrecompiledType(Input->getType());
3473     assert(OutputTy != types::TY_INVALID &&
3474            "Cannot precompile this input type!");
3475 
3476     // If we're given a module name, precompile header file inputs as a
3477     // module, not as a precompiled header.
3478     const char *ModName = nullptr;
3479     if (OutputTy == types::TY_PCH) {
3480       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3481         ModName = A->getValue();
3482       if (ModName)
3483         OutputTy = types::TY_ModuleFile;
3484     }
3485 
3486     if (Args.hasArg(options::OPT_fsyntax_only)) {
3487       // Syntax checks should not emit a PCH file
3488       OutputTy = types::TY_Nothing;
3489     }
3490 
3491     if (ModName)
3492       return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3493                                                            ModName);
3494     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3495   }
3496   case phases::Compile: {
3497     if (Args.hasArg(options::OPT_fsyntax_only))
3498       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3499     if (Args.hasArg(options::OPT_rewrite_objc))
3500       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3501     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3502       return C.MakeAction<CompileJobAction>(Input,
3503                                             types::TY_RewrittenLegacyObjC);
3504     if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3505       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3506     if (Args.hasArg(options::OPT__migrate))
3507       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3508     if (Args.hasArg(options::OPT_emit_ast))
3509       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3510     if (Args.hasArg(options::OPT_module_file_info))
3511       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3512     if (Args.hasArg(options::OPT_verify_pch))
3513       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3514     if (Args.hasArg(options::OPT_emit_iterface_stubs))
3515       return C.MakeAction<CompileJobAction>(Input, types::TY_IFS);
3516     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3517   }
3518   case phases::Backend: {
3519     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3520       types::ID Output =
3521           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3522       return C.MakeAction<BackendJobAction>(Input, Output);
3523     }
3524     if (Args.hasArg(options::OPT_emit_llvm)) {
3525       types::ID Output =
3526           Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3527       return C.MakeAction<BackendJobAction>(Input, Output);
3528     }
3529     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3530   }
3531   case phases::Assemble:
3532     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3533   }
3534 
3535   llvm_unreachable("invalid phase in ConstructPhaseAction");
3536 }
3537 
3538 void Driver::BuildJobs(Compilation &C) const {
3539   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3540 
3541   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3542 
3543   // It is an error to provide a -o option if we are making multiple output
3544   // files.
3545   if (FinalOutput) {
3546     unsigned NumOutputs = 0;
3547     for (const Action *A : C.getActions())
3548       if (A->getType() != types::TY_Nothing)
3549         ++NumOutputs;
3550 
3551     if (NumOutputs > 1) {
3552       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3553       FinalOutput = nullptr;
3554     }
3555   }
3556 
3557   // Collect the list of architectures.
3558   llvm::StringSet<> ArchNames;
3559   if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3560     for (const Arg *A : C.getArgs())
3561       if (A->getOption().matches(options::OPT_arch))
3562         ArchNames.insert(A->getValue());
3563 
3564   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3565   std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3566   for (Action *A : C.getActions()) {
3567     // If we are linking an image for multiple archs then the linker wants
3568     // -arch_multiple and -final_output <final image name>. Unfortunately, this
3569     // doesn't fit in cleanly because we have to pass this information down.
3570     //
3571     // FIXME: This is a hack; find a cleaner way to integrate this into the
3572     // process.
3573     const char *LinkingOutput = nullptr;
3574     if (isa<LipoJobAction>(A)) {
3575       if (FinalOutput)
3576         LinkingOutput = FinalOutput->getValue();
3577       else
3578         LinkingOutput = getDefaultImageName();
3579     }
3580 
3581     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
3582                        /*BoundArch*/ StringRef(),
3583                        /*AtTopLevel*/ true,
3584                        /*MultipleArchs*/ ArchNames.size() > 1,
3585                        /*LinkingOutput*/ LinkingOutput, CachedResults,
3586                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
3587   }
3588 
3589   // If the user passed -Qunused-arguments or there were errors, don't warn
3590   // about any unused arguments.
3591   if (Diags.hasErrorOccurred() ||
3592       C.getArgs().hasArg(options::OPT_Qunused_arguments))
3593     return;
3594 
3595   // Claim -### here.
3596   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3597 
3598   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3599   (void)C.getArgs().hasArg(options::OPT_driver_mode);
3600   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3601 
3602   for (Arg *A : C.getArgs()) {
3603     // FIXME: It would be nice to be able to send the argument to the
3604     // DiagnosticsEngine, so that extra values, position, and so on could be
3605     // printed.
3606     if (!A->isClaimed()) {
3607       if (A->getOption().hasFlag(options::NoArgumentUnused))
3608         continue;
3609 
3610       // Suppress the warning automatically if this is just a flag, and it is an
3611       // instance of an argument we already claimed.
3612       const Option &Opt = A->getOption();
3613       if (Opt.getKind() == Option::FlagClass) {
3614         bool DuplicateClaimed = false;
3615 
3616         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3617           if (AA->isClaimed()) {
3618             DuplicateClaimed = true;
3619             break;
3620           }
3621         }
3622 
3623         if (DuplicateClaimed)
3624           continue;
3625       }
3626 
3627       // In clang-cl, don't mention unknown arguments here since they have
3628       // already been warned about.
3629       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3630         Diag(clang::diag::warn_drv_unused_argument)
3631             << A->getAsString(C.getArgs());
3632     }
3633   }
3634 }
3635 
3636 namespace {
3637 /// Utility class to control the collapse of dependent actions and select the
3638 /// tools accordingly.
3639 class ToolSelector final {
3640   /// The tool chain this selector refers to.
3641   const ToolChain &TC;
3642 
3643   /// The compilation this selector refers to.
3644   const Compilation &C;
3645 
3646   /// The base action this selector refers to.
3647   const JobAction *BaseAction;
3648 
3649   /// Set to true if the current toolchain refers to host actions.
3650   bool IsHostSelector;
3651 
3652   /// Set to true if save-temps and embed-bitcode functionalities are active.
3653   bool SaveTemps;
3654   bool EmbedBitcode;
3655 
3656   /// Get previous dependent action or null if that does not exist. If
3657   /// \a CanBeCollapsed is false, that action must be legal to collapse or
3658   /// null will be returned.
3659   const JobAction *getPrevDependentAction(const ActionList &Inputs,
3660                                           ActionList &SavedOffloadAction,
3661                                           bool CanBeCollapsed = true) {
3662     // An option can be collapsed only if it has a single input.
3663     if (Inputs.size() != 1)
3664       return nullptr;
3665 
3666     Action *CurAction = *Inputs.begin();
3667     if (CanBeCollapsed &&
3668         !CurAction->isCollapsingWithNextDependentActionLegal())
3669       return nullptr;
3670 
3671     // If the input action is an offload action. Look through it and save any
3672     // offload action that can be dropped in the event of a collapse.
3673     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3674       // If the dependent action is a device action, we will attempt to collapse
3675       // only with other device actions. Otherwise, we would do the same but
3676       // with host actions only.
3677       if (!IsHostSelector) {
3678         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3679           CurAction =
3680               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3681           if (CanBeCollapsed &&
3682               !CurAction->isCollapsingWithNextDependentActionLegal())
3683             return nullptr;
3684           SavedOffloadAction.push_back(OA);
3685           return dyn_cast<JobAction>(CurAction);
3686         }
3687       } else if (OA->hasHostDependence()) {
3688         CurAction = OA->getHostDependence();
3689         if (CanBeCollapsed &&
3690             !CurAction->isCollapsingWithNextDependentActionLegal())
3691           return nullptr;
3692         SavedOffloadAction.push_back(OA);
3693         return dyn_cast<JobAction>(CurAction);
3694       }
3695       return nullptr;
3696     }
3697 
3698     return dyn_cast<JobAction>(CurAction);
3699   }
3700 
3701   /// Return true if an assemble action can be collapsed.
3702   bool canCollapseAssembleAction() const {
3703     return TC.useIntegratedAs() && !SaveTemps &&
3704            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3705            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3706            !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3707   }
3708 
3709   /// Return true if a preprocessor action can be collapsed.
3710   bool canCollapsePreprocessorAction() const {
3711     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3712            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3713            !C.getArgs().hasArg(options::OPT_rewrite_objc);
3714   }
3715 
3716   /// Struct that relates an action with the offload actions that would be
3717   /// collapsed with it.
3718   struct JobActionInfo final {
3719     /// The action this info refers to.
3720     const JobAction *JA = nullptr;
3721     /// The offload actions we need to take care off if this action is
3722     /// collapsed.
3723     ActionList SavedOffloadAction;
3724   };
3725 
3726   /// Append collapsed offload actions from the give nnumber of elements in the
3727   /// action info array.
3728   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3729                                            ArrayRef<JobActionInfo> &ActionInfo,
3730                                            unsigned ElementNum) {
3731     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3732     for (unsigned I = 0; I < ElementNum; ++I)
3733       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3734                                     ActionInfo[I].SavedOffloadAction.end());
3735   }
3736 
3737   /// Functions that attempt to perform the combining. They detect if that is
3738   /// legal, and if so they update the inputs \a Inputs and the offload action
3739   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3740   /// the combined action is returned. If the combining is not legal or if the
3741   /// tool does not exist, null is returned.
3742   /// Currently three kinds of collapsing are supported:
3743   ///  - Assemble + Backend + Compile;
3744   ///  - Assemble + Backend ;
3745   ///  - Backend + Compile.
3746   const Tool *
3747   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3748                                 ActionList &Inputs,
3749                                 ActionList &CollapsedOffloadAction) {
3750     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3751       return nullptr;
3752     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3753     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3754     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3755     if (!AJ || !BJ || !CJ)
3756       return nullptr;
3757 
3758     // Get compiler tool.
3759     const Tool *T = TC.SelectTool(*CJ);
3760     if (!T)
3761       return nullptr;
3762 
3763     // When using -fembed-bitcode, it is required to have the same tool (clang)
3764     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3765     if (EmbedBitcode) {
3766       const Tool *BT = TC.SelectTool(*BJ);
3767       if (BT == T)
3768         return nullptr;
3769     }
3770 
3771     if (!T->hasIntegratedAssembler())
3772       return nullptr;
3773 
3774     Inputs = CJ->getInputs();
3775     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3776                                  /*NumElements=*/3);
3777     return T;
3778   }
3779   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3780                                      ActionList &Inputs,
3781                                      ActionList &CollapsedOffloadAction) {
3782     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3783       return nullptr;
3784     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3785     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3786     if (!AJ || !BJ)
3787       return nullptr;
3788 
3789     // Retrieve the compile job, backend action must always be preceded by one.
3790     ActionList CompileJobOffloadActions;
3791     auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3792                                       /*CanBeCollapsed=*/false);
3793     if (!AJ || !BJ || !CJ)
3794       return nullptr;
3795 
3796     assert(isa<CompileJobAction>(CJ) &&
3797            "Expecting compile job preceding backend job.");
3798 
3799     // Get compiler tool.
3800     const Tool *T = TC.SelectTool(*CJ);
3801     if (!T)
3802       return nullptr;
3803 
3804     if (!T->hasIntegratedAssembler())
3805       return nullptr;
3806 
3807     Inputs = BJ->getInputs();
3808     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3809                                  /*NumElements=*/2);
3810     return T;
3811   }
3812   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3813                                     ActionList &Inputs,
3814                                     ActionList &CollapsedOffloadAction) {
3815     if (ActionInfo.size() < 2)
3816       return nullptr;
3817     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3818     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3819     if (!BJ || !CJ)
3820       return nullptr;
3821 
3822     // Check if the initial input (to the compile job or its predessor if one
3823     // exists) is LLVM bitcode. In that case, no preprocessor step is required
3824     // and we can still collapse the compile and backend jobs when we have
3825     // -save-temps. I.e. there is no need for a separate compile job just to
3826     // emit unoptimized bitcode.
3827     bool InputIsBitcode = true;
3828     for (size_t i = 1; i < ActionInfo.size(); i++)
3829       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3830           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3831         InputIsBitcode = false;
3832         break;
3833       }
3834     if (!InputIsBitcode && !canCollapsePreprocessorAction())
3835       return nullptr;
3836 
3837     // Get compiler tool.
3838     const Tool *T = TC.SelectTool(*CJ);
3839     if (!T)
3840       return nullptr;
3841 
3842     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3843       return nullptr;
3844 
3845     Inputs = CJ->getInputs();
3846     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3847                                  /*NumElements=*/2);
3848     return T;
3849   }
3850 
3851   /// Updates the inputs if the obtained tool supports combining with
3852   /// preprocessor action, and the current input is indeed a preprocessor
3853   /// action. If combining results in the collapse of offloading actions, those
3854   /// are appended to \a CollapsedOffloadAction.
3855   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3856                                ActionList &CollapsedOffloadAction) {
3857     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3858       return;
3859 
3860     // Attempt to get a preprocessor action dependence.
3861     ActionList PreprocessJobOffloadActions;
3862     ActionList NewInputs;
3863     for (Action *A : Inputs) {
3864       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3865       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3866         NewInputs.push_back(A);
3867         continue;
3868       }
3869 
3870       // This is legal to combine. Append any offload action we found and add the
3871       // current input to preprocessor inputs.
3872       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3873                                     PreprocessJobOffloadActions.end());
3874       NewInputs.append(PJ->input_begin(), PJ->input_end());
3875     }
3876     Inputs = NewInputs;
3877   }
3878 
3879 public:
3880   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3881                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3882       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3883         EmbedBitcode(EmbedBitcode) {
3884     assert(BaseAction && "Invalid base action.");
3885     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3886   }
3887 
3888   /// Check if a chain of actions can be combined and return the tool that can
3889   /// handle the combination of actions. The pointer to the current inputs \a
3890   /// Inputs and the list of offload actions \a CollapsedOffloadActions
3891   /// connected to collapsed actions are updated accordingly. The latter enables
3892   /// the caller of the selector to process them afterwards instead of just
3893   /// dropping them. If no suitable tool is found, null will be returned.
3894   const Tool *getTool(ActionList &Inputs,
3895                       ActionList &CollapsedOffloadAction) {
3896     //
3897     // Get the largest chain of actions that we could combine.
3898     //
3899 
3900     SmallVector<JobActionInfo, 5> ActionChain(1);
3901     ActionChain.back().JA = BaseAction;
3902     while (ActionChain.back().JA) {
3903       const Action *CurAction = ActionChain.back().JA;
3904 
3905       // Grow the chain by one element.
3906       ActionChain.resize(ActionChain.size() + 1);
3907       JobActionInfo &AI = ActionChain.back();
3908 
3909       // Attempt to fill it with the
3910       AI.JA =
3911           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3912     }
3913 
3914     // Pop the last action info as it could not be filled.
3915     ActionChain.pop_back();
3916 
3917     //
3918     // Attempt to combine actions. If all combining attempts failed, just return
3919     // the tool of the provided action. At the end we attempt to combine the
3920     // action with any preprocessor action it may depend on.
3921     //
3922 
3923     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3924                                                   CollapsedOffloadAction);
3925     if (!T)
3926       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3927     if (!T)
3928       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3929     if (!T) {
3930       Inputs = BaseAction->getInputs();
3931       T = TC.SelectTool(*BaseAction);
3932     }
3933 
3934     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3935     return T;
3936   }
3937 };
3938 }
3939 
3940 /// Return a string that uniquely identifies the result of a job. The bound arch
3941 /// is not necessarily represented in the toolchain's triple -- for example,
3942 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3943 /// Also, we need to add the offloading device kind, as the same tool chain can
3944 /// be used for host and device for some programming models, e.g. OpenMP.
3945 static std::string GetTriplePlusArchString(const ToolChain *TC,
3946                                            StringRef BoundArch,
3947                                            Action::OffloadKind OffloadKind) {
3948   std::string TriplePlusArch = TC->getTriple().normalize();
3949   if (!BoundArch.empty()) {
3950     TriplePlusArch += "-";
3951     TriplePlusArch += BoundArch;
3952   }
3953   TriplePlusArch += "-";
3954   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3955   return TriplePlusArch;
3956 }
3957 
3958 InputInfo Driver::BuildJobsForAction(
3959     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3960     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3961     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3962     Action::OffloadKind TargetDeviceOffloadKind) const {
3963   std::pair<const Action *, std::string> ActionTC = {
3964       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3965   auto CachedResult = CachedResults.find(ActionTC);
3966   if (CachedResult != CachedResults.end()) {
3967     return CachedResult->second;
3968   }
3969   InputInfo Result = BuildJobsForActionNoCache(
3970       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3971       CachedResults, TargetDeviceOffloadKind);
3972   CachedResults[ActionTC] = Result;
3973   return Result;
3974 }
3975 
3976 InputInfo Driver::BuildJobsForActionNoCache(
3977     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3978     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3979     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3980     Action::OffloadKind TargetDeviceOffloadKind) const {
3981   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3982 
3983   InputInfoList OffloadDependencesInputInfo;
3984   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3985   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3986     // The 'Darwin' toolchain is initialized only when its arguments are
3987     // computed. Get the default arguments for OFK_None to ensure that
3988     // initialization is performed before processing the offload action.
3989     // FIXME: Remove when darwin's toolchain is initialized during construction.
3990     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3991 
3992     // The offload action is expected to be used in four different situations.
3993     //
3994     // a) Set a toolchain/architecture/kind for a host action:
3995     //    Host Action 1 -> OffloadAction -> Host Action 2
3996     //
3997     // b) Set a toolchain/architecture/kind for a device action;
3998     //    Device Action 1 -> OffloadAction -> Device Action 2
3999     //
4000     // c) Specify a device dependence to a host action;
4001     //    Device Action 1  _
4002     //                      \
4003     //      Host Action 1  ---> OffloadAction -> Host Action 2
4004     //
4005     // d) Specify a host dependence to a device action.
4006     //      Host Action 1  _
4007     //                      \
4008     //    Device Action 1  ---> OffloadAction -> Device Action 2
4009     //
4010     // For a) and b), we just return the job generated for the dependence. For
4011     // c) and d) we override the current action with the host/device dependence
4012     // if the current toolchain is host/device and set the offload dependences
4013     // info with the jobs obtained from the device/host dependence(s).
4014 
4015     // If there is a single device option, just generate the job for it.
4016     if (OA->hasSingleDeviceDependence()) {
4017       InputInfo DevA;
4018       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4019                                        const char *DepBoundArch) {
4020         DevA =
4021             BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4022                                /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4023                                CachedResults, DepA->getOffloadingDeviceKind());
4024       });
4025       return DevA;
4026     }
4027 
4028     // If 'Action 2' is host, we generate jobs for the device dependences and
4029     // override the current action with the host dependence. Otherwise, we
4030     // generate the host dependences and override the action with the device
4031     // dependence. The dependences can't therefore be a top-level action.
4032     OA->doOnEachDependence(
4033         /*IsHostDependence=*/BuildingForOffloadDevice,
4034         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4035           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4036               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4037               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4038               DepA->getOffloadingDeviceKind()));
4039         });
4040 
4041     A = BuildingForOffloadDevice
4042             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4043             : OA->getHostDependence();
4044   }
4045 
4046   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4047     // FIXME: It would be nice to not claim this here; maybe the old scheme of
4048     // just using Args was better?
4049     const Arg &Input = IA->getInputArg();
4050     Input.claim();
4051     if (Input.getOption().matches(options::OPT_INPUT)) {
4052       const char *Name = Input.getValue();
4053       return InputInfo(A, Name, /* _BaseInput = */ Name);
4054     }
4055     return InputInfo(A, &Input, /* _BaseInput = */ "");
4056   }
4057 
4058   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4059     const ToolChain *TC;
4060     StringRef ArchName = BAA->getArchName();
4061 
4062     if (!ArchName.empty())
4063       TC = &getToolChain(C.getArgs(),
4064                          computeTargetTriple(*this, TargetTriple,
4065                                              C.getArgs(), ArchName));
4066     else
4067       TC = &C.getDefaultToolChain();
4068 
4069     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4070                               MultipleArchs, LinkingOutput, CachedResults,
4071                               TargetDeviceOffloadKind);
4072   }
4073 
4074 
4075   ActionList Inputs = A->getInputs();
4076 
4077   const JobAction *JA = cast<JobAction>(A);
4078   ActionList CollapsedOffloadActions;
4079 
4080   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4081                   embedBitcodeInObject() && !isUsingLTO());
4082   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4083 
4084   if (!T)
4085     return InputInfo();
4086 
4087   // If we've collapsed action list that contained OffloadAction we
4088   // need to build jobs for host/device-side inputs it may have held.
4089   for (const auto *OA : CollapsedOffloadActions)
4090     cast<OffloadAction>(OA)->doOnEachDependence(
4091         /*IsHostDependence=*/BuildingForOffloadDevice,
4092         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4093           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4094               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4095               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4096               DepA->getOffloadingDeviceKind()));
4097         });
4098 
4099   // Only use pipes when there is exactly one input.
4100   InputInfoList InputInfos;
4101   for (const Action *Input : Inputs) {
4102     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4103     // shouldn't get temporary output names.
4104     // FIXME: Clean this up.
4105     bool SubJobAtTopLevel =
4106         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4107     InputInfos.push_back(BuildJobsForAction(
4108         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4109         CachedResults, A->getOffloadingDeviceKind()));
4110   }
4111 
4112   // Always use the first input as the base input.
4113   const char *BaseInput = InputInfos[0].getBaseInput();
4114 
4115   // ... except dsymutil actions, which use their actual input as the base
4116   // input.
4117   if (JA->getType() == types::TY_dSYM)
4118     BaseInput = InputInfos[0].getFilename();
4119 
4120   // ... and in header module compilations, which use the module name.
4121   if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4122     BaseInput = ModuleJA->getModuleName();
4123 
4124   // Append outputs of offload device jobs to the input list
4125   if (!OffloadDependencesInputInfo.empty())
4126     InputInfos.append(OffloadDependencesInputInfo.begin(),
4127                       OffloadDependencesInputInfo.end());
4128 
4129   // Set the effective triple of the toolchain for the duration of this job.
4130   llvm::Triple EffectiveTriple;
4131   const ToolChain &ToolTC = T->getToolChain();
4132   const ArgList &Args =
4133       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4134   if (InputInfos.size() != 1) {
4135     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4136   } else {
4137     // Pass along the input type if it can be unambiguously determined.
4138     EffectiveTriple = llvm::Triple(
4139         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4140   }
4141   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4142 
4143   // Determine the place to write output to, if any.
4144   InputInfo Result;
4145   InputInfoList UnbundlingResults;
4146   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4147     // If we have an unbundling job, we need to create results for all the
4148     // outputs. We also update the results cache so that other actions using
4149     // this unbundling action can get the right results.
4150     for (auto &UI : UA->getDependentActionsInfo()) {
4151       assert(UI.DependentOffloadKind != Action::OFK_None &&
4152              "Unbundling with no offloading??");
4153 
4154       // Unbundling actions are never at the top level. When we generate the
4155       // offloading prefix, we also do that for the host file because the
4156       // unbundling action does not change the type of the output which can
4157       // cause a overwrite.
4158       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4159           UI.DependentOffloadKind,
4160           UI.DependentToolChain->getTriple().normalize(),
4161           /*CreatePrefixForHost=*/true);
4162       auto CurI = InputInfo(
4163           UA,
4164           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4165                              /*AtTopLevel=*/false,
4166                              MultipleArchs ||
4167                                  UI.DependentOffloadKind == Action::OFK_HIP,
4168                              OffloadingPrefix),
4169           BaseInput);
4170       // Save the unbundling result.
4171       UnbundlingResults.push_back(CurI);
4172 
4173       // Get the unique string identifier for this dependence and cache the
4174       // result.
4175       StringRef Arch;
4176       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4177         if (UI.DependentOffloadKind == Action::OFK_Host)
4178           Arch = StringRef();
4179         else
4180           Arch = UI.DependentBoundArch;
4181       } else
4182         Arch = BoundArch;
4183 
4184       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4185                                                 UI.DependentOffloadKind)}] =
4186           CurI;
4187     }
4188 
4189     // Now that we have all the results generated, select the one that should be
4190     // returned for the current depending action.
4191     std::pair<const Action *, std::string> ActionTC = {
4192         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4193     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4194            "Result does not exist??");
4195     Result = CachedResults[ActionTC];
4196   } else if (JA->getType() == types::TY_Nothing)
4197     Result = InputInfo(A, BaseInput);
4198   else {
4199     // We only have to generate a prefix for the host if this is not a top-level
4200     // action.
4201     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4202         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4203         /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4204             !AtTopLevel);
4205     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4206                                              AtTopLevel, MultipleArchs,
4207                                              OffloadingPrefix),
4208                        BaseInput);
4209   }
4210 
4211   if (CCCPrintBindings && !CCGenDiagnostics) {
4212     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4213                  << " - \"" << T->getName() << "\", inputs: [";
4214     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4215       llvm::errs() << InputInfos[i].getAsString();
4216       if (i + 1 != e)
4217         llvm::errs() << ", ";
4218     }
4219     if (UnbundlingResults.empty())
4220       llvm::errs() << "], output: " << Result.getAsString() << "\n";
4221     else {
4222       llvm::errs() << "], outputs: [";
4223       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4224         llvm::errs() << UnbundlingResults[i].getAsString();
4225         if (i + 1 != e)
4226           llvm::errs() << ", ";
4227       }
4228       llvm::errs() << "] \n";
4229     }
4230   } else {
4231     if (UnbundlingResults.empty())
4232       T->ConstructJob(
4233           C, *JA, Result, InputInfos,
4234           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4235           LinkingOutput);
4236     else
4237       T->ConstructJobMultipleOutputs(
4238           C, *JA, UnbundlingResults, InputInfos,
4239           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4240           LinkingOutput);
4241   }
4242   return Result;
4243 }
4244 
4245 const char *Driver::getDefaultImageName() const {
4246   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4247   return Target.isOSWindows() ? "a.exe" : "a.out";
4248 }
4249 
4250 /// Create output filename based on ArgValue, which could either be a
4251 /// full filename, filename without extension, or a directory. If ArgValue
4252 /// does not provide a filename, then use BaseName, and use the extension
4253 /// suitable for FileType.
4254 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4255                                         StringRef BaseName,
4256                                         types::ID FileType) {
4257   SmallString<128> Filename = ArgValue;
4258 
4259   if (ArgValue.empty()) {
4260     // If the argument is empty, output to BaseName in the current dir.
4261     Filename = BaseName;
4262   } else if (llvm::sys::path::is_separator(Filename.back())) {
4263     // If the argument is a directory, output to BaseName in that dir.
4264     llvm::sys::path::append(Filename, BaseName);
4265   }
4266 
4267   if (!llvm::sys::path::has_extension(ArgValue)) {
4268     // If the argument didn't provide an extension, then set it.
4269     const char *Extension = types::getTypeTempSuffix(FileType, true);
4270 
4271     if (FileType == types::TY_Image &&
4272         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4273       // The output file is a dll.
4274       Extension = "dll";
4275     }
4276 
4277     llvm::sys::path::replace_extension(Filename, Extension);
4278   }
4279 
4280   return Args.MakeArgString(Filename.c_str());
4281 }
4282 
4283 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4284                                        const char *BaseInput,
4285                                        StringRef BoundArch, bool AtTopLevel,
4286                                        bool MultipleArchs,
4287                                        StringRef OffloadingPrefix) const {
4288   llvm::PrettyStackTraceString CrashInfo("Computing output path");
4289   // Output to a user requested destination?
4290   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4291     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4292       return C.addResultFile(FinalOutput->getValue(), &JA);
4293   }
4294 
4295   // For /P, preprocess to file named after BaseInput.
4296   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4297     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4298     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4299     StringRef NameArg;
4300     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4301       NameArg = A->getValue();
4302     return C.addResultFile(
4303         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4304         &JA);
4305   }
4306 
4307   // Default to writing to stdout?
4308   if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4309     return "-";
4310 
4311   // Is this the assembly listing for /FA?
4312   if (JA.getType() == types::TY_PP_Asm &&
4313       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4314        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4315     // Use /Fa and the input filename to determine the asm file name.
4316     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4317     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4318     return C.addResultFile(
4319         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4320         &JA);
4321   }
4322 
4323   // Output to a temporary file?
4324   if ((!AtTopLevel && !isSaveTempsEnabled() &&
4325        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4326       CCGenDiagnostics) {
4327     StringRef Name = llvm::sys::path::filename(BaseInput);
4328     std::pair<StringRef, StringRef> Split = Name.split('.');
4329     SmallString<128> TmpName;
4330     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4331     Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4332     if (CCGenDiagnostics && A) {
4333       SmallString<128> CrashDirectory(A->getValue());
4334       if (!getVFS().exists(CrashDirectory))
4335         llvm::sys::fs::create_directories(CrashDirectory);
4336       llvm::sys::path::append(CrashDirectory, Split.first);
4337       const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4338       std::error_code EC = llvm::sys::fs::createUniqueFile(
4339           CrashDirectory + Middle + Suffix, TmpName);
4340       if (EC) {
4341         Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4342         return "";
4343       }
4344     } else {
4345       TmpName = GetTemporaryPath(Split.first, Suffix);
4346     }
4347     return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4348   }
4349 
4350   SmallString<128> BasePath(BaseInput);
4351   StringRef BaseName;
4352 
4353   // Dsymutil actions should use the full path.
4354   if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4355     BaseName = BasePath;
4356   else
4357     BaseName = llvm::sys::path::filename(BasePath);
4358 
4359   // Determine what the derived output name should be.
4360   const char *NamedOutput;
4361 
4362   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4363       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4364     // The /Fo or /o flag decides the object filename.
4365     StringRef Val =
4366         C.getArgs()
4367             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4368             ->getValue();
4369     NamedOutput =
4370         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4371   } else if (JA.getType() == types::TY_Image &&
4372              C.getArgs().hasArg(options::OPT__SLASH_Fe,
4373                                 options::OPT__SLASH_o)) {
4374     // The /Fe or /o flag names the linked file.
4375     StringRef Val =
4376         C.getArgs()
4377             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4378             ->getValue();
4379     NamedOutput =
4380         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4381   } else if (JA.getType() == types::TY_Image) {
4382     if (IsCLMode()) {
4383       // clang-cl uses BaseName for the executable name.
4384       NamedOutput =
4385           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4386     } else {
4387       SmallString<128> Output(getDefaultImageName());
4388       Output += OffloadingPrefix;
4389       if (MultipleArchs && !BoundArch.empty()) {
4390         Output += "-";
4391         Output.append(BoundArch);
4392       }
4393       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4394     }
4395   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4396     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4397   } else {
4398     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4399     assert(Suffix && "All types used for output should have a suffix.");
4400 
4401     std::string::size_type End = std::string::npos;
4402     if (!types::appendSuffixForType(JA.getType()))
4403       End = BaseName.rfind('.');
4404     SmallString<128> Suffixed(BaseName.substr(0, End));
4405     Suffixed += OffloadingPrefix;
4406     if (MultipleArchs && !BoundArch.empty()) {
4407       Suffixed += "-";
4408       Suffixed.append(BoundArch);
4409     }
4410     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4411     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4412     // optimized bitcode output.
4413     if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4414         JA.getType() == types::TY_LLVM_BC)
4415       Suffixed += ".tmp";
4416     Suffixed += '.';
4417     Suffixed += Suffix;
4418     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4419   }
4420 
4421   // Prepend object file path if -save-temps=obj
4422   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4423       JA.getType() != types::TY_PCH) {
4424     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4425     SmallString<128> TempPath(FinalOutput->getValue());
4426     llvm::sys::path::remove_filename(TempPath);
4427     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4428     llvm::sys::path::append(TempPath, OutputFileName);
4429     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4430   }
4431 
4432   // If we're saving temps and the temp file conflicts with the input file,
4433   // then avoid overwriting input file.
4434   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4435     bool SameFile = false;
4436     SmallString<256> Result;
4437     llvm::sys::fs::current_path(Result);
4438     llvm::sys::path::append(Result, BaseName);
4439     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4440     // Must share the same path to conflict.
4441     if (SameFile) {
4442       StringRef Name = llvm::sys::path::filename(BaseInput);
4443       std::pair<StringRef, StringRef> Split = Name.split('.');
4444       std::string TmpName = GetTemporaryPath(
4445           Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4446       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4447     }
4448   }
4449 
4450   // As an annoying special case, PCH generation doesn't strip the pathname.
4451   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4452     llvm::sys::path::remove_filename(BasePath);
4453     if (BasePath.empty())
4454       BasePath = NamedOutput;
4455     else
4456       llvm::sys::path::append(BasePath, NamedOutput);
4457     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4458   } else {
4459     return C.addResultFile(NamedOutput, &JA);
4460   }
4461 }
4462 
4463 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4464   // Search for Name in a list of paths.
4465   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4466       -> llvm::Optional<std::string> {
4467     // Respect a limited subset of the '-Bprefix' functionality in GCC by
4468     // attempting to use this prefix when looking for file paths.
4469     for (const auto &Dir : P) {
4470       if (Dir.empty())
4471         continue;
4472       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4473       llvm::sys::path::append(P, Name);
4474       if (llvm::sys::fs::exists(Twine(P)))
4475         return P.str().str();
4476     }
4477     return None;
4478   };
4479 
4480   if (auto P = SearchPaths(PrefixDirs))
4481     return *P;
4482 
4483   SmallString<128> R(ResourceDir);
4484   llvm::sys::path::append(R, Name);
4485   if (llvm::sys::fs::exists(Twine(R)))
4486     return R.str();
4487 
4488   SmallString<128> P(TC.getCompilerRTPath());
4489   llvm::sys::path::append(P, Name);
4490   if (llvm::sys::fs::exists(Twine(P)))
4491     return P.str();
4492 
4493   SmallString<128> D(Dir);
4494   llvm::sys::path::append(D, "..", Name);
4495   if (llvm::sys::fs::exists(Twine(D)))
4496     return D.str();
4497 
4498   if (auto P = SearchPaths(TC.getLibraryPaths()))
4499     return *P;
4500 
4501   if (auto P = SearchPaths(TC.getFilePaths()))
4502     return *P;
4503 
4504   return Name;
4505 }
4506 
4507 void Driver::generatePrefixedToolNames(
4508     StringRef Tool, const ToolChain &TC,
4509     SmallVectorImpl<std::string> &Names) const {
4510   // FIXME: Needs a better variable than TargetTriple
4511   Names.emplace_back((TargetTriple + "-" + Tool).str());
4512   Names.emplace_back(Tool);
4513 
4514   // Allow the discovery of tools prefixed with LLVM's default target triple.
4515   std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4516   if (DefaultTargetTriple != TargetTriple)
4517     Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4518 }
4519 
4520 static bool ScanDirForExecutable(SmallString<128> &Dir,
4521                                  ArrayRef<std::string> Names) {
4522   for (const auto &Name : Names) {
4523     llvm::sys::path::append(Dir, Name);
4524     if (llvm::sys::fs::can_execute(Twine(Dir)))
4525       return true;
4526     llvm::sys::path::remove_filename(Dir);
4527   }
4528   return false;
4529 }
4530 
4531 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4532   SmallVector<std::string, 2> TargetSpecificExecutables;
4533   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4534 
4535   // Respect a limited subset of the '-Bprefix' functionality in GCC by
4536   // attempting to use this prefix when looking for program paths.
4537   for (const auto &PrefixDir : PrefixDirs) {
4538     if (llvm::sys::fs::is_directory(PrefixDir)) {
4539       SmallString<128> P(PrefixDir);
4540       if (ScanDirForExecutable(P, TargetSpecificExecutables))
4541         return P.str();
4542     } else {
4543       SmallString<128> P((PrefixDir + Name).str());
4544       if (llvm::sys::fs::can_execute(Twine(P)))
4545         return P.str();
4546     }
4547   }
4548 
4549   const ToolChain::path_list &List = TC.getProgramPaths();
4550   for (const auto &Path : List) {
4551     SmallString<128> P(Path);
4552     if (ScanDirForExecutable(P, TargetSpecificExecutables))
4553       return P.str();
4554   }
4555 
4556   // If all else failed, search the path.
4557   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4558     if (llvm::ErrorOr<std::string> P =
4559             llvm::sys::findProgramByName(TargetSpecificExecutable))
4560       return *P;
4561 
4562   return Name;
4563 }
4564 
4565 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4566   SmallString<128> Path;
4567   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4568   if (EC) {
4569     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4570     return "";
4571   }
4572 
4573   return Path.str();
4574 }
4575 
4576 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4577   SmallString<128> Path;
4578   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4579   if (EC) {
4580     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4581     return "";
4582   }
4583 
4584   return Path.str();
4585 }
4586 
4587 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4588   SmallString<128> Output;
4589   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4590     // FIXME: If anybody needs it, implement this obscure rule:
4591     // "If you specify a directory without a file name, the default file name
4592     // is VCx0.pch., where x is the major version of Visual C++ in use."
4593     Output = FpArg->getValue();
4594 
4595     // "If you do not specify an extension as part of the path name, an
4596     // extension of .pch is assumed. "
4597     if (!llvm::sys::path::has_extension(Output))
4598       Output += ".pch";
4599   } else {
4600     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4601       Output = YcArg->getValue();
4602     if (Output.empty())
4603       Output = BaseName;
4604     llvm::sys::path::replace_extension(Output, ".pch");
4605   }
4606   return Output.str();
4607 }
4608 
4609 const ToolChain &Driver::getToolChain(const ArgList &Args,
4610                                       const llvm::Triple &Target) const {
4611 
4612   auto &TC = ToolChains[Target.str()];
4613   if (!TC) {
4614     switch (Target.getOS()) {
4615     case llvm::Triple::Haiku:
4616       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
4617       break;
4618     case llvm::Triple::Ananas:
4619       TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
4620       break;
4621     case llvm::Triple::CloudABI:
4622       TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
4623       break;
4624     case llvm::Triple::Darwin:
4625     case llvm::Triple::MacOSX:
4626     case llvm::Triple::IOS:
4627     case llvm::Triple::TvOS:
4628     case llvm::Triple::WatchOS:
4629       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4630       break;
4631     case llvm::Triple::DragonFly:
4632       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
4633       break;
4634     case llvm::Triple::OpenBSD:
4635       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4636       break;
4637     case llvm::Triple::NetBSD:
4638       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
4639       break;
4640     case llvm::Triple::FreeBSD:
4641       TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4642       break;
4643     case llvm::Triple::Minix:
4644       TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
4645       break;
4646     case llvm::Triple::Linux:
4647     case llvm::Triple::ELFIAMCU:
4648       if (Target.getArch() == llvm::Triple::hexagon)
4649         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4650                                                              Args);
4651       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4652                !Target.hasEnvironment())
4653         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4654                                                               Args);
4655       else if (Target.getArch() == llvm::Triple::ppc ||
4656                Target.getArch() == llvm::Triple::ppc64 ||
4657                Target.getArch() == llvm::Triple::ppc64le)
4658         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4659                                                               Args);
4660       else
4661         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
4662       break;
4663     case llvm::Triple::NaCl:
4664       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4665       break;
4666     case llvm::Triple::Fuchsia:
4667       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4668       break;
4669     case llvm::Triple::Solaris:
4670       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
4671       break;
4672     case llvm::Triple::AMDHSA:
4673     case llvm::Triple::AMDPAL:
4674     case llvm::Triple::Mesa3D:
4675       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4676       break;
4677     case llvm::Triple::Win32:
4678       switch (Target.getEnvironment()) {
4679       default:
4680         if (Target.isOSBinFormatELF())
4681           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4682         else if (Target.isOSBinFormatMachO())
4683           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4684         else
4685           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4686         break;
4687       case llvm::Triple::GNU:
4688         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
4689         break;
4690       case llvm::Triple::Itanium:
4691         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4692                                                                   Args);
4693         break;
4694       case llvm::Triple::MSVC:
4695       case llvm::Triple::UnknownEnvironment:
4696         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4697                 .startswith_lower("bfd"))
4698           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
4699               *this, Target, Args);
4700         else
4701           TC =
4702               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4703         break;
4704       }
4705       break;
4706     case llvm::Triple::PS4:
4707       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4708       break;
4709     case llvm::Triple::Contiki:
4710       TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
4711       break;
4712     case llvm::Triple::Hurd:
4713       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
4714       break;
4715     default:
4716       // Of these targets, Hexagon is the only one that might have
4717       // an OS of Linux, in which case it got handled above already.
4718       switch (Target.getArch()) {
4719       case llvm::Triple::tce:
4720         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4721         break;
4722       case llvm::Triple::tcele:
4723         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4724         break;
4725       case llvm::Triple::hexagon:
4726         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4727                                                              Args);
4728         break;
4729       case llvm::Triple::lanai:
4730         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4731         break;
4732       case llvm::Triple::xcore:
4733         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4734         break;
4735       case llvm::Triple::wasm32:
4736       case llvm::Triple::wasm64:
4737         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4738         break;
4739       case llvm::Triple::avr:
4740         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4741         break;
4742       case llvm::Triple::msp430:
4743         TC =
4744             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4745         break;
4746       case llvm::Triple::riscv32:
4747       case llvm::Triple::riscv64:
4748         TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4749         break;
4750       default:
4751         if (Target.getVendor() == llvm::Triple::Myriad)
4752           TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
4753                                                               Args);
4754         else if (toolchains::BareMetal::handlesTarget(Target))
4755           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
4756         else if (Target.isOSBinFormatELF())
4757           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4758         else if (Target.isOSBinFormatMachO())
4759           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4760         else
4761           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4762       }
4763     }
4764   }
4765 
4766   // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
4767   // compiles always need two toolchains, the CUDA toolchain and the host
4768   // toolchain.  So the only valid way to create a CUDA toolchain is via
4769   // CreateOffloadingDeviceToolChains.
4770 
4771   return *TC;
4772 }
4773 
4774 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
4775   // Say "no" if there is not exactly one input of a type clang understands.
4776   if (JA.size() != 1 ||
4777       !types::isAcceptedByClang((*JA.input_begin())->getType()))
4778     return false;
4779 
4780   // And say "no" if this is not a kind of action clang understands.
4781   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4782       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4783     return false;
4784 
4785   return true;
4786 }
4787 
4788 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4789 /// grouped values as integers. Numbers which are not provided are set to 0.
4790 ///
4791 /// \return True if the entire string was parsed (9.2), or all groups were
4792 /// parsed (10.3.5extrastuff).
4793 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4794                                unsigned &Micro, bool &HadExtra) {
4795   HadExtra = false;
4796 
4797   Major = Minor = Micro = 0;
4798   if (Str.empty())
4799     return false;
4800 
4801   if (Str.consumeInteger(10, Major))
4802     return false;
4803   if (Str.empty())
4804     return true;
4805   if (Str[0] != '.')
4806     return false;
4807 
4808   Str = Str.drop_front(1);
4809 
4810   if (Str.consumeInteger(10, Minor))
4811     return false;
4812   if (Str.empty())
4813     return true;
4814   if (Str[0] != '.')
4815     return false;
4816   Str = Str.drop_front(1);
4817 
4818   if (Str.consumeInteger(10, Micro))
4819     return false;
4820   if (!Str.empty())
4821     HadExtra = true;
4822   return true;
4823 }
4824 
4825 /// Parse digits from a string \p Str and fulfill \p Digits with
4826 /// the parsed numbers. This method assumes that the max number of
4827 /// digits to look for is equal to Digits.size().
4828 ///
4829 /// \return True if the entire string was parsed and there are
4830 /// no extra characters remaining at the end.
4831 bool Driver::GetReleaseVersion(StringRef Str,
4832                                MutableArrayRef<unsigned> Digits) {
4833   if (Str.empty())
4834     return false;
4835 
4836   unsigned CurDigit = 0;
4837   while (CurDigit < Digits.size()) {
4838     unsigned Digit;
4839     if (Str.consumeInteger(10, Digit))
4840       return false;
4841     Digits[CurDigit] = Digit;
4842     if (Str.empty())
4843       return true;
4844     if (Str[0] != '.')
4845       return false;
4846     Str = Str.drop_front(1);
4847     CurDigit++;
4848   }
4849 
4850   // More digits than requested, bail out...
4851   return false;
4852 }
4853 
4854 std::pair<unsigned, unsigned>
4855 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
4856   unsigned IncludedFlagsBitmask = 0;
4857   unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4858 
4859   if (IsClCompatMode) {
4860     // Include CL and Core options.
4861     IncludedFlagsBitmask |= options::CLOption;
4862     IncludedFlagsBitmask |= options::CoreOption;
4863   } else {
4864     ExcludedFlagsBitmask |= options::CLOption;
4865   }
4866 
4867   return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4868 }
4869 
4870 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4871   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4872 }
4873