1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CloudABI.h"
19 #include "ToolChains/Contiki.h"
20 #include "ToolChains/CrossWindows.h"
21 #include "ToolChains/Cuda.h"
22 #include "ToolChains/Darwin.h"
23 #include "ToolChains/DragonFly.h"
24 #include "ToolChains/FreeBSD.h"
25 #include "ToolChains/Fuchsia.h"
26 #include "ToolChains/Gnu.h"
27 #include "ToolChains/HIPAMD.h"
28 #include "ToolChains/HIPSPV.h"
29 #include "ToolChains/HLSL.h"
30 #include "ToolChains/Haiku.h"
31 #include "ToolChains/Hexagon.h"
32 #include "ToolChains/Hurd.h"
33 #include "ToolChains/Lanai.h"
34 #include "ToolChains/Linux.h"
35 #include "ToolChains/MSP430.h"
36 #include "ToolChains/MSVC.h"
37 #include "ToolChains/MinGW.h"
38 #include "ToolChains/Minix.h"
39 #include "ToolChains/MipsLinux.h"
40 #include "ToolChains/Myriad.h"
41 #include "ToolChains/NaCl.h"
42 #include "ToolChains/NetBSD.h"
43 #include "ToolChains/OpenBSD.h"
44 #include "ToolChains/PPCFreeBSD.h"
45 #include "ToolChains/PPCLinux.h"
46 #include "ToolChains/PS4CPU.h"
47 #include "ToolChains/RISCVToolchain.h"
48 #include "ToolChains/SPIRV.h"
49 #include "ToolChains/Solaris.h"
50 #include "ToolChains/TCE.h"
51 #include "ToolChains/VEToolchain.h"
52 #include "ToolChains/WebAssembly.h"
53 #include "ToolChains/XCore.h"
54 #include "ToolChains/ZOS.h"
55 #include "clang/Basic/TargetID.h"
56 #include "clang/Basic/Version.h"
57 #include "clang/Config/config.h"
58 #include "clang/Driver/Action.h"
59 #include "clang/Driver/Compilation.h"
60 #include "clang/Driver/DriverDiagnostic.h"
61 #include "clang/Driver/InputInfo.h"
62 #include "clang/Driver/Job.h"
63 #include "clang/Driver/Options.h"
64 #include "clang/Driver/Phases.h"
65 #include "clang/Driver/SanitizerArgs.h"
66 #include "clang/Driver/Tool.h"
67 #include "clang/Driver/ToolChain.h"
68 #include "clang/Driver/Types.h"
69 #include "llvm/ADT/ArrayRef.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/StringExtras.h"
73 #include "llvm/ADT/StringRef.h"
74 #include "llvm/ADT/StringSet.h"
75 #include "llvm/ADT/StringSwitch.h"
76 #include "llvm/Config/llvm-config.h"
77 #include "llvm/MC/TargetRegistry.h"
78 #include "llvm/Option/Arg.h"
79 #include "llvm/Option/ArgList.h"
80 #include "llvm/Option/OptSpecifier.h"
81 #include "llvm/Option/OptTable.h"
82 #include "llvm/Option/Option.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/ExitCodes.h"
86 #include "llvm/Support/FileSystem.h"
87 #include "llvm/Support/FormatVariadic.h"
88 #include "llvm/Support/Host.h"
89 #include "llvm/Support/MD5.h"
90 #include "llvm/Support/Path.h"
91 #include "llvm/Support/PrettyStackTrace.h"
92 #include "llvm/Support/Process.h"
93 #include "llvm/Support/Program.h"
94 #include "llvm/Support/StringSaver.h"
95 #include "llvm/Support/VirtualFileSystem.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include <map>
98 #include <memory>
99 #include <utility>
100 #if LLVM_ON_UNIX
101 #include <unistd.h> // getpid
102 #endif
103
104 using namespace clang::driver;
105 using namespace clang;
106 using namespace llvm::opt;
107
108 static llvm::Optional<llvm::Triple>
getOffloadTargetTriple(const Driver & D,const ArgList & Args)109 getOffloadTargetTriple(const Driver &D, const ArgList &Args) {
110 auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
111 // Offload compilation flow does not support multiple targets for now. We
112 // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
113 // to support multiple tool chains first.
114 switch (OffloadTargets.size()) {
115 default:
116 D.Diag(diag::err_drv_only_one_offload_target_supported);
117 return llvm::None;
118 case 0:
119 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
120 return llvm::None;
121 case 1:
122 break;
123 }
124 return llvm::Triple(OffloadTargets[0]);
125 }
126
127 static llvm::Optional<llvm::Triple>
getNVIDIAOffloadTargetTriple(const Driver & D,const ArgList & Args,const llvm::Triple & HostTriple)128 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
129 const llvm::Triple &HostTriple) {
130 if (!Args.hasArg(options::OPT_offload_EQ)) {
131 return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
132 : "nvptx-nvidia-cuda");
133 }
134 auto TT = getOffloadTargetTriple(D, Args);
135 if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
136 TT->getArch() == llvm::Triple::spirv64)) {
137 if (Args.hasArg(options::OPT_emit_llvm))
138 return TT;
139 D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
140 return llvm::None;
141 }
142 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
143 return llvm::None;
144 }
145 static llvm::Optional<llvm::Triple>
getHIPOffloadTargetTriple(const Driver & D,const ArgList & Args)146 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
147 if (!Args.hasArg(options::OPT_offload_EQ)) {
148 return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
149 }
150 auto TT = getOffloadTargetTriple(D, Args);
151 if (!TT)
152 return llvm::None;
153 if (TT->getArch() == llvm::Triple::amdgcn &&
154 TT->getVendor() == llvm::Triple::AMD &&
155 TT->getOS() == llvm::Triple::AMDHSA)
156 return TT;
157 if (TT->getArch() == llvm::Triple::spirv64)
158 return TT;
159 D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
160 return llvm::None;
161 }
162
163 // static
GetResourcesPath(StringRef BinaryPath,StringRef CustomResourceDir)164 std::string Driver::GetResourcesPath(StringRef BinaryPath,
165 StringRef CustomResourceDir) {
166 // Since the resource directory is embedded in the module hash, it's important
167 // that all places that need it call this function, so that they get the
168 // exact same string ("a/../b/" and "b/" get different hashes, for example).
169
170 // Dir is bin/ or lib/, depending on where BinaryPath is.
171 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
172
173 SmallString<128> P(Dir);
174 if (CustomResourceDir != "") {
175 llvm::sys::path::append(P, CustomResourceDir);
176 } else {
177 // On Windows, libclang.dll is in bin/.
178 // On non-Windows, libclang.so/.dylib is in lib/.
179 // With a static-library build of libclang, LibClangPath will contain the
180 // path of the embedding binary, which for LLVM binaries will be in bin/.
181 // ../lib gets us to lib/ in both cases.
182 P = llvm::sys::path::parent_path(Dir);
183 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
184 CLANG_VERSION_STRING);
185 }
186
187 return std::string(P.str());
188 }
189
Driver(StringRef ClangExecutable,StringRef TargetTriple,DiagnosticsEngine & Diags,std::string Title,IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)190 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
191 DiagnosticsEngine &Diags, std::string Title,
192 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
193 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
194 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
195 Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
196 ModulesModeCXX20(false), LTOMode(LTOK_None),
197 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
198 DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
199 CCPrintHeaders(false), CCLogDiagnostics(false), CCGenDiagnostics(false),
200 CCPrintProcessStats(false), TargetTriple(TargetTriple), Saver(Alloc),
201 CheckInputsExist(true), ProbePrecompiled(true),
202 SuppressMissingInputWarning(false) {
203 // Provide a sane fallback if no VFS is specified.
204 if (!this->VFS)
205 this->VFS = llvm::vfs::getRealFileSystem();
206
207 Name = std::string(llvm::sys::path::filename(ClangExecutable));
208 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
209 InstalledDir = Dir; // Provide a sensible default installed dir.
210
211 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
212 // Prepend InstalledDir if SysRoot is relative
213 SmallString<128> P(InstalledDir);
214 llvm::sys::path::append(P, SysRoot);
215 SysRoot = std::string(P);
216 }
217
218 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
219 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
220 #endif
221 #if defined(CLANG_CONFIG_FILE_USER_DIR)
222 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
223 #endif
224
225 // Compute the path to the resource directory.
226 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
227 }
228
setDriverMode(StringRef Value)229 void Driver::setDriverMode(StringRef Value) {
230 static const std::string OptName =
231 getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
232 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
233 .Case("gcc", GCCMode)
234 .Case("g++", GXXMode)
235 .Case("cpp", CPPMode)
236 .Case("cl", CLMode)
237 .Case("flang", FlangMode)
238 .Case("dxc", DXCMode)
239 .Default(None))
240 Mode = *M;
241 else
242 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
243 }
244
ParseArgStrings(ArrayRef<const char * > ArgStrings,bool IsClCompatMode,bool & ContainsError)245 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
246 bool IsClCompatMode,
247 bool &ContainsError) {
248 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
249 ContainsError = false;
250
251 unsigned IncludedFlagsBitmask;
252 unsigned ExcludedFlagsBitmask;
253 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
254 getIncludeExcludeOptionFlagMasks(IsClCompatMode);
255
256 // Make sure that Flang-only options don't pollute the Clang output
257 // TODO: Make sure that Clang-only options don't pollute Flang output
258 if (!IsFlangMode())
259 ExcludedFlagsBitmask |= options::FlangOnlyOption;
260
261 unsigned MissingArgIndex, MissingArgCount;
262 InputArgList Args =
263 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
264 IncludedFlagsBitmask, ExcludedFlagsBitmask);
265
266 // Check for missing argument error.
267 if (MissingArgCount) {
268 Diag(diag::err_drv_missing_argument)
269 << Args.getArgString(MissingArgIndex) << MissingArgCount;
270 ContainsError |=
271 Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
272 SourceLocation()) > DiagnosticsEngine::Warning;
273 }
274
275 // Check for unsupported options.
276 for (const Arg *A : Args) {
277 if (A->getOption().hasFlag(options::Unsupported)) {
278 unsigned DiagID;
279 auto ArgString = A->getAsString(Args);
280 std::string Nearest;
281 if (getOpts().findNearest(
282 ArgString, Nearest, IncludedFlagsBitmask,
283 ExcludedFlagsBitmask | options::Unsupported) > 1) {
284 DiagID = diag::err_drv_unsupported_opt;
285 Diag(DiagID) << ArgString;
286 } else {
287 DiagID = diag::err_drv_unsupported_opt_with_suggestion;
288 Diag(DiagID) << ArgString << Nearest;
289 }
290 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
291 DiagnosticsEngine::Warning;
292 continue;
293 }
294
295 // Warn about -mcpu= without an argument.
296 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
297 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
298 ContainsError |= Diags.getDiagnosticLevel(
299 diag::warn_drv_empty_joined_argument,
300 SourceLocation()) > DiagnosticsEngine::Warning;
301 }
302 }
303
304 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
305 unsigned DiagID;
306 auto ArgString = A->getAsString(Args);
307 std::string Nearest;
308 if (getOpts().findNearest(
309 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
310 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
311 : diag::err_drv_unknown_argument;
312 Diags.Report(DiagID) << ArgString;
313 } else {
314 DiagID = IsCLMode()
315 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
316 : diag::err_drv_unknown_argument_with_suggestion;
317 Diags.Report(DiagID) << ArgString << Nearest;
318 }
319 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
320 DiagnosticsEngine::Warning;
321 }
322
323 return Args;
324 }
325
326 // Determine which compilation mode we are in. We look for options which
327 // affect the phase, starting with the earliest phases, and record which
328 // option we used to determine the final phase.
getFinalPhase(const DerivedArgList & DAL,Arg ** FinalPhaseArg) const329 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
330 Arg **FinalPhaseArg) const {
331 Arg *PhaseArg = nullptr;
332 phases::ID FinalPhase;
333
334 // -{E,EP,P,M,MM} only run the preprocessor.
335 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
336 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
337 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
338 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
339 CCGenDiagnostics) {
340 FinalPhase = phases::Preprocess;
341
342 // --precompile only runs up to precompilation.
343 // Options that cause the output of C++20 compiled module interfaces or
344 // header units have the same effect.
345 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
346 (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
347 (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
348 options::OPT_fmodule_header_EQ))) {
349 FinalPhase = phases::Precompile;
350 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
351 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
352 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
353 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
354 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
355 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
356 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
357 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
358 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
359 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
360 FinalPhase = phases::Compile;
361
362 // -S only runs up to the backend.
363 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
364 FinalPhase = phases::Backend;
365
366 // -c compilation only runs up to the assembler.
367 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
368 FinalPhase = phases::Assemble;
369
370 } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
371 FinalPhase = phases::IfsMerge;
372
373 // Otherwise do everything.
374 } else
375 FinalPhase = phases::Link;
376
377 if (FinalPhaseArg)
378 *FinalPhaseArg = PhaseArg;
379
380 return FinalPhase;
381 }
382
MakeInputArg(DerivedArgList & Args,const OptTable & Opts,StringRef Value,bool Claim=true)383 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
384 StringRef Value, bool Claim = true) {
385 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
386 Args.getBaseArgs().MakeIndex(Value), Value.data());
387 Args.AddSynthesizedArg(A);
388 if (Claim)
389 A->claim();
390 return A;
391 }
392
TranslateInputArgs(const InputArgList & Args) const393 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
394 const llvm::opt::OptTable &Opts = getOpts();
395 DerivedArgList *DAL = new DerivedArgList(Args);
396
397 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
398 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
399 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
400 bool IgnoreUnused = false;
401 for (Arg *A : Args) {
402 if (IgnoreUnused)
403 A->claim();
404
405 if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
406 IgnoreUnused = true;
407 continue;
408 }
409 if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
410 IgnoreUnused = false;
411 continue;
412 }
413
414 // Unfortunately, we have to parse some forwarding options (-Xassembler,
415 // -Xlinker, -Xpreprocessor) because we either integrate their functionality
416 // (assembler and preprocessor), or bypass a previous driver ('collect2').
417
418 // Rewrite linker options, to replace --no-demangle with a custom internal
419 // option.
420 if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
421 A->getOption().matches(options::OPT_Xlinker)) &&
422 A->containsValue("--no-demangle")) {
423 // Add the rewritten no-demangle argument.
424 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
425
426 // Add the remaining values as Xlinker arguments.
427 for (StringRef Val : A->getValues())
428 if (Val != "--no-demangle")
429 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
430
431 continue;
432 }
433
434 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
435 // some build systems. We don't try to be complete here because we don't
436 // care to encourage this usage model.
437 if (A->getOption().matches(options::OPT_Wp_COMMA) &&
438 (A->getValue(0) == StringRef("-MD") ||
439 A->getValue(0) == StringRef("-MMD"))) {
440 // Rewrite to -MD/-MMD along with -MF.
441 if (A->getValue(0) == StringRef("-MD"))
442 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
443 else
444 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
445 if (A->getNumValues() == 2)
446 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
447 continue;
448 }
449
450 // Rewrite reserved library names.
451 if (A->getOption().matches(options::OPT_l)) {
452 StringRef Value = A->getValue();
453
454 // Rewrite unless -nostdlib is present.
455 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
456 Value == "stdc++") {
457 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
458 continue;
459 }
460
461 // Rewrite unconditionally.
462 if (Value == "cc_kext") {
463 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
464 continue;
465 }
466 }
467
468 // Pick up inputs via the -- option.
469 if (A->getOption().matches(options::OPT__DASH_DASH)) {
470 A->claim();
471 for (StringRef Val : A->getValues())
472 DAL->append(MakeInputArg(*DAL, Opts, Val, false));
473 continue;
474 }
475
476 DAL->append(A);
477 }
478
479 // Enforce -static if -miamcu is present.
480 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
481 DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
482
483 // Add a default value of -mlinker-version=, if one was given and the user
484 // didn't specify one.
485 #if defined(HOST_LINK_VERSION)
486 if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
487 strlen(HOST_LINK_VERSION) > 0) {
488 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
489 HOST_LINK_VERSION);
490 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
491 }
492 #endif
493
494 return DAL;
495 }
496
497 /// Compute target triple from args.
498 ///
499 /// This routine provides the logic to compute a target triple from various
500 /// args passed to the driver and the default triple string.
computeTargetTriple(const Driver & D,StringRef TargetTriple,const ArgList & Args,StringRef DarwinArchName="")501 static llvm::Triple computeTargetTriple(const Driver &D,
502 StringRef TargetTriple,
503 const ArgList &Args,
504 StringRef DarwinArchName = "") {
505 // FIXME: Already done in Compilation *Driver::BuildCompilation
506 if (const Arg *A = Args.getLastArg(options::OPT_target))
507 TargetTriple = A->getValue();
508
509 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
510
511 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
512 // -gnu* only, and we can not change this, so we have to detect that case as
513 // being the Hurd OS.
514 if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
515 Target.setOSName("hurd");
516
517 // Handle Apple-specific options available here.
518 if (Target.isOSBinFormatMachO()) {
519 // If an explicit Darwin arch name is given, that trumps all.
520 if (!DarwinArchName.empty()) {
521 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
522 return Target;
523 }
524
525 // Handle the Darwin '-arch' flag.
526 if (Arg *A = Args.getLastArg(options::OPT_arch)) {
527 StringRef ArchName = A->getValue();
528 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
529 }
530 }
531
532 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
533 // '-mbig-endian'/'-EB'.
534 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
535 options::OPT_mbig_endian)) {
536 if (A->getOption().matches(options::OPT_mlittle_endian)) {
537 llvm::Triple LE = Target.getLittleEndianArchVariant();
538 if (LE.getArch() != llvm::Triple::UnknownArch)
539 Target = std::move(LE);
540 } else {
541 llvm::Triple BE = Target.getBigEndianArchVariant();
542 if (BE.getArch() != llvm::Triple::UnknownArch)
543 Target = std::move(BE);
544 }
545 }
546
547 // Skip further flag support on OSes which don't support '-m32' or '-m64'.
548 if (Target.getArch() == llvm::Triple::tce ||
549 Target.getOS() == llvm::Triple::Minix)
550 return Target;
551
552 // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
553 if (Target.isOSAIX()) {
554 if (Optional<std::string> ObjectModeValue =
555 llvm::sys::Process::GetEnv("OBJECT_MODE")) {
556 StringRef ObjectMode = *ObjectModeValue;
557 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
558
559 if (ObjectMode.equals("64")) {
560 AT = Target.get64BitArchVariant().getArch();
561 } else if (ObjectMode.equals("32")) {
562 AT = Target.get32BitArchVariant().getArch();
563 } else {
564 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
565 }
566
567 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
568 Target.setArch(AT);
569 }
570 }
571
572 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
573 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
574 options::OPT_m32, options::OPT_m16);
575 if (A) {
576 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
577
578 if (A->getOption().matches(options::OPT_m64)) {
579 AT = Target.get64BitArchVariant().getArch();
580 if (Target.getEnvironment() == llvm::Triple::GNUX32)
581 Target.setEnvironment(llvm::Triple::GNU);
582 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
583 Target.setEnvironment(llvm::Triple::Musl);
584 } else if (A->getOption().matches(options::OPT_mx32) &&
585 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
586 AT = llvm::Triple::x86_64;
587 if (Target.getEnvironment() == llvm::Triple::Musl)
588 Target.setEnvironment(llvm::Triple::MuslX32);
589 else
590 Target.setEnvironment(llvm::Triple::GNUX32);
591 } else if (A->getOption().matches(options::OPT_m32)) {
592 AT = Target.get32BitArchVariant().getArch();
593 if (Target.getEnvironment() == llvm::Triple::GNUX32)
594 Target.setEnvironment(llvm::Triple::GNU);
595 else if (Target.getEnvironment() == llvm::Triple::MuslX32)
596 Target.setEnvironment(llvm::Triple::Musl);
597 } else if (A->getOption().matches(options::OPT_m16) &&
598 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
599 AT = llvm::Triple::x86;
600 Target.setEnvironment(llvm::Triple::CODE16);
601 }
602
603 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
604 Target.setArch(AT);
605 if (Target.isWindowsGNUEnvironment())
606 toolchains::MinGW::fixTripleArch(D, Target, Args);
607 }
608 }
609
610 // Handle -miamcu flag.
611 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
612 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
613 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
614 << Target.str();
615
616 if (A && !A->getOption().matches(options::OPT_m32))
617 D.Diag(diag::err_drv_argument_not_allowed_with)
618 << "-miamcu" << A->getBaseArg().getAsString(Args);
619
620 Target.setArch(llvm::Triple::x86);
621 Target.setArchName("i586");
622 Target.setEnvironment(llvm::Triple::UnknownEnvironment);
623 Target.setEnvironmentName("");
624 Target.setOS(llvm::Triple::ELFIAMCU);
625 Target.setVendor(llvm::Triple::UnknownVendor);
626 Target.setVendorName("intel");
627 }
628
629 // If target is MIPS adjust the target triple
630 // accordingly to provided ABI name.
631 A = Args.getLastArg(options::OPT_mabi_EQ);
632 if (A && Target.isMIPS()) {
633 StringRef ABIName = A->getValue();
634 if (ABIName == "32") {
635 Target = Target.get32BitArchVariant();
636 if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
637 Target.getEnvironment() == llvm::Triple::GNUABIN32)
638 Target.setEnvironment(llvm::Triple::GNU);
639 } else if (ABIName == "n32") {
640 Target = Target.get64BitArchVariant();
641 if (Target.getEnvironment() == llvm::Triple::GNU ||
642 Target.getEnvironment() == llvm::Triple::GNUABI64)
643 Target.setEnvironment(llvm::Triple::GNUABIN32);
644 } else if (ABIName == "64") {
645 Target = Target.get64BitArchVariant();
646 if (Target.getEnvironment() == llvm::Triple::GNU ||
647 Target.getEnvironment() == llvm::Triple::GNUABIN32)
648 Target.setEnvironment(llvm::Triple::GNUABI64);
649 }
650 }
651
652 // If target is RISC-V adjust the target triple according to
653 // provided architecture name
654 A = Args.getLastArg(options::OPT_march_EQ);
655 if (A && Target.isRISCV()) {
656 StringRef ArchName = A->getValue();
657 if (ArchName.startswith_insensitive("rv32"))
658 Target.setArch(llvm::Triple::riscv32);
659 else if (ArchName.startswith_insensitive("rv64"))
660 Target.setArch(llvm::Triple::riscv64);
661 }
662
663 return Target;
664 }
665
666 // Parse the LTO options and record the type of LTO compilation
667 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
668 // option occurs last.
parseLTOMode(Driver & D,const llvm::opt::ArgList & Args,OptSpecifier OptEq,OptSpecifier OptNeg)669 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
670 OptSpecifier OptEq, OptSpecifier OptNeg) {
671 if (!Args.hasFlag(OptEq, OptNeg, false))
672 return LTOK_None;
673
674 const Arg *A = Args.getLastArg(OptEq);
675 StringRef LTOName = A->getValue();
676
677 driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
678 .Case("full", LTOK_Full)
679 .Case("thin", LTOK_Thin)
680 .Default(LTOK_Unknown);
681
682 if (LTOMode == LTOK_Unknown) {
683 D.Diag(diag::err_drv_unsupported_option_argument)
684 << A->getOption().getName() << A->getValue();
685 return LTOK_None;
686 }
687 return LTOMode;
688 }
689
690 // Parse the LTO options.
setLTOMode(const llvm::opt::ArgList & Args)691 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
692 LTOMode =
693 parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
694
695 OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
696 options::OPT_fno_offload_lto);
697 }
698
699 /// Compute the desired OpenMP runtime from the flags provided.
getOpenMPRuntime(const ArgList & Args) const700 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
701 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
702
703 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
704 if (A)
705 RuntimeName = A->getValue();
706
707 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
708 .Case("libomp", OMPRT_OMP)
709 .Case("libgomp", OMPRT_GOMP)
710 .Case("libiomp5", OMPRT_IOMP5)
711 .Default(OMPRT_Unknown);
712
713 if (RT == OMPRT_Unknown) {
714 if (A)
715 Diag(diag::err_drv_unsupported_option_argument)
716 << A->getOption().getName() << A->getValue();
717 else
718 // FIXME: We could use a nicer diagnostic here.
719 Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
720 }
721
722 return RT;
723 }
724
CreateOffloadingDeviceToolChains(Compilation & C,InputList & Inputs)725 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
726 InputList &Inputs) {
727
728 //
729 // CUDA/HIP
730 //
731 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
732 // or HIP type. However, mixed CUDA/HIP compilation is not supported.
733 bool IsCuda =
734 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
735 return types::isCuda(I.first);
736 });
737 bool IsHIP =
738 llvm::any_of(Inputs,
739 [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
740 return types::isHIP(I.first);
741 }) ||
742 C.getInputArgs().hasArg(options::OPT_hip_link);
743 if (IsCuda && IsHIP) {
744 Diag(clang::diag::err_drv_mix_cuda_hip);
745 return;
746 }
747 if (IsCuda) {
748 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
749 const llvm::Triple &HostTriple = HostTC->getTriple();
750 auto OFK = Action::OFK_Cuda;
751 auto CudaTriple =
752 getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
753 if (!CudaTriple)
754 return;
755 // Use the CUDA and host triples as the key into the ToolChains map,
756 // because the device toolchain we create depends on both.
757 auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
758 if (!CudaTC) {
759 CudaTC = std::make_unique<toolchains::CudaToolChain>(
760 *this, *CudaTriple, *HostTC, C.getInputArgs(), OFK);
761 }
762 C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
763 } else if (IsHIP) {
764 if (auto *OMPTargetArg =
765 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
766 Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
767 << OMPTargetArg->getSpelling() << "HIP";
768 return;
769 }
770 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
771 auto OFK = Action::OFK_HIP;
772 auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
773 if (!HIPTriple)
774 return;
775 auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
776 *HostTC, OFK);
777 assert(HIPTC && "Could not create offloading device tool chain.");
778 C.addOffloadDeviceToolChain(HIPTC, OFK);
779 }
780
781 //
782 // OpenMP
783 //
784 // We need to generate an OpenMP toolchain if the user specified targets with
785 // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
786 bool IsOpenMPOffloading =
787 C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
788 options::OPT_fno_openmp, false) &&
789 (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
790 C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
791 if (IsOpenMPOffloading) {
792 // We expect that -fopenmp-targets is always used in conjunction with the
793 // option -fopenmp specifying a valid runtime with offloading support, i.e.
794 // libomp or libiomp.
795 OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
796 if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
797 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
798 return;
799 }
800
801 llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
802 llvm::StringMap<StringRef> FoundNormalizedTriples;
803 llvm::SmallVector<StringRef, 4> OpenMPTriples;
804
805 // If the user specified -fopenmp-targets= we create a toolchain for each
806 // valid triple. Otherwise, if only --offload-arch= was specified we instead
807 // attempt to derive the appropriate toolchains from the arguments.
808 if (Arg *OpenMPTargets =
809 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
810 if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
811 Diag(clang::diag::warn_drv_empty_joined_argument)
812 << OpenMPTargets->getAsString(C.getInputArgs());
813 return;
814 }
815 llvm::copy(OpenMPTargets->getValues(), std::back_inserter(OpenMPTriples));
816 } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
817 !IsHIP && !IsCuda) {
818 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
819 auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
820 auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
821 HostTC->getTriple());
822
823 // Attempt to deduce the offloading triple from the set of architectures.
824 // We can only correctly deduce NVPTX / AMDGPU triples currently.
825 llvm::DenseSet<StringRef> Archs =
826 getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr);
827 for (StringRef Arch : Archs) {
828 if (NVPTXTriple && IsNVIDIAGpuArch(StringToCudaArch(
829 getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
830 DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
831 } else if (AMDTriple &&
832 IsAMDGpuArch(StringToCudaArch(
833 getProcessorFromTargetID(*AMDTriple, Arch)))) {
834 DerivedArchs[AMDTriple->getTriple()].insert(Arch);
835 } else {
836 Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
837 return;
838 }
839 }
840
841 for (const auto &TripleAndArchs : DerivedArchs)
842 OpenMPTriples.push_back(TripleAndArchs.first());
843 }
844
845 for (StringRef Val : OpenMPTriples) {
846 llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
847 std::string NormalizedName = TT.normalize();
848
849 // Make sure we don't have a duplicate triple.
850 auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
851 if (Duplicate != FoundNormalizedTriples.end()) {
852 Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
853 << Val << Duplicate->second;
854 continue;
855 }
856
857 // Store the current triple so that we can check for duplicates in the
858 // following iterations.
859 FoundNormalizedTriples[NormalizedName] = Val;
860
861 // If the specified target is invalid, emit a diagnostic.
862 if (TT.getArch() == llvm::Triple::UnknownArch)
863 Diag(clang::diag::err_drv_invalid_omp_target) << Val;
864 else {
865 const ToolChain *TC;
866 // Device toolchains have to be selected differently. They pair host
867 // and device in their implementation.
868 if (TT.isNVPTX() || TT.isAMDGCN()) {
869 const ToolChain *HostTC =
870 C.getSingleOffloadToolChain<Action::OFK_Host>();
871 assert(HostTC && "Host toolchain should be always defined.");
872 auto &DeviceTC =
873 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
874 if (!DeviceTC) {
875 if (TT.isNVPTX())
876 DeviceTC = std::make_unique<toolchains::CudaToolChain>(
877 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
878 else if (TT.isAMDGCN())
879 DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
880 *this, TT, *HostTC, C.getInputArgs());
881 else
882 assert(DeviceTC && "Device toolchain not defined.");
883 }
884
885 TC = DeviceTC.get();
886 } else
887 TC = &getToolChain(C.getInputArgs(), TT);
888 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
889 if (DerivedArchs.find(TT.getTriple()) != DerivedArchs.end())
890 KnownArchs[TC] = DerivedArchs[TT.getTriple()];
891 }
892 }
893 } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
894 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
895 return;
896 }
897
898 //
899 // TODO: Add support for other offloading programming models here.
900 //
901 }
902
903 /// Looks the given directories for the specified file.
904 ///
905 /// \param[out] FilePath File path, if the file was found.
906 /// \param[in] Dirs Directories used for the search.
907 /// \param[in] FileName Name of the file to search for.
908 /// \return True if file was found.
909 ///
910 /// Looks for file specified by FileName sequentially in directories specified
911 /// by Dirs.
912 ///
searchForFile(SmallVectorImpl<char> & FilePath,ArrayRef<StringRef> Dirs,StringRef FileName)913 static bool searchForFile(SmallVectorImpl<char> &FilePath,
914 ArrayRef<StringRef> Dirs, StringRef FileName) {
915 SmallString<128> WPath;
916 for (const StringRef &Dir : Dirs) {
917 if (Dir.empty())
918 continue;
919 WPath.clear();
920 llvm::sys::path::append(WPath, Dir, FileName);
921 llvm::sys::path::native(WPath);
922 if (llvm::sys::fs::is_regular_file(WPath)) {
923 FilePath = std::move(WPath);
924 return true;
925 }
926 }
927 return false;
928 }
929
readConfigFile(StringRef FileName)930 bool Driver::readConfigFile(StringRef FileName) {
931 // Try reading the given file.
932 SmallVector<const char *, 32> NewCfgArgs;
933 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
934 Diag(diag::err_drv_cannot_read_config_file) << FileName;
935 return true;
936 }
937
938 // Read options from config file.
939 llvm::SmallString<128> CfgFileName(FileName);
940 llvm::sys::path::native(CfgFileName);
941 ConfigFile = std::string(CfgFileName);
942 bool ContainErrors;
943 CfgOptions = std::make_unique<InputArgList>(
944 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
945 if (ContainErrors) {
946 CfgOptions.reset();
947 return true;
948 }
949
950 if (CfgOptions->hasArg(options::OPT_config)) {
951 CfgOptions.reset();
952 Diag(diag::err_drv_nested_config_file);
953 return true;
954 }
955
956 // Claim all arguments that come from a configuration file so that the driver
957 // does not warn on any that is unused.
958 for (Arg *A : *CfgOptions)
959 A->claim();
960 return false;
961 }
962
loadConfigFile()963 bool Driver::loadConfigFile() {
964 std::string CfgFileName;
965 bool FileSpecifiedExplicitly = false;
966
967 // Process options that change search path for config files.
968 if (CLOptions) {
969 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
970 SmallString<128> CfgDir;
971 CfgDir.append(
972 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
973 if (!CfgDir.empty()) {
974 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
975 SystemConfigDir.clear();
976 else
977 SystemConfigDir = static_cast<std::string>(CfgDir);
978 }
979 }
980 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
981 SmallString<128> CfgDir;
982 CfgDir.append(
983 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
984 if (!CfgDir.empty()) {
985 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
986 UserConfigDir.clear();
987 else
988 UserConfigDir = static_cast<std::string>(CfgDir);
989 }
990 }
991 }
992
993 // First try to find config file specified in command line.
994 if (CLOptions) {
995 std::vector<std::string> ConfigFiles =
996 CLOptions->getAllArgValues(options::OPT_config);
997 if (ConfigFiles.size() > 1) {
998 if (!llvm::all_of(ConfigFiles, [ConfigFiles](const std::string &s) {
999 return s == ConfigFiles[0];
1000 })) {
1001 Diag(diag::err_drv_duplicate_config);
1002 return true;
1003 }
1004 }
1005
1006 if (!ConfigFiles.empty()) {
1007 CfgFileName = ConfigFiles.front();
1008 assert(!CfgFileName.empty());
1009
1010 // If argument contains directory separator, treat it as a path to
1011 // configuration file.
1012 if (llvm::sys::path::has_parent_path(CfgFileName)) {
1013 SmallString<128> CfgFilePath;
1014 if (llvm::sys::path::is_relative(CfgFileName))
1015 llvm::sys::fs::current_path(CfgFilePath);
1016 llvm::sys::path::append(CfgFilePath, CfgFileName);
1017 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
1018 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
1019 return true;
1020 }
1021 return readConfigFile(CfgFilePath);
1022 }
1023
1024 FileSpecifiedExplicitly = true;
1025 }
1026 }
1027
1028 // If config file is not specified explicitly, try to deduce configuration
1029 // from executable name. For instance, an executable 'armv7l-clang' will
1030 // search for config file 'armv7l-clang.cfg'.
1031 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
1032 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
1033
1034 if (CfgFileName.empty())
1035 return false;
1036
1037 // Determine architecture part of the file name, if it is present.
1038 StringRef CfgFileArch = CfgFileName;
1039 size_t ArchPrefixLen = CfgFileArch.find('-');
1040 if (ArchPrefixLen == StringRef::npos)
1041 ArchPrefixLen = CfgFileArch.size();
1042 llvm::Triple CfgTriple;
1043 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
1044 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
1045 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
1046 ArchPrefixLen = 0;
1047
1048 if (!StringRef(CfgFileName).endswith(".cfg"))
1049 CfgFileName += ".cfg";
1050
1051 // If config file starts with architecture name and command line options
1052 // redefine architecture (with options like -m32 -LE etc), try finding new
1053 // config file with that architecture.
1054 SmallString<128> FixedConfigFile;
1055 size_t FixedArchPrefixLen = 0;
1056 if (ArchPrefixLen) {
1057 // Get architecture name from config file name like 'i386.cfg' or
1058 // 'armv7l-clang.cfg'.
1059 // Check if command line options changes effective triple.
1060 llvm::Triple EffectiveTriple = computeTargetTriple(*this,
1061 CfgTriple.getTriple(), *CLOptions);
1062 if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
1063 FixedConfigFile = EffectiveTriple.getArchName();
1064 FixedArchPrefixLen = FixedConfigFile.size();
1065 // Append the rest of original file name so that file name transforms
1066 // like: i386-clang.cfg -> x86_64-clang.cfg.
1067 if (ArchPrefixLen < CfgFileName.size())
1068 FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
1069 }
1070 }
1071
1072 // Prepare list of directories where config file is searched for.
1073 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1074
1075 // Try to find config file. First try file with corrected architecture.
1076 llvm::SmallString<128> CfgFilePath;
1077 if (!FixedConfigFile.empty()) {
1078 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
1079 return readConfigFile(CfgFilePath);
1080 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
1081 FixedConfigFile.resize(FixedArchPrefixLen);
1082 FixedConfigFile.append(".cfg");
1083 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
1084 return readConfigFile(CfgFilePath);
1085 }
1086
1087 // Then try original file name.
1088 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1089 return readConfigFile(CfgFilePath);
1090
1091 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
1092 if (!ClangNameParts.ModeSuffix.empty() &&
1093 !ClangNameParts.TargetPrefix.empty()) {
1094 CfgFileName.assign(ClangNameParts.TargetPrefix);
1095 CfgFileName.append(".cfg");
1096 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1097 return readConfigFile(CfgFilePath);
1098 }
1099
1100 // Report error but only if config file was specified explicitly, by option
1101 // --config. If it was deduced from executable name, it is not an error.
1102 if (FileSpecifiedExplicitly) {
1103 Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1104 for (const StringRef &SearchDir : CfgFileSearchDirs)
1105 if (!SearchDir.empty())
1106 Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1107 return true;
1108 }
1109
1110 return false;
1111 }
1112
BuildCompilation(ArrayRef<const char * > ArgList)1113 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1114 llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1115
1116 // FIXME: Handle environment options which affect driver behavior, somewhere
1117 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1118
1119 // We look for the driver mode option early, because the mode can affect
1120 // how other options are parsed.
1121
1122 auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1123 if (!DriverMode.empty())
1124 setDriverMode(DriverMode);
1125
1126 // FIXME: What are we going to do with -V and -b?
1127
1128 // Arguments specified in command line.
1129 bool ContainsError;
1130 CLOptions = std::make_unique<InputArgList>(
1131 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1132
1133 // Try parsing configuration file.
1134 if (!ContainsError)
1135 ContainsError = loadConfigFile();
1136 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1137
1138 // All arguments, from both config file and command line.
1139 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1140 : std::move(*CLOptions));
1141
1142 // The args for config files or /clang: flags belong to different InputArgList
1143 // objects than Args. This copies an Arg from one of those other InputArgLists
1144 // to the ownership of Args.
1145 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1146 unsigned Index = Args.MakeIndex(Opt->getSpelling());
1147 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
1148 Index, BaseArg);
1149 Copy->getValues() = Opt->getValues();
1150 if (Opt->isClaimed())
1151 Copy->claim();
1152 Copy->setOwnsValues(Opt->getOwnsValues());
1153 Opt->setOwnsValues(false);
1154 Args.append(Copy);
1155 };
1156
1157 if (HasConfigFile)
1158 for (auto *Opt : *CLOptions) {
1159 if (Opt->getOption().matches(options::OPT_config))
1160 continue;
1161 const Arg *BaseArg = &Opt->getBaseArg();
1162 if (BaseArg == Opt)
1163 BaseArg = nullptr;
1164 appendOneArg(Opt, BaseArg);
1165 }
1166
1167 // In CL mode, look for any pass-through arguments
1168 if (IsCLMode() && !ContainsError) {
1169 SmallVector<const char *, 16> CLModePassThroughArgList;
1170 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1171 A->claim();
1172 CLModePassThroughArgList.push_back(A->getValue());
1173 }
1174
1175 if (!CLModePassThroughArgList.empty()) {
1176 // Parse any pass through args using default clang processing rather
1177 // than clang-cl processing.
1178 auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1179 ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1180
1181 if (!ContainsError)
1182 for (auto *Opt : *CLModePassThroughOptions) {
1183 appendOneArg(Opt, nullptr);
1184 }
1185 }
1186 }
1187
1188 // Check for working directory option before accessing any files
1189 if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1190 if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1191 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1192
1193 // FIXME: This stuff needs to go into the Compilation, not the driver.
1194 bool CCCPrintPhases;
1195
1196 // Silence driver warnings if requested
1197 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1198
1199 // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1200 Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1201 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1202
1203 // f(no-)integated-cc1 is also used very early in main.
1204 Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1205 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1206
1207 // Ignore -pipe.
1208 Args.ClaimAllArgs(options::OPT_pipe);
1209
1210 // Extract -ccc args.
1211 //
1212 // FIXME: We need to figure out where this behavior should live. Most of it
1213 // should be outside in the client; the parts that aren't should have proper
1214 // options, either by introducing new ones or by overloading gcc ones like -V
1215 // or -b.
1216 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1217 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1218 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1219 CCCGenericGCCName = A->getValue();
1220
1221 // Process -fproc-stat-report options.
1222 if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1223 CCPrintProcessStats = true;
1224 CCPrintStatReportFilename = A->getValue();
1225 }
1226 if (Args.hasArg(options::OPT_fproc_stat_report))
1227 CCPrintProcessStats = true;
1228
1229 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1230 // and getToolChain is const.
1231 if (IsCLMode()) {
1232 // clang-cl targets MSVC-style Win32.
1233 llvm::Triple T(TargetTriple);
1234 T.setOS(llvm::Triple::Win32);
1235 T.setVendor(llvm::Triple::PC);
1236 T.setEnvironment(llvm::Triple::MSVC);
1237 T.setObjectFormat(llvm::Triple::COFF);
1238 TargetTriple = T.str();
1239 } else if (IsDXCMode()) {
1240 // Build TargetTriple from target_profile option for clang-dxc.
1241 if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1242 StringRef TargetProfile = A->getValue();
1243 if (auto Triple =
1244 toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1245 TargetTriple = *Triple;
1246 else
1247 Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1248
1249 A->claim();
1250 } else {
1251 Diag(diag::err_drv_dxc_missing_target_profile);
1252 }
1253 }
1254
1255 if (const Arg *A = Args.getLastArg(options::OPT_target))
1256 TargetTriple = A->getValue();
1257 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1258 Dir = InstalledDir = A->getValue();
1259 for (const Arg *A : Args.filtered(options::OPT_B)) {
1260 A->claim();
1261 PrefixDirs.push_back(A->getValue(0));
1262 }
1263 if (Optional<std::string> CompilerPathValue =
1264 llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1265 StringRef CompilerPath = *CompilerPathValue;
1266 while (!CompilerPath.empty()) {
1267 std::pair<StringRef, StringRef> Split =
1268 CompilerPath.split(llvm::sys::EnvPathSeparator);
1269 PrefixDirs.push_back(std::string(Split.first));
1270 CompilerPath = Split.second;
1271 }
1272 }
1273 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1274 SysRoot = A->getValue();
1275 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1276 DyldPrefix = A->getValue();
1277
1278 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1279 ResourceDir = A->getValue();
1280
1281 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1282 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1283 .Case("cwd", SaveTempsCwd)
1284 .Case("obj", SaveTempsObj)
1285 .Default(SaveTempsCwd);
1286 }
1287
1288 if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1289 options::OPT_offload_device_only,
1290 options::OPT_offload_host_device)) {
1291 if (A->getOption().matches(options::OPT_offload_host_only))
1292 Offload = OffloadHost;
1293 else if (A->getOption().matches(options::OPT_offload_device_only))
1294 Offload = OffloadDevice;
1295 else
1296 Offload = OffloadHostDevice;
1297 }
1298
1299 setLTOMode(Args);
1300
1301 // Process -fembed-bitcode= flags.
1302 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1303 StringRef Name = A->getValue();
1304 unsigned Model = llvm::StringSwitch<unsigned>(Name)
1305 .Case("off", EmbedNone)
1306 .Case("all", EmbedBitcode)
1307 .Case("bitcode", EmbedBitcode)
1308 .Case("marker", EmbedMarker)
1309 .Default(~0U);
1310 if (Model == ~0U) {
1311 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1312 << Name;
1313 } else
1314 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1315 }
1316
1317 // Remove existing compilation database so that each job can append to it.
1318 if (Arg *A = Args.getLastArg(options::OPT_MJ))
1319 llvm::sys::fs::remove(A->getValue());
1320
1321 // Setting up the jobs for some precompile cases depends on whether we are
1322 // treating them as PCH, implicit modules or C++20 ones.
1323 // TODO: inferring the mode like this seems fragile (it meets the objective
1324 // of not requiring anything new for operation, however).
1325 const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1326 ModulesModeCXX20 =
1327 !Args.hasArg(options::OPT_fmodules) && Std &&
1328 (Std->containsValue("c++20") || Std->containsValue("c++2b") ||
1329 Std->containsValue("c++2a") || Std->containsValue("c++latest"));
1330
1331 // Process -fmodule-header{=} flags.
1332 if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1333 options::OPT_fmodule_header)) {
1334 // These flags force C++20 handling of headers.
1335 ModulesModeCXX20 = true;
1336 if (A->getOption().matches(options::OPT_fmodule_header))
1337 CXX20HeaderType = HeaderMode_Default;
1338 else {
1339 StringRef ArgName = A->getValue();
1340 unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1341 .Case("user", HeaderMode_User)
1342 .Case("system", HeaderMode_System)
1343 .Default(~0U);
1344 if (Kind == ~0U) {
1345 Diags.Report(diag::err_drv_invalid_value)
1346 << A->getAsString(Args) << ArgName;
1347 } else
1348 CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1349 }
1350 }
1351
1352 std::unique_ptr<llvm::opt::InputArgList> UArgs =
1353 std::make_unique<InputArgList>(std::move(Args));
1354
1355 // Perform the default argument translations.
1356 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1357
1358 // Owned by the host.
1359 const ToolChain &TC = getToolChain(
1360 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1361
1362 // The compilation takes ownership of Args.
1363 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1364 ContainsError);
1365
1366 if (!HandleImmediateArgs(*C))
1367 return C;
1368
1369 // Construct the list of inputs.
1370 InputList Inputs;
1371 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1372
1373 // Populate the tool chains for the offloading devices, if any.
1374 CreateOffloadingDeviceToolChains(*C, Inputs);
1375
1376 // Construct the list of abstract actions to perform for this compilation. On
1377 // MachO targets this uses the driver-driver and universal actions.
1378 if (TC.getTriple().isOSBinFormatMachO())
1379 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1380 else
1381 BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1382
1383 if (CCCPrintPhases) {
1384 PrintActions(*C);
1385 return C;
1386 }
1387
1388 BuildJobs(*C);
1389
1390 return C;
1391 }
1392
printArgList(raw_ostream & OS,const llvm::opt::ArgList & Args)1393 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1394 llvm::opt::ArgStringList ASL;
1395 for (const auto *A : Args) {
1396 // Use user's original spelling of flags. For example, use
1397 // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1398 // wrote the former.
1399 while (A->getAlias())
1400 A = A->getAlias();
1401 A->render(Args, ASL);
1402 }
1403
1404 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1405 if (I != ASL.begin())
1406 OS << ' ';
1407 llvm::sys::printArg(OS, *I, true);
1408 }
1409 OS << '\n';
1410 }
1411
getCrashDiagnosticFile(StringRef ReproCrashFilename,SmallString<128> & CrashDiagDir)1412 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1413 SmallString<128> &CrashDiagDir) {
1414 using namespace llvm::sys;
1415 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1416 "Only knows about .crash files on Darwin");
1417
1418 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1419 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1420 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1421 path::home_directory(CrashDiagDir);
1422 if (CrashDiagDir.startswith("/var/root"))
1423 CrashDiagDir = "/";
1424 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1425 int PID =
1426 #if LLVM_ON_UNIX
1427 getpid();
1428 #else
1429 0;
1430 #endif
1431 std::error_code EC;
1432 fs::file_status FileStatus;
1433 TimePoint<> LastAccessTime;
1434 SmallString<128> CrashFilePath;
1435 // Lookup the .crash files and get the one generated by a subprocess spawned
1436 // by this driver invocation.
1437 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1438 File != FileEnd && !EC; File.increment(EC)) {
1439 StringRef FileName = path::filename(File->path());
1440 if (!FileName.startswith(Name))
1441 continue;
1442 if (fs::status(File->path(), FileStatus))
1443 continue;
1444 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1445 llvm::MemoryBuffer::getFile(File->path());
1446 if (!CrashFile)
1447 continue;
1448 // The first line should start with "Process:", otherwise this isn't a real
1449 // .crash file.
1450 StringRef Data = CrashFile.get()->getBuffer();
1451 if (!Data.startswith("Process:"))
1452 continue;
1453 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1454 size_t ParentProcPos = Data.find("Parent Process:");
1455 if (ParentProcPos == StringRef::npos)
1456 continue;
1457 size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1458 if (LineEnd == StringRef::npos)
1459 continue;
1460 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1461 int OpenBracket = -1, CloseBracket = -1;
1462 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1463 if (ParentProcess[i] == '[')
1464 OpenBracket = i;
1465 if (ParentProcess[i] == ']')
1466 CloseBracket = i;
1467 }
1468 // Extract the parent process PID from the .crash file and check whether
1469 // it matches this driver invocation pid.
1470 int CrashPID;
1471 if (OpenBracket < 0 || CloseBracket < 0 ||
1472 ParentProcess.slice(OpenBracket + 1, CloseBracket)
1473 .getAsInteger(10, CrashPID) || CrashPID != PID) {
1474 continue;
1475 }
1476
1477 // Found a .crash file matching the driver pid. To avoid getting an older
1478 // and misleading crash file, continue looking for the most recent.
1479 // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1480 // multiple crashes poiting to the same parent process. Since the driver
1481 // does not collect pid information for the dispatched invocation there's
1482 // currently no way to distinguish among them.
1483 const auto FileAccessTime = FileStatus.getLastModificationTime();
1484 if (FileAccessTime > LastAccessTime) {
1485 CrashFilePath.assign(File->path());
1486 LastAccessTime = FileAccessTime;
1487 }
1488 }
1489
1490 // If found, copy it over to the location of other reproducer files.
1491 if (!CrashFilePath.empty()) {
1492 EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1493 if (EC)
1494 return false;
1495 return true;
1496 }
1497
1498 return false;
1499 }
1500
1501 // When clang crashes, produce diagnostic information including the fully
1502 // preprocessed source file(s). Request that the developer attach the
1503 // diagnostic information to a bug report.
generateCompilationDiagnostics(Compilation & C,const Command & FailingCommand,StringRef AdditionalInformation,CompilationDiagnosticReport * Report)1504 void Driver::generateCompilationDiagnostics(
1505 Compilation &C, const Command &FailingCommand,
1506 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1507 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1508 return;
1509
1510 // Don't try to generate diagnostics for link or dsymutil jobs.
1511 if (FailingCommand.getCreator().isLinkJob() ||
1512 FailingCommand.getCreator().isDsymutilJob())
1513 return;
1514
1515 // Print the version of the compiler.
1516 PrintVersion(C, llvm::errs());
1517
1518 // Suppress driver output and emit preprocessor output to temp file.
1519 CCGenDiagnostics = true;
1520
1521 // Save the original job command(s).
1522 Command Cmd = FailingCommand;
1523
1524 // Keep track of whether we produce any errors while trying to produce
1525 // preprocessed sources.
1526 DiagnosticErrorTrap Trap(Diags);
1527
1528 // Suppress tool output.
1529 C.initCompilationForDiagnostics();
1530
1531 // Construct the list of inputs.
1532 InputList Inputs;
1533 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1534
1535 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1536 bool IgnoreInput = false;
1537
1538 // Ignore input from stdin or any inputs that cannot be preprocessed.
1539 // Check type first as not all linker inputs have a value.
1540 if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1541 IgnoreInput = true;
1542 } else if (!strcmp(it->second->getValue(), "-")) {
1543 Diag(clang::diag::note_drv_command_failed_diag_msg)
1544 << "Error generating preprocessed source(s) - "
1545 "ignoring input from stdin.";
1546 IgnoreInput = true;
1547 }
1548
1549 if (IgnoreInput) {
1550 it = Inputs.erase(it);
1551 ie = Inputs.end();
1552 } else {
1553 ++it;
1554 }
1555 }
1556
1557 if (Inputs.empty()) {
1558 Diag(clang::diag::note_drv_command_failed_diag_msg)
1559 << "Error generating preprocessed source(s) - "
1560 "no preprocessable inputs.";
1561 return;
1562 }
1563
1564 // Don't attempt to generate preprocessed files if multiple -arch options are
1565 // used, unless they're all duplicates.
1566 llvm::StringSet<> ArchNames;
1567 for (const Arg *A : C.getArgs()) {
1568 if (A->getOption().matches(options::OPT_arch)) {
1569 StringRef ArchName = A->getValue();
1570 ArchNames.insert(ArchName);
1571 }
1572 }
1573 if (ArchNames.size() > 1) {
1574 Diag(clang::diag::note_drv_command_failed_diag_msg)
1575 << "Error generating preprocessed source(s) - cannot generate "
1576 "preprocessed source with multiple -arch options.";
1577 return;
1578 }
1579
1580 // Construct the list of abstract actions to perform for this compilation. On
1581 // Darwin OSes this uses the driver-driver and builds universal actions.
1582 const ToolChain &TC = C.getDefaultToolChain();
1583 if (TC.getTriple().isOSBinFormatMachO())
1584 BuildUniversalActions(C, TC, Inputs);
1585 else
1586 BuildActions(C, C.getArgs(), Inputs, C.getActions());
1587
1588 BuildJobs(C);
1589
1590 // If there were errors building the compilation, quit now.
1591 if (Trap.hasErrorOccurred()) {
1592 Diag(clang::diag::note_drv_command_failed_diag_msg)
1593 << "Error generating preprocessed source(s).";
1594 return;
1595 }
1596
1597 // Generate preprocessed output.
1598 SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1599 C.ExecuteJobs(C.getJobs(), FailingCommands);
1600
1601 // If any of the preprocessing commands failed, clean up and exit.
1602 if (!FailingCommands.empty()) {
1603 Diag(clang::diag::note_drv_command_failed_diag_msg)
1604 << "Error generating preprocessed source(s).";
1605 return;
1606 }
1607
1608 const ArgStringList &TempFiles = C.getTempFiles();
1609 if (TempFiles.empty()) {
1610 Diag(clang::diag::note_drv_command_failed_diag_msg)
1611 << "Error generating preprocessed source(s).";
1612 return;
1613 }
1614
1615 Diag(clang::diag::note_drv_command_failed_diag_msg)
1616 << "\n********************\n\n"
1617 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1618 "Preprocessed source(s) and associated run script(s) are located at:";
1619
1620 SmallString<128> VFS;
1621 SmallString<128> ReproCrashFilename;
1622 for (const char *TempFile : TempFiles) {
1623 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1624 if (Report)
1625 Report->TemporaryFiles.push_back(TempFile);
1626 if (ReproCrashFilename.empty()) {
1627 ReproCrashFilename = TempFile;
1628 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1629 }
1630 if (StringRef(TempFile).endswith(".cache")) {
1631 // In some cases (modules) we'll dump extra data to help with reproducing
1632 // the crash into a directory next to the output.
1633 VFS = llvm::sys::path::filename(TempFile);
1634 llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1635 }
1636 }
1637
1638 // Assume associated files are based off of the first temporary file.
1639 CrashReportInfo CrashInfo(TempFiles[0], VFS);
1640
1641 llvm::SmallString<128> Script(CrashInfo.Filename);
1642 llvm::sys::path::replace_extension(Script, "sh");
1643 std::error_code EC;
1644 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1645 llvm::sys::fs::FA_Write,
1646 llvm::sys::fs::OF_Text);
1647 if (EC) {
1648 Diag(clang::diag::note_drv_command_failed_diag_msg)
1649 << "Error generating run script: " << Script << " " << EC.message();
1650 } else {
1651 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1652 << "# Driver args: ";
1653 printArgList(ScriptOS, C.getInputArgs());
1654 ScriptOS << "# Original command: ";
1655 Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1656 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1657 if (!AdditionalInformation.empty())
1658 ScriptOS << "\n# Additional information: " << AdditionalInformation
1659 << "\n";
1660 if (Report)
1661 Report->TemporaryFiles.push_back(std::string(Script.str()));
1662 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1663 }
1664
1665 // On darwin, provide information about the .crash diagnostic report.
1666 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1667 SmallString<128> CrashDiagDir;
1668 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1669 Diag(clang::diag::note_drv_command_failed_diag_msg)
1670 << ReproCrashFilename.str();
1671 } else { // Suggest a directory for the user to look for .crash files.
1672 llvm::sys::path::append(CrashDiagDir, Name);
1673 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1674 Diag(clang::diag::note_drv_command_failed_diag_msg)
1675 << "Crash backtrace is located in";
1676 Diag(clang::diag::note_drv_command_failed_diag_msg)
1677 << CrashDiagDir.str();
1678 Diag(clang::diag::note_drv_command_failed_diag_msg)
1679 << "(choose the .crash file that corresponds to your crash)";
1680 }
1681 }
1682
1683 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1684 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1685
1686 Diag(clang::diag::note_drv_command_failed_diag_msg)
1687 << "\n\n********************";
1688 }
1689
setUpResponseFiles(Compilation & C,Command & Cmd)1690 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1691 // Since commandLineFitsWithinSystemLimits() may underestimate system's
1692 // capacity if the tool does not support response files, there is a chance/
1693 // that things will just work without a response file, so we silently just
1694 // skip it.
1695 if (Cmd.getResponseFileSupport().ResponseKind ==
1696 ResponseFileSupport::RF_None ||
1697 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1698 Cmd.getArguments()))
1699 return;
1700
1701 std::string TmpName = GetTemporaryPath("response", "txt");
1702 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1703 }
1704
ExecuteCompilation(Compilation & C,SmallVectorImpl<std::pair<int,const Command * >> & FailingCommands)1705 int Driver::ExecuteCompilation(
1706 Compilation &C,
1707 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1708 if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1709 if (C.getArgs().hasArg(options::OPT_v))
1710 C.getJobs().Print(llvm::errs(), "\n", true);
1711
1712 C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1713
1714 // If there were errors building the compilation, quit now.
1715 if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 // Just print if -### was present.
1722 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1723 C.getJobs().Print(llvm::errs(), "\n", true);
1724 return 0;
1725 }
1726
1727 // If there were errors building the compilation, quit now.
1728 if (Diags.hasErrorOccurred())
1729 return 1;
1730
1731 // Set up response file names for each command, if necessary.
1732 for (auto &Job : C.getJobs())
1733 setUpResponseFiles(C, Job);
1734
1735 C.ExecuteJobs(C.getJobs(), FailingCommands);
1736
1737 // If the command succeeded, we are done.
1738 if (FailingCommands.empty())
1739 return 0;
1740
1741 // Otherwise, remove result files and print extra information about abnormal
1742 // failures.
1743 int Res = 0;
1744 for (const auto &CmdPair : FailingCommands) {
1745 int CommandRes = CmdPair.first;
1746 const Command *FailingCommand = CmdPair.second;
1747
1748 // Remove result files if we're not saving temps.
1749 if (!isSaveTempsEnabled()) {
1750 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1751 C.CleanupFileMap(C.getResultFiles(), JA, true);
1752
1753 // Failure result files are valid unless we crashed.
1754 if (CommandRes < 0)
1755 C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1756 }
1757
1758 #if LLVM_ON_UNIX
1759 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1760 // for SIGPIPE. Do not print diagnostics for this case.
1761 if (CommandRes == EX_IOERR) {
1762 Res = CommandRes;
1763 continue;
1764 }
1765 #endif
1766
1767 // Print extra information about abnormal failures, if possible.
1768 //
1769 // This is ad-hoc, but we don't want to be excessively noisy. If the result
1770 // status was 1, assume the command failed normally. In particular, if it
1771 // was the compiler then assume it gave a reasonable error code. Failures
1772 // in other tools are less common, and they generally have worse
1773 // diagnostics, so always print the diagnostic there.
1774 const Tool &FailingTool = FailingCommand->getCreator();
1775
1776 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1777 // FIXME: See FIXME above regarding result code interpretation.
1778 if (CommandRes < 0)
1779 Diag(clang::diag::err_drv_command_signalled)
1780 << FailingTool.getShortName();
1781 else
1782 Diag(clang::diag::err_drv_command_failed)
1783 << FailingTool.getShortName() << CommandRes;
1784 }
1785 }
1786 return Res;
1787 }
1788
PrintHelp(bool ShowHidden) const1789 void Driver::PrintHelp(bool ShowHidden) const {
1790 unsigned IncludedFlagsBitmask;
1791 unsigned ExcludedFlagsBitmask;
1792 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1793 getIncludeExcludeOptionFlagMasks(IsCLMode());
1794
1795 ExcludedFlagsBitmask |= options::NoDriverOption;
1796 if (!ShowHidden)
1797 ExcludedFlagsBitmask |= HelpHidden;
1798
1799 if (IsFlangMode())
1800 IncludedFlagsBitmask |= options::FlangOption;
1801 else
1802 ExcludedFlagsBitmask |= options::FlangOnlyOption;
1803
1804 std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1805 getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1806 IncludedFlagsBitmask, ExcludedFlagsBitmask,
1807 /*ShowAllAliases=*/false);
1808 }
1809
PrintVersion(const Compilation & C,raw_ostream & OS) const1810 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1811 if (IsFlangMode()) {
1812 OS << getClangToolFullVersion("flang-new") << '\n';
1813 } else {
1814 // FIXME: The following handlers should use a callback mechanism, we don't
1815 // know what the client would like to do.
1816 OS << getClangFullVersion() << '\n';
1817 }
1818 const ToolChain &TC = C.getDefaultToolChain();
1819 OS << "Target: " << TC.getTripleString() << '\n';
1820
1821 // Print the threading model.
1822 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1823 // Don't print if the ToolChain would have barfed on it already
1824 if (TC.isThreadModelSupported(A->getValue()))
1825 OS << "Thread model: " << A->getValue();
1826 } else
1827 OS << "Thread model: " << TC.getThreadModel();
1828 OS << '\n';
1829
1830 // Print out the install directory.
1831 OS << "InstalledDir: " << InstalledDir << '\n';
1832
1833 // If configuration file was used, print its path.
1834 if (!ConfigFile.empty())
1835 OS << "Configuration file: " << ConfigFile << '\n';
1836 }
1837
1838 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1839 /// option.
PrintDiagnosticCategories(raw_ostream & OS)1840 static void PrintDiagnosticCategories(raw_ostream &OS) {
1841 // Skip the empty category.
1842 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1843 ++i)
1844 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1845 }
1846
HandleAutocompletions(StringRef PassedFlags) const1847 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1848 if (PassedFlags == "")
1849 return;
1850 // Print out all options that start with a given argument. This is used for
1851 // shell autocompletion.
1852 std::vector<std::string> SuggestedCompletions;
1853 std::vector<std::string> Flags;
1854
1855 unsigned int DisableFlags =
1856 options::NoDriverOption | options::Unsupported | options::Ignored;
1857
1858 // Make sure that Flang-only options don't pollute the Clang output
1859 // TODO: Make sure that Clang-only options don't pollute Flang output
1860 if (!IsFlangMode())
1861 DisableFlags |= options::FlangOnlyOption;
1862
1863 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1864 // because the latter indicates that the user put space before pushing tab
1865 // which should end up in a file completion.
1866 const bool HasSpace = PassedFlags.endswith(",");
1867
1868 // Parse PassedFlags by "," as all the command-line flags are passed to this
1869 // function separated by ","
1870 StringRef TargetFlags = PassedFlags;
1871 while (TargetFlags != "") {
1872 StringRef CurFlag;
1873 std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1874 Flags.push_back(std::string(CurFlag));
1875 }
1876
1877 // We want to show cc1-only options only when clang is invoked with -cc1 or
1878 // -Xclang.
1879 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1880 DisableFlags &= ~options::NoDriverOption;
1881
1882 const llvm::opt::OptTable &Opts = getOpts();
1883 StringRef Cur;
1884 Cur = Flags.at(Flags.size() - 1);
1885 StringRef Prev;
1886 if (Flags.size() >= 2) {
1887 Prev = Flags.at(Flags.size() - 2);
1888 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1889 }
1890
1891 if (SuggestedCompletions.empty())
1892 SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1893
1894 // If Flags were empty, it means the user typed `clang [tab]` where we should
1895 // list all possible flags. If there was no value completion and the user
1896 // pressed tab after a space, we should fall back to a file completion.
1897 // We're printing a newline to be consistent with what we print at the end of
1898 // this function.
1899 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1900 llvm::outs() << '\n';
1901 return;
1902 }
1903
1904 // When flag ends with '=' and there was no value completion, return empty
1905 // string and fall back to the file autocompletion.
1906 if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1907 // If the flag is in the form of "--autocomplete=-foo",
1908 // we were requested to print out all option names that start with "-foo".
1909 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1910 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1911
1912 // We have to query the -W flags manually as they're not in the OptTable.
1913 // TODO: Find a good way to add them to OptTable instead and them remove
1914 // this code.
1915 for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1916 if (S.startswith(Cur))
1917 SuggestedCompletions.push_back(std::string(S));
1918 }
1919
1920 // Sort the autocomplete candidates so that shells print them out in a
1921 // deterministic order. We could sort in any way, but we chose
1922 // case-insensitive sorting for consistency with the -help option
1923 // which prints out options in the case-insensitive alphabetical order.
1924 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1925 if (int X = A.compare_insensitive(B))
1926 return X < 0;
1927 return A.compare(B) > 0;
1928 });
1929
1930 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1931 }
1932
HandleImmediateArgs(const Compilation & C)1933 bool Driver::HandleImmediateArgs(const Compilation &C) {
1934 // The order these options are handled in gcc is all over the place, but we
1935 // don't expect inconsistencies w.r.t. that to matter in practice.
1936
1937 if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1938 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1939 return false;
1940 }
1941
1942 if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1943 // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1944 // return an answer which matches our definition of __VERSION__.
1945 llvm::outs() << CLANG_VERSION_STRING << "\n";
1946 return false;
1947 }
1948
1949 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1950 PrintDiagnosticCategories(llvm::outs());
1951 return false;
1952 }
1953
1954 if (C.getArgs().hasArg(options::OPT_help) ||
1955 C.getArgs().hasArg(options::OPT__help_hidden)) {
1956 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1957 return false;
1958 }
1959
1960 if (C.getArgs().hasArg(options::OPT__version)) {
1961 // Follow gcc behavior and use stdout for --version and stderr for -v.
1962 PrintVersion(C, llvm::outs());
1963 return false;
1964 }
1965
1966 if (C.getArgs().hasArg(options::OPT_v) ||
1967 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1968 C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1969 PrintVersion(C, llvm::errs());
1970 SuppressMissingInputWarning = true;
1971 }
1972
1973 if (C.getArgs().hasArg(options::OPT_v)) {
1974 if (!SystemConfigDir.empty())
1975 llvm::errs() << "System configuration file directory: "
1976 << SystemConfigDir << "\n";
1977 if (!UserConfigDir.empty())
1978 llvm::errs() << "User configuration file directory: "
1979 << UserConfigDir << "\n";
1980 }
1981
1982 const ToolChain &TC = C.getDefaultToolChain();
1983
1984 if (C.getArgs().hasArg(options::OPT_v))
1985 TC.printVerboseInfo(llvm::errs());
1986
1987 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1988 llvm::outs() << ResourceDir << '\n';
1989 return false;
1990 }
1991
1992 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1993 llvm::outs() << "programs: =";
1994 bool separator = false;
1995 // Print -B and COMPILER_PATH.
1996 for (const std::string &Path : PrefixDirs) {
1997 if (separator)
1998 llvm::outs() << llvm::sys::EnvPathSeparator;
1999 llvm::outs() << Path;
2000 separator = true;
2001 }
2002 for (const std::string &Path : TC.getProgramPaths()) {
2003 if (separator)
2004 llvm::outs() << llvm::sys::EnvPathSeparator;
2005 llvm::outs() << Path;
2006 separator = true;
2007 }
2008 llvm::outs() << "\n";
2009 llvm::outs() << "libraries: =" << ResourceDir;
2010
2011 StringRef sysroot = C.getSysRoot();
2012
2013 for (const std::string &Path : TC.getFilePaths()) {
2014 // Always print a separator. ResourceDir was the first item shown.
2015 llvm::outs() << llvm::sys::EnvPathSeparator;
2016 // Interpretation of leading '=' is needed only for NetBSD.
2017 if (Path[0] == '=')
2018 llvm::outs() << sysroot << Path.substr(1);
2019 else
2020 llvm::outs() << Path;
2021 }
2022 llvm::outs() << "\n";
2023 return false;
2024 }
2025
2026 if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2027 std::string RuntimePath;
2028 // Get the first existing path, if any.
2029 for (auto Path : TC.getRuntimePaths()) {
2030 if (getVFS().exists(Path)) {
2031 RuntimePath = Path;
2032 break;
2033 }
2034 }
2035 if (!RuntimePath.empty())
2036 llvm::outs() << RuntimePath << '\n';
2037 else
2038 llvm::outs() << TC.getCompilerRTPath() << '\n';
2039 return false;
2040 }
2041
2042 if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2043 std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2044 for (std::size_t I = 0; I != Flags.size(); I += 2)
2045 llvm::outs() << " " << Flags[I] << "\n " << Flags[I + 1] << "\n\n";
2046 return false;
2047 }
2048
2049 // FIXME: The following handlers should use a callback mechanism, we don't
2050 // know what the client would like to do.
2051 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2052 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2053 return false;
2054 }
2055
2056 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2057 StringRef ProgName = A->getValue();
2058
2059 // Null program name cannot have a path.
2060 if (! ProgName.empty())
2061 llvm::outs() << GetProgramPath(ProgName, TC);
2062
2063 llvm::outs() << "\n";
2064 return false;
2065 }
2066
2067 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2068 StringRef PassedFlags = A->getValue();
2069 HandleAutocompletions(PassedFlags);
2070 return false;
2071 }
2072
2073 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2074 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2075 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2076 RegisterEffectiveTriple TripleRAII(TC, Triple);
2077 switch (RLT) {
2078 case ToolChain::RLT_CompilerRT:
2079 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2080 break;
2081 case ToolChain::RLT_Libgcc:
2082 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2083 break;
2084 }
2085 return false;
2086 }
2087
2088 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2089 for (const Multilib &Multilib : TC.getMultilibs())
2090 llvm::outs() << Multilib << "\n";
2091 return false;
2092 }
2093
2094 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2095 const Multilib &Multilib = TC.getMultilib();
2096 if (Multilib.gccSuffix().empty())
2097 llvm::outs() << ".\n";
2098 else {
2099 StringRef Suffix(Multilib.gccSuffix());
2100 assert(Suffix.front() == '/');
2101 llvm::outs() << Suffix.substr(1) << "\n";
2102 }
2103 return false;
2104 }
2105
2106 if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2107 llvm::outs() << TC.getTripleString() << "\n";
2108 return false;
2109 }
2110
2111 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2112 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2113 llvm::outs() << Triple.getTriple() << "\n";
2114 return false;
2115 }
2116
2117 if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
2118 llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
2119 << "\n";
2120 return false;
2121 }
2122
2123 if (C.getArgs().hasArg(options::OPT_print_targets)) {
2124 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2125 return false;
2126 }
2127
2128 return true;
2129 }
2130
2131 enum {
2132 TopLevelAction = 0,
2133 HeadSibAction = 1,
2134 OtherSibAction = 2,
2135 };
2136
2137 // Display an action graph human-readably. Action A is the "sink" node
2138 // and latest-occuring action. Traversal is in pre-order, visiting the
2139 // inputs to each action before printing the action itself.
PrintActions1(const Compilation & C,Action * A,std::map<Action *,unsigned> & Ids,Twine Indent={},int Kind=TopLevelAction)2140 static unsigned PrintActions1(const Compilation &C, Action *A,
2141 std::map<Action *, unsigned> &Ids,
2142 Twine Indent = {}, int Kind = TopLevelAction) {
2143 if (Ids.count(A)) // A was already visited.
2144 return Ids[A];
2145
2146 std::string str;
2147 llvm::raw_string_ostream os(str);
2148
__anon7f4eb1310702(int K) 2149 auto getSibIndent = [](int K) -> Twine {
2150 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
2151 };
2152
2153 Twine SibIndent = Indent + getSibIndent(Kind);
2154 int SibKind = HeadSibAction;
2155 os << Action::getClassName(A->getKind()) << ", ";
2156 if (InputAction *IA = dyn_cast<InputAction>(A)) {
2157 os << "\"" << IA->getInputArg().getValue() << "\"";
2158 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2159 os << '"' << BIA->getArchName() << '"' << ", {"
2160 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2161 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2162 bool IsFirst = true;
2163 OA->doOnEachDependence(
__anon7f4eb1310802(Action *A, const ToolChain *TC, const char *BoundArch) 2164 [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2165 assert(TC && "Unknown host toolchain");
2166 // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2167 // sm_35 this will generate:
2168 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2169 // (nvptx64-nvidia-cuda:sm_35) {#ID}
2170 if (!IsFirst)
2171 os << ", ";
2172 os << '"';
2173 os << A->getOffloadingKindPrefix();
2174 os << " (";
2175 os << TC->getTriple().normalize();
2176 if (BoundArch)
2177 os << ":" << BoundArch;
2178 os << ")";
2179 os << '"';
2180 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2181 IsFirst = false;
2182 SibKind = OtherSibAction;
2183 });
2184 } else {
2185 const ActionList *AL = &A->getInputs();
2186
2187 if (AL->size()) {
2188 const char *Prefix = "{";
2189 for (Action *PreRequisite : *AL) {
2190 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2191 Prefix = ", ";
2192 SibKind = OtherSibAction;
2193 }
2194 os << "}";
2195 } else
2196 os << "{}";
2197 }
2198
2199 // Append offload info for all options other than the offloading action
2200 // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2201 std::string offload_str;
2202 llvm::raw_string_ostream offload_os(offload_str);
2203 if (!isa<OffloadAction>(A)) {
2204 auto S = A->getOffloadingKindPrefix();
2205 if (!S.empty()) {
2206 offload_os << ", (" << S;
2207 if (A->getOffloadingArch())
2208 offload_os << ", " << A->getOffloadingArch();
2209 offload_os << ")";
2210 }
2211 }
2212
__anon7f4eb1310902(int K) 2213 auto getSelfIndent = [](int K) -> Twine {
2214 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2215 };
2216
2217 unsigned Id = Ids.size();
2218 Ids[A] = Id;
2219 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2220 << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2221
2222 return Id;
2223 }
2224
2225 // Print the action graphs in a compilation C.
2226 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
PrintActions(const Compilation & C) const2227 void Driver::PrintActions(const Compilation &C) const {
2228 std::map<Action *, unsigned> Ids;
2229 for (Action *A : C.getActions())
2230 PrintActions1(C, A, Ids);
2231 }
2232
2233 /// Check whether the given input tree contains any compilation or
2234 /// assembly actions.
ContainsCompileOrAssembleAction(const Action * A)2235 static bool ContainsCompileOrAssembleAction(const Action *A) {
2236 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2237 isa<AssembleJobAction>(A))
2238 return true;
2239
2240 return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2241 }
2242
BuildUniversalActions(Compilation & C,const ToolChain & TC,const InputList & BAInputs) const2243 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2244 const InputList &BAInputs) const {
2245 DerivedArgList &Args = C.getArgs();
2246 ActionList &Actions = C.getActions();
2247 llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2248 // Collect the list of architectures. Duplicates are allowed, but should only
2249 // be handled once (in the order seen).
2250 llvm::StringSet<> ArchNames;
2251 SmallVector<const char *, 4> Archs;
2252 for (Arg *A : Args) {
2253 if (A->getOption().matches(options::OPT_arch)) {
2254 // Validate the option here; we don't save the type here because its
2255 // particular spelling may participate in other driver choices.
2256 llvm::Triple::ArchType Arch =
2257 tools::darwin::getArchTypeForMachOArchName(A->getValue());
2258 if (Arch == llvm::Triple::UnknownArch) {
2259 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2260 continue;
2261 }
2262
2263 A->claim();
2264 if (ArchNames.insert(A->getValue()).second)
2265 Archs.push_back(A->getValue());
2266 }
2267 }
2268
2269 // When there is no explicit arch for this platform, make sure we still bind
2270 // the architecture (to the default) so that -Xarch_ is handled correctly.
2271 if (!Archs.size())
2272 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2273
2274 ActionList SingleActions;
2275 BuildActions(C, Args, BAInputs, SingleActions);
2276
2277 // Add in arch bindings for every top level action, as well as lipo and
2278 // dsymutil steps if needed.
2279 for (Action* Act : SingleActions) {
2280 // Make sure we can lipo this kind of output. If not (and it is an actual
2281 // output) then we disallow, since we can't create an output file with the
2282 // right name without overwriting it. We could remove this oddity by just
2283 // changing the output names to include the arch, which would also fix
2284 // -save-temps. Compatibility wins for now.
2285
2286 if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2287 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2288 << types::getTypeName(Act->getType());
2289
2290 ActionList Inputs;
2291 for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2292 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2293
2294 // Lipo if necessary, we do it this way because we need to set the arch flag
2295 // so that -Xarch_ gets overwritten.
2296 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2297 Actions.append(Inputs.begin(), Inputs.end());
2298 else
2299 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2300
2301 // Handle debug info queries.
2302 Arg *A = Args.getLastArg(options::OPT_g_Group);
2303 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2304 !A->getOption().matches(options::OPT_gstabs);
2305 if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2306 ContainsCompileOrAssembleAction(Actions.back())) {
2307
2308 // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2309 // have a compile input. We need to run 'dsymutil' ourselves in such cases
2310 // because the debug info will refer to a temporary object file which
2311 // will be removed at the end of the compilation process.
2312 if (Act->getType() == types::TY_Image) {
2313 ActionList Inputs;
2314 Inputs.push_back(Actions.back());
2315 Actions.pop_back();
2316 Actions.push_back(
2317 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2318 }
2319
2320 // Verify the debug info output.
2321 if (Args.hasArg(options::OPT_verify_debug_info)) {
2322 Action* LastAction = Actions.back();
2323 Actions.pop_back();
2324 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2325 LastAction, types::TY_Nothing));
2326 }
2327 }
2328 }
2329 }
2330
DiagnoseInputExistence(const DerivedArgList & Args,StringRef Value,types::ID Ty,bool TypoCorrect) const2331 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2332 types::ID Ty, bool TypoCorrect) const {
2333 if (!getCheckInputsExist())
2334 return true;
2335
2336 // stdin always exists.
2337 if (Value == "-")
2338 return true;
2339
2340 // If it's a header to be found in the system or user search path, then defer
2341 // complaints about its absence until those searches can be done. When we
2342 // are definitely processing headers for C++20 header units, extend this to
2343 // allow the user to put "-fmodule-header -xc++-header vector" for example.
2344 if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2345 (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2346 return true;
2347
2348 if (getVFS().exists(Value))
2349 return true;
2350
2351 if (TypoCorrect) {
2352 // Check if the filename is a typo for an option flag. OptTable thinks
2353 // that all args that are not known options and that start with / are
2354 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2355 // the option `/diagnostics:caret` than a reference to a file in the root
2356 // directory.
2357 unsigned IncludedFlagsBitmask;
2358 unsigned ExcludedFlagsBitmask;
2359 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2360 getIncludeExcludeOptionFlagMasks(IsCLMode());
2361 std::string Nearest;
2362 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2363 ExcludedFlagsBitmask) <= 1) {
2364 Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2365 << Value << Nearest;
2366 return false;
2367 }
2368 }
2369
2370 // In CL mode, don't error on apparently non-existent linker inputs, because
2371 // they can be influenced by linker flags the clang driver might not
2372 // understand.
2373 // Examples:
2374 // - `clang-cl main.cc ole32.lib` in a a non-MSVC shell will make the driver
2375 // module look for an MSVC installation in the registry. (We could ask
2376 // the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2377 // look in the registry might move into lld-link in the future so that
2378 // lld-link invocations in non-MSVC shells just work too.)
2379 // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2380 // including /libpath:, which is used to find .lib and .obj files.
2381 // So do not diagnose this on the driver level. Rely on the linker diagnosing
2382 // it. (If we don't end up invoking the linker, this means we'll emit a
2383 // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2384 // of an error.)
2385 //
2386 // Only do this skip after the typo correction step above. `/Brepo` is treated
2387 // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2388 // an error if we have a flag that's within an edit distance of 1 from a
2389 // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2390 // driver in the unlikely case they run into this.)
2391 //
2392 // Don't do this for inputs that start with a '/', else we'd pass options
2393 // like /libpath: through to the linker silently.
2394 //
2395 // Emitting an error for linker inputs can also cause incorrect diagnostics
2396 // with the gcc driver. The command
2397 // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2398 // will make lld look for some/dir/file.o, while we will diagnose here that
2399 // `/file.o` does not exist. However, configure scripts check if
2400 // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2401 // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2402 // in cc mode. (We can in cl mode because cl.exe itself only warns on
2403 // unknown flags.)
2404 if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/"))
2405 return true;
2406
2407 Diag(clang::diag::err_drv_no_such_file) << Value;
2408 return false;
2409 }
2410
2411 // Get the C++20 Header Unit type corresponding to the input type.
CXXHeaderUnitType(ModuleHeaderMode HM)2412 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2413 switch (HM) {
2414 case HeaderMode_User:
2415 return types::TY_CXXUHeader;
2416 case HeaderMode_System:
2417 return types::TY_CXXSHeader;
2418 case HeaderMode_Default:
2419 break;
2420 case HeaderMode_None:
2421 llvm_unreachable("should not be called in this case");
2422 }
2423 return types::TY_CXXHUHeader;
2424 }
2425
2426 // Construct a the list of inputs and their types.
BuildInputs(const ToolChain & TC,DerivedArgList & Args,InputList & Inputs) const2427 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2428 InputList &Inputs) const {
2429 const llvm::opt::OptTable &Opts = getOpts();
2430 // Track the current user specified (-x) input. We also explicitly track the
2431 // argument used to set the type; we only want to claim the type when we
2432 // actually use it, so we warn about unused -x arguments.
2433 types::ID InputType = types::TY_Nothing;
2434 Arg *InputTypeArg = nullptr;
2435
2436 // The last /TC or /TP option sets the input type to C or C++ globally.
2437 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2438 options::OPT__SLASH_TP)) {
2439 InputTypeArg = TCTP;
2440 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2441 ? types::TY_C
2442 : types::TY_CXX;
2443
2444 Arg *Previous = nullptr;
2445 bool ShowNote = false;
2446 for (Arg *A :
2447 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2448 if (Previous) {
2449 Diag(clang::diag::warn_drv_overriding_flag_option)
2450 << Previous->getSpelling() << A->getSpelling();
2451 ShowNote = true;
2452 }
2453 Previous = A;
2454 }
2455 if (ShowNote)
2456 Diag(clang::diag::note_drv_t_option_is_global);
2457
2458 // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2459 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2460 }
2461
2462 // Warn -x after last input file has no effect
2463 {
2464 Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2465 Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2466 if (LastXArg && LastInputArg && LastInputArg->getIndex() < LastXArg->getIndex())
2467 Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2468 }
2469
2470 for (Arg *A : Args) {
2471 if (A->getOption().getKind() == Option::InputClass) {
2472 const char *Value = A->getValue();
2473 types::ID Ty = types::TY_INVALID;
2474
2475 // Infer the input type if necessary.
2476 if (InputType == types::TY_Nothing) {
2477 // If there was an explicit arg for this, claim it.
2478 if (InputTypeArg)
2479 InputTypeArg->claim();
2480
2481 // stdin must be handled specially.
2482 if (memcmp(Value, "-", 2) == 0) {
2483 if (IsFlangMode()) {
2484 Ty = types::TY_Fortran;
2485 } else {
2486 // If running with -E, treat as a C input (this changes the
2487 // builtin macros, for example). This may be overridden by -ObjC
2488 // below.
2489 //
2490 // Otherwise emit an error but still use a valid type to avoid
2491 // spurious errors (e.g., no inputs).
2492 assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2493 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2494 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2495 : clang::diag::err_drv_unknown_stdin_type);
2496 Ty = types::TY_C;
2497 }
2498 } else {
2499 // Otherwise lookup by extension.
2500 // Fallback is C if invoked as C preprocessor, C++ if invoked with
2501 // clang-cl /E, or Object otherwise.
2502 // We use a host hook here because Darwin at least has its own
2503 // idea of what .s is.
2504 if (const char *Ext = strrchr(Value, '.'))
2505 Ty = TC.LookupTypeForExtension(Ext + 1);
2506
2507 if (Ty == types::TY_INVALID) {
2508 if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2509 Ty = types::TY_CXX;
2510 else if (CCCIsCPP() || CCGenDiagnostics)
2511 Ty = types::TY_C;
2512 else
2513 Ty = types::TY_Object;
2514 }
2515
2516 // If the driver is invoked as C++ compiler (like clang++ or c++) it
2517 // should autodetect some input files as C++ for g++ compatibility.
2518 if (CCCIsCXX()) {
2519 types::ID OldTy = Ty;
2520 Ty = types::lookupCXXTypeForCType(Ty);
2521
2522 // Do not complain about foo.h, when we are known to be processing
2523 // it as a C++20 header unit.
2524 if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2525 Diag(clang::diag::warn_drv_treating_input_as_cxx)
2526 << getTypeName(OldTy) << getTypeName(Ty);
2527 }
2528
2529 // If running with -fthinlto-index=, extensions that normally identify
2530 // native object files actually identify LLVM bitcode files.
2531 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2532 Ty == types::TY_Object)
2533 Ty = types::TY_LLVM_BC;
2534 }
2535
2536 // -ObjC and -ObjC++ override the default language, but only for "source
2537 // files". We just treat everything that isn't a linker input as a
2538 // source file.
2539 //
2540 // FIXME: Clean this up if we move the phase sequence into the type.
2541 if (Ty != types::TY_Object) {
2542 if (Args.hasArg(options::OPT_ObjC))
2543 Ty = types::TY_ObjC;
2544 else if (Args.hasArg(options::OPT_ObjCXX))
2545 Ty = types::TY_ObjCXX;
2546 }
2547
2548 // Disambiguate headers that are meant to be header units from those
2549 // intended to be PCH. Avoid missing '.h' cases that are counted as
2550 // C headers by default - we know we are in C++ mode and we do not
2551 // want to issue a complaint about compiling things in the wrong mode.
2552 if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2553 hasHeaderMode())
2554 Ty = CXXHeaderUnitType(CXX20HeaderType);
2555 } else {
2556 assert(InputTypeArg && "InputType set w/o InputTypeArg");
2557 if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2558 // If emulating cl.exe, make sure that /TC and /TP don't affect input
2559 // object files.
2560 const char *Ext = strrchr(Value, '.');
2561 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2562 Ty = types::TY_Object;
2563 }
2564 if (Ty == types::TY_INVALID) {
2565 Ty = InputType;
2566 InputTypeArg->claim();
2567 }
2568 }
2569
2570 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2571 Inputs.push_back(std::make_pair(Ty, A));
2572
2573 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2574 StringRef Value = A->getValue();
2575 if (DiagnoseInputExistence(Args, Value, types::TY_C,
2576 /*TypoCorrect=*/false)) {
2577 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2578 Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2579 }
2580 A->claim();
2581 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2582 StringRef Value = A->getValue();
2583 if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2584 /*TypoCorrect=*/false)) {
2585 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2586 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2587 }
2588 A->claim();
2589 } else if (A->getOption().hasFlag(options::LinkerInput)) {
2590 // Just treat as object type, we could make a special type for this if
2591 // necessary.
2592 Inputs.push_back(std::make_pair(types::TY_Object, A));
2593
2594 } else if (A->getOption().matches(options::OPT_x)) {
2595 InputTypeArg = A;
2596 InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2597 A->claim();
2598
2599 // Follow gcc behavior and treat as linker input for invalid -x
2600 // options. Its not clear why we shouldn't just revert to unknown; but
2601 // this isn't very important, we might as well be bug compatible.
2602 if (!InputType) {
2603 Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2604 InputType = types::TY_Object;
2605 }
2606
2607 // If the user has put -fmodule-header{,=} then we treat C++ headers as
2608 // header unit inputs. So we 'promote' -xc++-header appropriately.
2609 if (InputType == types::TY_CXXHeader && hasHeaderMode())
2610 InputType = CXXHeaderUnitType(CXX20HeaderType);
2611 } else if (A->getOption().getID() == options::OPT_U) {
2612 assert(A->getNumValues() == 1 && "The /U option has one value.");
2613 StringRef Val = A->getValue(0);
2614 if (Val.find_first_of("/\\") != StringRef::npos) {
2615 // Warn about e.g. "/Users/me/myfile.c".
2616 Diag(diag::warn_slash_u_filename) << Val;
2617 Diag(diag::note_use_dashdash);
2618 }
2619 }
2620 }
2621 if (CCCIsCPP() && Inputs.empty()) {
2622 // If called as standalone preprocessor, stdin is processed
2623 // if no other input is present.
2624 Arg *A = MakeInputArg(Args, Opts, "-");
2625 Inputs.push_back(std::make_pair(types::TY_C, A));
2626 }
2627 }
2628
2629 namespace {
2630 /// Provides a convenient interface for different programming models to generate
2631 /// the required device actions.
2632 class OffloadingActionBuilder final {
2633 /// Flag used to trace errors in the builder.
2634 bool IsValid = false;
2635
2636 /// The compilation that is using this builder.
2637 Compilation &C;
2638
2639 /// Map between an input argument and the offload kinds used to process it.
2640 std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2641
2642 /// Map between a host action and its originating input argument.
2643 std::map<Action *, const Arg *> HostActionToInputArgMap;
2644
2645 /// Builder interface. It doesn't build anything or keep any state.
2646 class DeviceActionBuilder {
2647 public:
2648 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2649
2650 enum ActionBuilderReturnCode {
2651 // The builder acted successfully on the current action.
2652 ABRT_Success,
2653 // The builder didn't have to act on the current action.
2654 ABRT_Inactive,
2655 // The builder was successful and requested the host action to not be
2656 // generated.
2657 ABRT_Ignore_Host,
2658 };
2659
2660 protected:
2661 /// Compilation associated with this builder.
2662 Compilation &C;
2663
2664 /// Tool chains associated with this builder. The same programming
2665 /// model may have associated one or more tool chains.
2666 SmallVector<const ToolChain *, 2> ToolChains;
2667
2668 /// The derived arguments associated with this builder.
2669 DerivedArgList &Args;
2670
2671 /// The inputs associated with this builder.
2672 const Driver::InputList &Inputs;
2673
2674 /// The associated offload kind.
2675 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2676
2677 public:
DeviceActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind AssociatedOffloadKind)2678 DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2679 const Driver::InputList &Inputs,
2680 Action::OffloadKind AssociatedOffloadKind)
2681 : C(C), Args(Args), Inputs(Inputs),
2682 AssociatedOffloadKind(AssociatedOffloadKind) {}
~DeviceActionBuilder()2683 virtual ~DeviceActionBuilder() {}
2684
2685 /// Fill up the array \a DA with all the device dependences that should be
2686 /// added to the provided host action \a HostAction. By default it is
2687 /// inactive.
2688 virtual ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)2689 getDeviceDependences(OffloadAction::DeviceDependences &DA,
2690 phases::ID CurPhase, phases::ID FinalPhase,
2691 PhasesTy &Phases) {
2692 return ABRT_Inactive;
2693 }
2694
2695 /// Update the state to include the provided host action \a HostAction as a
2696 /// dependency of the current device action. By default it is inactive.
addDeviceDepences(Action * HostAction)2697 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2698 return ABRT_Inactive;
2699 }
2700
2701 /// Append top level actions generated by the builder.
appendTopLevelActions(ActionList & AL)2702 virtual void appendTopLevelActions(ActionList &AL) {}
2703
2704 /// Append linker device actions generated by the builder.
appendLinkDeviceActions(ActionList & AL)2705 virtual void appendLinkDeviceActions(ActionList &AL) {}
2706
2707 /// Append linker host action generated by the builder.
appendLinkHostActions(ActionList & AL)2708 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2709
2710 /// Append linker actions generated by the builder.
appendLinkDependences(OffloadAction::DeviceDependences & DA)2711 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2712
2713 /// Initialize the builder. Return true if any initialization errors are
2714 /// found.
initialize()2715 virtual bool initialize() { return false; }
2716
2717 /// Return true if the builder can use bundling/unbundling.
canUseBundlerUnbundler() const2718 virtual bool canUseBundlerUnbundler() const { return false; }
2719
2720 /// Return true if this builder is valid. We have a valid builder if we have
2721 /// associated device tool chains.
isValid()2722 bool isValid() { return !ToolChains.empty(); }
2723
2724 /// Return the associated offload kind.
getAssociatedOffloadKind()2725 Action::OffloadKind getAssociatedOffloadKind() {
2726 return AssociatedOffloadKind;
2727 }
2728 };
2729
2730 /// Base class for CUDA/HIP action builder. It injects device code in
2731 /// the host backend action.
2732 class CudaActionBuilderBase : public DeviceActionBuilder {
2733 protected:
2734 /// Flags to signal if the user requested host-only or device-only
2735 /// compilation.
2736 bool CompileHostOnly = false;
2737 bool CompileDeviceOnly = false;
2738 bool EmitLLVM = false;
2739 bool EmitAsm = false;
2740
2741 /// ID to identify each device compilation. For CUDA it is simply the
2742 /// GPU arch string. For HIP it is either the GPU arch string or GPU
2743 /// arch string plus feature strings delimited by a plus sign, e.g.
2744 /// gfx906+xnack.
2745 struct TargetID {
2746 /// Target ID string which is persistent throughout the compilation.
2747 const char *ID;
TargetID__anon7f4eb1310a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2748 TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
TargetID__anon7f4eb1310a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2749 TargetID(const char *ID) : ID(ID) {}
operator const char*__anon7f4eb1310a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2750 operator const char *() { return ID; }
operator StringRef__anon7f4eb1310a11::OffloadingActionBuilder::CudaActionBuilderBase::TargetID2751 operator StringRef() { return StringRef(ID); }
2752 };
2753 /// List of GPU architectures to use in this compilation.
2754 SmallVector<TargetID, 4> GpuArchList;
2755
2756 /// The CUDA actions for the current input.
2757 ActionList CudaDeviceActions;
2758
2759 /// The CUDA fat binary if it was generated for the current input.
2760 Action *CudaFatBinary = nullptr;
2761
2762 /// Flag that is set to true if this builder acted on the current input.
2763 bool IsActive = false;
2764
2765 /// Flag for -fgpu-rdc.
2766 bool Relocatable = false;
2767
2768 /// Default GPU architecture if there's no one specified.
2769 CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2770
2771 /// Method to generate compilation unit ID specified by option
2772 /// '-fuse-cuid='.
2773 enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2774 UseCUIDKind UseCUID = CUID_Hash;
2775
2776 /// Compilation unit ID specified by option '-cuid='.
2777 StringRef FixedCUID;
2778
2779 public:
CudaActionBuilderBase(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs,Action::OffloadKind OFKind)2780 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2781 const Driver::InputList &Inputs,
2782 Action::OffloadKind OFKind)
2783 : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2784
addDeviceDepences(Action * HostAction)2785 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2786 // While generating code for CUDA, we only depend on the host input action
2787 // to trigger the creation of all the CUDA device actions.
2788
2789 // If we are dealing with an input action, replicate it for each GPU
2790 // architecture. If we are in host-only mode we return 'success' so that
2791 // the host uses the CUDA offload kind.
2792 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2793 assert(!GpuArchList.empty() &&
2794 "We should have at least one GPU architecture.");
2795
2796 // If the host input is not CUDA or HIP, we don't need to bother about
2797 // this input.
2798 if (!(IA->getType() == types::TY_CUDA ||
2799 IA->getType() == types::TY_HIP ||
2800 IA->getType() == types::TY_PP_HIP)) {
2801 // The builder will ignore this input.
2802 IsActive = false;
2803 return ABRT_Inactive;
2804 }
2805
2806 // Set the flag to true, so that the builder acts on the current input.
2807 IsActive = true;
2808
2809 if (CompileHostOnly)
2810 return ABRT_Success;
2811
2812 // Replicate inputs for each GPU architecture.
2813 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2814 : types::TY_CUDA_DEVICE;
2815 std::string CUID = FixedCUID.str();
2816 if (CUID.empty()) {
2817 if (UseCUID == CUID_Random)
2818 CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2819 /*LowerCase=*/true);
2820 else if (UseCUID == CUID_Hash) {
2821 llvm::MD5 Hasher;
2822 llvm::MD5::MD5Result Hash;
2823 SmallString<256> RealPath;
2824 llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2825 /*expand_tilde=*/true);
2826 Hasher.update(RealPath);
2827 for (auto *A : Args) {
2828 if (A->getOption().matches(options::OPT_INPUT))
2829 continue;
2830 Hasher.update(A->getAsString(Args));
2831 }
2832 Hasher.final(Hash);
2833 CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2834 }
2835 }
2836 IA->setId(CUID);
2837
2838 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2839 CudaDeviceActions.push_back(
2840 C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2841 }
2842
2843 return ABRT_Success;
2844 }
2845
2846 // If this is an unbundling action use it as is for each CUDA toolchain.
2847 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2848
2849 // If -fgpu-rdc is disabled, should not unbundle since there is no
2850 // device code to link.
2851 if (UA->getType() == types::TY_Object && !Relocatable)
2852 return ABRT_Inactive;
2853
2854 CudaDeviceActions.clear();
2855 auto *IA = cast<InputAction>(UA->getInputs().back());
2856 std::string FileName = IA->getInputArg().getAsString(Args);
2857 // Check if the type of the file is the same as the action. Do not
2858 // unbundle it if it is not. Do not unbundle .so files, for example,
2859 // which are not object files.
2860 if (IA->getType() == types::TY_Object &&
2861 (!llvm::sys::path::has_extension(FileName) ||
2862 types::lookupTypeForExtension(
2863 llvm::sys::path::extension(FileName).drop_front()) !=
2864 types::TY_Object))
2865 return ABRT_Inactive;
2866
2867 for (auto Arch : GpuArchList) {
2868 CudaDeviceActions.push_back(UA);
2869 UA->registerDependentActionInfo(ToolChains[0], Arch,
2870 AssociatedOffloadKind);
2871 }
2872 IsActive = true;
2873 return ABRT_Success;
2874 }
2875
2876 return IsActive ? ABRT_Success : ABRT_Inactive;
2877 }
2878
appendTopLevelActions(ActionList & AL)2879 void appendTopLevelActions(ActionList &AL) override {
2880 // Utility to append actions to the top level list.
2881 auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2882 OffloadAction::DeviceDependences Dep;
2883 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2884 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2885 };
2886
2887 // If we have a fat binary, add it to the list.
2888 if (CudaFatBinary) {
2889 AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
2890 CudaDeviceActions.clear();
2891 CudaFatBinary = nullptr;
2892 return;
2893 }
2894
2895 if (CudaDeviceActions.empty())
2896 return;
2897
2898 // If we have CUDA actions at this point, that's because we have a have
2899 // partial compilation, so we should have an action for each GPU
2900 // architecture.
2901 assert(CudaDeviceActions.size() == GpuArchList.size() &&
2902 "Expecting one action per GPU architecture.");
2903 assert(ToolChains.size() == 1 &&
2904 "Expecting to have a single CUDA toolchain.");
2905 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2906 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2907
2908 CudaDeviceActions.clear();
2909 }
2910
2911 /// Get canonicalized offload arch option. \returns empty StringRef if the
2912 /// option is invalid.
2913 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2914
2915 virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2916 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2917
initialize()2918 bool initialize() override {
2919 assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2920 AssociatedOffloadKind == Action::OFK_HIP);
2921
2922 // We don't need to support CUDA.
2923 if (AssociatedOffloadKind == Action::OFK_Cuda &&
2924 !C.hasOffloadToolChain<Action::OFK_Cuda>())
2925 return false;
2926
2927 // We don't need to support HIP.
2928 if (AssociatedOffloadKind == Action::OFK_HIP &&
2929 !C.hasOffloadToolChain<Action::OFK_HIP>())
2930 return false;
2931
2932 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2933 options::OPT_fno_gpu_rdc, /*Default=*/false);
2934
2935 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2936 assert(HostTC && "No toolchain for host compilation.");
2937 if (HostTC->getTriple().isNVPTX() ||
2938 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2939 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2940 // an error and abort pipeline construction early so we don't trip
2941 // asserts that assume device-side compilation.
2942 C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2943 << HostTC->getTriple().getArchName();
2944 return true;
2945 }
2946
2947 ToolChains.push_back(
2948 AssociatedOffloadKind == Action::OFK_Cuda
2949 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2950 : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2951
2952 CompileHostOnly = C.getDriver().offloadHostOnly();
2953 CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
2954 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2955 EmitAsm = Args.getLastArg(options::OPT_S);
2956 FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
2957 if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
2958 StringRef UseCUIDStr = A->getValue();
2959 UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
2960 .Case("hash", CUID_Hash)
2961 .Case("random", CUID_Random)
2962 .Case("none", CUID_None)
2963 .Default(CUID_Invalid);
2964 if (UseCUID == CUID_Invalid) {
2965 C.getDriver().Diag(diag::err_drv_invalid_value)
2966 << A->getAsString(Args) << UseCUIDStr;
2967 C.setContainsError();
2968 return true;
2969 }
2970 }
2971
2972 // --offload and --offload-arch options are mutually exclusive.
2973 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
2974 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
2975 options::OPT_no_offload_arch_EQ)) {
2976 C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
2977 << "--offload";
2978 }
2979
2980 // Collect all offload arch parameters, removing duplicates.
2981 std::set<StringRef> GpuArchs;
2982 bool Error = false;
2983 for (Arg *A : Args) {
2984 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2985 A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2986 continue;
2987 A->claim();
2988
2989 for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
2990 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2991 ArchStr == "all") {
2992 GpuArchs.clear();
2993 } else {
2994 ArchStr = getCanonicalOffloadArch(ArchStr);
2995 if (ArchStr.empty()) {
2996 Error = true;
2997 } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2998 GpuArchs.insert(ArchStr);
2999 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3000 GpuArchs.erase(ArchStr);
3001 else
3002 llvm_unreachable("Unexpected option.");
3003 }
3004 }
3005 }
3006
3007 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3008 if (ConflictingArchs) {
3009 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3010 << ConflictingArchs->first << ConflictingArchs->second;
3011 C.setContainsError();
3012 return true;
3013 }
3014
3015 // Collect list of GPUs remaining in the set.
3016 for (auto Arch : GpuArchs)
3017 GpuArchList.push_back(Arch.data());
3018
3019 // Default to sm_20 which is the lowest common denominator for
3020 // supported GPUs. sm_20 code should work correctly, if
3021 // suboptimally, on all newer GPUs.
3022 if (GpuArchList.empty()) {
3023 if (ToolChains.front()->getTriple().isSPIRV())
3024 GpuArchList.push_back(CudaArch::Generic);
3025 else
3026 GpuArchList.push_back(DefaultCudaArch);
3027 }
3028
3029 return Error;
3030 }
3031 };
3032
3033 /// \brief CUDA action builder. It injects device code in the host backend
3034 /// action.
3035 class CudaActionBuilder final : public CudaActionBuilderBase {
3036 public:
CudaActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3037 CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3038 const Driver::InputList &Inputs)
3039 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3040 DefaultCudaArch = CudaArch::SM_35;
3041 }
3042
getCanonicalOffloadArch(StringRef ArchStr)3043 StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3044 CudaArch Arch = StringToCudaArch(ArchStr);
3045 if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
3046 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3047 return StringRef();
3048 }
3049 return CudaArchToString(Arch);
3050 }
3051
3052 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)3053 getConflictOffloadArchCombination(
3054 const std::set<StringRef> &GpuArchs) override {
3055 return llvm::None;
3056 }
3057
3058 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3059 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3060 phases::ID CurPhase, phases::ID FinalPhase,
3061 PhasesTy &Phases) override {
3062 if (!IsActive)
3063 return ABRT_Inactive;
3064
3065 // If we don't have more CUDA actions, we don't have any dependences to
3066 // create for the host.
3067 if (CudaDeviceActions.empty())
3068 return ABRT_Success;
3069
3070 assert(CudaDeviceActions.size() == GpuArchList.size() &&
3071 "Expecting one action per GPU architecture.");
3072 assert(!CompileHostOnly &&
3073 "Not expecting CUDA actions in host-only compilation.");
3074
3075 // If we are generating code for the device or we are in a backend phase,
3076 // we attempt to generate the fat binary. We compile each arch to ptx and
3077 // assemble to cubin, then feed the cubin *and* the ptx into a device
3078 // "link" action, which uses fatbinary to combine these cubins into one
3079 // fatbin. The fatbin is then an input to the host action if not in
3080 // device-only mode.
3081 if (CompileDeviceOnly || CurPhase == phases::Backend) {
3082 ActionList DeviceActions;
3083 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3084 // Produce the device action from the current phase up to the assemble
3085 // phase.
3086 for (auto Ph : Phases) {
3087 // Skip the phases that were already dealt with.
3088 if (Ph < CurPhase)
3089 continue;
3090 // We have to be consistent with the host final phase.
3091 if (Ph > FinalPhase)
3092 break;
3093
3094 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3095 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3096
3097 if (Ph == phases::Assemble)
3098 break;
3099 }
3100
3101 // If we didn't reach the assemble phase, we can't generate the fat
3102 // binary. We don't need to generate the fat binary if we are not in
3103 // device-only mode.
3104 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3105 CompileDeviceOnly)
3106 continue;
3107
3108 Action *AssembleAction = CudaDeviceActions[I];
3109 assert(AssembleAction->getType() == types::TY_Object);
3110 assert(AssembleAction->getInputs().size() == 1);
3111
3112 Action *BackendAction = AssembleAction->getInputs()[0];
3113 assert(BackendAction->getType() == types::TY_PP_Asm);
3114
3115 for (auto &A : {AssembleAction, BackendAction}) {
3116 OffloadAction::DeviceDependences DDep;
3117 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3118 DeviceActions.push_back(
3119 C.MakeAction<OffloadAction>(DDep, A->getType()));
3120 }
3121 }
3122
3123 // We generate the fat binary if we have device input actions.
3124 if (!DeviceActions.empty()) {
3125 CudaFatBinary =
3126 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3127
3128 if (!CompileDeviceOnly) {
3129 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3130 Action::OFK_Cuda);
3131 // Clear the fat binary, it is already a dependence to an host
3132 // action.
3133 CudaFatBinary = nullptr;
3134 }
3135
3136 // Remove the CUDA actions as they are already connected to an host
3137 // action or fat binary.
3138 CudaDeviceActions.clear();
3139 }
3140
3141 // We avoid creating host action in device-only mode.
3142 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3143 } else if (CurPhase > phases::Backend) {
3144 // If we are past the backend phase and still have a device action, we
3145 // don't have to do anything as this action is already a device
3146 // top-level action.
3147 return ABRT_Success;
3148 }
3149
3150 assert(CurPhase < phases::Backend && "Generating single CUDA "
3151 "instructions should only occur "
3152 "before the backend phase!");
3153
3154 // By default, we produce an action for each device arch.
3155 for (Action *&A : CudaDeviceActions)
3156 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3157
3158 return ABRT_Success;
3159 }
3160 };
3161 /// \brief HIP action builder. It injects device code in the host backend
3162 /// action.
3163 class HIPActionBuilder final : public CudaActionBuilderBase {
3164 /// The linker inputs obtained for each device arch.
3165 SmallVector<ActionList, 8> DeviceLinkerInputs;
3166 // The default bundling behavior depends on the type of output, therefore
3167 // BundleOutput needs to be tri-value: None, true, or false.
3168 // Bundle code objects except --no-gpu-output is specified for device
3169 // only compilation. Bundle other type of output files only if
3170 // --gpu-bundle-output is specified for device only compilation.
3171 Optional<bool> BundleOutput;
3172
3173 public:
HIPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3174 HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3175 const Driver::InputList &Inputs)
3176 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3177 DefaultCudaArch = CudaArch::GFX803;
3178 if (Args.hasArg(options::OPT_gpu_bundle_output,
3179 options::OPT_no_gpu_bundle_output))
3180 BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3181 options::OPT_no_gpu_bundle_output, true);
3182 }
3183
canUseBundlerUnbundler() const3184 bool canUseBundlerUnbundler() const override { return true; }
3185
getCanonicalOffloadArch(StringRef IdStr)3186 StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3187 llvm::StringMap<bool> Features;
3188 // getHIPOffloadTargetTriple() is known to return valid value as it has
3189 // been called successfully in the CreateOffloadingDeviceToolChains().
3190 auto ArchStr = parseTargetID(
3191 *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3192 &Features);
3193 if (!ArchStr) {
3194 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3195 C.setContainsError();
3196 return StringRef();
3197 }
3198 auto CanId = getCanonicalTargetID(*ArchStr, Features);
3199 return Args.MakeArgStringRef(CanId);
3200 };
3201
3202 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const std::set<StringRef> & GpuArchs)3203 getConflictOffloadArchCombination(
3204 const std::set<StringRef> &GpuArchs) override {
3205 return getConflictTargetIDCombination(GpuArchs);
3206 }
3207
3208 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3209 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3210 phases::ID CurPhase, phases::ID FinalPhase,
3211 PhasesTy &Phases) override {
3212 if (!IsActive)
3213 return ABRT_Inactive;
3214
3215 // amdgcn does not support linking of object files, therefore we skip
3216 // backend and assemble phases to output LLVM IR. Except for generating
3217 // non-relocatable device code, where we generate fat binary for device
3218 // code and pass to host in Backend phase.
3219 if (CudaDeviceActions.empty())
3220 return ABRT_Success;
3221
3222 assert(((CurPhase == phases::Link && Relocatable) ||
3223 CudaDeviceActions.size() == GpuArchList.size()) &&
3224 "Expecting one action per GPU architecture.");
3225 assert(!CompileHostOnly &&
3226 "Not expecting HIP actions in host-only compilation.");
3227
3228 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3229 !EmitAsm) {
3230 // If we are in backend phase, we attempt to generate the fat binary.
3231 // We compile each arch to IR and use a link action to generate code
3232 // object containing ISA. Then we use a special "link" action to create
3233 // a fat binary containing all the code objects for different GPU's.
3234 // The fat binary is then an input to the host action.
3235 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3236 if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3237 // When LTO is enabled, skip the backend and assemble phases and
3238 // use lld to link the bitcode.
3239 ActionList AL;
3240 AL.push_back(CudaDeviceActions[I]);
3241 // Create a link action to link device IR with device library
3242 // and generate ISA.
3243 CudaDeviceActions[I] =
3244 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3245 } else {
3246 // When LTO is not enabled, we follow the conventional
3247 // compiler phases, including backend and assemble phases.
3248 ActionList AL;
3249 Action *BackendAction = nullptr;
3250 if (ToolChains.front()->getTriple().isSPIRV()) {
3251 // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3252 // (HIPSPVToolChain) runs post-link LLVM IR passes.
3253 types::ID Output = Args.hasArg(options::OPT_S)
3254 ? types::TY_LLVM_IR
3255 : types::TY_LLVM_BC;
3256 BackendAction =
3257 C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3258 } else
3259 BackendAction = C.getDriver().ConstructPhaseAction(
3260 C, Args, phases::Backend, CudaDeviceActions[I],
3261 AssociatedOffloadKind);
3262 auto AssembleAction = C.getDriver().ConstructPhaseAction(
3263 C, Args, phases::Assemble, BackendAction,
3264 AssociatedOffloadKind);
3265 AL.push_back(AssembleAction);
3266 // Create a link action to link device IR with device library
3267 // and generate ISA.
3268 CudaDeviceActions[I] =
3269 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3270 }
3271
3272 // OffloadingActionBuilder propagates device arch until an offload
3273 // action. Since the next action for creating fatbin does
3274 // not have device arch, whereas the above link action and its input
3275 // have device arch, an offload action is needed to stop the null
3276 // device arch of the next action being propagated to the above link
3277 // action.
3278 OffloadAction::DeviceDependences DDep;
3279 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3280 AssociatedOffloadKind);
3281 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3282 DDep, CudaDeviceActions[I]->getType());
3283 }
3284
3285 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3286 // Create HIP fat binary with a special "link" action.
3287 CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3288 types::TY_HIP_FATBIN);
3289
3290 if (!CompileDeviceOnly) {
3291 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3292 AssociatedOffloadKind);
3293 // Clear the fat binary, it is already a dependence to an host
3294 // action.
3295 CudaFatBinary = nullptr;
3296 }
3297
3298 // Remove the CUDA actions as they are already connected to an host
3299 // action or fat binary.
3300 CudaDeviceActions.clear();
3301 }
3302
3303 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3304 } else if (CurPhase == phases::Link) {
3305 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3306 // This happens to each device action originated from each input file.
3307 // Later on, device actions in DeviceLinkerInputs are used to create
3308 // device link actions in appendLinkDependences and the created device
3309 // link actions are passed to the offload action as device dependence.
3310 DeviceLinkerInputs.resize(CudaDeviceActions.size());
3311 auto LI = DeviceLinkerInputs.begin();
3312 for (auto *A : CudaDeviceActions) {
3313 LI->push_back(A);
3314 ++LI;
3315 }
3316
3317 // We will pass the device action as a host dependence, so we don't
3318 // need to do anything else with them.
3319 CudaDeviceActions.clear();
3320 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3321 }
3322
3323 // By default, we produce an action for each device arch.
3324 for (Action *&A : CudaDeviceActions)
3325 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3326 AssociatedOffloadKind);
3327
3328 if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3329 BundleOutput.value()) {
3330 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3331 OffloadAction::DeviceDependences DDep;
3332 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3333 AssociatedOffloadKind);
3334 CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3335 DDep, CudaDeviceActions[I]->getType());
3336 }
3337 CudaFatBinary =
3338 C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3339 CudaDeviceActions.clear();
3340 }
3341
3342 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3343 : ABRT_Success;
3344 }
3345
appendLinkDeviceActions(ActionList & AL)3346 void appendLinkDeviceActions(ActionList &AL) override {
3347 if (DeviceLinkerInputs.size() == 0)
3348 return;
3349
3350 assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3351 "Linker inputs and GPU arch list sizes do not match.");
3352
3353 ActionList Actions;
3354 unsigned I = 0;
3355 // Append a new link action for each device.
3356 // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3357 for (auto &LI : DeviceLinkerInputs) {
3358
3359 types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3360 ? types::TY_LLVM_BC
3361 : types::TY_Image;
3362
3363 auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3364 // Linking all inputs for the current GPU arch.
3365 // LI contains all the inputs for the linker.
3366 OffloadAction::DeviceDependences DeviceLinkDeps;
3367 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3368 GpuArchList[I], AssociatedOffloadKind);
3369 Actions.push_back(C.MakeAction<OffloadAction>(
3370 DeviceLinkDeps, DeviceLinkAction->getType()));
3371 ++I;
3372 }
3373 DeviceLinkerInputs.clear();
3374
3375 // If emitting LLVM, do not generate final host/device compilation action
3376 if (Args.hasArg(options::OPT_emit_llvm)) {
3377 AL.append(Actions);
3378 return;
3379 }
3380
3381 // Create a host object from all the device images by embedding them
3382 // in a fat binary for mixed host-device compilation. For device-only
3383 // compilation, creates a fat binary.
3384 OffloadAction::DeviceDependences DDeps;
3385 if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3386 auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3387 Actions,
3388 CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3389 DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3390 AssociatedOffloadKind);
3391 // Offload the host object to the host linker.
3392 AL.push_back(
3393 C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3394 } else {
3395 AL.append(Actions);
3396 }
3397 }
3398
appendLinkHostActions(ActionList & AL)3399 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3400
appendLinkDependences(OffloadAction::DeviceDependences & DA)3401 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3402 };
3403
3404 /// OpenMP action builder. The host bitcode is passed to the device frontend
3405 /// and all the device linked images are passed to the host link phase.
3406 class OpenMPActionBuilder final : public DeviceActionBuilder {
3407 /// The OpenMP actions for the current input.
3408 ActionList OpenMPDeviceActions;
3409
3410 /// The linker inputs obtained for each toolchain.
3411 SmallVector<ActionList, 8> DeviceLinkerInputs;
3412
3413 public:
OpenMPActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3414 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
3415 const Driver::InputList &Inputs)
3416 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
3417
3418 ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences & DA,phases::ID CurPhase,phases::ID FinalPhase,PhasesTy & Phases)3419 getDeviceDependences(OffloadAction::DeviceDependences &DA,
3420 phases::ID CurPhase, phases::ID FinalPhase,
3421 PhasesTy &Phases) override {
3422 if (OpenMPDeviceActions.empty())
3423 return ABRT_Inactive;
3424
3425 // We should always have an action for each input.
3426 assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3427 "Number of OpenMP actions and toolchains do not match.");
3428
3429 // The host only depends on device action in the linking phase, when all
3430 // the device images have to be embedded in the host image.
3431 if (CurPhase == phases::Link) {
3432 assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3433 "Toolchains and linker inputs sizes do not match.");
3434 auto LI = DeviceLinkerInputs.begin();
3435 for (auto *A : OpenMPDeviceActions) {
3436 LI->push_back(A);
3437 ++LI;
3438 }
3439
3440 // We passed the device action as a host dependence, so we don't need to
3441 // do anything else with them.
3442 OpenMPDeviceActions.clear();
3443 return ABRT_Success;
3444 }
3445
3446 // By default, we produce an action for each device arch.
3447 for (Action *&A : OpenMPDeviceActions)
3448 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3449
3450 return ABRT_Success;
3451 }
3452
addDeviceDepences(Action * HostAction)3453 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
3454
3455 // If this is an input action replicate it for each OpenMP toolchain.
3456 if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3457 OpenMPDeviceActions.clear();
3458 for (unsigned I = 0; I < ToolChains.size(); ++I)
3459 OpenMPDeviceActions.push_back(
3460 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
3461 return ABRT_Success;
3462 }
3463
3464 // If this is an unbundling action use it as is for each OpenMP toolchain.
3465 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3466 OpenMPDeviceActions.clear();
3467 auto *IA = cast<InputAction>(UA->getInputs().back());
3468 std::string FileName = IA->getInputArg().getAsString(Args);
3469 // Check if the type of the file is the same as the action. Do not
3470 // unbundle it if it is not. Do not unbundle .so files, for example,
3471 // which are not object files.
3472 if (IA->getType() == types::TY_Object &&
3473 (!llvm::sys::path::has_extension(FileName) ||
3474 types::lookupTypeForExtension(
3475 llvm::sys::path::extension(FileName).drop_front()) !=
3476 types::TY_Object))
3477 return ABRT_Inactive;
3478 for (unsigned I = 0; I < ToolChains.size(); ++I) {
3479 OpenMPDeviceActions.push_back(UA);
3480 UA->registerDependentActionInfo(
3481 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3482 }
3483 return ABRT_Success;
3484 }
3485
3486 // When generating code for OpenMP we use the host compile phase result as
3487 // a dependence to the device compile phase so that it can learn what
3488 // declarations should be emitted. However, this is not the only use for
3489 // the host action, so we prevent it from being collapsed.
3490 if (isa<CompileJobAction>(HostAction)) {
3491 HostAction->setCannotBeCollapsedWithNextDependentAction();
3492 assert(ToolChains.size() == OpenMPDeviceActions.size() &&
3493 "Toolchains and device action sizes do not match.");
3494 OffloadAction::HostDependence HDep(
3495 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3496 /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3497 auto TC = ToolChains.begin();
3498 for (Action *&A : OpenMPDeviceActions) {
3499 assert(isa<CompileJobAction>(A));
3500 OffloadAction::DeviceDependences DDep;
3501 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3502 A = C.MakeAction<OffloadAction>(HDep, DDep);
3503 ++TC;
3504 }
3505 }
3506 return ABRT_Success;
3507 }
3508
appendTopLevelActions(ActionList & AL)3509 void appendTopLevelActions(ActionList &AL) override {
3510 if (OpenMPDeviceActions.empty())
3511 return;
3512
3513 // We should always have an action for each input.
3514 assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3515 "Number of OpenMP actions and toolchains do not match.");
3516
3517 // Append all device actions followed by the proper offload action.
3518 auto TI = ToolChains.begin();
3519 for (auto *A : OpenMPDeviceActions) {
3520 OffloadAction::DeviceDependences Dep;
3521 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3522 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3523 ++TI;
3524 }
3525 // We no longer need the action stored in this builder.
3526 OpenMPDeviceActions.clear();
3527 }
3528
appendLinkDeviceActions(ActionList & AL)3529 void appendLinkDeviceActions(ActionList &AL) override {
3530 assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3531 "Toolchains and linker inputs sizes do not match.");
3532
3533 // Append a new link action for each device.
3534 auto TC = ToolChains.begin();
3535 for (auto &LI : DeviceLinkerInputs) {
3536 auto *DeviceLinkAction =
3537 C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3538 OffloadAction::DeviceDependences DeviceLinkDeps;
3539 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3540 Action::OFK_OpenMP);
3541 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3542 DeviceLinkAction->getType()));
3543 ++TC;
3544 }
3545 DeviceLinkerInputs.clear();
3546 }
3547
appendLinkHostActions(ActionList & AL)3548 Action* appendLinkHostActions(ActionList &AL) override {
3549 // Create wrapper bitcode from the result of device link actions and compile
3550 // it to an object which will be added to the host link command.
3551 auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3552 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3553 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3554 }
3555
appendLinkDependences(OffloadAction::DeviceDependences & DA)3556 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3557
initialize()3558 bool initialize() override {
3559 // Get the OpenMP toolchains. If we don't get any, the action builder will
3560 // know there is nothing to do related to OpenMP offloading.
3561 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3562 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3563 ++TI)
3564 ToolChains.push_back(TI->second);
3565
3566 DeviceLinkerInputs.resize(ToolChains.size());
3567 return false;
3568 }
3569
canUseBundlerUnbundler() const3570 bool canUseBundlerUnbundler() const override {
3571 // OpenMP should use bundled files whenever possible.
3572 return true;
3573 }
3574 };
3575
3576 ///
3577 /// TODO: Add the implementation for other specialized builders here.
3578 ///
3579
3580 /// Specialized builders being used by this offloading action builder.
3581 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3582
3583 /// Flag set to true if all valid builders allow file bundling/unbundling.
3584 bool CanUseBundler;
3585
3586 public:
OffloadingActionBuilder(Compilation & C,DerivedArgList & Args,const Driver::InputList & Inputs)3587 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3588 const Driver::InputList &Inputs)
3589 : C(C) {
3590 // Create a specialized builder for each device toolchain.
3591
3592 IsValid = true;
3593
3594 // Create a specialized builder for CUDA.
3595 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3596
3597 // Create a specialized builder for HIP.
3598 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3599
3600 // Create a specialized builder for OpenMP.
3601 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3602
3603 //
3604 // TODO: Build other specialized builders here.
3605 //
3606
3607 // Initialize all the builders, keeping track of errors. If all valid
3608 // builders agree that we can use bundling, set the flag to true.
3609 unsigned ValidBuilders = 0u;
3610 unsigned ValidBuildersSupportingBundling = 0u;
3611 for (auto *SB : SpecializedBuilders) {
3612 IsValid = IsValid && !SB->initialize();
3613
3614 // Update the counters if the builder is valid.
3615 if (SB->isValid()) {
3616 ++ValidBuilders;
3617 if (SB->canUseBundlerUnbundler())
3618 ++ValidBuildersSupportingBundling;
3619 }
3620 }
3621 CanUseBundler =
3622 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3623 }
3624
~OffloadingActionBuilder()3625 ~OffloadingActionBuilder() {
3626 for (auto *SB : SpecializedBuilders)
3627 delete SB;
3628 }
3629
3630 /// Record a host action and its originating input argument.
recordHostAction(Action * HostAction,const Arg * InputArg)3631 void recordHostAction(Action *HostAction, const Arg *InputArg) {
3632 assert(HostAction && "Invalid host action");
3633 assert(InputArg && "Invalid input argument");
3634 auto Loc = HostActionToInputArgMap.find(HostAction);
3635 if (Loc == HostActionToInputArgMap.end())
3636 HostActionToInputArgMap[HostAction] = InputArg;
3637 assert(HostActionToInputArgMap[HostAction] == InputArg &&
3638 "host action mapped to multiple input arguments");
3639 }
3640
3641 /// Generate an action that adds device dependences (if any) to a host action.
3642 /// If no device dependence actions exist, just return the host action \a
3643 /// HostAction. If an error is found or if no builder requires the host action
3644 /// to be generated, return nullptr.
3645 Action *
addDeviceDependencesToHostAction(Action * HostAction,const Arg * InputArg,phases::ID CurPhase,phases::ID FinalPhase,DeviceActionBuilder::PhasesTy & Phases)3646 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3647 phases::ID CurPhase, phases::ID FinalPhase,
3648 DeviceActionBuilder::PhasesTy &Phases) {
3649 if (!IsValid)
3650 return nullptr;
3651
3652 if (SpecializedBuilders.empty())
3653 return HostAction;
3654
3655 assert(HostAction && "Invalid host action!");
3656 recordHostAction(HostAction, InputArg);
3657
3658 OffloadAction::DeviceDependences DDeps;
3659 // Check if all the programming models agree we should not emit the host
3660 // action. Also, keep track of the offloading kinds employed.
3661 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3662 unsigned InactiveBuilders = 0u;
3663 unsigned IgnoringBuilders = 0u;
3664 for (auto *SB : SpecializedBuilders) {
3665 if (!SB->isValid()) {
3666 ++InactiveBuilders;
3667 continue;
3668 }
3669
3670 auto RetCode =
3671 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3672
3673 // If the builder explicitly says the host action should be ignored,
3674 // we need to increment the variable that tracks the builders that request
3675 // the host object to be ignored.
3676 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3677 ++IgnoringBuilders;
3678
3679 // Unless the builder was inactive for this action, we have to record the
3680 // offload kind because the host will have to use it.
3681 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3682 OffloadKind |= SB->getAssociatedOffloadKind();
3683 }
3684
3685 // If all builders agree that the host object should be ignored, just return
3686 // nullptr.
3687 if (IgnoringBuilders &&
3688 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3689 return nullptr;
3690
3691 if (DDeps.getActions().empty())
3692 return HostAction;
3693
3694 // We have dependences we need to bundle together. We use an offload action
3695 // for that.
3696 OffloadAction::HostDependence HDep(
3697 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3698 /*BoundArch=*/nullptr, DDeps);
3699 return C.MakeAction<OffloadAction>(HDep, DDeps);
3700 }
3701
3702 /// Generate an action that adds a host dependence to a device action. The
3703 /// results will be kept in this action builder. Return true if an error was
3704 /// found.
addHostDependenceToDeviceActions(Action * & HostAction,const Arg * InputArg)3705 bool addHostDependenceToDeviceActions(Action *&HostAction,
3706 const Arg *InputArg) {
3707 if (!IsValid)
3708 return true;
3709
3710 recordHostAction(HostAction, InputArg);
3711
3712 // If we are supporting bundling/unbundling and the current action is an
3713 // input action of non-source file, we replace the host action by the
3714 // unbundling action. The bundler tool has the logic to detect if an input
3715 // is a bundle or not and if the input is not a bundle it assumes it is a
3716 // host file. Therefore it is safe to create an unbundling action even if
3717 // the input is not a bundle.
3718 if (CanUseBundler && isa<InputAction>(HostAction) &&
3719 InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3720 (!types::isSrcFile(HostAction->getType()) ||
3721 HostAction->getType() == types::TY_PP_HIP)) {
3722 auto UnbundlingHostAction =
3723 C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3724 UnbundlingHostAction->registerDependentActionInfo(
3725 C.getSingleOffloadToolChain<Action::OFK_Host>(),
3726 /*BoundArch=*/StringRef(), Action::OFK_Host);
3727 HostAction = UnbundlingHostAction;
3728 recordHostAction(HostAction, InputArg);
3729 }
3730
3731 assert(HostAction && "Invalid host action!");
3732
3733 // Register the offload kinds that are used.
3734 auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3735 for (auto *SB : SpecializedBuilders) {
3736 if (!SB->isValid())
3737 continue;
3738
3739 auto RetCode = SB->addDeviceDepences(HostAction);
3740
3741 // Host dependences for device actions are not compatible with that same
3742 // action being ignored.
3743 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3744 "Host dependence not expected to be ignored.!");
3745
3746 // Unless the builder was inactive for this action, we have to record the
3747 // offload kind because the host will have to use it.
3748 if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3749 OffloadKind |= SB->getAssociatedOffloadKind();
3750 }
3751
3752 // Do not use unbundler if the Host does not depend on device action.
3753 if (OffloadKind == Action::OFK_None && CanUseBundler)
3754 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3755 HostAction = UA->getInputs().back();
3756
3757 return false;
3758 }
3759
3760 /// Add the offloading top level actions to the provided action list. This
3761 /// function can replace the host action by a bundling action if the
3762 /// programming models allow it.
appendTopLevelActions(ActionList & AL,Action * HostAction,const Arg * InputArg)3763 bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3764 const Arg *InputArg) {
3765 if (HostAction)
3766 recordHostAction(HostAction, InputArg);
3767
3768 // Get the device actions to be appended.
3769 ActionList OffloadAL;
3770 for (auto *SB : SpecializedBuilders) {
3771 if (!SB->isValid())
3772 continue;
3773 SB->appendTopLevelActions(OffloadAL);
3774 }
3775
3776 // If we can use the bundler, replace the host action by the bundling one in
3777 // the resulting list. Otherwise, just append the device actions. For
3778 // device only compilation, HostAction is a null pointer, therefore only do
3779 // this when HostAction is not a null pointer.
3780 if (CanUseBundler && HostAction &&
3781 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3782 // Add the host action to the list in order to create the bundling action.
3783 OffloadAL.push_back(HostAction);
3784
3785 // We expect that the host action was just appended to the action list
3786 // before this method was called.
3787 assert(HostAction == AL.back() && "Host action not in the list??");
3788 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3789 recordHostAction(HostAction, InputArg);
3790 AL.back() = HostAction;
3791 } else
3792 AL.append(OffloadAL.begin(), OffloadAL.end());
3793
3794 // Propagate to the current host action (if any) the offload information
3795 // associated with the current input.
3796 if (HostAction)
3797 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3798 /*BoundArch=*/nullptr);
3799 return false;
3800 }
3801
appendDeviceLinkActions(ActionList & AL)3802 void appendDeviceLinkActions(ActionList &AL) {
3803 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3804 if (!SB->isValid())
3805 continue;
3806 SB->appendLinkDeviceActions(AL);
3807 }
3808 }
3809
makeHostLinkAction()3810 Action *makeHostLinkAction() {
3811 // Build a list of device linking actions.
3812 ActionList DeviceAL;
3813 appendDeviceLinkActions(DeviceAL);
3814 if (DeviceAL.empty())
3815 return nullptr;
3816
3817 // Let builders add host linking actions.
3818 Action* HA = nullptr;
3819 for (DeviceActionBuilder *SB : SpecializedBuilders) {
3820 if (!SB->isValid())
3821 continue;
3822 HA = SB->appendLinkHostActions(DeviceAL);
3823 // This created host action has no originating input argument, therefore
3824 // needs to set its offloading kind directly.
3825 if (HA)
3826 HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3827 /*BoundArch=*/nullptr);
3828 }
3829 return HA;
3830 }
3831
3832 /// Processes the host linker action. This currently consists of replacing it
3833 /// with an offload action if there are device link objects and propagate to
3834 /// the host action all the offload kinds used in the current compilation. The
3835 /// resulting action is returned.
processHostLinkAction(Action * HostAction)3836 Action *processHostLinkAction(Action *HostAction) {
3837 // Add all the dependences from the device linking actions.
3838 OffloadAction::DeviceDependences DDeps;
3839 for (auto *SB : SpecializedBuilders) {
3840 if (!SB->isValid())
3841 continue;
3842
3843 SB->appendLinkDependences(DDeps);
3844 }
3845
3846 // Calculate all the offload kinds used in the current compilation.
3847 unsigned ActiveOffloadKinds = 0u;
3848 for (auto &I : InputArgToOffloadKindMap)
3849 ActiveOffloadKinds |= I.second;
3850
3851 // If we don't have device dependencies, we don't have to create an offload
3852 // action.
3853 if (DDeps.getActions().empty()) {
3854 // Set all the active offloading kinds to the link action. Given that it
3855 // is a link action it is assumed to depend on all actions generated so
3856 // far.
3857 HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3858 /*BoundArch=*/nullptr);
3859 // Propagate active offloading kinds for each input to the link action.
3860 // Each input may have different active offloading kind.
3861 for (auto A : HostAction->inputs()) {
3862 auto ArgLoc = HostActionToInputArgMap.find(A);
3863 if (ArgLoc == HostActionToInputArgMap.end())
3864 continue;
3865 auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3866 if (OFKLoc == InputArgToOffloadKindMap.end())
3867 continue;
3868 A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3869 }
3870 return HostAction;
3871 }
3872
3873 // Create the offload action with all dependences. When an offload action
3874 // is created the kinds are propagated to the host action, so we don't have
3875 // to do that explicitly here.
3876 OffloadAction::HostDependence HDep(
3877 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3878 /*BoundArch*/ nullptr, ActiveOffloadKinds);
3879 return C.MakeAction<OffloadAction>(HDep, DDeps);
3880 }
3881 };
3882 } // anonymous namespace.
3883
handleArguments(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const3884 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3885 const InputList &Inputs,
3886 ActionList &Actions) const {
3887
3888 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3889 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3890 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3891 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3892 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3893 Args.eraseArg(options::OPT__SLASH_Yc);
3894 Args.eraseArg(options::OPT__SLASH_Yu);
3895 YcArg = YuArg = nullptr;
3896 }
3897 if (YcArg && Inputs.size() > 1) {
3898 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3899 Args.eraseArg(options::OPT__SLASH_Yc);
3900 YcArg = nullptr;
3901 }
3902
3903 Arg *FinalPhaseArg;
3904 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3905
3906 if (FinalPhase == phases::Link) {
3907 // Emitting LLVM while linking disabled except in HIPAMD Toolchain
3908 if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
3909 Diag(clang::diag::err_drv_emit_llvm_link);
3910 if (IsCLMode() && LTOMode != LTOK_None &&
3911 !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3912 .equals_insensitive("lld"))
3913 Diag(clang::diag::err_drv_lto_without_lld);
3914 }
3915
3916 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3917 // If only preprocessing or /Y- is used, all pch handling is disabled.
3918 // Rather than check for it everywhere, just remove clang-cl pch-related
3919 // flags here.
3920 Args.eraseArg(options::OPT__SLASH_Fp);
3921 Args.eraseArg(options::OPT__SLASH_Yc);
3922 Args.eraseArg(options::OPT__SLASH_Yu);
3923 YcArg = YuArg = nullptr;
3924 }
3925
3926 unsigned LastPLSize = 0;
3927 for (auto &I : Inputs) {
3928 types::ID InputType = I.first;
3929 const Arg *InputArg = I.second;
3930
3931 auto PL = types::getCompilationPhases(InputType);
3932 LastPLSize = PL.size();
3933
3934 // If the first step comes after the final phase we are doing as part of
3935 // this compilation, warn the user about it.
3936 phases::ID InitialPhase = PL[0];
3937 if (InitialPhase > FinalPhase) {
3938 if (InputArg->isClaimed())
3939 continue;
3940
3941 // Claim here to avoid the more general unused warning.
3942 InputArg->claim();
3943
3944 // Suppress all unused style warnings with -Qunused-arguments
3945 if (Args.hasArg(options::OPT_Qunused_arguments))
3946 continue;
3947
3948 // Special case when final phase determined by binary name, rather than
3949 // by a command-line argument with a corresponding Arg.
3950 if (CCCIsCPP())
3951 Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3952 << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3953 // Special case '-E' warning on a previously preprocessed file to make
3954 // more sense.
3955 else if (InitialPhase == phases::Compile &&
3956 (Args.getLastArg(options::OPT__SLASH_EP,
3957 options::OPT__SLASH_P) ||
3958 Args.getLastArg(options::OPT_E) ||
3959 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3960 getPreprocessedType(InputType) == types::TY_INVALID)
3961 Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3962 << InputArg->getAsString(Args) << !!FinalPhaseArg
3963 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3964 else
3965 Diag(clang::diag::warn_drv_input_file_unused)
3966 << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3967 << !!FinalPhaseArg
3968 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3969 continue;
3970 }
3971
3972 if (YcArg) {
3973 // Add a separate precompile phase for the compile phase.
3974 if (FinalPhase >= phases::Compile) {
3975 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3976 // Build the pipeline for the pch file.
3977 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3978 for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3979 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3980 assert(ClangClPch);
3981 Actions.push_back(ClangClPch);
3982 // The driver currently exits after the first failed command. This
3983 // relies on that behavior, to make sure if the pch generation fails,
3984 // the main compilation won't run.
3985 // FIXME: If the main compilation fails, the PCH generation should
3986 // probably not be considered successful either.
3987 }
3988 }
3989 }
3990
3991 // If we are linking, claim any options which are obviously only used for
3992 // compilation.
3993 // FIXME: Understand why the last Phase List length is used here.
3994 if (FinalPhase == phases::Link && LastPLSize == 1) {
3995 Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3996 Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3997 }
3998 }
3999
BuildActions(Compilation & C,DerivedArgList & Args,const InputList & Inputs,ActionList & Actions) const4000 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4001 const InputList &Inputs, ActionList &Actions) const {
4002 llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4003
4004 if (!SuppressMissingInputWarning && Inputs.empty()) {
4005 Diag(clang::diag::err_drv_no_input_files);
4006 return;
4007 }
4008
4009 // Reject -Z* at the top level, these options should never have been exposed
4010 // by gcc.
4011 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
4012 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
4013
4014 // Diagnose misuse of /Fo.
4015 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
4016 StringRef V = A->getValue();
4017 if (Inputs.size() > 1 && !V.empty() &&
4018 !llvm::sys::path::is_separator(V.back())) {
4019 // Check whether /Fo tries to name an output file for multiple inputs.
4020 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4021 << A->getSpelling() << V;
4022 Args.eraseArg(options::OPT__SLASH_Fo);
4023 }
4024 }
4025
4026 // Diagnose misuse of /Fa.
4027 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
4028 StringRef V = A->getValue();
4029 if (Inputs.size() > 1 && !V.empty() &&
4030 !llvm::sys::path::is_separator(V.back())) {
4031 // Check whether /Fa tries to name an asm file for multiple inputs.
4032 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4033 << A->getSpelling() << V;
4034 Args.eraseArg(options::OPT__SLASH_Fa);
4035 }
4036 }
4037
4038 // Diagnose misuse of /o.
4039 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4040 if (A->getValue()[0] == '\0') {
4041 // It has to have a value.
4042 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4043 Args.eraseArg(options::OPT__SLASH_o);
4044 }
4045 }
4046
4047 handleArguments(C, Args, Inputs, Actions);
4048
4049 // Builder to be used to build offloading actions.
4050 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
4051
4052 bool UseNewOffloadingDriver =
4053 (C.isOffloadingHostKind(Action::OFK_OpenMP) &&
4054 Args.hasFlag(options::OPT_fopenmp_new_driver,
4055 options::OPT_no_offload_new_driver, true)) ||
4056 Args.hasFlag(options::OPT_offload_new_driver,
4057 options::OPT_no_offload_new_driver, false);
4058
4059 // Construct the actions to perform.
4060 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
4061 ExtractAPIJobAction *ExtractAPIAction = nullptr;
4062 ActionList LinkerInputs;
4063 ActionList MergerInputs;
4064
4065 for (auto &I : Inputs) {
4066 types::ID InputType = I.first;
4067 const Arg *InputArg = I.second;
4068
4069 auto PL = types::getCompilationPhases(*this, Args, InputType);
4070 if (PL.empty())
4071 continue;
4072
4073 auto FullPL = types::getCompilationPhases(InputType);
4074
4075 // Build the pipeline for this file.
4076 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4077
4078 // Use the current host action in any of the offloading actions, if
4079 // required.
4080 if (!UseNewOffloadingDriver)
4081 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
4082 break;
4083
4084 for (phases::ID Phase : PL) {
4085
4086 // Add any offload action the host action depends on.
4087 if (!UseNewOffloadingDriver)
4088 Current = OffloadBuilder.addDeviceDependencesToHostAction(
4089 Current, InputArg, Phase, PL.back(), FullPL);
4090 if (!Current)
4091 break;
4092
4093 // Queue linker inputs.
4094 if (Phase == phases::Link) {
4095 assert(Phase == PL.back() && "linking must be final compilation step.");
4096 // We don't need to generate additional link commands if emitting AMD bitcode
4097 if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4098 (C.getInputArgs().hasArg(options::OPT_emit_llvm))))
4099 LinkerInputs.push_back(Current);
4100 Current = nullptr;
4101 break;
4102 }
4103
4104 // TODO: Consider removing this because the merged may not end up being
4105 // the final Phase in the pipeline. Perhaps the merged could just merge
4106 // and then pass an artifact of some sort to the Link Phase.
4107 // Queue merger inputs.
4108 if (Phase == phases::IfsMerge) {
4109 assert(Phase == PL.back() && "merging must be final compilation step.");
4110 MergerInputs.push_back(Current);
4111 Current = nullptr;
4112 break;
4113 }
4114
4115 // Each precompiled header file after a module file action is a module
4116 // header of that same module file, rather than being compiled to a
4117 // separate PCH.
4118 if (Phase == phases::Precompile && HeaderModuleAction &&
4119 getPrecompiledType(InputType) == types::TY_PCH) {
4120 HeaderModuleAction->addModuleHeaderInput(Current);
4121 Current = nullptr;
4122 break;
4123 }
4124
4125 if (Phase == phases::Precompile && ExtractAPIAction) {
4126 ExtractAPIAction->addHeaderInput(Current);
4127 Current = nullptr;
4128 break;
4129 }
4130
4131 // FIXME: Should we include any prior module file outputs as inputs of
4132 // later actions in the same command line?
4133
4134 // Otherwise construct the appropriate action.
4135 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4136
4137 // We didn't create a new action, so we will just move to the next phase.
4138 if (NewCurrent == Current)
4139 continue;
4140
4141 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
4142 HeaderModuleAction = HMA;
4143 else if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4144 ExtractAPIAction = EAA;
4145
4146 Current = NewCurrent;
4147
4148 // Use the current host action in any of the offloading actions, if
4149 // required.
4150 if (!UseNewOffloadingDriver)
4151 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
4152 break;
4153
4154 // Try to build the offloading actions and add the result as a dependency
4155 // to the host.
4156 if (UseNewOffloadingDriver)
4157 Current = BuildOffloadingActions(C, Args, I, Current);
4158
4159 if (Current->getType() == types::TY_Nothing)
4160 break;
4161 }
4162
4163 // If we ended with something, add to the output list.
4164 if (Current)
4165 Actions.push_back(Current);
4166
4167 // Add any top level actions generated for offloading.
4168 if (!UseNewOffloadingDriver)
4169 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
4170 else if (Current)
4171 Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4172 /*BoundArch=*/nullptr);
4173 }
4174
4175 // Add a link action if necessary.
4176
4177 if (LinkerInputs.empty()) {
4178 Arg *FinalPhaseArg;
4179 if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4180 if (!UseNewOffloadingDriver)
4181 OffloadBuilder.appendDeviceLinkActions(Actions);
4182 }
4183
4184 if (!LinkerInputs.empty()) {
4185 if (!UseNewOffloadingDriver)
4186 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
4187 LinkerInputs.push_back(Wrapper);
4188 Action *LA;
4189 // Check if this Linker Job should emit a static library.
4190 if (ShouldEmitStaticLibrary(Args)) {
4191 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4192 } else if (UseNewOffloadingDriver ||
4193 Args.hasArg(options::OPT_offload_link)) {
4194 LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4195 LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4196 /*BoundArch=*/nullptr);
4197 } else {
4198 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4199 }
4200 if (!UseNewOffloadingDriver)
4201 LA = OffloadBuilder.processHostLinkAction(LA);
4202 Actions.push_back(LA);
4203 }
4204
4205 // Add an interface stubs merge action if necessary.
4206 if (!MergerInputs.empty())
4207 Actions.push_back(
4208 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4209
4210 if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4211 auto PhaseList = types::getCompilationPhases(
4212 types::TY_IFS_CPP,
4213 Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4214
4215 ActionList MergerInputs;
4216
4217 for (auto &I : Inputs) {
4218 types::ID InputType = I.first;
4219 const Arg *InputArg = I.second;
4220
4221 // Currently clang and the llvm assembler do not support generating symbol
4222 // stubs from assembly, so we skip the input on asm files. For ifs files
4223 // we rely on the normal pipeline setup in the pipeline setup code above.
4224 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4225 InputType == types::TY_Asm)
4226 continue;
4227
4228 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4229
4230 for (auto Phase : PhaseList) {
4231 switch (Phase) {
4232 default:
4233 llvm_unreachable(
4234 "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4235 case phases::Compile: {
4236 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4237 // files where the .o file is located. The compile action can not
4238 // handle this.
4239 if (InputType == types::TY_Object)
4240 break;
4241
4242 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4243 break;
4244 }
4245 case phases::IfsMerge: {
4246 assert(Phase == PhaseList.back() &&
4247 "merging must be final compilation step.");
4248 MergerInputs.push_back(Current);
4249 Current = nullptr;
4250 break;
4251 }
4252 }
4253 }
4254
4255 // If we ended with something, add to the output list.
4256 if (Current)
4257 Actions.push_back(Current);
4258 }
4259
4260 // Add an interface stubs merge action if necessary.
4261 if (!MergerInputs.empty())
4262 Actions.push_back(
4263 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4264 }
4265
4266 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
4267 // Compile phase that prints out supported cpu models and quits.
4268 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
4269 // Use the -mcpu=? flag as the dummy input to cc1.
4270 Actions.clear();
4271 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4272 Actions.push_back(
4273 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4274 for (auto &I : Inputs)
4275 I.second->claim();
4276 }
4277
4278 // Claim ignored clang-cl options.
4279 Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4280 }
4281
4282 /// Returns the canonical name for the offloading architecture when using a HIP
4283 /// or CUDA architecture.
getCanonicalArchString(Compilation & C,const llvm::opt::DerivedArgList & Args,StringRef ArchStr,const llvm::Triple & Triple)4284 static StringRef getCanonicalArchString(Compilation &C,
4285 const llvm::opt::DerivedArgList &Args,
4286 StringRef ArchStr,
4287 const llvm::Triple &Triple) {
4288 // Lookup the CUDA / HIP architecture string. Only report an error if we were
4289 // expecting the triple to be only NVPTX / AMDGPU.
4290 CudaArch Arch = StringToCudaArch(getProcessorFromTargetID(Triple, ArchStr));
4291 if (Triple.isNVPTX() &&
4292 (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch))) {
4293 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4294 << "CUDA" << ArchStr;
4295 return StringRef();
4296 } else if (Triple.isAMDGPU() &&
4297 (Arch == CudaArch::UNKNOWN || !IsAMDGpuArch(Arch))) {
4298 C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4299 << "HIP" << ArchStr;
4300 return StringRef();
4301 }
4302
4303 if (IsNVIDIAGpuArch(Arch))
4304 return Args.MakeArgStringRef(CudaArchToString(Arch));
4305
4306 if (IsAMDGpuArch(Arch)) {
4307 llvm::StringMap<bool> Features;
4308 auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4309 if (!HIPTriple)
4310 return StringRef();
4311 auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4312 if (!Arch) {
4313 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4314 C.setContainsError();
4315 return StringRef();
4316 }
4317 return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4318 }
4319
4320 // If the input isn't CUDA or HIP just return the architecture.
4321 return ArchStr;
4322 }
4323
4324 /// Checks if the set offloading architectures does not conflict. Returns the
4325 /// incompatible pair if a conflict occurs.
4326 static llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> & Archs,Action::OffloadKind Kind)4327 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4328 Action::OffloadKind Kind) {
4329 if (Kind != Action::OFK_HIP)
4330 return None;
4331
4332 std::set<StringRef> ArchSet;
4333 llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4334 return getConflictTargetIDCombination(ArchSet);
4335 }
4336
4337 llvm::DenseSet<StringRef>
getOffloadArchs(Compilation & C,const llvm::opt::DerivedArgList & Args,Action::OffloadKind Kind,const ToolChain * TC) const4338 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4339 Action::OffloadKind Kind, const ToolChain *TC) const {
4340 if (!TC)
4341 TC = &C.getDefaultToolChain();
4342
4343 // --offload and --offload-arch options are mutually exclusive.
4344 if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4345 Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4346 options::OPT_no_offload_arch_EQ)) {
4347 C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4348 << "--offload"
4349 << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4350 ? "--offload-arch"
4351 : "--no-offload-arch");
4352 }
4353
4354 if (KnownArchs.find(TC) != KnownArchs.end())
4355 return KnownArchs.lookup(TC);
4356
4357 llvm::DenseSet<StringRef> Archs;
4358 for (auto *Arg : Args) {
4359 // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4360 std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4361 if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4362 ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4363 Arg->claim();
4364 unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4365 ExtractedArg = getOpts().ParseOneArg(Args, Index);
4366 Arg = ExtractedArg.get();
4367 }
4368
4369 if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4370 for (StringRef Arch : llvm::split(Arg->getValue(), ","))
4371 Archs.insert(getCanonicalArchString(C, Args, Arch, TC->getTriple()));
4372 } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4373 for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4374 if (Arch == StringRef("all"))
4375 Archs.clear();
4376 else
4377 Archs.erase(getCanonicalArchString(C, Args, Arch, TC->getTriple()));
4378 }
4379 }
4380 }
4381
4382 if (auto ConflictingArchs = getConflictOffloadArchCombination(Archs, Kind)) {
4383 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4384 << ConflictingArchs->first << ConflictingArchs->second;
4385 C.setContainsError();
4386 }
4387
4388 if (Archs.empty()) {
4389 if (Kind == Action::OFK_Cuda)
4390 Archs.insert(CudaArchToString(CudaArch::CudaDefault));
4391 else if (Kind == Action::OFK_HIP)
4392 Archs.insert(CudaArchToString(CudaArch::HIPDefault));
4393 else if (Kind == Action::OFK_OpenMP)
4394 Archs.insert(StringRef());
4395 } else {
4396 Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4397 Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4398 }
4399
4400 return Archs;
4401 }
4402
BuildOffloadingActions(Compilation & C,llvm::opt::DerivedArgList & Args,const InputTy & Input,Action * HostAction) const4403 Action *Driver::BuildOffloadingActions(Compilation &C,
4404 llvm::opt::DerivedArgList &Args,
4405 const InputTy &Input,
4406 Action *HostAction) const {
4407 // Don't build offloading actions if explicitly disabled or we do not have a
4408 // valid source input and compile action to embed it in. If preprocessing only
4409 // ignore embedding.
4410 if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4411 !(isa<CompileJobAction>(HostAction) ||
4412 getFinalPhase(Args) == phases::Preprocess))
4413 return HostAction;
4414
4415 ActionList OffloadActions;
4416 OffloadAction::DeviceDependences DDeps;
4417
4418 const Action::OffloadKind OffloadKinds[] = {
4419 Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4420
4421 for (Action::OffloadKind Kind : OffloadKinds) {
4422 SmallVector<const ToolChain *, 2> ToolChains;
4423 ActionList DeviceActions;
4424
4425 auto TCRange = C.getOffloadToolChains(Kind);
4426 for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4427 ToolChains.push_back(TI->second);
4428
4429 if (ToolChains.empty())
4430 continue;
4431
4432 types::ID InputType = Input.first;
4433 const Arg *InputArg = Input.second;
4434
4435 // The toolchain can be active for unsupported file types.
4436 if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4437 (Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4438 continue;
4439
4440 // Get the product of all bound architectures and toolchains.
4441 SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4442 for (const ToolChain *TC : ToolChains)
4443 for (StringRef Arch : getOffloadArchs(C, Args, Kind, TC))
4444 TCAndArchs.push_back(std::make_pair(TC, Arch));
4445
4446 for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4447 DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4448
4449 if (DeviceActions.empty())
4450 return HostAction;
4451
4452 auto PL = types::getCompilationPhases(*this, Args, InputType);
4453
4454 for (phases::ID Phase : PL) {
4455 if (Phase == phases::Link) {
4456 assert(Phase == PL.back() && "linking must be final compilation step.");
4457 break;
4458 }
4459
4460 auto TCAndArch = TCAndArchs.begin();
4461 for (Action *&A : DeviceActions) {
4462 A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4463
4464 if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4465 Kind == Action::OFK_OpenMP) {
4466 // OpenMP offloading has a dependency on the host compile action to
4467 // identify which declarations need to be emitted. This shouldn't be
4468 // collapsed with any other actions so we can use it in the device.
4469 HostAction->setCannotBeCollapsedWithNextDependentAction();
4470 OffloadAction::HostDependence HDep(
4471 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4472 TCAndArch->second.data(), Kind);
4473 OffloadAction::DeviceDependences DDep;
4474 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4475 A = C.MakeAction<OffloadAction>(HDep, DDep);
4476 }
4477 ++TCAndArch;
4478 }
4479 }
4480
4481 // Compiling HIP in non-RDC mode requires linking each action individually.
4482 for (Action *&A : DeviceActions) {
4483 if (A->getType() != types::TY_Object || Kind != Action::OFK_HIP ||
4484 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4485 continue;
4486 ActionList LinkerInput = {A};
4487 A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4488 }
4489
4490 auto TCAndArch = TCAndArchs.begin();
4491 for (Action *A : DeviceActions) {
4492 DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4493 OffloadAction::DeviceDependences DDep;
4494 DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4495 OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4496 ++TCAndArch;
4497 }
4498 }
4499
4500 if (offloadDeviceOnly())
4501 return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4502
4503 if (OffloadActions.empty())
4504 return HostAction;
4505
4506 OffloadAction::DeviceDependences DDep;
4507 if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4508 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4509 // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4510 // each translation unit without requiring any linking.
4511 Action *FatbinAction =
4512 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4513 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4514 nullptr, Action::OFK_Cuda);
4515 } else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4516 !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4517 false)) {
4518 // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4519 // translation unit, linking each input individually.
4520 Action *FatbinAction =
4521 C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4522 DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4523 nullptr, Action::OFK_HIP);
4524 } else {
4525 // Package all the offloading actions into a single output that can be
4526 // embedded in the host and linked.
4527 Action *PackagerAction =
4528 C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4529 DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4530 nullptr, Action::OFK_None);
4531 }
4532
4533 OffloadAction::HostDependence HDep(
4534 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4535 /*BoundArch=*/nullptr, isa<CompileJobAction>(HostAction) ? DDep : DDeps);
4536 return C.MakeAction<OffloadAction>(
4537 HDep, isa<CompileJobAction>(HostAction) ? DDep : DDeps);
4538 }
4539
ConstructPhaseAction(Compilation & C,const ArgList & Args,phases::ID Phase,Action * Input,Action::OffloadKind TargetDeviceOffloadKind) const4540 Action *Driver::ConstructPhaseAction(
4541 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4542 Action::OffloadKind TargetDeviceOffloadKind) const {
4543 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4544
4545 // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4546 // encode this in the steps because the intermediate type depends on
4547 // arguments. Just special case here.
4548 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4549 return Input;
4550
4551 // Build the appropriate action.
4552 switch (Phase) {
4553 case phases::Link:
4554 llvm_unreachable("link action invalid here.");
4555 case phases::IfsMerge:
4556 llvm_unreachable("ifsmerge action invalid here.");
4557 case phases::Preprocess: {
4558 types::ID OutputTy;
4559 // -M and -MM specify the dependency file name by altering the output type,
4560 // -if -MD and -MMD are not specified.
4561 if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4562 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4563 OutputTy = types::TY_Dependencies;
4564 } else {
4565 OutputTy = Input->getType();
4566 // For these cases, the preprocessor is only translating forms, the Output
4567 // still needs preprocessing.
4568 if (!Args.hasFlag(options::OPT_frewrite_includes,
4569 options::OPT_fno_rewrite_includes, false) &&
4570 !Args.hasFlag(options::OPT_frewrite_imports,
4571 options::OPT_fno_rewrite_imports, false) &&
4572 !Args.hasFlag(options::OPT_fdirectives_only,
4573 options::OPT_fno_directives_only, false) &&
4574 !CCGenDiagnostics)
4575 OutputTy = types::getPreprocessedType(OutputTy);
4576 assert(OutputTy != types::TY_INVALID &&
4577 "Cannot preprocess this input type!");
4578 }
4579 return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4580 }
4581 case phases::Precompile: {
4582 // API extraction should not generate an actual precompilation action.
4583 if (Args.hasArg(options::OPT_extract_api))
4584 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4585
4586 types::ID OutputTy = getPrecompiledType(Input->getType());
4587 assert(OutputTy != types::TY_INVALID &&
4588 "Cannot precompile this input type!");
4589
4590 // If we're given a module name, precompile header file inputs as a
4591 // module, not as a precompiled header.
4592 const char *ModName = nullptr;
4593 if (OutputTy == types::TY_PCH) {
4594 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4595 ModName = A->getValue();
4596 if (ModName)
4597 OutputTy = types::TY_ModuleFile;
4598 }
4599
4600 if (Args.hasArg(options::OPT_fsyntax_only)) {
4601 // Syntax checks should not emit a PCH file
4602 OutputTy = types::TY_Nothing;
4603 }
4604
4605 if (ModName)
4606 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
4607 ModName);
4608 return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4609 }
4610 case phases::Compile: {
4611 if (Args.hasArg(options::OPT_fsyntax_only))
4612 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4613 if (Args.hasArg(options::OPT_rewrite_objc))
4614 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4615 if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4616 return C.MakeAction<CompileJobAction>(Input,
4617 types::TY_RewrittenLegacyObjC);
4618 if (Args.hasArg(options::OPT__analyze))
4619 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4620 if (Args.hasArg(options::OPT__migrate))
4621 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4622 if (Args.hasArg(options::OPT_emit_ast))
4623 return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4624 if (Args.hasArg(options::OPT_module_file_info))
4625 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4626 if (Args.hasArg(options::OPT_verify_pch))
4627 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4628 if (Args.hasArg(options::OPT_extract_api))
4629 return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4630 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4631 }
4632 case phases::Backend: {
4633 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4634 types::ID Output =
4635 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4636 return C.MakeAction<BackendJobAction>(Input, Output);
4637 }
4638 if (isUsingLTO(/* IsOffload */ true) &&
4639 TargetDeviceOffloadKind != Action::OFK_None) {
4640 types::ID Output =
4641 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4642 return C.MakeAction<BackendJobAction>(Input, Output);
4643 }
4644 if (Args.hasArg(options::OPT_emit_llvm) ||
4645 (TargetDeviceOffloadKind == Action::OFK_HIP &&
4646 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4647 false))) {
4648 types::ID Output =
4649 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
4650 return C.MakeAction<BackendJobAction>(Input, Output);
4651 }
4652 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4653 }
4654 case phases::Assemble:
4655 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4656 }
4657
4658 llvm_unreachable("invalid phase in ConstructPhaseAction");
4659 }
4660
BuildJobs(Compilation & C) const4661 void Driver::BuildJobs(Compilation &C) const {
4662 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4663
4664 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4665
4666 // It is an error to provide a -o option if we are making multiple output
4667 // files. There are exceptions:
4668 //
4669 // IfsMergeJob: when generating interface stubs enabled we want to be able to
4670 // generate the stub file at the same time that we generate the real
4671 // library/a.out. So when a .o, .so, etc are the output, with clang interface
4672 // stubs there will also be a .ifs and .ifso at the same location.
4673 //
4674 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4675 // and -c is passed, we still want to be able to generate a .ifs file while
4676 // we are also generating .o files. So we allow more than one output file in
4677 // this case as well.
4678 //
4679 if (FinalOutput) {
4680 unsigned NumOutputs = 0;
4681 unsigned NumIfsOutputs = 0;
4682 for (const Action *A : C.getActions())
4683 if (A->getType() != types::TY_Nothing &&
4684 !(A->getKind() == Action::IfsMergeJobClass ||
4685 (A->getType() == clang::driver::types::TY_IFS_CPP &&
4686 A->getKind() == clang::driver::Action::CompileJobClass &&
4687 0 == NumIfsOutputs++) ||
4688 (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4689 A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4690 ++NumOutputs;
4691
4692 if (NumOutputs > 1) {
4693 Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4694 FinalOutput = nullptr;
4695 }
4696 }
4697
4698 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4699 if (RawTriple.isOSAIX()) {
4700 if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4701 Diag(diag::err_drv_unsupported_opt_for_target)
4702 << A->getSpelling() << RawTriple.str();
4703 if (LTOMode == LTOK_Thin)
4704 Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4705 }
4706
4707 // Collect the list of architectures.
4708 llvm::StringSet<> ArchNames;
4709 if (RawTriple.isOSBinFormatMachO())
4710 for (const Arg *A : C.getArgs())
4711 if (A->getOption().matches(options::OPT_arch))
4712 ArchNames.insert(A->getValue());
4713
4714 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4715 std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4716 for (Action *A : C.getActions()) {
4717 // If we are linking an image for multiple archs then the linker wants
4718 // -arch_multiple and -final_output <final image name>. Unfortunately, this
4719 // doesn't fit in cleanly because we have to pass this information down.
4720 //
4721 // FIXME: This is a hack; find a cleaner way to integrate this into the
4722 // process.
4723 const char *LinkingOutput = nullptr;
4724 if (isa<LipoJobAction>(A)) {
4725 if (FinalOutput)
4726 LinkingOutput = FinalOutput->getValue();
4727 else
4728 LinkingOutput = getDefaultImageName();
4729 }
4730
4731 BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4732 /*BoundArch*/ StringRef(),
4733 /*AtTopLevel*/ true,
4734 /*MultipleArchs*/ ArchNames.size() > 1,
4735 /*LinkingOutput*/ LinkingOutput, CachedResults,
4736 /*TargetDeviceOffloadKind*/ Action::OFK_None);
4737 }
4738
4739 // If we have more than one job, then disable integrated-cc1 for now. Do this
4740 // also when we need to report process execution statistics.
4741 if (C.getJobs().size() > 1 || CCPrintProcessStats)
4742 for (auto &J : C.getJobs())
4743 J.InProcess = false;
4744
4745 if (CCPrintProcessStats) {
4746 C.setPostCallback([=](const Command &Cmd, int Res) {
4747 Optional<llvm::sys::ProcessStatistics> ProcStat =
4748 Cmd.getProcessStatistics();
4749 if (!ProcStat)
4750 return;
4751
4752 const char *LinkingOutput = nullptr;
4753 if (FinalOutput)
4754 LinkingOutput = FinalOutput->getValue();
4755 else if (!Cmd.getOutputFilenames().empty())
4756 LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4757 else
4758 LinkingOutput = getDefaultImageName();
4759
4760 if (CCPrintStatReportFilename.empty()) {
4761 using namespace llvm;
4762 // Human readable output.
4763 outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4764 << "output=" << LinkingOutput;
4765 outs() << ", total="
4766 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4767 << ", user="
4768 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4769 << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4770 } else {
4771 // CSV format.
4772 std::string Buffer;
4773 llvm::raw_string_ostream Out(Buffer);
4774 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4775 /*Quote*/ true);
4776 Out << ',';
4777 llvm::sys::printArg(Out, LinkingOutput, true);
4778 Out << ',' << ProcStat->TotalTime.count() << ','
4779 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4780 << '\n';
4781 Out.flush();
4782 std::error_code EC;
4783 llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4784 llvm::sys::fs::OF_Append |
4785 llvm::sys::fs::OF_Text);
4786 if (EC)
4787 return;
4788 auto L = OS.lock();
4789 if (!L) {
4790 llvm::errs() << "ERROR: Cannot lock file "
4791 << CCPrintStatReportFilename << ": "
4792 << toString(L.takeError()) << "\n";
4793 return;
4794 }
4795 OS << Buffer;
4796 OS.flush();
4797 }
4798 });
4799 }
4800
4801 // If the user passed -Qunused-arguments or there were errors, don't warn
4802 // about any unused arguments.
4803 if (Diags.hasErrorOccurred() ||
4804 C.getArgs().hasArg(options::OPT_Qunused_arguments))
4805 return;
4806
4807 // Claim -fdriver-only here.
4808 (void)C.getArgs().hasArg(options::OPT_fdriver_only);
4809 // Claim -### here.
4810 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4811
4812 // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4813 (void)C.getArgs().hasArg(options::OPT_driver_mode);
4814 (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4815
4816 for (Arg *A : C.getArgs()) {
4817 // FIXME: It would be nice to be able to send the argument to the
4818 // DiagnosticsEngine, so that extra values, position, and so on could be
4819 // printed.
4820 if (!A->isClaimed()) {
4821 if (A->getOption().hasFlag(options::NoArgumentUnused))
4822 continue;
4823
4824 // Suppress the warning automatically if this is just a flag, and it is an
4825 // instance of an argument we already claimed.
4826 const Option &Opt = A->getOption();
4827 if (Opt.getKind() == Option::FlagClass) {
4828 bool DuplicateClaimed = false;
4829
4830 for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4831 if (AA->isClaimed()) {
4832 DuplicateClaimed = true;
4833 break;
4834 }
4835 }
4836
4837 if (DuplicateClaimed)
4838 continue;
4839 }
4840
4841 // In clang-cl, don't mention unknown arguments here since they have
4842 // already been warned about.
4843 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4844 Diag(clang::diag::warn_drv_unused_argument)
4845 << A->getAsString(C.getArgs());
4846 }
4847 }
4848 }
4849
4850 namespace {
4851 /// Utility class to control the collapse of dependent actions and select the
4852 /// tools accordingly.
4853 class ToolSelector final {
4854 /// The tool chain this selector refers to.
4855 const ToolChain &TC;
4856
4857 /// The compilation this selector refers to.
4858 const Compilation &C;
4859
4860 /// The base action this selector refers to.
4861 const JobAction *BaseAction;
4862
4863 /// Set to true if the current toolchain refers to host actions.
4864 bool IsHostSelector;
4865
4866 /// Set to true if save-temps and embed-bitcode functionalities are active.
4867 bool SaveTemps;
4868 bool EmbedBitcode;
4869
4870 /// Get previous dependent action or null if that does not exist. If
4871 /// \a CanBeCollapsed is false, that action must be legal to collapse or
4872 /// null will be returned.
getPrevDependentAction(const ActionList & Inputs,ActionList & SavedOffloadAction,bool CanBeCollapsed=true)4873 const JobAction *getPrevDependentAction(const ActionList &Inputs,
4874 ActionList &SavedOffloadAction,
4875 bool CanBeCollapsed = true) {
4876 // An option can be collapsed only if it has a single input.
4877 if (Inputs.size() != 1)
4878 return nullptr;
4879
4880 Action *CurAction = *Inputs.begin();
4881 if (CanBeCollapsed &&
4882 !CurAction->isCollapsingWithNextDependentActionLegal())
4883 return nullptr;
4884
4885 // If the input action is an offload action. Look through it and save any
4886 // offload action that can be dropped in the event of a collapse.
4887 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4888 // If the dependent action is a device action, we will attempt to collapse
4889 // only with other device actions. Otherwise, we would do the same but
4890 // with host actions only.
4891 if (!IsHostSelector) {
4892 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4893 CurAction =
4894 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4895 if (CanBeCollapsed &&
4896 !CurAction->isCollapsingWithNextDependentActionLegal())
4897 return nullptr;
4898 SavedOffloadAction.push_back(OA);
4899 return dyn_cast<JobAction>(CurAction);
4900 }
4901 } else if (OA->hasHostDependence()) {
4902 CurAction = OA->getHostDependence();
4903 if (CanBeCollapsed &&
4904 !CurAction->isCollapsingWithNextDependentActionLegal())
4905 return nullptr;
4906 SavedOffloadAction.push_back(OA);
4907 return dyn_cast<JobAction>(CurAction);
4908 }
4909 return nullptr;
4910 }
4911
4912 return dyn_cast<JobAction>(CurAction);
4913 }
4914
4915 /// Return true if an assemble action can be collapsed.
canCollapseAssembleAction() const4916 bool canCollapseAssembleAction() const {
4917 return TC.useIntegratedAs() && !SaveTemps &&
4918 !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4919 !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4920 !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4921 }
4922
4923 /// Return true if a preprocessor action can be collapsed.
canCollapsePreprocessorAction() const4924 bool canCollapsePreprocessorAction() const {
4925 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4926 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4927 !C.getArgs().hasArg(options::OPT_rewrite_objc);
4928 }
4929
4930 /// Struct that relates an action with the offload actions that would be
4931 /// collapsed with it.
4932 struct JobActionInfo final {
4933 /// The action this info refers to.
4934 const JobAction *JA = nullptr;
4935 /// The offload actions we need to take care off if this action is
4936 /// collapsed.
4937 ActionList SavedOffloadAction;
4938 };
4939
4940 /// Append collapsed offload actions from the give nnumber of elements in the
4941 /// action info array.
AppendCollapsedOffloadAction(ActionList & CollapsedOffloadAction,ArrayRef<JobActionInfo> & ActionInfo,unsigned ElementNum)4942 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4943 ArrayRef<JobActionInfo> &ActionInfo,
4944 unsigned ElementNum) {
4945 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4946 for (unsigned I = 0; I < ElementNum; ++I)
4947 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4948 ActionInfo[I].SavedOffloadAction.end());
4949 }
4950
4951 /// Functions that attempt to perform the combining. They detect if that is
4952 /// legal, and if so they update the inputs \a Inputs and the offload action
4953 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4954 /// the combined action is returned. If the combining is not legal or if the
4955 /// tool does not exist, null is returned.
4956 /// Currently three kinds of collapsing are supported:
4957 /// - Assemble + Backend + Compile;
4958 /// - Assemble + Backend ;
4959 /// - Backend + Compile.
4960 const Tool *
combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4961 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4962 ActionList &Inputs,
4963 ActionList &CollapsedOffloadAction) {
4964 if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4965 return nullptr;
4966 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4967 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4968 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4969 if (!AJ || !BJ || !CJ)
4970 return nullptr;
4971
4972 // Get compiler tool.
4973 const Tool *T = TC.SelectTool(*CJ);
4974 if (!T)
4975 return nullptr;
4976
4977 // Can't collapse if we don't have codegen support unless we are
4978 // emitting LLVM IR.
4979 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
4980 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
4981 return nullptr;
4982
4983 // When using -fembed-bitcode, it is required to have the same tool (clang)
4984 // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4985 if (EmbedBitcode) {
4986 const Tool *BT = TC.SelectTool(*BJ);
4987 if (BT == T)
4988 return nullptr;
4989 }
4990
4991 if (!T->hasIntegratedAssembler())
4992 return nullptr;
4993
4994 Inputs = CJ->getInputs();
4995 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4996 /*NumElements=*/3);
4997 return T;
4998 }
combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)4999 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5000 ActionList &Inputs,
5001 ActionList &CollapsedOffloadAction) {
5002 if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5003 return nullptr;
5004 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5005 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5006 if (!AJ || !BJ)
5007 return nullptr;
5008
5009 // Get backend tool.
5010 const Tool *T = TC.SelectTool(*BJ);
5011 if (!T)
5012 return nullptr;
5013
5014 if (!T->hasIntegratedAssembler())
5015 return nullptr;
5016
5017 Inputs = BJ->getInputs();
5018 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5019 /*NumElements=*/2);
5020 return T;
5021 }
combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,ActionList & Inputs,ActionList & CollapsedOffloadAction)5022 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5023 ActionList &Inputs,
5024 ActionList &CollapsedOffloadAction) {
5025 if (ActionInfo.size() < 2)
5026 return nullptr;
5027 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5028 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5029 if (!BJ || !CJ)
5030 return nullptr;
5031
5032 // Check if the initial input (to the compile job or its predessor if one
5033 // exists) is LLVM bitcode. In that case, no preprocessor step is required
5034 // and we can still collapse the compile and backend jobs when we have
5035 // -save-temps. I.e. there is no need for a separate compile job just to
5036 // emit unoptimized bitcode.
5037 bool InputIsBitcode = true;
5038 for (size_t i = 1; i < ActionInfo.size(); i++)
5039 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5040 ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5041 InputIsBitcode = false;
5042 break;
5043 }
5044 if (!InputIsBitcode && !canCollapsePreprocessorAction())
5045 return nullptr;
5046
5047 // Get compiler tool.
5048 const Tool *T = TC.SelectTool(*CJ);
5049 if (!T)
5050 return nullptr;
5051
5052 // Can't collapse if we don't have codegen support unless we are
5053 // emitting LLVM IR.
5054 bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5055 if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5056 return nullptr;
5057
5058 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5059 return nullptr;
5060
5061 Inputs = CJ->getInputs();
5062 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5063 /*NumElements=*/2);
5064 return T;
5065 }
5066
5067 /// Updates the inputs if the obtained tool supports combining with
5068 /// preprocessor action, and the current input is indeed a preprocessor
5069 /// action. If combining results in the collapse of offloading actions, those
5070 /// are appended to \a CollapsedOffloadAction.
combineWithPreprocessor(const Tool * T,ActionList & Inputs,ActionList & CollapsedOffloadAction)5071 void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5072 ActionList &CollapsedOffloadAction) {
5073 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5074 return;
5075
5076 // Attempt to get a preprocessor action dependence.
5077 ActionList PreprocessJobOffloadActions;
5078 ActionList NewInputs;
5079 for (Action *A : Inputs) {
5080 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5081 if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5082 NewInputs.push_back(A);
5083 continue;
5084 }
5085
5086 // This is legal to combine. Append any offload action we found and add the
5087 // current input to preprocessor inputs.
5088 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5089 PreprocessJobOffloadActions.end());
5090 NewInputs.append(PJ->input_begin(), PJ->input_end());
5091 }
5092 Inputs = NewInputs;
5093 }
5094
5095 public:
ToolSelector(const JobAction * BaseAction,const ToolChain & TC,const Compilation & C,bool SaveTemps,bool EmbedBitcode)5096 ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5097 const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5098 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5099 EmbedBitcode(EmbedBitcode) {
5100 assert(BaseAction && "Invalid base action.");
5101 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5102 }
5103
5104 /// Check if a chain of actions can be combined and return the tool that can
5105 /// handle the combination of actions. The pointer to the current inputs \a
5106 /// Inputs and the list of offload actions \a CollapsedOffloadActions
5107 /// connected to collapsed actions are updated accordingly. The latter enables
5108 /// the caller of the selector to process them afterwards instead of just
5109 /// dropping them. If no suitable tool is found, null will be returned.
getTool(ActionList & Inputs,ActionList & CollapsedOffloadAction)5110 const Tool *getTool(ActionList &Inputs,
5111 ActionList &CollapsedOffloadAction) {
5112 //
5113 // Get the largest chain of actions that we could combine.
5114 //
5115
5116 SmallVector<JobActionInfo, 5> ActionChain(1);
5117 ActionChain.back().JA = BaseAction;
5118 while (ActionChain.back().JA) {
5119 const Action *CurAction = ActionChain.back().JA;
5120
5121 // Grow the chain by one element.
5122 ActionChain.resize(ActionChain.size() + 1);
5123 JobActionInfo &AI = ActionChain.back();
5124
5125 // Attempt to fill it with the
5126 AI.JA =
5127 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5128 }
5129
5130 // Pop the last action info as it could not be filled.
5131 ActionChain.pop_back();
5132
5133 //
5134 // Attempt to combine actions. If all combining attempts failed, just return
5135 // the tool of the provided action. At the end we attempt to combine the
5136 // action with any preprocessor action it may depend on.
5137 //
5138
5139 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5140 CollapsedOffloadAction);
5141 if (!T)
5142 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5143 if (!T)
5144 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5145 if (!T) {
5146 Inputs = BaseAction->getInputs();
5147 T = TC.SelectTool(*BaseAction);
5148 }
5149
5150 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5151 return T;
5152 }
5153 };
5154 }
5155
5156 /// Return a string that uniquely identifies the result of a job. The bound arch
5157 /// is not necessarily represented in the toolchain's triple -- for example,
5158 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5159 /// Also, we need to add the offloading device kind, as the same tool chain can
5160 /// be used for host and device for some programming models, e.g. OpenMP.
GetTriplePlusArchString(const ToolChain * TC,StringRef BoundArch,Action::OffloadKind OffloadKind)5161 static std::string GetTriplePlusArchString(const ToolChain *TC,
5162 StringRef BoundArch,
5163 Action::OffloadKind OffloadKind) {
5164 std::string TriplePlusArch = TC->getTriple().normalize();
5165 if (!BoundArch.empty()) {
5166 TriplePlusArch += "-";
5167 TriplePlusArch += BoundArch;
5168 }
5169 TriplePlusArch += "-";
5170 TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5171 return TriplePlusArch;
5172 }
5173
BuildJobsForAction(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfoList> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const5174 InputInfoList Driver::BuildJobsForAction(
5175 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5176 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5177 std::map<std::pair<const Action *, std::string>, InputInfoList>
5178 &CachedResults,
5179 Action::OffloadKind TargetDeviceOffloadKind) const {
5180 std::pair<const Action *, std::string> ActionTC = {
5181 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5182 auto CachedResult = CachedResults.find(ActionTC);
5183 if (CachedResult != CachedResults.end()) {
5184 return CachedResult->second;
5185 }
5186 InputInfoList Result = BuildJobsForActionNoCache(
5187 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5188 CachedResults, TargetDeviceOffloadKind);
5189 CachedResults[ActionTC] = Result;
5190 return Result;
5191 }
5192
BuildJobsForActionNoCache(Compilation & C,const Action * A,const ToolChain * TC,StringRef BoundArch,bool AtTopLevel,bool MultipleArchs,const char * LinkingOutput,std::map<std::pair<const Action *,std::string>,InputInfoList> & CachedResults,Action::OffloadKind TargetDeviceOffloadKind) const5193 InputInfoList Driver::BuildJobsForActionNoCache(
5194 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5195 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5196 std::map<std::pair<const Action *, std::string>, InputInfoList>
5197 &CachedResults,
5198 Action::OffloadKind TargetDeviceOffloadKind) const {
5199 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5200
5201 InputInfoList OffloadDependencesInputInfo;
5202 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5203 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5204 // The 'Darwin' toolchain is initialized only when its arguments are
5205 // computed. Get the default arguments for OFK_None to ensure that
5206 // initialization is performed before processing the offload action.
5207 // FIXME: Remove when darwin's toolchain is initialized during construction.
5208 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5209
5210 // The offload action is expected to be used in four different situations.
5211 //
5212 // a) Set a toolchain/architecture/kind for a host action:
5213 // Host Action 1 -> OffloadAction -> Host Action 2
5214 //
5215 // b) Set a toolchain/architecture/kind for a device action;
5216 // Device Action 1 -> OffloadAction -> Device Action 2
5217 //
5218 // c) Specify a device dependence to a host action;
5219 // Device Action 1 _
5220 // \
5221 // Host Action 1 ---> OffloadAction -> Host Action 2
5222 //
5223 // d) Specify a host dependence to a device action.
5224 // Host Action 1 _
5225 // \
5226 // Device Action 1 ---> OffloadAction -> Device Action 2
5227 //
5228 // For a) and b), we just return the job generated for the dependence. For
5229 // c) and d) we override the current action with the host/device dependence
5230 // if the current toolchain is host/device and set the offload dependences
5231 // info with the jobs obtained from the device/host dependence(s).
5232
5233 // If there is a single device option, just generate the job for it.
5234 if (OA->hasSingleDeviceDependence()) {
5235 InputInfoList DevA;
5236 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5237 const char *DepBoundArch) {
5238 DevA =
5239 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5240 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
5241 CachedResults, DepA->getOffloadingDeviceKind());
5242 });
5243 return DevA;
5244 }
5245
5246 // If 'Action 2' is host, we generate jobs for the device dependences and
5247 // override the current action with the host dependence. Otherwise, we
5248 // generate the host dependences and override the action with the device
5249 // dependence. The dependences can't therefore be a top-level action.
5250 OA->doOnEachDependence(
5251 /*IsHostDependence=*/BuildingForOffloadDevice,
5252 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5253 OffloadDependencesInputInfo.append(BuildJobsForAction(
5254 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5255 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5256 DepA->getOffloadingDeviceKind()));
5257 });
5258
5259 A = BuildingForOffloadDevice
5260 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5261 : OA->getHostDependence();
5262
5263 // We may have already built this action as a part of the offloading
5264 // toolchain, return the cached input if so.
5265 std::pair<const Action *, std::string> ActionTC = {
5266 OA->getHostDependence(),
5267 GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5268 if (CachedResults.find(ActionTC) != CachedResults.end()) {
5269 InputInfoList Inputs = CachedResults[ActionTC];
5270 Inputs.append(OffloadDependencesInputInfo);
5271 return Inputs;
5272 }
5273 }
5274
5275 if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5276 // FIXME: It would be nice to not claim this here; maybe the old scheme of
5277 // just using Args was better?
5278 const Arg &Input = IA->getInputArg();
5279 Input.claim();
5280 if (Input.getOption().matches(options::OPT_INPUT)) {
5281 const char *Name = Input.getValue();
5282 return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5283 }
5284 return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5285 }
5286
5287 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5288 const ToolChain *TC;
5289 StringRef ArchName = BAA->getArchName();
5290
5291 if (!ArchName.empty())
5292 TC = &getToolChain(C.getArgs(),
5293 computeTargetTriple(*this, TargetTriple,
5294 C.getArgs(), ArchName));
5295 else
5296 TC = &C.getDefaultToolChain();
5297
5298 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5299 MultipleArchs, LinkingOutput, CachedResults,
5300 TargetDeviceOffloadKind);
5301 }
5302
5303
5304 ActionList Inputs = A->getInputs();
5305
5306 const JobAction *JA = cast<JobAction>(A);
5307 ActionList CollapsedOffloadActions;
5308
5309 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5310 embedBitcodeInObject() && !isUsingLTO());
5311 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5312
5313 if (!T)
5314 return {InputInfo()};
5315
5316 if (BuildingForOffloadDevice &&
5317 A->getOffloadingDeviceKind() == Action::OFK_OpenMP) {
5318 if (TC->getTriple().isAMDGCN()) {
5319 // AMDGCN treats backend and assemble actions as no-op because
5320 // linker does not support object files.
5321 if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
5322 return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
5323 AtTopLevel, MultipleArchs, LinkingOutput,
5324 CachedResults, TargetDeviceOffloadKind);
5325 }
5326
5327 if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
5328 return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
5329 AtTopLevel, MultipleArchs, LinkingOutput,
5330 CachedResults, TargetDeviceOffloadKind);
5331 }
5332 }
5333 }
5334
5335 // If we've collapsed action list that contained OffloadAction we
5336 // need to build jobs for host/device-side inputs it may have held.
5337 for (const auto *OA : CollapsedOffloadActions)
5338 cast<OffloadAction>(OA)->doOnEachDependence(
5339 /*IsHostDependence=*/BuildingForOffloadDevice,
5340 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5341 OffloadDependencesInputInfo.append(BuildJobsForAction(
5342 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5343 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5344 DepA->getOffloadingDeviceKind()));
5345 });
5346
5347 // Only use pipes when there is exactly one input.
5348 InputInfoList InputInfos;
5349 for (const Action *Input : Inputs) {
5350 // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5351 // shouldn't get temporary output names.
5352 // FIXME: Clean this up.
5353 bool SubJobAtTopLevel =
5354 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5355 InputInfos.append(BuildJobsForAction(
5356 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5357 CachedResults, A->getOffloadingDeviceKind()));
5358 }
5359
5360 // Always use the first file input as the base input.
5361 const char *BaseInput = InputInfos[0].getBaseInput();
5362 for (auto &Info : InputInfos) {
5363 if (Info.isFilename()) {
5364 BaseInput = Info.getBaseInput();
5365 break;
5366 }
5367 }
5368
5369 // ... except dsymutil actions, which use their actual input as the base
5370 // input.
5371 if (JA->getType() == types::TY_dSYM)
5372 BaseInput = InputInfos[0].getFilename();
5373
5374 // ... and in header module compilations, which use the module name.
5375 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
5376 BaseInput = ModuleJA->getModuleName();
5377
5378 // Append outputs of offload device jobs to the input list
5379 if (!OffloadDependencesInputInfo.empty())
5380 InputInfos.append(OffloadDependencesInputInfo.begin(),
5381 OffloadDependencesInputInfo.end());
5382
5383 // Set the effective triple of the toolchain for the duration of this job.
5384 llvm::Triple EffectiveTriple;
5385 const ToolChain &ToolTC = T->getToolChain();
5386 const ArgList &Args =
5387 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5388 if (InputInfos.size() != 1) {
5389 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5390 } else {
5391 // Pass along the input type if it can be unambiguously determined.
5392 EffectiveTriple = llvm::Triple(
5393 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5394 }
5395 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5396
5397 // Determine the place to write output to, if any.
5398 InputInfo Result;
5399 InputInfoList UnbundlingResults;
5400 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5401 // If we have an unbundling job, we need to create results for all the
5402 // outputs. We also update the results cache so that other actions using
5403 // this unbundling action can get the right results.
5404 for (auto &UI : UA->getDependentActionsInfo()) {
5405 assert(UI.DependentOffloadKind != Action::OFK_None &&
5406 "Unbundling with no offloading??");
5407
5408 // Unbundling actions are never at the top level. When we generate the
5409 // offloading prefix, we also do that for the host file because the
5410 // unbundling action does not change the type of the output which can
5411 // cause a overwrite.
5412 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5413 UI.DependentOffloadKind,
5414 UI.DependentToolChain->getTriple().normalize(),
5415 /*CreatePrefixForHost=*/true);
5416 auto CurI = InputInfo(
5417 UA,
5418 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5419 /*AtTopLevel=*/false,
5420 MultipleArchs ||
5421 UI.DependentOffloadKind == Action::OFK_HIP,
5422 OffloadingPrefix),
5423 BaseInput);
5424 // Save the unbundling result.
5425 UnbundlingResults.push_back(CurI);
5426
5427 // Get the unique string identifier for this dependence and cache the
5428 // result.
5429 StringRef Arch;
5430 if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5431 if (UI.DependentOffloadKind == Action::OFK_Host)
5432 Arch = StringRef();
5433 else
5434 Arch = UI.DependentBoundArch;
5435 } else
5436 Arch = BoundArch;
5437
5438 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5439 UI.DependentOffloadKind)}] = {
5440 CurI};
5441 }
5442
5443 // Now that we have all the results generated, select the one that should be
5444 // returned for the current depending action.
5445 std::pair<const Action *, std::string> ActionTC = {
5446 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5447 assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5448 "Result does not exist??");
5449 Result = CachedResults[ActionTC].front();
5450 } else if (JA->getType() == types::TY_Nothing)
5451 Result = {InputInfo(A, BaseInput)};
5452 else {
5453 // We only have to generate a prefix for the host if this is not a top-level
5454 // action.
5455 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5456 A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5457 /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5458 !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5459 AtTopLevel));
5460 if (isa<OffloadWrapperJobAction>(JA)) {
5461 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5462 BaseInput = FinalOutput->getValue();
5463 else
5464 BaseInput = getDefaultImageName();
5465 BaseInput =
5466 C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
5467 }
5468 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5469 AtTopLevel, MultipleArchs,
5470 OffloadingPrefix),
5471 BaseInput);
5472 }
5473
5474 if (CCCPrintBindings && !CCGenDiagnostics) {
5475 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5476 << " - \"" << T->getName() << "\", inputs: [";
5477 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5478 llvm::errs() << InputInfos[i].getAsString();
5479 if (i + 1 != e)
5480 llvm::errs() << ", ";
5481 }
5482 if (UnbundlingResults.empty())
5483 llvm::errs() << "], output: " << Result.getAsString() << "\n";
5484 else {
5485 llvm::errs() << "], outputs: [";
5486 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5487 llvm::errs() << UnbundlingResults[i].getAsString();
5488 if (i + 1 != e)
5489 llvm::errs() << ", ";
5490 }
5491 llvm::errs() << "] \n";
5492 }
5493 } else {
5494 if (UnbundlingResults.empty())
5495 T->ConstructJob(
5496 C, *JA, Result, InputInfos,
5497 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5498 LinkingOutput);
5499 else
5500 T->ConstructJobMultipleOutputs(
5501 C, *JA, UnbundlingResults, InputInfos,
5502 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5503 LinkingOutput);
5504 }
5505 return {Result};
5506 }
5507
getDefaultImageName() const5508 const char *Driver::getDefaultImageName() const {
5509 llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5510 return Target.isOSWindows() ? "a.exe" : "a.out";
5511 }
5512
5513 /// Create output filename based on ArgValue, which could either be a
5514 /// full filename, filename without extension, or a directory. If ArgValue
5515 /// does not provide a filename, then use BaseName, and use the extension
5516 /// suitable for FileType.
MakeCLOutputFilename(const ArgList & Args,StringRef ArgValue,StringRef BaseName,types::ID FileType)5517 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5518 StringRef BaseName,
5519 types::ID FileType) {
5520 SmallString<128> Filename = ArgValue;
5521
5522 if (ArgValue.empty()) {
5523 // If the argument is empty, output to BaseName in the current dir.
5524 Filename = BaseName;
5525 } else if (llvm::sys::path::is_separator(Filename.back())) {
5526 // If the argument is a directory, output to BaseName in that dir.
5527 llvm::sys::path::append(Filename, BaseName);
5528 }
5529
5530 if (!llvm::sys::path::has_extension(ArgValue)) {
5531 // If the argument didn't provide an extension, then set it.
5532 const char *Extension = types::getTypeTempSuffix(FileType, true);
5533
5534 if (FileType == types::TY_Image &&
5535 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5536 // The output file is a dll.
5537 Extension = "dll";
5538 }
5539
5540 llvm::sys::path::replace_extension(Filename, Extension);
5541 }
5542
5543 return Args.MakeArgString(Filename.c_str());
5544 }
5545
HasPreprocessOutput(const Action & JA)5546 static bool HasPreprocessOutput(const Action &JA) {
5547 if (isa<PreprocessJobAction>(JA))
5548 return true;
5549 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5550 return true;
5551 if (isa<OffloadBundlingJobAction>(JA) &&
5552 HasPreprocessOutput(*(JA.getInputs()[0])))
5553 return true;
5554 return false;
5555 }
5556
GetNamedOutputPath(Compilation & C,const JobAction & JA,const char * BaseInput,StringRef OrigBoundArch,bool AtTopLevel,bool MultipleArchs,StringRef OffloadingPrefix) const5557 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5558 const char *BaseInput,
5559 StringRef OrigBoundArch, bool AtTopLevel,
5560 bool MultipleArchs,
5561 StringRef OffloadingPrefix) const {
5562 std::string BoundArch = OrigBoundArch.str();
5563 if (is_style_windows(llvm::sys::path::Style::native)) {
5564 // BoundArch may contains ':', which is invalid in file names on Windows,
5565 // therefore replace it with '%'.
5566 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5567 }
5568
5569 llvm::PrettyStackTraceString CrashInfo("Computing output path");
5570 // Output to a user requested destination?
5571 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5572 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5573 return C.addResultFile(FinalOutput->getValue(), &JA);
5574 }
5575
5576 // For /P, preprocess to file named after BaseInput.
5577 if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5578 assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5579 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5580 StringRef NameArg;
5581 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5582 NameArg = A->getValue();
5583 return C.addResultFile(
5584 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5585 &JA);
5586 }
5587
5588 // Default to writing to stdout?
5589 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5590 return "-";
5591 }
5592
5593 if (JA.getType() == types::TY_ModuleFile &&
5594 C.getArgs().getLastArg(options::OPT_module_file_info)) {
5595 return "-";
5596 }
5597
5598 // Is this the assembly listing for /FA?
5599 if (JA.getType() == types::TY_PP_Asm &&
5600 (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5601 C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5602 // Use /Fa and the input filename to determine the asm file name.
5603 StringRef BaseName = llvm::sys::path::filename(BaseInput);
5604 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5605 return C.addResultFile(
5606 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5607 &JA);
5608 }
5609
5610 // Output to a temporary file?
5611 if ((!AtTopLevel && !isSaveTempsEnabled() &&
5612 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5613 CCGenDiagnostics) {
5614 StringRef Name = llvm::sys::path::filename(BaseInput);
5615 std::pair<StringRef, StringRef> Split = Name.split('.');
5616 SmallString<128> TmpName;
5617 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5618 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5619 if (CCGenDiagnostics && A) {
5620 SmallString<128> CrashDirectory(A->getValue());
5621 if (!getVFS().exists(CrashDirectory))
5622 llvm::sys::fs::create_directories(CrashDirectory);
5623 llvm::sys::path::append(CrashDirectory, Split.first);
5624 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
5625 std::error_code EC = llvm::sys::fs::createUniqueFile(
5626 CrashDirectory + Middle + Suffix, TmpName);
5627 if (EC) {
5628 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5629 return "";
5630 }
5631 } else {
5632 if (MultipleArchs && !BoundArch.empty()) {
5633 TmpName = GetTemporaryDirectory(Split.first);
5634 llvm::sys::path::append(TmpName,
5635 Split.first + "-" + BoundArch + "." + Suffix);
5636 } else {
5637 TmpName = GetTemporaryPath(Split.first, Suffix);
5638 }
5639 }
5640 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5641 }
5642
5643 SmallString<128> BasePath(BaseInput);
5644 SmallString<128> ExternalPath("");
5645 StringRef BaseName;
5646
5647 // Dsymutil actions should use the full path.
5648 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5649 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5650 // We use posix style here because the tests (specifically
5651 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5652 // even on Windows and if we don't then the similar test covering this
5653 // fails.
5654 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5655 llvm::sys::path::filename(BasePath));
5656 BaseName = ExternalPath;
5657 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5658 BaseName = BasePath;
5659 else
5660 BaseName = llvm::sys::path::filename(BasePath);
5661
5662 // Determine what the derived output name should be.
5663 const char *NamedOutput;
5664
5665 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5666 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5667 // The /Fo or /o flag decides the object filename.
5668 StringRef Val =
5669 C.getArgs()
5670 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5671 ->getValue();
5672 NamedOutput =
5673 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5674 } else if (JA.getType() == types::TY_Image &&
5675 C.getArgs().hasArg(options::OPT__SLASH_Fe,
5676 options::OPT__SLASH_o)) {
5677 // The /Fe or /o flag names the linked file.
5678 StringRef Val =
5679 C.getArgs()
5680 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5681 ->getValue();
5682 NamedOutput =
5683 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5684 } else if (JA.getType() == types::TY_Image) {
5685 if (IsCLMode()) {
5686 // clang-cl uses BaseName for the executable name.
5687 NamedOutput =
5688 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5689 } else {
5690 SmallString<128> Output(getDefaultImageName());
5691 // HIP image for device compilation with -fno-gpu-rdc is per compilation
5692 // unit.
5693 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5694 !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5695 options::OPT_fno_gpu_rdc, false);
5696 bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
5697 if (UseOutExtension) {
5698 Output = BaseName;
5699 llvm::sys::path::replace_extension(Output, "");
5700 }
5701 Output += OffloadingPrefix;
5702 if (MultipleArchs && !BoundArch.empty()) {
5703 Output += "-";
5704 Output.append(BoundArch);
5705 }
5706 if (UseOutExtension)
5707 Output += ".out";
5708 NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5709 }
5710 } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5711 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5712 } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
5713 C.getArgs().hasArg(options::OPT__SLASH_o)) {
5714 StringRef Val =
5715 C.getArgs()
5716 .getLastArg(options::OPT__SLASH_o)
5717 ->getValue();
5718 NamedOutput =
5719 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5720 } else {
5721 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5722 assert(Suffix && "All types used for output should have a suffix.");
5723
5724 std::string::size_type End = std::string::npos;
5725 if (!types::appendSuffixForType(JA.getType()))
5726 End = BaseName.rfind('.');
5727 SmallString<128> Suffixed(BaseName.substr(0, End));
5728 Suffixed += OffloadingPrefix;
5729 if (MultipleArchs && !BoundArch.empty()) {
5730 Suffixed += "-";
5731 Suffixed.append(BoundArch);
5732 }
5733 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5734 // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5735 // optimized bitcode output.
5736 auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
5737 const llvm::opt::DerivedArgList &Args) {
5738 // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5739 // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5740 // phase.)
5741 return isa<CompileJobAction>(JA) &&
5742 JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5743 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5744 false);
5745 };
5746 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5747 (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5748 IsHIPRDCInCompilePhase(JA, C.getArgs())))
5749 Suffixed += ".tmp";
5750 Suffixed += '.';
5751 Suffixed += Suffix;
5752 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5753 }
5754
5755 // Prepend object file path if -save-temps=obj
5756 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5757 JA.getType() != types::TY_PCH) {
5758 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5759 SmallString<128> TempPath(FinalOutput->getValue());
5760 llvm::sys::path::remove_filename(TempPath);
5761 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5762 llvm::sys::path::append(TempPath, OutputFileName);
5763 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5764 }
5765
5766 // If we're saving temps and the temp file conflicts with the input file,
5767 // then avoid overwriting input file.
5768 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5769 bool SameFile = false;
5770 SmallString<256> Result;
5771 llvm::sys::fs::current_path(Result);
5772 llvm::sys::path::append(Result, BaseName);
5773 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5774 // Must share the same path to conflict.
5775 if (SameFile) {
5776 StringRef Name = llvm::sys::path::filename(BaseInput);
5777 std::pair<StringRef, StringRef> Split = Name.split('.');
5778 std::string TmpName = GetTemporaryPath(
5779 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
5780 return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5781 }
5782 }
5783
5784 // As an annoying special case, PCH generation doesn't strip the pathname.
5785 if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5786 llvm::sys::path::remove_filename(BasePath);
5787 if (BasePath.empty())
5788 BasePath = NamedOutput;
5789 else
5790 llvm::sys::path::append(BasePath, NamedOutput);
5791 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5792 } else {
5793 return C.addResultFile(NamedOutput, &JA);
5794 }
5795 }
5796
GetFilePath(StringRef Name,const ToolChain & TC) const5797 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5798 // Search for Name in a list of paths.
5799 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5800 -> llvm::Optional<std::string> {
5801 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5802 // attempting to use this prefix when looking for file paths.
5803 for (const auto &Dir : P) {
5804 if (Dir.empty())
5805 continue;
5806 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5807 llvm::sys::path::append(P, Name);
5808 if (llvm::sys::fs::exists(Twine(P)))
5809 return std::string(P);
5810 }
5811 return None;
5812 };
5813
5814 if (auto P = SearchPaths(PrefixDirs))
5815 return *P;
5816
5817 SmallString<128> R(ResourceDir);
5818 llvm::sys::path::append(R, Name);
5819 if (llvm::sys::fs::exists(Twine(R)))
5820 return std::string(R.str());
5821
5822 SmallString<128> P(TC.getCompilerRTPath());
5823 llvm::sys::path::append(P, Name);
5824 if (llvm::sys::fs::exists(Twine(P)))
5825 return std::string(P.str());
5826
5827 SmallString<128> D(Dir);
5828 llvm::sys::path::append(D, "..", Name);
5829 if (llvm::sys::fs::exists(Twine(D)))
5830 return std::string(D.str());
5831
5832 if (auto P = SearchPaths(TC.getLibraryPaths()))
5833 return *P;
5834
5835 if (auto P = SearchPaths(TC.getFilePaths()))
5836 return *P;
5837
5838 return std::string(Name);
5839 }
5840
generatePrefixedToolNames(StringRef Tool,const ToolChain & TC,SmallVectorImpl<std::string> & Names) const5841 void Driver::generatePrefixedToolNames(
5842 StringRef Tool, const ToolChain &TC,
5843 SmallVectorImpl<std::string> &Names) const {
5844 // FIXME: Needs a better variable than TargetTriple
5845 Names.emplace_back((TargetTriple + "-" + Tool).str());
5846 Names.emplace_back(Tool);
5847 }
5848
ScanDirForExecutable(SmallString<128> & Dir,StringRef Name)5849 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5850 llvm::sys::path::append(Dir, Name);
5851 if (llvm::sys::fs::can_execute(Twine(Dir)))
5852 return true;
5853 llvm::sys::path::remove_filename(Dir);
5854 return false;
5855 }
5856
GetProgramPath(StringRef Name,const ToolChain & TC) const5857 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5858 SmallVector<std::string, 2> TargetSpecificExecutables;
5859 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5860
5861 // Respect a limited subset of the '-Bprefix' functionality in GCC by
5862 // attempting to use this prefix when looking for program paths.
5863 for (const auto &PrefixDir : PrefixDirs) {
5864 if (llvm::sys::fs::is_directory(PrefixDir)) {
5865 SmallString<128> P(PrefixDir);
5866 if (ScanDirForExecutable(P, Name))
5867 return std::string(P.str());
5868 } else {
5869 SmallString<128> P((PrefixDir + Name).str());
5870 if (llvm::sys::fs::can_execute(Twine(P)))
5871 return std::string(P.str());
5872 }
5873 }
5874
5875 const ToolChain::path_list &List = TC.getProgramPaths();
5876 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5877 // For each possible name of the tool look for it in
5878 // program paths first, then the path.
5879 // Higher priority names will be first, meaning that
5880 // a higher priority name in the path will be found
5881 // instead of a lower priority name in the program path.
5882 // E.g. <triple>-gcc on the path will be found instead
5883 // of gcc in the program path
5884 for (const auto &Path : List) {
5885 SmallString<128> P(Path);
5886 if (ScanDirForExecutable(P, TargetSpecificExecutable))
5887 return std::string(P.str());
5888 }
5889
5890 // Fall back to the path
5891 if (llvm::ErrorOr<std::string> P =
5892 llvm::sys::findProgramByName(TargetSpecificExecutable))
5893 return *P;
5894 }
5895
5896 return std::string(Name);
5897 }
5898
GetTemporaryPath(StringRef Prefix,StringRef Suffix) const5899 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5900 SmallString<128> Path;
5901 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5902 if (EC) {
5903 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5904 return "";
5905 }
5906
5907 return std::string(Path.str());
5908 }
5909
GetTemporaryDirectory(StringRef Prefix) const5910 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
5911 SmallString<128> Path;
5912 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5913 if (EC) {
5914 Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5915 return "";
5916 }
5917
5918 return std::string(Path.str());
5919 }
5920
GetClPchPath(Compilation & C,StringRef BaseName) const5921 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
5922 SmallString<128> Output;
5923 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
5924 // FIXME: If anybody needs it, implement this obscure rule:
5925 // "If you specify a directory without a file name, the default file name
5926 // is VCx0.pch., where x is the major version of Visual C++ in use."
5927 Output = FpArg->getValue();
5928
5929 // "If you do not specify an extension as part of the path name, an
5930 // extension of .pch is assumed. "
5931 if (!llvm::sys::path::has_extension(Output))
5932 Output += ".pch";
5933 } else {
5934 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
5935 Output = YcArg->getValue();
5936 if (Output.empty())
5937 Output = BaseName;
5938 llvm::sys::path::replace_extension(Output, ".pch");
5939 }
5940 return std::string(Output.str());
5941 }
5942
getToolChain(const ArgList & Args,const llvm::Triple & Target) const5943 const ToolChain &Driver::getToolChain(const ArgList &Args,
5944 const llvm::Triple &Target) const {
5945
5946 auto &TC = ToolChains[Target.str()];
5947 if (!TC) {
5948 switch (Target.getOS()) {
5949 case llvm::Triple::AIX:
5950 TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
5951 break;
5952 case llvm::Triple::Haiku:
5953 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
5954 break;
5955 case llvm::Triple::Ananas:
5956 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
5957 break;
5958 case llvm::Triple::CloudABI:
5959 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
5960 break;
5961 case llvm::Triple::Darwin:
5962 case llvm::Triple::MacOSX:
5963 case llvm::Triple::IOS:
5964 case llvm::Triple::TvOS:
5965 case llvm::Triple::WatchOS:
5966 case llvm::Triple::DriverKit:
5967 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
5968 break;
5969 case llvm::Triple::DragonFly:
5970 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
5971 break;
5972 case llvm::Triple::OpenBSD:
5973 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
5974 break;
5975 case llvm::Triple::NetBSD:
5976 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5977 break;
5978 case llvm::Triple::FreeBSD:
5979 if (Target.isPPC())
5980 TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
5981 Args);
5982 else
5983 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5984 break;
5985 case llvm::Triple::Minix:
5986 TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5987 break;
5988 case llvm::Triple::Linux:
5989 case llvm::Triple::ELFIAMCU:
5990 if (Target.getArch() == llvm::Triple::hexagon)
5991 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5992 Args);
5993 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5994 !Target.hasEnvironment())
5995 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5996 Args);
5997 else if (Target.isPPC())
5998 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5999 Args);
6000 else if (Target.getArch() == llvm::Triple::ve)
6001 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6002
6003 else
6004 TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6005 break;
6006 case llvm::Triple::NaCl:
6007 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6008 break;
6009 case llvm::Triple::Fuchsia:
6010 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6011 break;
6012 case llvm::Triple::Solaris:
6013 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6014 break;
6015 case llvm::Triple::AMDHSA:
6016 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6017 break;
6018 case llvm::Triple::AMDPAL:
6019 case llvm::Triple::Mesa3D:
6020 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6021 break;
6022 case llvm::Triple::Win32:
6023 switch (Target.getEnvironment()) {
6024 default:
6025 if (Target.isOSBinFormatELF())
6026 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6027 else if (Target.isOSBinFormatMachO())
6028 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6029 else
6030 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6031 break;
6032 case llvm::Triple::GNU:
6033 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6034 break;
6035 case llvm::Triple::Itanium:
6036 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6037 Args);
6038 break;
6039 case llvm::Triple::MSVC:
6040 case llvm::Triple::UnknownEnvironment:
6041 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6042 .startswith_insensitive("bfd"))
6043 TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6044 *this, Target, Args);
6045 else
6046 TC =
6047 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6048 break;
6049 }
6050 break;
6051 case llvm::Triple::PS4:
6052 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6053 break;
6054 case llvm::Triple::PS5:
6055 TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6056 break;
6057 case llvm::Triple::Contiki:
6058 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
6059 break;
6060 case llvm::Triple::Hurd:
6061 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6062 break;
6063 case llvm::Triple::ZOS:
6064 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6065 break;
6066 case llvm::Triple::ShaderModel:
6067 TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6068 break;
6069 default:
6070 // Of these targets, Hexagon is the only one that might have
6071 // an OS of Linux, in which case it got handled above already.
6072 switch (Target.getArch()) {
6073 case llvm::Triple::tce:
6074 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6075 break;
6076 case llvm::Triple::tcele:
6077 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6078 break;
6079 case llvm::Triple::hexagon:
6080 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6081 Args);
6082 break;
6083 case llvm::Triple::lanai:
6084 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6085 break;
6086 case llvm::Triple::xcore:
6087 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6088 break;
6089 case llvm::Triple::wasm32:
6090 case llvm::Triple::wasm64:
6091 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6092 break;
6093 case llvm::Triple::avr:
6094 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6095 break;
6096 case llvm::Triple::msp430:
6097 TC =
6098 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6099 break;
6100 case llvm::Triple::riscv32:
6101 case llvm::Triple::riscv64:
6102 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6103 TC =
6104 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6105 else
6106 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6107 break;
6108 case llvm::Triple::ve:
6109 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6110 break;
6111 case llvm::Triple::spirv32:
6112 case llvm::Triple::spirv64:
6113 TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6114 break;
6115 case llvm::Triple::csky:
6116 TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6117 break;
6118 default:
6119 if (Target.getVendor() == llvm::Triple::Myriad)
6120 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
6121 Args);
6122 else if (toolchains::BareMetal::handlesTarget(Target))
6123 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6124 else if (Target.isOSBinFormatELF())
6125 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6126 else if (Target.isOSBinFormatMachO())
6127 TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6128 else
6129 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6130 }
6131 }
6132 }
6133
6134 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
6135 // compiles always need two toolchains, the CUDA toolchain and the host
6136 // toolchain. So the only valid way to create a CUDA toolchain is via
6137 // CreateOffloadingDeviceToolChains.
6138
6139 return *TC;
6140 }
6141
getOffloadingDeviceToolChain(const ArgList & Args,const llvm::Triple & Target,const ToolChain & HostTC,const Action::OffloadKind & TargetDeviceOffloadKind) const6142 const ToolChain &Driver::getOffloadingDeviceToolChain(
6143 const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6144 const Action::OffloadKind &TargetDeviceOffloadKind) const {
6145 // Use device / host triples as the key into the ToolChains map because the
6146 // device ToolChain we create depends on both.
6147 auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6148 if (!TC) {
6149 // Categorized by offload kind > arch rather than OS > arch like
6150 // the normal getToolChain call, as it seems a reasonable way to categorize
6151 // things.
6152 switch (TargetDeviceOffloadKind) {
6153 case Action::OFK_HIP: {
6154 if (Target.getArch() == llvm::Triple::amdgcn &&
6155 Target.getVendor() == llvm::Triple::AMD &&
6156 Target.getOS() == llvm::Triple::AMDHSA)
6157 TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6158 HostTC, Args);
6159 else if (Target.getArch() == llvm::Triple::spirv64 &&
6160 Target.getVendor() == llvm::Triple::UnknownVendor &&
6161 Target.getOS() == llvm::Triple::UnknownOS)
6162 TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6163 HostTC, Args);
6164 break;
6165 }
6166 default:
6167 break;
6168 }
6169 }
6170
6171 return *TC;
6172 }
6173
ShouldUseClangCompiler(const JobAction & JA) const6174 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6175 // Say "no" if there is not exactly one input of a type clang understands.
6176 if (JA.size() != 1 ||
6177 !types::isAcceptedByClang((*JA.input_begin())->getType()))
6178 return false;
6179
6180 // And say "no" if this is not a kind of action clang understands.
6181 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6182 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6183 !isa<ExtractAPIJobAction>(JA))
6184 return false;
6185
6186 return true;
6187 }
6188
ShouldUseFlangCompiler(const JobAction & JA) const6189 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6190 // Say "no" if there is not exactly one input of a type flang understands.
6191 if (JA.size() != 1 ||
6192 !types::isAcceptedByFlang((*JA.input_begin())->getType()))
6193 return false;
6194
6195 // And say "no" if this is not a kind of action flang understands.
6196 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6197 !isa<BackendJobAction>(JA))
6198 return false;
6199
6200 return true;
6201 }
6202
ShouldEmitStaticLibrary(const ArgList & Args) const6203 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6204 // Only emit static library if the flag is set explicitly.
6205 if (Args.hasArg(options::OPT_emit_static_lib))
6206 return true;
6207 return false;
6208 }
6209
6210 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6211 /// grouped values as integers. Numbers which are not provided are set to 0.
6212 ///
6213 /// \return True if the entire string was parsed (9.2), or all groups were
6214 /// parsed (10.3.5extrastuff).
GetReleaseVersion(StringRef Str,unsigned & Major,unsigned & Minor,unsigned & Micro,bool & HadExtra)6215 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6216 unsigned &Micro, bool &HadExtra) {
6217 HadExtra = false;
6218
6219 Major = Minor = Micro = 0;
6220 if (Str.empty())
6221 return false;
6222
6223 if (Str.consumeInteger(10, Major))
6224 return false;
6225 if (Str.empty())
6226 return true;
6227 if (Str[0] != '.')
6228 return false;
6229
6230 Str = Str.drop_front(1);
6231
6232 if (Str.consumeInteger(10, Minor))
6233 return false;
6234 if (Str.empty())
6235 return true;
6236 if (Str[0] != '.')
6237 return false;
6238 Str = Str.drop_front(1);
6239
6240 if (Str.consumeInteger(10, Micro))
6241 return false;
6242 if (!Str.empty())
6243 HadExtra = true;
6244 return true;
6245 }
6246
6247 /// Parse digits from a string \p Str and fulfill \p Digits with
6248 /// the parsed numbers. This method assumes that the max number of
6249 /// digits to look for is equal to Digits.size().
6250 ///
6251 /// \return True if the entire string was parsed and there are
6252 /// no extra characters remaining at the end.
GetReleaseVersion(StringRef Str,MutableArrayRef<unsigned> Digits)6253 bool Driver::GetReleaseVersion(StringRef Str,
6254 MutableArrayRef<unsigned> Digits) {
6255 if (Str.empty())
6256 return false;
6257
6258 unsigned CurDigit = 0;
6259 while (CurDigit < Digits.size()) {
6260 unsigned Digit;
6261 if (Str.consumeInteger(10, Digit))
6262 return false;
6263 Digits[CurDigit] = Digit;
6264 if (Str.empty())
6265 return true;
6266 if (Str[0] != '.')
6267 return false;
6268 Str = Str.drop_front(1);
6269 CurDigit++;
6270 }
6271
6272 // More digits than requested, bail out...
6273 return false;
6274 }
6275
6276 std::pair<unsigned, unsigned>
getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const6277 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
6278 unsigned IncludedFlagsBitmask = 0;
6279 unsigned ExcludedFlagsBitmask = options::NoDriverOption;
6280
6281 if (IsClCompatMode) {
6282 // Include CL and Core options.
6283 IncludedFlagsBitmask |= options::CLOption;
6284 IncludedFlagsBitmask |= options::CLDXCOption;
6285 IncludedFlagsBitmask |= options::CoreOption;
6286 } else {
6287 ExcludedFlagsBitmask |= options::CLOption;
6288 }
6289 if (IsDXCMode()) {
6290 // Include DXC and Core options.
6291 IncludedFlagsBitmask |= options::DXCOption;
6292 IncludedFlagsBitmask |= options::CLDXCOption;
6293 IncludedFlagsBitmask |= options::CoreOption;
6294 } else {
6295 ExcludedFlagsBitmask |= options::DXCOption;
6296 }
6297 if (!IsClCompatMode && !IsDXCMode())
6298 ExcludedFlagsBitmask |= options::CLDXCOption;
6299
6300 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
6301 }
6302
isOptimizationLevelFast(const ArgList & Args)6303 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6304 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6305 }
6306
willEmitRemarks(const ArgList & Args)6307 bool clang::driver::willEmitRemarks(const ArgList &Args) {
6308 // -fsave-optimization-record enables it.
6309 if (Args.hasFlag(options::OPT_fsave_optimization_record,
6310 options::OPT_fno_save_optimization_record, false))
6311 return true;
6312
6313 // -fsave-optimization-record=<format> enables it as well.
6314 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6315 options::OPT_fno_save_optimization_record, false))
6316 return true;
6317
6318 // -foptimization-record-file alone enables it too.
6319 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6320 options::OPT_fno_save_optimization_record, false))
6321 return true;
6322
6323 // -foptimization-record-passes alone enables it too.
6324 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6325 options::OPT_fno_save_optimization_record, false))
6326 return true;
6327 return false;
6328 }
6329
getDriverMode(StringRef ProgName,ArrayRef<const char * > Args)6330 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6331 ArrayRef<const char *> Args) {
6332 static const std::string OptName =
6333 getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6334 llvm::StringRef Opt;
6335 for (StringRef Arg : Args) {
6336 if (!Arg.startswith(OptName))
6337 continue;
6338 Opt = Arg;
6339 }
6340 if (Opt.empty())
6341 Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6342 return Opt.consume_front(OptName) ? Opt : "";
6343 }
6344
IsClangCL(StringRef DriverMode)6345 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
6346