1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
19 #include "ToolChains/CrossWindows.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Hurd.h"
30 #include "ToolChains/Lanai.h"
31 #include "ToolChains/Linux.h"
32 #include "ToolChains/MSP430.h"
33 #include "ToolChains/MSVC.h"
34 #include "ToolChains/MinGW.h"
35 #include "ToolChains/Minix.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/Myriad.h"
38 #include "ToolChains/NaCl.h"
39 #include "ToolChains/NetBSD.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCLinux.h"
42 #include "ToolChains/PS4CPU.h"
43 #include "ToolChains/RISCVToolchain.h"
44 #include "ToolChains/Solaris.h"
45 #include "ToolChains/TCE.h"
46 #include "ToolChains/VEToolchain.h"
47 #include "ToolChains/WebAssembly.h"
48 #include "ToolChains/XCore.h"
49 #include "ToolChains/ZOS.h"
50 #include "clang/Basic/TargetID.h"
51 #include "clang/Basic/Version.h"
52 #include "clang/Config/config.h"
53 #include "clang/Driver/Action.h"
54 #include "clang/Driver/Compilation.h"
55 #include "clang/Driver/DriverDiagnostic.h"
56 #include "clang/Driver/InputInfo.h"
57 #include "clang/Driver/Job.h"
58 #include "clang/Driver/Options.h"
59 #include "clang/Driver/SanitizerArgs.h"
60 #include "clang/Driver/Tool.h"
61 #include "clang/Driver/ToolChain.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallSet.h"
65 #include "llvm/ADT/StringExtras.h"
66 #include "llvm/ADT/StringRef.h"
67 #include "llvm/ADT/StringSet.h"
68 #include "llvm/ADT/StringSwitch.h"
69 #include "llvm/Config/llvm-config.h"
70 #include "llvm/Option/Arg.h"
71 #include "llvm/Option/ArgList.h"
72 #include "llvm/Option/OptSpecifier.h"
73 #include "llvm/Option/OptTable.h"
74 #include "llvm/Option/Option.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/ExitCodes.h"
78 #include "llvm/Support/FileSystem.h"
79 #include "llvm/Support/FormatVariadic.h"
80 #include "llvm/Support/Host.h"
81 #include "llvm/Support/MD5.h"
82 #include "llvm/Support/Path.h"
83 #include "llvm/Support/PrettyStackTrace.h"
84 #include "llvm/Support/Process.h"
85 #include "llvm/Support/Program.h"
86 #include "llvm/Support/StringSaver.h"
87 #include "llvm/Support/TargetRegistry.h"
88 #include "llvm/Support/VirtualFileSystem.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <map>
91 #include <memory>
92 #include <utility>
93 #if LLVM_ON_UNIX
94 #include <unistd.h> // getpid
95 #endif
96 
97 using namespace clang::driver;
98 using namespace clang;
99 using namespace llvm::opt;
100 
101 static llvm::Triple getHIPOffloadTargetTriple() {
102   static const llvm::Triple T("amdgcn-amd-amdhsa");
103   return T;
104 }
105 
106 // static
107 std::string Driver::GetResourcesPath(StringRef BinaryPath,
108                                      StringRef CustomResourceDir) {
109   // Since the resource directory is embedded in the module hash, it's important
110   // that all places that need it call this function, so that they get the
111   // exact same string ("a/../b/" and "b/" get different hashes, for example).
112 
113   // Dir is bin/ or lib/, depending on where BinaryPath is.
114   std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
115 
116   SmallString<128> P(Dir);
117   if (CustomResourceDir != "") {
118     llvm::sys::path::append(P, CustomResourceDir);
119   } else {
120     // On Windows, libclang.dll is in bin/.
121     // On non-Windows, libclang.so/.dylib is in lib/.
122     // With a static-library build of libclang, LibClangPath will contain the
123     // path of the embedding binary, which for LLVM binaries will be in bin/.
124     // ../lib gets us to lib/ in both cases.
125     P = llvm::sys::path::parent_path(Dir);
126     llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
127                             CLANG_VERSION_STRING);
128   }
129 
130   return std::string(P.str());
131 }
132 
133 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
134                DiagnosticsEngine &Diags, std::string Title,
135                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
136     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
137       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
138       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
139       DriverTitle(Title), CCPrintStatReportFilename(), CCPrintOptionsFilename(),
140       CCPrintHeadersFilename(), CCLogDiagnosticsFilename(),
141       CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
142       CCLogDiagnostics(false), CCGenDiagnostics(false),
143       CCPrintProcessStats(false), TargetTriple(TargetTriple),
144       CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
145       GenReproducer(false), SuppressMissingInputWarning(false) {
146   // Provide a sane fallback if no VFS is specified.
147   if (!this->VFS)
148     this->VFS = llvm::vfs::getRealFileSystem();
149 
150   Name = std::string(llvm::sys::path::filename(ClangExecutable));
151   Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
152   InstalledDir = Dir; // Provide a sensible default installed dir.
153 
154   if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
155     // Prepend InstalledDir if SysRoot is relative
156     SmallString<128> P(InstalledDir);
157     llvm::sys::path::append(P, SysRoot);
158     SysRoot = std::string(P);
159   }
160 
161 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
162   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
163 #endif
164 #if defined(CLANG_CONFIG_FILE_USER_DIR)
165   UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
166 #endif
167 
168   // Compute the path to the resource directory.
169   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
170 }
171 
172 void Driver::setDriverMode(StringRef Value) {
173   static const std::string OptName =
174       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
175   if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
176                    .Case("gcc", GCCMode)
177                    .Case("g++", GXXMode)
178                    .Case("cpp", CPPMode)
179                    .Case("cl", CLMode)
180                    .Case("flang", FlangMode)
181                    .Default(None))
182     Mode = *M;
183   else
184     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
185 }
186 
187 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
188                                      bool IsClCompatMode,
189                                      bool &ContainsError) {
190   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
191   ContainsError = false;
192 
193   unsigned IncludedFlagsBitmask;
194   unsigned ExcludedFlagsBitmask;
195   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
196       getIncludeExcludeOptionFlagMasks(IsClCompatMode);
197 
198   // Make sure that Flang-only options don't pollute the Clang output
199   // TODO: Make sure that Clang-only options don't pollute Flang output
200   if (!IsFlangMode())
201     ExcludedFlagsBitmask |= options::FlangOnlyOption;
202 
203   unsigned MissingArgIndex, MissingArgCount;
204   InputArgList Args =
205       getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
206                           IncludedFlagsBitmask, ExcludedFlagsBitmask);
207 
208   // Check for missing argument error.
209   if (MissingArgCount) {
210     Diag(diag::err_drv_missing_argument)
211         << Args.getArgString(MissingArgIndex) << MissingArgCount;
212     ContainsError |=
213         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
214                                  SourceLocation()) > DiagnosticsEngine::Warning;
215   }
216 
217   // Check for unsupported options.
218   for (const Arg *A : Args) {
219     if (A->getOption().hasFlag(options::Unsupported)) {
220       unsigned DiagID;
221       auto ArgString = A->getAsString(Args);
222       std::string Nearest;
223       if (getOpts().findNearest(
224             ArgString, Nearest, IncludedFlagsBitmask,
225             ExcludedFlagsBitmask | options::Unsupported) > 1) {
226         DiagID = diag::err_drv_unsupported_opt;
227         Diag(DiagID) << ArgString;
228       } else {
229         DiagID = diag::err_drv_unsupported_opt_with_suggestion;
230         Diag(DiagID) << ArgString << Nearest;
231       }
232       ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
233                        DiagnosticsEngine::Warning;
234       continue;
235     }
236 
237     // Warn about -mcpu= without an argument.
238     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
239       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
240       ContainsError |= Diags.getDiagnosticLevel(
241                            diag::warn_drv_empty_joined_argument,
242                            SourceLocation()) > DiagnosticsEngine::Warning;
243     }
244   }
245 
246   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
247     unsigned DiagID;
248     auto ArgString = A->getAsString(Args);
249     std::string Nearest;
250     if (getOpts().findNearest(
251           ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
252       DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
253                           : diag::err_drv_unknown_argument;
254       Diags.Report(DiagID) << ArgString;
255     } else {
256       DiagID = IsCLMode()
257                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
258                    : diag::err_drv_unknown_argument_with_suggestion;
259       Diags.Report(DiagID) << ArgString << Nearest;
260     }
261     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
262                      DiagnosticsEngine::Warning;
263   }
264 
265   return Args;
266 }
267 
268 // Determine which compilation mode we are in. We look for options which
269 // affect the phase, starting with the earliest phases, and record which
270 // option we used to determine the final phase.
271 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
272                                  Arg **FinalPhaseArg) const {
273   Arg *PhaseArg = nullptr;
274   phases::ID FinalPhase;
275 
276   // -{E,EP,P,M,MM} only run the preprocessor.
277   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
278       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
279       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
280       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
281     FinalPhase = phases::Preprocess;
282 
283   // --precompile only runs up to precompilation.
284   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
285     FinalPhase = phases::Precompile;
286 
287   // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
288   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
289              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
290              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
291              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
292              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
293              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
294              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
295              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
296              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
297     FinalPhase = phases::Compile;
298 
299   // -S only runs up to the backend.
300   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
301     FinalPhase = phases::Backend;
302 
303   // -c compilation only runs up to the assembler.
304   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
305     FinalPhase = phases::Assemble;
306 
307   // Otherwise do everything.
308   } else
309     FinalPhase = phases::Link;
310 
311   if (FinalPhaseArg)
312     *FinalPhaseArg = PhaseArg;
313 
314   return FinalPhase;
315 }
316 
317 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
318                          StringRef Value, bool Claim = true) {
319   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
320                    Args.getBaseArgs().MakeIndex(Value), Value.data());
321   Args.AddSynthesizedArg(A);
322   if (Claim)
323     A->claim();
324   return A;
325 }
326 
327 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
328   const llvm::opt::OptTable &Opts = getOpts();
329   DerivedArgList *DAL = new DerivedArgList(Args);
330 
331   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
332   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
333   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
334   for (Arg *A : Args) {
335     // Unfortunately, we have to parse some forwarding options (-Xassembler,
336     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
337     // (assembler and preprocessor), or bypass a previous driver ('collect2').
338 
339     // Rewrite linker options, to replace --no-demangle with a custom internal
340     // option.
341     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
342          A->getOption().matches(options::OPT_Xlinker)) &&
343         A->containsValue("--no-demangle")) {
344       // Add the rewritten no-demangle argument.
345       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
346 
347       // Add the remaining values as Xlinker arguments.
348       for (StringRef Val : A->getValues())
349         if (Val != "--no-demangle")
350           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
351 
352       continue;
353     }
354 
355     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
356     // some build systems. We don't try to be complete here because we don't
357     // care to encourage this usage model.
358     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
359         (A->getValue(0) == StringRef("-MD") ||
360          A->getValue(0) == StringRef("-MMD"))) {
361       // Rewrite to -MD/-MMD along with -MF.
362       if (A->getValue(0) == StringRef("-MD"))
363         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
364       else
365         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
366       if (A->getNumValues() == 2)
367         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
368       continue;
369     }
370 
371     // Rewrite reserved library names.
372     if (A->getOption().matches(options::OPT_l)) {
373       StringRef Value = A->getValue();
374 
375       // Rewrite unless -nostdlib is present.
376       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
377           Value == "stdc++") {
378         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
379         continue;
380       }
381 
382       // Rewrite unconditionally.
383       if (Value == "cc_kext") {
384         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
385         continue;
386       }
387     }
388 
389     // Pick up inputs via the -- option.
390     if (A->getOption().matches(options::OPT__DASH_DASH)) {
391       A->claim();
392       for (StringRef Val : A->getValues())
393         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
394       continue;
395     }
396 
397     DAL->append(A);
398   }
399 
400   // Enforce -static if -miamcu is present.
401   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
402     DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
403 
404 // Add a default value of -mlinker-version=, if one was given and the user
405 // didn't specify one.
406 #if defined(HOST_LINK_VERSION)
407   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
408       strlen(HOST_LINK_VERSION) > 0) {
409     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
410                       HOST_LINK_VERSION);
411     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
412   }
413 #endif
414 
415   return DAL;
416 }
417 
418 /// Compute target triple from args.
419 ///
420 /// This routine provides the logic to compute a target triple from various
421 /// args passed to the driver and the default triple string.
422 static llvm::Triple computeTargetTriple(const Driver &D,
423                                         StringRef TargetTriple,
424                                         const ArgList &Args,
425                                         StringRef DarwinArchName = "") {
426   // FIXME: Already done in Compilation *Driver::BuildCompilation
427   if (const Arg *A = Args.getLastArg(options::OPT_target))
428     TargetTriple = A->getValue();
429 
430   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
431 
432   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
433   // -gnu* only, and we can not change this, so we have to detect that case as
434   // being the Hurd OS.
435   if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
436       TargetTriple.find("-pc-gnu") != StringRef::npos)
437     Target.setOSName("hurd");
438 
439   // Handle Apple-specific options available here.
440   if (Target.isOSBinFormatMachO()) {
441     // If an explicit Darwin arch name is given, that trumps all.
442     if (!DarwinArchName.empty()) {
443       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
444       return Target;
445     }
446 
447     // Handle the Darwin '-arch' flag.
448     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
449       StringRef ArchName = A->getValue();
450       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
451     }
452   }
453 
454   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
455   // '-mbig-endian'/'-EB'.
456   if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
457                                options::OPT_mbig_endian)) {
458     if (A->getOption().matches(options::OPT_mlittle_endian)) {
459       llvm::Triple LE = Target.getLittleEndianArchVariant();
460       if (LE.getArch() != llvm::Triple::UnknownArch)
461         Target = std::move(LE);
462     } else {
463       llvm::Triple BE = Target.getBigEndianArchVariant();
464       if (BE.getArch() != llvm::Triple::UnknownArch)
465         Target = std::move(BE);
466     }
467   }
468 
469   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
470   if (Target.getArch() == llvm::Triple::tce ||
471       Target.getOS() == llvm::Triple::Minix)
472     return Target;
473 
474   // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
475   if (Target.isOSAIX()) {
476     if (Optional<std::string> ObjectModeValue =
477             llvm::sys::Process::GetEnv("OBJECT_MODE")) {
478       StringRef ObjectMode = *ObjectModeValue;
479       llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
480 
481       if (ObjectMode.equals("64")) {
482         AT = Target.get64BitArchVariant().getArch();
483       } else if (ObjectMode.equals("32")) {
484         AT = Target.get32BitArchVariant().getArch();
485       } else {
486         D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
487       }
488 
489       if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
490         Target.setArch(AT);
491     }
492   }
493 
494   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
495   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
496                            options::OPT_m32, options::OPT_m16);
497   if (A) {
498     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
499 
500     if (A->getOption().matches(options::OPT_m64)) {
501       AT = Target.get64BitArchVariant().getArch();
502       if (Target.getEnvironment() == llvm::Triple::GNUX32)
503         Target.setEnvironment(llvm::Triple::GNU);
504       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
505         Target.setEnvironment(llvm::Triple::Musl);
506     } else if (A->getOption().matches(options::OPT_mx32) &&
507                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
508       AT = llvm::Triple::x86_64;
509       if (Target.getEnvironment() == llvm::Triple::Musl)
510         Target.setEnvironment(llvm::Triple::MuslX32);
511       else
512         Target.setEnvironment(llvm::Triple::GNUX32);
513     } else if (A->getOption().matches(options::OPT_m32)) {
514       AT = Target.get32BitArchVariant().getArch();
515       if (Target.getEnvironment() == llvm::Triple::GNUX32)
516         Target.setEnvironment(llvm::Triple::GNU);
517       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
518         Target.setEnvironment(llvm::Triple::Musl);
519     } else if (A->getOption().matches(options::OPT_m16) &&
520                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
521       AT = llvm::Triple::x86;
522       Target.setEnvironment(llvm::Triple::CODE16);
523     }
524 
525     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
526       Target.setArch(AT);
527   }
528 
529   // Handle -miamcu flag.
530   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
531     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
532       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
533                                                        << Target.str();
534 
535     if (A && !A->getOption().matches(options::OPT_m32))
536       D.Diag(diag::err_drv_argument_not_allowed_with)
537           << "-miamcu" << A->getBaseArg().getAsString(Args);
538 
539     Target.setArch(llvm::Triple::x86);
540     Target.setArchName("i586");
541     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
542     Target.setEnvironmentName("");
543     Target.setOS(llvm::Triple::ELFIAMCU);
544     Target.setVendor(llvm::Triple::UnknownVendor);
545     Target.setVendorName("intel");
546   }
547 
548   // If target is MIPS adjust the target triple
549   // accordingly to provided ABI name.
550   A = Args.getLastArg(options::OPT_mabi_EQ);
551   if (A && Target.isMIPS()) {
552     StringRef ABIName = A->getValue();
553     if (ABIName == "32") {
554       Target = Target.get32BitArchVariant();
555       if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
556           Target.getEnvironment() == llvm::Triple::GNUABIN32)
557         Target.setEnvironment(llvm::Triple::GNU);
558     } else if (ABIName == "n32") {
559       Target = Target.get64BitArchVariant();
560       if (Target.getEnvironment() == llvm::Triple::GNU ||
561           Target.getEnvironment() == llvm::Triple::GNUABI64)
562         Target.setEnvironment(llvm::Triple::GNUABIN32);
563     } else if (ABIName == "64") {
564       Target = Target.get64BitArchVariant();
565       if (Target.getEnvironment() == llvm::Triple::GNU ||
566           Target.getEnvironment() == llvm::Triple::GNUABIN32)
567         Target.setEnvironment(llvm::Triple::GNUABI64);
568     }
569   }
570 
571   // If target is RISC-V adjust the target triple according to
572   // provided architecture name
573   A = Args.getLastArg(options::OPT_march_EQ);
574   if (A && Target.isRISCV()) {
575     StringRef ArchName = A->getValue();
576     if (ArchName.startswith_insensitive("rv32"))
577       Target.setArch(llvm::Triple::riscv32);
578     else if (ArchName.startswith_insensitive("rv64"))
579       Target.setArch(llvm::Triple::riscv64);
580   }
581 
582   return Target;
583 }
584 
585 // Parse the LTO options and record the type of LTO compilation
586 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
587 // option occurs last.
588 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
589                                     OptSpecifier OptEq, OptSpecifier OptNeg) {
590   if (!Args.hasFlag(OptEq, OptNeg, false))
591     return LTOK_None;
592 
593   const Arg *A = Args.getLastArg(OptEq);
594   StringRef LTOName = A->getValue();
595 
596   driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
597                                 .Case("full", LTOK_Full)
598                                 .Case("thin", LTOK_Thin)
599                                 .Default(LTOK_Unknown);
600 
601   if (LTOMode == LTOK_Unknown) {
602     D.Diag(diag::err_drv_unsupported_option_argument)
603         << A->getOption().getName() << A->getValue();
604     return LTOK_None;
605   }
606   return LTOMode;
607 }
608 
609 // Parse the LTO options.
610 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
611   LTOMode =
612       parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
613 
614   OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
615                                 options::OPT_fno_offload_lto);
616 }
617 
618 /// Compute the desired OpenMP runtime from the flags provided.
619 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
620   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
621 
622   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
623   if (A)
624     RuntimeName = A->getValue();
625 
626   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
627                 .Case("libomp", OMPRT_OMP)
628                 .Case("libgomp", OMPRT_GOMP)
629                 .Case("libiomp5", OMPRT_IOMP5)
630                 .Default(OMPRT_Unknown);
631 
632   if (RT == OMPRT_Unknown) {
633     if (A)
634       Diag(diag::err_drv_unsupported_option_argument)
635           << A->getOption().getName() << A->getValue();
636     else
637       // FIXME: We could use a nicer diagnostic here.
638       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
639   }
640 
641   return RT;
642 }
643 
644 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
645                                               InputList &Inputs) {
646 
647   //
648   // CUDA/HIP
649   //
650   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
651   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
652   bool IsCuda =
653       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
654         return types::isCuda(I.first);
655       });
656   bool IsHIP =
657       llvm::any_of(Inputs,
658                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
659                      return types::isHIP(I.first);
660                    }) ||
661       C.getInputArgs().hasArg(options::OPT_hip_link);
662   if (IsCuda && IsHIP) {
663     Diag(clang::diag::err_drv_mix_cuda_hip);
664     return;
665   }
666   if (IsCuda) {
667     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
668     const llvm::Triple &HostTriple = HostTC->getTriple();
669     StringRef DeviceTripleStr;
670     auto OFK = Action::OFK_Cuda;
671     DeviceTripleStr =
672         HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
673     llvm::Triple CudaTriple(DeviceTripleStr);
674     // Use the CUDA and host triples as the key into the ToolChains map,
675     // because the device toolchain we create depends on both.
676     auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
677     if (!CudaTC) {
678       CudaTC = std::make_unique<toolchains::CudaToolChain>(
679           *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
680     }
681     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
682   } else if (IsHIP) {
683     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
684     const llvm::Triple &HostTriple = HostTC->getTriple();
685     auto OFK = Action::OFK_HIP;
686     llvm::Triple HIPTriple = getHIPOffloadTargetTriple();
687     // Use the HIP and host triples as the key into the ToolChains map,
688     // because the device toolchain we create depends on both.
689     auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
690     if (!HIPTC) {
691       HIPTC = std::make_unique<toolchains::HIPToolChain>(
692           *this, HIPTriple, *HostTC, C.getInputArgs());
693     }
694     C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
695   }
696 
697   //
698   // OpenMP
699   //
700   // We need to generate an OpenMP toolchain if the user specified targets with
701   // the -fopenmp-targets option.
702   if (Arg *OpenMPTargets =
703           C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
704     if (OpenMPTargets->getNumValues()) {
705       // We expect that -fopenmp-targets is always used in conjunction with the
706       // option -fopenmp specifying a valid runtime with offloading support,
707       // i.e. libomp or libiomp.
708       bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
709           options::OPT_fopenmp, options::OPT_fopenmp_EQ,
710           options::OPT_fno_openmp, false);
711       if (HasValidOpenMPRuntime) {
712         OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
713         HasValidOpenMPRuntime =
714             OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
715       }
716 
717       if (HasValidOpenMPRuntime) {
718         llvm::StringMap<const char *> FoundNormalizedTriples;
719         for (const char *Val : OpenMPTargets->getValues()) {
720           llvm::Triple TT(Val);
721           std::string NormalizedName = TT.normalize();
722 
723           // Make sure we don't have a duplicate triple.
724           auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
725           if (Duplicate != FoundNormalizedTriples.end()) {
726             Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
727                 << Val << Duplicate->second;
728             continue;
729           }
730 
731           // Store the current triple so that we can check for duplicates in the
732           // following iterations.
733           FoundNormalizedTriples[NormalizedName] = Val;
734 
735           // If the specified target is invalid, emit a diagnostic.
736           if (TT.getArch() == llvm::Triple::UnknownArch)
737             Diag(clang::diag::err_drv_invalid_omp_target) << Val;
738           else {
739             const ToolChain *TC;
740             // Device toolchains have to be selected differently. They pair host
741             // and device in their implementation.
742             if (TT.isNVPTX() || TT.isAMDGCN()) {
743               const ToolChain *HostTC =
744                   C.getSingleOffloadToolChain<Action::OFK_Host>();
745               assert(HostTC && "Host toolchain should be always defined.");
746               auto &DeviceTC =
747                   ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
748               if (!DeviceTC) {
749                 if (TT.isNVPTX())
750                   DeviceTC = std::make_unique<toolchains::CudaToolChain>(
751                       *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
752                 else if (TT.isAMDGCN())
753                   DeviceTC =
754                       std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
755                           *this, TT, *HostTC, C.getInputArgs());
756                 else
757                   assert(DeviceTC && "Device toolchain not defined.");
758               }
759 
760               TC = DeviceTC.get();
761             } else
762               TC = &getToolChain(C.getInputArgs(), TT);
763             C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
764           }
765         }
766       } else
767         Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
768     } else
769       Diag(clang::diag::warn_drv_empty_joined_argument)
770           << OpenMPTargets->getAsString(C.getInputArgs());
771   }
772 
773   //
774   // TODO: Add support for other offloading programming models here.
775   //
776 }
777 
778 /// Looks the given directories for the specified file.
779 ///
780 /// \param[out] FilePath File path, if the file was found.
781 /// \param[in]  Dirs Directories used for the search.
782 /// \param[in]  FileName Name of the file to search for.
783 /// \return True if file was found.
784 ///
785 /// Looks for file specified by FileName sequentially in directories specified
786 /// by Dirs.
787 ///
788 static bool searchForFile(SmallVectorImpl<char> &FilePath,
789                           ArrayRef<StringRef> Dirs, StringRef FileName) {
790   SmallString<128> WPath;
791   for (const StringRef &Dir : Dirs) {
792     if (Dir.empty())
793       continue;
794     WPath.clear();
795     llvm::sys::path::append(WPath, Dir, FileName);
796     llvm::sys::path::native(WPath);
797     if (llvm::sys::fs::is_regular_file(WPath)) {
798       FilePath = std::move(WPath);
799       return true;
800     }
801   }
802   return false;
803 }
804 
805 bool Driver::readConfigFile(StringRef FileName) {
806   // Try reading the given file.
807   SmallVector<const char *, 32> NewCfgArgs;
808   if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
809     Diag(diag::err_drv_cannot_read_config_file) << FileName;
810     return true;
811   }
812 
813   // Read options from config file.
814   llvm::SmallString<128> CfgFileName(FileName);
815   llvm::sys::path::native(CfgFileName);
816   ConfigFile = std::string(CfgFileName);
817   bool ContainErrors;
818   CfgOptions = std::make_unique<InputArgList>(
819       ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
820   if (ContainErrors) {
821     CfgOptions.reset();
822     return true;
823   }
824 
825   if (CfgOptions->hasArg(options::OPT_config)) {
826     CfgOptions.reset();
827     Diag(diag::err_drv_nested_config_file);
828     return true;
829   }
830 
831   // Claim all arguments that come from a configuration file so that the driver
832   // does not warn on any that is unused.
833   for (Arg *A : *CfgOptions)
834     A->claim();
835   return false;
836 }
837 
838 bool Driver::loadConfigFile() {
839   std::string CfgFileName;
840   bool FileSpecifiedExplicitly = false;
841 
842   // Process options that change search path for config files.
843   if (CLOptions) {
844     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
845       SmallString<128> CfgDir;
846       CfgDir.append(
847           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
848       if (!CfgDir.empty()) {
849         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
850           SystemConfigDir.clear();
851         else
852           SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
853       }
854     }
855     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
856       SmallString<128> CfgDir;
857       CfgDir.append(
858           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
859       if (!CfgDir.empty()) {
860         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
861           UserConfigDir.clear();
862         else
863           UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
864       }
865     }
866   }
867 
868   // First try to find config file specified in command line.
869   if (CLOptions) {
870     std::vector<std::string> ConfigFiles =
871         CLOptions->getAllArgValues(options::OPT_config);
872     if (ConfigFiles.size() > 1) {
873       if (!std::all_of(ConfigFiles.begin(), ConfigFiles.end(),
874                        [ConfigFiles](const std::string &s) {
875                          return s == ConfigFiles[0];
876                        })) {
877         Diag(diag::err_drv_duplicate_config);
878         return true;
879       }
880     }
881 
882     if (!ConfigFiles.empty()) {
883       CfgFileName = ConfigFiles.front();
884       assert(!CfgFileName.empty());
885 
886       // If argument contains directory separator, treat it as a path to
887       // configuration file.
888       if (llvm::sys::path::has_parent_path(CfgFileName)) {
889         SmallString<128> CfgFilePath;
890         if (llvm::sys::path::is_relative(CfgFileName))
891           llvm::sys::fs::current_path(CfgFilePath);
892         llvm::sys::path::append(CfgFilePath, CfgFileName);
893         if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
894           Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
895           return true;
896         }
897         return readConfigFile(CfgFilePath);
898       }
899 
900       FileSpecifiedExplicitly = true;
901     }
902   }
903 
904   // If config file is not specified explicitly, try to deduce configuration
905   // from executable name. For instance, an executable 'armv7l-clang' will
906   // search for config file 'armv7l-clang.cfg'.
907   if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
908     CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
909 
910   if (CfgFileName.empty())
911     return false;
912 
913   // Determine architecture part of the file name, if it is present.
914   StringRef CfgFileArch = CfgFileName;
915   size_t ArchPrefixLen = CfgFileArch.find('-');
916   if (ArchPrefixLen == StringRef::npos)
917     ArchPrefixLen = CfgFileArch.size();
918   llvm::Triple CfgTriple;
919   CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
920   CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
921   if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
922     ArchPrefixLen = 0;
923 
924   if (!StringRef(CfgFileName).endswith(".cfg"))
925     CfgFileName += ".cfg";
926 
927   // If config file starts with architecture name and command line options
928   // redefine architecture (with options like -m32 -LE etc), try finding new
929   // config file with that architecture.
930   SmallString<128> FixedConfigFile;
931   size_t FixedArchPrefixLen = 0;
932   if (ArchPrefixLen) {
933     // Get architecture name from config file name like 'i386.cfg' or
934     // 'armv7l-clang.cfg'.
935     // Check if command line options changes effective triple.
936     llvm::Triple EffectiveTriple = computeTargetTriple(*this,
937                                              CfgTriple.getTriple(), *CLOptions);
938     if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
939       FixedConfigFile = EffectiveTriple.getArchName();
940       FixedArchPrefixLen = FixedConfigFile.size();
941       // Append the rest of original file name so that file name transforms
942       // like: i386-clang.cfg -> x86_64-clang.cfg.
943       if (ArchPrefixLen < CfgFileName.size())
944         FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
945     }
946   }
947 
948   // Prepare list of directories where config file is searched for.
949   StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
950 
951   // Try to find config file. First try file with corrected architecture.
952   llvm::SmallString<128> CfgFilePath;
953   if (!FixedConfigFile.empty()) {
954     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
955       return readConfigFile(CfgFilePath);
956     // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
957     FixedConfigFile.resize(FixedArchPrefixLen);
958     FixedConfigFile.append(".cfg");
959     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
960       return readConfigFile(CfgFilePath);
961   }
962 
963   // Then try original file name.
964   if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
965     return readConfigFile(CfgFilePath);
966 
967   // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
968   if (!ClangNameParts.ModeSuffix.empty() &&
969       !ClangNameParts.TargetPrefix.empty()) {
970     CfgFileName.assign(ClangNameParts.TargetPrefix);
971     CfgFileName.append(".cfg");
972     if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
973       return readConfigFile(CfgFilePath);
974   }
975 
976   // Report error but only if config file was specified explicitly, by option
977   // --config. If it was deduced from executable name, it is not an error.
978   if (FileSpecifiedExplicitly) {
979     Diag(diag::err_drv_config_file_not_found) << CfgFileName;
980     for (const StringRef &SearchDir : CfgFileSearchDirs)
981       if (!SearchDir.empty())
982         Diag(diag::note_drv_config_file_searched_in) << SearchDir;
983     return true;
984   }
985 
986   return false;
987 }
988 
989 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
990   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
991 
992   // FIXME: Handle environment options which affect driver behavior, somewhere
993   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
994 
995   // We look for the driver mode option early, because the mode can affect
996   // how other options are parsed.
997 
998   auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
999   if (!DriverMode.empty())
1000     setDriverMode(DriverMode);
1001 
1002   // FIXME: What are we going to do with -V and -b?
1003 
1004   // Arguments specified in command line.
1005   bool ContainsError;
1006   CLOptions = std::make_unique<InputArgList>(
1007       ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1008 
1009   // Try parsing configuration file.
1010   if (!ContainsError)
1011     ContainsError = loadConfigFile();
1012   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1013 
1014   // All arguments, from both config file and command line.
1015   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1016                                               : std::move(*CLOptions));
1017 
1018   // The args for config files or /clang: flags belong to different InputArgList
1019   // objects than Args. This copies an Arg from one of those other InputArgLists
1020   // to the ownership of Args.
1021   auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1022     unsigned Index = Args.MakeIndex(Opt->getSpelling());
1023     Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
1024                                    Index, BaseArg);
1025     Copy->getValues() = Opt->getValues();
1026     if (Opt->isClaimed())
1027       Copy->claim();
1028     Copy->setOwnsValues(Opt->getOwnsValues());
1029     Opt->setOwnsValues(false);
1030     Args.append(Copy);
1031   };
1032 
1033   if (HasConfigFile)
1034     for (auto *Opt : *CLOptions) {
1035       if (Opt->getOption().matches(options::OPT_config))
1036         continue;
1037       const Arg *BaseArg = &Opt->getBaseArg();
1038       if (BaseArg == Opt)
1039         BaseArg = nullptr;
1040       appendOneArg(Opt, BaseArg);
1041     }
1042 
1043   // In CL mode, look for any pass-through arguments
1044   if (IsCLMode() && !ContainsError) {
1045     SmallVector<const char *, 16> CLModePassThroughArgList;
1046     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1047       A->claim();
1048       CLModePassThroughArgList.push_back(A->getValue());
1049     }
1050 
1051     if (!CLModePassThroughArgList.empty()) {
1052       // Parse any pass through args using default clang processing rather
1053       // than clang-cl processing.
1054       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1055           ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1056 
1057       if (!ContainsError)
1058         for (auto *Opt : *CLModePassThroughOptions) {
1059           appendOneArg(Opt, nullptr);
1060         }
1061     }
1062   }
1063 
1064   // Check for working directory option before accessing any files
1065   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1066     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1067       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1068 
1069   // FIXME: This stuff needs to go into the Compilation, not the driver.
1070   bool CCCPrintPhases;
1071 
1072   // Silence driver warnings if requested
1073   Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1074 
1075   // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1076   Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1077   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1078 
1079   // f(no-)integated-cc1 is also used very early in main.
1080   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1081   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1082 
1083   // Ignore -pipe.
1084   Args.ClaimAllArgs(options::OPT_pipe);
1085 
1086   // Extract -ccc args.
1087   //
1088   // FIXME: We need to figure out where this behavior should live. Most of it
1089   // should be outside in the client; the parts that aren't should have proper
1090   // options, either by introducing new ones or by overloading gcc ones like -V
1091   // or -b.
1092   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1093   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1094   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1095     CCCGenericGCCName = A->getValue();
1096   GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1097                                options::OPT_fno_crash_diagnostics,
1098                                !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1099 
1100   // Process -fproc-stat-report options.
1101   if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1102     CCPrintProcessStats = true;
1103     CCPrintStatReportFilename = A->getValue();
1104   }
1105   if (Args.hasArg(options::OPT_fproc_stat_report))
1106     CCPrintProcessStats = true;
1107 
1108   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1109   // and getToolChain is const.
1110   if (IsCLMode()) {
1111     // clang-cl targets MSVC-style Win32.
1112     llvm::Triple T(TargetTriple);
1113     T.setOS(llvm::Triple::Win32);
1114     T.setVendor(llvm::Triple::PC);
1115     T.setEnvironment(llvm::Triple::MSVC);
1116     T.setObjectFormat(llvm::Triple::COFF);
1117     TargetTriple = T.str();
1118   }
1119   if (const Arg *A = Args.getLastArg(options::OPT_target))
1120     TargetTriple = A->getValue();
1121   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1122     Dir = InstalledDir = A->getValue();
1123   for (const Arg *A : Args.filtered(options::OPT_B)) {
1124     A->claim();
1125     PrefixDirs.push_back(A->getValue(0));
1126   }
1127   if (Optional<std::string> CompilerPathValue =
1128           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1129     StringRef CompilerPath = *CompilerPathValue;
1130     while (!CompilerPath.empty()) {
1131       std::pair<StringRef, StringRef> Split =
1132           CompilerPath.split(llvm::sys::EnvPathSeparator);
1133       PrefixDirs.push_back(std::string(Split.first));
1134       CompilerPath = Split.second;
1135     }
1136   }
1137   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1138     SysRoot = A->getValue();
1139   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1140     DyldPrefix = A->getValue();
1141 
1142   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1143     ResourceDir = A->getValue();
1144 
1145   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1146     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1147                     .Case("cwd", SaveTempsCwd)
1148                     .Case("obj", SaveTempsObj)
1149                     .Default(SaveTempsCwd);
1150   }
1151 
1152   setLTOMode(Args);
1153 
1154   // Process -fembed-bitcode= flags.
1155   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1156     StringRef Name = A->getValue();
1157     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1158         .Case("off", EmbedNone)
1159         .Case("all", EmbedBitcode)
1160         .Case("bitcode", EmbedBitcode)
1161         .Case("marker", EmbedMarker)
1162         .Default(~0U);
1163     if (Model == ~0U) {
1164       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1165                                                 << Name;
1166     } else
1167       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1168   }
1169 
1170   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1171       std::make_unique<InputArgList>(std::move(Args));
1172 
1173   // Perform the default argument translations.
1174   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1175 
1176   // Owned by the host.
1177   const ToolChain &TC = getToolChain(
1178       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1179 
1180   // The compilation takes ownership of Args.
1181   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1182                                    ContainsError);
1183 
1184   if (!HandleImmediateArgs(*C))
1185     return C;
1186 
1187   // Construct the list of inputs.
1188   InputList Inputs;
1189   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1190 
1191   // Populate the tool chains for the offloading devices, if any.
1192   CreateOffloadingDeviceToolChains(*C, Inputs);
1193 
1194   // Construct the list of abstract actions to perform for this compilation. On
1195   // MachO targets this uses the driver-driver and universal actions.
1196   if (TC.getTriple().isOSBinFormatMachO())
1197     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1198   else
1199     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1200 
1201   if (CCCPrintPhases) {
1202     PrintActions(*C);
1203     return C;
1204   }
1205 
1206   BuildJobs(*C);
1207 
1208   return C;
1209 }
1210 
1211 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1212   llvm::opt::ArgStringList ASL;
1213   for (const auto *A : Args)
1214     A->render(Args, ASL);
1215 
1216   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1217     if (I != ASL.begin())
1218       OS << ' ';
1219     llvm::sys::printArg(OS, *I, true);
1220   }
1221   OS << '\n';
1222 }
1223 
1224 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1225                                     SmallString<128> &CrashDiagDir) {
1226   using namespace llvm::sys;
1227   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1228          "Only knows about .crash files on Darwin");
1229 
1230   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1231   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1232   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1233   path::home_directory(CrashDiagDir);
1234   if (CrashDiagDir.startswith("/var/root"))
1235     CrashDiagDir = "/";
1236   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1237   int PID =
1238 #if LLVM_ON_UNIX
1239       getpid();
1240 #else
1241       0;
1242 #endif
1243   std::error_code EC;
1244   fs::file_status FileStatus;
1245   TimePoint<> LastAccessTime;
1246   SmallString<128> CrashFilePath;
1247   // Lookup the .crash files and get the one generated by a subprocess spawned
1248   // by this driver invocation.
1249   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1250        File != FileEnd && !EC; File.increment(EC)) {
1251     StringRef FileName = path::filename(File->path());
1252     if (!FileName.startswith(Name))
1253       continue;
1254     if (fs::status(File->path(), FileStatus))
1255       continue;
1256     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1257         llvm::MemoryBuffer::getFile(File->path());
1258     if (!CrashFile)
1259       continue;
1260     // The first line should start with "Process:", otherwise this isn't a real
1261     // .crash file.
1262     StringRef Data = CrashFile.get()->getBuffer();
1263     if (!Data.startswith("Process:"))
1264       continue;
1265     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1266     size_t ParentProcPos = Data.find("Parent Process:");
1267     if (ParentProcPos == StringRef::npos)
1268       continue;
1269     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1270     if (LineEnd == StringRef::npos)
1271       continue;
1272     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1273     int OpenBracket = -1, CloseBracket = -1;
1274     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1275       if (ParentProcess[i] == '[')
1276         OpenBracket = i;
1277       if (ParentProcess[i] == ']')
1278         CloseBracket = i;
1279     }
1280     // Extract the parent process PID from the .crash file and check whether
1281     // it matches this driver invocation pid.
1282     int CrashPID;
1283     if (OpenBracket < 0 || CloseBracket < 0 ||
1284         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1285             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1286       continue;
1287     }
1288 
1289     // Found a .crash file matching the driver pid. To avoid getting an older
1290     // and misleading crash file, continue looking for the most recent.
1291     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1292     // multiple crashes poiting to the same parent process. Since the driver
1293     // does not collect pid information for the dispatched invocation there's
1294     // currently no way to distinguish among them.
1295     const auto FileAccessTime = FileStatus.getLastModificationTime();
1296     if (FileAccessTime > LastAccessTime) {
1297       CrashFilePath.assign(File->path());
1298       LastAccessTime = FileAccessTime;
1299     }
1300   }
1301 
1302   // If found, copy it over to the location of other reproducer files.
1303   if (!CrashFilePath.empty()) {
1304     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1305     if (EC)
1306       return false;
1307     return true;
1308   }
1309 
1310   return false;
1311 }
1312 
1313 // When clang crashes, produce diagnostic information including the fully
1314 // preprocessed source file(s).  Request that the developer attach the
1315 // diagnostic information to a bug report.
1316 void Driver::generateCompilationDiagnostics(
1317     Compilation &C, const Command &FailingCommand,
1318     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1319   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1320     return;
1321 
1322   // Don't try to generate diagnostics for link or dsymutil jobs.
1323   if (FailingCommand.getCreator().isLinkJob() ||
1324       FailingCommand.getCreator().isDsymutilJob())
1325     return;
1326 
1327   // Print the version of the compiler.
1328   PrintVersion(C, llvm::errs());
1329 
1330   // Suppress driver output and emit preprocessor output to temp file.
1331   Mode = CPPMode;
1332   CCGenDiagnostics = true;
1333 
1334   // Save the original job command(s).
1335   Command Cmd = FailingCommand;
1336 
1337   // Keep track of whether we produce any errors while trying to produce
1338   // preprocessed sources.
1339   DiagnosticErrorTrap Trap(Diags);
1340 
1341   // Suppress tool output.
1342   C.initCompilationForDiagnostics();
1343 
1344   // Construct the list of inputs.
1345   InputList Inputs;
1346   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1347 
1348   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1349     bool IgnoreInput = false;
1350 
1351     // Ignore input from stdin or any inputs that cannot be preprocessed.
1352     // Check type first as not all linker inputs have a value.
1353     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1354       IgnoreInput = true;
1355     } else if (!strcmp(it->second->getValue(), "-")) {
1356       Diag(clang::diag::note_drv_command_failed_diag_msg)
1357           << "Error generating preprocessed source(s) - "
1358              "ignoring input from stdin.";
1359       IgnoreInput = true;
1360     }
1361 
1362     if (IgnoreInput) {
1363       it = Inputs.erase(it);
1364       ie = Inputs.end();
1365     } else {
1366       ++it;
1367     }
1368   }
1369 
1370   if (Inputs.empty()) {
1371     Diag(clang::diag::note_drv_command_failed_diag_msg)
1372         << "Error generating preprocessed source(s) - "
1373            "no preprocessable inputs.";
1374     return;
1375   }
1376 
1377   // Don't attempt to generate preprocessed files if multiple -arch options are
1378   // used, unless they're all duplicates.
1379   llvm::StringSet<> ArchNames;
1380   for (const Arg *A : C.getArgs()) {
1381     if (A->getOption().matches(options::OPT_arch)) {
1382       StringRef ArchName = A->getValue();
1383       ArchNames.insert(ArchName);
1384     }
1385   }
1386   if (ArchNames.size() > 1) {
1387     Diag(clang::diag::note_drv_command_failed_diag_msg)
1388         << "Error generating preprocessed source(s) - cannot generate "
1389            "preprocessed source with multiple -arch options.";
1390     return;
1391   }
1392 
1393   // Construct the list of abstract actions to perform for this compilation. On
1394   // Darwin OSes this uses the driver-driver and builds universal actions.
1395   const ToolChain &TC = C.getDefaultToolChain();
1396   if (TC.getTriple().isOSBinFormatMachO())
1397     BuildUniversalActions(C, TC, Inputs);
1398   else
1399     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1400 
1401   BuildJobs(C);
1402 
1403   // If there were errors building the compilation, quit now.
1404   if (Trap.hasErrorOccurred()) {
1405     Diag(clang::diag::note_drv_command_failed_diag_msg)
1406         << "Error generating preprocessed source(s).";
1407     return;
1408   }
1409 
1410   // Generate preprocessed output.
1411   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1412   C.ExecuteJobs(C.getJobs(), FailingCommands);
1413 
1414   // If any of the preprocessing commands failed, clean up and exit.
1415   if (!FailingCommands.empty()) {
1416     Diag(clang::diag::note_drv_command_failed_diag_msg)
1417         << "Error generating preprocessed source(s).";
1418     return;
1419   }
1420 
1421   const ArgStringList &TempFiles = C.getTempFiles();
1422   if (TempFiles.empty()) {
1423     Diag(clang::diag::note_drv_command_failed_diag_msg)
1424         << "Error generating preprocessed source(s).";
1425     return;
1426   }
1427 
1428   Diag(clang::diag::note_drv_command_failed_diag_msg)
1429       << "\n********************\n\n"
1430          "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1431          "Preprocessed source(s) and associated run script(s) are located at:";
1432 
1433   SmallString<128> VFS;
1434   SmallString<128> ReproCrashFilename;
1435   for (const char *TempFile : TempFiles) {
1436     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1437     if (Report)
1438       Report->TemporaryFiles.push_back(TempFile);
1439     if (ReproCrashFilename.empty()) {
1440       ReproCrashFilename = TempFile;
1441       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1442     }
1443     if (StringRef(TempFile).endswith(".cache")) {
1444       // In some cases (modules) we'll dump extra data to help with reproducing
1445       // the crash into a directory next to the output.
1446       VFS = llvm::sys::path::filename(TempFile);
1447       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1448     }
1449   }
1450 
1451   // Assume associated files are based off of the first temporary file.
1452   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1453 
1454   llvm::SmallString<128> Script(CrashInfo.Filename);
1455   llvm::sys::path::replace_extension(Script, "sh");
1456   std::error_code EC;
1457   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1458                                 llvm::sys::fs::FA_Write,
1459                                 llvm::sys::fs::OF_Text);
1460   if (EC) {
1461     Diag(clang::diag::note_drv_command_failed_diag_msg)
1462         << "Error generating run script: " << Script << " " << EC.message();
1463   } else {
1464     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1465              << "# Driver args: ";
1466     printArgList(ScriptOS, C.getInputArgs());
1467     ScriptOS << "# Original command: ";
1468     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1469     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1470     if (!AdditionalInformation.empty())
1471       ScriptOS << "\n# Additional information: " << AdditionalInformation
1472                << "\n";
1473     if (Report)
1474       Report->TemporaryFiles.push_back(std::string(Script.str()));
1475     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1476   }
1477 
1478   // On darwin, provide information about the .crash diagnostic report.
1479   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1480     SmallString<128> CrashDiagDir;
1481     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1482       Diag(clang::diag::note_drv_command_failed_diag_msg)
1483           << ReproCrashFilename.str();
1484     } else { // Suggest a directory for the user to look for .crash files.
1485       llvm::sys::path::append(CrashDiagDir, Name);
1486       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1487       Diag(clang::diag::note_drv_command_failed_diag_msg)
1488           << "Crash backtrace is located in";
1489       Diag(clang::diag::note_drv_command_failed_diag_msg)
1490           << CrashDiagDir.str();
1491       Diag(clang::diag::note_drv_command_failed_diag_msg)
1492           << "(choose the .crash file that corresponds to your crash)";
1493     }
1494   }
1495 
1496   for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1497     Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1498 
1499   Diag(clang::diag::note_drv_command_failed_diag_msg)
1500       << "\n\n********************";
1501 }
1502 
1503 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1504   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1505   // capacity if the tool does not support response files, there is a chance/
1506   // that things will just work without a response file, so we silently just
1507   // skip it.
1508   if (Cmd.getResponseFileSupport().ResponseKind ==
1509           ResponseFileSupport::RF_None ||
1510       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1511                                                    Cmd.getArguments()))
1512     return;
1513 
1514   std::string TmpName = GetTemporaryPath("response", "txt");
1515   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1516 }
1517 
1518 int Driver::ExecuteCompilation(
1519     Compilation &C,
1520     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1521   // Just print if -### was present.
1522   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1523     C.getJobs().Print(llvm::errs(), "\n", true);
1524     return 0;
1525   }
1526 
1527   // If there were errors building the compilation, quit now.
1528   if (Diags.hasErrorOccurred())
1529     return 1;
1530 
1531   // Set up response file names for each command, if necessary
1532   for (auto &Job : C.getJobs())
1533     setUpResponseFiles(C, Job);
1534 
1535   C.ExecuteJobs(C.getJobs(), FailingCommands);
1536 
1537   // If the command succeeded, we are done.
1538   if (FailingCommands.empty())
1539     return 0;
1540 
1541   // Otherwise, remove result files and print extra information about abnormal
1542   // failures.
1543   int Res = 0;
1544   for (const auto &CmdPair : FailingCommands) {
1545     int CommandRes = CmdPair.first;
1546     const Command *FailingCommand = CmdPair.second;
1547 
1548     // Remove result files if we're not saving temps.
1549     if (!isSaveTempsEnabled()) {
1550       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1551       C.CleanupFileMap(C.getResultFiles(), JA, true);
1552 
1553       // Failure result files are valid unless we crashed.
1554       if (CommandRes < 0)
1555         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1556     }
1557 
1558 #if LLVM_ON_UNIX
1559     // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1560     // for SIGPIPE. Do not print diagnostics for this case.
1561     if (CommandRes == EX_IOERR) {
1562       Res = CommandRes;
1563       continue;
1564     }
1565 #endif
1566 
1567     // Print extra information about abnormal failures, if possible.
1568     //
1569     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1570     // status was 1, assume the command failed normally. In particular, if it
1571     // was the compiler then assume it gave a reasonable error code. Failures
1572     // in other tools are less common, and they generally have worse
1573     // diagnostics, so always print the diagnostic there.
1574     const Tool &FailingTool = FailingCommand->getCreator();
1575 
1576     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1577       // FIXME: See FIXME above regarding result code interpretation.
1578       if (CommandRes < 0)
1579         Diag(clang::diag::err_drv_command_signalled)
1580             << FailingTool.getShortName();
1581       else
1582         Diag(clang::diag::err_drv_command_failed)
1583             << FailingTool.getShortName() << CommandRes;
1584     }
1585   }
1586   return Res;
1587 }
1588 
1589 void Driver::PrintHelp(bool ShowHidden) const {
1590   unsigned IncludedFlagsBitmask;
1591   unsigned ExcludedFlagsBitmask;
1592   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1593       getIncludeExcludeOptionFlagMasks(IsCLMode());
1594 
1595   ExcludedFlagsBitmask |= options::NoDriverOption;
1596   if (!ShowHidden)
1597     ExcludedFlagsBitmask |= HelpHidden;
1598 
1599   if (IsFlangMode())
1600     IncludedFlagsBitmask |= options::FlangOption;
1601   else
1602     ExcludedFlagsBitmask |= options::FlangOnlyOption;
1603 
1604   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1605   getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1606                       IncludedFlagsBitmask, ExcludedFlagsBitmask,
1607                       /*ShowAllAliases=*/false);
1608 }
1609 
1610 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1611   if (IsFlangMode()) {
1612     OS << getClangToolFullVersion("flang-new") << '\n';
1613   } else {
1614     // FIXME: The following handlers should use a callback mechanism, we don't
1615     // know what the client would like to do.
1616     OS << getClangFullVersion() << '\n';
1617   }
1618   const ToolChain &TC = C.getDefaultToolChain();
1619   OS << "Target: " << TC.getTripleString() << '\n';
1620 
1621   // Print the threading model.
1622   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1623     // Don't print if the ToolChain would have barfed on it already
1624     if (TC.isThreadModelSupported(A->getValue()))
1625       OS << "Thread model: " << A->getValue();
1626   } else
1627     OS << "Thread model: " << TC.getThreadModel();
1628   OS << '\n';
1629 
1630   // Print out the install directory.
1631   OS << "InstalledDir: " << InstalledDir << '\n';
1632 
1633   // If configuration file was used, print its path.
1634   if (!ConfigFile.empty())
1635     OS << "Configuration file: " << ConfigFile << '\n';
1636 }
1637 
1638 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1639 /// option.
1640 static void PrintDiagnosticCategories(raw_ostream &OS) {
1641   // Skip the empty category.
1642   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1643        ++i)
1644     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1645 }
1646 
1647 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1648   if (PassedFlags == "")
1649     return;
1650   // Print out all options that start with a given argument. This is used for
1651   // shell autocompletion.
1652   std::vector<std::string> SuggestedCompletions;
1653   std::vector<std::string> Flags;
1654 
1655   unsigned int DisableFlags =
1656       options::NoDriverOption | options::Unsupported | options::Ignored;
1657 
1658   // Make sure that Flang-only options don't pollute the Clang output
1659   // TODO: Make sure that Clang-only options don't pollute Flang output
1660   if (!IsFlangMode())
1661     DisableFlags |= options::FlangOnlyOption;
1662 
1663   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1664   // because the latter indicates that the user put space before pushing tab
1665   // which should end up in a file completion.
1666   const bool HasSpace = PassedFlags.endswith(",");
1667 
1668   // Parse PassedFlags by "," as all the command-line flags are passed to this
1669   // function separated by ","
1670   StringRef TargetFlags = PassedFlags;
1671   while (TargetFlags != "") {
1672     StringRef CurFlag;
1673     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1674     Flags.push_back(std::string(CurFlag));
1675   }
1676 
1677   // We want to show cc1-only options only when clang is invoked with -cc1 or
1678   // -Xclang.
1679   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1680     DisableFlags &= ~options::NoDriverOption;
1681 
1682   const llvm::opt::OptTable &Opts = getOpts();
1683   StringRef Cur;
1684   Cur = Flags.at(Flags.size() - 1);
1685   StringRef Prev;
1686   if (Flags.size() >= 2) {
1687     Prev = Flags.at(Flags.size() - 2);
1688     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1689   }
1690 
1691   if (SuggestedCompletions.empty())
1692     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1693 
1694   // If Flags were empty, it means the user typed `clang [tab]` where we should
1695   // list all possible flags. If there was no value completion and the user
1696   // pressed tab after a space, we should fall back to a file completion.
1697   // We're printing a newline to be consistent with what we print at the end of
1698   // this function.
1699   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1700     llvm::outs() << '\n';
1701     return;
1702   }
1703 
1704   // When flag ends with '=' and there was no value completion, return empty
1705   // string and fall back to the file autocompletion.
1706   if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1707     // If the flag is in the form of "--autocomplete=-foo",
1708     // we were requested to print out all option names that start with "-foo".
1709     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1710     SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1711 
1712     // We have to query the -W flags manually as they're not in the OptTable.
1713     // TODO: Find a good way to add them to OptTable instead and them remove
1714     // this code.
1715     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1716       if (S.startswith(Cur))
1717         SuggestedCompletions.push_back(std::string(S));
1718   }
1719 
1720   // Sort the autocomplete candidates so that shells print them out in a
1721   // deterministic order. We could sort in any way, but we chose
1722   // case-insensitive sorting for consistency with the -help option
1723   // which prints out options in the case-insensitive alphabetical order.
1724   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1725     if (int X = A.compare_insensitive(B))
1726       return X < 0;
1727     return A.compare(B) > 0;
1728   });
1729 
1730   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1731 }
1732 
1733 bool Driver::HandleImmediateArgs(const Compilation &C) {
1734   // The order these options are handled in gcc is all over the place, but we
1735   // don't expect inconsistencies w.r.t. that to matter in practice.
1736 
1737   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1738     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1739     return false;
1740   }
1741 
1742   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1743     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1744     // return an answer which matches our definition of __VERSION__.
1745     llvm::outs() << CLANG_VERSION_STRING << "\n";
1746     return false;
1747   }
1748 
1749   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1750     PrintDiagnosticCategories(llvm::outs());
1751     return false;
1752   }
1753 
1754   if (C.getArgs().hasArg(options::OPT_help) ||
1755       C.getArgs().hasArg(options::OPT__help_hidden)) {
1756     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1757     return false;
1758   }
1759 
1760   if (C.getArgs().hasArg(options::OPT__version)) {
1761     // Follow gcc behavior and use stdout for --version and stderr for -v.
1762     PrintVersion(C, llvm::outs());
1763     return false;
1764   }
1765 
1766   if (C.getArgs().hasArg(options::OPT_v) ||
1767       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1768       C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1769     PrintVersion(C, llvm::errs());
1770     SuppressMissingInputWarning = true;
1771   }
1772 
1773   if (C.getArgs().hasArg(options::OPT_v)) {
1774     if (!SystemConfigDir.empty())
1775       llvm::errs() << "System configuration file directory: "
1776                    << SystemConfigDir << "\n";
1777     if (!UserConfigDir.empty())
1778       llvm::errs() << "User configuration file directory: "
1779                    << UserConfigDir << "\n";
1780   }
1781 
1782   const ToolChain &TC = C.getDefaultToolChain();
1783 
1784   if (C.getArgs().hasArg(options::OPT_v))
1785     TC.printVerboseInfo(llvm::errs());
1786 
1787   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1788     llvm::outs() << ResourceDir << '\n';
1789     return false;
1790   }
1791 
1792   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1793     llvm::outs() << "programs: =";
1794     bool separator = false;
1795     // Print -B and COMPILER_PATH.
1796     for (const std::string &Path : PrefixDirs) {
1797       if (separator)
1798         llvm::outs() << llvm::sys::EnvPathSeparator;
1799       llvm::outs() << Path;
1800       separator = true;
1801     }
1802     for (const std::string &Path : TC.getProgramPaths()) {
1803       if (separator)
1804         llvm::outs() << llvm::sys::EnvPathSeparator;
1805       llvm::outs() << Path;
1806       separator = true;
1807     }
1808     llvm::outs() << "\n";
1809     llvm::outs() << "libraries: =" << ResourceDir;
1810 
1811     StringRef sysroot = C.getSysRoot();
1812 
1813     for (const std::string &Path : TC.getFilePaths()) {
1814       // Always print a separator. ResourceDir was the first item shown.
1815       llvm::outs() << llvm::sys::EnvPathSeparator;
1816       // Interpretation of leading '=' is needed only for NetBSD.
1817       if (Path[0] == '=')
1818         llvm::outs() << sysroot << Path.substr(1);
1819       else
1820         llvm::outs() << Path;
1821     }
1822     llvm::outs() << "\n";
1823     return false;
1824   }
1825 
1826   if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
1827     std::string CandidateRuntimePath = TC.getRuntimePath();
1828     if (getVFS().exists(CandidateRuntimePath))
1829       llvm::outs() << CandidateRuntimePath << '\n';
1830     else
1831       llvm::outs() << TC.getCompilerRTPath() << '\n';
1832     return false;
1833   }
1834 
1835   // FIXME: The following handlers should use a callback mechanism, we don't
1836   // know what the client would like to do.
1837   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1838     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1839     return false;
1840   }
1841 
1842   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1843     StringRef ProgName = A->getValue();
1844 
1845     // Null program name cannot have a path.
1846     if (! ProgName.empty())
1847       llvm::outs() << GetProgramPath(ProgName, TC);
1848 
1849     llvm::outs() << "\n";
1850     return false;
1851   }
1852 
1853   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1854     StringRef PassedFlags = A->getValue();
1855     HandleAutocompletions(PassedFlags);
1856     return false;
1857   }
1858 
1859   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1860     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1861     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1862     RegisterEffectiveTriple TripleRAII(TC, Triple);
1863     switch (RLT) {
1864     case ToolChain::RLT_CompilerRT:
1865       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1866       break;
1867     case ToolChain::RLT_Libgcc:
1868       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1869       break;
1870     }
1871     return false;
1872   }
1873 
1874   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1875     for (const Multilib &Multilib : TC.getMultilibs())
1876       llvm::outs() << Multilib << "\n";
1877     return false;
1878   }
1879 
1880   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1881     const Multilib &Multilib = TC.getMultilib();
1882     if (Multilib.gccSuffix().empty())
1883       llvm::outs() << ".\n";
1884     else {
1885       StringRef Suffix(Multilib.gccSuffix());
1886       assert(Suffix.front() == '/');
1887       llvm::outs() << Suffix.substr(1) << "\n";
1888     }
1889     return false;
1890   }
1891 
1892   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1893     llvm::outs() << TC.getTripleString() << "\n";
1894     return false;
1895   }
1896 
1897   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1898     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1899     llvm::outs() << Triple.getTriple() << "\n";
1900     return false;
1901   }
1902 
1903   if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
1904     llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
1905                  << "\n";
1906     return false;
1907   }
1908 
1909   if (C.getArgs().hasArg(options::OPT_print_targets)) {
1910     llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
1911     return false;
1912   }
1913 
1914   return true;
1915 }
1916 
1917 enum {
1918   TopLevelAction = 0,
1919   HeadSibAction = 1,
1920   OtherSibAction = 2,
1921 };
1922 
1923 // Display an action graph human-readably.  Action A is the "sink" node
1924 // and latest-occuring action. Traversal is in pre-order, visiting the
1925 // inputs to each action before printing the action itself.
1926 static unsigned PrintActions1(const Compilation &C, Action *A,
1927                               std::map<Action *, unsigned> &Ids,
1928                               Twine Indent = {}, int Kind = TopLevelAction) {
1929   if (Ids.count(A)) // A was already visited.
1930     return Ids[A];
1931 
1932   std::string str;
1933   llvm::raw_string_ostream os(str);
1934 
1935   auto getSibIndent = [](int K) -> Twine {
1936     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
1937   };
1938 
1939   Twine SibIndent = Indent + getSibIndent(Kind);
1940   int SibKind = HeadSibAction;
1941   os << Action::getClassName(A->getKind()) << ", ";
1942   if (InputAction *IA = dyn_cast<InputAction>(A)) {
1943     os << "\"" << IA->getInputArg().getValue() << "\"";
1944   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1945     os << '"' << BIA->getArchName() << '"' << ", {"
1946        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
1947   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1948     bool IsFirst = true;
1949     OA->doOnEachDependence(
1950         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1951           assert(TC && "Unknown host toolchain");
1952           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1953           // sm_35 this will generate:
1954           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1955           // (nvptx64-nvidia-cuda:sm_35) {#ID}
1956           if (!IsFirst)
1957             os << ", ";
1958           os << '"';
1959           os << A->getOffloadingKindPrefix();
1960           os << " (";
1961           os << TC->getTriple().normalize();
1962           if (BoundArch)
1963             os << ":" << BoundArch;
1964           os << ")";
1965           os << '"';
1966           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
1967           IsFirst = false;
1968           SibKind = OtherSibAction;
1969         });
1970   } else {
1971     const ActionList *AL = &A->getInputs();
1972 
1973     if (AL->size()) {
1974       const char *Prefix = "{";
1975       for (Action *PreRequisite : *AL) {
1976         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
1977         Prefix = ", ";
1978         SibKind = OtherSibAction;
1979       }
1980       os << "}";
1981     } else
1982       os << "{}";
1983   }
1984 
1985   // Append offload info for all options other than the offloading action
1986   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1987   std::string offload_str;
1988   llvm::raw_string_ostream offload_os(offload_str);
1989   if (!isa<OffloadAction>(A)) {
1990     auto S = A->getOffloadingKindPrefix();
1991     if (!S.empty()) {
1992       offload_os << ", (" << S;
1993       if (A->getOffloadingArch())
1994         offload_os << ", " << A->getOffloadingArch();
1995       offload_os << ")";
1996     }
1997   }
1998 
1999   auto getSelfIndent = [](int K) -> Twine {
2000     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2001   };
2002 
2003   unsigned Id = Ids.size();
2004   Ids[A] = Id;
2005   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2006                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2007 
2008   return Id;
2009 }
2010 
2011 // Print the action graphs in a compilation C.
2012 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2013 void Driver::PrintActions(const Compilation &C) const {
2014   std::map<Action *, unsigned> Ids;
2015   for (Action *A : C.getActions())
2016     PrintActions1(C, A, Ids);
2017 }
2018 
2019 /// Check whether the given input tree contains any compilation or
2020 /// assembly actions.
2021 static bool ContainsCompileOrAssembleAction(const Action *A) {
2022   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2023       isa<AssembleJobAction>(A))
2024     return true;
2025 
2026   for (const Action *Input : A->inputs())
2027     if (ContainsCompileOrAssembleAction(Input))
2028       return true;
2029 
2030   return false;
2031 }
2032 
2033 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2034                                    const InputList &BAInputs) const {
2035   DerivedArgList &Args = C.getArgs();
2036   ActionList &Actions = C.getActions();
2037   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2038   // Collect the list of architectures. Duplicates are allowed, but should only
2039   // be handled once (in the order seen).
2040   llvm::StringSet<> ArchNames;
2041   SmallVector<const char *, 4> Archs;
2042   for (Arg *A : Args) {
2043     if (A->getOption().matches(options::OPT_arch)) {
2044       // Validate the option here; we don't save the type here because its
2045       // particular spelling may participate in other driver choices.
2046       llvm::Triple::ArchType Arch =
2047           tools::darwin::getArchTypeForMachOArchName(A->getValue());
2048       if (Arch == llvm::Triple::UnknownArch) {
2049         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2050         continue;
2051       }
2052 
2053       A->claim();
2054       if (ArchNames.insert(A->getValue()).second)
2055         Archs.push_back(A->getValue());
2056     }
2057   }
2058 
2059   // When there is no explicit arch for this platform, make sure we still bind
2060   // the architecture (to the default) so that -Xarch_ is handled correctly.
2061   if (!Archs.size())
2062     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2063 
2064   ActionList SingleActions;
2065   BuildActions(C, Args, BAInputs, SingleActions);
2066 
2067   // Add in arch bindings for every top level action, as well as lipo and
2068   // dsymutil steps if needed.
2069   for (Action* Act : SingleActions) {
2070     // Make sure we can lipo this kind of output. If not (and it is an actual
2071     // output) then we disallow, since we can't create an output file with the
2072     // right name without overwriting it. We could remove this oddity by just
2073     // changing the output names to include the arch, which would also fix
2074     // -save-temps. Compatibility wins for now.
2075 
2076     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2077       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2078           << types::getTypeName(Act->getType());
2079 
2080     ActionList Inputs;
2081     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2082       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2083 
2084     // Lipo if necessary, we do it this way because we need to set the arch flag
2085     // so that -Xarch_ gets overwritten.
2086     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2087       Actions.append(Inputs.begin(), Inputs.end());
2088     else
2089       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2090 
2091     // Handle debug info queries.
2092     Arg *A = Args.getLastArg(options::OPT_g_Group);
2093     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2094                             !A->getOption().matches(options::OPT_gstabs);
2095     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2096         ContainsCompileOrAssembleAction(Actions.back())) {
2097 
2098       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2099       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2100       // because the debug info will refer to a temporary object file which
2101       // will be removed at the end of the compilation process.
2102       if (Act->getType() == types::TY_Image) {
2103         ActionList Inputs;
2104         Inputs.push_back(Actions.back());
2105         Actions.pop_back();
2106         Actions.push_back(
2107             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2108       }
2109 
2110       // Verify the debug info output.
2111       if (Args.hasArg(options::OPT_verify_debug_info)) {
2112         Action* LastAction = Actions.back();
2113         Actions.pop_back();
2114         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2115             LastAction, types::TY_Nothing));
2116       }
2117     }
2118   }
2119 }
2120 
2121 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2122                                     types::ID Ty, bool TypoCorrect) const {
2123   if (!getCheckInputsExist())
2124     return true;
2125 
2126   // stdin always exists.
2127   if (Value == "-")
2128     return true;
2129 
2130   if (getVFS().exists(Value))
2131     return true;
2132 
2133   if (TypoCorrect) {
2134     // Check if the filename is a typo for an option flag. OptTable thinks
2135     // that all args that are not known options and that start with / are
2136     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2137     // the option `/diagnostics:caret` than a reference to a file in the root
2138     // directory.
2139     unsigned IncludedFlagsBitmask;
2140     unsigned ExcludedFlagsBitmask;
2141     std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2142         getIncludeExcludeOptionFlagMasks(IsCLMode());
2143     std::string Nearest;
2144     if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2145                               ExcludedFlagsBitmask) <= 1) {
2146       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2147           << Value << Nearest;
2148       return false;
2149     }
2150   }
2151 
2152   // Don't error on apparently non-existent linker inputs, because they
2153   // can be influenced by linker flags the clang driver might not understand.
2154   // Examples:
2155   // - `clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o` will make lld look
2156   //   for some/dir/file.o
2157   // - `clang-cl main.cc ole32.lib` in a a non-MSVC shell will make the driver
2158   //   module look for an MSVC installation in the registry. (We could ask
2159   //   the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2160   //   look in the registry might move into lld-link in the future so that
2161   //   lld-link invocations in non-MSVC shells just work too.)
2162   // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2163   //   including /libpath:, which is used to find .lib and .obj files.
2164   // So do not diagnose this on the driver level. Rely on the linker diagnosing
2165   // it. (If we don't end up invoking the linker, this means we'll emit a
2166   // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2167   // of an error.)
2168   //
2169   // Only do this skip after the typo correction step above. `/Brepo` is treated
2170   // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2171   // an error if we have a flag that's within an edit distance of 1 from a
2172   // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2173   // driver in the unlikely case they run into this.)
2174   //
2175   // Don't do this skip in clang-cl mode for inputs that start with a '/' --
2176   // else we'd pass options like /libpath: through to the linker silently.
2177   if (Ty == types::TY_Object && !(IsCLMode() && Value.startswith("/")))
2178     return true;
2179 
2180   Diag(clang::diag::err_drv_no_such_file) << Value;
2181   return false;
2182 }
2183 
2184 // Construct a the list of inputs and their types.
2185 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2186                          InputList &Inputs) const {
2187   const llvm::opt::OptTable &Opts = getOpts();
2188   // Track the current user specified (-x) input. We also explicitly track the
2189   // argument used to set the type; we only want to claim the type when we
2190   // actually use it, so we warn about unused -x arguments.
2191   types::ID InputType = types::TY_Nothing;
2192   Arg *InputTypeArg = nullptr;
2193 
2194   // The last /TC or /TP option sets the input type to C or C++ globally.
2195   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2196                                          options::OPT__SLASH_TP)) {
2197     InputTypeArg = TCTP;
2198     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2199                     ? types::TY_C
2200                     : types::TY_CXX;
2201 
2202     Arg *Previous = nullptr;
2203     bool ShowNote = false;
2204     for (Arg *A :
2205          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2206       if (Previous) {
2207         Diag(clang::diag::warn_drv_overriding_flag_option)
2208           << Previous->getSpelling() << A->getSpelling();
2209         ShowNote = true;
2210       }
2211       Previous = A;
2212     }
2213     if (ShowNote)
2214       Diag(clang::diag::note_drv_t_option_is_global);
2215 
2216     // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2217     assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2218   }
2219 
2220   for (Arg *A : Args) {
2221     if (A->getOption().getKind() == Option::InputClass) {
2222       const char *Value = A->getValue();
2223       types::ID Ty = types::TY_INVALID;
2224 
2225       // Infer the input type if necessary.
2226       if (InputType == types::TY_Nothing) {
2227         // If there was an explicit arg for this, claim it.
2228         if (InputTypeArg)
2229           InputTypeArg->claim();
2230 
2231         // stdin must be handled specially.
2232         if (memcmp(Value, "-", 2) == 0) {
2233           if (IsFlangMode()) {
2234             Ty = types::TY_Fortran;
2235           } else {
2236             // If running with -E, treat as a C input (this changes the
2237             // builtin macros, for example). This may be overridden by -ObjC
2238             // below.
2239             //
2240             // Otherwise emit an error but still use a valid type to avoid
2241             // spurious errors (e.g., no inputs).
2242             if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2243               Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2244                               : clang::diag::err_drv_unknown_stdin_type);
2245             Ty = types::TY_C;
2246           }
2247         } else {
2248           // Otherwise lookup by extension.
2249           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2250           // clang-cl /E, or Object otherwise.
2251           // We use a host hook here because Darwin at least has its own
2252           // idea of what .s is.
2253           if (const char *Ext = strrchr(Value, '.'))
2254             Ty = TC.LookupTypeForExtension(Ext + 1);
2255 
2256           if (Ty == types::TY_INVALID) {
2257             if (CCCIsCPP())
2258               Ty = types::TY_C;
2259             else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2260               Ty = types::TY_CXX;
2261             else
2262               Ty = types::TY_Object;
2263           }
2264 
2265           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2266           // should autodetect some input files as C++ for g++ compatibility.
2267           if (CCCIsCXX()) {
2268             types::ID OldTy = Ty;
2269             Ty = types::lookupCXXTypeForCType(Ty);
2270 
2271             if (Ty != OldTy)
2272               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2273                   << getTypeName(OldTy) << getTypeName(Ty);
2274           }
2275 
2276           // If running with -fthinlto-index=, extensions that normally identify
2277           // native object files actually identify LLVM bitcode files.
2278           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2279               Ty == types::TY_Object)
2280             Ty = types::TY_LLVM_BC;
2281         }
2282 
2283         // -ObjC and -ObjC++ override the default language, but only for "source
2284         // files". We just treat everything that isn't a linker input as a
2285         // source file.
2286         //
2287         // FIXME: Clean this up if we move the phase sequence into the type.
2288         if (Ty != types::TY_Object) {
2289           if (Args.hasArg(options::OPT_ObjC))
2290             Ty = types::TY_ObjC;
2291           else if (Args.hasArg(options::OPT_ObjCXX))
2292             Ty = types::TY_ObjCXX;
2293         }
2294       } else {
2295         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2296         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2297           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2298           // object files.
2299           const char *Ext = strrchr(Value, '.');
2300           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2301             Ty = types::TY_Object;
2302         }
2303         if (Ty == types::TY_INVALID) {
2304           Ty = InputType;
2305           InputTypeArg->claim();
2306         }
2307       }
2308 
2309       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2310         Inputs.push_back(std::make_pair(Ty, A));
2311 
2312     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2313       StringRef Value = A->getValue();
2314       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2315                                  /*TypoCorrect=*/false)) {
2316         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2317         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2318       }
2319       A->claim();
2320     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2321       StringRef Value = A->getValue();
2322       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2323                                  /*TypoCorrect=*/false)) {
2324         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2325         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2326       }
2327       A->claim();
2328     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2329       // Just treat as object type, we could make a special type for this if
2330       // necessary.
2331       Inputs.push_back(std::make_pair(types::TY_Object, A));
2332 
2333     } else if (A->getOption().matches(options::OPT_x)) {
2334       InputTypeArg = A;
2335       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2336       A->claim();
2337 
2338       // Follow gcc behavior and treat as linker input for invalid -x
2339       // options. Its not clear why we shouldn't just revert to unknown; but
2340       // this isn't very important, we might as well be bug compatible.
2341       if (!InputType) {
2342         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2343         InputType = types::TY_Object;
2344       }
2345     } else if (A->getOption().getID() == options::OPT_U) {
2346       assert(A->getNumValues() == 1 && "The /U option has one value.");
2347       StringRef Val = A->getValue(0);
2348       if (Val.find_first_of("/\\") != StringRef::npos) {
2349         // Warn about e.g. "/Users/me/myfile.c".
2350         Diag(diag::warn_slash_u_filename) << Val;
2351         Diag(diag::note_use_dashdash);
2352       }
2353     }
2354   }
2355   if (CCCIsCPP() && Inputs.empty()) {
2356     // If called as standalone preprocessor, stdin is processed
2357     // if no other input is present.
2358     Arg *A = MakeInputArg(Args, Opts, "-");
2359     Inputs.push_back(std::make_pair(types::TY_C, A));
2360   }
2361 }
2362 
2363 namespace {
2364 /// Provides a convenient interface for different programming models to generate
2365 /// the required device actions.
2366 class OffloadingActionBuilder final {
2367   /// Flag used to trace errors in the builder.
2368   bool IsValid = false;
2369 
2370   /// The compilation that is using this builder.
2371   Compilation &C;
2372 
2373   /// Map between an input argument and the offload kinds used to process it.
2374   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2375 
2376   /// Builder interface. It doesn't build anything or keep any state.
2377   class DeviceActionBuilder {
2378   public:
2379     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2380 
2381     enum ActionBuilderReturnCode {
2382       // The builder acted successfully on the current action.
2383       ABRT_Success,
2384       // The builder didn't have to act on the current action.
2385       ABRT_Inactive,
2386       // The builder was successful and requested the host action to not be
2387       // generated.
2388       ABRT_Ignore_Host,
2389     };
2390 
2391   protected:
2392     /// Compilation associated with this builder.
2393     Compilation &C;
2394 
2395     /// Tool chains associated with this builder. The same programming
2396     /// model may have associated one or more tool chains.
2397     SmallVector<const ToolChain *, 2> ToolChains;
2398 
2399     /// The derived arguments associated with this builder.
2400     DerivedArgList &Args;
2401 
2402     /// The inputs associated with this builder.
2403     const Driver::InputList &Inputs;
2404 
2405     /// The associated offload kind.
2406     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2407 
2408   public:
2409     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2410                         const Driver::InputList &Inputs,
2411                         Action::OffloadKind AssociatedOffloadKind)
2412         : C(C), Args(Args), Inputs(Inputs),
2413           AssociatedOffloadKind(AssociatedOffloadKind) {}
2414     virtual ~DeviceActionBuilder() {}
2415 
2416     /// Fill up the array \a DA with all the device dependences that should be
2417     /// added to the provided host action \a HostAction. By default it is
2418     /// inactive.
2419     virtual ActionBuilderReturnCode
2420     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2421                          phases::ID CurPhase, phases::ID FinalPhase,
2422                          PhasesTy &Phases) {
2423       return ABRT_Inactive;
2424     }
2425 
2426     /// Update the state to include the provided host action \a HostAction as a
2427     /// dependency of the current device action. By default it is inactive.
2428     virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2429       return ABRT_Inactive;
2430     }
2431 
2432     /// Append top level actions generated by the builder.
2433     virtual void appendTopLevelActions(ActionList &AL) {}
2434 
2435     /// Append linker device actions generated by the builder.
2436     virtual void appendLinkDeviceActions(ActionList &AL) {}
2437 
2438     /// Append linker host action generated by the builder.
2439     virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2440 
2441     /// Append linker actions generated by the builder.
2442     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2443 
2444     /// Initialize the builder. Return true if any initialization errors are
2445     /// found.
2446     virtual bool initialize() { return false; }
2447 
2448     /// Return true if the builder can use bundling/unbundling.
2449     virtual bool canUseBundlerUnbundler() const { return false; }
2450 
2451     /// Return true if this builder is valid. We have a valid builder if we have
2452     /// associated device tool chains.
2453     bool isValid() { return !ToolChains.empty(); }
2454 
2455     /// Return the associated offload kind.
2456     Action::OffloadKind getAssociatedOffloadKind() {
2457       return AssociatedOffloadKind;
2458     }
2459   };
2460 
2461   /// Base class for CUDA/HIP action builder. It injects device code in
2462   /// the host backend action.
2463   class CudaActionBuilderBase : public DeviceActionBuilder {
2464   protected:
2465     /// Flags to signal if the user requested host-only or device-only
2466     /// compilation.
2467     bool CompileHostOnly = false;
2468     bool CompileDeviceOnly = false;
2469     bool EmitLLVM = false;
2470     bool EmitAsm = false;
2471 
2472     /// ID to identify each device compilation. For CUDA it is simply the
2473     /// GPU arch string. For HIP it is either the GPU arch string or GPU
2474     /// arch string plus feature strings delimited by a plus sign, e.g.
2475     /// gfx906+xnack.
2476     struct TargetID {
2477       /// Target ID string which is persistent throughout the compilation.
2478       const char *ID;
2479       TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2480       TargetID(const char *ID) : ID(ID) {}
2481       operator const char *() { return ID; }
2482       operator StringRef() { return StringRef(ID); }
2483     };
2484     /// List of GPU architectures to use in this compilation.
2485     SmallVector<TargetID, 4> GpuArchList;
2486 
2487     /// The CUDA actions for the current input.
2488     ActionList CudaDeviceActions;
2489 
2490     /// The CUDA fat binary if it was generated for the current input.
2491     Action *CudaFatBinary = nullptr;
2492 
2493     /// Flag that is set to true if this builder acted on the current input.
2494     bool IsActive = false;
2495 
2496     /// Flag for -fgpu-rdc.
2497     bool Relocatable = false;
2498 
2499     /// Default GPU architecture if there's no one specified.
2500     CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2501 
2502     /// Method to generate compilation unit ID specified by option
2503     /// '-fuse-cuid='.
2504     enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2505     UseCUIDKind UseCUID = CUID_Hash;
2506 
2507     /// Compilation unit ID specified by option '-cuid='.
2508     StringRef FixedCUID;
2509 
2510   public:
2511     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2512                           const Driver::InputList &Inputs,
2513                           Action::OffloadKind OFKind)
2514         : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2515 
2516     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2517       // While generating code for CUDA, we only depend on the host input action
2518       // to trigger the creation of all the CUDA device actions.
2519 
2520       // If we are dealing with an input action, replicate it for each GPU
2521       // architecture. If we are in host-only mode we return 'success' so that
2522       // the host uses the CUDA offload kind.
2523       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2524         assert(!GpuArchList.empty() &&
2525                "We should have at least one GPU architecture.");
2526 
2527         // If the host input is not CUDA or HIP, we don't need to bother about
2528         // this input.
2529         if (!(IA->getType() == types::TY_CUDA ||
2530               IA->getType() == types::TY_HIP ||
2531               IA->getType() == types::TY_PP_HIP)) {
2532           // The builder will ignore this input.
2533           IsActive = false;
2534           return ABRT_Inactive;
2535         }
2536 
2537         // Set the flag to true, so that the builder acts on the current input.
2538         IsActive = true;
2539 
2540         if (CompileHostOnly)
2541           return ABRT_Success;
2542 
2543         // Replicate inputs for each GPU architecture.
2544         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2545                                                  : types::TY_CUDA_DEVICE;
2546         std::string CUID = FixedCUID.str();
2547         if (CUID.empty()) {
2548           if (UseCUID == CUID_Random)
2549             CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2550                                    /*LowerCase=*/true);
2551           else if (UseCUID == CUID_Hash) {
2552             llvm::MD5 Hasher;
2553             llvm::MD5::MD5Result Hash;
2554             SmallString<256> RealPath;
2555             llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2556                                      /*expand_tilde=*/true);
2557             Hasher.update(RealPath);
2558             for (auto *A : Args) {
2559               if (A->getOption().matches(options::OPT_INPUT))
2560                 continue;
2561               Hasher.update(A->getAsString(Args));
2562             }
2563             Hasher.final(Hash);
2564             CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2565           }
2566         }
2567         IA->setId(CUID);
2568 
2569         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2570           CudaDeviceActions.push_back(
2571               C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2572         }
2573 
2574         return ABRT_Success;
2575       }
2576 
2577       // If this is an unbundling action use it as is for each CUDA toolchain.
2578       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2579 
2580         // If -fgpu-rdc is disabled, should not unbundle since there is no
2581         // device code to link.
2582         if (UA->getType() == types::TY_Object && !Relocatable)
2583           return ABRT_Inactive;
2584 
2585         CudaDeviceActions.clear();
2586         auto *IA = cast<InputAction>(UA->getInputs().back());
2587         std::string FileName = IA->getInputArg().getAsString(Args);
2588         // Check if the type of the file is the same as the action. Do not
2589         // unbundle it if it is not. Do not unbundle .so files, for example,
2590         // which are not object files.
2591         if (IA->getType() == types::TY_Object &&
2592             (!llvm::sys::path::has_extension(FileName) ||
2593              types::lookupTypeForExtension(
2594                  llvm::sys::path::extension(FileName).drop_front()) !=
2595                  types::TY_Object))
2596           return ABRT_Inactive;
2597 
2598         for (auto Arch : GpuArchList) {
2599           CudaDeviceActions.push_back(UA);
2600           UA->registerDependentActionInfo(ToolChains[0], Arch,
2601                                           AssociatedOffloadKind);
2602         }
2603         return ABRT_Success;
2604       }
2605 
2606       return IsActive ? ABRT_Success : ABRT_Inactive;
2607     }
2608 
2609     void appendTopLevelActions(ActionList &AL) override {
2610       // Utility to append actions to the top level list.
2611       auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2612         OffloadAction::DeviceDependences Dep;
2613         Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2614         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2615       };
2616 
2617       // If we have a fat binary, add it to the list.
2618       if (CudaFatBinary) {
2619         AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
2620         CudaDeviceActions.clear();
2621         CudaFatBinary = nullptr;
2622         return;
2623       }
2624 
2625       if (CudaDeviceActions.empty())
2626         return;
2627 
2628       // If we have CUDA actions at this point, that's because we have a have
2629       // partial compilation, so we should have an action for each GPU
2630       // architecture.
2631       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2632              "Expecting one action per GPU architecture.");
2633       assert(ToolChains.size() == 1 &&
2634              "Expecting to have a single CUDA toolchain.");
2635       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2636         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2637 
2638       CudaDeviceActions.clear();
2639     }
2640 
2641     /// Get canonicalized offload arch option. \returns empty StringRef if the
2642     /// option is invalid.
2643     virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2644 
2645     virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2646     getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2647 
2648     bool initialize() override {
2649       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2650              AssociatedOffloadKind == Action::OFK_HIP);
2651 
2652       // We don't need to support CUDA.
2653       if (AssociatedOffloadKind == Action::OFK_Cuda &&
2654           !C.hasOffloadToolChain<Action::OFK_Cuda>())
2655         return false;
2656 
2657       // We don't need to support HIP.
2658       if (AssociatedOffloadKind == Action::OFK_HIP &&
2659           !C.hasOffloadToolChain<Action::OFK_HIP>())
2660         return false;
2661 
2662       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2663           options::OPT_fno_gpu_rdc, /*Default=*/false);
2664 
2665       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2666       assert(HostTC && "No toolchain for host compilation.");
2667       if (HostTC->getTriple().isNVPTX() ||
2668           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2669         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2670         // an error and abort pipeline construction early so we don't trip
2671         // asserts that assume device-side compilation.
2672         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2673             << HostTC->getTriple().getArchName();
2674         return true;
2675       }
2676 
2677       ToolChains.push_back(
2678           AssociatedOffloadKind == Action::OFK_Cuda
2679               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2680               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2681 
2682       Arg *PartialCompilationArg = Args.getLastArg(
2683           options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2684           options::OPT_cuda_compile_host_device);
2685       CompileHostOnly = PartialCompilationArg &&
2686                         PartialCompilationArg->getOption().matches(
2687                             options::OPT_cuda_host_only);
2688       CompileDeviceOnly = PartialCompilationArg &&
2689                           PartialCompilationArg->getOption().matches(
2690                               options::OPT_cuda_device_only);
2691       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2692       EmitAsm = Args.getLastArg(options::OPT_S);
2693       FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
2694       if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
2695         StringRef UseCUIDStr = A->getValue();
2696         UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
2697                       .Case("hash", CUID_Hash)
2698                       .Case("random", CUID_Random)
2699                       .Case("none", CUID_None)
2700                       .Default(CUID_Invalid);
2701         if (UseCUID == CUID_Invalid) {
2702           C.getDriver().Diag(diag::err_drv_invalid_value)
2703               << A->getAsString(Args) << UseCUIDStr;
2704           C.setContainsError();
2705           return true;
2706         }
2707       }
2708 
2709       // Collect all cuda_gpu_arch parameters, removing duplicates.
2710       std::set<StringRef> GpuArchs;
2711       bool Error = false;
2712       for (Arg *A : Args) {
2713         if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2714               A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2715           continue;
2716         A->claim();
2717 
2718         StringRef ArchStr = A->getValue();
2719         if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2720             ArchStr == "all") {
2721           GpuArchs.clear();
2722           continue;
2723         }
2724         ArchStr = getCanonicalOffloadArch(ArchStr);
2725         if (ArchStr.empty()) {
2726           Error = true;
2727         } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2728           GpuArchs.insert(ArchStr);
2729         else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2730           GpuArchs.erase(ArchStr);
2731         else
2732           llvm_unreachable("Unexpected option.");
2733       }
2734 
2735       auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
2736       if (ConflictingArchs) {
2737         C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
2738             << ConflictingArchs.getValue().first
2739             << ConflictingArchs.getValue().second;
2740         C.setContainsError();
2741         return true;
2742       }
2743 
2744       // Collect list of GPUs remaining in the set.
2745       for (auto Arch : GpuArchs)
2746         GpuArchList.push_back(Arch.data());
2747 
2748       // Default to sm_20 which is the lowest common denominator for
2749       // supported GPUs.  sm_20 code should work correctly, if
2750       // suboptimally, on all newer GPUs.
2751       if (GpuArchList.empty())
2752         GpuArchList.push_back(DefaultCudaArch);
2753 
2754       return Error;
2755     }
2756   };
2757 
2758   /// \brief CUDA action builder. It injects device code in the host backend
2759   /// action.
2760   class CudaActionBuilder final : public CudaActionBuilderBase {
2761   public:
2762     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2763                       const Driver::InputList &Inputs)
2764         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2765       DefaultCudaArch = CudaArch::SM_35;
2766     }
2767 
2768     StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
2769       CudaArch Arch = StringToCudaArch(ArchStr);
2770       if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
2771         C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2772         return StringRef();
2773       }
2774       return CudaArchToString(Arch);
2775     }
2776 
2777     llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2778     getConflictOffloadArchCombination(
2779         const std::set<StringRef> &GpuArchs) override {
2780       return llvm::None;
2781     }
2782 
2783     ActionBuilderReturnCode
2784     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2785                          phases::ID CurPhase, phases::ID FinalPhase,
2786                          PhasesTy &Phases) override {
2787       if (!IsActive)
2788         return ABRT_Inactive;
2789 
2790       // If we don't have more CUDA actions, we don't have any dependences to
2791       // create for the host.
2792       if (CudaDeviceActions.empty())
2793         return ABRT_Success;
2794 
2795       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2796              "Expecting one action per GPU architecture.");
2797       assert(!CompileHostOnly &&
2798              "Not expecting CUDA actions in host-only compilation.");
2799 
2800       // If we are generating code for the device or we are in a backend phase,
2801       // we attempt to generate the fat binary. We compile each arch to ptx and
2802       // assemble to cubin, then feed the cubin *and* the ptx into a device
2803       // "link" action, which uses fatbinary to combine these cubins into one
2804       // fatbin.  The fatbin is then an input to the host action if not in
2805       // device-only mode.
2806       if (CompileDeviceOnly || CurPhase == phases::Backend) {
2807         ActionList DeviceActions;
2808         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2809           // Produce the device action from the current phase up to the assemble
2810           // phase.
2811           for (auto Ph : Phases) {
2812             // Skip the phases that were already dealt with.
2813             if (Ph < CurPhase)
2814               continue;
2815             // We have to be consistent with the host final phase.
2816             if (Ph > FinalPhase)
2817               break;
2818 
2819             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2820                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2821 
2822             if (Ph == phases::Assemble)
2823               break;
2824           }
2825 
2826           // If we didn't reach the assemble phase, we can't generate the fat
2827           // binary. We don't need to generate the fat binary if we are not in
2828           // device-only mode.
2829           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2830               CompileDeviceOnly)
2831             continue;
2832 
2833           Action *AssembleAction = CudaDeviceActions[I];
2834           assert(AssembleAction->getType() == types::TY_Object);
2835           assert(AssembleAction->getInputs().size() == 1);
2836 
2837           Action *BackendAction = AssembleAction->getInputs()[0];
2838           assert(BackendAction->getType() == types::TY_PP_Asm);
2839 
2840           for (auto &A : {AssembleAction, BackendAction}) {
2841             OffloadAction::DeviceDependences DDep;
2842             DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
2843             DeviceActions.push_back(
2844                 C.MakeAction<OffloadAction>(DDep, A->getType()));
2845           }
2846         }
2847 
2848         // We generate the fat binary if we have device input actions.
2849         if (!DeviceActions.empty()) {
2850           CudaFatBinary =
2851               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2852 
2853           if (!CompileDeviceOnly) {
2854             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2855                    Action::OFK_Cuda);
2856             // Clear the fat binary, it is already a dependence to an host
2857             // action.
2858             CudaFatBinary = nullptr;
2859           }
2860 
2861           // Remove the CUDA actions as they are already connected to an host
2862           // action or fat binary.
2863           CudaDeviceActions.clear();
2864         }
2865 
2866         // We avoid creating host action in device-only mode.
2867         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2868       } else if (CurPhase > phases::Backend) {
2869         // If we are past the backend phase and still have a device action, we
2870         // don't have to do anything as this action is already a device
2871         // top-level action.
2872         return ABRT_Success;
2873       }
2874 
2875       assert(CurPhase < phases::Backend && "Generating single CUDA "
2876                                            "instructions should only occur "
2877                                            "before the backend phase!");
2878 
2879       // By default, we produce an action for each device arch.
2880       for (Action *&A : CudaDeviceActions)
2881         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2882 
2883       return ABRT_Success;
2884     }
2885   };
2886   /// \brief HIP action builder. It injects device code in the host backend
2887   /// action.
2888   class HIPActionBuilder final : public CudaActionBuilderBase {
2889     /// The linker inputs obtained for each device arch.
2890     SmallVector<ActionList, 8> DeviceLinkerInputs;
2891     bool GPUSanitize;
2892     // The default bundling behavior depends on the type of output, therefore
2893     // BundleOutput needs to be tri-value: None, true, or false.
2894     // Bundle code objects except --no-gpu-output is specified for device
2895     // only compilation. Bundle other type of output files only if
2896     // --gpu-bundle-output is specified for device only compilation.
2897     Optional<bool> BundleOutput;
2898 
2899   public:
2900     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2901                      const Driver::InputList &Inputs)
2902         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
2903       DefaultCudaArch = CudaArch::GFX803;
2904       GPUSanitize = Args.hasFlag(options::OPT_fgpu_sanitize,
2905                                  options::OPT_fno_gpu_sanitize, false);
2906       if (Args.hasArg(options::OPT_gpu_bundle_output,
2907                       options::OPT_no_gpu_bundle_output))
2908         BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
2909                                     options::OPT_no_gpu_bundle_output);
2910     }
2911 
2912     bool canUseBundlerUnbundler() const override { return true; }
2913 
2914     StringRef getCanonicalOffloadArch(StringRef IdStr) override {
2915       llvm::StringMap<bool> Features;
2916       auto ArchStr =
2917           parseTargetID(getHIPOffloadTargetTriple(), IdStr, &Features);
2918       if (!ArchStr) {
2919         C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
2920         C.setContainsError();
2921         return StringRef();
2922       }
2923       auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
2924       return Args.MakeArgStringRef(CanId);
2925     };
2926 
2927     llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2928     getConflictOffloadArchCombination(
2929         const std::set<StringRef> &GpuArchs) override {
2930       return getConflictTargetIDCombination(GpuArchs);
2931     }
2932 
2933     ActionBuilderReturnCode
2934     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2935                          phases::ID CurPhase, phases::ID FinalPhase,
2936                          PhasesTy &Phases) override {
2937       // amdgcn does not support linking of object files, therefore we skip
2938       // backend and assemble phases to output LLVM IR. Except for generating
2939       // non-relocatable device coee, where we generate fat binary for device
2940       // code and pass to host in Backend phase.
2941       if (CudaDeviceActions.empty())
2942         return ABRT_Success;
2943 
2944       assert(((CurPhase == phases::Link && Relocatable) ||
2945               CudaDeviceActions.size() == GpuArchList.size()) &&
2946              "Expecting one action per GPU architecture.");
2947       assert(!CompileHostOnly &&
2948              "Not expecting CUDA actions in host-only compilation.");
2949 
2950       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
2951           !EmitAsm) {
2952         // If we are in backend phase, we attempt to generate the fat binary.
2953         // We compile each arch to IR and use a link action to generate code
2954         // object containing ISA. Then we use a special "link" action to create
2955         // a fat binary containing all the code objects for different GPU's.
2956         // The fat binary is then an input to the host action.
2957         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2958           if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
2959             // When LTO is enabled, skip the backend and assemble phases and
2960             // use lld to link the bitcode.
2961             ActionList AL;
2962             AL.push_back(CudaDeviceActions[I]);
2963             // Create a link action to link device IR with device library
2964             // and generate ISA.
2965             CudaDeviceActions[I] =
2966                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2967           } else {
2968             // When LTO is not enabled, we follow the conventional
2969             // compiler phases, including backend and assemble phases.
2970             ActionList AL;
2971             auto BackendAction = C.getDriver().ConstructPhaseAction(
2972                 C, Args, phases::Backend, CudaDeviceActions[I],
2973                 AssociatedOffloadKind);
2974             auto AssembleAction = C.getDriver().ConstructPhaseAction(
2975                 C, Args, phases::Assemble, BackendAction,
2976                 AssociatedOffloadKind);
2977             AL.push_back(AssembleAction);
2978             // Create a link action to link device IR with device library
2979             // and generate ISA.
2980             CudaDeviceActions[I] =
2981                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2982           }
2983 
2984           // OffloadingActionBuilder propagates device arch until an offload
2985           // action. Since the next action for creating fatbin does
2986           // not have device arch, whereas the above link action and its input
2987           // have device arch, an offload action is needed to stop the null
2988           // device arch of the next action being propagated to the above link
2989           // action.
2990           OffloadAction::DeviceDependences DDep;
2991           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
2992                    AssociatedOffloadKind);
2993           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2994               DDep, CudaDeviceActions[I]->getType());
2995         }
2996 
2997         if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
2998             BundleOutput.getValue()) {
2999           // Create HIP fat binary with a special "link" action.
3000           CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3001                                                       types::TY_HIP_FATBIN);
3002 
3003           if (!CompileDeviceOnly) {
3004             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3005                    AssociatedOffloadKind);
3006             // Clear the fat binary, it is already a dependence to an host
3007             // action.
3008             CudaFatBinary = nullptr;
3009           }
3010 
3011           // Remove the CUDA actions as they are already connected to an host
3012           // action or fat binary.
3013           CudaDeviceActions.clear();
3014         }
3015 
3016         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3017       } else if (CurPhase == phases::Link) {
3018         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3019         // This happens to each device action originated from each input file.
3020         // Later on, device actions in DeviceLinkerInputs are used to create
3021         // device link actions in appendLinkDependences and the created device
3022         // link actions are passed to the offload action as device dependence.
3023         DeviceLinkerInputs.resize(CudaDeviceActions.size());
3024         auto LI = DeviceLinkerInputs.begin();
3025         for (auto *A : CudaDeviceActions) {
3026           LI->push_back(A);
3027           ++LI;
3028         }
3029 
3030         // We will pass the device action as a host dependence, so we don't
3031         // need to do anything else with them.
3032         CudaDeviceActions.clear();
3033         return ABRT_Success;
3034       }
3035 
3036       // By default, we produce an action for each device arch.
3037       for (Action *&A : CudaDeviceActions)
3038         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3039                                                AssociatedOffloadKind);
3040 
3041       if (CompileDeviceOnly && CurPhase == FinalPhase &&
3042           BundleOutput.hasValue() && BundleOutput.getValue()) {
3043         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3044           OffloadAction::DeviceDependences DDep;
3045           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3046                    AssociatedOffloadKind);
3047           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3048               DDep, CudaDeviceActions[I]->getType());
3049         }
3050         CudaFatBinary =
3051             C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3052         CudaDeviceActions.clear();
3053       }
3054 
3055       return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3056                                                            : ABRT_Success;
3057     }
3058 
3059     void appendLinkDeviceActions(ActionList &AL) override {
3060       if (DeviceLinkerInputs.size() == 0)
3061         return;
3062 
3063       assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3064              "Linker inputs and GPU arch list sizes do not match.");
3065 
3066       // Append a new link action for each device.
3067       unsigned I = 0;
3068       for (auto &LI : DeviceLinkerInputs) {
3069         // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3070         auto *DeviceLinkAction =
3071             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3072         // Linking all inputs for the current GPU arch.
3073         // LI contains all the inputs for the linker.
3074         OffloadAction::DeviceDependences DeviceLinkDeps;
3075         DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3076             GpuArchList[I], AssociatedOffloadKind);
3077         AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3078             DeviceLinkAction->getType()));
3079         ++I;
3080       }
3081       DeviceLinkerInputs.clear();
3082 
3083       // Create a host object from all the device images by embedding them
3084       // in a fat binary.
3085       OffloadAction::DeviceDependences DDeps;
3086       auto *TopDeviceLinkAction =
3087           C.MakeAction<LinkJobAction>(AL, types::TY_Object);
3088       DDeps.add(*TopDeviceLinkAction, *ToolChains[0],
3089           nullptr, AssociatedOffloadKind);
3090 
3091       // Offload the host object to the host linker.
3092       AL.push_back(C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3093     }
3094 
3095     Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3096 
3097     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3098   };
3099 
3100   /// OpenMP action builder. The host bitcode is passed to the device frontend
3101   /// and all the device linked images are passed to the host link phase.
3102   class OpenMPActionBuilder final : public DeviceActionBuilder {
3103     /// The OpenMP actions for the current input.
3104     ActionList OpenMPDeviceActions;
3105 
3106     /// The linker inputs obtained for each toolchain.
3107     SmallVector<ActionList, 8> DeviceLinkerInputs;
3108 
3109   public:
3110     OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
3111                         const Driver::InputList &Inputs)
3112         : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
3113 
3114     ActionBuilderReturnCode
3115     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3116                          phases::ID CurPhase, phases::ID FinalPhase,
3117                          PhasesTy &Phases) override {
3118       if (OpenMPDeviceActions.empty())
3119         return ABRT_Inactive;
3120 
3121       // We should always have an action for each input.
3122       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3123              "Number of OpenMP actions and toolchains do not match.");
3124 
3125       // The host only depends on device action in the linking phase, when all
3126       // the device images have to be embedded in the host image.
3127       if (CurPhase == phases::Link) {
3128         assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3129                "Toolchains and linker inputs sizes do not match.");
3130         auto LI = DeviceLinkerInputs.begin();
3131         for (auto *A : OpenMPDeviceActions) {
3132           LI->push_back(A);
3133           ++LI;
3134         }
3135 
3136         // We passed the device action as a host dependence, so we don't need to
3137         // do anything else with them.
3138         OpenMPDeviceActions.clear();
3139         return ABRT_Success;
3140       }
3141 
3142       // By default, we produce an action for each device arch.
3143       for (Action *&A : OpenMPDeviceActions)
3144         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3145 
3146       return ABRT_Success;
3147     }
3148 
3149     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
3150 
3151       // If this is an input action replicate it for each OpenMP toolchain.
3152       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3153         OpenMPDeviceActions.clear();
3154         for (unsigned I = 0; I < ToolChains.size(); ++I)
3155           OpenMPDeviceActions.push_back(
3156               C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
3157         return ABRT_Success;
3158       }
3159 
3160       // If this is an unbundling action use it as is for each OpenMP toolchain.
3161       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3162         OpenMPDeviceActions.clear();
3163         auto *IA = cast<InputAction>(UA->getInputs().back());
3164         std::string FileName = IA->getInputArg().getAsString(Args);
3165         // Check if the type of the file is the same as the action. Do not
3166         // unbundle it if it is not. Do not unbundle .so files, for example,
3167         // which are not object files.
3168         if (IA->getType() == types::TY_Object &&
3169             (!llvm::sys::path::has_extension(FileName) ||
3170              types::lookupTypeForExtension(
3171                  llvm::sys::path::extension(FileName).drop_front()) !=
3172                  types::TY_Object))
3173           return ABRT_Inactive;
3174         for (unsigned I = 0; I < ToolChains.size(); ++I) {
3175           OpenMPDeviceActions.push_back(UA);
3176           UA->registerDependentActionInfo(
3177               ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3178         }
3179         return ABRT_Success;
3180       }
3181 
3182       // When generating code for OpenMP we use the host compile phase result as
3183       // a dependence to the device compile phase so that it can learn what
3184       // declarations should be emitted. However, this is not the only use for
3185       // the host action, so we prevent it from being collapsed.
3186       if (isa<CompileJobAction>(HostAction)) {
3187         HostAction->setCannotBeCollapsedWithNextDependentAction();
3188         assert(ToolChains.size() == OpenMPDeviceActions.size() &&
3189                "Toolchains and device action sizes do not match.");
3190         OffloadAction::HostDependence HDep(
3191             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3192             /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3193         auto TC = ToolChains.begin();
3194         for (Action *&A : OpenMPDeviceActions) {
3195           assert(isa<CompileJobAction>(A));
3196           OffloadAction::DeviceDependences DDep;
3197           DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3198           A = C.MakeAction<OffloadAction>(HDep, DDep);
3199           ++TC;
3200         }
3201       }
3202       return ABRT_Success;
3203     }
3204 
3205     void appendTopLevelActions(ActionList &AL) override {
3206       if (OpenMPDeviceActions.empty())
3207         return;
3208 
3209       // We should always have an action for each input.
3210       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3211              "Number of OpenMP actions and toolchains do not match.");
3212 
3213       // Append all device actions followed by the proper offload action.
3214       auto TI = ToolChains.begin();
3215       for (auto *A : OpenMPDeviceActions) {
3216         OffloadAction::DeviceDependences Dep;
3217         Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3218         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3219         ++TI;
3220       }
3221       // We no longer need the action stored in this builder.
3222       OpenMPDeviceActions.clear();
3223     }
3224 
3225     void appendLinkDeviceActions(ActionList &AL) override {
3226       assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3227              "Toolchains and linker inputs sizes do not match.");
3228 
3229       // Append a new link action for each device.
3230       auto TC = ToolChains.begin();
3231       for (auto &LI : DeviceLinkerInputs) {
3232         auto *DeviceLinkAction =
3233             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3234         OffloadAction::DeviceDependences DeviceLinkDeps;
3235         DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3236 		        Action::OFK_OpenMP);
3237         AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3238             DeviceLinkAction->getType()));
3239         ++TC;
3240       }
3241       DeviceLinkerInputs.clear();
3242     }
3243 
3244     Action* appendLinkHostActions(ActionList &AL) override {
3245       // Create wrapper bitcode from the result of device link actions and compile
3246       // it to an object which will be added to the host link command.
3247       auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3248       auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3249       return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3250     }
3251 
3252     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3253 
3254     bool initialize() override {
3255       // Get the OpenMP toolchains. If we don't get any, the action builder will
3256       // know there is nothing to do related to OpenMP offloading.
3257       auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3258       for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3259            ++TI)
3260         ToolChains.push_back(TI->second);
3261 
3262       DeviceLinkerInputs.resize(ToolChains.size());
3263       return false;
3264     }
3265 
3266     bool canUseBundlerUnbundler() const override {
3267       // OpenMP should use bundled files whenever possible.
3268       return true;
3269     }
3270   };
3271 
3272   ///
3273   /// TODO: Add the implementation for other specialized builders here.
3274   ///
3275 
3276   /// Specialized builders being used by this offloading action builder.
3277   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3278 
3279   /// Flag set to true if all valid builders allow file bundling/unbundling.
3280   bool CanUseBundler;
3281 
3282 public:
3283   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3284                           const Driver::InputList &Inputs)
3285       : C(C) {
3286     // Create a specialized builder for each device toolchain.
3287 
3288     IsValid = true;
3289 
3290     // Create a specialized builder for CUDA.
3291     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3292 
3293     // Create a specialized builder for HIP.
3294     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3295 
3296     // Create a specialized builder for OpenMP.
3297     SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3298 
3299     //
3300     // TODO: Build other specialized builders here.
3301     //
3302 
3303     // Initialize all the builders, keeping track of errors. If all valid
3304     // builders agree that we can use bundling, set the flag to true.
3305     unsigned ValidBuilders = 0u;
3306     unsigned ValidBuildersSupportingBundling = 0u;
3307     for (auto *SB : SpecializedBuilders) {
3308       IsValid = IsValid && !SB->initialize();
3309 
3310       // Update the counters if the builder is valid.
3311       if (SB->isValid()) {
3312         ++ValidBuilders;
3313         if (SB->canUseBundlerUnbundler())
3314           ++ValidBuildersSupportingBundling;
3315       }
3316     }
3317     CanUseBundler =
3318         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3319   }
3320 
3321   ~OffloadingActionBuilder() {
3322     for (auto *SB : SpecializedBuilders)
3323       delete SB;
3324   }
3325 
3326   /// Generate an action that adds device dependences (if any) to a host action.
3327   /// If no device dependence actions exist, just return the host action \a
3328   /// HostAction. If an error is found or if no builder requires the host action
3329   /// to be generated, return nullptr.
3330   Action *
3331   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3332                                    phases::ID CurPhase, phases::ID FinalPhase,
3333                                    DeviceActionBuilder::PhasesTy &Phases) {
3334     if (!IsValid)
3335       return nullptr;
3336 
3337     if (SpecializedBuilders.empty())
3338       return HostAction;
3339 
3340     assert(HostAction && "Invalid host action!");
3341 
3342     OffloadAction::DeviceDependences DDeps;
3343     // Check if all the programming models agree we should not emit the host
3344     // action. Also, keep track of the offloading kinds employed.
3345     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3346     unsigned InactiveBuilders = 0u;
3347     unsigned IgnoringBuilders = 0u;
3348     for (auto *SB : SpecializedBuilders) {
3349       if (!SB->isValid()) {
3350         ++InactiveBuilders;
3351         continue;
3352       }
3353 
3354       auto RetCode =
3355           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3356 
3357       // If the builder explicitly says the host action should be ignored,
3358       // we need to increment the variable that tracks the builders that request
3359       // the host object to be ignored.
3360       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3361         ++IgnoringBuilders;
3362 
3363       // Unless the builder was inactive for this action, we have to record the
3364       // offload kind because the host will have to use it.
3365       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3366         OffloadKind |= SB->getAssociatedOffloadKind();
3367     }
3368 
3369     // If all builders agree that the host object should be ignored, just return
3370     // nullptr.
3371     if (IgnoringBuilders &&
3372         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3373       return nullptr;
3374 
3375     if (DDeps.getActions().empty())
3376       return HostAction;
3377 
3378     // We have dependences we need to bundle together. We use an offload action
3379     // for that.
3380     OffloadAction::HostDependence HDep(
3381         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3382         /*BoundArch=*/nullptr, DDeps);
3383     return C.MakeAction<OffloadAction>(HDep, DDeps);
3384   }
3385 
3386   /// Generate an action that adds a host dependence to a device action. The
3387   /// results will be kept in this action builder. Return true if an error was
3388   /// found.
3389   bool addHostDependenceToDeviceActions(Action *&HostAction,
3390                                         const Arg *InputArg) {
3391     if (!IsValid)
3392       return true;
3393 
3394     // If we are supporting bundling/unbundling and the current action is an
3395     // input action of non-source file, we replace the host action by the
3396     // unbundling action. The bundler tool has the logic to detect if an input
3397     // is a bundle or not and if the input is not a bundle it assumes it is a
3398     // host file. Therefore it is safe to create an unbundling action even if
3399     // the input is not a bundle.
3400     if (CanUseBundler && isa<InputAction>(HostAction) &&
3401         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3402         (!types::isSrcFile(HostAction->getType()) ||
3403          HostAction->getType() == types::TY_PP_HIP)) {
3404       auto UnbundlingHostAction =
3405           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3406       UnbundlingHostAction->registerDependentActionInfo(
3407           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3408           /*BoundArch=*/StringRef(), Action::OFK_Host);
3409       HostAction = UnbundlingHostAction;
3410     }
3411 
3412     assert(HostAction && "Invalid host action!");
3413 
3414     // Register the offload kinds that are used.
3415     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3416     for (auto *SB : SpecializedBuilders) {
3417       if (!SB->isValid())
3418         continue;
3419 
3420       auto RetCode = SB->addDeviceDepences(HostAction);
3421 
3422       // Host dependences for device actions are not compatible with that same
3423       // action being ignored.
3424       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3425              "Host dependence not expected to be ignored.!");
3426 
3427       // Unless the builder was inactive for this action, we have to record the
3428       // offload kind because the host will have to use it.
3429       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3430         OffloadKind |= SB->getAssociatedOffloadKind();
3431     }
3432 
3433     // Do not use unbundler if the Host does not depend on device action.
3434     if (OffloadKind == Action::OFK_None && CanUseBundler)
3435       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3436         HostAction = UA->getInputs().back();
3437 
3438     return false;
3439   }
3440 
3441   /// Add the offloading top level actions to the provided action list. This
3442   /// function can replace the host action by a bundling action if the
3443   /// programming models allow it.
3444   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3445                              const Arg *InputArg) {
3446     // Get the device actions to be appended.
3447     ActionList OffloadAL;
3448     for (auto *SB : SpecializedBuilders) {
3449       if (!SB->isValid())
3450         continue;
3451       SB->appendTopLevelActions(OffloadAL);
3452     }
3453 
3454     // If we can use the bundler, replace the host action by the bundling one in
3455     // the resulting list. Otherwise, just append the device actions. For
3456     // device only compilation, HostAction is a null pointer, therefore only do
3457     // this when HostAction is not a null pointer.
3458     if (CanUseBundler && HostAction &&
3459         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3460       // Add the host action to the list in order to create the bundling action.
3461       OffloadAL.push_back(HostAction);
3462 
3463       // We expect that the host action was just appended to the action list
3464       // before this method was called.
3465       assert(HostAction == AL.back() && "Host action not in the list??");
3466       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3467       AL.back() = HostAction;
3468     } else
3469       AL.append(OffloadAL.begin(), OffloadAL.end());
3470 
3471     // Propagate to the current host action (if any) the offload information
3472     // associated with the current input.
3473     if (HostAction)
3474       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3475                                            /*BoundArch=*/nullptr);
3476     return false;
3477   }
3478 
3479   Action* makeHostLinkAction() {
3480     // Build a list of device linking actions.
3481     ActionList DeviceAL;
3482     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3483       if (!SB->isValid())
3484         continue;
3485       SB->appendLinkDeviceActions(DeviceAL);
3486     }
3487 
3488     if (DeviceAL.empty())
3489       return nullptr;
3490 
3491     // Let builders add host linking actions.
3492     Action* HA = nullptr;
3493     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3494       if (!SB->isValid())
3495         continue;
3496       HA = SB->appendLinkHostActions(DeviceAL);
3497     }
3498     return HA;
3499   }
3500 
3501   /// Processes the host linker action. This currently consists of replacing it
3502   /// with an offload action if there are device link objects and propagate to
3503   /// the host action all the offload kinds used in the current compilation. The
3504   /// resulting action is returned.
3505   Action *processHostLinkAction(Action *HostAction) {
3506     // Add all the dependences from the device linking actions.
3507     OffloadAction::DeviceDependences DDeps;
3508     for (auto *SB : SpecializedBuilders) {
3509       if (!SB->isValid())
3510         continue;
3511 
3512       SB->appendLinkDependences(DDeps);
3513     }
3514 
3515     // Calculate all the offload kinds used in the current compilation.
3516     unsigned ActiveOffloadKinds = 0u;
3517     for (auto &I : InputArgToOffloadKindMap)
3518       ActiveOffloadKinds |= I.second;
3519 
3520     // If we don't have device dependencies, we don't have to create an offload
3521     // action.
3522     if (DDeps.getActions().empty()) {
3523       // Propagate all the active kinds to host action. Given that it is a link
3524       // action it is assumed to depend on all actions generated so far.
3525       HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3526                                            /*BoundArch=*/nullptr);
3527       return HostAction;
3528     }
3529 
3530     // Create the offload action with all dependences. When an offload action
3531     // is created the kinds are propagated to the host action, so we don't have
3532     // to do that explicitly here.
3533     OffloadAction::HostDependence HDep(
3534         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3535         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3536     return C.MakeAction<OffloadAction>(HDep, DDeps);
3537   }
3538 };
3539 } // anonymous namespace.
3540 
3541 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3542                              const InputList &Inputs,
3543                              ActionList &Actions) const {
3544 
3545   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3546   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3547   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3548   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3549     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3550     Args.eraseArg(options::OPT__SLASH_Yc);
3551     Args.eraseArg(options::OPT__SLASH_Yu);
3552     YcArg = YuArg = nullptr;
3553   }
3554   if (YcArg && Inputs.size() > 1) {
3555     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3556     Args.eraseArg(options::OPT__SLASH_Yc);
3557     YcArg = nullptr;
3558   }
3559 
3560   Arg *FinalPhaseArg;
3561   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3562 
3563   if (FinalPhase == phases::Link) {
3564     if (Args.hasArg(options::OPT_emit_llvm))
3565       Diag(clang::diag::err_drv_emit_llvm_link);
3566     if (IsCLMode() && LTOMode != LTOK_None &&
3567         !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3568              .equals_insensitive("lld"))
3569       Diag(clang::diag::err_drv_lto_without_lld);
3570   }
3571 
3572   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3573     // If only preprocessing or /Y- is used, all pch handling is disabled.
3574     // Rather than check for it everywhere, just remove clang-cl pch-related
3575     // flags here.
3576     Args.eraseArg(options::OPT__SLASH_Fp);
3577     Args.eraseArg(options::OPT__SLASH_Yc);
3578     Args.eraseArg(options::OPT__SLASH_Yu);
3579     YcArg = YuArg = nullptr;
3580   }
3581 
3582   unsigned LastPLSize = 0;
3583   for (auto &I : Inputs) {
3584     types::ID InputType = I.first;
3585     const Arg *InputArg = I.second;
3586 
3587     auto PL = types::getCompilationPhases(InputType);
3588     LastPLSize = PL.size();
3589 
3590     // If the first step comes after the final phase we are doing as part of
3591     // this compilation, warn the user about it.
3592     phases::ID InitialPhase = PL[0];
3593     if (InitialPhase > FinalPhase) {
3594       if (InputArg->isClaimed())
3595         continue;
3596 
3597       // Claim here to avoid the more general unused warning.
3598       InputArg->claim();
3599 
3600       // Suppress all unused style warnings with -Qunused-arguments
3601       if (Args.hasArg(options::OPT_Qunused_arguments))
3602         continue;
3603 
3604       // Special case when final phase determined by binary name, rather than
3605       // by a command-line argument with a corresponding Arg.
3606       if (CCCIsCPP())
3607         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3608             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3609       // Special case '-E' warning on a previously preprocessed file to make
3610       // more sense.
3611       else if (InitialPhase == phases::Compile &&
3612                (Args.getLastArg(options::OPT__SLASH_EP,
3613                                 options::OPT__SLASH_P) ||
3614                 Args.getLastArg(options::OPT_E) ||
3615                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3616                getPreprocessedType(InputType) == types::TY_INVALID)
3617         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3618             << InputArg->getAsString(Args) << !!FinalPhaseArg
3619             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3620       else
3621         Diag(clang::diag::warn_drv_input_file_unused)
3622             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3623             << !!FinalPhaseArg
3624             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3625       continue;
3626     }
3627 
3628     if (YcArg) {
3629       // Add a separate precompile phase for the compile phase.
3630       if (FinalPhase >= phases::Compile) {
3631         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3632         // Build the pipeline for the pch file.
3633         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3634         for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3635           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3636         assert(ClangClPch);
3637         Actions.push_back(ClangClPch);
3638         // The driver currently exits after the first failed command.  This
3639         // relies on that behavior, to make sure if the pch generation fails,
3640         // the main compilation won't run.
3641         // FIXME: If the main compilation fails, the PCH generation should
3642         // probably not be considered successful either.
3643       }
3644     }
3645   }
3646 
3647   // If we are linking, claim any options which are obviously only used for
3648   // compilation.
3649   // FIXME: Understand why the last Phase List length is used here.
3650   if (FinalPhase == phases::Link && LastPLSize == 1) {
3651     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3652     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3653   }
3654 }
3655 
3656 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3657                           const InputList &Inputs, ActionList &Actions) const {
3658   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3659 
3660   if (!SuppressMissingInputWarning && Inputs.empty()) {
3661     Diag(clang::diag::err_drv_no_input_files);
3662     return;
3663   }
3664 
3665   // Reject -Z* at the top level, these options should never have been exposed
3666   // by gcc.
3667   if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3668     Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3669 
3670   // Diagnose misuse of /Fo.
3671   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3672     StringRef V = A->getValue();
3673     if (Inputs.size() > 1 && !V.empty() &&
3674         !llvm::sys::path::is_separator(V.back())) {
3675       // Check whether /Fo tries to name an output file for multiple inputs.
3676       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3677           << A->getSpelling() << V;
3678       Args.eraseArg(options::OPT__SLASH_Fo);
3679     }
3680   }
3681 
3682   // Diagnose misuse of /Fa.
3683   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3684     StringRef V = A->getValue();
3685     if (Inputs.size() > 1 && !V.empty() &&
3686         !llvm::sys::path::is_separator(V.back())) {
3687       // Check whether /Fa tries to name an asm file for multiple inputs.
3688       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3689           << A->getSpelling() << V;
3690       Args.eraseArg(options::OPT__SLASH_Fa);
3691     }
3692   }
3693 
3694   // Diagnose misuse of /o.
3695   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3696     if (A->getValue()[0] == '\0') {
3697       // It has to have a value.
3698       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3699       Args.eraseArg(options::OPT__SLASH_o);
3700     }
3701   }
3702 
3703   handleArguments(C, Args, Inputs, Actions);
3704 
3705   // Builder to be used to build offloading actions.
3706   OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3707 
3708   // Construct the actions to perform.
3709   HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3710   ActionList LinkerInputs;
3711   ActionList MergerInputs;
3712 
3713   for (auto &I : Inputs) {
3714     types::ID InputType = I.first;
3715     const Arg *InputArg = I.second;
3716 
3717     auto PL = types::getCompilationPhases(*this, Args, InputType);
3718     if (PL.empty())
3719       continue;
3720 
3721     auto FullPL = types::getCompilationPhases(InputType);
3722 
3723     // Build the pipeline for this file.
3724     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3725 
3726     // Use the current host action in any of the offloading actions, if
3727     // required.
3728     if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3729       break;
3730 
3731     for (phases::ID Phase : PL) {
3732 
3733       // Add any offload action the host action depends on.
3734       Current = OffloadBuilder.addDeviceDependencesToHostAction(
3735           Current, InputArg, Phase, PL.back(), FullPL);
3736       if (!Current)
3737         break;
3738 
3739       // Queue linker inputs.
3740       if (Phase == phases::Link) {
3741         assert(Phase == PL.back() && "linking must be final compilation step.");
3742         LinkerInputs.push_back(Current);
3743         Current = nullptr;
3744         break;
3745       }
3746 
3747       // TODO: Consider removing this because the merged may not end up being
3748       // the final Phase in the pipeline. Perhaps the merged could just merge
3749       // and then pass an artifact of some sort to the Link Phase.
3750       // Queue merger inputs.
3751       if (Phase == phases::IfsMerge) {
3752         assert(Phase == PL.back() && "merging must be final compilation step.");
3753         MergerInputs.push_back(Current);
3754         Current = nullptr;
3755         break;
3756       }
3757 
3758       // Each precompiled header file after a module file action is a module
3759       // header of that same module file, rather than being compiled to a
3760       // separate PCH.
3761       if (Phase == phases::Precompile && HeaderModuleAction &&
3762           getPrecompiledType(InputType) == types::TY_PCH) {
3763         HeaderModuleAction->addModuleHeaderInput(Current);
3764         Current = nullptr;
3765         break;
3766       }
3767 
3768       // FIXME: Should we include any prior module file outputs as inputs of
3769       // later actions in the same command line?
3770 
3771       // Otherwise construct the appropriate action.
3772       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3773 
3774       // We didn't create a new action, so we will just move to the next phase.
3775       if (NewCurrent == Current)
3776         continue;
3777 
3778       if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3779         HeaderModuleAction = HMA;
3780 
3781       Current = NewCurrent;
3782 
3783       // Use the current host action in any of the offloading actions, if
3784       // required.
3785       if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3786         break;
3787 
3788       if (Current->getType() == types::TY_Nothing)
3789         break;
3790     }
3791 
3792     // If we ended with something, add to the output list.
3793     if (Current)
3794       Actions.push_back(Current);
3795 
3796     // Add any top level actions generated for offloading.
3797     OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3798   }
3799 
3800   // Add a link action if necessary.
3801   if (!LinkerInputs.empty()) {
3802     if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3803       LinkerInputs.push_back(Wrapper);
3804     Action *LA;
3805     // Check if this Linker Job should emit a static library.
3806     if (ShouldEmitStaticLibrary(Args)) {
3807       LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
3808     } else {
3809       LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3810     }
3811     LA = OffloadBuilder.processHostLinkAction(LA);
3812     Actions.push_back(LA);
3813   }
3814 
3815   // Add an interface stubs merge action if necessary.
3816   if (!MergerInputs.empty())
3817     Actions.push_back(
3818         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3819 
3820   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3821     auto PhaseList = types::getCompilationPhases(
3822         types::TY_IFS_CPP,
3823         Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase);
3824 
3825     ActionList MergerInputs;
3826 
3827     for (auto &I : Inputs) {
3828       types::ID InputType = I.first;
3829       const Arg *InputArg = I.second;
3830 
3831       // Currently clang and the llvm assembler do not support generating symbol
3832       // stubs from assembly, so we skip the input on asm files. For ifs files
3833       // we rely on the normal pipeline setup in the pipeline setup code above.
3834       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3835           InputType == types::TY_Asm)
3836         continue;
3837 
3838       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3839 
3840       for (auto Phase : PhaseList) {
3841         switch (Phase) {
3842         default:
3843           llvm_unreachable(
3844               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
3845         case phases::Compile: {
3846           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
3847           // files where the .o file is located. The compile action can not
3848           // handle this.
3849           if (InputType == types::TY_Object)
3850             break;
3851 
3852           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
3853           break;
3854         }
3855         case phases::IfsMerge: {
3856           assert(Phase == PhaseList.back() &&
3857                  "merging must be final compilation step.");
3858           MergerInputs.push_back(Current);
3859           Current = nullptr;
3860           break;
3861         }
3862         }
3863       }
3864 
3865       // If we ended with something, add to the output list.
3866       if (Current)
3867         Actions.push_back(Current);
3868     }
3869 
3870     // Add an interface stubs merge action if necessary.
3871     if (!MergerInputs.empty())
3872       Actions.push_back(
3873           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3874   }
3875 
3876   // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3877   // Compile phase that prints out supported cpu models and quits.
3878   if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3879     // Use the -mcpu=? flag as the dummy input to cc1.
3880     Actions.clear();
3881     Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3882     Actions.push_back(
3883         C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3884     for (auto &I : Inputs)
3885       I.second->claim();
3886   }
3887 
3888   // Claim ignored clang-cl options.
3889   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3890 
3891   // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3892   // to non-CUDA compilations and should not trigger warnings there.
3893   Args.ClaimAllArgs(options::OPT_cuda_host_only);
3894   Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3895 }
3896 
3897 Action *Driver::ConstructPhaseAction(
3898     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3899     Action::OffloadKind TargetDeviceOffloadKind) const {
3900   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3901 
3902   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3903   // encode this in the steps because the intermediate type depends on
3904   // arguments. Just special case here.
3905   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3906     return Input;
3907 
3908   // Build the appropriate action.
3909   switch (Phase) {
3910   case phases::Link:
3911     llvm_unreachable("link action invalid here.");
3912   case phases::IfsMerge:
3913     llvm_unreachable("ifsmerge action invalid here.");
3914   case phases::Preprocess: {
3915     types::ID OutputTy;
3916     // -M and -MM specify the dependency file name by altering the output type,
3917     // -if -MD and -MMD are not specified.
3918     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3919         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3920       OutputTy = types::TY_Dependencies;
3921     } else {
3922       OutputTy = Input->getType();
3923       if (!Args.hasFlag(options::OPT_frewrite_includes,
3924                         options::OPT_fno_rewrite_includes, false) &&
3925           !Args.hasFlag(options::OPT_frewrite_imports,
3926                         options::OPT_fno_rewrite_imports, false) &&
3927           !CCGenDiagnostics)
3928         OutputTy = types::getPreprocessedType(OutputTy);
3929       assert(OutputTy != types::TY_INVALID &&
3930              "Cannot preprocess this input type!");
3931     }
3932     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3933   }
3934   case phases::Precompile: {
3935     types::ID OutputTy = getPrecompiledType(Input->getType());
3936     assert(OutputTy != types::TY_INVALID &&
3937            "Cannot precompile this input type!");
3938 
3939     // If we're given a module name, precompile header file inputs as a
3940     // module, not as a precompiled header.
3941     const char *ModName = nullptr;
3942     if (OutputTy == types::TY_PCH) {
3943       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3944         ModName = A->getValue();
3945       if (ModName)
3946         OutputTy = types::TY_ModuleFile;
3947     }
3948 
3949     if (Args.hasArg(options::OPT_fsyntax_only)) {
3950       // Syntax checks should not emit a PCH file
3951       OutputTy = types::TY_Nothing;
3952     }
3953 
3954     if (ModName)
3955       return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3956                                                            ModName);
3957     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3958   }
3959   case phases::Compile: {
3960     if (Args.hasArg(options::OPT_fsyntax_only))
3961       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3962     if (Args.hasArg(options::OPT_rewrite_objc))
3963       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3964     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3965       return C.MakeAction<CompileJobAction>(Input,
3966                                             types::TY_RewrittenLegacyObjC);
3967     if (Args.hasArg(options::OPT__analyze))
3968       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3969     if (Args.hasArg(options::OPT__migrate))
3970       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3971     if (Args.hasArg(options::OPT_emit_ast))
3972       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3973     if (Args.hasArg(options::OPT_module_file_info))
3974       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3975     if (Args.hasArg(options::OPT_verify_pch))
3976       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3977     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3978   }
3979   case phases::Backend: {
3980     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3981       types::ID Output =
3982           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3983       return C.MakeAction<BackendJobAction>(Input, Output);
3984     }
3985     if (Args.hasArg(options::OPT_emit_llvm) ||
3986         (TargetDeviceOffloadKind == Action::OFK_HIP &&
3987          Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
3988                       false))) {
3989       types::ID Output =
3990           Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3991       return C.MakeAction<BackendJobAction>(Input, Output);
3992     }
3993     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3994   }
3995   case phases::Assemble:
3996     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3997   }
3998 
3999   llvm_unreachable("invalid phase in ConstructPhaseAction");
4000 }
4001 
4002 void Driver::BuildJobs(Compilation &C) const {
4003   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4004 
4005   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4006 
4007   // It is an error to provide a -o option if we are making multiple output
4008   // files. There are exceptions:
4009   //
4010   // IfsMergeJob: when generating interface stubs enabled we want to be able to
4011   // generate the stub file at the same time that we generate the real
4012   // library/a.out. So when a .o, .so, etc are the output, with clang interface
4013   // stubs there will also be a .ifs and .ifso at the same location.
4014   //
4015   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4016   // and -c is passed, we still want to be able to generate a .ifs file while
4017   // we are also generating .o files. So we allow more than one output file in
4018   // this case as well.
4019   //
4020   if (FinalOutput) {
4021     unsigned NumOutputs = 0;
4022     unsigned NumIfsOutputs = 0;
4023     for (const Action *A : C.getActions())
4024       if (A->getType() != types::TY_Nothing &&
4025           !(A->getKind() == Action::IfsMergeJobClass ||
4026             (A->getType() == clang::driver::types::TY_IFS_CPP &&
4027              A->getKind() == clang::driver::Action::CompileJobClass &&
4028              0 == NumIfsOutputs++) ||
4029             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4030              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4031         ++NumOutputs;
4032 
4033     if (NumOutputs > 1) {
4034       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4035       FinalOutput = nullptr;
4036     }
4037   }
4038 
4039   const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4040   if (RawTriple.isOSAIX()) {
4041     if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4042       Diag(diag::err_drv_unsupported_opt_for_target)
4043           << A->getSpelling() << RawTriple.str();
4044     if (LTOMode == LTOK_Thin)
4045       Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4046   }
4047 
4048   // Collect the list of architectures.
4049   llvm::StringSet<> ArchNames;
4050   if (RawTriple.isOSBinFormatMachO())
4051     for (const Arg *A : C.getArgs())
4052       if (A->getOption().matches(options::OPT_arch))
4053         ArchNames.insert(A->getValue());
4054 
4055   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4056   std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
4057   for (Action *A : C.getActions()) {
4058     // If we are linking an image for multiple archs then the linker wants
4059     // -arch_multiple and -final_output <final image name>. Unfortunately, this
4060     // doesn't fit in cleanly because we have to pass this information down.
4061     //
4062     // FIXME: This is a hack; find a cleaner way to integrate this into the
4063     // process.
4064     const char *LinkingOutput = nullptr;
4065     if (isa<LipoJobAction>(A)) {
4066       if (FinalOutput)
4067         LinkingOutput = FinalOutput->getValue();
4068       else
4069         LinkingOutput = getDefaultImageName();
4070     }
4071 
4072     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4073                        /*BoundArch*/ StringRef(),
4074                        /*AtTopLevel*/ true,
4075                        /*MultipleArchs*/ ArchNames.size() > 1,
4076                        /*LinkingOutput*/ LinkingOutput, CachedResults,
4077                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
4078   }
4079 
4080   // If we have more than one job, then disable integrated-cc1 for now. Do this
4081   // also when we need to report process execution statistics.
4082   if (C.getJobs().size() > 1 || CCPrintProcessStats)
4083     for (auto &J : C.getJobs())
4084       J.InProcess = false;
4085 
4086   if (CCPrintProcessStats) {
4087     C.setPostCallback([=](const Command &Cmd, int Res) {
4088       Optional<llvm::sys::ProcessStatistics> ProcStat =
4089           Cmd.getProcessStatistics();
4090       if (!ProcStat)
4091         return;
4092 
4093       const char *LinkingOutput = nullptr;
4094       if (FinalOutput)
4095         LinkingOutput = FinalOutput->getValue();
4096       else if (!Cmd.getOutputFilenames().empty())
4097         LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4098       else
4099         LinkingOutput = getDefaultImageName();
4100 
4101       if (CCPrintStatReportFilename.empty()) {
4102         using namespace llvm;
4103         // Human readable output.
4104         outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4105                << "output=" << LinkingOutput;
4106         outs() << ", total="
4107                << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4108                << ", user="
4109                << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4110                << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4111       } else {
4112         // CSV format.
4113         std::string Buffer;
4114         llvm::raw_string_ostream Out(Buffer);
4115         llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4116                             /*Quote*/ true);
4117         Out << ',';
4118         llvm::sys::printArg(Out, LinkingOutput, true);
4119         Out << ',' << ProcStat->TotalTime.count() << ','
4120             << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4121             << '\n';
4122         Out.flush();
4123         std::error_code EC;
4124         llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4125                                 llvm::sys::fs::OF_Append |
4126                                     llvm::sys::fs::OF_Text);
4127         if (EC)
4128           return;
4129         auto L = OS.lock();
4130         if (!L) {
4131           llvm::errs() << "ERROR: Cannot lock file "
4132                        << CCPrintStatReportFilename << ": "
4133                        << toString(L.takeError()) << "\n";
4134           return;
4135         }
4136         OS << Buffer;
4137         OS.flush();
4138       }
4139     });
4140   }
4141 
4142   // If the user passed -Qunused-arguments or there were errors, don't warn
4143   // about any unused arguments.
4144   if (Diags.hasErrorOccurred() ||
4145       C.getArgs().hasArg(options::OPT_Qunused_arguments))
4146     return;
4147 
4148   // Claim -### here.
4149   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4150 
4151   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4152   (void)C.getArgs().hasArg(options::OPT_driver_mode);
4153   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4154 
4155   for (Arg *A : C.getArgs()) {
4156     // FIXME: It would be nice to be able to send the argument to the
4157     // DiagnosticsEngine, so that extra values, position, and so on could be
4158     // printed.
4159     if (!A->isClaimed()) {
4160       if (A->getOption().hasFlag(options::NoArgumentUnused))
4161         continue;
4162 
4163       // Suppress the warning automatically if this is just a flag, and it is an
4164       // instance of an argument we already claimed.
4165       const Option &Opt = A->getOption();
4166       if (Opt.getKind() == Option::FlagClass) {
4167         bool DuplicateClaimed = false;
4168 
4169         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4170           if (AA->isClaimed()) {
4171             DuplicateClaimed = true;
4172             break;
4173           }
4174         }
4175 
4176         if (DuplicateClaimed)
4177           continue;
4178       }
4179 
4180       // In clang-cl, don't mention unknown arguments here since they have
4181       // already been warned about.
4182       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4183         Diag(clang::diag::warn_drv_unused_argument)
4184             << A->getAsString(C.getArgs());
4185     }
4186   }
4187 }
4188 
4189 namespace {
4190 /// Utility class to control the collapse of dependent actions and select the
4191 /// tools accordingly.
4192 class ToolSelector final {
4193   /// The tool chain this selector refers to.
4194   const ToolChain &TC;
4195 
4196   /// The compilation this selector refers to.
4197   const Compilation &C;
4198 
4199   /// The base action this selector refers to.
4200   const JobAction *BaseAction;
4201 
4202   /// Set to true if the current toolchain refers to host actions.
4203   bool IsHostSelector;
4204 
4205   /// Set to true if save-temps and embed-bitcode functionalities are active.
4206   bool SaveTemps;
4207   bool EmbedBitcode;
4208 
4209   /// Get previous dependent action or null if that does not exist. If
4210   /// \a CanBeCollapsed is false, that action must be legal to collapse or
4211   /// null will be returned.
4212   const JobAction *getPrevDependentAction(const ActionList &Inputs,
4213                                           ActionList &SavedOffloadAction,
4214                                           bool CanBeCollapsed = true) {
4215     // An option can be collapsed only if it has a single input.
4216     if (Inputs.size() != 1)
4217       return nullptr;
4218 
4219     Action *CurAction = *Inputs.begin();
4220     if (CanBeCollapsed &&
4221         !CurAction->isCollapsingWithNextDependentActionLegal())
4222       return nullptr;
4223 
4224     // If the input action is an offload action. Look through it and save any
4225     // offload action that can be dropped in the event of a collapse.
4226     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4227       // If the dependent action is a device action, we will attempt to collapse
4228       // only with other device actions. Otherwise, we would do the same but
4229       // with host actions only.
4230       if (!IsHostSelector) {
4231         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4232           CurAction =
4233               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4234           if (CanBeCollapsed &&
4235               !CurAction->isCollapsingWithNextDependentActionLegal())
4236             return nullptr;
4237           SavedOffloadAction.push_back(OA);
4238           return dyn_cast<JobAction>(CurAction);
4239         }
4240       } else if (OA->hasHostDependence()) {
4241         CurAction = OA->getHostDependence();
4242         if (CanBeCollapsed &&
4243             !CurAction->isCollapsingWithNextDependentActionLegal())
4244           return nullptr;
4245         SavedOffloadAction.push_back(OA);
4246         return dyn_cast<JobAction>(CurAction);
4247       }
4248       return nullptr;
4249     }
4250 
4251     return dyn_cast<JobAction>(CurAction);
4252   }
4253 
4254   /// Return true if an assemble action can be collapsed.
4255   bool canCollapseAssembleAction() const {
4256     return TC.useIntegratedAs() && !SaveTemps &&
4257            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4258            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4259            !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4260   }
4261 
4262   /// Return true if a preprocessor action can be collapsed.
4263   bool canCollapsePreprocessorAction() const {
4264     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4265            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4266            !C.getArgs().hasArg(options::OPT_rewrite_objc);
4267   }
4268 
4269   /// Struct that relates an action with the offload actions that would be
4270   /// collapsed with it.
4271   struct JobActionInfo final {
4272     /// The action this info refers to.
4273     const JobAction *JA = nullptr;
4274     /// The offload actions we need to take care off if this action is
4275     /// collapsed.
4276     ActionList SavedOffloadAction;
4277   };
4278 
4279   /// Append collapsed offload actions from the give nnumber of elements in the
4280   /// action info array.
4281   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4282                                            ArrayRef<JobActionInfo> &ActionInfo,
4283                                            unsigned ElementNum) {
4284     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4285     for (unsigned I = 0; I < ElementNum; ++I)
4286       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4287                                     ActionInfo[I].SavedOffloadAction.end());
4288   }
4289 
4290   /// Functions that attempt to perform the combining. They detect if that is
4291   /// legal, and if so they update the inputs \a Inputs and the offload action
4292   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4293   /// the combined action is returned. If the combining is not legal or if the
4294   /// tool does not exist, null is returned.
4295   /// Currently three kinds of collapsing are supported:
4296   ///  - Assemble + Backend + Compile;
4297   ///  - Assemble + Backend ;
4298   ///  - Backend + Compile.
4299   const Tool *
4300   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4301                                 ActionList &Inputs,
4302                                 ActionList &CollapsedOffloadAction) {
4303     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4304       return nullptr;
4305     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4306     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4307     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4308     if (!AJ || !BJ || !CJ)
4309       return nullptr;
4310 
4311     // Get compiler tool.
4312     const Tool *T = TC.SelectTool(*CJ);
4313     if (!T)
4314       return nullptr;
4315 
4316     // When using -fembed-bitcode, it is required to have the same tool (clang)
4317     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4318     if (EmbedBitcode) {
4319       const Tool *BT = TC.SelectTool(*BJ);
4320       if (BT == T)
4321         return nullptr;
4322     }
4323 
4324     if (!T->hasIntegratedAssembler())
4325       return nullptr;
4326 
4327     Inputs = CJ->getInputs();
4328     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4329                                  /*NumElements=*/3);
4330     return T;
4331   }
4332   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4333                                      ActionList &Inputs,
4334                                      ActionList &CollapsedOffloadAction) {
4335     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4336       return nullptr;
4337     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4338     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4339     if (!AJ || !BJ)
4340       return nullptr;
4341 
4342     // Get backend tool.
4343     const Tool *T = TC.SelectTool(*BJ);
4344     if (!T)
4345       return nullptr;
4346 
4347     if (!T->hasIntegratedAssembler())
4348       return nullptr;
4349 
4350     Inputs = BJ->getInputs();
4351     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4352                                  /*NumElements=*/2);
4353     return T;
4354   }
4355   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4356                                     ActionList &Inputs,
4357                                     ActionList &CollapsedOffloadAction) {
4358     if (ActionInfo.size() < 2)
4359       return nullptr;
4360     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4361     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4362     if (!BJ || !CJ)
4363       return nullptr;
4364 
4365     // Check if the initial input (to the compile job or its predessor if one
4366     // exists) is LLVM bitcode. In that case, no preprocessor step is required
4367     // and we can still collapse the compile and backend jobs when we have
4368     // -save-temps. I.e. there is no need for a separate compile job just to
4369     // emit unoptimized bitcode.
4370     bool InputIsBitcode = true;
4371     for (size_t i = 1; i < ActionInfo.size(); i++)
4372       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4373           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4374         InputIsBitcode = false;
4375         break;
4376       }
4377     if (!InputIsBitcode && !canCollapsePreprocessorAction())
4378       return nullptr;
4379 
4380     // Get compiler tool.
4381     const Tool *T = TC.SelectTool(*CJ);
4382     if (!T)
4383       return nullptr;
4384 
4385     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4386       return nullptr;
4387 
4388     Inputs = CJ->getInputs();
4389     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4390                                  /*NumElements=*/2);
4391     return T;
4392   }
4393 
4394   /// Updates the inputs if the obtained tool supports combining with
4395   /// preprocessor action, and the current input is indeed a preprocessor
4396   /// action. If combining results in the collapse of offloading actions, those
4397   /// are appended to \a CollapsedOffloadAction.
4398   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4399                                ActionList &CollapsedOffloadAction) {
4400     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4401       return;
4402 
4403     // Attempt to get a preprocessor action dependence.
4404     ActionList PreprocessJobOffloadActions;
4405     ActionList NewInputs;
4406     for (Action *A : Inputs) {
4407       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4408       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4409         NewInputs.push_back(A);
4410         continue;
4411       }
4412 
4413       // This is legal to combine. Append any offload action we found and add the
4414       // current input to preprocessor inputs.
4415       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4416                                     PreprocessJobOffloadActions.end());
4417       NewInputs.append(PJ->input_begin(), PJ->input_end());
4418     }
4419     Inputs = NewInputs;
4420   }
4421 
4422 public:
4423   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4424                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4425       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4426         EmbedBitcode(EmbedBitcode) {
4427     assert(BaseAction && "Invalid base action.");
4428     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4429   }
4430 
4431   /// Check if a chain of actions can be combined and return the tool that can
4432   /// handle the combination of actions. The pointer to the current inputs \a
4433   /// Inputs and the list of offload actions \a CollapsedOffloadActions
4434   /// connected to collapsed actions are updated accordingly. The latter enables
4435   /// the caller of the selector to process them afterwards instead of just
4436   /// dropping them. If no suitable tool is found, null will be returned.
4437   const Tool *getTool(ActionList &Inputs,
4438                       ActionList &CollapsedOffloadAction) {
4439     //
4440     // Get the largest chain of actions that we could combine.
4441     //
4442 
4443     SmallVector<JobActionInfo, 5> ActionChain(1);
4444     ActionChain.back().JA = BaseAction;
4445     while (ActionChain.back().JA) {
4446       const Action *CurAction = ActionChain.back().JA;
4447 
4448       // Grow the chain by one element.
4449       ActionChain.resize(ActionChain.size() + 1);
4450       JobActionInfo &AI = ActionChain.back();
4451 
4452       // Attempt to fill it with the
4453       AI.JA =
4454           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4455     }
4456 
4457     // Pop the last action info as it could not be filled.
4458     ActionChain.pop_back();
4459 
4460     //
4461     // Attempt to combine actions. If all combining attempts failed, just return
4462     // the tool of the provided action. At the end we attempt to combine the
4463     // action with any preprocessor action it may depend on.
4464     //
4465 
4466     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4467                                                   CollapsedOffloadAction);
4468     if (!T)
4469       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4470     if (!T)
4471       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4472     if (!T) {
4473       Inputs = BaseAction->getInputs();
4474       T = TC.SelectTool(*BaseAction);
4475     }
4476 
4477     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4478     return T;
4479   }
4480 };
4481 }
4482 
4483 /// Return a string that uniquely identifies the result of a job. The bound arch
4484 /// is not necessarily represented in the toolchain's triple -- for example,
4485 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
4486 /// Also, we need to add the offloading device kind, as the same tool chain can
4487 /// be used for host and device for some programming models, e.g. OpenMP.
4488 static std::string GetTriplePlusArchString(const ToolChain *TC,
4489                                            StringRef BoundArch,
4490                                            Action::OffloadKind OffloadKind) {
4491   std::string TriplePlusArch = TC->getTriple().normalize();
4492   if (!BoundArch.empty()) {
4493     TriplePlusArch += "-";
4494     TriplePlusArch += BoundArch;
4495   }
4496   TriplePlusArch += "-";
4497   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4498   return TriplePlusArch;
4499 }
4500 
4501 InputInfo Driver::BuildJobsForAction(
4502     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4503     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4504     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4505     Action::OffloadKind TargetDeviceOffloadKind) const {
4506   std::pair<const Action *, std::string> ActionTC = {
4507       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4508   auto CachedResult = CachedResults.find(ActionTC);
4509   if (CachedResult != CachedResults.end()) {
4510     return CachedResult->second;
4511   }
4512   InputInfo Result = BuildJobsForActionNoCache(
4513       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4514       CachedResults, TargetDeviceOffloadKind);
4515   CachedResults[ActionTC] = Result;
4516   return Result;
4517 }
4518 
4519 InputInfo Driver::BuildJobsForActionNoCache(
4520     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4521     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4522     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4523     Action::OffloadKind TargetDeviceOffloadKind) const {
4524   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4525 
4526   InputInfoList OffloadDependencesInputInfo;
4527   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4528   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4529     // The 'Darwin' toolchain is initialized only when its arguments are
4530     // computed. Get the default arguments for OFK_None to ensure that
4531     // initialization is performed before processing the offload action.
4532     // FIXME: Remove when darwin's toolchain is initialized during construction.
4533     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4534 
4535     // The offload action is expected to be used in four different situations.
4536     //
4537     // a) Set a toolchain/architecture/kind for a host action:
4538     //    Host Action 1 -> OffloadAction -> Host Action 2
4539     //
4540     // b) Set a toolchain/architecture/kind for a device action;
4541     //    Device Action 1 -> OffloadAction -> Device Action 2
4542     //
4543     // c) Specify a device dependence to a host action;
4544     //    Device Action 1  _
4545     //                      \
4546     //      Host Action 1  ---> OffloadAction -> Host Action 2
4547     //
4548     // d) Specify a host dependence to a device action.
4549     //      Host Action 1  _
4550     //                      \
4551     //    Device Action 1  ---> OffloadAction -> Device Action 2
4552     //
4553     // For a) and b), we just return the job generated for the dependence. For
4554     // c) and d) we override the current action with the host/device dependence
4555     // if the current toolchain is host/device and set the offload dependences
4556     // info with the jobs obtained from the device/host dependence(s).
4557 
4558     // If there is a single device option, just generate the job for it.
4559     if (OA->hasSingleDeviceDependence()) {
4560       InputInfo DevA;
4561       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4562                                        const char *DepBoundArch) {
4563         DevA =
4564             BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4565                                /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4566                                CachedResults, DepA->getOffloadingDeviceKind());
4567       });
4568       return DevA;
4569     }
4570 
4571     // If 'Action 2' is host, we generate jobs for the device dependences and
4572     // override the current action with the host dependence. Otherwise, we
4573     // generate the host dependences and override the action with the device
4574     // dependence. The dependences can't therefore be a top-level action.
4575     OA->doOnEachDependence(
4576         /*IsHostDependence=*/BuildingForOffloadDevice,
4577         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4578           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4579               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4580               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4581               DepA->getOffloadingDeviceKind()));
4582         });
4583 
4584     A = BuildingForOffloadDevice
4585             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4586             : OA->getHostDependence();
4587   }
4588 
4589   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4590     // FIXME: It would be nice to not claim this here; maybe the old scheme of
4591     // just using Args was better?
4592     const Arg &Input = IA->getInputArg();
4593     Input.claim();
4594     if (Input.getOption().matches(options::OPT_INPUT)) {
4595       const char *Name = Input.getValue();
4596       return InputInfo(A, Name, /* _BaseInput = */ Name);
4597     }
4598     return InputInfo(A, &Input, /* _BaseInput = */ "");
4599   }
4600 
4601   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4602     const ToolChain *TC;
4603     StringRef ArchName = BAA->getArchName();
4604 
4605     if (!ArchName.empty())
4606       TC = &getToolChain(C.getArgs(),
4607                          computeTargetTriple(*this, TargetTriple,
4608                                              C.getArgs(), ArchName));
4609     else
4610       TC = &C.getDefaultToolChain();
4611 
4612     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4613                               MultipleArchs, LinkingOutput, CachedResults,
4614                               TargetDeviceOffloadKind);
4615   }
4616 
4617 
4618   ActionList Inputs = A->getInputs();
4619 
4620   const JobAction *JA = cast<JobAction>(A);
4621   ActionList CollapsedOffloadActions;
4622 
4623   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4624                   embedBitcodeInObject() && !isUsingLTO());
4625   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4626 
4627   if (!T)
4628     return InputInfo();
4629 
4630   if (BuildingForOffloadDevice &&
4631       A->getOffloadingDeviceKind() == Action::OFK_OpenMP) {
4632     if (TC->getTriple().isAMDGCN()) {
4633       // AMDGCN treats backend and assemble actions as no-op because
4634       // linker does not support object files.
4635       if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
4636         return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
4637                                   AtTopLevel, MultipleArchs, LinkingOutput,
4638                                   CachedResults, TargetDeviceOffloadKind);
4639       }
4640 
4641       if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
4642         return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
4643                                   AtTopLevel, MultipleArchs, LinkingOutput,
4644                                   CachedResults, TargetDeviceOffloadKind);
4645       }
4646     }
4647   }
4648 
4649   // If we've collapsed action list that contained OffloadAction we
4650   // need to build jobs for host/device-side inputs it may have held.
4651   for (const auto *OA : CollapsedOffloadActions)
4652     cast<OffloadAction>(OA)->doOnEachDependence(
4653         /*IsHostDependence=*/BuildingForOffloadDevice,
4654         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4655           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4656               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4657               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4658               DepA->getOffloadingDeviceKind()));
4659         });
4660 
4661   // Only use pipes when there is exactly one input.
4662   InputInfoList InputInfos;
4663   for (const Action *Input : Inputs) {
4664     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4665     // shouldn't get temporary output names.
4666     // FIXME: Clean this up.
4667     bool SubJobAtTopLevel =
4668         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4669     InputInfos.push_back(BuildJobsForAction(
4670         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4671         CachedResults, A->getOffloadingDeviceKind()));
4672   }
4673 
4674   // Always use the first input as the base input.
4675   const char *BaseInput = InputInfos[0].getBaseInput();
4676 
4677   // ... except dsymutil actions, which use their actual input as the base
4678   // input.
4679   if (JA->getType() == types::TY_dSYM)
4680     BaseInput = InputInfos[0].getFilename();
4681 
4682   // ... and in header module compilations, which use the module name.
4683   if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4684     BaseInput = ModuleJA->getModuleName();
4685 
4686   // Append outputs of offload device jobs to the input list
4687   if (!OffloadDependencesInputInfo.empty())
4688     InputInfos.append(OffloadDependencesInputInfo.begin(),
4689                       OffloadDependencesInputInfo.end());
4690 
4691   // Set the effective triple of the toolchain for the duration of this job.
4692   llvm::Triple EffectiveTriple;
4693   const ToolChain &ToolTC = T->getToolChain();
4694   const ArgList &Args =
4695       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4696   if (InputInfos.size() != 1) {
4697     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4698   } else {
4699     // Pass along the input type if it can be unambiguously determined.
4700     EffectiveTriple = llvm::Triple(
4701         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4702   }
4703   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4704 
4705   // Determine the place to write output to, if any.
4706   InputInfo Result;
4707   InputInfoList UnbundlingResults;
4708   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4709     // If we have an unbundling job, we need to create results for all the
4710     // outputs. We also update the results cache so that other actions using
4711     // this unbundling action can get the right results.
4712     for (auto &UI : UA->getDependentActionsInfo()) {
4713       assert(UI.DependentOffloadKind != Action::OFK_None &&
4714              "Unbundling with no offloading??");
4715 
4716       // Unbundling actions are never at the top level. When we generate the
4717       // offloading prefix, we also do that for the host file because the
4718       // unbundling action does not change the type of the output which can
4719       // cause a overwrite.
4720       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4721           UI.DependentOffloadKind,
4722           UI.DependentToolChain->getTriple().normalize(),
4723           /*CreatePrefixForHost=*/true);
4724       auto CurI = InputInfo(
4725           UA,
4726           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4727                              /*AtTopLevel=*/false,
4728                              MultipleArchs ||
4729                                  UI.DependentOffloadKind == Action::OFK_HIP,
4730                              OffloadingPrefix),
4731           BaseInput);
4732       // Save the unbundling result.
4733       UnbundlingResults.push_back(CurI);
4734 
4735       // Get the unique string identifier for this dependence and cache the
4736       // result.
4737       StringRef Arch;
4738       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4739         if (UI.DependentOffloadKind == Action::OFK_Host)
4740           Arch = StringRef();
4741         else
4742           Arch = UI.DependentBoundArch;
4743       } else
4744         Arch = BoundArch;
4745 
4746       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4747                                                 UI.DependentOffloadKind)}] =
4748           CurI;
4749     }
4750 
4751     // Now that we have all the results generated, select the one that should be
4752     // returned for the current depending action.
4753     std::pair<const Action *, std::string> ActionTC = {
4754         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4755     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4756            "Result does not exist??");
4757     Result = CachedResults[ActionTC];
4758   } else if (JA->getType() == types::TY_Nothing)
4759     Result = InputInfo(A, BaseInput);
4760   else {
4761     // We only have to generate a prefix for the host if this is not a top-level
4762     // action.
4763     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4764         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4765         /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4766             !AtTopLevel);
4767     if (isa<OffloadWrapperJobAction>(JA)) {
4768       if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4769         BaseInput = FinalOutput->getValue();
4770       else
4771         BaseInput = getDefaultImageName();
4772       BaseInput =
4773           C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
4774     }
4775     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4776                                              AtTopLevel, MultipleArchs,
4777                                              OffloadingPrefix),
4778                        BaseInput);
4779   }
4780 
4781   if (CCCPrintBindings && !CCGenDiagnostics) {
4782     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4783                  << " - \"" << T->getName() << "\", inputs: [";
4784     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4785       llvm::errs() << InputInfos[i].getAsString();
4786       if (i + 1 != e)
4787         llvm::errs() << ", ";
4788     }
4789     if (UnbundlingResults.empty())
4790       llvm::errs() << "], output: " << Result.getAsString() << "\n";
4791     else {
4792       llvm::errs() << "], outputs: [";
4793       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4794         llvm::errs() << UnbundlingResults[i].getAsString();
4795         if (i + 1 != e)
4796           llvm::errs() << ", ";
4797       }
4798       llvm::errs() << "] \n";
4799     }
4800   } else {
4801     if (UnbundlingResults.empty())
4802       T->ConstructJob(
4803           C, *JA, Result, InputInfos,
4804           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4805           LinkingOutput);
4806     else
4807       T->ConstructJobMultipleOutputs(
4808           C, *JA, UnbundlingResults, InputInfos,
4809           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4810           LinkingOutput);
4811   }
4812   return Result;
4813 }
4814 
4815 const char *Driver::getDefaultImageName() const {
4816   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4817   return Target.isOSWindows() ? "a.exe" : "a.out";
4818 }
4819 
4820 /// Create output filename based on ArgValue, which could either be a
4821 /// full filename, filename without extension, or a directory. If ArgValue
4822 /// does not provide a filename, then use BaseName, and use the extension
4823 /// suitable for FileType.
4824 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4825                                         StringRef BaseName,
4826                                         types::ID FileType) {
4827   SmallString<128> Filename = ArgValue;
4828 
4829   if (ArgValue.empty()) {
4830     // If the argument is empty, output to BaseName in the current dir.
4831     Filename = BaseName;
4832   } else if (llvm::sys::path::is_separator(Filename.back())) {
4833     // If the argument is a directory, output to BaseName in that dir.
4834     llvm::sys::path::append(Filename, BaseName);
4835   }
4836 
4837   if (!llvm::sys::path::has_extension(ArgValue)) {
4838     // If the argument didn't provide an extension, then set it.
4839     const char *Extension = types::getTypeTempSuffix(FileType, true);
4840 
4841     if (FileType == types::TY_Image &&
4842         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4843       // The output file is a dll.
4844       Extension = "dll";
4845     }
4846 
4847     llvm::sys::path::replace_extension(Filename, Extension);
4848   }
4849 
4850   return Args.MakeArgString(Filename.c_str());
4851 }
4852 
4853 static bool HasPreprocessOutput(const Action &JA) {
4854   if (isa<PreprocessJobAction>(JA))
4855     return true;
4856   if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
4857     return true;
4858   if (isa<OffloadBundlingJobAction>(JA) &&
4859       HasPreprocessOutput(*(JA.getInputs()[0])))
4860     return true;
4861   return false;
4862 }
4863 
4864 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4865                                        const char *BaseInput,
4866                                        StringRef OrigBoundArch, bool AtTopLevel,
4867                                        bool MultipleArchs,
4868                                        StringRef OffloadingPrefix) const {
4869   std::string BoundArch = OrigBoundArch.str();
4870 #if defined(_WIN32)
4871   // BoundArch may contains ':', which is invalid in file names on Windows,
4872   // therefore replace it with '%'.
4873   std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
4874 #endif
4875 
4876   llvm::PrettyStackTraceString CrashInfo("Computing output path");
4877   // Output to a user requested destination?
4878   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4879     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4880       return C.addResultFile(FinalOutput->getValue(), &JA);
4881   }
4882 
4883   // For /P, preprocess to file named after BaseInput.
4884   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4885     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4886     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4887     StringRef NameArg;
4888     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4889       NameArg = A->getValue();
4890     return C.addResultFile(
4891         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4892         &JA);
4893   }
4894 
4895   // Default to writing to stdout?
4896   if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
4897     return "-";
4898   }
4899 
4900   if (JA.getType() == types::TY_ModuleFile &&
4901       C.getArgs().getLastArg(options::OPT_module_file_info)) {
4902     return "-";
4903   }
4904 
4905   // Is this the assembly listing for /FA?
4906   if (JA.getType() == types::TY_PP_Asm &&
4907       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4908        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4909     // Use /Fa and the input filename to determine the asm file name.
4910     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4911     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4912     return C.addResultFile(
4913         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4914         &JA);
4915   }
4916 
4917   // Output to a temporary file?
4918   if ((!AtTopLevel && !isSaveTempsEnabled() &&
4919        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4920       CCGenDiagnostics) {
4921     StringRef Name = llvm::sys::path::filename(BaseInput);
4922     std::pair<StringRef, StringRef> Split = Name.split('.');
4923     SmallString<128> TmpName;
4924     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4925     Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4926     if (CCGenDiagnostics && A) {
4927       SmallString<128> CrashDirectory(A->getValue());
4928       if (!getVFS().exists(CrashDirectory))
4929         llvm::sys::fs::create_directories(CrashDirectory);
4930       llvm::sys::path::append(CrashDirectory, Split.first);
4931       const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4932       std::error_code EC = llvm::sys::fs::createUniqueFile(
4933           CrashDirectory + Middle + Suffix, TmpName);
4934       if (EC) {
4935         Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4936         return "";
4937       }
4938     } else {
4939       TmpName = GetTemporaryPath(Split.first, Suffix);
4940     }
4941     return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4942   }
4943 
4944   SmallString<128> BasePath(BaseInput);
4945   SmallString<128> ExternalPath("");
4946   StringRef BaseName;
4947 
4948   // Dsymutil actions should use the full path.
4949   if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
4950     ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
4951     // We use posix style here because the tests (specifically
4952     // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
4953     // even on Windows and if we don't then the similar test covering this
4954     // fails.
4955     llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
4956                             llvm::sys::path::filename(BasePath));
4957     BaseName = ExternalPath;
4958   } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4959     BaseName = BasePath;
4960   else
4961     BaseName = llvm::sys::path::filename(BasePath);
4962 
4963   // Determine what the derived output name should be.
4964   const char *NamedOutput;
4965 
4966   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4967       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4968     // The /Fo or /o flag decides the object filename.
4969     StringRef Val =
4970         C.getArgs()
4971             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4972             ->getValue();
4973     NamedOutput =
4974         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4975   } else if (JA.getType() == types::TY_Image &&
4976              C.getArgs().hasArg(options::OPT__SLASH_Fe,
4977                                 options::OPT__SLASH_o)) {
4978     // The /Fe or /o flag names the linked file.
4979     StringRef Val =
4980         C.getArgs()
4981             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4982             ->getValue();
4983     NamedOutput =
4984         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4985   } else if (JA.getType() == types::TY_Image) {
4986     if (IsCLMode()) {
4987       // clang-cl uses BaseName for the executable name.
4988       NamedOutput =
4989           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4990     } else {
4991       SmallString<128> Output(getDefaultImageName());
4992       // HIP image for device compilation with -fno-gpu-rdc is per compilation
4993       // unit.
4994       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4995                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
4996                                              options::OPT_fno_gpu_rdc, false);
4997       if (IsHIPNoRDC) {
4998         Output = BaseName;
4999         llvm::sys::path::replace_extension(Output, "");
5000       }
5001       Output += OffloadingPrefix;
5002       if (MultipleArchs && !BoundArch.empty()) {
5003         Output += "-";
5004         Output.append(BoundArch);
5005       }
5006       if (IsHIPNoRDC)
5007         Output += ".out";
5008       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5009     }
5010   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5011     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5012   } else {
5013     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5014     assert(Suffix && "All types used for output should have a suffix.");
5015 
5016     std::string::size_type End = std::string::npos;
5017     if (!types::appendSuffixForType(JA.getType()))
5018       End = BaseName.rfind('.');
5019     SmallString<128> Suffixed(BaseName.substr(0, End));
5020     Suffixed += OffloadingPrefix;
5021     if (MultipleArchs && !BoundArch.empty()) {
5022       Suffixed += "-";
5023       Suffixed.append(BoundArch);
5024     }
5025     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5026     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5027     // optimized bitcode output.
5028     auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
5029                                      const llvm::opt::DerivedArgList &Args) {
5030       // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5031       // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5032       // phase.)
5033       return isa<CompileJobAction>(JA) &&
5034              JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5035              Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5036                           false);
5037     };
5038     if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5039         (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5040          IsHIPRDCInCompilePhase(JA, C.getArgs())))
5041       Suffixed += ".tmp";
5042     Suffixed += '.';
5043     Suffixed += Suffix;
5044     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5045   }
5046 
5047   // Prepend object file path if -save-temps=obj
5048   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5049       JA.getType() != types::TY_PCH) {
5050     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5051     SmallString<128> TempPath(FinalOutput->getValue());
5052     llvm::sys::path::remove_filename(TempPath);
5053     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5054     llvm::sys::path::append(TempPath, OutputFileName);
5055     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5056   }
5057 
5058   // If we're saving temps and the temp file conflicts with the input file,
5059   // then avoid overwriting input file.
5060   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5061     bool SameFile = false;
5062     SmallString<256> Result;
5063     llvm::sys::fs::current_path(Result);
5064     llvm::sys::path::append(Result, BaseName);
5065     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5066     // Must share the same path to conflict.
5067     if (SameFile) {
5068       StringRef Name = llvm::sys::path::filename(BaseInput);
5069       std::pair<StringRef, StringRef> Split = Name.split('.');
5070       std::string TmpName = GetTemporaryPath(
5071           Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
5072       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5073     }
5074   }
5075 
5076   // As an annoying special case, PCH generation doesn't strip the pathname.
5077   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5078     llvm::sys::path::remove_filename(BasePath);
5079     if (BasePath.empty())
5080       BasePath = NamedOutput;
5081     else
5082       llvm::sys::path::append(BasePath, NamedOutput);
5083     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5084   } else {
5085     return C.addResultFile(NamedOutput, &JA);
5086   }
5087 }
5088 
5089 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5090   // Search for Name in a list of paths.
5091   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5092       -> llvm::Optional<std::string> {
5093     // Respect a limited subset of the '-Bprefix' functionality in GCC by
5094     // attempting to use this prefix when looking for file paths.
5095     for (const auto &Dir : P) {
5096       if (Dir.empty())
5097         continue;
5098       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5099       llvm::sys::path::append(P, Name);
5100       if (llvm::sys::fs::exists(Twine(P)))
5101         return std::string(P);
5102     }
5103     return None;
5104   };
5105 
5106   if (auto P = SearchPaths(PrefixDirs))
5107     return *P;
5108 
5109   SmallString<128> R(ResourceDir);
5110   llvm::sys::path::append(R, Name);
5111   if (llvm::sys::fs::exists(Twine(R)))
5112     return std::string(R.str());
5113 
5114   SmallString<128> P(TC.getCompilerRTPath());
5115   llvm::sys::path::append(P, Name);
5116   if (llvm::sys::fs::exists(Twine(P)))
5117     return std::string(P.str());
5118 
5119   SmallString<128> D(Dir);
5120   llvm::sys::path::append(D, "..", Name);
5121   if (llvm::sys::fs::exists(Twine(D)))
5122     return std::string(D.str());
5123 
5124   if (auto P = SearchPaths(TC.getLibraryPaths()))
5125     return *P;
5126 
5127   if (auto P = SearchPaths(TC.getFilePaths()))
5128     return *P;
5129 
5130   return std::string(Name);
5131 }
5132 
5133 void Driver::generatePrefixedToolNames(
5134     StringRef Tool, const ToolChain &TC,
5135     SmallVectorImpl<std::string> &Names) const {
5136   // FIXME: Needs a better variable than TargetTriple
5137   Names.emplace_back((TargetTriple + "-" + Tool).str());
5138   Names.emplace_back(Tool);
5139 }
5140 
5141 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5142   llvm::sys::path::append(Dir, Name);
5143   if (llvm::sys::fs::can_execute(Twine(Dir)))
5144     return true;
5145   llvm::sys::path::remove_filename(Dir);
5146   return false;
5147 }
5148 
5149 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5150   SmallVector<std::string, 2> TargetSpecificExecutables;
5151   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5152 
5153   // Respect a limited subset of the '-Bprefix' functionality in GCC by
5154   // attempting to use this prefix when looking for program paths.
5155   for (const auto &PrefixDir : PrefixDirs) {
5156     if (llvm::sys::fs::is_directory(PrefixDir)) {
5157       SmallString<128> P(PrefixDir);
5158       if (ScanDirForExecutable(P, Name))
5159         return std::string(P.str());
5160     } else {
5161       SmallString<128> P((PrefixDir + Name).str());
5162       if (llvm::sys::fs::can_execute(Twine(P)))
5163         return std::string(P.str());
5164     }
5165   }
5166 
5167   const ToolChain::path_list &List = TC.getProgramPaths();
5168   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5169     // For each possible name of the tool look for it in
5170     // program paths first, then the path.
5171     // Higher priority names will be first, meaning that
5172     // a higher priority name in the path will be found
5173     // instead of a lower priority name in the program path.
5174     // E.g. <triple>-gcc on the path will be found instead
5175     // of gcc in the program path
5176     for (const auto &Path : List) {
5177       SmallString<128> P(Path);
5178       if (ScanDirForExecutable(P, TargetSpecificExecutable))
5179         return std::string(P.str());
5180     }
5181 
5182     // Fall back to the path
5183     if (llvm::ErrorOr<std::string> P =
5184             llvm::sys::findProgramByName(TargetSpecificExecutable))
5185       return *P;
5186   }
5187 
5188   return std::string(Name);
5189 }
5190 
5191 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5192   SmallString<128> Path;
5193   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5194   if (EC) {
5195     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5196     return "";
5197   }
5198 
5199   return std::string(Path.str());
5200 }
5201 
5202 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
5203   SmallString<128> Path;
5204   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5205   if (EC) {
5206     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5207     return "";
5208   }
5209 
5210   return std::string(Path.str());
5211 }
5212 
5213 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
5214   SmallString<128> Output;
5215   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
5216     // FIXME: If anybody needs it, implement this obscure rule:
5217     // "If you specify a directory without a file name, the default file name
5218     // is VCx0.pch., where x is the major version of Visual C++ in use."
5219     Output = FpArg->getValue();
5220 
5221     // "If you do not specify an extension as part of the path name, an
5222     // extension of .pch is assumed. "
5223     if (!llvm::sys::path::has_extension(Output))
5224       Output += ".pch";
5225   } else {
5226     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
5227       Output = YcArg->getValue();
5228     if (Output.empty())
5229       Output = BaseName;
5230     llvm::sys::path::replace_extension(Output, ".pch");
5231   }
5232   return std::string(Output.str());
5233 }
5234 
5235 const ToolChain &Driver::getToolChain(const ArgList &Args,
5236                                       const llvm::Triple &Target) const {
5237 
5238   auto &TC = ToolChains[Target.str()];
5239   if (!TC) {
5240     switch (Target.getOS()) {
5241     case llvm::Triple::AIX:
5242       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
5243       break;
5244     case llvm::Triple::Haiku:
5245       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
5246       break;
5247     case llvm::Triple::Ananas:
5248       TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
5249       break;
5250     case llvm::Triple::CloudABI:
5251       TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
5252       break;
5253     case llvm::Triple::Darwin:
5254     case llvm::Triple::MacOSX:
5255     case llvm::Triple::IOS:
5256     case llvm::Triple::TvOS:
5257     case llvm::Triple::WatchOS:
5258       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
5259       break;
5260     case llvm::Triple::DragonFly:
5261       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
5262       break;
5263     case llvm::Triple::OpenBSD:
5264       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
5265       break;
5266     case llvm::Triple::NetBSD:
5267       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5268       break;
5269     case llvm::Triple::FreeBSD:
5270       TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5271       break;
5272     case llvm::Triple::Minix:
5273       TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5274       break;
5275     case llvm::Triple::Linux:
5276     case llvm::Triple::ELFIAMCU:
5277       if (Target.getArch() == llvm::Triple::hexagon)
5278         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5279                                                              Args);
5280       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5281                !Target.hasEnvironment())
5282         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5283                                                               Args);
5284       else if (Target.isPPC())
5285         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5286                                                               Args);
5287       else if (Target.getArch() == llvm::Triple::ve)
5288         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5289 
5290       else
5291         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
5292       break;
5293     case llvm::Triple::NaCl:
5294       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
5295       break;
5296     case llvm::Triple::Fuchsia:
5297       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
5298       break;
5299     case llvm::Triple::Solaris:
5300       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
5301       break;
5302     case llvm::Triple::AMDHSA:
5303       TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
5304       break;
5305     case llvm::Triple::AMDPAL:
5306     case llvm::Triple::Mesa3D:
5307       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
5308       break;
5309     case llvm::Triple::Win32:
5310       switch (Target.getEnvironment()) {
5311       default:
5312         if (Target.isOSBinFormatELF())
5313           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5314         else if (Target.isOSBinFormatMachO())
5315           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5316         else
5317           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5318         break;
5319       case llvm::Triple::GNU:
5320         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
5321         break;
5322       case llvm::Triple::Itanium:
5323         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
5324                                                                   Args);
5325         break;
5326       case llvm::Triple::MSVC:
5327       case llvm::Triple::UnknownEnvironment:
5328         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
5329                 .startswith_insensitive("bfd"))
5330           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
5331               *this, Target, Args);
5332         else
5333           TC =
5334               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
5335         break;
5336       }
5337       break;
5338     case llvm::Triple::PS4:
5339       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
5340       break;
5341     case llvm::Triple::Contiki:
5342       TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
5343       break;
5344     case llvm::Triple::Hurd:
5345       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
5346       break;
5347     case llvm::Triple::ZOS:
5348       TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
5349       break;
5350     default:
5351       // Of these targets, Hexagon is the only one that might have
5352       // an OS of Linux, in which case it got handled above already.
5353       switch (Target.getArch()) {
5354       case llvm::Triple::tce:
5355         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
5356         break;
5357       case llvm::Triple::tcele:
5358         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
5359         break;
5360       case llvm::Triple::hexagon:
5361         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5362                                                              Args);
5363         break;
5364       case llvm::Triple::lanai:
5365         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
5366         break;
5367       case llvm::Triple::xcore:
5368         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
5369         break;
5370       case llvm::Triple::wasm32:
5371       case llvm::Triple::wasm64:
5372         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
5373         break;
5374       case llvm::Triple::avr:
5375         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
5376         break;
5377       case llvm::Triple::msp430:
5378         TC =
5379             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
5380         break;
5381       case llvm::Triple::riscv32:
5382       case llvm::Triple::riscv64:
5383         if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
5384           TC =
5385               std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
5386         else
5387           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5388         break;
5389       case llvm::Triple::ve:
5390         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5391         break;
5392       default:
5393         if (Target.getVendor() == llvm::Triple::Myriad)
5394           TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
5395                                                               Args);
5396         else if (toolchains::BareMetal::handlesTarget(Target))
5397           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5398         else if (Target.isOSBinFormatELF())
5399           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5400         else if (Target.isOSBinFormatMachO())
5401           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5402         else
5403           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5404       }
5405     }
5406   }
5407 
5408   // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
5409   // compiles always need two toolchains, the CUDA toolchain and the host
5410   // toolchain.  So the only valid way to create a CUDA toolchain is via
5411   // CreateOffloadingDeviceToolChains.
5412 
5413   return *TC;
5414 }
5415 
5416 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
5417   // Say "no" if there is not exactly one input of a type clang understands.
5418   if (JA.size() != 1 ||
5419       !types::isAcceptedByClang((*JA.input_begin())->getType()))
5420     return false;
5421 
5422   // And say "no" if this is not a kind of action clang understands.
5423   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
5424       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5425     return false;
5426 
5427   return true;
5428 }
5429 
5430 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
5431   // Say "no" if there is not exactly one input of a type flang understands.
5432   if (JA.size() != 1 ||
5433       !types::isFortran((*JA.input_begin())->getType()))
5434     return false;
5435 
5436   // And say "no" if this is not a kind of action flang understands.
5437   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5438     return false;
5439 
5440   return true;
5441 }
5442 
5443 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
5444   // Only emit static library if the flag is set explicitly.
5445   if (Args.hasArg(options::OPT_emit_static_lib))
5446     return true;
5447   return false;
5448 }
5449 
5450 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
5451 /// grouped values as integers. Numbers which are not provided are set to 0.
5452 ///
5453 /// \return True if the entire string was parsed (9.2), or all groups were
5454 /// parsed (10.3.5extrastuff).
5455 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
5456                                unsigned &Micro, bool &HadExtra) {
5457   HadExtra = false;
5458 
5459   Major = Minor = Micro = 0;
5460   if (Str.empty())
5461     return false;
5462 
5463   if (Str.consumeInteger(10, Major))
5464     return false;
5465   if (Str.empty())
5466     return true;
5467   if (Str[0] != '.')
5468     return false;
5469 
5470   Str = Str.drop_front(1);
5471 
5472   if (Str.consumeInteger(10, Minor))
5473     return false;
5474   if (Str.empty())
5475     return true;
5476   if (Str[0] != '.')
5477     return false;
5478   Str = Str.drop_front(1);
5479 
5480   if (Str.consumeInteger(10, Micro))
5481     return false;
5482   if (!Str.empty())
5483     HadExtra = true;
5484   return true;
5485 }
5486 
5487 /// Parse digits from a string \p Str and fulfill \p Digits with
5488 /// the parsed numbers. This method assumes that the max number of
5489 /// digits to look for is equal to Digits.size().
5490 ///
5491 /// \return True if the entire string was parsed and there are
5492 /// no extra characters remaining at the end.
5493 bool Driver::GetReleaseVersion(StringRef Str,
5494                                MutableArrayRef<unsigned> Digits) {
5495   if (Str.empty())
5496     return false;
5497 
5498   unsigned CurDigit = 0;
5499   while (CurDigit < Digits.size()) {
5500     unsigned Digit;
5501     if (Str.consumeInteger(10, Digit))
5502       return false;
5503     Digits[CurDigit] = Digit;
5504     if (Str.empty())
5505       return true;
5506     if (Str[0] != '.')
5507       return false;
5508     Str = Str.drop_front(1);
5509     CurDigit++;
5510   }
5511 
5512   // More digits than requested, bail out...
5513   return false;
5514 }
5515 
5516 std::pair<unsigned, unsigned>
5517 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5518   unsigned IncludedFlagsBitmask = 0;
5519   unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5520 
5521   if (IsClCompatMode) {
5522     // Include CL and Core options.
5523     IncludedFlagsBitmask |= options::CLOption;
5524     IncludedFlagsBitmask |= options::CoreOption;
5525   } else {
5526     ExcludedFlagsBitmask |= options::CLOption;
5527   }
5528 
5529   return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5530 }
5531 
5532 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5533   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5534 }
5535 
5536 bool clang::driver::willEmitRemarks(const ArgList &Args) {
5537   // -fsave-optimization-record enables it.
5538   if (Args.hasFlag(options::OPT_fsave_optimization_record,
5539                    options::OPT_fno_save_optimization_record, false))
5540     return true;
5541 
5542   // -fsave-optimization-record=<format> enables it as well.
5543   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5544                    options::OPT_fno_save_optimization_record, false))
5545     return true;
5546 
5547   // -foptimization-record-file alone enables it too.
5548   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5549                    options::OPT_fno_save_optimization_record, false))
5550     return true;
5551 
5552   // -foptimization-record-passes alone enables it too.
5553   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5554                    options::OPT_fno_save_optimization_record, false))
5555     return true;
5556   return false;
5557 }
5558 
5559 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
5560                                              ArrayRef<const char *> Args) {
5561   static const std::string OptName =
5562       getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
5563   llvm::StringRef Opt;
5564   for (StringRef Arg : Args) {
5565     if (!Arg.startswith(OptName))
5566       continue;
5567     Opt = Arg;
5568   }
5569   if (Opt.empty())
5570     Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
5571   return Opt.consume_front(OptName) ? Opt : "";
5572 }
5573 
5574 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
5575