1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "InputInfo.h" 11 #include "ToolChains/AMDGPU.h" 12 #include "ToolChains/AVR.h" 13 #include "ToolChains/Ananas.h" 14 #include "ToolChains/BareMetal.h" 15 #include "ToolChains/Clang.h" 16 #include "ToolChains/CloudABI.h" 17 #include "ToolChains/Contiki.h" 18 #include "ToolChains/CrossWindows.h" 19 #include "ToolChains/Cuda.h" 20 #include "ToolChains/Darwin.h" 21 #include "ToolChains/DragonFly.h" 22 #include "ToolChains/FreeBSD.h" 23 #include "ToolChains/Fuchsia.h" 24 #include "ToolChains/Gnu.h" 25 #include "ToolChains/HIP.h" 26 #include "ToolChains/Haiku.h" 27 #include "ToolChains/Hexagon.h" 28 #include "ToolChains/Hurd.h" 29 #include "ToolChains/Lanai.h" 30 #include "ToolChains/Linux.h" 31 #include "ToolChains/MSP430.h" 32 #include "ToolChains/MSVC.h" 33 #include "ToolChains/MinGW.h" 34 #include "ToolChains/Minix.h" 35 #include "ToolChains/MipsLinux.h" 36 #include "ToolChains/Myriad.h" 37 #include "ToolChains/NaCl.h" 38 #include "ToolChains/NetBSD.h" 39 #include "ToolChains/OpenBSD.h" 40 #include "ToolChains/PS4CPU.h" 41 #include "ToolChains/PPCLinux.h" 42 #include "ToolChains/RISCVToolchain.h" 43 #include "ToolChains/Solaris.h" 44 #include "ToolChains/TCE.h" 45 #include "ToolChains/WebAssembly.h" 46 #include "ToolChains/XCore.h" 47 #include "clang/Basic/Version.h" 48 #include "clang/Config/config.h" 49 #include "clang/Driver/Action.h" 50 #include "clang/Driver/Compilation.h" 51 #include "clang/Driver/DriverDiagnostic.h" 52 #include "clang/Driver/Job.h" 53 #include "clang/Driver/Options.h" 54 #include "clang/Driver/SanitizerArgs.h" 55 #include "clang/Driver/Tool.h" 56 #include "clang/Driver/ToolChain.h" 57 #include "llvm/ADT/ArrayRef.h" 58 #include "llvm/ADT/STLExtras.h" 59 #include "llvm/ADT/SmallSet.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/ADT/StringSet.h" 62 #include "llvm/ADT/StringSwitch.h" 63 #include "llvm/Config/llvm-config.h" 64 #include "llvm/Option/Arg.h" 65 #include "llvm/Option/ArgList.h" 66 #include "llvm/Option/OptSpecifier.h" 67 #include "llvm/Option/OptTable.h" 68 #include "llvm/Option/Option.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/FileSystem.h" 72 #include "llvm/Support/FormatVariadic.h" 73 #include "llvm/Support/Path.h" 74 #include "llvm/Support/PrettyStackTrace.h" 75 #include "llvm/Support/Process.h" 76 #include "llvm/Support/Program.h" 77 #include "llvm/Support/StringSaver.h" 78 #include "llvm/Support/TargetRegistry.h" 79 #include "llvm/Support/VirtualFileSystem.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include <map> 82 #include <memory> 83 #include <utility> 84 #if LLVM_ON_UNIX 85 #include <unistd.h> // getpid 86 #include <sysexits.h> // EX_IOERR 87 #endif 88 89 using namespace clang::driver; 90 using namespace clang; 91 using namespace llvm::opt; 92 93 // static 94 std::string Driver::GetResourcesPath(StringRef BinaryPath, 95 StringRef CustomResourceDir) { 96 // Since the resource directory is embedded in the module hash, it's important 97 // that all places that need it call this function, so that they get the 98 // exact same string ("a/../b/" and "b/" get different hashes, for example). 99 100 // Dir is bin/ or lib/, depending on where BinaryPath is. 101 std::string Dir = llvm::sys::path::parent_path(BinaryPath); 102 103 SmallString<128> P(Dir); 104 if (CustomResourceDir != "") { 105 llvm::sys::path::append(P, CustomResourceDir); 106 } else { 107 // On Windows, libclang.dll is in bin/. 108 // On non-Windows, libclang.so/.dylib is in lib/. 109 // With a static-library build of libclang, LibClangPath will contain the 110 // path of the embedding binary, which for LLVM binaries will be in bin/. 111 // ../lib gets us to lib/ in both cases. 112 P = llvm::sys::path::parent_path(Dir); 113 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", 114 CLANG_VERSION_STRING); 115 } 116 117 return P.str(); 118 } 119 120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 121 DiagnosticsEngine &Diags, 122 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 123 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), 124 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None), 125 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), 126 DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr), 127 CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr), 128 CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false), 129 CCLogDiagnostics(false), CCGenDiagnostics(false), 130 TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc), 131 CheckInputsExist(true), GenReproducer(false), 132 SuppressMissingInputWarning(false) { 133 134 // Provide a sane fallback if no VFS is specified. 135 if (!this->VFS) 136 this->VFS = llvm::vfs::getRealFileSystem(); 137 138 Name = llvm::sys::path::filename(ClangExecutable); 139 Dir = llvm::sys::path::parent_path(ClangExecutable); 140 InstalledDir = Dir; // Provide a sensible default installed dir. 141 142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 143 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 144 #endif 145 #if defined(CLANG_CONFIG_FILE_USER_DIR) 146 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 147 #endif 148 149 // Compute the path to the resource directory. 150 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); 151 } 152 153 void Driver::ParseDriverMode(StringRef ProgramName, 154 ArrayRef<const char *> Args) { 155 if (ClangNameParts.isEmpty()) 156 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 157 setDriverModeFromOption(ClangNameParts.DriverMode); 158 159 for (const char *ArgPtr : Args) { 160 // Ignore nullptrs, they are the response file's EOL markers. 161 if (ArgPtr == nullptr) 162 continue; 163 const StringRef Arg = ArgPtr; 164 setDriverModeFromOption(Arg); 165 } 166 } 167 168 void Driver::setDriverModeFromOption(StringRef Opt) { 169 const std::string OptName = 170 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 171 if (!Opt.startswith(OptName)) 172 return; 173 StringRef Value = Opt.drop_front(OptName.size()); 174 175 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 176 .Case("gcc", GCCMode) 177 .Case("g++", GXXMode) 178 .Case("cpp", CPPMode) 179 .Case("cl", CLMode) 180 .Default(None)) 181 Mode = *M; 182 else 183 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 184 } 185 186 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 187 bool IsClCompatMode, 188 bool &ContainsError) { 189 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 190 ContainsError = false; 191 192 unsigned IncludedFlagsBitmask; 193 unsigned ExcludedFlagsBitmask; 194 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 195 getIncludeExcludeOptionFlagMasks(IsClCompatMode); 196 197 unsigned MissingArgIndex, MissingArgCount; 198 InputArgList Args = 199 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 200 IncludedFlagsBitmask, ExcludedFlagsBitmask); 201 202 // Check for missing argument error. 203 if (MissingArgCount) { 204 Diag(diag::err_drv_missing_argument) 205 << Args.getArgString(MissingArgIndex) << MissingArgCount; 206 ContainsError |= 207 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 208 SourceLocation()) > DiagnosticsEngine::Warning; 209 } 210 211 // Check for unsupported options. 212 for (const Arg *A : Args) { 213 if (A->getOption().hasFlag(options::Unsupported)) { 214 unsigned DiagID; 215 auto ArgString = A->getAsString(Args); 216 std::string Nearest; 217 if (getOpts().findNearest( 218 ArgString, Nearest, IncludedFlagsBitmask, 219 ExcludedFlagsBitmask | options::Unsupported) > 1) { 220 DiagID = diag::err_drv_unsupported_opt; 221 Diag(DiagID) << ArgString; 222 } else { 223 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 224 Diag(DiagID) << ArgString << Nearest; 225 } 226 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 227 DiagnosticsEngine::Warning; 228 continue; 229 } 230 231 // Warn about -mcpu= without an argument. 232 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 233 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 234 ContainsError |= Diags.getDiagnosticLevel( 235 diag::warn_drv_empty_joined_argument, 236 SourceLocation()) > DiagnosticsEngine::Warning; 237 } 238 } 239 240 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 241 unsigned DiagID; 242 auto ArgString = A->getAsString(Args); 243 std::string Nearest; 244 if (getOpts().findNearest( 245 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 246 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 247 : diag::err_drv_unknown_argument; 248 Diags.Report(DiagID) << ArgString; 249 } else { 250 DiagID = IsCLMode() 251 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 252 : diag::err_drv_unknown_argument_with_suggestion; 253 Diags.Report(DiagID) << ArgString << Nearest; 254 } 255 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 256 DiagnosticsEngine::Warning; 257 } 258 259 return Args; 260 } 261 262 // Determine which compilation mode we are in. We look for options which 263 // affect the phase, starting with the earliest phases, and record which 264 // option we used to determine the final phase. 265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 266 Arg **FinalPhaseArg) const { 267 Arg *PhaseArg = nullptr; 268 phases::ID FinalPhase; 269 270 // -{E,EP,P,M,MM} only run the preprocessor. 271 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 272 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 273 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 274 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 275 FinalPhase = phases::Preprocess; 276 277 // --precompile only runs up to precompilation. 278 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 279 FinalPhase = phases::Precompile; 280 281 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 282 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 283 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 284 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 285 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 286 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 287 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 288 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 289 (PhaseArg = DAL.getLastArg(options::OPT_emit_iterface_stubs)) || 290 (PhaseArg = DAL.getLastArg(options::OPT__analyze, 291 options::OPT__analyze_auto)) || 292 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 293 FinalPhase = phases::Compile; 294 295 // -S only runs up to the backend. 296 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 297 FinalPhase = phases::Backend; 298 299 // -c compilation only runs up to the assembler. 300 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 301 FinalPhase = phases::Assemble; 302 303 // Otherwise do everything. 304 } else 305 FinalPhase = phases::Link; 306 307 if (FinalPhaseArg) 308 *FinalPhaseArg = PhaseArg; 309 310 return FinalPhase; 311 } 312 313 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, 314 StringRef Value, bool Claim = true) { 315 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 316 Args.getBaseArgs().MakeIndex(Value), Value.data()); 317 Args.AddSynthesizedArg(A); 318 if (Claim) 319 A->claim(); 320 return A; 321 } 322 323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 324 const llvm::opt::OptTable &Opts = getOpts(); 325 DerivedArgList *DAL = new DerivedArgList(Args); 326 327 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 328 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 329 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 330 for (Arg *A : Args) { 331 // Unfortunately, we have to parse some forwarding options (-Xassembler, 332 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 333 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 334 335 // Rewrite linker options, to replace --no-demangle with a custom internal 336 // option. 337 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 338 A->getOption().matches(options::OPT_Xlinker)) && 339 A->containsValue("--no-demangle")) { 340 // Add the rewritten no-demangle argument. 341 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); 342 343 // Add the remaining values as Xlinker arguments. 344 for (StringRef Val : A->getValues()) 345 if (Val != "--no-demangle") 346 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); 347 348 continue; 349 } 350 351 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 352 // some build systems. We don't try to be complete here because we don't 353 // care to encourage this usage model. 354 if (A->getOption().matches(options::OPT_Wp_COMMA) && 355 (A->getValue(0) == StringRef("-MD") || 356 A->getValue(0) == StringRef("-MMD"))) { 357 // Rewrite to -MD/-MMD along with -MF. 358 if (A->getValue(0) == StringRef("-MD")) 359 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); 360 else 361 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); 362 if (A->getNumValues() == 2) 363 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); 364 continue; 365 } 366 367 // Rewrite reserved library names. 368 if (A->getOption().matches(options::OPT_l)) { 369 StringRef Value = A->getValue(); 370 371 // Rewrite unless -nostdlib is present. 372 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 373 Value == "stdc++") { 374 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); 375 continue; 376 } 377 378 // Rewrite unconditionally. 379 if (Value == "cc_kext") { 380 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); 381 continue; 382 } 383 } 384 385 // Pick up inputs via the -- option. 386 if (A->getOption().matches(options::OPT__DASH_DASH)) { 387 A->claim(); 388 for (StringRef Val : A->getValues()) 389 DAL->append(MakeInputArg(*DAL, Opts, Val, false)); 390 continue; 391 } 392 393 DAL->append(A); 394 } 395 396 // Enforce -static if -miamcu is present. 397 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 398 DAL->AddFlagArg(0, Opts.getOption(options::OPT_static)); 399 400 // Add a default value of -mlinker-version=, if one was given and the user 401 // didn't specify one. 402 #if defined(HOST_LINK_VERSION) 403 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 404 strlen(HOST_LINK_VERSION) > 0) { 405 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), 406 HOST_LINK_VERSION); 407 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 408 } 409 #endif 410 411 return DAL; 412 } 413 414 /// Compute target triple from args. 415 /// 416 /// This routine provides the logic to compute a target triple from various 417 /// args passed to the driver and the default triple string. 418 static llvm::Triple computeTargetTriple(const Driver &D, 419 StringRef TargetTriple, 420 const ArgList &Args, 421 StringRef DarwinArchName = "") { 422 // FIXME: Already done in Compilation *Driver::BuildCompilation 423 if (const Arg *A = Args.getLastArg(options::OPT_target)) 424 TargetTriple = A->getValue(); 425 426 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 427 428 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 429 // -gnu* only, and we can not change this, so we have to detect that case as 430 // being the Hurd OS. 431 if (TargetTriple.find("-unknown-gnu") != StringRef::npos || 432 TargetTriple.find("-pc-gnu") != StringRef::npos) 433 Target.setOSName("hurd"); 434 435 // Handle Apple-specific options available here. 436 if (Target.isOSBinFormatMachO()) { 437 // If an explicit Darwin arch name is given, that trumps all. 438 if (!DarwinArchName.empty()) { 439 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 440 return Target; 441 } 442 443 // Handle the Darwin '-arch' flag. 444 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 445 StringRef ArchName = A->getValue(); 446 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 447 } 448 } 449 450 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 451 // '-mbig-endian'/'-EB'. 452 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 453 options::OPT_mbig_endian)) { 454 if (A->getOption().matches(options::OPT_mlittle_endian)) { 455 llvm::Triple LE = Target.getLittleEndianArchVariant(); 456 if (LE.getArch() != llvm::Triple::UnknownArch) 457 Target = std::move(LE); 458 } else { 459 llvm::Triple BE = Target.getBigEndianArchVariant(); 460 if (BE.getArch() != llvm::Triple::UnknownArch) 461 Target = std::move(BE); 462 } 463 } 464 465 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 466 if (Target.getArch() == llvm::Triple::tce || 467 Target.getOS() == llvm::Triple::Minix) 468 return Target; 469 470 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 471 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 472 options::OPT_m32, options::OPT_m16); 473 if (A) { 474 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 475 476 if (A->getOption().matches(options::OPT_m64)) { 477 AT = Target.get64BitArchVariant().getArch(); 478 if (Target.getEnvironment() == llvm::Triple::GNUX32) 479 Target.setEnvironment(llvm::Triple::GNU); 480 } else if (A->getOption().matches(options::OPT_mx32) && 481 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 482 AT = llvm::Triple::x86_64; 483 Target.setEnvironment(llvm::Triple::GNUX32); 484 } else if (A->getOption().matches(options::OPT_m32)) { 485 AT = Target.get32BitArchVariant().getArch(); 486 if (Target.getEnvironment() == llvm::Triple::GNUX32) 487 Target.setEnvironment(llvm::Triple::GNU); 488 } else if (A->getOption().matches(options::OPT_m16) && 489 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 490 AT = llvm::Triple::x86; 491 Target.setEnvironment(llvm::Triple::CODE16); 492 } 493 494 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 495 Target.setArch(AT); 496 } 497 498 // Handle -miamcu flag. 499 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 500 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 501 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 502 << Target.str(); 503 504 if (A && !A->getOption().matches(options::OPT_m32)) 505 D.Diag(diag::err_drv_argument_not_allowed_with) 506 << "-miamcu" << A->getBaseArg().getAsString(Args); 507 508 Target.setArch(llvm::Triple::x86); 509 Target.setArchName("i586"); 510 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 511 Target.setEnvironmentName(""); 512 Target.setOS(llvm::Triple::ELFIAMCU); 513 Target.setVendor(llvm::Triple::UnknownVendor); 514 Target.setVendorName("intel"); 515 } 516 517 // If target is MIPS adjust the target triple 518 // accordingly to provided ABI name. 519 A = Args.getLastArg(options::OPT_mabi_EQ); 520 if (A && Target.isMIPS()) { 521 StringRef ABIName = A->getValue(); 522 if (ABIName == "32") { 523 Target = Target.get32BitArchVariant(); 524 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 525 Target.getEnvironment() == llvm::Triple::GNUABIN32) 526 Target.setEnvironment(llvm::Triple::GNU); 527 } else if (ABIName == "n32") { 528 Target = Target.get64BitArchVariant(); 529 if (Target.getEnvironment() == llvm::Triple::GNU || 530 Target.getEnvironment() == llvm::Triple::GNUABI64) 531 Target.setEnvironment(llvm::Triple::GNUABIN32); 532 } else if (ABIName == "64") { 533 Target = Target.get64BitArchVariant(); 534 if (Target.getEnvironment() == llvm::Triple::GNU || 535 Target.getEnvironment() == llvm::Triple::GNUABIN32) 536 Target.setEnvironment(llvm::Triple::GNUABI64); 537 } 538 } 539 540 return Target; 541 } 542 543 // Parse the LTO options and record the type of LTO compilation 544 // based on which -f(no-)?lto(=.*)? option occurs last. 545 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 546 LTOMode = LTOK_None; 547 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 548 options::OPT_fno_lto, false)) 549 return; 550 551 StringRef LTOName("full"); 552 553 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 554 if (A) 555 LTOName = A->getValue(); 556 557 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 558 .Case("full", LTOK_Full) 559 .Case("thin", LTOK_Thin) 560 .Default(LTOK_Unknown); 561 562 if (LTOMode == LTOK_Unknown) { 563 assert(A); 564 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 565 << A->getValue(); 566 } 567 } 568 569 /// Compute the desired OpenMP runtime from the flags provided. 570 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 571 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 572 573 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 574 if (A) 575 RuntimeName = A->getValue(); 576 577 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 578 .Case("libomp", OMPRT_OMP) 579 .Case("libgomp", OMPRT_GOMP) 580 .Case("libiomp5", OMPRT_IOMP5) 581 .Default(OMPRT_Unknown); 582 583 if (RT == OMPRT_Unknown) { 584 if (A) 585 Diag(diag::err_drv_unsupported_option_argument) 586 << A->getOption().getName() << A->getValue(); 587 else 588 // FIXME: We could use a nicer diagnostic here. 589 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 590 } 591 592 return RT; 593 } 594 595 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 596 InputList &Inputs) { 597 598 // 599 // CUDA/HIP 600 // 601 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 602 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 603 bool IsCuda = 604 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 605 return types::isCuda(I.first); 606 }); 607 bool IsHIP = 608 llvm::any_of(Inputs, 609 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 610 return types::isHIP(I.first); 611 }) || 612 C.getInputArgs().hasArg(options::OPT_hip_link); 613 if (IsCuda && IsHIP) { 614 Diag(clang::diag::err_drv_mix_cuda_hip); 615 return; 616 } 617 if (IsCuda) { 618 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 619 const llvm::Triple &HostTriple = HostTC->getTriple(); 620 StringRef DeviceTripleStr; 621 auto OFK = Action::OFK_Cuda; 622 DeviceTripleStr = 623 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; 624 llvm::Triple CudaTriple(DeviceTripleStr); 625 // Use the CUDA and host triples as the key into the ToolChains map, 626 // because the device toolchain we create depends on both. 627 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 628 if (!CudaTC) { 629 CudaTC = std::make_unique<toolchains::CudaToolChain>( 630 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); 631 } 632 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 633 } else if (IsHIP) { 634 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 635 const llvm::Triple &HostTriple = HostTC->getTriple(); 636 StringRef DeviceTripleStr; 637 auto OFK = Action::OFK_HIP; 638 DeviceTripleStr = "amdgcn-amd-amdhsa"; 639 llvm::Triple HIPTriple(DeviceTripleStr); 640 // Use the HIP and host triples as the key into the ToolChains map, 641 // because the device toolchain we create depends on both. 642 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; 643 if (!HIPTC) { 644 HIPTC = std::make_unique<toolchains::HIPToolChain>( 645 *this, HIPTriple, *HostTC, C.getInputArgs()); 646 } 647 C.addOffloadDeviceToolChain(HIPTC.get(), OFK); 648 } 649 650 // 651 // OpenMP 652 // 653 // We need to generate an OpenMP toolchain if the user specified targets with 654 // the -fopenmp-targets option. 655 if (Arg *OpenMPTargets = 656 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 657 if (OpenMPTargets->getNumValues()) { 658 // We expect that -fopenmp-targets is always used in conjunction with the 659 // option -fopenmp specifying a valid runtime with offloading support, 660 // i.e. libomp or libiomp. 661 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 662 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 663 options::OPT_fno_openmp, false); 664 if (HasValidOpenMPRuntime) { 665 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 666 HasValidOpenMPRuntime = 667 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 668 } 669 670 if (HasValidOpenMPRuntime) { 671 llvm::StringMap<const char *> FoundNormalizedTriples; 672 for (const char *Val : OpenMPTargets->getValues()) { 673 llvm::Triple TT(Val); 674 std::string NormalizedName = TT.normalize(); 675 676 // Make sure we don't have a duplicate triple. 677 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 678 if (Duplicate != FoundNormalizedTriples.end()) { 679 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 680 << Val << Duplicate->second; 681 continue; 682 } 683 684 // Store the current triple so that we can check for duplicates in the 685 // following iterations. 686 FoundNormalizedTriples[NormalizedName] = Val; 687 688 // If the specified target is invalid, emit a diagnostic. 689 if (TT.getArch() == llvm::Triple::UnknownArch) 690 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 691 else { 692 const ToolChain *TC; 693 // CUDA toolchains have to be selected differently. They pair host 694 // and device in their implementation. 695 if (TT.isNVPTX()) { 696 const ToolChain *HostTC = 697 C.getSingleOffloadToolChain<Action::OFK_Host>(); 698 assert(HostTC && "Host toolchain should be always defined."); 699 auto &CudaTC = 700 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 701 if (!CudaTC) 702 CudaTC = std::make_unique<toolchains::CudaToolChain>( 703 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 704 TC = CudaTC.get(); 705 } else 706 TC = &getToolChain(C.getInputArgs(), TT); 707 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 708 } 709 } 710 } else 711 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 712 } else 713 Diag(clang::diag::warn_drv_empty_joined_argument) 714 << OpenMPTargets->getAsString(C.getInputArgs()); 715 } 716 717 // 718 // TODO: Add support for other offloading programming models here. 719 // 720 } 721 722 /// Looks the given directories for the specified file. 723 /// 724 /// \param[out] FilePath File path, if the file was found. 725 /// \param[in] Dirs Directories used for the search. 726 /// \param[in] FileName Name of the file to search for. 727 /// \return True if file was found. 728 /// 729 /// Looks for file specified by FileName sequentially in directories specified 730 /// by Dirs. 731 /// 732 static bool searchForFile(SmallVectorImpl<char> &FilePath, 733 ArrayRef<std::string> Dirs, 734 StringRef FileName) { 735 SmallString<128> WPath; 736 for (const StringRef &Dir : Dirs) { 737 if (Dir.empty()) 738 continue; 739 WPath.clear(); 740 llvm::sys::path::append(WPath, Dir, FileName); 741 llvm::sys::path::native(WPath); 742 if (llvm::sys::fs::is_regular_file(WPath)) { 743 FilePath = std::move(WPath); 744 return true; 745 } 746 } 747 return false; 748 } 749 750 bool Driver::readConfigFile(StringRef FileName) { 751 // Try reading the given file. 752 SmallVector<const char *, 32> NewCfgArgs; 753 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 754 Diag(diag::err_drv_cannot_read_config_file) << FileName; 755 return true; 756 } 757 758 // Read options from config file. 759 llvm::SmallString<128> CfgFileName(FileName); 760 llvm::sys::path::native(CfgFileName); 761 ConfigFile = CfgFileName.str(); 762 bool ContainErrors; 763 CfgOptions = std::make_unique<InputArgList>( 764 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); 765 if (ContainErrors) { 766 CfgOptions.reset(); 767 return true; 768 } 769 770 if (CfgOptions->hasArg(options::OPT_config)) { 771 CfgOptions.reset(); 772 Diag(diag::err_drv_nested_config_file); 773 return true; 774 } 775 776 // Claim all arguments that come from a configuration file so that the driver 777 // does not warn on any that is unused. 778 for (Arg *A : *CfgOptions) 779 A->claim(); 780 return false; 781 } 782 783 bool Driver::loadConfigFile() { 784 std::string CfgFileName; 785 bool FileSpecifiedExplicitly = false; 786 787 // Process options that change search path for config files. 788 if (CLOptions) { 789 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 790 SmallString<128> CfgDir; 791 CfgDir.append( 792 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 793 if (!CfgDir.empty()) { 794 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 795 SystemConfigDir.clear(); 796 else 797 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 798 } 799 } 800 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 801 SmallString<128> CfgDir; 802 CfgDir.append( 803 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 804 if (!CfgDir.empty()) { 805 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 806 UserConfigDir.clear(); 807 else 808 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 809 } 810 } 811 } 812 813 // First try to find config file specified in command line. 814 if (CLOptions) { 815 std::vector<std::string> ConfigFiles = 816 CLOptions->getAllArgValues(options::OPT_config); 817 if (ConfigFiles.size() > 1) { 818 Diag(diag::err_drv_duplicate_config); 819 return true; 820 } 821 822 if (!ConfigFiles.empty()) { 823 CfgFileName = ConfigFiles.front(); 824 assert(!CfgFileName.empty()); 825 826 // If argument contains directory separator, treat it as a path to 827 // configuration file. 828 if (llvm::sys::path::has_parent_path(CfgFileName)) { 829 SmallString<128> CfgFilePath; 830 if (llvm::sys::path::is_relative(CfgFileName)) 831 llvm::sys::fs::current_path(CfgFilePath); 832 llvm::sys::path::append(CfgFilePath, CfgFileName); 833 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 834 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 835 return true; 836 } 837 return readConfigFile(CfgFilePath); 838 } 839 840 FileSpecifiedExplicitly = true; 841 } 842 } 843 844 // If config file is not specified explicitly, try to deduce configuration 845 // from executable name. For instance, an executable 'armv7l-clang' will 846 // search for config file 'armv7l-clang.cfg'. 847 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 848 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 849 850 if (CfgFileName.empty()) 851 return false; 852 853 // Determine architecture part of the file name, if it is present. 854 StringRef CfgFileArch = CfgFileName; 855 size_t ArchPrefixLen = CfgFileArch.find('-'); 856 if (ArchPrefixLen == StringRef::npos) 857 ArchPrefixLen = CfgFileArch.size(); 858 llvm::Triple CfgTriple; 859 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 860 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 861 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 862 ArchPrefixLen = 0; 863 864 if (!StringRef(CfgFileName).endswith(".cfg")) 865 CfgFileName += ".cfg"; 866 867 // If config file starts with architecture name and command line options 868 // redefine architecture (with options like -m32 -LE etc), try finding new 869 // config file with that architecture. 870 SmallString<128> FixedConfigFile; 871 size_t FixedArchPrefixLen = 0; 872 if (ArchPrefixLen) { 873 // Get architecture name from config file name like 'i386.cfg' or 874 // 'armv7l-clang.cfg'. 875 // Check if command line options changes effective triple. 876 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 877 CfgTriple.getTriple(), *CLOptions); 878 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 879 FixedConfigFile = EffectiveTriple.getArchName(); 880 FixedArchPrefixLen = FixedConfigFile.size(); 881 // Append the rest of original file name so that file name transforms 882 // like: i386-clang.cfg -> x86_64-clang.cfg. 883 if (ArchPrefixLen < CfgFileName.size()) 884 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 885 } 886 } 887 888 // Prepare list of directories where config file is searched for. 889 SmallVector<std::string, 3> CfgFileSearchDirs; 890 CfgFileSearchDirs.push_back(UserConfigDir); 891 CfgFileSearchDirs.push_back(SystemConfigDir); 892 CfgFileSearchDirs.push_back(Dir); 893 894 // Try to find config file. First try file with corrected architecture. 895 llvm::SmallString<128> CfgFilePath; 896 if (!FixedConfigFile.empty()) { 897 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 898 return readConfigFile(CfgFilePath); 899 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 900 FixedConfigFile.resize(FixedArchPrefixLen); 901 FixedConfigFile.append(".cfg"); 902 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 903 return readConfigFile(CfgFilePath); 904 } 905 906 // Then try original file name. 907 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 908 return readConfigFile(CfgFilePath); 909 910 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 911 if (!ClangNameParts.ModeSuffix.empty() && 912 !ClangNameParts.TargetPrefix.empty()) { 913 CfgFileName.assign(ClangNameParts.TargetPrefix); 914 CfgFileName.append(".cfg"); 915 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 916 return readConfigFile(CfgFilePath); 917 } 918 919 // Report error but only if config file was specified explicitly, by option 920 // --config. If it was deduced from executable name, it is not an error. 921 if (FileSpecifiedExplicitly) { 922 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 923 for (const std::string &SearchDir : CfgFileSearchDirs) 924 if (!SearchDir.empty()) 925 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 926 return true; 927 } 928 929 return false; 930 } 931 932 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 933 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 934 935 // FIXME: Handle environment options which affect driver behavior, somewhere 936 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 937 938 if (Optional<std::string> CompilerPathValue = 939 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 940 StringRef CompilerPath = *CompilerPathValue; 941 while (!CompilerPath.empty()) { 942 std::pair<StringRef, StringRef> Split = 943 CompilerPath.split(llvm::sys::EnvPathSeparator); 944 PrefixDirs.push_back(Split.first); 945 CompilerPath = Split.second; 946 } 947 } 948 949 // We look for the driver mode option early, because the mode can affect 950 // how other options are parsed. 951 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 952 953 // FIXME: What are we going to do with -V and -b? 954 955 // Arguments specified in command line. 956 bool ContainsError; 957 CLOptions = std::make_unique<InputArgList>( 958 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); 959 960 // Try parsing configuration file. 961 if (!ContainsError) 962 ContainsError = loadConfigFile(); 963 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 964 965 // All arguments, from both config file and command line. 966 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 967 : std::move(*CLOptions)); 968 969 // The args for config files or /clang: flags belong to different InputArgList 970 // objects than Args. This copies an Arg from one of those other InputArgLists 971 // to the ownership of Args. 972 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { 973 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 974 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), 975 Index, BaseArg); 976 Copy->getValues() = Opt->getValues(); 977 if (Opt->isClaimed()) 978 Copy->claim(); 979 Args.append(Copy); 980 }; 981 982 if (HasConfigFile) 983 for (auto *Opt : *CLOptions) { 984 if (Opt->getOption().matches(options::OPT_config)) 985 continue; 986 const Arg *BaseArg = &Opt->getBaseArg(); 987 if (BaseArg == Opt) 988 BaseArg = nullptr; 989 appendOneArg(Opt, BaseArg); 990 } 991 992 // In CL mode, look for any pass-through arguments 993 if (IsCLMode() && !ContainsError) { 994 SmallVector<const char *, 16> CLModePassThroughArgList; 995 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 996 A->claim(); 997 CLModePassThroughArgList.push_back(A->getValue()); 998 } 999 1000 if (!CLModePassThroughArgList.empty()) { 1001 // Parse any pass through args using default clang processing rather 1002 // than clang-cl processing. 1003 auto CLModePassThroughOptions = std::make_unique<InputArgList>( 1004 ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); 1005 1006 if (!ContainsError) 1007 for (auto *Opt : *CLModePassThroughOptions) { 1008 appendOneArg(Opt, nullptr); 1009 } 1010 } 1011 } 1012 1013 // FIXME: This stuff needs to go into the Compilation, not the driver. 1014 bool CCCPrintPhases; 1015 1016 // Silence driver warnings if requested 1017 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 1018 1019 // -no-canonical-prefixes is used very early in main. 1020 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1021 1022 // Ignore -pipe. 1023 Args.ClaimAllArgs(options::OPT_pipe); 1024 1025 // Extract -ccc args. 1026 // 1027 // FIXME: We need to figure out where this behavior should live. Most of it 1028 // should be outside in the client; the parts that aren't should have proper 1029 // options, either by introducing new ones or by overloading gcc ones like -V 1030 // or -b. 1031 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1032 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1033 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1034 CCCGenericGCCName = A->getValue(); 1035 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 1036 options::OPT_fno_crash_diagnostics, 1037 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 1038 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1039 // and getToolChain is const. 1040 if (IsCLMode()) { 1041 // clang-cl targets MSVC-style Win32. 1042 llvm::Triple T(TargetTriple); 1043 T.setOS(llvm::Triple::Win32); 1044 T.setVendor(llvm::Triple::PC); 1045 T.setEnvironment(llvm::Triple::MSVC); 1046 T.setObjectFormat(llvm::Triple::COFF); 1047 TargetTriple = T.str(); 1048 } 1049 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1050 TargetTriple = A->getValue(); 1051 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1052 Dir = InstalledDir = A->getValue(); 1053 for (const Arg *A : Args.filtered(options::OPT_B)) { 1054 A->claim(); 1055 PrefixDirs.push_back(A->getValue(0)); 1056 } 1057 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1058 SysRoot = A->getValue(); 1059 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1060 DyldPrefix = A->getValue(); 1061 1062 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1063 ResourceDir = A->getValue(); 1064 1065 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1066 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1067 .Case("cwd", SaveTempsCwd) 1068 .Case("obj", SaveTempsObj) 1069 .Default(SaveTempsCwd); 1070 } 1071 1072 setLTOMode(Args); 1073 1074 // Process -fembed-bitcode= flags. 1075 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1076 StringRef Name = A->getValue(); 1077 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1078 .Case("off", EmbedNone) 1079 .Case("all", EmbedBitcode) 1080 .Case("bitcode", EmbedBitcode) 1081 .Case("marker", EmbedMarker) 1082 .Default(~0U); 1083 if (Model == ~0U) { 1084 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1085 << Name; 1086 } else 1087 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1088 } 1089 1090 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1091 std::make_unique<InputArgList>(std::move(Args)); 1092 1093 // Perform the default argument translations. 1094 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1095 1096 // Owned by the host. 1097 const ToolChain &TC = getToolChain( 1098 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1099 1100 // The compilation takes ownership of Args. 1101 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1102 ContainsError); 1103 1104 if (!HandleImmediateArgs(*C)) 1105 return C; 1106 1107 // Construct the list of inputs. 1108 InputList Inputs; 1109 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1110 1111 // Populate the tool chains for the offloading devices, if any. 1112 CreateOffloadingDeviceToolChains(*C, Inputs); 1113 1114 // Construct the list of abstract actions to perform for this compilation. On 1115 // MachO targets this uses the driver-driver and universal actions. 1116 if (TC.getTriple().isOSBinFormatMachO()) 1117 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1118 else 1119 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1120 1121 if (CCCPrintPhases) { 1122 PrintActions(*C); 1123 return C; 1124 } 1125 1126 BuildJobs(*C); 1127 1128 return C; 1129 } 1130 1131 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1132 llvm::opt::ArgStringList ASL; 1133 for (const auto *A : Args) 1134 A->render(Args, ASL); 1135 1136 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1137 if (I != ASL.begin()) 1138 OS << ' '; 1139 Command::printArg(OS, *I, true); 1140 } 1141 OS << '\n'; 1142 } 1143 1144 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1145 SmallString<128> &CrashDiagDir) { 1146 using namespace llvm::sys; 1147 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1148 "Only knows about .crash files on Darwin"); 1149 1150 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1151 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1152 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1153 path::home_directory(CrashDiagDir); 1154 if (CrashDiagDir.startswith("/var/root")) 1155 CrashDiagDir = "/"; 1156 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1157 int PID = 1158 #if LLVM_ON_UNIX 1159 getpid(); 1160 #else 1161 0; 1162 #endif 1163 std::error_code EC; 1164 fs::file_status FileStatus; 1165 TimePoint<> LastAccessTime; 1166 SmallString<128> CrashFilePath; 1167 // Lookup the .crash files and get the one generated by a subprocess spawned 1168 // by this driver invocation. 1169 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1170 File != FileEnd && !EC; File.increment(EC)) { 1171 StringRef FileName = path::filename(File->path()); 1172 if (!FileName.startswith(Name)) 1173 continue; 1174 if (fs::status(File->path(), FileStatus)) 1175 continue; 1176 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1177 llvm::MemoryBuffer::getFile(File->path()); 1178 if (!CrashFile) 1179 continue; 1180 // The first line should start with "Process:", otherwise this isn't a real 1181 // .crash file. 1182 StringRef Data = CrashFile.get()->getBuffer(); 1183 if (!Data.startswith("Process:")) 1184 continue; 1185 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1186 size_t ParentProcPos = Data.find("Parent Process:"); 1187 if (ParentProcPos == StringRef::npos) 1188 continue; 1189 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1190 if (LineEnd == StringRef::npos) 1191 continue; 1192 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1193 int OpenBracket = -1, CloseBracket = -1; 1194 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1195 if (ParentProcess[i] == '[') 1196 OpenBracket = i; 1197 if (ParentProcess[i] == ']') 1198 CloseBracket = i; 1199 } 1200 // Extract the parent process PID from the .crash file and check whether 1201 // it matches this driver invocation pid. 1202 int CrashPID; 1203 if (OpenBracket < 0 || CloseBracket < 0 || 1204 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1205 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1206 continue; 1207 } 1208 1209 // Found a .crash file matching the driver pid. To avoid getting an older 1210 // and misleading crash file, continue looking for the most recent. 1211 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1212 // multiple crashes poiting to the same parent process. Since the driver 1213 // does not collect pid information for the dispatched invocation there's 1214 // currently no way to distinguish among them. 1215 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1216 if (FileAccessTime > LastAccessTime) { 1217 CrashFilePath.assign(File->path()); 1218 LastAccessTime = FileAccessTime; 1219 } 1220 } 1221 1222 // If found, copy it over to the location of other reproducer files. 1223 if (!CrashFilePath.empty()) { 1224 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1225 if (EC) 1226 return false; 1227 return true; 1228 } 1229 1230 return false; 1231 } 1232 1233 // When clang crashes, produce diagnostic information including the fully 1234 // preprocessed source file(s). Request that the developer attach the 1235 // diagnostic information to a bug report. 1236 void Driver::generateCompilationDiagnostics( 1237 Compilation &C, const Command &FailingCommand, 1238 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1239 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1240 return; 1241 1242 // Don't try to generate diagnostics for link or dsymutil jobs. 1243 if (FailingCommand.getCreator().isLinkJob() || 1244 FailingCommand.getCreator().isDsymutilJob()) 1245 return; 1246 1247 // Print the version of the compiler. 1248 PrintVersion(C, llvm::errs()); 1249 1250 Diag(clang::diag::note_drv_command_failed_diag_msg) 1251 << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " 1252 "crash backtrace, preprocessed source, and associated run script."; 1253 1254 // Suppress driver output and emit preprocessor output to temp file. 1255 Mode = CPPMode; 1256 CCGenDiagnostics = true; 1257 1258 // Save the original job command(s). 1259 Command Cmd = FailingCommand; 1260 1261 // Keep track of whether we produce any errors while trying to produce 1262 // preprocessed sources. 1263 DiagnosticErrorTrap Trap(Diags); 1264 1265 // Suppress tool output. 1266 C.initCompilationForDiagnostics(); 1267 1268 // Construct the list of inputs. 1269 InputList Inputs; 1270 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1271 1272 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1273 bool IgnoreInput = false; 1274 1275 // Ignore input from stdin or any inputs that cannot be preprocessed. 1276 // Check type first as not all linker inputs have a value. 1277 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1278 IgnoreInput = true; 1279 } else if (!strcmp(it->second->getValue(), "-")) { 1280 Diag(clang::diag::note_drv_command_failed_diag_msg) 1281 << "Error generating preprocessed source(s) - " 1282 "ignoring input from stdin."; 1283 IgnoreInput = true; 1284 } 1285 1286 if (IgnoreInput) { 1287 it = Inputs.erase(it); 1288 ie = Inputs.end(); 1289 } else { 1290 ++it; 1291 } 1292 } 1293 1294 if (Inputs.empty()) { 1295 Diag(clang::diag::note_drv_command_failed_diag_msg) 1296 << "Error generating preprocessed source(s) - " 1297 "no preprocessable inputs."; 1298 return; 1299 } 1300 1301 // Don't attempt to generate preprocessed files if multiple -arch options are 1302 // used, unless they're all duplicates. 1303 llvm::StringSet<> ArchNames; 1304 for (const Arg *A : C.getArgs()) { 1305 if (A->getOption().matches(options::OPT_arch)) { 1306 StringRef ArchName = A->getValue(); 1307 ArchNames.insert(ArchName); 1308 } 1309 } 1310 if (ArchNames.size() > 1) { 1311 Diag(clang::diag::note_drv_command_failed_diag_msg) 1312 << "Error generating preprocessed source(s) - cannot generate " 1313 "preprocessed source with multiple -arch options."; 1314 return; 1315 } 1316 1317 // Construct the list of abstract actions to perform for this compilation. On 1318 // Darwin OSes this uses the driver-driver and builds universal actions. 1319 const ToolChain &TC = C.getDefaultToolChain(); 1320 if (TC.getTriple().isOSBinFormatMachO()) 1321 BuildUniversalActions(C, TC, Inputs); 1322 else 1323 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1324 1325 BuildJobs(C); 1326 1327 // If there were errors building the compilation, quit now. 1328 if (Trap.hasErrorOccurred()) { 1329 Diag(clang::diag::note_drv_command_failed_diag_msg) 1330 << "Error generating preprocessed source(s)."; 1331 return; 1332 } 1333 1334 // Generate preprocessed output. 1335 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1336 C.ExecuteJobs(C.getJobs(), FailingCommands); 1337 1338 // If any of the preprocessing commands failed, clean up and exit. 1339 if (!FailingCommands.empty()) { 1340 Diag(clang::diag::note_drv_command_failed_diag_msg) 1341 << "Error generating preprocessed source(s)."; 1342 return; 1343 } 1344 1345 const ArgStringList &TempFiles = C.getTempFiles(); 1346 if (TempFiles.empty()) { 1347 Diag(clang::diag::note_drv_command_failed_diag_msg) 1348 << "Error generating preprocessed source(s)."; 1349 return; 1350 } 1351 1352 Diag(clang::diag::note_drv_command_failed_diag_msg) 1353 << "\n********************\n\n" 1354 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1355 "Preprocessed source(s) and associated run script(s) are located at:"; 1356 1357 SmallString<128> VFS; 1358 SmallString<128> ReproCrashFilename; 1359 for (const char *TempFile : TempFiles) { 1360 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1361 if (Report) 1362 Report->TemporaryFiles.push_back(TempFile); 1363 if (ReproCrashFilename.empty()) { 1364 ReproCrashFilename = TempFile; 1365 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1366 } 1367 if (StringRef(TempFile).endswith(".cache")) { 1368 // In some cases (modules) we'll dump extra data to help with reproducing 1369 // the crash into a directory next to the output. 1370 VFS = llvm::sys::path::filename(TempFile); 1371 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1372 } 1373 } 1374 1375 // Assume associated files are based off of the first temporary file. 1376 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1377 1378 llvm::SmallString<128> Script(CrashInfo.Filename); 1379 llvm::sys::path::replace_extension(Script, "sh"); 1380 std::error_code EC; 1381 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); 1382 if (EC) { 1383 Diag(clang::diag::note_drv_command_failed_diag_msg) 1384 << "Error generating run script: " << Script << " " << EC.message(); 1385 } else { 1386 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1387 << "# Driver args: "; 1388 printArgList(ScriptOS, C.getInputArgs()); 1389 ScriptOS << "# Original command: "; 1390 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1391 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1392 if (!AdditionalInformation.empty()) 1393 ScriptOS << "\n# Additional information: " << AdditionalInformation 1394 << "\n"; 1395 if (Report) 1396 Report->TemporaryFiles.push_back(Script.str()); 1397 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1398 } 1399 1400 // On darwin, provide information about the .crash diagnostic report. 1401 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1402 SmallString<128> CrashDiagDir; 1403 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1404 Diag(clang::diag::note_drv_command_failed_diag_msg) 1405 << ReproCrashFilename.str(); 1406 } else { // Suggest a directory for the user to look for .crash files. 1407 llvm::sys::path::append(CrashDiagDir, Name); 1408 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1409 Diag(clang::diag::note_drv_command_failed_diag_msg) 1410 << "Crash backtrace is located in"; 1411 Diag(clang::diag::note_drv_command_failed_diag_msg) 1412 << CrashDiagDir.str(); 1413 Diag(clang::diag::note_drv_command_failed_diag_msg) 1414 << "(choose the .crash file that corresponds to your crash)"; 1415 } 1416 } 1417 1418 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1419 options::OPT_frewrite_map_file_EQ)) 1420 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1421 1422 Diag(clang::diag::note_drv_command_failed_diag_msg) 1423 << "\n\n********************"; 1424 } 1425 1426 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1427 // Since commandLineFitsWithinSystemLimits() may underestimate system's 1428 // capacity if the tool does not support response files, there is a chance/ 1429 // that things will just work without a response file, so we silently just 1430 // skip it. 1431 if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || 1432 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 1433 Cmd.getArguments())) 1434 return; 1435 1436 std::string TmpName = GetTemporaryPath("response", "txt"); 1437 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1438 } 1439 1440 int Driver::ExecuteCompilation( 1441 Compilation &C, 1442 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1443 // Just print if -### was present. 1444 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1445 C.getJobs().Print(llvm::errs(), "\n", true); 1446 return 0; 1447 } 1448 1449 // If there were errors building the compilation, quit now. 1450 if (Diags.hasErrorOccurred()) 1451 return 1; 1452 1453 // Set up response file names for each command, if necessary 1454 for (auto &Job : C.getJobs()) 1455 setUpResponseFiles(C, Job); 1456 1457 C.ExecuteJobs(C.getJobs(), FailingCommands); 1458 1459 // If the command succeeded, we are done. 1460 if (FailingCommands.empty()) 1461 return 0; 1462 1463 // Otherwise, remove result files and print extra information about abnormal 1464 // failures. 1465 int Res = 0; 1466 for (const auto &CmdPair : FailingCommands) { 1467 int CommandRes = CmdPair.first; 1468 const Command *FailingCommand = CmdPair.second; 1469 1470 // Remove result files if we're not saving temps. 1471 if (!isSaveTempsEnabled()) { 1472 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1473 C.CleanupFileMap(C.getResultFiles(), JA, true); 1474 1475 // Failure result files are valid unless we crashed. 1476 if (CommandRes < 0) 1477 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1478 } 1479 1480 #if LLVM_ON_UNIX 1481 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code 1482 // for SIGPIPE. Do not print diagnostics for this case. 1483 if (CommandRes == EX_IOERR) { 1484 Res = CommandRes; 1485 continue; 1486 } 1487 #endif 1488 1489 // Print extra information about abnormal failures, if possible. 1490 // 1491 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1492 // status was 1, assume the command failed normally. In particular, if it 1493 // was the compiler then assume it gave a reasonable error code. Failures 1494 // in other tools are less common, and they generally have worse 1495 // diagnostics, so always print the diagnostic there. 1496 const Tool &FailingTool = FailingCommand->getCreator(); 1497 1498 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 1499 // FIXME: See FIXME above regarding result code interpretation. 1500 if (CommandRes < 0) 1501 Diag(clang::diag::err_drv_command_signalled) 1502 << FailingTool.getShortName(); 1503 else 1504 Diag(clang::diag::err_drv_command_failed) 1505 << FailingTool.getShortName() << CommandRes; 1506 } 1507 } 1508 return Res; 1509 } 1510 1511 void Driver::PrintHelp(bool ShowHidden) const { 1512 unsigned IncludedFlagsBitmask; 1513 unsigned ExcludedFlagsBitmask; 1514 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1515 getIncludeExcludeOptionFlagMasks(IsCLMode()); 1516 1517 ExcludedFlagsBitmask |= options::NoDriverOption; 1518 if (!ShowHidden) 1519 ExcludedFlagsBitmask |= HelpHidden; 1520 1521 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 1522 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 1523 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1524 /*ShowAllAliases=*/false); 1525 } 1526 1527 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1528 // FIXME: The following handlers should use a callback mechanism, we don't 1529 // know what the client would like to do. 1530 OS << getClangFullVersion() << '\n'; 1531 const ToolChain &TC = C.getDefaultToolChain(); 1532 OS << "Target: " << TC.getTripleString() << '\n'; 1533 1534 // Print the threading model. 1535 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1536 // Don't print if the ToolChain would have barfed on it already 1537 if (TC.isThreadModelSupported(A->getValue())) 1538 OS << "Thread model: " << A->getValue(); 1539 } else 1540 OS << "Thread model: " << TC.getThreadModel(); 1541 OS << '\n'; 1542 1543 // Print out the install directory. 1544 OS << "InstalledDir: " << InstalledDir << '\n'; 1545 1546 // If configuration file was used, print its path. 1547 if (!ConfigFile.empty()) 1548 OS << "Configuration file: " << ConfigFile << '\n'; 1549 } 1550 1551 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1552 /// option. 1553 static void PrintDiagnosticCategories(raw_ostream &OS) { 1554 // Skip the empty category. 1555 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1556 ++i) 1557 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1558 } 1559 1560 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1561 if (PassedFlags == "") 1562 return; 1563 // Print out all options that start with a given argument. This is used for 1564 // shell autocompletion. 1565 std::vector<std::string> SuggestedCompletions; 1566 std::vector<std::string> Flags; 1567 1568 unsigned short DisableFlags = 1569 options::NoDriverOption | options::Unsupported | options::Ignored; 1570 1571 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 1572 // because the latter indicates that the user put space before pushing tab 1573 // which should end up in a file completion. 1574 const bool HasSpace = PassedFlags.endswith(","); 1575 1576 // Parse PassedFlags by "," as all the command-line flags are passed to this 1577 // function separated by "," 1578 StringRef TargetFlags = PassedFlags; 1579 while (TargetFlags != "") { 1580 StringRef CurFlag; 1581 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1582 Flags.push_back(std::string(CurFlag)); 1583 } 1584 1585 // We want to show cc1-only options only when clang is invoked with -cc1 or 1586 // -Xclang. 1587 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 1588 DisableFlags &= ~options::NoDriverOption; 1589 1590 const llvm::opt::OptTable &Opts = getOpts(); 1591 StringRef Cur; 1592 Cur = Flags.at(Flags.size() - 1); 1593 StringRef Prev; 1594 if (Flags.size() >= 2) { 1595 Prev = Flags.at(Flags.size() - 2); 1596 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); 1597 } 1598 1599 if (SuggestedCompletions.empty()) 1600 SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); 1601 1602 // If Flags were empty, it means the user typed `clang [tab]` where we should 1603 // list all possible flags. If there was no value completion and the user 1604 // pressed tab after a space, we should fall back to a file completion. 1605 // We're printing a newline to be consistent with what we print at the end of 1606 // this function. 1607 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 1608 llvm::outs() << '\n'; 1609 return; 1610 } 1611 1612 // When flag ends with '=' and there was no value completion, return empty 1613 // string and fall back to the file autocompletion. 1614 if (SuggestedCompletions.empty() && !Cur.endswith("=")) { 1615 // If the flag is in the form of "--autocomplete=-foo", 1616 // we were requested to print out all option names that start with "-foo". 1617 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1618 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); 1619 1620 // We have to query the -W flags manually as they're not in the OptTable. 1621 // TODO: Find a good way to add them to OptTable instead and them remove 1622 // this code. 1623 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1624 if (S.startswith(Cur)) 1625 SuggestedCompletions.push_back(S); 1626 } 1627 1628 // Sort the autocomplete candidates so that shells print them out in a 1629 // deterministic order. We could sort in any way, but we chose 1630 // case-insensitive sorting for consistency with the -help option 1631 // which prints out options in the case-insensitive alphabetical order. 1632 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 1633 if (int X = A.compare_lower(B)) 1634 return X < 0; 1635 return A.compare(B) > 0; 1636 }); 1637 1638 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1639 } 1640 1641 bool Driver::HandleImmediateArgs(const Compilation &C) { 1642 // The order these options are handled in gcc is all over the place, but we 1643 // don't expect inconsistencies w.r.t. that to matter in practice. 1644 1645 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1646 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1647 return false; 1648 } 1649 1650 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1651 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1652 // return an answer which matches our definition of __VERSION__. 1653 llvm::outs() << CLANG_VERSION_STRING << "\n"; 1654 return false; 1655 } 1656 1657 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1658 PrintDiagnosticCategories(llvm::outs()); 1659 return false; 1660 } 1661 1662 if (C.getArgs().hasArg(options::OPT_help) || 1663 C.getArgs().hasArg(options::OPT__help_hidden)) { 1664 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1665 return false; 1666 } 1667 1668 if (C.getArgs().hasArg(options::OPT__version)) { 1669 // Follow gcc behavior and use stdout for --version and stderr for -v. 1670 PrintVersion(C, llvm::outs()); 1671 return false; 1672 } 1673 1674 if (C.getArgs().hasArg(options::OPT_v) || 1675 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 1676 C.getArgs().hasArg(options::OPT_print_supported_cpus)) { 1677 PrintVersion(C, llvm::errs()); 1678 SuppressMissingInputWarning = true; 1679 } 1680 1681 if (C.getArgs().hasArg(options::OPT_v)) { 1682 if (!SystemConfigDir.empty()) 1683 llvm::errs() << "System configuration file directory: " 1684 << SystemConfigDir << "\n"; 1685 if (!UserConfigDir.empty()) 1686 llvm::errs() << "User configuration file directory: " 1687 << UserConfigDir << "\n"; 1688 } 1689 1690 const ToolChain &TC = C.getDefaultToolChain(); 1691 1692 if (C.getArgs().hasArg(options::OPT_v)) 1693 TC.printVerboseInfo(llvm::errs()); 1694 1695 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1696 llvm::outs() << ResourceDir << '\n'; 1697 return false; 1698 } 1699 1700 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1701 llvm::outs() << "programs: ="; 1702 bool separator = false; 1703 for (const std::string &Path : TC.getProgramPaths()) { 1704 if (separator) 1705 llvm::outs() << llvm::sys::EnvPathSeparator; 1706 llvm::outs() << Path; 1707 separator = true; 1708 } 1709 llvm::outs() << "\n"; 1710 llvm::outs() << "libraries: =" << ResourceDir; 1711 1712 StringRef sysroot = C.getSysRoot(); 1713 1714 for (const std::string &Path : TC.getFilePaths()) { 1715 // Always print a separator. ResourceDir was the first item shown. 1716 llvm::outs() << llvm::sys::EnvPathSeparator; 1717 // Interpretation of leading '=' is needed only for NetBSD. 1718 if (Path[0] == '=') 1719 llvm::outs() << sysroot << Path.substr(1); 1720 else 1721 llvm::outs() << Path; 1722 } 1723 llvm::outs() << "\n"; 1724 return false; 1725 } 1726 1727 // FIXME: The following handlers should use a callback mechanism, we don't 1728 // know what the client would like to do. 1729 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1730 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1731 return false; 1732 } 1733 1734 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1735 StringRef ProgName = A->getValue(); 1736 1737 // Null program name cannot have a path. 1738 if (! ProgName.empty()) 1739 llvm::outs() << GetProgramPath(ProgName, TC); 1740 1741 llvm::outs() << "\n"; 1742 return false; 1743 } 1744 1745 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1746 StringRef PassedFlags = A->getValue(); 1747 HandleAutocompletions(PassedFlags); 1748 return false; 1749 } 1750 1751 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1752 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1753 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1754 RegisterEffectiveTriple TripleRAII(TC, Triple); 1755 switch (RLT) { 1756 case ToolChain::RLT_CompilerRT: 1757 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1758 break; 1759 case ToolChain::RLT_Libgcc: 1760 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1761 break; 1762 } 1763 return false; 1764 } 1765 1766 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1767 for (const Multilib &Multilib : TC.getMultilibs()) 1768 llvm::outs() << Multilib << "\n"; 1769 return false; 1770 } 1771 1772 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1773 const Multilib &Multilib = TC.getMultilib(); 1774 if (Multilib.gccSuffix().empty()) 1775 llvm::outs() << ".\n"; 1776 else { 1777 StringRef Suffix(Multilib.gccSuffix()); 1778 assert(Suffix.front() == '/'); 1779 llvm::outs() << Suffix.substr(1) << "\n"; 1780 } 1781 return false; 1782 } 1783 1784 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 1785 llvm::outs() << TC.getTripleString() << "\n"; 1786 return false; 1787 } 1788 1789 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 1790 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1791 llvm::outs() << Triple.getTriple() << "\n"; 1792 return false; 1793 } 1794 1795 return true; 1796 } 1797 1798 // Display an action graph human-readably. Action A is the "sink" node 1799 // and latest-occuring action. Traversal is in pre-order, visiting the 1800 // inputs to each action before printing the action itself. 1801 static unsigned PrintActions1(const Compilation &C, Action *A, 1802 std::map<Action *, unsigned> &Ids) { 1803 if (Ids.count(A)) // A was already visited. 1804 return Ids[A]; 1805 1806 std::string str; 1807 llvm::raw_string_ostream os(str); 1808 1809 os << Action::getClassName(A->getKind()) << ", "; 1810 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1811 os << "\"" << IA->getInputArg().getValue() << "\""; 1812 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1813 os << '"' << BIA->getArchName() << '"' << ", {" 1814 << PrintActions1(C, *BIA->input_begin(), Ids) << "}"; 1815 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1816 bool IsFirst = true; 1817 OA->doOnEachDependence( 1818 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1819 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1820 // sm_35 this will generate: 1821 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1822 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1823 if (!IsFirst) 1824 os << ", "; 1825 os << '"'; 1826 if (TC) 1827 os << A->getOffloadingKindPrefix(); 1828 else 1829 os << "host"; 1830 os << " ("; 1831 os << TC->getTriple().normalize(); 1832 1833 if (BoundArch) 1834 os << ":" << BoundArch; 1835 os << ")"; 1836 os << '"'; 1837 os << " {" << PrintActions1(C, A, Ids) << "}"; 1838 IsFirst = false; 1839 }); 1840 } else { 1841 const ActionList *AL = &A->getInputs(); 1842 1843 if (AL->size()) { 1844 const char *Prefix = "{"; 1845 for (Action *PreRequisite : *AL) { 1846 os << Prefix << PrintActions1(C, PreRequisite, Ids); 1847 Prefix = ", "; 1848 } 1849 os << "}"; 1850 } else 1851 os << "{}"; 1852 } 1853 1854 // Append offload info for all options other than the offloading action 1855 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1856 std::string offload_str; 1857 llvm::raw_string_ostream offload_os(offload_str); 1858 if (!isa<OffloadAction>(A)) { 1859 auto S = A->getOffloadingKindPrefix(); 1860 if (!S.empty()) { 1861 offload_os << ", (" << S; 1862 if (A->getOffloadingArch()) 1863 offload_os << ", " << A->getOffloadingArch(); 1864 offload_os << ")"; 1865 } 1866 } 1867 1868 unsigned Id = Ids.size(); 1869 Ids[A] = Id; 1870 llvm::errs() << Id << ": " << os.str() << ", " 1871 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1872 1873 return Id; 1874 } 1875 1876 // Print the action graphs in a compilation C. 1877 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1878 void Driver::PrintActions(const Compilation &C) const { 1879 std::map<Action *, unsigned> Ids; 1880 for (Action *A : C.getActions()) 1881 PrintActions1(C, A, Ids); 1882 } 1883 1884 /// Check whether the given input tree contains any compilation or 1885 /// assembly actions. 1886 static bool ContainsCompileOrAssembleAction(const Action *A) { 1887 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1888 isa<AssembleJobAction>(A)) 1889 return true; 1890 1891 for (const Action *Input : A->inputs()) 1892 if (ContainsCompileOrAssembleAction(Input)) 1893 return true; 1894 1895 return false; 1896 } 1897 1898 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1899 const InputList &BAInputs) const { 1900 DerivedArgList &Args = C.getArgs(); 1901 ActionList &Actions = C.getActions(); 1902 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 1903 // Collect the list of architectures. Duplicates are allowed, but should only 1904 // be handled once (in the order seen). 1905 llvm::StringSet<> ArchNames; 1906 SmallVector<const char *, 4> Archs; 1907 for (Arg *A : Args) { 1908 if (A->getOption().matches(options::OPT_arch)) { 1909 // Validate the option here; we don't save the type here because its 1910 // particular spelling may participate in other driver choices. 1911 llvm::Triple::ArchType Arch = 1912 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 1913 if (Arch == llvm::Triple::UnknownArch) { 1914 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 1915 continue; 1916 } 1917 1918 A->claim(); 1919 if (ArchNames.insert(A->getValue()).second) 1920 Archs.push_back(A->getValue()); 1921 } 1922 } 1923 1924 // When there is no explicit arch for this platform, make sure we still bind 1925 // the architecture (to the default) so that -Xarch_ is handled correctly. 1926 if (!Archs.size()) 1927 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 1928 1929 ActionList SingleActions; 1930 BuildActions(C, Args, BAInputs, SingleActions); 1931 1932 // Add in arch bindings for every top level action, as well as lipo and 1933 // dsymutil steps if needed. 1934 for (Action* Act : SingleActions) { 1935 // Make sure we can lipo this kind of output. If not (and it is an actual 1936 // output) then we disallow, since we can't create an output file with the 1937 // right name without overwriting it. We could remove this oddity by just 1938 // changing the output names to include the arch, which would also fix 1939 // -save-temps. Compatibility wins for now. 1940 1941 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 1942 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 1943 << types::getTypeName(Act->getType()); 1944 1945 ActionList Inputs; 1946 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 1947 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 1948 1949 // Lipo if necessary, we do it this way because we need to set the arch flag 1950 // so that -Xarch_ gets overwritten. 1951 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 1952 Actions.append(Inputs.begin(), Inputs.end()); 1953 else 1954 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 1955 1956 // Handle debug info queries. 1957 Arg *A = Args.getLastArg(options::OPT_g_Group); 1958 if (A && !A->getOption().matches(options::OPT_g0) && 1959 !A->getOption().matches(options::OPT_gstabs) && 1960 ContainsCompileOrAssembleAction(Actions.back())) { 1961 1962 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 1963 // have a compile input. We need to run 'dsymutil' ourselves in such cases 1964 // because the debug info will refer to a temporary object file which 1965 // will be removed at the end of the compilation process. 1966 if (Act->getType() == types::TY_Image) { 1967 ActionList Inputs; 1968 Inputs.push_back(Actions.back()); 1969 Actions.pop_back(); 1970 Actions.push_back( 1971 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 1972 } 1973 1974 // Verify the debug info output. 1975 if (Args.hasArg(options::OPT_verify_debug_info)) { 1976 Action* LastAction = Actions.back(); 1977 Actions.pop_back(); 1978 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 1979 LastAction, types::TY_Nothing)); 1980 } 1981 } 1982 } 1983 } 1984 1985 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 1986 types::ID Ty, bool TypoCorrect) const { 1987 if (!getCheckInputsExist()) 1988 return true; 1989 1990 // stdin always exists. 1991 if (Value == "-") 1992 return true; 1993 1994 SmallString<64> Path(Value); 1995 if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) { 1996 if (!llvm::sys::path::is_absolute(Path)) { 1997 SmallString<64> Directory(WorkDir->getValue()); 1998 llvm::sys::path::append(Directory, Value); 1999 Path.assign(Directory); 2000 } 2001 } 2002 2003 if (getVFS().exists(Path)) 2004 return true; 2005 2006 if (IsCLMode()) { 2007 if (!llvm::sys::path::is_absolute(Twine(Path)) && 2008 llvm::sys::Process::FindInEnvPath("LIB", Value)) 2009 return true; 2010 2011 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 2012 // Arguments to the /link flag might cause the linker to search for object 2013 // and library files in paths we don't know about. Don't error in such 2014 // cases. 2015 return true; 2016 } 2017 } 2018 2019 if (TypoCorrect) { 2020 // Check if the filename is a typo for an option flag. OptTable thinks 2021 // that all args that are not known options and that start with / are 2022 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2023 // the option `/diagnostics:caret` than a reference to a file in the root 2024 // directory. 2025 unsigned IncludedFlagsBitmask; 2026 unsigned ExcludedFlagsBitmask; 2027 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 2028 getIncludeExcludeOptionFlagMasks(IsCLMode()); 2029 std::string Nearest; 2030 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, 2031 ExcludedFlagsBitmask) <= 1) { 2032 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2033 << Path << Nearest; 2034 return false; 2035 } 2036 } 2037 2038 Diag(clang::diag::err_drv_no_such_file) << Path; 2039 return false; 2040 } 2041 2042 // Construct a the list of inputs and their types. 2043 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2044 InputList &Inputs) const { 2045 const llvm::opt::OptTable &Opts = getOpts(); 2046 // Track the current user specified (-x) input. We also explicitly track the 2047 // argument used to set the type; we only want to claim the type when we 2048 // actually use it, so we warn about unused -x arguments. 2049 types::ID InputType = types::TY_Nothing; 2050 Arg *InputTypeArg = nullptr; 2051 2052 // The last /TC or /TP option sets the input type to C or C++ globally. 2053 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2054 options::OPT__SLASH_TP)) { 2055 InputTypeArg = TCTP; 2056 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2057 ? types::TY_C 2058 : types::TY_CXX; 2059 2060 Arg *Previous = nullptr; 2061 bool ShowNote = false; 2062 for (Arg *A : 2063 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2064 if (Previous) { 2065 Diag(clang::diag::warn_drv_overriding_flag_option) 2066 << Previous->getSpelling() << A->getSpelling(); 2067 ShowNote = true; 2068 } 2069 Previous = A; 2070 } 2071 if (ShowNote) 2072 Diag(clang::diag::note_drv_t_option_is_global); 2073 2074 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 2075 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 2076 } 2077 2078 for (Arg *A : Args) { 2079 if (A->getOption().getKind() == Option::InputClass) { 2080 const char *Value = A->getValue(); 2081 types::ID Ty = types::TY_INVALID; 2082 2083 // Infer the input type if necessary. 2084 if (InputType == types::TY_Nothing) { 2085 // If there was an explicit arg for this, claim it. 2086 if (InputTypeArg) 2087 InputTypeArg->claim(); 2088 2089 // stdin must be handled specially. 2090 if (memcmp(Value, "-", 2) == 0) { 2091 // If running with -E, treat as a C input (this changes the builtin 2092 // macros, for example). This may be overridden by -ObjC below. 2093 // 2094 // Otherwise emit an error but still use a valid type to avoid 2095 // spurious errors (e.g., no inputs). 2096 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2097 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2098 : clang::diag::err_drv_unknown_stdin_type); 2099 Ty = types::TY_C; 2100 } else { 2101 // Otherwise lookup by extension. 2102 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2103 // clang-cl /E, or Object otherwise. 2104 // We use a host hook here because Darwin at least has its own 2105 // idea of what .s is. 2106 if (const char *Ext = strrchr(Value, '.')) 2107 Ty = TC.LookupTypeForExtension(Ext + 1); 2108 2109 if (Ty == types::TY_INVALID) { 2110 if (CCCIsCPP()) 2111 Ty = types::TY_C; 2112 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) 2113 Ty = types::TY_CXX; 2114 else 2115 Ty = types::TY_Object; 2116 } 2117 2118 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2119 // should autodetect some input files as C++ for g++ compatibility. 2120 if (CCCIsCXX()) { 2121 types::ID OldTy = Ty; 2122 Ty = types::lookupCXXTypeForCType(Ty); 2123 2124 if (Ty != OldTy) 2125 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2126 << getTypeName(OldTy) << getTypeName(Ty); 2127 } 2128 2129 // If running with -fthinlto-index=, extensions that normally identify 2130 // native object files actually identify LLVM bitcode files. 2131 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && 2132 Ty == types::TY_Object) 2133 Ty = types::TY_LLVM_BC; 2134 } 2135 2136 // -ObjC and -ObjC++ override the default language, but only for "source 2137 // files". We just treat everything that isn't a linker input as a 2138 // source file. 2139 // 2140 // FIXME: Clean this up if we move the phase sequence into the type. 2141 if (Ty != types::TY_Object) { 2142 if (Args.hasArg(options::OPT_ObjC)) 2143 Ty = types::TY_ObjC; 2144 else if (Args.hasArg(options::OPT_ObjCXX)) 2145 Ty = types::TY_ObjCXX; 2146 } 2147 } else { 2148 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 2149 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 2150 // If emulating cl.exe, make sure that /TC and /TP don't affect input 2151 // object files. 2152 const char *Ext = strrchr(Value, '.'); 2153 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 2154 Ty = types::TY_Object; 2155 } 2156 if (Ty == types::TY_INVALID) { 2157 Ty = InputType; 2158 InputTypeArg->claim(); 2159 } 2160 } 2161 2162 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 2163 Inputs.push_back(std::make_pair(Ty, A)); 2164 2165 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 2166 StringRef Value = A->getValue(); 2167 if (DiagnoseInputExistence(Args, Value, types::TY_C, 2168 /*TypoCorrect=*/false)) { 2169 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2170 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 2171 } 2172 A->claim(); 2173 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 2174 StringRef Value = A->getValue(); 2175 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 2176 /*TypoCorrect=*/false)) { 2177 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2178 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 2179 } 2180 A->claim(); 2181 } else if (A->getOption().hasFlag(options::LinkerInput)) { 2182 // Just treat as object type, we could make a special type for this if 2183 // necessary. 2184 Inputs.push_back(std::make_pair(types::TY_Object, A)); 2185 2186 } else if (A->getOption().matches(options::OPT_x)) { 2187 InputTypeArg = A; 2188 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 2189 A->claim(); 2190 2191 // Follow gcc behavior and treat as linker input for invalid -x 2192 // options. Its not clear why we shouldn't just revert to unknown; but 2193 // this isn't very important, we might as well be bug compatible. 2194 if (!InputType) { 2195 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2196 InputType = types::TY_Object; 2197 } 2198 } else if (A->getOption().getID() == options::OPT_U) { 2199 assert(A->getNumValues() == 1 && "The /U option has one value."); 2200 StringRef Val = A->getValue(0); 2201 if (Val.find_first_of("/\\") != StringRef::npos) { 2202 // Warn about e.g. "/Users/me/myfile.c". 2203 Diag(diag::warn_slash_u_filename) << Val; 2204 Diag(diag::note_use_dashdash); 2205 } 2206 } 2207 } 2208 if (CCCIsCPP() && Inputs.empty()) { 2209 // If called as standalone preprocessor, stdin is processed 2210 // if no other input is present. 2211 Arg *A = MakeInputArg(Args, Opts, "-"); 2212 Inputs.push_back(std::make_pair(types::TY_C, A)); 2213 } 2214 } 2215 2216 namespace { 2217 /// Provides a convenient interface for different programming models to generate 2218 /// the required device actions. 2219 class OffloadingActionBuilder final { 2220 /// Flag used to trace errors in the builder. 2221 bool IsValid = false; 2222 2223 /// The compilation that is using this builder. 2224 Compilation &C; 2225 2226 /// Map between an input argument and the offload kinds used to process it. 2227 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2228 2229 /// Builder interface. It doesn't build anything or keep any state. 2230 class DeviceActionBuilder { 2231 public: 2232 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; 2233 2234 enum ActionBuilderReturnCode { 2235 // The builder acted successfully on the current action. 2236 ABRT_Success, 2237 // The builder didn't have to act on the current action. 2238 ABRT_Inactive, 2239 // The builder was successful and requested the host action to not be 2240 // generated. 2241 ABRT_Ignore_Host, 2242 }; 2243 2244 protected: 2245 /// Compilation associated with this builder. 2246 Compilation &C; 2247 2248 /// Tool chains associated with this builder. The same programming 2249 /// model may have associated one or more tool chains. 2250 SmallVector<const ToolChain *, 2> ToolChains; 2251 2252 /// The derived arguments associated with this builder. 2253 DerivedArgList &Args; 2254 2255 /// The inputs associated with this builder. 2256 const Driver::InputList &Inputs; 2257 2258 /// The associated offload kind. 2259 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2260 2261 public: 2262 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2263 const Driver::InputList &Inputs, 2264 Action::OffloadKind AssociatedOffloadKind) 2265 : C(C), Args(Args), Inputs(Inputs), 2266 AssociatedOffloadKind(AssociatedOffloadKind) {} 2267 virtual ~DeviceActionBuilder() {} 2268 2269 /// Fill up the array \a DA with all the device dependences that should be 2270 /// added to the provided host action \a HostAction. By default it is 2271 /// inactive. 2272 virtual ActionBuilderReturnCode 2273 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2274 phases::ID CurPhase, phases::ID FinalPhase, 2275 PhasesTy &Phases) { 2276 return ABRT_Inactive; 2277 } 2278 2279 /// Update the state to include the provided host action \a HostAction as a 2280 /// dependency of the current device action. By default it is inactive. 2281 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2282 return ABRT_Inactive; 2283 } 2284 2285 /// Append top level actions generated by the builder. Return true if errors 2286 /// were found. 2287 virtual void appendTopLevelActions(ActionList &AL) {} 2288 2289 /// Append linker actions generated by the builder. Return true if errors 2290 /// were found. 2291 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2292 2293 /// Initialize the builder. Return true if any initialization errors are 2294 /// found. 2295 virtual bool initialize() { return false; } 2296 2297 /// Return true if the builder can use bundling/unbundling. 2298 virtual bool canUseBundlerUnbundler() const { return false; } 2299 2300 /// Return true if this builder is valid. We have a valid builder if we have 2301 /// associated device tool chains. 2302 bool isValid() { return !ToolChains.empty(); } 2303 2304 /// Return the associated offload kind. 2305 Action::OffloadKind getAssociatedOffloadKind() { 2306 return AssociatedOffloadKind; 2307 } 2308 }; 2309 2310 /// Base class for CUDA/HIP action builder. It injects device code in 2311 /// the host backend action. 2312 class CudaActionBuilderBase : public DeviceActionBuilder { 2313 protected: 2314 /// Flags to signal if the user requested host-only or device-only 2315 /// compilation. 2316 bool CompileHostOnly = false; 2317 bool CompileDeviceOnly = false; 2318 2319 /// List of GPU architectures to use in this compilation. 2320 SmallVector<CudaArch, 4> GpuArchList; 2321 2322 /// The CUDA actions for the current input. 2323 ActionList CudaDeviceActions; 2324 2325 /// The CUDA fat binary if it was generated for the current input. 2326 Action *CudaFatBinary = nullptr; 2327 2328 /// Flag that is set to true if this builder acted on the current input. 2329 bool IsActive = false; 2330 2331 /// Flag for -fgpu-rdc. 2332 bool Relocatable = false; 2333 public: 2334 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 2335 const Driver::InputList &Inputs, 2336 Action::OffloadKind OFKind) 2337 : DeviceActionBuilder(C, Args, Inputs, OFKind) {} 2338 2339 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2340 // While generating code for CUDA, we only depend on the host input action 2341 // to trigger the creation of all the CUDA device actions. 2342 2343 // If we are dealing with an input action, replicate it for each GPU 2344 // architecture. If we are in host-only mode we return 'success' so that 2345 // the host uses the CUDA offload kind. 2346 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2347 assert(!GpuArchList.empty() && 2348 "We should have at least one GPU architecture."); 2349 2350 // If the host input is not CUDA or HIP, we don't need to bother about 2351 // this input. 2352 if (IA->getType() != types::TY_CUDA && 2353 IA->getType() != types::TY_HIP) { 2354 // The builder will ignore this input. 2355 IsActive = false; 2356 return ABRT_Inactive; 2357 } 2358 2359 // Set the flag to true, so that the builder acts on the current input. 2360 IsActive = true; 2361 2362 if (CompileHostOnly) 2363 return ABRT_Success; 2364 2365 // Replicate inputs for each GPU architecture. 2366 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 2367 : types::TY_CUDA_DEVICE; 2368 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2369 CudaDeviceActions.push_back( 2370 C.MakeAction<InputAction>(IA->getInputArg(), Ty)); 2371 } 2372 2373 return ABRT_Success; 2374 } 2375 2376 // If this is an unbundling action use it as is for each CUDA toolchain. 2377 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2378 2379 // If -fgpu-rdc is disabled, should not unbundle since there is no 2380 // device code to link. 2381 if (!Relocatable) 2382 return ABRT_Inactive; 2383 2384 CudaDeviceActions.clear(); 2385 auto *IA = cast<InputAction>(UA->getInputs().back()); 2386 std::string FileName = IA->getInputArg().getAsString(Args); 2387 // Check if the type of the file is the same as the action. Do not 2388 // unbundle it if it is not. Do not unbundle .so files, for example, 2389 // which are not object files. 2390 if (IA->getType() == types::TY_Object && 2391 (!llvm::sys::path::has_extension(FileName) || 2392 types::lookupTypeForExtension( 2393 llvm::sys::path::extension(FileName).drop_front()) != 2394 types::TY_Object)) 2395 return ABRT_Inactive; 2396 2397 for (auto Arch : GpuArchList) { 2398 CudaDeviceActions.push_back(UA); 2399 UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch), 2400 AssociatedOffloadKind); 2401 } 2402 return ABRT_Success; 2403 } 2404 2405 return IsActive ? ABRT_Success : ABRT_Inactive; 2406 } 2407 2408 void appendTopLevelActions(ActionList &AL) override { 2409 // Utility to append actions to the top level list. 2410 auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { 2411 OffloadAction::DeviceDependences Dep; 2412 Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), 2413 AssociatedOffloadKind); 2414 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2415 }; 2416 2417 // If we have a fat binary, add it to the list. 2418 if (CudaFatBinary) { 2419 AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); 2420 CudaDeviceActions.clear(); 2421 CudaFatBinary = nullptr; 2422 return; 2423 } 2424 2425 if (CudaDeviceActions.empty()) 2426 return; 2427 2428 // If we have CUDA actions at this point, that's because we have a have 2429 // partial compilation, so we should have an action for each GPU 2430 // architecture. 2431 assert(CudaDeviceActions.size() == GpuArchList.size() && 2432 "Expecting one action per GPU architecture."); 2433 assert(ToolChains.size() == 1 && 2434 "Expecting to have a sing CUDA toolchain."); 2435 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2436 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2437 2438 CudaDeviceActions.clear(); 2439 } 2440 2441 bool initialize() override { 2442 assert(AssociatedOffloadKind == Action::OFK_Cuda || 2443 AssociatedOffloadKind == Action::OFK_HIP); 2444 2445 // We don't need to support CUDA. 2446 if (AssociatedOffloadKind == Action::OFK_Cuda && 2447 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 2448 return false; 2449 2450 // We don't need to support HIP. 2451 if (AssociatedOffloadKind == Action::OFK_HIP && 2452 !C.hasOffloadToolChain<Action::OFK_HIP>()) 2453 return false; 2454 2455 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 2456 options::OPT_fno_gpu_rdc, /*Default=*/false); 2457 2458 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2459 assert(HostTC && "No toolchain for host compilation."); 2460 if (HostTC->getTriple().isNVPTX() || 2461 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 2462 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 2463 // an error and abort pipeline construction early so we don't trip 2464 // asserts that assume device-side compilation. 2465 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 2466 << HostTC->getTriple().getArchName(); 2467 return true; 2468 } 2469 2470 ToolChains.push_back( 2471 AssociatedOffloadKind == Action::OFK_Cuda 2472 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 2473 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 2474 2475 Arg *PartialCompilationArg = Args.getLastArg( 2476 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2477 options::OPT_cuda_compile_host_device); 2478 CompileHostOnly = PartialCompilationArg && 2479 PartialCompilationArg->getOption().matches( 2480 options::OPT_cuda_host_only); 2481 CompileDeviceOnly = PartialCompilationArg && 2482 PartialCompilationArg->getOption().matches( 2483 options::OPT_cuda_device_only); 2484 2485 // Collect all cuda_gpu_arch parameters, removing duplicates. 2486 std::set<CudaArch> GpuArchs; 2487 bool Error = false; 2488 for (Arg *A : Args) { 2489 if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || 2490 A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) 2491 continue; 2492 A->claim(); 2493 2494 const StringRef ArchStr = A->getValue(); 2495 if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && 2496 ArchStr == "all") { 2497 GpuArchs.clear(); 2498 continue; 2499 } 2500 CudaArch Arch = StringToCudaArch(ArchStr); 2501 if (Arch == CudaArch::UNKNOWN) { 2502 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2503 Error = true; 2504 } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) 2505 GpuArchs.insert(Arch); 2506 else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) 2507 GpuArchs.erase(Arch); 2508 else 2509 llvm_unreachable("Unexpected option."); 2510 } 2511 2512 // Collect list of GPUs remaining in the set. 2513 for (CudaArch Arch : GpuArchs) 2514 GpuArchList.push_back(Arch); 2515 2516 // Default to sm_20 which is the lowest common denominator for 2517 // supported GPUs. sm_20 code should work correctly, if 2518 // suboptimally, on all newer GPUs. 2519 if (GpuArchList.empty()) 2520 GpuArchList.push_back(CudaArch::SM_20); 2521 2522 return Error; 2523 } 2524 }; 2525 2526 /// \brief CUDA action builder. It injects device code in the host backend 2527 /// action. 2528 class CudaActionBuilder final : public CudaActionBuilderBase { 2529 public: 2530 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2531 const Driver::InputList &Inputs) 2532 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {} 2533 2534 ActionBuilderReturnCode 2535 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2536 phases::ID CurPhase, phases::ID FinalPhase, 2537 PhasesTy &Phases) override { 2538 if (!IsActive) 2539 return ABRT_Inactive; 2540 2541 // If we don't have more CUDA actions, we don't have any dependences to 2542 // create for the host. 2543 if (CudaDeviceActions.empty()) 2544 return ABRT_Success; 2545 2546 assert(CudaDeviceActions.size() == GpuArchList.size() && 2547 "Expecting one action per GPU architecture."); 2548 assert(!CompileHostOnly && 2549 "Not expecting CUDA actions in host-only compilation."); 2550 2551 // If we are generating code for the device or we are in a backend phase, 2552 // we attempt to generate the fat binary. We compile each arch to ptx and 2553 // assemble to cubin, then feed the cubin *and* the ptx into a device 2554 // "link" action, which uses fatbinary to combine these cubins into one 2555 // fatbin. The fatbin is then an input to the host action if not in 2556 // device-only mode. 2557 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2558 ActionList DeviceActions; 2559 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2560 // Produce the device action from the current phase up to the assemble 2561 // phase. 2562 for (auto Ph : Phases) { 2563 // Skip the phases that were already dealt with. 2564 if (Ph < CurPhase) 2565 continue; 2566 // We have to be consistent with the host final phase. 2567 if (Ph > FinalPhase) 2568 break; 2569 2570 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2571 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2572 2573 if (Ph == phases::Assemble) 2574 break; 2575 } 2576 2577 // If we didn't reach the assemble phase, we can't generate the fat 2578 // binary. We don't need to generate the fat binary if we are not in 2579 // device-only mode. 2580 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2581 CompileDeviceOnly) 2582 continue; 2583 2584 Action *AssembleAction = CudaDeviceActions[I]; 2585 assert(AssembleAction->getType() == types::TY_Object); 2586 assert(AssembleAction->getInputs().size() == 1); 2587 2588 Action *BackendAction = AssembleAction->getInputs()[0]; 2589 assert(BackendAction->getType() == types::TY_PP_Asm); 2590 2591 for (auto &A : {AssembleAction, BackendAction}) { 2592 OffloadAction::DeviceDependences DDep; 2593 DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), 2594 Action::OFK_Cuda); 2595 DeviceActions.push_back( 2596 C.MakeAction<OffloadAction>(DDep, A->getType())); 2597 } 2598 } 2599 2600 // We generate the fat binary if we have device input actions. 2601 if (!DeviceActions.empty()) { 2602 CudaFatBinary = 2603 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2604 2605 if (!CompileDeviceOnly) { 2606 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2607 Action::OFK_Cuda); 2608 // Clear the fat binary, it is already a dependence to an host 2609 // action. 2610 CudaFatBinary = nullptr; 2611 } 2612 2613 // Remove the CUDA actions as they are already connected to an host 2614 // action or fat binary. 2615 CudaDeviceActions.clear(); 2616 } 2617 2618 // We avoid creating host action in device-only mode. 2619 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2620 } else if (CurPhase > phases::Backend) { 2621 // If we are past the backend phase and still have a device action, we 2622 // don't have to do anything as this action is already a device 2623 // top-level action. 2624 return ABRT_Success; 2625 } 2626 2627 assert(CurPhase < phases::Backend && "Generating single CUDA " 2628 "instructions should only occur " 2629 "before the backend phase!"); 2630 2631 // By default, we produce an action for each device arch. 2632 for (Action *&A : CudaDeviceActions) 2633 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2634 2635 return ABRT_Success; 2636 } 2637 }; 2638 /// \brief HIP action builder. It injects device code in the host backend 2639 /// action. 2640 class HIPActionBuilder final : public CudaActionBuilderBase { 2641 /// The linker inputs obtained for each device arch. 2642 SmallVector<ActionList, 8> DeviceLinkerInputs; 2643 2644 public: 2645 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 2646 const Driver::InputList &Inputs) 2647 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {} 2648 2649 bool canUseBundlerUnbundler() const override { return true; } 2650 2651 ActionBuilderReturnCode 2652 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2653 phases::ID CurPhase, phases::ID FinalPhase, 2654 PhasesTy &Phases) override { 2655 // amdgcn does not support linking of object files, therefore we skip 2656 // backend and assemble phases to output LLVM IR. Except for generating 2657 // non-relocatable device coee, where we generate fat binary for device 2658 // code and pass to host in Backend phase. 2659 if (CudaDeviceActions.empty() || 2660 (CurPhase == phases::Backend && Relocatable) || 2661 CurPhase == phases::Assemble) 2662 return ABRT_Success; 2663 2664 assert(((CurPhase == phases::Link && Relocatable) || 2665 CudaDeviceActions.size() == GpuArchList.size()) && 2666 "Expecting one action per GPU architecture."); 2667 assert(!CompileHostOnly && 2668 "Not expecting CUDA actions in host-only compilation."); 2669 2670 if (!Relocatable && CurPhase == phases::Backend) { 2671 // If we are in backend phase, we attempt to generate the fat binary. 2672 // We compile each arch to IR and use a link action to generate code 2673 // object containing ISA. Then we use a special "link" action to create 2674 // a fat binary containing all the code objects for different GPU's. 2675 // The fat binary is then an input to the host action. 2676 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2677 // Create a link action to link device IR with device library 2678 // and generate ISA. 2679 ActionList AL; 2680 AL.push_back(CudaDeviceActions[I]); 2681 CudaDeviceActions[I] = 2682 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 2683 2684 // OffloadingActionBuilder propagates device arch until an offload 2685 // action. Since the next action for creating fatbin does 2686 // not have device arch, whereas the above link action and its input 2687 // have device arch, an offload action is needed to stop the null 2688 // device arch of the next action being propagated to the above link 2689 // action. 2690 OffloadAction::DeviceDependences DDep; 2691 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), 2692 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2693 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 2694 DDep, CudaDeviceActions[I]->getType()); 2695 } 2696 // Create HIP fat binary with a special "link" action. 2697 CudaFatBinary = 2698 C.MakeAction<LinkJobAction>(CudaDeviceActions, 2699 types::TY_HIP_FATBIN); 2700 2701 if (!CompileDeviceOnly) { 2702 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2703 AssociatedOffloadKind); 2704 // Clear the fat binary, it is already a dependence to an host 2705 // action. 2706 CudaFatBinary = nullptr; 2707 } 2708 2709 // Remove the CUDA actions as they are already connected to an host 2710 // action or fat binary. 2711 CudaDeviceActions.clear(); 2712 2713 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2714 } else if (CurPhase == phases::Link) { 2715 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 2716 // This happens to each device action originated from each input file. 2717 // Later on, device actions in DeviceLinkerInputs are used to create 2718 // device link actions in appendLinkDependences and the created device 2719 // link actions are passed to the offload action as device dependence. 2720 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 2721 auto LI = DeviceLinkerInputs.begin(); 2722 for (auto *A : CudaDeviceActions) { 2723 LI->push_back(A); 2724 ++LI; 2725 } 2726 2727 // We will pass the device action as a host dependence, so we don't 2728 // need to do anything else with them. 2729 CudaDeviceActions.clear(); 2730 return ABRT_Success; 2731 } 2732 2733 // By default, we produce an action for each device arch. 2734 for (Action *&A : CudaDeviceActions) 2735 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 2736 AssociatedOffloadKind); 2737 2738 return ABRT_Success; 2739 } 2740 2741 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2742 // Append a new link action for each device. 2743 unsigned I = 0; 2744 for (auto &LI : DeviceLinkerInputs) { 2745 auto *DeviceLinkAction = 2746 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2747 DA.add(*DeviceLinkAction, *ToolChains[0], 2748 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2749 ++I; 2750 } 2751 } 2752 }; 2753 2754 /// OpenMP action builder. The host bitcode is passed to the device frontend 2755 /// and all the device linked images are passed to the host link phase. 2756 class OpenMPActionBuilder final : public DeviceActionBuilder { 2757 /// The OpenMP actions for the current input. 2758 ActionList OpenMPDeviceActions; 2759 2760 /// The linker inputs obtained for each toolchain. 2761 SmallVector<ActionList, 8> DeviceLinkerInputs; 2762 2763 public: 2764 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2765 const Driver::InputList &Inputs) 2766 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2767 2768 ActionBuilderReturnCode 2769 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2770 phases::ID CurPhase, phases::ID FinalPhase, 2771 PhasesTy &Phases) override { 2772 if (OpenMPDeviceActions.empty()) 2773 return ABRT_Inactive; 2774 2775 // We should always have an action for each input. 2776 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2777 "Number of OpenMP actions and toolchains do not match."); 2778 2779 // The host only depends on device action in the linking phase, when all 2780 // the device images have to be embedded in the host image. 2781 if (CurPhase == phases::Link) { 2782 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2783 "Toolchains and linker inputs sizes do not match."); 2784 auto LI = DeviceLinkerInputs.begin(); 2785 for (auto *A : OpenMPDeviceActions) { 2786 LI->push_back(A); 2787 ++LI; 2788 } 2789 2790 // We passed the device action as a host dependence, so we don't need to 2791 // do anything else with them. 2792 OpenMPDeviceActions.clear(); 2793 return ABRT_Success; 2794 } 2795 2796 // By default, we produce an action for each device arch. 2797 for (Action *&A : OpenMPDeviceActions) 2798 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2799 2800 return ABRT_Success; 2801 } 2802 2803 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2804 2805 // If this is an input action replicate it for each OpenMP toolchain. 2806 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2807 OpenMPDeviceActions.clear(); 2808 for (unsigned I = 0; I < ToolChains.size(); ++I) 2809 OpenMPDeviceActions.push_back( 2810 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 2811 return ABRT_Success; 2812 } 2813 2814 // If this is an unbundling action use it as is for each OpenMP toolchain. 2815 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2816 OpenMPDeviceActions.clear(); 2817 auto *IA = cast<InputAction>(UA->getInputs().back()); 2818 std::string FileName = IA->getInputArg().getAsString(Args); 2819 // Check if the type of the file is the same as the action. Do not 2820 // unbundle it if it is not. Do not unbundle .so files, for example, 2821 // which are not object files. 2822 if (IA->getType() == types::TY_Object && 2823 (!llvm::sys::path::has_extension(FileName) || 2824 types::lookupTypeForExtension( 2825 llvm::sys::path::extension(FileName).drop_front()) != 2826 types::TY_Object)) 2827 return ABRT_Inactive; 2828 for (unsigned I = 0; I < ToolChains.size(); ++I) { 2829 OpenMPDeviceActions.push_back(UA); 2830 UA->registerDependentActionInfo( 2831 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 2832 } 2833 return ABRT_Success; 2834 } 2835 2836 // When generating code for OpenMP we use the host compile phase result as 2837 // a dependence to the device compile phase so that it can learn what 2838 // declarations should be emitted. However, this is not the only use for 2839 // the host action, so we prevent it from being collapsed. 2840 if (isa<CompileJobAction>(HostAction)) { 2841 HostAction->setCannotBeCollapsedWithNextDependentAction(); 2842 assert(ToolChains.size() == OpenMPDeviceActions.size() && 2843 "Toolchains and device action sizes do not match."); 2844 OffloadAction::HostDependence HDep( 2845 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2846 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2847 auto TC = ToolChains.begin(); 2848 for (Action *&A : OpenMPDeviceActions) { 2849 assert(isa<CompileJobAction>(A)); 2850 OffloadAction::DeviceDependences DDep; 2851 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2852 A = C.MakeAction<OffloadAction>(HDep, DDep); 2853 ++TC; 2854 } 2855 } 2856 return ABRT_Success; 2857 } 2858 2859 void appendTopLevelActions(ActionList &AL) override { 2860 if (OpenMPDeviceActions.empty()) 2861 return; 2862 2863 // We should always have an action for each input. 2864 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2865 "Number of OpenMP actions and toolchains do not match."); 2866 2867 // Append all device actions followed by the proper offload action. 2868 auto TI = ToolChains.begin(); 2869 for (auto *A : OpenMPDeviceActions) { 2870 OffloadAction::DeviceDependences Dep; 2871 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2872 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2873 ++TI; 2874 } 2875 // We no longer need the action stored in this builder. 2876 OpenMPDeviceActions.clear(); 2877 } 2878 2879 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2880 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2881 "Toolchains and linker inputs sizes do not match."); 2882 2883 // Append a new link action for each device. 2884 auto TC = ToolChains.begin(); 2885 for (auto &LI : DeviceLinkerInputs) { 2886 auto *DeviceLinkAction = 2887 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2888 DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 2889 Action::OFK_OpenMP); 2890 ++TC; 2891 } 2892 } 2893 2894 bool initialize() override { 2895 // Get the OpenMP toolchains. If we don't get any, the action builder will 2896 // know there is nothing to do related to OpenMP offloading. 2897 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 2898 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 2899 ++TI) 2900 ToolChains.push_back(TI->second); 2901 2902 DeviceLinkerInputs.resize(ToolChains.size()); 2903 return false; 2904 } 2905 2906 bool canUseBundlerUnbundler() const override { 2907 // OpenMP should use bundled files whenever possible. 2908 return true; 2909 } 2910 }; 2911 2912 /// 2913 /// TODO: Add the implementation for other specialized builders here. 2914 /// 2915 2916 /// Specialized builders being used by this offloading action builder. 2917 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 2918 2919 /// Flag set to true if all valid builders allow file bundling/unbundling. 2920 bool CanUseBundler; 2921 2922 public: 2923 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 2924 const Driver::InputList &Inputs) 2925 : C(C) { 2926 // Create a specialized builder for each device toolchain. 2927 2928 IsValid = true; 2929 2930 // Create a specialized builder for CUDA. 2931 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 2932 2933 // Create a specialized builder for HIP. 2934 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 2935 2936 // Create a specialized builder for OpenMP. 2937 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 2938 2939 // 2940 // TODO: Build other specialized builders here. 2941 // 2942 2943 // Initialize all the builders, keeping track of errors. If all valid 2944 // builders agree that we can use bundling, set the flag to true. 2945 unsigned ValidBuilders = 0u; 2946 unsigned ValidBuildersSupportingBundling = 0u; 2947 for (auto *SB : SpecializedBuilders) { 2948 IsValid = IsValid && !SB->initialize(); 2949 2950 // Update the counters if the builder is valid. 2951 if (SB->isValid()) { 2952 ++ValidBuilders; 2953 if (SB->canUseBundlerUnbundler()) 2954 ++ValidBuildersSupportingBundling; 2955 } 2956 } 2957 CanUseBundler = 2958 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 2959 } 2960 2961 ~OffloadingActionBuilder() { 2962 for (auto *SB : SpecializedBuilders) 2963 delete SB; 2964 } 2965 2966 /// Generate an action that adds device dependences (if any) to a host action. 2967 /// If no device dependence actions exist, just return the host action \a 2968 /// HostAction. If an error is found or if no builder requires the host action 2969 /// to be generated, return nullptr. 2970 Action * 2971 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 2972 phases::ID CurPhase, phases::ID FinalPhase, 2973 DeviceActionBuilder::PhasesTy &Phases) { 2974 if (!IsValid) 2975 return nullptr; 2976 2977 if (SpecializedBuilders.empty()) 2978 return HostAction; 2979 2980 assert(HostAction && "Invalid host action!"); 2981 2982 OffloadAction::DeviceDependences DDeps; 2983 // Check if all the programming models agree we should not emit the host 2984 // action. Also, keep track of the offloading kinds employed. 2985 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 2986 unsigned InactiveBuilders = 0u; 2987 unsigned IgnoringBuilders = 0u; 2988 for (auto *SB : SpecializedBuilders) { 2989 if (!SB->isValid()) { 2990 ++InactiveBuilders; 2991 continue; 2992 } 2993 2994 auto RetCode = 2995 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 2996 2997 // If the builder explicitly says the host action should be ignored, 2998 // we need to increment the variable that tracks the builders that request 2999 // the host object to be ignored. 3000 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 3001 ++IgnoringBuilders; 3002 3003 // Unless the builder was inactive for this action, we have to record the 3004 // offload kind because the host will have to use it. 3005 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3006 OffloadKind |= SB->getAssociatedOffloadKind(); 3007 } 3008 3009 // If all builders agree that the host object should be ignored, just return 3010 // nullptr. 3011 if (IgnoringBuilders && 3012 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 3013 return nullptr; 3014 3015 if (DDeps.getActions().empty()) 3016 return HostAction; 3017 3018 // We have dependences we need to bundle together. We use an offload action 3019 // for that. 3020 OffloadAction::HostDependence HDep( 3021 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3022 /*BoundArch=*/nullptr, DDeps); 3023 return C.MakeAction<OffloadAction>(HDep, DDeps); 3024 } 3025 3026 /// Generate an action that adds a host dependence to a device action. The 3027 /// results will be kept in this action builder. Return true if an error was 3028 /// found. 3029 bool addHostDependenceToDeviceActions(Action *&HostAction, 3030 const Arg *InputArg) { 3031 if (!IsValid) 3032 return true; 3033 3034 // If we are supporting bundling/unbundling and the current action is an 3035 // input action of non-source file, we replace the host action by the 3036 // unbundling action. The bundler tool has the logic to detect if an input 3037 // is a bundle or not and if the input is not a bundle it assumes it is a 3038 // host file. Therefore it is safe to create an unbundling action even if 3039 // the input is not a bundle. 3040 if (CanUseBundler && isa<InputAction>(HostAction) && 3041 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 3042 !types::isSrcFile(HostAction->getType())) { 3043 auto UnbundlingHostAction = 3044 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 3045 UnbundlingHostAction->registerDependentActionInfo( 3046 C.getSingleOffloadToolChain<Action::OFK_Host>(), 3047 /*BoundArch=*/StringRef(), Action::OFK_Host); 3048 HostAction = UnbundlingHostAction; 3049 } 3050 3051 assert(HostAction && "Invalid host action!"); 3052 3053 // Register the offload kinds that are used. 3054 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3055 for (auto *SB : SpecializedBuilders) { 3056 if (!SB->isValid()) 3057 continue; 3058 3059 auto RetCode = SB->addDeviceDepences(HostAction); 3060 3061 // Host dependences for device actions are not compatible with that same 3062 // action being ignored. 3063 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 3064 "Host dependence not expected to be ignored.!"); 3065 3066 // Unless the builder was inactive for this action, we have to record the 3067 // offload kind because the host will have to use it. 3068 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3069 OffloadKind |= SB->getAssociatedOffloadKind(); 3070 } 3071 3072 // Do not use unbundler if the Host does not depend on device action. 3073 if (OffloadKind == Action::OFK_None && CanUseBundler) 3074 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 3075 HostAction = UA->getInputs().back(); 3076 3077 return false; 3078 } 3079 3080 /// Add the offloading top level actions to the provided action list. This 3081 /// function can replace the host action by a bundling action if the 3082 /// programming models allow it. 3083 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 3084 const Arg *InputArg) { 3085 // Get the device actions to be appended. 3086 ActionList OffloadAL; 3087 for (auto *SB : SpecializedBuilders) { 3088 if (!SB->isValid()) 3089 continue; 3090 SB->appendTopLevelActions(OffloadAL); 3091 } 3092 3093 // If we can use the bundler, replace the host action by the bundling one in 3094 // the resulting list. Otherwise, just append the device actions. For 3095 // device only compilation, HostAction is a null pointer, therefore only do 3096 // this when HostAction is not a null pointer. 3097 if (CanUseBundler && HostAction && !OffloadAL.empty()) { 3098 // Add the host action to the list in order to create the bundling action. 3099 OffloadAL.push_back(HostAction); 3100 3101 // We expect that the host action was just appended to the action list 3102 // before this method was called. 3103 assert(HostAction == AL.back() && "Host action not in the list??"); 3104 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 3105 AL.back() = HostAction; 3106 } else 3107 AL.append(OffloadAL.begin(), OffloadAL.end()); 3108 3109 // Propagate to the current host action (if any) the offload information 3110 // associated with the current input. 3111 if (HostAction) 3112 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 3113 /*BoundArch=*/nullptr); 3114 return false; 3115 } 3116 3117 /// Processes the host linker action. This currently consists of replacing it 3118 /// with an offload action if there are device link objects and propagate to 3119 /// the host action all the offload kinds used in the current compilation. The 3120 /// resulting action is returned. 3121 Action *processHostLinkAction(Action *HostAction) { 3122 // Add all the dependences from the device linking actions. 3123 OffloadAction::DeviceDependences DDeps; 3124 for (auto *SB : SpecializedBuilders) { 3125 if (!SB->isValid()) 3126 continue; 3127 3128 SB->appendLinkDependences(DDeps); 3129 } 3130 3131 // Calculate all the offload kinds used in the current compilation. 3132 unsigned ActiveOffloadKinds = 0u; 3133 for (auto &I : InputArgToOffloadKindMap) 3134 ActiveOffloadKinds |= I.second; 3135 3136 // If we don't have device dependencies, we don't have to create an offload 3137 // action. 3138 if (DDeps.getActions().empty()) { 3139 // Propagate all the active kinds to host action. Given that it is a link 3140 // action it is assumed to depend on all actions generated so far. 3141 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 3142 /*BoundArch=*/nullptr); 3143 return HostAction; 3144 } 3145 3146 // Create the offload action with all dependences. When an offload action 3147 // is created the kinds are propagated to the host action, so we don't have 3148 // to do that explicitly here. 3149 OffloadAction::HostDependence HDep( 3150 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3151 /*BoundArch*/ nullptr, ActiveOffloadKinds); 3152 return C.MakeAction<OffloadAction>(HDep, DDeps); 3153 } 3154 }; 3155 } // anonymous namespace. 3156 3157 void Driver::handleArguments(Compilation &C, DerivedArgList &Args, 3158 const InputList &Inputs, 3159 ActionList &Actions) const { 3160 3161 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 3162 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 3163 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 3164 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 3165 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 3166 Args.eraseArg(options::OPT__SLASH_Yc); 3167 Args.eraseArg(options::OPT__SLASH_Yu); 3168 YcArg = YuArg = nullptr; 3169 } 3170 if (YcArg && Inputs.size() > 1) { 3171 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 3172 Args.eraseArg(options::OPT__SLASH_Yc); 3173 YcArg = nullptr; 3174 } 3175 3176 Arg *FinalPhaseArg; 3177 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 3178 3179 if (FinalPhase == phases::Link) { 3180 if (Args.hasArg(options::OPT_emit_llvm)) 3181 Diag(clang::diag::err_drv_emit_llvm_link); 3182 if (IsCLMode() && LTOMode != LTOK_None && 3183 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 3184 Diag(clang::diag::err_drv_lto_without_lld); 3185 } 3186 3187 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 3188 // If only preprocessing or /Y- is used, all pch handling is disabled. 3189 // Rather than check for it everywhere, just remove clang-cl pch-related 3190 // flags here. 3191 Args.eraseArg(options::OPT__SLASH_Fp); 3192 Args.eraseArg(options::OPT__SLASH_Yc); 3193 Args.eraseArg(options::OPT__SLASH_Yu); 3194 YcArg = YuArg = nullptr; 3195 } 3196 3197 unsigned LastPLSize = 0; 3198 for (auto &I : Inputs) { 3199 types::ID InputType = I.first; 3200 const Arg *InputArg = I.second; 3201 3202 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3203 types::getCompilationPhases(InputType, PL); 3204 LastPLSize = PL.size(); 3205 3206 // If the first step comes after the final phase we are doing as part of 3207 // this compilation, warn the user about it. 3208 phases::ID InitialPhase = PL[0]; 3209 if (InitialPhase > FinalPhase) { 3210 if (InputArg->isClaimed()) 3211 continue; 3212 3213 // Claim here to avoid the more general unused warning. 3214 InputArg->claim(); 3215 3216 // Suppress all unused style warnings with -Qunused-arguments 3217 if (Args.hasArg(options::OPT_Qunused_arguments)) 3218 continue; 3219 3220 // Special case when final phase determined by binary name, rather than 3221 // by a command-line argument with a corresponding Arg. 3222 if (CCCIsCPP()) 3223 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 3224 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 3225 // Special case '-E' warning on a previously preprocessed file to make 3226 // more sense. 3227 else if (InitialPhase == phases::Compile && 3228 (Args.getLastArg(options::OPT__SLASH_EP, 3229 options::OPT__SLASH_P) || 3230 Args.getLastArg(options::OPT_E) || 3231 Args.getLastArg(options::OPT_M, options::OPT_MM)) && 3232 getPreprocessedType(InputType) == types::TY_INVALID) 3233 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 3234 << InputArg->getAsString(Args) << !!FinalPhaseArg 3235 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3236 else 3237 Diag(clang::diag::warn_drv_input_file_unused) 3238 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 3239 << !!FinalPhaseArg 3240 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3241 continue; 3242 } 3243 3244 if (YcArg) { 3245 // Add a separate precompile phase for the compile phase. 3246 if (FinalPhase >= phases::Compile) { 3247 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 3248 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL; 3249 types::getCompilationPhases(HeaderType, PCHPL); 3250 // Build the pipeline for the pch file. 3251 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType); 3252 for (phases::ID Phase : PCHPL) 3253 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 3254 assert(ClangClPch); 3255 Actions.push_back(ClangClPch); 3256 // The driver currently exits after the first failed command. This 3257 // relies on that behavior, to make sure if the pch generation fails, 3258 // the main compilation won't run. 3259 // FIXME: If the main compilation fails, the PCH generation should 3260 // probably not be considered successful either. 3261 } 3262 } 3263 } 3264 3265 // If we are linking, claim any options which are obviously only used for 3266 // compilation. 3267 // FIXME: Understand why the last Phase List length is used here. 3268 if (FinalPhase == phases::Link && LastPLSize == 1) { 3269 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3270 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3271 } 3272 } 3273 3274 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 3275 const InputList &Inputs, ActionList &Actions) const { 3276 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 3277 3278 if (!SuppressMissingInputWarning && Inputs.empty()) { 3279 Diag(clang::diag::err_drv_no_input_files); 3280 return; 3281 } 3282 3283 // Reject -Z* at the top level, these options should never have been exposed 3284 // by gcc. 3285 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 3286 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 3287 3288 // Diagnose misuse of /Fo. 3289 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 3290 StringRef V = A->getValue(); 3291 if (Inputs.size() > 1 && !V.empty() && 3292 !llvm::sys::path::is_separator(V.back())) { 3293 // Check whether /Fo tries to name an output file for multiple inputs. 3294 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3295 << A->getSpelling() << V; 3296 Args.eraseArg(options::OPT__SLASH_Fo); 3297 } 3298 } 3299 3300 // Diagnose misuse of /Fa. 3301 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 3302 StringRef V = A->getValue(); 3303 if (Inputs.size() > 1 && !V.empty() && 3304 !llvm::sys::path::is_separator(V.back())) { 3305 // Check whether /Fa tries to name an asm file for multiple inputs. 3306 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3307 << A->getSpelling() << V; 3308 Args.eraseArg(options::OPT__SLASH_Fa); 3309 } 3310 } 3311 3312 // Diagnose misuse of /o. 3313 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 3314 if (A->getValue()[0] == '\0') { 3315 // It has to have a value. 3316 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 3317 Args.eraseArg(options::OPT__SLASH_o); 3318 } 3319 } 3320 3321 handleArguments(C, Args, Inputs, Actions); 3322 3323 // Builder to be used to build offloading actions. 3324 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 3325 3326 // Construct the actions to perform. 3327 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; 3328 ActionList LinkerInputs; 3329 3330 for (auto &I : Inputs) { 3331 types::ID InputType = I.first; 3332 const Arg *InputArg = I.second; 3333 3334 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3335 types::getCompilationPhases(*this, Args, InputType, PL); 3336 if (PL.empty()) 3337 continue; 3338 3339 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> FullPL; 3340 types::getCompilationPhases(InputType, FullPL); 3341 3342 // Build the pipeline for this file. 3343 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3344 3345 // Use the current host action in any of the offloading actions, if 3346 // required. 3347 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3348 break; 3349 3350 for (phases::ID Phase : PL) { 3351 3352 // Add any offload action the host action depends on. 3353 Current = OffloadBuilder.addDeviceDependencesToHostAction( 3354 Current, InputArg, Phase, PL.back(), FullPL); 3355 if (!Current) 3356 break; 3357 3358 // Queue linker inputs. 3359 if (Phase == phases::Link) { 3360 assert(Phase == PL.back() && "linking must be final compilation step."); 3361 LinkerInputs.push_back(Current); 3362 Current = nullptr; 3363 break; 3364 } 3365 3366 // Each precompiled header file after a module file action is a module 3367 // header of that same module file, rather than being compiled to a 3368 // separate PCH. 3369 if (Phase == phases::Precompile && HeaderModuleAction && 3370 getPrecompiledType(InputType) == types::TY_PCH) { 3371 HeaderModuleAction->addModuleHeaderInput(Current); 3372 Current = nullptr; 3373 break; 3374 } 3375 3376 // FIXME: Should we include any prior module file outputs as inputs of 3377 // later actions in the same command line? 3378 3379 // Otherwise construct the appropriate action. 3380 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 3381 3382 // We didn't create a new action, so we will just move to the next phase. 3383 if (NewCurrent == Current) 3384 continue; 3385 3386 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent)) 3387 HeaderModuleAction = HMA; 3388 3389 Current = NewCurrent; 3390 3391 // Use the current host action in any of the offloading actions, if 3392 // required. 3393 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3394 break; 3395 3396 if (Current->getType() == types::TY_Nothing) 3397 break; 3398 } 3399 3400 // If we ended with something, add to the output list. 3401 if (Current) 3402 Actions.push_back(Current); 3403 3404 // Add any top level actions generated for offloading. 3405 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 3406 } 3407 3408 // Add a link action if necessary. 3409 if (!LinkerInputs.empty()) { 3410 Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3411 LA = OffloadBuilder.processHostLinkAction(LA); 3412 Actions.push_back(LA); 3413 } 3414 3415 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom 3416 // Compile phase that prints out supported cpu models and quits. 3417 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { 3418 // Use the -mcpu=? flag as the dummy input to cc1. 3419 Actions.clear(); 3420 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); 3421 Actions.push_back( 3422 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 3423 for (auto &I : Inputs) 3424 I.second->claim(); 3425 } 3426 3427 // Claim ignored clang-cl options. 3428 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3429 3430 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3431 // to non-CUDA compilations and should not trigger warnings there. 3432 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3433 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3434 } 3435 3436 Action *Driver::ConstructPhaseAction( 3437 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3438 Action::OffloadKind TargetDeviceOffloadKind) const { 3439 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3440 3441 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3442 // encode this in the steps because the intermediate type depends on 3443 // arguments. Just special case here. 3444 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3445 return Input; 3446 3447 // Build the appropriate action. 3448 switch (Phase) { 3449 case phases::Link: 3450 llvm_unreachable("link action invalid here."); 3451 case phases::Preprocess: { 3452 types::ID OutputTy; 3453 // -M and -MM specify the dependency file name by altering the output type, 3454 // -if -MD and -MMD are not specified. 3455 if (Args.hasArg(options::OPT_M, options::OPT_MM) && 3456 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { 3457 OutputTy = types::TY_Dependencies; 3458 } else { 3459 OutputTy = Input->getType(); 3460 if (!Args.hasFlag(options::OPT_frewrite_includes, 3461 options::OPT_fno_rewrite_includes, false) && 3462 !Args.hasFlag(options::OPT_frewrite_imports, 3463 options::OPT_fno_rewrite_imports, false) && 3464 !CCGenDiagnostics) 3465 OutputTy = types::getPreprocessedType(OutputTy); 3466 assert(OutputTy != types::TY_INVALID && 3467 "Cannot preprocess this input type!"); 3468 } 3469 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3470 } 3471 case phases::Precompile: { 3472 types::ID OutputTy = getPrecompiledType(Input->getType()); 3473 assert(OutputTy != types::TY_INVALID && 3474 "Cannot precompile this input type!"); 3475 3476 // If we're given a module name, precompile header file inputs as a 3477 // module, not as a precompiled header. 3478 const char *ModName = nullptr; 3479 if (OutputTy == types::TY_PCH) { 3480 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 3481 ModName = A->getValue(); 3482 if (ModName) 3483 OutputTy = types::TY_ModuleFile; 3484 } 3485 3486 if (Args.hasArg(options::OPT_fsyntax_only)) { 3487 // Syntax checks should not emit a PCH file 3488 OutputTy = types::TY_Nothing; 3489 } 3490 3491 if (ModName) 3492 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy, 3493 ModName); 3494 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3495 } 3496 case phases::Compile: { 3497 if (Args.hasArg(options::OPT_fsyntax_only)) 3498 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3499 if (Args.hasArg(options::OPT_rewrite_objc)) 3500 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3501 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3502 return C.MakeAction<CompileJobAction>(Input, 3503 types::TY_RewrittenLegacyObjC); 3504 if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto)) 3505 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3506 if (Args.hasArg(options::OPT__migrate)) 3507 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3508 if (Args.hasArg(options::OPT_emit_ast)) 3509 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3510 if (Args.hasArg(options::OPT_module_file_info)) 3511 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3512 if (Args.hasArg(options::OPT_verify_pch)) 3513 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3514 if (Args.hasArg(options::OPT_emit_iterface_stubs)) 3515 return C.MakeAction<CompileJobAction>(Input, types::TY_IFS); 3516 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3517 } 3518 case phases::Backend: { 3519 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3520 types::ID Output = 3521 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3522 return C.MakeAction<BackendJobAction>(Input, Output); 3523 } 3524 if (Args.hasArg(options::OPT_emit_llvm)) { 3525 types::ID Output = 3526 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3527 return C.MakeAction<BackendJobAction>(Input, Output); 3528 } 3529 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3530 } 3531 case phases::Assemble: 3532 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3533 } 3534 3535 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3536 } 3537 3538 void Driver::BuildJobs(Compilation &C) const { 3539 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3540 3541 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3542 3543 // It is an error to provide a -o option if we are making multiple output 3544 // files. 3545 if (FinalOutput) { 3546 unsigned NumOutputs = 0; 3547 for (const Action *A : C.getActions()) 3548 if (A->getType() != types::TY_Nothing) 3549 ++NumOutputs; 3550 3551 if (NumOutputs > 1) { 3552 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3553 FinalOutput = nullptr; 3554 } 3555 } 3556 3557 // Collect the list of architectures. 3558 llvm::StringSet<> ArchNames; 3559 if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO()) 3560 for (const Arg *A : C.getArgs()) 3561 if (A->getOption().matches(options::OPT_arch)) 3562 ArchNames.insert(A->getValue()); 3563 3564 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3565 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3566 for (Action *A : C.getActions()) { 3567 // If we are linking an image for multiple archs then the linker wants 3568 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3569 // doesn't fit in cleanly because we have to pass this information down. 3570 // 3571 // FIXME: This is a hack; find a cleaner way to integrate this into the 3572 // process. 3573 const char *LinkingOutput = nullptr; 3574 if (isa<LipoJobAction>(A)) { 3575 if (FinalOutput) 3576 LinkingOutput = FinalOutput->getValue(); 3577 else 3578 LinkingOutput = getDefaultImageName(); 3579 } 3580 3581 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3582 /*BoundArch*/ StringRef(), 3583 /*AtTopLevel*/ true, 3584 /*MultipleArchs*/ ArchNames.size() > 1, 3585 /*LinkingOutput*/ LinkingOutput, CachedResults, 3586 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3587 } 3588 3589 // If the user passed -Qunused-arguments or there were errors, don't warn 3590 // about any unused arguments. 3591 if (Diags.hasErrorOccurred() || 3592 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3593 return; 3594 3595 // Claim -### here. 3596 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 3597 3598 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 3599 (void)C.getArgs().hasArg(options::OPT_driver_mode); 3600 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 3601 3602 for (Arg *A : C.getArgs()) { 3603 // FIXME: It would be nice to be able to send the argument to the 3604 // DiagnosticsEngine, so that extra values, position, and so on could be 3605 // printed. 3606 if (!A->isClaimed()) { 3607 if (A->getOption().hasFlag(options::NoArgumentUnused)) 3608 continue; 3609 3610 // Suppress the warning automatically if this is just a flag, and it is an 3611 // instance of an argument we already claimed. 3612 const Option &Opt = A->getOption(); 3613 if (Opt.getKind() == Option::FlagClass) { 3614 bool DuplicateClaimed = false; 3615 3616 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 3617 if (AA->isClaimed()) { 3618 DuplicateClaimed = true; 3619 break; 3620 } 3621 } 3622 3623 if (DuplicateClaimed) 3624 continue; 3625 } 3626 3627 // In clang-cl, don't mention unknown arguments here since they have 3628 // already been warned about. 3629 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 3630 Diag(clang::diag::warn_drv_unused_argument) 3631 << A->getAsString(C.getArgs()); 3632 } 3633 } 3634 } 3635 3636 namespace { 3637 /// Utility class to control the collapse of dependent actions and select the 3638 /// tools accordingly. 3639 class ToolSelector final { 3640 /// The tool chain this selector refers to. 3641 const ToolChain &TC; 3642 3643 /// The compilation this selector refers to. 3644 const Compilation &C; 3645 3646 /// The base action this selector refers to. 3647 const JobAction *BaseAction; 3648 3649 /// Set to true if the current toolchain refers to host actions. 3650 bool IsHostSelector; 3651 3652 /// Set to true if save-temps and embed-bitcode functionalities are active. 3653 bool SaveTemps; 3654 bool EmbedBitcode; 3655 3656 /// Get previous dependent action or null if that does not exist. If 3657 /// \a CanBeCollapsed is false, that action must be legal to collapse or 3658 /// null will be returned. 3659 const JobAction *getPrevDependentAction(const ActionList &Inputs, 3660 ActionList &SavedOffloadAction, 3661 bool CanBeCollapsed = true) { 3662 // An option can be collapsed only if it has a single input. 3663 if (Inputs.size() != 1) 3664 return nullptr; 3665 3666 Action *CurAction = *Inputs.begin(); 3667 if (CanBeCollapsed && 3668 !CurAction->isCollapsingWithNextDependentActionLegal()) 3669 return nullptr; 3670 3671 // If the input action is an offload action. Look through it and save any 3672 // offload action that can be dropped in the event of a collapse. 3673 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 3674 // If the dependent action is a device action, we will attempt to collapse 3675 // only with other device actions. Otherwise, we would do the same but 3676 // with host actions only. 3677 if (!IsHostSelector) { 3678 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 3679 CurAction = 3680 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 3681 if (CanBeCollapsed && 3682 !CurAction->isCollapsingWithNextDependentActionLegal()) 3683 return nullptr; 3684 SavedOffloadAction.push_back(OA); 3685 return dyn_cast<JobAction>(CurAction); 3686 } 3687 } else if (OA->hasHostDependence()) { 3688 CurAction = OA->getHostDependence(); 3689 if (CanBeCollapsed && 3690 !CurAction->isCollapsingWithNextDependentActionLegal()) 3691 return nullptr; 3692 SavedOffloadAction.push_back(OA); 3693 return dyn_cast<JobAction>(CurAction); 3694 } 3695 return nullptr; 3696 } 3697 3698 return dyn_cast<JobAction>(CurAction); 3699 } 3700 3701 /// Return true if an assemble action can be collapsed. 3702 bool canCollapseAssembleAction() const { 3703 return TC.useIntegratedAs() && !SaveTemps && 3704 !C.getArgs().hasArg(options::OPT_via_file_asm) && 3705 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 3706 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 3707 } 3708 3709 /// Return true if a preprocessor action can be collapsed. 3710 bool canCollapsePreprocessorAction() const { 3711 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 3712 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 3713 !C.getArgs().hasArg(options::OPT_rewrite_objc); 3714 } 3715 3716 /// Struct that relates an action with the offload actions that would be 3717 /// collapsed with it. 3718 struct JobActionInfo final { 3719 /// The action this info refers to. 3720 const JobAction *JA = nullptr; 3721 /// The offload actions we need to take care off if this action is 3722 /// collapsed. 3723 ActionList SavedOffloadAction; 3724 }; 3725 3726 /// Append collapsed offload actions from the give nnumber of elements in the 3727 /// action info array. 3728 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 3729 ArrayRef<JobActionInfo> &ActionInfo, 3730 unsigned ElementNum) { 3731 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 3732 for (unsigned I = 0; I < ElementNum; ++I) 3733 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 3734 ActionInfo[I].SavedOffloadAction.end()); 3735 } 3736 3737 /// Functions that attempt to perform the combining. They detect if that is 3738 /// legal, and if so they update the inputs \a Inputs and the offload action 3739 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 3740 /// the combined action is returned. If the combining is not legal or if the 3741 /// tool does not exist, null is returned. 3742 /// Currently three kinds of collapsing are supported: 3743 /// - Assemble + Backend + Compile; 3744 /// - Assemble + Backend ; 3745 /// - Backend + Compile. 3746 const Tool * 3747 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3748 ActionList &Inputs, 3749 ActionList &CollapsedOffloadAction) { 3750 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 3751 return nullptr; 3752 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3753 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3754 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 3755 if (!AJ || !BJ || !CJ) 3756 return nullptr; 3757 3758 // Get compiler tool. 3759 const Tool *T = TC.SelectTool(*CJ); 3760 if (!T) 3761 return nullptr; 3762 3763 // When using -fembed-bitcode, it is required to have the same tool (clang) 3764 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 3765 if (EmbedBitcode) { 3766 const Tool *BT = TC.SelectTool(*BJ); 3767 if (BT == T) 3768 return nullptr; 3769 } 3770 3771 if (!T->hasIntegratedAssembler()) 3772 return nullptr; 3773 3774 Inputs = CJ->getInputs(); 3775 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3776 /*NumElements=*/3); 3777 return T; 3778 } 3779 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 3780 ActionList &Inputs, 3781 ActionList &CollapsedOffloadAction) { 3782 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 3783 return nullptr; 3784 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3785 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3786 if (!AJ || !BJ) 3787 return nullptr; 3788 3789 // Retrieve the compile job, backend action must always be preceded by one. 3790 ActionList CompileJobOffloadActions; 3791 auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions, 3792 /*CanBeCollapsed=*/false); 3793 if (!AJ || !BJ || !CJ) 3794 return nullptr; 3795 3796 assert(isa<CompileJobAction>(CJ) && 3797 "Expecting compile job preceding backend job."); 3798 3799 // Get compiler tool. 3800 const Tool *T = TC.SelectTool(*CJ); 3801 if (!T) 3802 return nullptr; 3803 3804 if (!T->hasIntegratedAssembler()) 3805 return nullptr; 3806 3807 Inputs = BJ->getInputs(); 3808 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3809 /*NumElements=*/2); 3810 return T; 3811 } 3812 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3813 ActionList &Inputs, 3814 ActionList &CollapsedOffloadAction) { 3815 if (ActionInfo.size() < 2) 3816 return nullptr; 3817 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 3818 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 3819 if (!BJ || !CJ) 3820 return nullptr; 3821 3822 // Check if the initial input (to the compile job or its predessor if one 3823 // exists) is LLVM bitcode. In that case, no preprocessor step is required 3824 // and we can still collapse the compile and backend jobs when we have 3825 // -save-temps. I.e. there is no need for a separate compile job just to 3826 // emit unoptimized bitcode. 3827 bool InputIsBitcode = true; 3828 for (size_t i = 1; i < ActionInfo.size(); i++) 3829 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 3830 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 3831 InputIsBitcode = false; 3832 break; 3833 } 3834 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 3835 return nullptr; 3836 3837 // Get compiler tool. 3838 const Tool *T = TC.SelectTool(*CJ); 3839 if (!T) 3840 return nullptr; 3841 3842 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 3843 return nullptr; 3844 3845 Inputs = CJ->getInputs(); 3846 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3847 /*NumElements=*/2); 3848 return T; 3849 } 3850 3851 /// Updates the inputs if the obtained tool supports combining with 3852 /// preprocessor action, and the current input is indeed a preprocessor 3853 /// action. If combining results in the collapse of offloading actions, those 3854 /// are appended to \a CollapsedOffloadAction. 3855 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 3856 ActionList &CollapsedOffloadAction) { 3857 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 3858 return; 3859 3860 // Attempt to get a preprocessor action dependence. 3861 ActionList PreprocessJobOffloadActions; 3862 ActionList NewInputs; 3863 for (Action *A : Inputs) { 3864 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 3865 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 3866 NewInputs.push_back(A); 3867 continue; 3868 } 3869 3870 // This is legal to combine. Append any offload action we found and add the 3871 // current input to preprocessor inputs. 3872 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 3873 PreprocessJobOffloadActions.end()); 3874 NewInputs.append(PJ->input_begin(), PJ->input_end()); 3875 } 3876 Inputs = NewInputs; 3877 } 3878 3879 public: 3880 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 3881 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 3882 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 3883 EmbedBitcode(EmbedBitcode) { 3884 assert(BaseAction && "Invalid base action."); 3885 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 3886 } 3887 3888 /// Check if a chain of actions can be combined and return the tool that can 3889 /// handle the combination of actions. The pointer to the current inputs \a 3890 /// Inputs and the list of offload actions \a CollapsedOffloadActions 3891 /// connected to collapsed actions are updated accordingly. The latter enables 3892 /// the caller of the selector to process them afterwards instead of just 3893 /// dropping them. If no suitable tool is found, null will be returned. 3894 const Tool *getTool(ActionList &Inputs, 3895 ActionList &CollapsedOffloadAction) { 3896 // 3897 // Get the largest chain of actions that we could combine. 3898 // 3899 3900 SmallVector<JobActionInfo, 5> ActionChain(1); 3901 ActionChain.back().JA = BaseAction; 3902 while (ActionChain.back().JA) { 3903 const Action *CurAction = ActionChain.back().JA; 3904 3905 // Grow the chain by one element. 3906 ActionChain.resize(ActionChain.size() + 1); 3907 JobActionInfo &AI = ActionChain.back(); 3908 3909 // Attempt to fill it with the 3910 AI.JA = 3911 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 3912 } 3913 3914 // Pop the last action info as it could not be filled. 3915 ActionChain.pop_back(); 3916 3917 // 3918 // Attempt to combine actions. If all combining attempts failed, just return 3919 // the tool of the provided action. At the end we attempt to combine the 3920 // action with any preprocessor action it may depend on. 3921 // 3922 3923 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 3924 CollapsedOffloadAction); 3925 if (!T) 3926 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 3927 if (!T) 3928 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 3929 if (!T) { 3930 Inputs = BaseAction->getInputs(); 3931 T = TC.SelectTool(*BaseAction); 3932 } 3933 3934 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 3935 return T; 3936 } 3937 }; 3938 } 3939 3940 /// Return a string that uniquely identifies the result of a job. The bound arch 3941 /// is not necessarily represented in the toolchain's triple -- for example, 3942 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 3943 /// Also, we need to add the offloading device kind, as the same tool chain can 3944 /// be used for host and device for some programming models, e.g. OpenMP. 3945 static std::string GetTriplePlusArchString(const ToolChain *TC, 3946 StringRef BoundArch, 3947 Action::OffloadKind OffloadKind) { 3948 std::string TriplePlusArch = TC->getTriple().normalize(); 3949 if (!BoundArch.empty()) { 3950 TriplePlusArch += "-"; 3951 TriplePlusArch += BoundArch; 3952 } 3953 TriplePlusArch += "-"; 3954 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 3955 return TriplePlusArch; 3956 } 3957 3958 InputInfo Driver::BuildJobsForAction( 3959 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 3960 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 3961 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 3962 Action::OffloadKind TargetDeviceOffloadKind) const { 3963 std::pair<const Action *, std::string> ActionTC = { 3964 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 3965 auto CachedResult = CachedResults.find(ActionTC); 3966 if (CachedResult != CachedResults.end()) { 3967 return CachedResult->second; 3968 } 3969 InputInfo Result = BuildJobsForActionNoCache( 3970 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 3971 CachedResults, TargetDeviceOffloadKind); 3972 CachedResults[ActionTC] = Result; 3973 return Result; 3974 } 3975 3976 InputInfo Driver::BuildJobsForActionNoCache( 3977 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 3978 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 3979 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 3980 Action::OffloadKind TargetDeviceOffloadKind) const { 3981 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3982 3983 InputInfoList OffloadDependencesInputInfo; 3984 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 3985 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 3986 // The 'Darwin' toolchain is initialized only when its arguments are 3987 // computed. Get the default arguments for OFK_None to ensure that 3988 // initialization is performed before processing the offload action. 3989 // FIXME: Remove when darwin's toolchain is initialized during construction. 3990 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 3991 3992 // The offload action is expected to be used in four different situations. 3993 // 3994 // a) Set a toolchain/architecture/kind for a host action: 3995 // Host Action 1 -> OffloadAction -> Host Action 2 3996 // 3997 // b) Set a toolchain/architecture/kind for a device action; 3998 // Device Action 1 -> OffloadAction -> Device Action 2 3999 // 4000 // c) Specify a device dependence to a host action; 4001 // Device Action 1 _ 4002 // \ 4003 // Host Action 1 ---> OffloadAction -> Host Action 2 4004 // 4005 // d) Specify a host dependence to a device action. 4006 // Host Action 1 _ 4007 // \ 4008 // Device Action 1 ---> OffloadAction -> Device Action 2 4009 // 4010 // For a) and b), we just return the job generated for the dependence. For 4011 // c) and d) we override the current action with the host/device dependence 4012 // if the current toolchain is host/device and set the offload dependences 4013 // info with the jobs obtained from the device/host dependence(s). 4014 4015 // If there is a single device option, just generate the job for it. 4016 if (OA->hasSingleDeviceDependence()) { 4017 InputInfo DevA; 4018 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 4019 const char *DepBoundArch) { 4020 DevA = 4021 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 4022 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 4023 CachedResults, DepA->getOffloadingDeviceKind()); 4024 }); 4025 return DevA; 4026 } 4027 4028 // If 'Action 2' is host, we generate jobs for the device dependences and 4029 // override the current action with the host dependence. Otherwise, we 4030 // generate the host dependences and override the action with the device 4031 // dependence. The dependences can't therefore be a top-level action. 4032 OA->doOnEachDependence( 4033 /*IsHostDependence=*/BuildingForOffloadDevice, 4034 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4035 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4036 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 4037 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 4038 DepA->getOffloadingDeviceKind())); 4039 }); 4040 4041 A = BuildingForOffloadDevice 4042 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 4043 : OA->getHostDependence(); 4044 } 4045 4046 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 4047 // FIXME: It would be nice to not claim this here; maybe the old scheme of 4048 // just using Args was better? 4049 const Arg &Input = IA->getInputArg(); 4050 Input.claim(); 4051 if (Input.getOption().matches(options::OPT_INPUT)) { 4052 const char *Name = Input.getValue(); 4053 return InputInfo(A, Name, /* _BaseInput = */ Name); 4054 } 4055 return InputInfo(A, &Input, /* _BaseInput = */ ""); 4056 } 4057 4058 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 4059 const ToolChain *TC; 4060 StringRef ArchName = BAA->getArchName(); 4061 4062 if (!ArchName.empty()) 4063 TC = &getToolChain(C.getArgs(), 4064 computeTargetTriple(*this, TargetTriple, 4065 C.getArgs(), ArchName)); 4066 else 4067 TC = &C.getDefaultToolChain(); 4068 4069 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 4070 MultipleArchs, LinkingOutput, CachedResults, 4071 TargetDeviceOffloadKind); 4072 } 4073 4074 4075 ActionList Inputs = A->getInputs(); 4076 4077 const JobAction *JA = cast<JobAction>(A); 4078 ActionList CollapsedOffloadActions; 4079 4080 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 4081 embedBitcodeInObject() && !isUsingLTO()); 4082 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 4083 4084 if (!T) 4085 return InputInfo(); 4086 4087 // If we've collapsed action list that contained OffloadAction we 4088 // need to build jobs for host/device-side inputs it may have held. 4089 for (const auto *OA : CollapsedOffloadActions) 4090 cast<OffloadAction>(OA)->doOnEachDependence( 4091 /*IsHostDependence=*/BuildingForOffloadDevice, 4092 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4093 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4094 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 4095 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 4096 DepA->getOffloadingDeviceKind())); 4097 }); 4098 4099 // Only use pipes when there is exactly one input. 4100 InputInfoList InputInfos; 4101 for (const Action *Input : Inputs) { 4102 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 4103 // shouldn't get temporary output names. 4104 // FIXME: Clean this up. 4105 bool SubJobAtTopLevel = 4106 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 4107 InputInfos.push_back(BuildJobsForAction( 4108 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 4109 CachedResults, A->getOffloadingDeviceKind())); 4110 } 4111 4112 // Always use the first input as the base input. 4113 const char *BaseInput = InputInfos[0].getBaseInput(); 4114 4115 // ... except dsymutil actions, which use their actual input as the base 4116 // input. 4117 if (JA->getType() == types::TY_dSYM) 4118 BaseInput = InputInfos[0].getFilename(); 4119 4120 // ... and in header module compilations, which use the module name. 4121 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA)) 4122 BaseInput = ModuleJA->getModuleName(); 4123 4124 // Append outputs of offload device jobs to the input list 4125 if (!OffloadDependencesInputInfo.empty()) 4126 InputInfos.append(OffloadDependencesInputInfo.begin(), 4127 OffloadDependencesInputInfo.end()); 4128 4129 // Set the effective triple of the toolchain for the duration of this job. 4130 llvm::Triple EffectiveTriple; 4131 const ToolChain &ToolTC = T->getToolChain(); 4132 const ArgList &Args = 4133 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 4134 if (InputInfos.size() != 1) { 4135 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 4136 } else { 4137 // Pass along the input type if it can be unambiguously determined. 4138 EffectiveTriple = llvm::Triple( 4139 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 4140 } 4141 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 4142 4143 // Determine the place to write output to, if any. 4144 InputInfo Result; 4145 InputInfoList UnbundlingResults; 4146 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 4147 // If we have an unbundling job, we need to create results for all the 4148 // outputs. We also update the results cache so that other actions using 4149 // this unbundling action can get the right results. 4150 for (auto &UI : UA->getDependentActionsInfo()) { 4151 assert(UI.DependentOffloadKind != Action::OFK_None && 4152 "Unbundling with no offloading??"); 4153 4154 // Unbundling actions are never at the top level. When we generate the 4155 // offloading prefix, we also do that for the host file because the 4156 // unbundling action does not change the type of the output which can 4157 // cause a overwrite. 4158 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4159 UI.DependentOffloadKind, 4160 UI.DependentToolChain->getTriple().normalize(), 4161 /*CreatePrefixForHost=*/true); 4162 auto CurI = InputInfo( 4163 UA, 4164 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 4165 /*AtTopLevel=*/false, 4166 MultipleArchs || 4167 UI.DependentOffloadKind == Action::OFK_HIP, 4168 OffloadingPrefix), 4169 BaseInput); 4170 // Save the unbundling result. 4171 UnbundlingResults.push_back(CurI); 4172 4173 // Get the unique string identifier for this dependence and cache the 4174 // result. 4175 StringRef Arch; 4176 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 4177 if (UI.DependentOffloadKind == Action::OFK_Host) 4178 Arch = StringRef(); 4179 else 4180 Arch = UI.DependentBoundArch; 4181 } else 4182 Arch = BoundArch; 4183 4184 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 4185 UI.DependentOffloadKind)}] = 4186 CurI; 4187 } 4188 4189 // Now that we have all the results generated, select the one that should be 4190 // returned for the current depending action. 4191 std::pair<const Action *, std::string> ActionTC = { 4192 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4193 assert(CachedResults.find(ActionTC) != CachedResults.end() && 4194 "Result does not exist??"); 4195 Result = CachedResults[ActionTC]; 4196 } else if (JA->getType() == types::TY_Nothing) 4197 Result = InputInfo(A, BaseInput); 4198 else { 4199 // We only have to generate a prefix for the host if this is not a top-level 4200 // action. 4201 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4202 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 4203 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 4204 !AtTopLevel); 4205 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 4206 AtTopLevel, MultipleArchs, 4207 OffloadingPrefix), 4208 BaseInput); 4209 } 4210 4211 if (CCCPrintBindings && !CCGenDiagnostics) { 4212 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 4213 << " - \"" << T->getName() << "\", inputs: ["; 4214 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 4215 llvm::errs() << InputInfos[i].getAsString(); 4216 if (i + 1 != e) 4217 llvm::errs() << ", "; 4218 } 4219 if (UnbundlingResults.empty()) 4220 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 4221 else { 4222 llvm::errs() << "], outputs: ["; 4223 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 4224 llvm::errs() << UnbundlingResults[i].getAsString(); 4225 if (i + 1 != e) 4226 llvm::errs() << ", "; 4227 } 4228 llvm::errs() << "] \n"; 4229 } 4230 } else { 4231 if (UnbundlingResults.empty()) 4232 T->ConstructJob( 4233 C, *JA, Result, InputInfos, 4234 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4235 LinkingOutput); 4236 else 4237 T->ConstructJobMultipleOutputs( 4238 C, *JA, UnbundlingResults, InputInfos, 4239 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4240 LinkingOutput); 4241 } 4242 return Result; 4243 } 4244 4245 const char *Driver::getDefaultImageName() const { 4246 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 4247 return Target.isOSWindows() ? "a.exe" : "a.out"; 4248 } 4249 4250 /// Create output filename based on ArgValue, which could either be a 4251 /// full filename, filename without extension, or a directory. If ArgValue 4252 /// does not provide a filename, then use BaseName, and use the extension 4253 /// suitable for FileType. 4254 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 4255 StringRef BaseName, 4256 types::ID FileType) { 4257 SmallString<128> Filename = ArgValue; 4258 4259 if (ArgValue.empty()) { 4260 // If the argument is empty, output to BaseName in the current dir. 4261 Filename = BaseName; 4262 } else if (llvm::sys::path::is_separator(Filename.back())) { 4263 // If the argument is a directory, output to BaseName in that dir. 4264 llvm::sys::path::append(Filename, BaseName); 4265 } 4266 4267 if (!llvm::sys::path::has_extension(ArgValue)) { 4268 // If the argument didn't provide an extension, then set it. 4269 const char *Extension = types::getTypeTempSuffix(FileType, true); 4270 4271 if (FileType == types::TY_Image && 4272 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 4273 // The output file is a dll. 4274 Extension = "dll"; 4275 } 4276 4277 llvm::sys::path::replace_extension(Filename, Extension); 4278 } 4279 4280 return Args.MakeArgString(Filename.c_str()); 4281 } 4282 4283 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 4284 const char *BaseInput, 4285 StringRef BoundArch, bool AtTopLevel, 4286 bool MultipleArchs, 4287 StringRef OffloadingPrefix) const { 4288 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 4289 // Output to a user requested destination? 4290 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 4291 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4292 return C.addResultFile(FinalOutput->getValue(), &JA); 4293 } 4294 4295 // For /P, preprocess to file named after BaseInput. 4296 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 4297 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 4298 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4299 StringRef NameArg; 4300 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 4301 NameArg = A->getValue(); 4302 return C.addResultFile( 4303 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 4304 &JA); 4305 } 4306 4307 // Default to writing to stdout? 4308 if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA)) 4309 return "-"; 4310 4311 // Is this the assembly listing for /FA? 4312 if (JA.getType() == types::TY_PP_Asm && 4313 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 4314 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 4315 // Use /Fa and the input filename to determine the asm file name. 4316 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4317 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 4318 return C.addResultFile( 4319 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 4320 &JA); 4321 } 4322 4323 // Output to a temporary file? 4324 if ((!AtTopLevel && !isSaveTempsEnabled() && 4325 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 4326 CCGenDiagnostics) { 4327 StringRef Name = llvm::sys::path::filename(BaseInput); 4328 std::pair<StringRef, StringRef> Split = Name.split('.'); 4329 SmallString<128> TmpName; 4330 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4331 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 4332 if (CCGenDiagnostics && A) { 4333 SmallString<128> CrashDirectory(A->getValue()); 4334 if (!getVFS().exists(CrashDirectory)) 4335 llvm::sys::fs::create_directories(CrashDirectory); 4336 llvm::sys::path::append(CrashDirectory, Split.first); 4337 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; 4338 std::error_code EC = llvm::sys::fs::createUniqueFile( 4339 CrashDirectory + Middle + Suffix, TmpName); 4340 if (EC) { 4341 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4342 return ""; 4343 } 4344 } else { 4345 TmpName = GetTemporaryPath(Split.first, Suffix); 4346 } 4347 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4348 } 4349 4350 SmallString<128> BasePath(BaseInput); 4351 StringRef BaseName; 4352 4353 // Dsymutil actions should use the full path. 4354 if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 4355 BaseName = BasePath; 4356 else 4357 BaseName = llvm::sys::path::filename(BasePath); 4358 4359 // Determine what the derived output name should be. 4360 const char *NamedOutput; 4361 4362 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 4363 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 4364 // The /Fo or /o flag decides the object filename. 4365 StringRef Val = 4366 C.getArgs() 4367 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 4368 ->getValue(); 4369 NamedOutput = 4370 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 4371 } else if (JA.getType() == types::TY_Image && 4372 C.getArgs().hasArg(options::OPT__SLASH_Fe, 4373 options::OPT__SLASH_o)) { 4374 // The /Fe or /o flag names the linked file. 4375 StringRef Val = 4376 C.getArgs() 4377 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 4378 ->getValue(); 4379 NamedOutput = 4380 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 4381 } else if (JA.getType() == types::TY_Image) { 4382 if (IsCLMode()) { 4383 // clang-cl uses BaseName for the executable name. 4384 NamedOutput = 4385 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 4386 } else { 4387 SmallString<128> Output(getDefaultImageName()); 4388 Output += OffloadingPrefix; 4389 if (MultipleArchs && !BoundArch.empty()) { 4390 Output += "-"; 4391 Output.append(BoundArch); 4392 } 4393 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 4394 } 4395 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 4396 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 4397 } else { 4398 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4399 assert(Suffix && "All types used for output should have a suffix."); 4400 4401 std::string::size_type End = std::string::npos; 4402 if (!types::appendSuffixForType(JA.getType())) 4403 End = BaseName.rfind('.'); 4404 SmallString<128> Suffixed(BaseName.substr(0, End)); 4405 Suffixed += OffloadingPrefix; 4406 if (MultipleArchs && !BoundArch.empty()) { 4407 Suffixed += "-"; 4408 Suffixed.append(BoundArch); 4409 } 4410 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 4411 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 4412 // optimized bitcode output. 4413 if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) && 4414 JA.getType() == types::TY_LLVM_BC) 4415 Suffixed += ".tmp"; 4416 Suffixed += '.'; 4417 Suffixed += Suffix; 4418 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 4419 } 4420 4421 // Prepend object file path if -save-temps=obj 4422 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 4423 JA.getType() != types::TY_PCH) { 4424 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 4425 SmallString<128> TempPath(FinalOutput->getValue()); 4426 llvm::sys::path::remove_filename(TempPath); 4427 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 4428 llvm::sys::path::append(TempPath, OutputFileName); 4429 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 4430 } 4431 4432 // If we're saving temps and the temp file conflicts with the input file, 4433 // then avoid overwriting input file. 4434 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 4435 bool SameFile = false; 4436 SmallString<256> Result; 4437 llvm::sys::fs::current_path(Result); 4438 llvm::sys::path::append(Result, BaseName); 4439 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 4440 // Must share the same path to conflict. 4441 if (SameFile) { 4442 StringRef Name = llvm::sys::path::filename(BaseInput); 4443 std::pair<StringRef, StringRef> Split = Name.split('.'); 4444 std::string TmpName = GetTemporaryPath( 4445 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 4446 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4447 } 4448 } 4449 4450 // As an annoying special case, PCH generation doesn't strip the pathname. 4451 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 4452 llvm::sys::path::remove_filename(BasePath); 4453 if (BasePath.empty()) 4454 BasePath = NamedOutput; 4455 else 4456 llvm::sys::path::append(BasePath, NamedOutput); 4457 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 4458 } else { 4459 return C.addResultFile(NamedOutput, &JA); 4460 } 4461 } 4462 4463 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 4464 // Search for Name in a list of paths. 4465 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 4466 -> llvm::Optional<std::string> { 4467 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4468 // attempting to use this prefix when looking for file paths. 4469 for (const auto &Dir : P) { 4470 if (Dir.empty()) 4471 continue; 4472 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4473 llvm::sys::path::append(P, Name); 4474 if (llvm::sys::fs::exists(Twine(P))) 4475 return P.str().str(); 4476 } 4477 return None; 4478 }; 4479 4480 if (auto P = SearchPaths(PrefixDirs)) 4481 return *P; 4482 4483 SmallString<128> R(ResourceDir); 4484 llvm::sys::path::append(R, Name); 4485 if (llvm::sys::fs::exists(Twine(R))) 4486 return R.str(); 4487 4488 SmallString<128> P(TC.getCompilerRTPath()); 4489 llvm::sys::path::append(P, Name); 4490 if (llvm::sys::fs::exists(Twine(P))) 4491 return P.str(); 4492 4493 SmallString<128> D(Dir); 4494 llvm::sys::path::append(D, "..", Name); 4495 if (llvm::sys::fs::exists(Twine(D))) 4496 return D.str(); 4497 4498 if (auto P = SearchPaths(TC.getLibraryPaths())) 4499 return *P; 4500 4501 if (auto P = SearchPaths(TC.getFilePaths())) 4502 return *P; 4503 4504 return Name; 4505 } 4506 4507 void Driver::generatePrefixedToolNames( 4508 StringRef Tool, const ToolChain &TC, 4509 SmallVectorImpl<std::string> &Names) const { 4510 // FIXME: Needs a better variable than TargetTriple 4511 Names.emplace_back((TargetTriple + "-" + Tool).str()); 4512 Names.emplace_back(Tool); 4513 4514 // Allow the discovery of tools prefixed with LLVM's default target triple. 4515 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4516 if (DefaultTargetTriple != TargetTriple) 4517 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4518 } 4519 4520 static bool ScanDirForExecutable(SmallString<128> &Dir, 4521 ArrayRef<std::string> Names) { 4522 for (const auto &Name : Names) { 4523 llvm::sys::path::append(Dir, Name); 4524 if (llvm::sys::fs::can_execute(Twine(Dir))) 4525 return true; 4526 llvm::sys::path::remove_filename(Dir); 4527 } 4528 return false; 4529 } 4530 4531 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4532 SmallVector<std::string, 2> TargetSpecificExecutables; 4533 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4534 4535 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4536 // attempting to use this prefix when looking for program paths. 4537 for (const auto &PrefixDir : PrefixDirs) { 4538 if (llvm::sys::fs::is_directory(PrefixDir)) { 4539 SmallString<128> P(PrefixDir); 4540 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4541 return P.str(); 4542 } else { 4543 SmallString<128> P((PrefixDir + Name).str()); 4544 if (llvm::sys::fs::can_execute(Twine(P))) 4545 return P.str(); 4546 } 4547 } 4548 4549 const ToolChain::path_list &List = TC.getProgramPaths(); 4550 for (const auto &Path : List) { 4551 SmallString<128> P(Path); 4552 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4553 return P.str(); 4554 } 4555 4556 // If all else failed, search the path. 4557 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) 4558 if (llvm::ErrorOr<std::string> P = 4559 llvm::sys::findProgramByName(TargetSpecificExecutable)) 4560 return *P; 4561 4562 return Name; 4563 } 4564 4565 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 4566 SmallString<128> Path; 4567 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 4568 if (EC) { 4569 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4570 return ""; 4571 } 4572 4573 return Path.str(); 4574 } 4575 4576 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 4577 SmallString<128> Path; 4578 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 4579 if (EC) { 4580 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4581 return ""; 4582 } 4583 4584 return Path.str(); 4585 } 4586 4587 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 4588 SmallString<128> Output; 4589 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 4590 // FIXME: If anybody needs it, implement this obscure rule: 4591 // "If you specify a directory without a file name, the default file name 4592 // is VCx0.pch., where x is the major version of Visual C++ in use." 4593 Output = FpArg->getValue(); 4594 4595 // "If you do not specify an extension as part of the path name, an 4596 // extension of .pch is assumed. " 4597 if (!llvm::sys::path::has_extension(Output)) 4598 Output += ".pch"; 4599 } else { 4600 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 4601 Output = YcArg->getValue(); 4602 if (Output.empty()) 4603 Output = BaseName; 4604 llvm::sys::path::replace_extension(Output, ".pch"); 4605 } 4606 return Output.str(); 4607 } 4608 4609 const ToolChain &Driver::getToolChain(const ArgList &Args, 4610 const llvm::Triple &Target) const { 4611 4612 auto &TC = ToolChains[Target.str()]; 4613 if (!TC) { 4614 switch (Target.getOS()) { 4615 case llvm::Triple::Haiku: 4616 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args); 4617 break; 4618 case llvm::Triple::Ananas: 4619 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args); 4620 break; 4621 case llvm::Triple::CloudABI: 4622 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args); 4623 break; 4624 case llvm::Triple::Darwin: 4625 case llvm::Triple::MacOSX: 4626 case llvm::Triple::IOS: 4627 case llvm::Triple::TvOS: 4628 case llvm::Triple::WatchOS: 4629 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args); 4630 break; 4631 case llvm::Triple::DragonFly: 4632 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args); 4633 break; 4634 case llvm::Triple::OpenBSD: 4635 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args); 4636 break; 4637 case llvm::Triple::NetBSD: 4638 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args); 4639 break; 4640 case llvm::Triple::FreeBSD: 4641 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args); 4642 break; 4643 case llvm::Triple::Minix: 4644 TC = std::make_unique<toolchains::Minix>(*this, Target, Args); 4645 break; 4646 case llvm::Triple::Linux: 4647 case llvm::Triple::ELFIAMCU: 4648 if (Target.getArch() == llvm::Triple::hexagon) 4649 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 4650 Args); 4651 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 4652 !Target.hasEnvironment()) 4653 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 4654 Args); 4655 else if (Target.getArch() == llvm::Triple::ppc || 4656 Target.getArch() == llvm::Triple::ppc64 || 4657 Target.getArch() == llvm::Triple::ppc64le) 4658 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 4659 Args); 4660 else 4661 TC = std::make_unique<toolchains::Linux>(*this, Target, Args); 4662 break; 4663 case llvm::Triple::NaCl: 4664 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 4665 break; 4666 case llvm::Triple::Fuchsia: 4667 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args); 4668 break; 4669 case llvm::Triple::Solaris: 4670 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args); 4671 break; 4672 case llvm::Triple::AMDHSA: 4673 case llvm::Triple::AMDPAL: 4674 case llvm::Triple::Mesa3D: 4675 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 4676 break; 4677 case llvm::Triple::Win32: 4678 switch (Target.getEnvironment()) { 4679 default: 4680 if (Target.isOSBinFormatELF()) 4681 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4682 else if (Target.isOSBinFormatMachO()) 4683 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 4684 else 4685 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4686 break; 4687 case llvm::Triple::GNU: 4688 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args); 4689 break; 4690 case llvm::Triple::Itanium: 4691 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 4692 Args); 4693 break; 4694 case llvm::Triple::MSVC: 4695 case llvm::Triple::UnknownEnvironment: 4696 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 4697 .startswith_lower("bfd")) 4698 TC = std::make_unique<toolchains::CrossWindowsToolChain>( 4699 *this, Target, Args); 4700 else 4701 TC = 4702 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 4703 break; 4704 } 4705 break; 4706 case llvm::Triple::PS4: 4707 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args); 4708 break; 4709 case llvm::Triple::Contiki: 4710 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args); 4711 break; 4712 case llvm::Triple::Hurd: 4713 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args); 4714 break; 4715 default: 4716 // Of these targets, Hexagon is the only one that might have 4717 // an OS of Linux, in which case it got handled above already. 4718 switch (Target.getArch()) { 4719 case llvm::Triple::tce: 4720 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 4721 break; 4722 case llvm::Triple::tcele: 4723 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 4724 break; 4725 case llvm::Triple::hexagon: 4726 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 4727 Args); 4728 break; 4729 case llvm::Triple::lanai: 4730 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 4731 break; 4732 case llvm::Triple::xcore: 4733 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 4734 break; 4735 case llvm::Triple::wasm32: 4736 case llvm::Triple::wasm64: 4737 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args); 4738 break; 4739 case llvm::Triple::avr: 4740 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 4741 break; 4742 case llvm::Triple::msp430: 4743 TC = 4744 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 4745 break; 4746 case llvm::Triple::riscv32: 4747 case llvm::Triple::riscv64: 4748 TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 4749 break; 4750 default: 4751 if (Target.getVendor() == llvm::Triple::Myriad) 4752 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target, 4753 Args); 4754 else if (toolchains::BareMetal::handlesTarget(Target)) 4755 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 4756 else if (Target.isOSBinFormatELF()) 4757 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4758 else if (Target.isOSBinFormatMachO()) 4759 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 4760 else 4761 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4762 } 4763 } 4764 } 4765 4766 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 4767 // compiles always need two toolchains, the CUDA toolchain and the host 4768 // toolchain. So the only valid way to create a CUDA toolchain is via 4769 // CreateOffloadingDeviceToolChains. 4770 4771 return *TC; 4772 } 4773 4774 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 4775 // Say "no" if there is not exactly one input of a type clang understands. 4776 if (JA.size() != 1 || 4777 !types::isAcceptedByClang((*JA.input_begin())->getType())) 4778 return false; 4779 4780 // And say "no" if this is not a kind of action clang understands. 4781 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 4782 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4783 return false; 4784 4785 return true; 4786 } 4787 4788 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 4789 /// grouped values as integers. Numbers which are not provided are set to 0. 4790 /// 4791 /// \return True if the entire string was parsed (9.2), or all groups were 4792 /// parsed (10.3.5extrastuff). 4793 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 4794 unsigned &Micro, bool &HadExtra) { 4795 HadExtra = false; 4796 4797 Major = Minor = Micro = 0; 4798 if (Str.empty()) 4799 return false; 4800 4801 if (Str.consumeInteger(10, Major)) 4802 return false; 4803 if (Str.empty()) 4804 return true; 4805 if (Str[0] != '.') 4806 return false; 4807 4808 Str = Str.drop_front(1); 4809 4810 if (Str.consumeInteger(10, Minor)) 4811 return false; 4812 if (Str.empty()) 4813 return true; 4814 if (Str[0] != '.') 4815 return false; 4816 Str = Str.drop_front(1); 4817 4818 if (Str.consumeInteger(10, Micro)) 4819 return false; 4820 if (!Str.empty()) 4821 HadExtra = true; 4822 return true; 4823 } 4824 4825 /// Parse digits from a string \p Str and fulfill \p Digits with 4826 /// the parsed numbers. This method assumes that the max number of 4827 /// digits to look for is equal to Digits.size(). 4828 /// 4829 /// \return True if the entire string was parsed and there are 4830 /// no extra characters remaining at the end. 4831 bool Driver::GetReleaseVersion(StringRef Str, 4832 MutableArrayRef<unsigned> Digits) { 4833 if (Str.empty()) 4834 return false; 4835 4836 unsigned CurDigit = 0; 4837 while (CurDigit < Digits.size()) { 4838 unsigned Digit; 4839 if (Str.consumeInteger(10, Digit)) 4840 return false; 4841 Digits[CurDigit] = Digit; 4842 if (Str.empty()) 4843 return true; 4844 if (Str[0] != '.') 4845 return false; 4846 Str = Str.drop_front(1); 4847 CurDigit++; 4848 } 4849 4850 // More digits than requested, bail out... 4851 return false; 4852 } 4853 4854 std::pair<unsigned, unsigned> 4855 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { 4856 unsigned IncludedFlagsBitmask = 0; 4857 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 4858 4859 if (IsClCompatMode) { 4860 // Include CL and Core options. 4861 IncludedFlagsBitmask |= options::CLOption; 4862 IncludedFlagsBitmask |= options::CoreOption; 4863 } else { 4864 ExcludedFlagsBitmask |= options::CLOption; 4865 } 4866 4867 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 4868 } 4869 4870 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 4871 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 4872 } 4873