1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AIX.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
19 #include "ToolChains/CrossWindows.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Hurd.h"
30 #include "ToolChains/Lanai.h"
31 #include "ToolChains/Linux.h"
32 #include "ToolChains/MSP430.h"
33 #include "ToolChains/MSVC.h"
34 #include "ToolChains/MinGW.h"
35 #include "ToolChains/Minix.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/Myriad.h"
38 #include "ToolChains/NaCl.h"
39 #include "ToolChains/NetBSD.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCLinux.h"
42 #include "ToolChains/PS4CPU.h"
43 #include "ToolChains/RISCVToolchain.h"
44 #include "ToolChains/Solaris.h"
45 #include "ToolChains/TCE.h"
46 #include "ToolChains/VEToolchain.h"
47 #include "ToolChains/WebAssembly.h"
48 #include "ToolChains/XCore.h"
49 #include "ToolChains/ZOS.h"
50 #include "clang/Basic/TargetID.h"
51 #include "clang/Basic/Version.h"
52 #include "clang/Config/config.h"
53 #include "clang/Driver/Action.h"
54 #include "clang/Driver/Compilation.h"
55 #include "clang/Driver/DriverDiagnostic.h"
56 #include "clang/Driver/Job.h"
57 #include "clang/Driver/Options.h"
58 #include "clang/Driver/SanitizerArgs.h"
59 #include "clang/Driver/Tool.h"
60 #include "clang/Driver/ToolChain.h"
61 #include "llvm/ADT/ArrayRef.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SmallSet.h"
64 #include "llvm/ADT/StringExtras.h"
65 #include "llvm/ADT/StringSet.h"
66 #include "llvm/ADT/StringSwitch.h"
67 #include "llvm/Config/llvm-config.h"
68 #include "llvm/Option/Arg.h"
69 #include "llvm/Option/ArgList.h"
70 #include "llvm/Option/OptSpecifier.h"
71 #include "llvm/Option/OptTable.h"
72 #include "llvm/Option/Option.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/ExitCodes.h"
76 #include "llvm/Support/FileSystem.h"
77 #include "llvm/Support/FormatVariadic.h"
78 #include "llvm/Support/Host.h"
79 #include "llvm/Support/Path.h"
80 #include "llvm/Support/PrettyStackTrace.h"
81 #include "llvm/Support/Process.h"
82 #include "llvm/Support/Program.h"
83 #include "llvm/Support/StringSaver.h"
84 #include "llvm/Support/TargetRegistry.h"
85 #include "llvm/Support/VirtualFileSystem.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include <map>
88 #include <memory>
89 #include <utility>
90 #if LLVM_ON_UNIX
91 #include <unistd.h> // getpid
92 #endif
93 
94 using namespace clang::driver;
95 using namespace clang;
96 using namespace llvm::opt;
97 
98 static llvm::Triple getHIPOffloadTargetTriple() {
99   static const llvm::Triple T("amdgcn-amd-amdhsa");
100   return T;
101 }
102 
103 // static
104 std::string Driver::GetResourcesPath(StringRef BinaryPath,
105                                      StringRef CustomResourceDir) {
106   // Since the resource directory is embedded in the module hash, it's important
107   // that all places that need it call this function, so that they get the
108   // exact same string ("a/../b/" and "b/" get different hashes, for example).
109 
110   // Dir is bin/ or lib/, depending on where BinaryPath is.
111   std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
112 
113   SmallString<128> P(Dir);
114   if (CustomResourceDir != "") {
115     llvm::sys::path::append(P, CustomResourceDir);
116   } else {
117     // On Windows, libclang.dll is in bin/.
118     // On non-Windows, libclang.so/.dylib is in lib/.
119     // With a static-library build of libclang, LibClangPath will contain the
120     // path of the embedding binary, which for LLVM binaries will be in bin/.
121     // ../lib gets us to lib/ in both cases.
122     P = llvm::sys::path::parent_path(Dir);
123     llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
124                             CLANG_VERSION_STRING);
125   }
126 
127   return std::string(P.str());
128 }
129 
130 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
131                DiagnosticsEngine &Diags, std::string Title,
132                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
133     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
134       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
135       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
136       DriverTitle(Title), CCPrintOptionsFilename(nullptr),
137       CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr),
138       CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
139       CCLogDiagnostics(false), CCGenDiagnostics(false),
140       TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc),
141       CheckInputsExist(true), GenReproducer(false),
142       SuppressMissingInputWarning(false) {
143   // Provide a sane fallback if no VFS is specified.
144   if (!this->VFS)
145     this->VFS = llvm::vfs::getRealFileSystem();
146 
147   Name = std::string(llvm::sys::path::filename(ClangExecutable));
148   Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
149   InstalledDir = Dir; // Provide a sensible default installed dir.
150 
151   if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
152     // Prepend InstalledDir if SysRoot is relative
153     SmallString<128> P(InstalledDir);
154     llvm::sys::path::append(P, SysRoot);
155     SysRoot = std::string(P);
156   }
157 
158 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
159   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
160 #endif
161 #if defined(CLANG_CONFIG_FILE_USER_DIR)
162   UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
163 #endif
164 
165   // Compute the path to the resource directory.
166   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
167 }
168 
169 void Driver::ParseDriverMode(StringRef ProgramName,
170                              ArrayRef<const char *> Args) {
171   if (ClangNameParts.isEmpty())
172     ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
173   setDriverModeFromOption(ClangNameParts.DriverMode);
174 
175   for (const char *ArgPtr : Args) {
176     // Ignore nullptrs, they are the response file's EOL markers.
177     if (ArgPtr == nullptr)
178       continue;
179     const StringRef Arg = ArgPtr;
180     setDriverModeFromOption(Arg);
181   }
182 }
183 
184 void Driver::setDriverModeFromOption(StringRef Opt) {
185   const std::string OptName =
186       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
187   if (!Opt.startswith(OptName))
188     return;
189   StringRef Value = Opt.drop_front(OptName.size());
190 
191   if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
192                    .Case("gcc", GCCMode)
193                    .Case("g++", GXXMode)
194                    .Case("cpp", CPPMode)
195                    .Case("cl", CLMode)
196                    .Case("flang", FlangMode)
197                    .Default(None))
198     Mode = *M;
199   else
200     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
201 }
202 
203 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
204                                      bool IsClCompatMode,
205                                      bool &ContainsError) {
206   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
207   ContainsError = false;
208 
209   unsigned IncludedFlagsBitmask;
210   unsigned ExcludedFlagsBitmask;
211   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
212       getIncludeExcludeOptionFlagMasks(IsClCompatMode);
213 
214   unsigned MissingArgIndex, MissingArgCount;
215   InputArgList Args =
216       getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
217                           IncludedFlagsBitmask, ExcludedFlagsBitmask);
218 
219   // Check for missing argument error.
220   if (MissingArgCount) {
221     Diag(diag::err_drv_missing_argument)
222         << Args.getArgString(MissingArgIndex) << MissingArgCount;
223     ContainsError |=
224         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
225                                  SourceLocation()) > DiagnosticsEngine::Warning;
226   }
227 
228   // Check for unsupported options.
229   for (const Arg *A : Args) {
230     if (A->getOption().hasFlag(options::Unsupported)) {
231       unsigned DiagID;
232       auto ArgString = A->getAsString(Args);
233       std::string Nearest;
234       if (getOpts().findNearest(
235             ArgString, Nearest, IncludedFlagsBitmask,
236             ExcludedFlagsBitmask | options::Unsupported) > 1) {
237         DiagID = diag::err_drv_unsupported_opt;
238         Diag(DiagID) << ArgString;
239       } else {
240         DiagID = diag::err_drv_unsupported_opt_with_suggestion;
241         Diag(DiagID) << ArgString << Nearest;
242       }
243       ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
244                        DiagnosticsEngine::Warning;
245       continue;
246     }
247 
248     // Warn about -mcpu= without an argument.
249     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
250       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
251       ContainsError |= Diags.getDiagnosticLevel(
252                            diag::warn_drv_empty_joined_argument,
253                            SourceLocation()) > DiagnosticsEngine::Warning;
254     }
255   }
256 
257   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
258     unsigned DiagID;
259     auto ArgString = A->getAsString(Args);
260     std::string Nearest;
261     if (getOpts().findNearest(
262           ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
263       DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
264                           : diag::err_drv_unknown_argument;
265       Diags.Report(DiagID) << ArgString;
266     } else {
267       DiagID = IsCLMode()
268                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
269                    : diag::err_drv_unknown_argument_with_suggestion;
270       Diags.Report(DiagID) << ArgString << Nearest;
271     }
272     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
273                      DiagnosticsEngine::Warning;
274   }
275 
276   return Args;
277 }
278 
279 // Determine which compilation mode we are in. We look for options which
280 // affect the phase, starting with the earliest phases, and record which
281 // option we used to determine the final phase.
282 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
283                                  Arg **FinalPhaseArg) const {
284   Arg *PhaseArg = nullptr;
285   phases::ID FinalPhase;
286 
287   // -{E,EP,P,M,MM} only run the preprocessor.
288   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
289       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
290       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
291       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
292     FinalPhase = phases::Preprocess;
293 
294   // --precompile only runs up to precompilation.
295   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
296     FinalPhase = phases::Precompile;
297 
298   // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
299   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
300              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
301              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
302              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
303              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
304              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
305              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
306              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
307              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
308     FinalPhase = phases::Compile;
309 
310   // -S only runs up to the backend.
311   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
312     FinalPhase = phases::Backend;
313 
314   // -c compilation only runs up to the assembler.
315   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
316     FinalPhase = phases::Assemble;
317 
318   // Otherwise do everything.
319   } else
320     FinalPhase = phases::Link;
321 
322   if (FinalPhaseArg)
323     *FinalPhaseArg = PhaseArg;
324 
325   return FinalPhase;
326 }
327 
328 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
329                          StringRef Value, bool Claim = true) {
330   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
331                    Args.getBaseArgs().MakeIndex(Value), Value.data());
332   Args.AddSynthesizedArg(A);
333   if (Claim)
334     A->claim();
335   return A;
336 }
337 
338 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
339   const llvm::opt::OptTable &Opts = getOpts();
340   DerivedArgList *DAL = new DerivedArgList(Args);
341 
342   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
343   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
344   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
345   for (Arg *A : Args) {
346     // Unfortunately, we have to parse some forwarding options (-Xassembler,
347     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
348     // (assembler and preprocessor), or bypass a previous driver ('collect2').
349 
350     // Rewrite linker options, to replace --no-demangle with a custom internal
351     // option.
352     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
353          A->getOption().matches(options::OPT_Xlinker)) &&
354         A->containsValue("--no-demangle")) {
355       // Add the rewritten no-demangle argument.
356       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
357 
358       // Add the remaining values as Xlinker arguments.
359       for (StringRef Val : A->getValues())
360         if (Val != "--no-demangle")
361           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
362 
363       continue;
364     }
365 
366     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
367     // some build systems. We don't try to be complete here because we don't
368     // care to encourage this usage model.
369     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
370         (A->getValue(0) == StringRef("-MD") ||
371          A->getValue(0) == StringRef("-MMD"))) {
372       // Rewrite to -MD/-MMD along with -MF.
373       if (A->getValue(0) == StringRef("-MD"))
374         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
375       else
376         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
377       if (A->getNumValues() == 2)
378         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
379       continue;
380     }
381 
382     // Rewrite reserved library names.
383     if (A->getOption().matches(options::OPT_l)) {
384       StringRef Value = A->getValue();
385 
386       // Rewrite unless -nostdlib is present.
387       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
388           Value == "stdc++") {
389         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
390         continue;
391       }
392 
393       // Rewrite unconditionally.
394       if (Value == "cc_kext") {
395         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
396         continue;
397       }
398     }
399 
400     // Pick up inputs via the -- option.
401     if (A->getOption().matches(options::OPT__DASH_DASH)) {
402       A->claim();
403       for (StringRef Val : A->getValues())
404         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
405       continue;
406     }
407 
408     DAL->append(A);
409   }
410 
411   // Enforce -static if -miamcu is present.
412   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
413     DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
414 
415 // Add a default value of -mlinker-version=, if one was given and the user
416 // didn't specify one.
417 #if defined(HOST_LINK_VERSION)
418   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
419       strlen(HOST_LINK_VERSION) > 0) {
420     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
421                       HOST_LINK_VERSION);
422     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
423   }
424 #endif
425 
426   return DAL;
427 }
428 
429 /// Compute target triple from args.
430 ///
431 /// This routine provides the logic to compute a target triple from various
432 /// args passed to the driver and the default triple string.
433 static llvm::Triple computeTargetTriple(const Driver &D,
434                                         StringRef TargetTriple,
435                                         const ArgList &Args,
436                                         StringRef DarwinArchName = "") {
437   // FIXME: Already done in Compilation *Driver::BuildCompilation
438   if (const Arg *A = Args.getLastArg(options::OPT_target))
439     TargetTriple = A->getValue();
440 
441   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
442 
443   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
444   // -gnu* only, and we can not change this, so we have to detect that case as
445   // being the Hurd OS.
446   if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
447       TargetTriple.find("-pc-gnu") != StringRef::npos)
448     Target.setOSName("hurd");
449 
450   // Handle Apple-specific options available here.
451   if (Target.isOSBinFormatMachO()) {
452     // If an explicit Darwin arch name is given, that trumps all.
453     if (!DarwinArchName.empty()) {
454       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
455       return Target;
456     }
457 
458     // Handle the Darwin '-arch' flag.
459     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
460       StringRef ArchName = A->getValue();
461       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
462     }
463   }
464 
465   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
466   // '-mbig-endian'/'-EB'.
467   if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
468                                options::OPT_mbig_endian)) {
469     if (A->getOption().matches(options::OPT_mlittle_endian)) {
470       llvm::Triple LE = Target.getLittleEndianArchVariant();
471       if (LE.getArch() != llvm::Triple::UnknownArch)
472         Target = std::move(LE);
473     } else {
474       llvm::Triple BE = Target.getBigEndianArchVariant();
475       if (BE.getArch() != llvm::Triple::UnknownArch)
476         Target = std::move(BE);
477     }
478   }
479 
480   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
481   if (Target.getArch() == llvm::Triple::tce ||
482       Target.getOS() == llvm::Triple::Minix)
483     return Target;
484 
485   // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
486   if (Target.isOSAIX()) {
487     if (Optional<std::string> ObjectModeValue =
488             llvm::sys::Process::GetEnv("OBJECT_MODE")) {
489       StringRef ObjectMode = *ObjectModeValue;
490       llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
491 
492       if (ObjectMode.equals("64")) {
493         AT = Target.get64BitArchVariant().getArch();
494       } else if (ObjectMode.equals("32")) {
495         AT = Target.get32BitArchVariant().getArch();
496       } else {
497         D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
498       }
499 
500       if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
501         Target.setArch(AT);
502     }
503   }
504 
505   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
506   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
507                            options::OPT_m32, options::OPT_m16);
508   if (A) {
509     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
510 
511     if (A->getOption().matches(options::OPT_m64)) {
512       AT = Target.get64BitArchVariant().getArch();
513       if (Target.getEnvironment() == llvm::Triple::GNUX32)
514         Target.setEnvironment(llvm::Triple::GNU);
515     } else if (A->getOption().matches(options::OPT_mx32) &&
516                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
517       AT = llvm::Triple::x86_64;
518       Target.setEnvironment(llvm::Triple::GNUX32);
519     } else if (A->getOption().matches(options::OPT_m32)) {
520       AT = Target.get32BitArchVariant().getArch();
521       if (Target.getEnvironment() == llvm::Triple::GNUX32)
522         Target.setEnvironment(llvm::Triple::GNU);
523     } else if (A->getOption().matches(options::OPT_m16) &&
524                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
525       AT = llvm::Triple::x86;
526       Target.setEnvironment(llvm::Triple::CODE16);
527     }
528 
529     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
530       Target.setArch(AT);
531   }
532 
533   // Handle -miamcu flag.
534   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
535     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
536       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
537                                                        << Target.str();
538 
539     if (A && !A->getOption().matches(options::OPT_m32))
540       D.Diag(diag::err_drv_argument_not_allowed_with)
541           << "-miamcu" << A->getBaseArg().getAsString(Args);
542 
543     Target.setArch(llvm::Triple::x86);
544     Target.setArchName("i586");
545     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
546     Target.setEnvironmentName("");
547     Target.setOS(llvm::Triple::ELFIAMCU);
548     Target.setVendor(llvm::Triple::UnknownVendor);
549     Target.setVendorName("intel");
550   }
551 
552   // If target is MIPS adjust the target triple
553   // accordingly to provided ABI name.
554   A = Args.getLastArg(options::OPT_mabi_EQ);
555   if (A && Target.isMIPS()) {
556     StringRef ABIName = A->getValue();
557     if (ABIName == "32") {
558       Target = Target.get32BitArchVariant();
559       if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
560           Target.getEnvironment() == llvm::Triple::GNUABIN32)
561         Target.setEnvironment(llvm::Triple::GNU);
562     } else if (ABIName == "n32") {
563       Target = Target.get64BitArchVariant();
564       if (Target.getEnvironment() == llvm::Triple::GNU ||
565           Target.getEnvironment() == llvm::Triple::GNUABI64)
566         Target.setEnvironment(llvm::Triple::GNUABIN32);
567     } else if (ABIName == "64") {
568       Target = Target.get64BitArchVariant();
569       if (Target.getEnvironment() == llvm::Triple::GNU ||
570           Target.getEnvironment() == llvm::Triple::GNUABIN32)
571         Target.setEnvironment(llvm::Triple::GNUABI64);
572     }
573   }
574 
575   // If target is RISC-V adjust the target triple according to
576   // provided architecture name
577   A = Args.getLastArg(options::OPT_march_EQ);
578   if (A && Target.isRISCV()) {
579     StringRef ArchName = A->getValue();
580     if (ArchName.startswith_lower("rv32"))
581       Target.setArch(llvm::Triple::riscv32);
582     else if (ArchName.startswith_lower("rv64"))
583       Target.setArch(llvm::Triple::riscv64);
584   }
585 
586   return Target;
587 }
588 
589 // Parse the LTO options and record the type of LTO compilation
590 // based on which -f(no-)?lto(=.*)? option occurs last.
591 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
592   LTOMode = LTOK_None;
593   if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
594                     options::OPT_fno_lto, false))
595     return;
596 
597   StringRef LTOName("full");
598 
599   const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
600   if (A)
601     LTOName = A->getValue();
602 
603   LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
604                 .Case("full", LTOK_Full)
605                 .Case("thin", LTOK_Thin)
606                 .Default(LTOK_Unknown);
607 
608   if (LTOMode == LTOK_Unknown) {
609     assert(A);
610     Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
611                                                     << A->getValue();
612   }
613 }
614 
615 /// Compute the desired OpenMP runtime from the flags provided.
616 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
617   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
618 
619   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
620   if (A)
621     RuntimeName = A->getValue();
622 
623   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
624                 .Case("libomp", OMPRT_OMP)
625                 .Case("libgomp", OMPRT_GOMP)
626                 .Case("libiomp5", OMPRT_IOMP5)
627                 .Default(OMPRT_Unknown);
628 
629   if (RT == OMPRT_Unknown) {
630     if (A)
631       Diag(diag::err_drv_unsupported_option_argument)
632           << A->getOption().getName() << A->getValue();
633     else
634       // FIXME: We could use a nicer diagnostic here.
635       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
636   }
637 
638   return RT;
639 }
640 
641 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
642                                               InputList &Inputs) {
643 
644   //
645   // CUDA/HIP
646   //
647   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
648   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
649   bool IsCuda =
650       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
651         return types::isCuda(I.first);
652       });
653   bool IsHIP =
654       llvm::any_of(Inputs,
655                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
656                      return types::isHIP(I.first);
657                    }) ||
658       C.getInputArgs().hasArg(options::OPT_hip_link);
659   if (IsCuda && IsHIP) {
660     Diag(clang::diag::err_drv_mix_cuda_hip);
661     return;
662   }
663   if (IsCuda) {
664     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
665     const llvm::Triple &HostTriple = HostTC->getTriple();
666     StringRef DeviceTripleStr;
667     auto OFK = Action::OFK_Cuda;
668     DeviceTripleStr =
669         HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
670     llvm::Triple CudaTriple(DeviceTripleStr);
671     // Use the CUDA and host triples as the key into the ToolChains map,
672     // because the device toolchain we create depends on both.
673     auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
674     if (!CudaTC) {
675       CudaTC = std::make_unique<toolchains::CudaToolChain>(
676           *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
677     }
678     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
679   } else if (IsHIP) {
680     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
681     const llvm::Triple &HostTriple = HostTC->getTriple();
682     auto OFK = Action::OFK_HIP;
683     llvm::Triple HIPTriple = getHIPOffloadTargetTriple();
684     // Use the HIP and host triples as the key into the ToolChains map,
685     // because the device toolchain we create depends on both.
686     auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
687     if (!HIPTC) {
688       HIPTC = std::make_unique<toolchains::HIPToolChain>(
689           *this, HIPTriple, *HostTC, C.getInputArgs());
690     }
691     C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
692   }
693 
694   //
695   // OpenMP
696   //
697   // We need to generate an OpenMP toolchain if the user specified targets with
698   // the -fopenmp-targets option.
699   if (Arg *OpenMPTargets =
700           C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
701     if (OpenMPTargets->getNumValues()) {
702       // We expect that -fopenmp-targets is always used in conjunction with the
703       // option -fopenmp specifying a valid runtime with offloading support,
704       // i.e. libomp or libiomp.
705       bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
706           options::OPT_fopenmp, options::OPT_fopenmp_EQ,
707           options::OPT_fno_openmp, false);
708       if (HasValidOpenMPRuntime) {
709         OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
710         HasValidOpenMPRuntime =
711             OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
712       }
713 
714       if (HasValidOpenMPRuntime) {
715         llvm::StringMap<const char *> FoundNormalizedTriples;
716         for (const char *Val : OpenMPTargets->getValues()) {
717           llvm::Triple TT(Val);
718           std::string NormalizedName = TT.normalize();
719 
720           // Make sure we don't have a duplicate triple.
721           auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
722           if (Duplicate != FoundNormalizedTriples.end()) {
723             Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
724                 << Val << Duplicate->second;
725             continue;
726           }
727 
728           // Store the current triple so that we can check for duplicates in the
729           // following iterations.
730           FoundNormalizedTriples[NormalizedName] = Val;
731 
732           // If the specified target is invalid, emit a diagnostic.
733           if (TT.getArch() == llvm::Triple::UnknownArch)
734             Diag(clang::diag::err_drv_invalid_omp_target) << Val;
735           else {
736             const ToolChain *TC;
737             // CUDA toolchains have to be selected differently. They pair host
738             // and device in their implementation.
739             if (TT.isNVPTX()) {
740               const ToolChain *HostTC =
741                   C.getSingleOffloadToolChain<Action::OFK_Host>();
742               assert(HostTC && "Host toolchain should be always defined.");
743               auto &CudaTC =
744                   ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
745               if (!CudaTC)
746                 CudaTC = std::make_unique<toolchains::CudaToolChain>(
747                     *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
748               TC = CudaTC.get();
749             } else
750               TC = &getToolChain(C.getInputArgs(), TT);
751             C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
752           }
753         }
754       } else
755         Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
756     } else
757       Diag(clang::diag::warn_drv_empty_joined_argument)
758           << OpenMPTargets->getAsString(C.getInputArgs());
759   }
760 
761   //
762   // TODO: Add support for other offloading programming models here.
763   //
764 }
765 
766 /// Looks the given directories for the specified file.
767 ///
768 /// \param[out] FilePath File path, if the file was found.
769 /// \param[in]  Dirs Directories used for the search.
770 /// \param[in]  FileName Name of the file to search for.
771 /// \return True if file was found.
772 ///
773 /// Looks for file specified by FileName sequentially in directories specified
774 /// by Dirs.
775 ///
776 static bool searchForFile(SmallVectorImpl<char> &FilePath,
777                           ArrayRef<std::string> Dirs,
778                           StringRef FileName) {
779   SmallString<128> WPath;
780   for (const std::string &Dir : Dirs) {
781     if (Dir.empty())
782       continue;
783     WPath.clear();
784     llvm::sys::path::append(WPath, Dir, FileName);
785     llvm::sys::path::native(WPath);
786     if (llvm::sys::fs::is_regular_file(WPath)) {
787       FilePath = std::move(WPath);
788       return true;
789     }
790   }
791   return false;
792 }
793 
794 bool Driver::readConfigFile(StringRef FileName) {
795   // Try reading the given file.
796   SmallVector<const char *, 32> NewCfgArgs;
797   if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
798     Diag(diag::err_drv_cannot_read_config_file) << FileName;
799     return true;
800   }
801 
802   // Read options from config file.
803   llvm::SmallString<128> CfgFileName(FileName);
804   llvm::sys::path::native(CfgFileName);
805   ConfigFile = std::string(CfgFileName.str());
806   bool ContainErrors;
807   CfgOptions = std::make_unique<InputArgList>(
808       ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
809   if (ContainErrors) {
810     CfgOptions.reset();
811     return true;
812   }
813 
814   if (CfgOptions->hasArg(options::OPT_config)) {
815     CfgOptions.reset();
816     Diag(diag::err_drv_nested_config_file);
817     return true;
818   }
819 
820   // Claim all arguments that come from a configuration file so that the driver
821   // does not warn on any that is unused.
822   for (Arg *A : *CfgOptions)
823     A->claim();
824   return false;
825 }
826 
827 bool Driver::loadConfigFile() {
828   std::string CfgFileName;
829   bool FileSpecifiedExplicitly = false;
830 
831   // Process options that change search path for config files.
832   if (CLOptions) {
833     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
834       SmallString<128> CfgDir;
835       CfgDir.append(
836           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
837       if (!CfgDir.empty()) {
838         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
839           SystemConfigDir.clear();
840         else
841           SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
842       }
843     }
844     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
845       SmallString<128> CfgDir;
846       CfgDir.append(
847           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
848       if (!CfgDir.empty()) {
849         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
850           UserConfigDir.clear();
851         else
852           UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
853       }
854     }
855   }
856 
857   // First try to find config file specified in command line.
858   if (CLOptions) {
859     std::vector<std::string> ConfigFiles =
860         CLOptions->getAllArgValues(options::OPT_config);
861     if (ConfigFiles.size() > 1) {
862       if (!std::all_of(
863               ConfigFiles.begin(), ConfigFiles.end(),
864               [ConfigFiles](std::string s) { return s == ConfigFiles[0]; })) {
865         Diag(diag::err_drv_duplicate_config);
866         return true;
867       }
868     }
869 
870     if (!ConfigFiles.empty()) {
871       CfgFileName = ConfigFiles.front();
872       assert(!CfgFileName.empty());
873 
874       // If argument contains directory separator, treat it as a path to
875       // configuration file.
876       if (llvm::sys::path::has_parent_path(CfgFileName)) {
877         SmallString<128> CfgFilePath;
878         if (llvm::sys::path::is_relative(CfgFileName))
879           llvm::sys::fs::current_path(CfgFilePath);
880         llvm::sys::path::append(CfgFilePath, CfgFileName);
881         if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
882           Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
883           return true;
884         }
885         return readConfigFile(CfgFilePath);
886       }
887 
888       FileSpecifiedExplicitly = true;
889     }
890   }
891 
892   // If config file is not specified explicitly, try to deduce configuration
893   // from executable name. For instance, an executable 'armv7l-clang' will
894   // search for config file 'armv7l-clang.cfg'.
895   if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
896     CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
897 
898   if (CfgFileName.empty())
899     return false;
900 
901   // Determine architecture part of the file name, if it is present.
902   StringRef CfgFileArch = CfgFileName;
903   size_t ArchPrefixLen = CfgFileArch.find('-');
904   if (ArchPrefixLen == StringRef::npos)
905     ArchPrefixLen = CfgFileArch.size();
906   llvm::Triple CfgTriple;
907   CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
908   CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
909   if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
910     ArchPrefixLen = 0;
911 
912   if (!StringRef(CfgFileName).endswith(".cfg"))
913     CfgFileName += ".cfg";
914 
915   // If config file starts with architecture name and command line options
916   // redefine architecture (with options like -m32 -LE etc), try finding new
917   // config file with that architecture.
918   SmallString<128> FixedConfigFile;
919   size_t FixedArchPrefixLen = 0;
920   if (ArchPrefixLen) {
921     // Get architecture name from config file name like 'i386.cfg' or
922     // 'armv7l-clang.cfg'.
923     // Check if command line options changes effective triple.
924     llvm::Triple EffectiveTriple = computeTargetTriple(*this,
925                                              CfgTriple.getTriple(), *CLOptions);
926     if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
927       FixedConfigFile = EffectiveTriple.getArchName();
928       FixedArchPrefixLen = FixedConfigFile.size();
929       // Append the rest of original file name so that file name transforms
930       // like: i386-clang.cfg -> x86_64-clang.cfg.
931       if (ArchPrefixLen < CfgFileName.size())
932         FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
933     }
934   }
935 
936   // Prepare list of directories where config file is searched for.
937   SmallVector<std::string, 3> CfgFileSearchDirs;
938   CfgFileSearchDirs.push_back(UserConfigDir);
939   CfgFileSearchDirs.push_back(SystemConfigDir);
940   CfgFileSearchDirs.push_back(Dir);
941 
942   // Try to find config file. First try file with corrected architecture.
943   llvm::SmallString<128> CfgFilePath;
944   if (!FixedConfigFile.empty()) {
945     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
946       return readConfigFile(CfgFilePath);
947     // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
948     FixedConfigFile.resize(FixedArchPrefixLen);
949     FixedConfigFile.append(".cfg");
950     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
951       return readConfigFile(CfgFilePath);
952   }
953 
954   // Then try original file name.
955   if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
956     return readConfigFile(CfgFilePath);
957 
958   // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
959   if (!ClangNameParts.ModeSuffix.empty() &&
960       !ClangNameParts.TargetPrefix.empty()) {
961     CfgFileName.assign(ClangNameParts.TargetPrefix);
962     CfgFileName.append(".cfg");
963     if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
964       return readConfigFile(CfgFilePath);
965   }
966 
967   // Report error but only if config file was specified explicitly, by option
968   // --config. If it was deduced from executable name, it is not an error.
969   if (FileSpecifiedExplicitly) {
970     Diag(diag::err_drv_config_file_not_found) << CfgFileName;
971     for (const std::string &SearchDir : CfgFileSearchDirs)
972       if (!SearchDir.empty())
973         Diag(diag::note_drv_config_file_searched_in) << SearchDir;
974     return true;
975   }
976 
977   return false;
978 }
979 
980 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
981   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
982 
983   // FIXME: Handle environment options which affect driver behavior, somewhere
984   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
985 
986   // We look for the driver mode option early, because the mode can affect
987   // how other options are parsed.
988   ParseDriverMode(ClangExecutable, ArgList.slice(1));
989 
990   // FIXME: What are we going to do with -V and -b?
991 
992   // Arguments specified in command line.
993   bool ContainsError;
994   CLOptions = std::make_unique<InputArgList>(
995       ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
996 
997   // Try parsing configuration file.
998   if (!ContainsError)
999     ContainsError = loadConfigFile();
1000   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1001 
1002   // All arguments, from both config file and command line.
1003   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1004                                               : std::move(*CLOptions));
1005 
1006   // The args for config files or /clang: flags belong to different InputArgList
1007   // objects than Args. This copies an Arg from one of those other InputArgLists
1008   // to the ownership of Args.
1009   auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1010       unsigned Index = Args.MakeIndex(Opt->getSpelling());
1011       Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
1012                                      Index, BaseArg);
1013       Copy->getValues() = Opt->getValues();
1014       if (Opt->isClaimed())
1015         Copy->claim();
1016       Args.append(Copy);
1017   };
1018 
1019   if (HasConfigFile)
1020     for (auto *Opt : *CLOptions) {
1021       if (Opt->getOption().matches(options::OPT_config))
1022         continue;
1023       const Arg *BaseArg = &Opt->getBaseArg();
1024       if (BaseArg == Opt)
1025         BaseArg = nullptr;
1026       appendOneArg(Opt, BaseArg);
1027     }
1028 
1029   // In CL mode, look for any pass-through arguments
1030   if (IsCLMode() && !ContainsError) {
1031     SmallVector<const char *, 16> CLModePassThroughArgList;
1032     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1033       A->claim();
1034       CLModePassThroughArgList.push_back(A->getValue());
1035     }
1036 
1037     if (!CLModePassThroughArgList.empty()) {
1038       // Parse any pass through args using default clang processing rather
1039       // than clang-cl processing.
1040       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1041           ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1042 
1043       if (!ContainsError)
1044         for (auto *Opt : *CLModePassThroughOptions) {
1045           appendOneArg(Opt, nullptr);
1046         }
1047     }
1048   }
1049 
1050   // Check for working directory option before accessing any files
1051   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1052     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1053       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1054 
1055   // FIXME: This stuff needs to go into the Compilation, not the driver.
1056   bool CCCPrintPhases;
1057 
1058   // Silence driver warnings if requested
1059   Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1060 
1061   // -no-canonical-prefixes is used very early in main.
1062   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1063 
1064   // f(no-)integated-cc1 is also used very early in main.
1065   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1066   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1067 
1068   // Ignore -pipe.
1069   Args.ClaimAllArgs(options::OPT_pipe);
1070 
1071   // Extract -ccc args.
1072   //
1073   // FIXME: We need to figure out where this behavior should live. Most of it
1074   // should be outside in the client; the parts that aren't should have proper
1075   // options, either by introducing new ones or by overloading gcc ones like -V
1076   // or -b.
1077   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1078   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1079   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1080     CCCGenericGCCName = A->getValue();
1081   GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1082                                options::OPT_fno_crash_diagnostics,
1083                                !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1084   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1085   // and getToolChain is const.
1086   if (IsCLMode()) {
1087     // clang-cl targets MSVC-style Win32.
1088     llvm::Triple T(TargetTriple);
1089     T.setOS(llvm::Triple::Win32);
1090     T.setVendor(llvm::Triple::PC);
1091     T.setEnvironment(llvm::Triple::MSVC);
1092     T.setObjectFormat(llvm::Triple::COFF);
1093     TargetTriple = T.str();
1094   }
1095   if (const Arg *A = Args.getLastArg(options::OPT_target))
1096     TargetTriple = A->getValue();
1097   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1098     Dir = InstalledDir = A->getValue();
1099   for (const Arg *A : Args.filtered(options::OPT_B)) {
1100     A->claim();
1101     PrefixDirs.push_back(A->getValue(0));
1102   }
1103   if (Optional<std::string> CompilerPathValue =
1104           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1105     StringRef CompilerPath = *CompilerPathValue;
1106     while (!CompilerPath.empty()) {
1107       std::pair<StringRef, StringRef> Split =
1108           CompilerPath.split(llvm::sys::EnvPathSeparator);
1109       PrefixDirs.push_back(std::string(Split.first));
1110       CompilerPath = Split.second;
1111     }
1112   }
1113   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1114     SysRoot = A->getValue();
1115   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1116     DyldPrefix = A->getValue();
1117 
1118   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1119     ResourceDir = A->getValue();
1120 
1121   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1122     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1123                     .Case("cwd", SaveTempsCwd)
1124                     .Case("obj", SaveTempsObj)
1125                     .Default(SaveTempsCwd);
1126   }
1127 
1128   setLTOMode(Args);
1129 
1130   // Process -fembed-bitcode= flags.
1131   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1132     StringRef Name = A->getValue();
1133     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1134         .Case("off", EmbedNone)
1135         .Case("all", EmbedBitcode)
1136         .Case("bitcode", EmbedBitcode)
1137         .Case("marker", EmbedMarker)
1138         .Default(~0U);
1139     if (Model == ~0U) {
1140       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1141                                                 << Name;
1142     } else
1143       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1144   }
1145 
1146   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1147       std::make_unique<InputArgList>(std::move(Args));
1148 
1149   // Perform the default argument translations.
1150   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1151 
1152   // Owned by the host.
1153   const ToolChain &TC = getToolChain(
1154       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1155 
1156   // The compilation takes ownership of Args.
1157   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1158                                    ContainsError);
1159 
1160   if (!HandleImmediateArgs(*C))
1161     return C;
1162 
1163   // Construct the list of inputs.
1164   InputList Inputs;
1165   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1166 
1167   // Populate the tool chains for the offloading devices, if any.
1168   CreateOffloadingDeviceToolChains(*C, Inputs);
1169 
1170   // Construct the list of abstract actions to perform for this compilation. On
1171   // MachO targets this uses the driver-driver and universal actions.
1172   if (TC.getTriple().isOSBinFormatMachO())
1173     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1174   else
1175     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1176 
1177   if (CCCPrintPhases) {
1178     PrintActions(*C);
1179     return C;
1180   }
1181 
1182   BuildJobs(*C);
1183 
1184   return C;
1185 }
1186 
1187 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1188   llvm::opt::ArgStringList ASL;
1189   for (const auto *A : Args)
1190     A->render(Args, ASL);
1191 
1192   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1193     if (I != ASL.begin())
1194       OS << ' ';
1195     llvm::sys::printArg(OS, *I, true);
1196   }
1197   OS << '\n';
1198 }
1199 
1200 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1201                                     SmallString<128> &CrashDiagDir) {
1202   using namespace llvm::sys;
1203   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1204          "Only knows about .crash files on Darwin");
1205 
1206   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1207   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1208   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1209   path::home_directory(CrashDiagDir);
1210   if (CrashDiagDir.startswith("/var/root"))
1211     CrashDiagDir = "/";
1212   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1213   int PID =
1214 #if LLVM_ON_UNIX
1215       getpid();
1216 #else
1217       0;
1218 #endif
1219   std::error_code EC;
1220   fs::file_status FileStatus;
1221   TimePoint<> LastAccessTime;
1222   SmallString<128> CrashFilePath;
1223   // Lookup the .crash files and get the one generated by a subprocess spawned
1224   // by this driver invocation.
1225   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1226        File != FileEnd && !EC; File.increment(EC)) {
1227     StringRef FileName = path::filename(File->path());
1228     if (!FileName.startswith(Name))
1229       continue;
1230     if (fs::status(File->path(), FileStatus))
1231       continue;
1232     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1233         llvm::MemoryBuffer::getFile(File->path());
1234     if (!CrashFile)
1235       continue;
1236     // The first line should start with "Process:", otherwise this isn't a real
1237     // .crash file.
1238     StringRef Data = CrashFile.get()->getBuffer();
1239     if (!Data.startswith("Process:"))
1240       continue;
1241     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1242     size_t ParentProcPos = Data.find("Parent Process:");
1243     if (ParentProcPos == StringRef::npos)
1244       continue;
1245     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1246     if (LineEnd == StringRef::npos)
1247       continue;
1248     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1249     int OpenBracket = -1, CloseBracket = -1;
1250     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1251       if (ParentProcess[i] == '[')
1252         OpenBracket = i;
1253       if (ParentProcess[i] == ']')
1254         CloseBracket = i;
1255     }
1256     // Extract the parent process PID from the .crash file and check whether
1257     // it matches this driver invocation pid.
1258     int CrashPID;
1259     if (OpenBracket < 0 || CloseBracket < 0 ||
1260         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1261             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1262       continue;
1263     }
1264 
1265     // Found a .crash file matching the driver pid. To avoid getting an older
1266     // and misleading crash file, continue looking for the most recent.
1267     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1268     // multiple crashes poiting to the same parent process. Since the driver
1269     // does not collect pid information for the dispatched invocation there's
1270     // currently no way to distinguish among them.
1271     const auto FileAccessTime = FileStatus.getLastModificationTime();
1272     if (FileAccessTime > LastAccessTime) {
1273       CrashFilePath.assign(File->path());
1274       LastAccessTime = FileAccessTime;
1275     }
1276   }
1277 
1278   // If found, copy it over to the location of other reproducer files.
1279   if (!CrashFilePath.empty()) {
1280     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1281     if (EC)
1282       return false;
1283     return true;
1284   }
1285 
1286   return false;
1287 }
1288 
1289 // When clang crashes, produce diagnostic information including the fully
1290 // preprocessed source file(s).  Request that the developer attach the
1291 // diagnostic information to a bug report.
1292 void Driver::generateCompilationDiagnostics(
1293     Compilation &C, const Command &FailingCommand,
1294     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1295   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1296     return;
1297 
1298   // Don't try to generate diagnostics for link or dsymutil jobs.
1299   if (FailingCommand.getCreator().isLinkJob() ||
1300       FailingCommand.getCreator().isDsymutilJob())
1301     return;
1302 
1303   // Print the version of the compiler.
1304   PrintVersion(C, llvm::errs());
1305 
1306   // Suppress driver output and emit preprocessor output to temp file.
1307   Mode = CPPMode;
1308   CCGenDiagnostics = true;
1309 
1310   // Save the original job command(s).
1311   Command Cmd = FailingCommand;
1312 
1313   // Keep track of whether we produce any errors while trying to produce
1314   // preprocessed sources.
1315   DiagnosticErrorTrap Trap(Diags);
1316 
1317   // Suppress tool output.
1318   C.initCompilationForDiagnostics();
1319 
1320   // Construct the list of inputs.
1321   InputList Inputs;
1322   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1323 
1324   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1325     bool IgnoreInput = false;
1326 
1327     // Ignore input from stdin or any inputs that cannot be preprocessed.
1328     // Check type first as not all linker inputs have a value.
1329     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1330       IgnoreInput = true;
1331     } else if (!strcmp(it->second->getValue(), "-")) {
1332       Diag(clang::diag::note_drv_command_failed_diag_msg)
1333           << "Error generating preprocessed source(s) - "
1334              "ignoring input from stdin.";
1335       IgnoreInput = true;
1336     }
1337 
1338     if (IgnoreInput) {
1339       it = Inputs.erase(it);
1340       ie = Inputs.end();
1341     } else {
1342       ++it;
1343     }
1344   }
1345 
1346   if (Inputs.empty()) {
1347     Diag(clang::diag::note_drv_command_failed_diag_msg)
1348         << "Error generating preprocessed source(s) - "
1349            "no preprocessable inputs.";
1350     return;
1351   }
1352 
1353   // Don't attempt to generate preprocessed files if multiple -arch options are
1354   // used, unless they're all duplicates.
1355   llvm::StringSet<> ArchNames;
1356   for (const Arg *A : C.getArgs()) {
1357     if (A->getOption().matches(options::OPT_arch)) {
1358       StringRef ArchName = A->getValue();
1359       ArchNames.insert(ArchName);
1360     }
1361   }
1362   if (ArchNames.size() > 1) {
1363     Diag(clang::diag::note_drv_command_failed_diag_msg)
1364         << "Error generating preprocessed source(s) - cannot generate "
1365            "preprocessed source with multiple -arch options.";
1366     return;
1367   }
1368 
1369   // Construct the list of abstract actions to perform for this compilation. On
1370   // Darwin OSes this uses the driver-driver and builds universal actions.
1371   const ToolChain &TC = C.getDefaultToolChain();
1372   if (TC.getTriple().isOSBinFormatMachO())
1373     BuildUniversalActions(C, TC, Inputs);
1374   else
1375     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1376 
1377   BuildJobs(C);
1378 
1379   // If there were errors building the compilation, quit now.
1380   if (Trap.hasErrorOccurred()) {
1381     Diag(clang::diag::note_drv_command_failed_diag_msg)
1382         << "Error generating preprocessed source(s).";
1383     return;
1384   }
1385 
1386   // Generate preprocessed output.
1387   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1388   C.ExecuteJobs(C.getJobs(), FailingCommands);
1389 
1390   // If any of the preprocessing commands failed, clean up and exit.
1391   if (!FailingCommands.empty()) {
1392     Diag(clang::diag::note_drv_command_failed_diag_msg)
1393         << "Error generating preprocessed source(s).";
1394     return;
1395   }
1396 
1397   const ArgStringList &TempFiles = C.getTempFiles();
1398   if (TempFiles.empty()) {
1399     Diag(clang::diag::note_drv_command_failed_diag_msg)
1400         << "Error generating preprocessed source(s).";
1401     return;
1402   }
1403 
1404   Diag(clang::diag::note_drv_command_failed_diag_msg)
1405       << "\n********************\n\n"
1406          "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1407          "Preprocessed source(s) and associated run script(s) are located at:";
1408 
1409   SmallString<128> VFS;
1410   SmallString<128> ReproCrashFilename;
1411   for (const char *TempFile : TempFiles) {
1412     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1413     if (Report)
1414       Report->TemporaryFiles.push_back(TempFile);
1415     if (ReproCrashFilename.empty()) {
1416       ReproCrashFilename = TempFile;
1417       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1418     }
1419     if (StringRef(TempFile).endswith(".cache")) {
1420       // In some cases (modules) we'll dump extra data to help with reproducing
1421       // the crash into a directory next to the output.
1422       VFS = llvm::sys::path::filename(TempFile);
1423       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1424     }
1425   }
1426 
1427   // Assume associated files are based off of the first temporary file.
1428   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1429 
1430   llvm::SmallString<128> Script(CrashInfo.Filename);
1431   llvm::sys::path::replace_extension(Script, "sh");
1432   std::error_code EC;
1433   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1434   if (EC) {
1435     Diag(clang::diag::note_drv_command_failed_diag_msg)
1436         << "Error generating run script: " << Script << " " << EC.message();
1437   } else {
1438     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1439              << "# Driver args: ";
1440     printArgList(ScriptOS, C.getInputArgs());
1441     ScriptOS << "# Original command: ";
1442     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1443     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1444     if (!AdditionalInformation.empty())
1445       ScriptOS << "\n# Additional information: " << AdditionalInformation
1446                << "\n";
1447     if (Report)
1448       Report->TemporaryFiles.push_back(std::string(Script.str()));
1449     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1450   }
1451 
1452   // On darwin, provide information about the .crash diagnostic report.
1453   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1454     SmallString<128> CrashDiagDir;
1455     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1456       Diag(clang::diag::note_drv_command_failed_diag_msg)
1457           << ReproCrashFilename.str();
1458     } else { // Suggest a directory for the user to look for .crash files.
1459       llvm::sys::path::append(CrashDiagDir, Name);
1460       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1461       Diag(clang::diag::note_drv_command_failed_diag_msg)
1462           << "Crash backtrace is located in";
1463       Diag(clang::diag::note_drv_command_failed_diag_msg)
1464           << CrashDiagDir.str();
1465       Diag(clang::diag::note_drv_command_failed_diag_msg)
1466           << "(choose the .crash file that corresponds to your crash)";
1467     }
1468   }
1469 
1470   for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1471                                             options::OPT_frewrite_map_file_EQ))
1472     Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1473 
1474   Diag(clang::diag::note_drv_command_failed_diag_msg)
1475       << "\n\n********************";
1476 }
1477 
1478 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1479   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1480   // capacity if the tool does not support response files, there is a chance/
1481   // that things will just work without a response file, so we silently just
1482   // skip it.
1483   if (Cmd.getResponseFileSupport().ResponseKind ==
1484           ResponseFileSupport::RF_None ||
1485       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1486                                                    Cmd.getArguments()))
1487     return;
1488 
1489   std::string TmpName = GetTemporaryPath("response", "txt");
1490   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1491 }
1492 
1493 int Driver::ExecuteCompilation(
1494     Compilation &C,
1495     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1496   // Just print if -### was present.
1497   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1498     C.getJobs().Print(llvm::errs(), "\n", true);
1499     return 0;
1500   }
1501 
1502   // If there were errors building the compilation, quit now.
1503   if (Diags.hasErrorOccurred())
1504     return 1;
1505 
1506   // Set up response file names for each command, if necessary
1507   for (auto &Job : C.getJobs())
1508     setUpResponseFiles(C, Job);
1509 
1510   C.ExecuteJobs(C.getJobs(), FailingCommands);
1511 
1512   // If the command succeeded, we are done.
1513   if (FailingCommands.empty())
1514     return 0;
1515 
1516   // Otherwise, remove result files and print extra information about abnormal
1517   // failures.
1518   int Res = 0;
1519   for (const auto &CmdPair : FailingCommands) {
1520     int CommandRes = CmdPair.first;
1521     const Command *FailingCommand = CmdPair.second;
1522 
1523     // Remove result files if we're not saving temps.
1524     if (!isSaveTempsEnabled()) {
1525       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1526       C.CleanupFileMap(C.getResultFiles(), JA, true);
1527 
1528       // Failure result files are valid unless we crashed.
1529       if (CommandRes < 0)
1530         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1531     }
1532 
1533 #if LLVM_ON_UNIX
1534     // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1535     // for SIGPIPE. Do not print diagnostics for this case.
1536     if (CommandRes == EX_IOERR) {
1537       Res = CommandRes;
1538       continue;
1539     }
1540 #endif
1541 
1542     // Print extra information about abnormal failures, if possible.
1543     //
1544     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1545     // status was 1, assume the command failed normally. In particular, if it
1546     // was the compiler then assume it gave a reasonable error code. Failures
1547     // in other tools are less common, and they generally have worse
1548     // diagnostics, so always print the diagnostic there.
1549     const Tool &FailingTool = FailingCommand->getCreator();
1550 
1551     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1552       // FIXME: See FIXME above regarding result code interpretation.
1553       if (CommandRes < 0)
1554         Diag(clang::diag::err_drv_command_signalled)
1555             << FailingTool.getShortName();
1556       else
1557         Diag(clang::diag::err_drv_command_failed)
1558             << FailingTool.getShortName() << CommandRes;
1559     }
1560   }
1561   return Res;
1562 }
1563 
1564 void Driver::PrintHelp(bool ShowHidden) const {
1565   unsigned IncludedFlagsBitmask;
1566   unsigned ExcludedFlagsBitmask;
1567   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1568       getIncludeExcludeOptionFlagMasks(IsCLMode());
1569 
1570   ExcludedFlagsBitmask |= options::NoDriverOption;
1571   if (!ShowHidden)
1572     ExcludedFlagsBitmask |= HelpHidden;
1573 
1574   if (IsFlangMode())
1575     IncludedFlagsBitmask |= options::FlangOption;
1576 
1577   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1578   getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1579                       IncludedFlagsBitmask, ExcludedFlagsBitmask,
1580                       /*ShowAllAliases=*/false);
1581 }
1582 
1583 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1584   if (IsFlangMode()) {
1585     OS << getClangToolFullVersion("flang-new") << '\n';
1586   } else {
1587     // FIXME: The following handlers should use a callback mechanism, we don't
1588     // know what the client would like to do.
1589     OS << getClangFullVersion() << '\n';
1590   }
1591   const ToolChain &TC = C.getDefaultToolChain();
1592   OS << "Target: " << TC.getTripleString() << '\n';
1593 
1594   // Print the threading model.
1595   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1596     // Don't print if the ToolChain would have barfed on it already
1597     if (TC.isThreadModelSupported(A->getValue()))
1598       OS << "Thread model: " << A->getValue();
1599   } else
1600     OS << "Thread model: " << TC.getThreadModel();
1601   OS << '\n';
1602 
1603   // Print out the install directory.
1604   OS << "InstalledDir: " << InstalledDir << '\n';
1605 
1606   // If configuration file was used, print its path.
1607   if (!ConfigFile.empty())
1608     OS << "Configuration file: " << ConfigFile << '\n';
1609 }
1610 
1611 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1612 /// option.
1613 static void PrintDiagnosticCategories(raw_ostream &OS) {
1614   // Skip the empty category.
1615   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1616        ++i)
1617     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1618 }
1619 
1620 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1621   if (PassedFlags == "")
1622     return;
1623   // Print out all options that start with a given argument. This is used for
1624   // shell autocompletion.
1625   std::vector<std::string> SuggestedCompletions;
1626   std::vector<std::string> Flags;
1627 
1628   unsigned int DisableFlags =
1629       options::NoDriverOption | options::Unsupported | options::Ignored;
1630 
1631   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1632   // because the latter indicates that the user put space before pushing tab
1633   // which should end up in a file completion.
1634   const bool HasSpace = PassedFlags.endswith(",");
1635 
1636   // Parse PassedFlags by "," as all the command-line flags are passed to this
1637   // function separated by ","
1638   StringRef TargetFlags = PassedFlags;
1639   while (TargetFlags != "") {
1640     StringRef CurFlag;
1641     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1642     Flags.push_back(std::string(CurFlag));
1643   }
1644 
1645   // We want to show cc1-only options only when clang is invoked with -cc1 or
1646   // -Xclang.
1647   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1648     DisableFlags &= ~options::NoDriverOption;
1649 
1650   const llvm::opt::OptTable &Opts = getOpts();
1651   StringRef Cur;
1652   Cur = Flags.at(Flags.size() - 1);
1653   StringRef Prev;
1654   if (Flags.size() >= 2) {
1655     Prev = Flags.at(Flags.size() - 2);
1656     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1657   }
1658 
1659   if (SuggestedCompletions.empty())
1660     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1661 
1662   // If Flags were empty, it means the user typed `clang [tab]` where we should
1663   // list all possible flags. If there was no value completion and the user
1664   // pressed tab after a space, we should fall back to a file completion.
1665   // We're printing a newline to be consistent with what we print at the end of
1666   // this function.
1667   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1668     llvm::outs() << '\n';
1669     return;
1670   }
1671 
1672   // When flag ends with '=' and there was no value completion, return empty
1673   // string and fall back to the file autocompletion.
1674   if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1675     // If the flag is in the form of "--autocomplete=-foo",
1676     // we were requested to print out all option names that start with "-foo".
1677     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1678     SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1679 
1680     // We have to query the -W flags manually as they're not in the OptTable.
1681     // TODO: Find a good way to add them to OptTable instead and them remove
1682     // this code.
1683     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1684       if (S.startswith(Cur))
1685         SuggestedCompletions.push_back(std::string(S));
1686   }
1687 
1688   // Sort the autocomplete candidates so that shells print them out in a
1689   // deterministic order. We could sort in any way, but we chose
1690   // case-insensitive sorting for consistency with the -help option
1691   // which prints out options in the case-insensitive alphabetical order.
1692   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1693     if (int X = A.compare_lower(B))
1694       return X < 0;
1695     return A.compare(B) > 0;
1696   });
1697 
1698   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1699 }
1700 
1701 bool Driver::HandleImmediateArgs(const Compilation &C) {
1702   // The order these options are handled in gcc is all over the place, but we
1703   // don't expect inconsistencies w.r.t. that to matter in practice.
1704 
1705   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1706     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1707     return false;
1708   }
1709 
1710   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1711     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1712     // return an answer which matches our definition of __VERSION__.
1713     llvm::outs() << CLANG_VERSION_STRING << "\n";
1714     return false;
1715   }
1716 
1717   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1718     PrintDiagnosticCategories(llvm::outs());
1719     return false;
1720   }
1721 
1722   if (C.getArgs().hasArg(options::OPT_help) ||
1723       C.getArgs().hasArg(options::OPT__help_hidden)) {
1724     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1725     return false;
1726   }
1727 
1728   if (C.getArgs().hasArg(options::OPT__version)) {
1729     // Follow gcc behavior and use stdout for --version and stderr for -v.
1730     PrintVersion(C, llvm::outs());
1731     return false;
1732   }
1733 
1734   if (C.getArgs().hasArg(options::OPT_v) ||
1735       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1736       C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1737     PrintVersion(C, llvm::errs());
1738     SuppressMissingInputWarning = true;
1739   }
1740 
1741   if (C.getArgs().hasArg(options::OPT_v)) {
1742     if (!SystemConfigDir.empty())
1743       llvm::errs() << "System configuration file directory: "
1744                    << SystemConfigDir << "\n";
1745     if (!UserConfigDir.empty())
1746       llvm::errs() << "User configuration file directory: "
1747                    << UserConfigDir << "\n";
1748   }
1749 
1750   const ToolChain &TC = C.getDefaultToolChain();
1751 
1752   if (C.getArgs().hasArg(options::OPT_v))
1753     TC.printVerboseInfo(llvm::errs());
1754 
1755   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1756     llvm::outs() << ResourceDir << '\n';
1757     return false;
1758   }
1759 
1760   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1761     llvm::outs() << "programs: =";
1762     bool separator = false;
1763     // Print -B and COMPILER_PATH.
1764     for (const std::string &Path : PrefixDirs) {
1765       if (separator)
1766         llvm::outs() << llvm::sys::EnvPathSeparator;
1767       llvm::outs() << Path;
1768       separator = true;
1769     }
1770     for (const std::string &Path : TC.getProgramPaths()) {
1771       if (separator)
1772         llvm::outs() << llvm::sys::EnvPathSeparator;
1773       llvm::outs() << Path;
1774       separator = true;
1775     }
1776     llvm::outs() << "\n";
1777     llvm::outs() << "libraries: =" << ResourceDir;
1778 
1779     StringRef sysroot = C.getSysRoot();
1780 
1781     for (const std::string &Path : TC.getFilePaths()) {
1782       // Always print a separator. ResourceDir was the first item shown.
1783       llvm::outs() << llvm::sys::EnvPathSeparator;
1784       // Interpretation of leading '=' is needed only for NetBSD.
1785       if (Path[0] == '=')
1786         llvm::outs() << sysroot << Path.substr(1);
1787       else
1788         llvm::outs() << Path;
1789     }
1790     llvm::outs() << "\n";
1791     return false;
1792   }
1793 
1794   // FIXME: The following handlers should use a callback mechanism, we don't
1795   // know what the client would like to do.
1796   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1797     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1798     return false;
1799   }
1800 
1801   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1802     StringRef ProgName = A->getValue();
1803 
1804     // Null program name cannot have a path.
1805     if (! ProgName.empty())
1806       llvm::outs() << GetProgramPath(ProgName, TC);
1807 
1808     llvm::outs() << "\n";
1809     return false;
1810   }
1811 
1812   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1813     StringRef PassedFlags = A->getValue();
1814     HandleAutocompletions(PassedFlags);
1815     return false;
1816   }
1817 
1818   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1819     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1820     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1821     RegisterEffectiveTriple TripleRAII(TC, Triple);
1822     switch (RLT) {
1823     case ToolChain::RLT_CompilerRT:
1824       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1825       break;
1826     case ToolChain::RLT_Libgcc:
1827       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1828       break;
1829     }
1830     return false;
1831   }
1832 
1833   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1834     for (const Multilib &Multilib : TC.getMultilibs())
1835       llvm::outs() << Multilib << "\n";
1836     return false;
1837   }
1838 
1839   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1840     const Multilib &Multilib = TC.getMultilib();
1841     if (Multilib.gccSuffix().empty())
1842       llvm::outs() << ".\n";
1843     else {
1844       StringRef Suffix(Multilib.gccSuffix());
1845       assert(Suffix.front() == '/');
1846       llvm::outs() << Suffix.substr(1) << "\n";
1847     }
1848     return false;
1849   }
1850 
1851   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1852     llvm::outs() << TC.getTripleString() << "\n";
1853     return false;
1854   }
1855 
1856   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1857     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1858     llvm::outs() << Triple.getTriple() << "\n";
1859     return false;
1860   }
1861 
1862   if (C.getArgs().hasArg(options::OPT_print_targets)) {
1863     llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
1864     return false;
1865   }
1866 
1867   return true;
1868 }
1869 
1870 enum {
1871   TopLevelAction = 0,
1872   HeadSibAction = 1,
1873   OtherSibAction = 2,
1874 };
1875 
1876 // Display an action graph human-readably.  Action A is the "sink" node
1877 // and latest-occuring action. Traversal is in pre-order, visiting the
1878 // inputs to each action before printing the action itself.
1879 static unsigned PrintActions1(const Compilation &C, Action *A,
1880                               std::map<Action *, unsigned> &Ids,
1881                               Twine Indent = {}, int Kind = TopLevelAction) {
1882   if (Ids.count(A)) // A was already visited.
1883     return Ids[A];
1884 
1885   std::string str;
1886   llvm::raw_string_ostream os(str);
1887 
1888   auto getSibIndent = [](int K) -> Twine {
1889     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
1890   };
1891 
1892   Twine SibIndent = Indent + getSibIndent(Kind);
1893   int SibKind = HeadSibAction;
1894   os << Action::getClassName(A->getKind()) << ", ";
1895   if (InputAction *IA = dyn_cast<InputAction>(A)) {
1896     os << "\"" << IA->getInputArg().getValue() << "\"";
1897   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1898     os << '"' << BIA->getArchName() << '"' << ", {"
1899        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
1900   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1901     bool IsFirst = true;
1902     OA->doOnEachDependence(
1903         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1904           assert(TC && "Unknown host toolchain");
1905           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1906           // sm_35 this will generate:
1907           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1908           // (nvptx64-nvidia-cuda:sm_35) {#ID}
1909           if (!IsFirst)
1910             os << ", ";
1911           os << '"';
1912           os << A->getOffloadingKindPrefix();
1913           os << " (";
1914           os << TC->getTriple().normalize();
1915           if (BoundArch)
1916             os << ":" << BoundArch;
1917           os << ")";
1918           os << '"';
1919           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
1920           IsFirst = false;
1921           SibKind = OtherSibAction;
1922         });
1923   } else {
1924     const ActionList *AL = &A->getInputs();
1925 
1926     if (AL->size()) {
1927       const char *Prefix = "{";
1928       for (Action *PreRequisite : *AL) {
1929         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
1930         Prefix = ", ";
1931         SibKind = OtherSibAction;
1932       }
1933       os << "}";
1934     } else
1935       os << "{}";
1936   }
1937 
1938   // Append offload info for all options other than the offloading action
1939   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1940   std::string offload_str;
1941   llvm::raw_string_ostream offload_os(offload_str);
1942   if (!isa<OffloadAction>(A)) {
1943     auto S = A->getOffloadingKindPrefix();
1944     if (!S.empty()) {
1945       offload_os << ", (" << S;
1946       if (A->getOffloadingArch())
1947         offload_os << ", " << A->getOffloadingArch();
1948       offload_os << ")";
1949     }
1950   }
1951 
1952   auto getSelfIndent = [](int K) -> Twine {
1953     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
1954   };
1955 
1956   unsigned Id = Ids.size();
1957   Ids[A] = Id;
1958   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
1959                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1960 
1961   return Id;
1962 }
1963 
1964 // Print the action graphs in a compilation C.
1965 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1966 void Driver::PrintActions(const Compilation &C) const {
1967   std::map<Action *, unsigned> Ids;
1968   for (Action *A : C.getActions())
1969     PrintActions1(C, A, Ids);
1970 }
1971 
1972 /// Check whether the given input tree contains any compilation or
1973 /// assembly actions.
1974 static bool ContainsCompileOrAssembleAction(const Action *A) {
1975   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1976       isa<AssembleJobAction>(A))
1977     return true;
1978 
1979   for (const Action *Input : A->inputs())
1980     if (ContainsCompileOrAssembleAction(Input))
1981       return true;
1982 
1983   return false;
1984 }
1985 
1986 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
1987                                    const InputList &BAInputs) const {
1988   DerivedArgList &Args = C.getArgs();
1989   ActionList &Actions = C.getActions();
1990   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1991   // Collect the list of architectures. Duplicates are allowed, but should only
1992   // be handled once (in the order seen).
1993   llvm::StringSet<> ArchNames;
1994   SmallVector<const char *, 4> Archs;
1995   for (Arg *A : Args) {
1996     if (A->getOption().matches(options::OPT_arch)) {
1997       // Validate the option here; we don't save the type here because its
1998       // particular spelling may participate in other driver choices.
1999       llvm::Triple::ArchType Arch =
2000           tools::darwin::getArchTypeForMachOArchName(A->getValue());
2001       if (Arch == llvm::Triple::UnknownArch) {
2002         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2003         continue;
2004       }
2005 
2006       A->claim();
2007       if (ArchNames.insert(A->getValue()).second)
2008         Archs.push_back(A->getValue());
2009     }
2010   }
2011 
2012   // When there is no explicit arch for this platform, make sure we still bind
2013   // the architecture (to the default) so that -Xarch_ is handled correctly.
2014   if (!Archs.size())
2015     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2016 
2017   ActionList SingleActions;
2018   BuildActions(C, Args, BAInputs, SingleActions);
2019 
2020   // Add in arch bindings for every top level action, as well as lipo and
2021   // dsymutil steps if needed.
2022   for (Action* Act : SingleActions) {
2023     // Make sure we can lipo this kind of output. If not (and it is an actual
2024     // output) then we disallow, since we can't create an output file with the
2025     // right name without overwriting it. We could remove this oddity by just
2026     // changing the output names to include the arch, which would also fix
2027     // -save-temps. Compatibility wins for now.
2028 
2029     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2030       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2031           << types::getTypeName(Act->getType());
2032 
2033     ActionList Inputs;
2034     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2035       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2036 
2037     // Lipo if necessary, we do it this way because we need to set the arch flag
2038     // so that -Xarch_ gets overwritten.
2039     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2040       Actions.append(Inputs.begin(), Inputs.end());
2041     else
2042       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2043 
2044     // Handle debug info queries.
2045     Arg *A = Args.getLastArg(options::OPT_g_Group);
2046     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2047                             !A->getOption().matches(options::OPT_gstabs);
2048     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2049         ContainsCompileOrAssembleAction(Actions.back())) {
2050 
2051       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2052       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2053       // because the debug info will refer to a temporary object file which
2054       // will be removed at the end of the compilation process.
2055       if (Act->getType() == types::TY_Image) {
2056         ActionList Inputs;
2057         Inputs.push_back(Actions.back());
2058         Actions.pop_back();
2059         Actions.push_back(
2060             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2061       }
2062 
2063       // Verify the debug info output.
2064       if (Args.hasArg(options::OPT_verify_debug_info)) {
2065         Action* LastAction = Actions.back();
2066         Actions.pop_back();
2067         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2068             LastAction, types::TY_Nothing));
2069       }
2070     }
2071   }
2072 }
2073 
2074 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2075                                     types::ID Ty, bool TypoCorrect) const {
2076   if (!getCheckInputsExist())
2077     return true;
2078 
2079   // stdin always exists.
2080   if (Value == "-")
2081     return true;
2082 
2083   if (getVFS().exists(Value))
2084     return true;
2085 
2086   if (IsCLMode()) {
2087     if (!llvm::sys::path::is_absolute(Twine(Value)) &&
2088         llvm::sys::Process::FindInEnvPath("LIB", Value))
2089       return true;
2090 
2091     if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2092       // Arguments to the /link flag might cause the linker to search for object
2093       // and library files in paths we don't know about. Don't error in such
2094       // cases.
2095       return true;
2096     }
2097   }
2098 
2099   if (TypoCorrect) {
2100     // Check if the filename is a typo for an option flag. OptTable thinks
2101     // that all args that are not known options and that start with / are
2102     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2103     // the option `/diagnostics:caret` than a reference to a file in the root
2104     // directory.
2105     unsigned IncludedFlagsBitmask;
2106     unsigned ExcludedFlagsBitmask;
2107     std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2108         getIncludeExcludeOptionFlagMasks(IsCLMode());
2109     std::string Nearest;
2110     if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2111                               ExcludedFlagsBitmask) <= 1) {
2112       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2113           << Value << Nearest;
2114       return false;
2115     }
2116   }
2117 
2118   Diag(clang::diag::err_drv_no_such_file) << Value;
2119   return false;
2120 }
2121 
2122 // Construct a the list of inputs and their types.
2123 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2124                          InputList &Inputs) const {
2125   const llvm::opt::OptTable &Opts = getOpts();
2126   // Track the current user specified (-x) input. We also explicitly track the
2127   // argument used to set the type; we only want to claim the type when we
2128   // actually use it, so we warn about unused -x arguments.
2129   types::ID InputType = types::TY_Nothing;
2130   Arg *InputTypeArg = nullptr;
2131 
2132   // The last /TC or /TP option sets the input type to C or C++ globally.
2133   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2134                                          options::OPT__SLASH_TP)) {
2135     InputTypeArg = TCTP;
2136     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2137                     ? types::TY_C
2138                     : types::TY_CXX;
2139 
2140     Arg *Previous = nullptr;
2141     bool ShowNote = false;
2142     for (Arg *A :
2143          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2144       if (Previous) {
2145         Diag(clang::diag::warn_drv_overriding_flag_option)
2146           << Previous->getSpelling() << A->getSpelling();
2147         ShowNote = true;
2148       }
2149       Previous = A;
2150     }
2151     if (ShowNote)
2152       Diag(clang::diag::note_drv_t_option_is_global);
2153 
2154     // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2155     assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2156   }
2157 
2158   for (Arg *A : Args) {
2159     if (A->getOption().getKind() == Option::InputClass) {
2160       const char *Value = A->getValue();
2161       types::ID Ty = types::TY_INVALID;
2162 
2163       // Infer the input type if necessary.
2164       if (InputType == types::TY_Nothing) {
2165         // If there was an explicit arg for this, claim it.
2166         if (InputTypeArg)
2167           InputTypeArg->claim();
2168 
2169         // stdin must be handled specially.
2170         if (memcmp(Value, "-", 2) == 0) {
2171           // If running with -E, treat as a C input (this changes the builtin
2172           // macros, for example). This may be overridden by -ObjC below.
2173           //
2174           // Otherwise emit an error but still use a valid type to avoid
2175           // spurious errors (e.g., no inputs).
2176           if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2177             Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2178                             : clang::diag::err_drv_unknown_stdin_type);
2179           Ty = types::TY_C;
2180         } else {
2181           // Otherwise lookup by extension.
2182           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2183           // clang-cl /E, or Object otherwise.
2184           // We use a host hook here because Darwin at least has its own
2185           // idea of what .s is.
2186           if (const char *Ext = strrchr(Value, '.'))
2187             Ty = TC.LookupTypeForExtension(Ext + 1);
2188 
2189           if (Ty == types::TY_INVALID) {
2190             if (CCCIsCPP())
2191               Ty = types::TY_C;
2192             else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2193               Ty = types::TY_CXX;
2194             else
2195               Ty = types::TY_Object;
2196           }
2197 
2198           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2199           // should autodetect some input files as C++ for g++ compatibility.
2200           if (CCCIsCXX()) {
2201             types::ID OldTy = Ty;
2202             Ty = types::lookupCXXTypeForCType(Ty);
2203 
2204             if (Ty != OldTy)
2205               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2206                   << getTypeName(OldTy) << getTypeName(Ty);
2207           }
2208 
2209           // If running with -fthinlto-index=, extensions that normally identify
2210           // native object files actually identify LLVM bitcode files.
2211           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2212               Ty == types::TY_Object)
2213             Ty = types::TY_LLVM_BC;
2214         }
2215 
2216         // -ObjC and -ObjC++ override the default language, but only for "source
2217         // files". We just treat everything that isn't a linker input as a
2218         // source file.
2219         //
2220         // FIXME: Clean this up if we move the phase sequence into the type.
2221         if (Ty != types::TY_Object) {
2222           if (Args.hasArg(options::OPT_ObjC))
2223             Ty = types::TY_ObjC;
2224           else if (Args.hasArg(options::OPT_ObjCXX))
2225             Ty = types::TY_ObjCXX;
2226         }
2227       } else {
2228         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2229         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2230           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2231           // object files.
2232           const char *Ext = strrchr(Value, '.');
2233           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2234             Ty = types::TY_Object;
2235         }
2236         if (Ty == types::TY_INVALID) {
2237           Ty = InputType;
2238           InputTypeArg->claim();
2239         }
2240       }
2241 
2242       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2243         Inputs.push_back(std::make_pair(Ty, A));
2244 
2245     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2246       StringRef Value = A->getValue();
2247       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2248                                  /*TypoCorrect=*/false)) {
2249         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2250         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2251       }
2252       A->claim();
2253     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2254       StringRef Value = A->getValue();
2255       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2256                                  /*TypoCorrect=*/false)) {
2257         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2258         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2259       }
2260       A->claim();
2261     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2262       // Just treat as object type, we could make a special type for this if
2263       // necessary.
2264       Inputs.push_back(std::make_pair(types::TY_Object, A));
2265 
2266     } else if (A->getOption().matches(options::OPT_x)) {
2267       InputTypeArg = A;
2268       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2269       A->claim();
2270 
2271       // Follow gcc behavior and treat as linker input for invalid -x
2272       // options. Its not clear why we shouldn't just revert to unknown; but
2273       // this isn't very important, we might as well be bug compatible.
2274       if (!InputType) {
2275         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2276         InputType = types::TY_Object;
2277       }
2278     } else if (A->getOption().getID() == options::OPT_U) {
2279       assert(A->getNumValues() == 1 && "The /U option has one value.");
2280       StringRef Val = A->getValue(0);
2281       if (Val.find_first_of("/\\") != StringRef::npos) {
2282         // Warn about e.g. "/Users/me/myfile.c".
2283         Diag(diag::warn_slash_u_filename) << Val;
2284         Diag(diag::note_use_dashdash);
2285       }
2286     }
2287   }
2288   if (CCCIsCPP() && Inputs.empty()) {
2289     // If called as standalone preprocessor, stdin is processed
2290     // if no other input is present.
2291     Arg *A = MakeInputArg(Args, Opts, "-");
2292     Inputs.push_back(std::make_pair(types::TY_C, A));
2293   }
2294 }
2295 
2296 namespace {
2297 /// Provides a convenient interface for different programming models to generate
2298 /// the required device actions.
2299 class OffloadingActionBuilder final {
2300   /// Flag used to trace errors in the builder.
2301   bool IsValid = false;
2302 
2303   /// The compilation that is using this builder.
2304   Compilation &C;
2305 
2306   /// Map between an input argument and the offload kinds used to process it.
2307   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2308 
2309   /// Builder interface. It doesn't build anything or keep any state.
2310   class DeviceActionBuilder {
2311   public:
2312     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2313 
2314     enum ActionBuilderReturnCode {
2315       // The builder acted successfully on the current action.
2316       ABRT_Success,
2317       // The builder didn't have to act on the current action.
2318       ABRT_Inactive,
2319       // The builder was successful and requested the host action to not be
2320       // generated.
2321       ABRT_Ignore_Host,
2322     };
2323 
2324   protected:
2325     /// Compilation associated with this builder.
2326     Compilation &C;
2327 
2328     /// Tool chains associated with this builder. The same programming
2329     /// model may have associated one or more tool chains.
2330     SmallVector<const ToolChain *, 2> ToolChains;
2331 
2332     /// The derived arguments associated with this builder.
2333     DerivedArgList &Args;
2334 
2335     /// The inputs associated with this builder.
2336     const Driver::InputList &Inputs;
2337 
2338     /// The associated offload kind.
2339     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2340 
2341   public:
2342     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2343                         const Driver::InputList &Inputs,
2344                         Action::OffloadKind AssociatedOffloadKind)
2345         : C(C), Args(Args), Inputs(Inputs),
2346           AssociatedOffloadKind(AssociatedOffloadKind) {}
2347     virtual ~DeviceActionBuilder() {}
2348 
2349     /// Fill up the array \a DA with all the device dependences that should be
2350     /// added to the provided host action \a HostAction. By default it is
2351     /// inactive.
2352     virtual ActionBuilderReturnCode
2353     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2354                          phases::ID CurPhase, phases::ID FinalPhase,
2355                          PhasesTy &Phases) {
2356       return ABRT_Inactive;
2357     }
2358 
2359     /// Update the state to include the provided host action \a HostAction as a
2360     /// dependency of the current device action. By default it is inactive.
2361     virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2362       return ABRT_Inactive;
2363     }
2364 
2365     /// Append top level actions generated by the builder.
2366     virtual void appendTopLevelActions(ActionList &AL) {}
2367 
2368     /// Append linker device actions generated by the builder.
2369     virtual void appendLinkDeviceActions(ActionList &AL) {}
2370 
2371     /// Append linker host action generated by the builder.
2372     virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2373 
2374     /// Append linker actions generated by the builder.
2375     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2376 
2377     /// Initialize the builder. Return true if any initialization errors are
2378     /// found.
2379     virtual bool initialize() { return false; }
2380 
2381     /// Return true if the builder can use bundling/unbundling.
2382     virtual bool canUseBundlerUnbundler() const { return false; }
2383 
2384     /// Return true if this builder is valid. We have a valid builder if we have
2385     /// associated device tool chains.
2386     bool isValid() { return !ToolChains.empty(); }
2387 
2388     /// Return the associated offload kind.
2389     Action::OffloadKind getAssociatedOffloadKind() {
2390       return AssociatedOffloadKind;
2391     }
2392   };
2393 
2394   /// Base class for CUDA/HIP action builder. It injects device code in
2395   /// the host backend action.
2396   class CudaActionBuilderBase : public DeviceActionBuilder {
2397   protected:
2398     /// Flags to signal if the user requested host-only or device-only
2399     /// compilation.
2400     bool CompileHostOnly = false;
2401     bool CompileDeviceOnly = false;
2402     bool EmitLLVM = false;
2403     bool EmitAsm = false;
2404 
2405     /// ID to identify each device compilation. For CUDA it is simply the
2406     /// GPU arch string. For HIP it is either the GPU arch string or GPU
2407     /// arch string plus feature strings delimited by a plus sign, e.g.
2408     /// gfx906+xnack.
2409     struct TargetID {
2410       /// Target ID string which is persistent throughout the compilation.
2411       const char *ID;
2412       TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2413       TargetID(const char *ID) : ID(ID) {}
2414       operator const char *() { return ID; }
2415       operator StringRef() { return StringRef(ID); }
2416     };
2417     /// List of GPU architectures to use in this compilation.
2418     SmallVector<TargetID, 4> GpuArchList;
2419 
2420     /// The CUDA actions for the current input.
2421     ActionList CudaDeviceActions;
2422 
2423     /// The CUDA fat binary if it was generated for the current input.
2424     Action *CudaFatBinary = nullptr;
2425 
2426     /// Flag that is set to true if this builder acted on the current input.
2427     bool IsActive = false;
2428 
2429     /// Flag for -fgpu-rdc.
2430     bool Relocatable = false;
2431 
2432     /// Default GPU architecture if there's no one specified.
2433     CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2434 
2435   public:
2436     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2437                           const Driver::InputList &Inputs,
2438                           Action::OffloadKind OFKind)
2439         : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2440 
2441     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2442       // While generating code for CUDA, we only depend on the host input action
2443       // to trigger the creation of all the CUDA device actions.
2444 
2445       // If we are dealing with an input action, replicate it for each GPU
2446       // architecture. If we are in host-only mode we return 'success' so that
2447       // the host uses the CUDA offload kind.
2448       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2449         assert(!GpuArchList.empty() &&
2450                "We should have at least one GPU architecture.");
2451 
2452         // If the host input is not CUDA or HIP, we don't need to bother about
2453         // this input.
2454         if (IA->getType() != types::TY_CUDA &&
2455             IA->getType() != types::TY_HIP) {
2456           // The builder will ignore this input.
2457           IsActive = false;
2458           return ABRT_Inactive;
2459         }
2460 
2461         // Set the flag to true, so that the builder acts on the current input.
2462         IsActive = true;
2463 
2464         if (CompileHostOnly)
2465           return ABRT_Success;
2466 
2467         // Replicate inputs for each GPU architecture.
2468         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2469                                                  : types::TY_CUDA_DEVICE;
2470         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2471           CudaDeviceActions.push_back(
2472               C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2473         }
2474 
2475         return ABRT_Success;
2476       }
2477 
2478       // If this is an unbundling action use it as is for each CUDA toolchain.
2479       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2480 
2481         // If -fgpu-rdc is disabled, should not unbundle since there is no
2482         // device code to link.
2483         if (!Relocatable)
2484           return ABRT_Inactive;
2485 
2486         CudaDeviceActions.clear();
2487         auto *IA = cast<InputAction>(UA->getInputs().back());
2488         std::string FileName = IA->getInputArg().getAsString(Args);
2489         // Check if the type of the file is the same as the action. Do not
2490         // unbundle it if it is not. Do not unbundle .so files, for example,
2491         // which are not object files.
2492         if (IA->getType() == types::TY_Object &&
2493             (!llvm::sys::path::has_extension(FileName) ||
2494              types::lookupTypeForExtension(
2495                  llvm::sys::path::extension(FileName).drop_front()) !=
2496                  types::TY_Object))
2497           return ABRT_Inactive;
2498 
2499         for (auto Arch : GpuArchList) {
2500           CudaDeviceActions.push_back(UA);
2501           UA->registerDependentActionInfo(ToolChains[0], Arch,
2502                                           AssociatedOffloadKind);
2503         }
2504         return ABRT_Success;
2505       }
2506 
2507       return IsActive ? ABRT_Success : ABRT_Inactive;
2508     }
2509 
2510     void appendTopLevelActions(ActionList &AL) override {
2511       // Utility to append actions to the top level list.
2512       auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2513         OffloadAction::DeviceDependences Dep;
2514         Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2515         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2516       };
2517 
2518       // If we have a fat binary, add it to the list.
2519       if (CudaFatBinary) {
2520         AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2521         CudaDeviceActions.clear();
2522         CudaFatBinary = nullptr;
2523         return;
2524       }
2525 
2526       if (CudaDeviceActions.empty())
2527         return;
2528 
2529       // If we have CUDA actions at this point, that's because we have a have
2530       // partial compilation, so we should have an action for each GPU
2531       // architecture.
2532       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2533              "Expecting one action per GPU architecture.");
2534       assert(ToolChains.size() == 1 &&
2535              "Expecting to have a sing CUDA toolchain.");
2536       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2537         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2538 
2539       CudaDeviceActions.clear();
2540     }
2541 
2542     /// Get canonicalized offload arch option. \returns empty StringRef if the
2543     /// option is invalid.
2544     virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2545 
2546     virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2547     getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2548 
2549     bool initialize() override {
2550       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2551              AssociatedOffloadKind == Action::OFK_HIP);
2552 
2553       // We don't need to support CUDA.
2554       if (AssociatedOffloadKind == Action::OFK_Cuda &&
2555           !C.hasOffloadToolChain<Action::OFK_Cuda>())
2556         return false;
2557 
2558       // We don't need to support HIP.
2559       if (AssociatedOffloadKind == Action::OFK_HIP &&
2560           !C.hasOffloadToolChain<Action::OFK_HIP>())
2561         return false;
2562 
2563       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2564           options::OPT_fno_gpu_rdc, /*Default=*/false);
2565 
2566       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2567       assert(HostTC && "No toolchain for host compilation.");
2568       if (HostTC->getTriple().isNVPTX() ||
2569           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2570         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2571         // an error and abort pipeline construction early so we don't trip
2572         // asserts that assume device-side compilation.
2573         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2574             << HostTC->getTriple().getArchName();
2575         return true;
2576       }
2577 
2578       ToolChains.push_back(
2579           AssociatedOffloadKind == Action::OFK_Cuda
2580               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2581               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2582 
2583       Arg *PartialCompilationArg = Args.getLastArg(
2584           options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2585           options::OPT_cuda_compile_host_device);
2586       CompileHostOnly = PartialCompilationArg &&
2587                         PartialCompilationArg->getOption().matches(
2588                             options::OPT_cuda_host_only);
2589       CompileDeviceOnly = PartialCompilationArg &&
2590                           PartialCompilationArg->getOption().matches(
2591                               options::OPT_cuda_device_only);
2592       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2593       EmitAsm = Args.getLastArg(options::OPT_S);
2594 
2595       // Collect all cuda_gpu_arch parameters, removing duplicates.
2596       std::set<StringRef> GpuArchs;
2597       bool Error = false;
2598       for (Arg *A : Args) {
2599         if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2600               A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2601           continue;
2602         A->claim();
2603 
2604         StringRef ArchStr = A->getValue();
2605         if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2606             ArchStr == "all") {
2607           GpuArchs.clear();
2608           continue;
2609         }
2610         ArchStr = getCanonicalOffloadArch(ArchStr);
2611         if (ArchStr.empty()) {
2612           Error = true;
2613         } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2614           GpuArchs.insert(ArchStr);
2615         else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2616           GpuArchs.erase(ArchStr);
2617         else
2618           llvm_unreachable("Unexpected option.");
2619       }
2620 
2621       auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
2622       if (ConflictingArchs) {
2623         C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
2624             << ConflictingArchs.getValue().first
2625             << ConflictingArchs.getValue().second;
2626         C.setContainsError();
2627         return true;
2628       }
2629 
2630       // Collect list of GPUs remaining in the set.
2631       for (auto Arch : GpuArchs)
2632         GpuArchList.push_back(Arch.data());
2633 
2634       // Default to sm_20 which is the lowest common denominator for
2635       // supported GPUs.  sm_20 code should work correctly, if
2636       // suboptimally, on all newer GPUs.
2637       if (GpuArchList.empty())
2638         GpuArchList.push_back(DefaultCudaArch);
2639 
2640       return Error;
2641     }
2642   };
2643 
2644   /// \brief CUDA action builder. It injects device code in the host backend
2645   /// action.
2646   class CudaActionBuilder final : public CudaActionBuilderBase {
2647   public:
2648     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2649                       const Driver::InputList &Inputs)
2650         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2651       DefaultCudaArch = CudaArch::SM_20;
2652     }
2653 
2654     StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
2655       CudaArch Arch = StringToCudaArch(ArchStr);
2656       if (Arch == CudaArch::UNKNOWN) {
2657         C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2658         return StringRef();
2659       }
2660       return CudaArchToString(Arch);
2661     }
2662 
2663     llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2664     getConflictOffloadArchCombination(
2665         const std::set<StringRef> &GpuArchs) override {
2666       return llvm::None;
2667     }
2668 
2669     ActionBuilderReturnCode
2670     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2671                          phases::ID CurPhase, phases::ID FinalPhase,
2672                          PhasesTy &Phases) override {
2673       if (!IsActive)
2674         return ABRT_Inactive;
2675 
2676       // If we don't have more CUDA actions, we don't have any dependences to
2677       // create for the host.
2678       if (CudaDeviceActions.empty())
2679         return ABRT_Success;
2680 
2681       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2682              "Expecting one action per GPU architecture.");
2683       assert(!CompileHostOnly &&
2684              "Not expecting CUDA actions in host-only compilation.");
2685 
2686       // If we are generating code for the device or we are in a backend phase,
2687       // we attempt to generate the fat binary. We compile each arch to ptx and
2688       // assemble to cubin, then feed the cubin *and* the ptx into a device
2689       // "link" action, which uses fatbinary to combine these cubins into one
2690       // fatbin.  The fatbin is then an input to the host action if not in
2691       // device-only mode.
2692       if (CompileDeviceOnly || CurPhase == phases::Backend) {
2693         ActionList DeviceActions;
2694         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2695           // Produce the device action from the current phase up to the assemble
2696           // phase.
2697           for (auto Ph : Phases) {
2698             // Skip the phases that were already dealt with.
2699             if (Ph < CurPhase)
2700               continue;
2701             // We have to be consistent with the host final phase.
2702             if (Ph > FinalPhase)
2703               break;
2704 
2705             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2706                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2707 
2708             if (Ph == phases::Assemble)
2709               break;
2710           }
2711 
2712           // If we didn't reach the assemble phase, we can't generate the fat
2713           // binary. We don't need to generate the fat binary if we are not in
2714           // device-only mode.
2715           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2716               CompileDeviceOnly)
2717             continue;
2718 
2719           Action *AssembleAction = CudaDeviceActions[I];
2720           assert(AssembleAction->getType() == types::TY_Object);
2721           assert(AssembleAction->getInputs().size() == 1);
2722 
2723           Action *BackendAction = AssembleAction->getInputs()[0];
2724           assert(BackendAction->getType() == types::TY_PP_Asm);
2725 
2726           for (auto &A : {AssembleAction, BackendAction}) {
2727             OffloadAction::DeviceDependences DDep;
2728             DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
2729             DeviceActions.push_back(
2730                 C.MakeAction<OffloadAction>(DDep, A->getType()));
2731           }
2732         }
2733 
2734         // We generate the fat binary if we have device input actions.
2735         if (!DeviceActions.empty()) {
2736           CudaFatBinary =
2737               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2738 
2739           if (!CompileDeviceOnly) {
2740             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2741                    Action::OFK_Cuda);
2742             // Clear the fat binary, it is already a dependence to an host
2743             // action.
2744             CudaFatBinary = nullptr;
2745           }
2746 
2747           // Remove the CUDA actions as they are already connected to an host
2748           // action or fat binary.
2749           CudaDeviceActions.clear();
2750         }
2751 
2752         // We avoid creating host action in device-only mode.
2753         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2754       } else if (CurPhase > phases::Backend) {
2755         // If we are past the backend phase and still have a device action, we
2756         // don't have to do anything as this action is already a device
2757         // top-level action.
2758         return ABRT_Success;
2759       }
2760 
2761       assert(CurPhase < phases::Backend && "Generating single CUDA "
2762                                            "instructions should only occur "
2763                                            "before the backend phase!");
2764 
2765       // By default, we produce an action for each device arch.
2766       for (Action *&A : CudaDeviceActions)
2767         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2768 
2769       return ABRT_Success;
2770     }
2771   };
2772   /// \brief HIP action builder. It injects device code in the host backend
2773   /// action.
2774   class HIPActionBuilder final : public CudaActionBuilderBase {
2775     /// The linker inputs obtained for each device arch.
2776     SmallVector<ActionList, 8> DeviceLinkerInputs;
2777 
2778   public:
2779     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2780                      const Driver::InputList &Inputs)
2781         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
2782       DefaultCudaArch = CudaArch::GFX803;
2783     }
2784 
2785     bool canUseBundlerUnbundler() const override { return true; }
2786 
2787     StringRef getCanonicalOffloadArch(StringRef IdStr) override {
2788       llvm::StringMap<bool> Features;
2789       auto ArchStr =
2790           parseTargetID(getHIPOffloadTargetTriple(), IdStr, &Features);
2791       if (!ArchStr) {
2792         C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
2793         return StringRef();
2794       }
2795       auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
2796       return Args.MakeArgStringRef(CanId);
2797     };
2798 
2799     llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>>
2800     getConflictOffloadArchCombination(
2801         const std::set<StringRef> &GpuArchs) override {
2802       return getConflictTargetIDCombination(GpuArchs);
2803     }
2804 
2805     ActionBuilderReturnCode
2806     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2807                          phases::ID CurPhase, phases::ID FinalPhase,
2808                          PhasesTy &Phases) override {
2809       // amdgcn does not support linking of object files, therefore we skip
2810       // backend and assemble phases to output LLVM IR. Except for generating
2811       // non-relocatable device coee, where we generate fat binary for device
2812       // code and pass to host in Backend phase.
2813       if (CudaDeviceActions.empty())
2814         return ABRT_Success;
2815 
2816       assert(((CurPhase == phases::Link && Relocatable) ||
2817               CudaDeviceActions.size() == GpuArchList.size()) &&
2818              "Expecting one action per GPU architecture.");
2819       assert(!CompileHostOnly &&
2820              "Not expecting CUDA actions in host-only compilation.");
2821 
2822       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
2823           !EmitAsm) {
2824         // If we are in backend phase, we attempt to generate the fat binary.
2825         // We compile each arch to IR and use a link action to generate code
2826         // object containing ISA. Then we use a special "link" action to create
2827         // a fat binary containing all the code objects for different GPU's.
2828         // The fat binary is then an input to the host action.
2829         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2830           auto BackendAction = C.getDriver().ConstructPhaseAction(
2831               C, Args, phases::Backend, CudaDeviceActions[I],
2832               AssociatedOffloadKind);
2833           auto AssembleAction = C.getDriver().ConstructPhaseAction(
2834               C, Args, phases::Assemble, BackendAction, AssociatedOffloadKind);
2835           // Create a link action to link device IR with device library
2836           // and generate ISA.
2837           ActionList AL;
2838           AL.push_back(AssembleAction);
2839           CudaDeviceActions[I] =
2840               C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2841 
2842           // OffloadingActionBuilder propagates device arch until an offload
2843           // action. Since the next action for creating fatbin does
2844           // not have device arch, whereas the above link action and its input
2845           // have device arch, an offload action is needed to stop the null
2846           // device arch of the next action being propagated to the above link
2847           // action.
2848           OffloadAction::DeviceDependences DDep;
2849           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
2850                    AssociatedOffloadKind);
2851           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2852               DDep, CudaDeviceActions[I]->getType());
2853         }
2854         // Create HIP fat binary with a special "link" action.
2855         CudaFatBinary =
2856             C.MakeAction<LinkJobAction>(CudaDeviceActions,
2857                 types::TY_HIP_FATBIN);
2858 
2859         if (!CompileDeviceOnly) {
2860           DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2861                  AssociatedOffloadKind);
2862           // Clear the fat binary, it is already a dependence to an host
2863           // action.
2864           CudaFatBinary = nullptr;
2865         }
2866 
2867         // Remove the CUDA actions as they are already connected to an host
2868         // action or fat binary.
2869         CudaDeviceActions.clear();
2870 
2871         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2872       } else if (CurPhase == phases::Link) {
2873         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2874         // This happens to each device action originated from each input file.
2875         // Later on, device actions in DeviceLinkerInputs are used to create
2876         // device link actions in appendLinkDependences and the created device
2877         // link actions are passed to the offload action as device dependence.
2878         DeviceLinkerInputs.resize(CudaDeviceActions.size());
2879         auto LI = DeviceLinkerInputs.begin();
2880         for (auto *A : CudaDeviceActions) {
2881           LI->push_back(A);
2882           ++LI;
2883         }
2884 
2885         // We will pass the device action as a host dependence, so we don't
2886         // need to do anything else with them.
2887         CudaDeviceActions.clear();
2888         return ABRT_Success;
2889       }
2890 
2891       // By default, we produce an action for each device arch.
2892       for (Action *&A : CudaDeviceActions)
2893         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2894                                                AssociatedOffloadKind);
2895 
2896       return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
2897                                                            : ABRT_Success;
2898     }
2899 
2900     void appendLinkDeviceActions(ActionList &AL) override {
2901       if (DeviceLinkerInputs.size() == 0)
2902         return;
2903 
2904       assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
2905              "Linker inputs and GPU arch list sizes do not match.");
2906 
2907       // Append a new link action for each device.
2908       unsigned I = 0;
2909       for (auto &LI : DeviceLinkerInputs) {
2910         // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
2911         auto *DeviceLinkAction =
2912             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2913         // Linking all inputs for the current GPU arch.
2914         // LI contains all the inputs for the linker.
2915         OffloadAction::DeviceDependences DeviceLinkDeps;
2916         DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
2917             GpuArchList[I], AssociatedOffloadKind);
2918         AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
2919             DeviceLinkAction->getType()));
2920         ++I;
2921       }
2922       DeviceLinkerInputs.clear();
2923 
2924       // Create a host object from all the device images by embedding them
2925       // in a fat binary.
2926       OffloadAction::DeviceDependences DDeps;
2927       auto *TopDeviceLinkAction =
2928           C.MakeAction<LinkJobAction>(AL, types::TY_Object);
2929       DDeps.add(*TopDeviceLinkAction, *ToolChains[0],
2930           nullptr, AssociatedOffloadKind);
2931 
2932       // Offload the host object to the host linker.
2933       AL.push_back(C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
2934     }
2935 
2936     Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
2937 
2938     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
2939   };
2940 
2941   /// OpenMP action builder. The host bitcode is passed to the device frontend
2942   /// and all the device linked images are passed to the host link phase.
2943   class OpenMPActionBuilder final : public DeviceActionBuilder {
2944     /// The OpenMP actions for the current input.
2945     ActionList OpenMPDeviceActions;
2946 
2947     /// The linker inputs obtained for each toolchain.
2948     SmallVector<ActionList, 8> DeviceLinkerInputs;
2949 
2950   public:
2951     OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2952                         const Driver::InputList &Inputs)
2953         : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2954 
2955     ActionBuilderReturnCode
2956     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2957                          phases::ID CurPhase, phases::ID FinalPhase,
2958                          PhasesTy &Phases) override {
2959       if (OpenMPDeviceActions.empty())
2960         return ABRT_Inactive;
2961 
2962       // We should always have an action for each input.
2963       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2964              "Number of OpenMP actions and toolchains do not match.");
2965 
2966       // The host only depends on device action in the linking phase, when all
2967       // the device images have to be embedded in the host image.
2968       if (CurPhase == phases::Link) {
2969         assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2970                "Toolchains and linker inputs sizes do not match.");
2971         auto LI = DeviceLinkerInputs.begin();
2972         for (auto *A : OpenMPDeviceActions) {
2973           LI->push_back(A);
2974           ++LI;
2975         }
2976 
2977         // We passed the device action as a host dependence, so we don't need to
2978         // do anything else with them.
2979         OpenMPDeviceActions.clear();
2980         return ABRT_Success;
2981       }
2982 
2983       // By default, we produce an action for each device arch.
2984       for (Action *&A : OpenMPDeviceActions)
2985         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2986 
2987       return ABRT_Success;
2988     }
2989 
2990     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2991 
2992       // If this is an input action replicate it for each OpenMP toolchain.
2993       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2994         OpenMPDeviceActions.clear();
2995         for (unsigned I = 0; I < ToolChains.size(); ++I)
2996           OpenMPDeviceActions.push_back(
2997               C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2998         return ABRT_Success;
2999       }
3000 
3001       // If this is an unbundling action use it as is for each OpenMP toolchain.
3002       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3003         OpenMPDeviceActions.clear();
3004         auto *IA = cast<InputAction>(UA->getInputs().back());
3005         std::string FileName = IA->getInputArg().getAsString(Args);
3006         // Check if the type of the file is the same as the action. Do not
3007         // unbundle it if it is not. Do not unbundle .so files, for example,
3008         // which are not object files.
3009         if (IA->getType() == types::TY_Object &&
3010             (!llvm::sys::path::has_extension(FileName) ||
3011              types::lookupTypeForExtension(
3012                  llvm::sys::path::extension(FileName).drop_front()) !=
3013                  types::TY_Object))
3014           return ABRT_Inactive;
3015         for (unsigned I = 0; I < ToolChains.size(); ++I) {
3016           OpenMPDeviceActions.push_back(UA);
3017           UA->registerDependentActionInfo(
3018               ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3019         }
3020         return ABRT_Success;
3021       }
3022 
3023       // When generating code for OpenMP we use the host compile phase result as
3024       // a dependence to the device compile phase so that it can learn what
3025       // declarations should be emitted. However, this is not the only use for
3026       // the host action, so we prevent it from being collapsed.
3027       if (isa<CompileJobAction>(HostAction)) {
3028         HostAction->setCannotBeCollapsedWithNextDependentAction();
3029         assert(ToolChains.size() == OpenMPDeviceActions.size() &&
3030                "Toolchains and device action sizes do not match.");
3031         OffloadAction::HostDependence HDep(
3032             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3033             /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3034         auto TC = ToolChains.begin();
3035         for (Action *&A : OpenMPDeviceActions) {
3036           assert(isa<CompileJobAction>(A));
3037           OffloadAction::DeviceDependences DDep;
3038           DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3039           A = C.MakeAction<OffloadAction>(HDep, DDep);
3040           ++TC;
3041         }
3042       }
3043       return ABRT_Success;
3044     }
3045 
3046     void appendTopLevelActions(ActionList &AL) override {
3047       if (OpenMPDeviceActions.empty())
3048         return;
3049 
3050       // We should always have an action for each input.
3051       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3052              "Number of OpenMP actions and toolchains do not match.");
3053 
3054       // Append all device actions followed by the proper offload action.
3055       auto TI = ToolChains.begin();
3056       for (auto *A : OpenMPDeviceActions) {
3057         OffloadAction::DeviceDependences Dep;
3058         Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3059         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3060         ++TI;
3061       }
3062       // We no longer need the action stored in this builder.
3063       OpenMPDeviceActions.clear();
3064     }
3065 
3066     void appendLinkDeviceActions(ActionList &AL) override {
3067       assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3068              "Toolchains and linker inputs sizes do not match.");
3069 
3070       // Append a new link action for each device.
3071       auto TC = ToolChains.begin();
3072       for (auto &LI : DeviceLinkerInputs) {
3073         auto *DeviceLinkAction =
3074             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3075         OffloadAction::DeviceDependences DeviceLinkDeps;
3076         DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3077 		        Action::OFK_OpenMP);
3078         AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3079             DeviceLinkAction->getType()));
3080         ++TC;
3081       }
3082       DeviceLinkerInputs.clear();
3083     }
3084 
3085     Action* appendLinkHostActions(ActionList &AL) override {
3086       // Create wrapper bitcode from the result of device link actions and compile
3087       // it to an object which will be added to the host link command.
3088       auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3089       auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3090       return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3091     }
3092 
3093     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3094 
3095     bool initialize() override {
3096       // Get the OpenMP toolchains. If we don't get any, the action builder will
3097       // know there is nothing to do related to OpenMP offloading.
3098       auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3099       for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3100            ++TI)
3101         ToolChains.push_back(TI->second);
3102 
3103       DeviceLinkerInputs.resize(ToolChains.size());
3104       return false;
3105     }
3106 
3107     bool canUseBundlerUnbundler() const override {
3108       // OpenMP should use bundled files whenever possible.
3109       return true;
3110     }
3111   };
3112 
3113   ///
3114   /// TODO: Add the implementation for other specialized builders here.
3115   ///
3116 
3117   /// Specialized builders being used by this offloading action builder.
3118   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3119 
3120   /// Flag set to true if all valid builders allow file bundling/unbundling.
3121   bool CanUseBundler;
3122 
3123 public:
3124   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3125                           const Driver::InputList &Inputs)
3126       : C(C) {
3127     // Create a specialized builder for each device toolchain.
3128 
3129     IsValid = true;
3130 
3131     // Create a specialized builder for CUDA.
3132     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3133 
3134     // Create a specialized builder for HIP.
3135     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3136 
3137     // Create a specialized builder for OpenMP.
3138     SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3139 
3140     //
3141     // TODO: Build other specialized builders here.
3142     //
3143 
3144     // Initialize all the builders, keeping track of errors. If all valid
3145     // builders agree that we can use bundling, set the flag to true.
3146     unsigned ValidBuilders = 0u;
3147     unsigned ValidBuildersSupportingBundling = 0u;
3148     for (auto *SB : SpecializedBuilders) {
3149       IsValid = IsValid && !SB->initialize();
3150 
3151       // Update the counters if the builder is valid.
3152       if (SB->isValid()) {
3153         ++ValidBuilders;
3154         if (SB->canUseBundlerUnbundler())
3155           ++ValidBuildersSupportingBundling;
3156       }
3157     }
3158     CanUseBundler =
3159         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3160   }
3161 
3162   ~OffloadingActionBuilder() {
3163     for (auto *SB : SpecializedBuilders)
3164       delete SB;
3165   }
3166 
3167   /// Generate an action that adds device dependences (if any) to a host action.
3168   /// If no device dependence actions exist, just return the host action \a
3169   /// HostAction. If an error is found or if no builder requires the host action
3170   /// to be generated, return nullptr.
3171   Action *
3172   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3173                                    phases::ID CurPhase, phases::ID FinalPhase,
3174                                    DeviceActionBuilder::PhasesTy &Phases) {
3175     if (!IsValid)
3176       return nullptr;
3177 
3178     if (SpecializedBuilders.empty())
3179       return HostAction;
3180 
3181     assert(HostAction && "Invalid host action!");
3182 
3183     OffloadAction::DeviceDependences DDeps;
3184     // Check if all the programming models agree we should not emit the host
3185     // action. Also, keep track of the offloading kinds employed.
3186     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3187     unsigned InactiveBuilders = 0u;
3188     unsigned IgnoringBuilders = 0u;
3189     for (auto *SB : SpecializedBuilders) {
3190       if (!SB->isValid()) {
3191         ++InactiveBuilders;
3192         continue;
3193       }
3194 
3195       auto RetCode =
3196           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3197 
3198       // If the builder explicitly says the host action should be ignored,
3199       // we need to increment the variable that tracks the builders that request
3200       // the host object to be ignored.
3201       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3202         ++IgnoringBuilders;
3203 
3204       // Unless the builder was inactive for this action, we have to record the
3205       // offload kind because the host will have to use it.
3206       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3207         OffloadKind |= SB->getAssociatedOffloadKind();
3208     }
3209 
3210     // If all builders agree that the host object should be ignored, just return
3211     // nullptr.
3212     if (IgnoringBuilders &&
3213         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3214       return nullptr;
3215 
3216     if (DDeps.getActions().empty())
3217       return HostAction;
3218 
3219     // We have dependences we need to bundle together. We use an offload action
3220     // for that.
3221     OffloadAction::HostDependence HDep(
3222         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3223         /*BoundArch=*/nullptr, DDeps);
3224     return C.MakeAction<OffloadAction>(HDep, DDeps);
3225   }
3226 
3227   /// Generate an action that adds a host dependence to a device action. The
3228   /// results will be kept in this action builder. Return true if an error was
3229   /// found.
3230   bool addHostDependenceToDeviceActions(Action *&HostAction,
3231                                         const Arg *InputArg) {
3232     if (!IsValid)
3233       return true;
3234 
3235     // If we are supporting bundling/unbundling and the current action is an
3236     // input action of non-source file, we replace the host action by the
3237     // unbundling action. The bundler tool has the logic to detect if an input
3238     // is a bundle or not and if the input is not a bundle it assumes it is a
3239     // host file. Therefore it is safe to create an unbundling action even if
3240     // the input is not a bundle.
3241     if (CanUseBundler && isa<InputAction>(HostAction) &&
3242         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3243         !types::isSrcFile(HostAction->getType())) {
3244       auto UnbundlingHostAction =
3245           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3246       UnbundlingHostAction->registerDependentActionInfo(
3247           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3248           /*BoundArch=*/StringRef(), Action::OFK_Host);
3249       HostAction = UnbundlingHostAction;
3250     }
3251 
3252     assert(HostAction && "Invalid host action!");
3253 
3254     // Register the offload kinds that are used.
3255     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3256     for (auto *SB : SpecializedBuilders) {
3257       if (!SB->isValid())
3258         continue;
3259 
3260       auto RetCode = SB->addDeviceDepences(HostAction);
3261 
3262       // Host dependences for device actions are not compatible with that same
3263       // action being ignored.
3264       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3265              "Host dependence not expected to be ignored.!");
3266 
3267       // Unless the builder was inactive for this action, we have to record the
3268       // offload kind because the host will have to use it.
3269       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3270         OffloadKind |= SB->getAssociatedOffloadKind();
3271     }
3272 
3273     // Do not use unbundler if the Host does not depend on device action.
3274     if (OffloadKind == Action::OFK_None && CanUseBundler)
3275       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3276         HostAction = UA->getInputs().back();
3277 
3278     return false;
3279   }
3280 
3281   /// Add the offloading top level actions to the provided action list. This
3282   /// function can replace the host action by a bundling action if the
3283   /// programming models allow it.
3284   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3285                              const Arg *InputArg) {
3286     // Get the device actions to be appended.
3287     ActionList OffloadAL;
3288     for (auto *SB : SpecializedBuilders) {
3289       if (!SB->isValid())
3290         continue;
3291       SB->appendTopLevelActions(OffloadAL);
3292     }
3293 
3294     // If we can use the bundler, replace the host action by the bundling one in
3295     // the resulting list. Otherwise, just append the device actions. For
3296     // device only compilation, HostAction is a null pointer, therefore only do
3297     // this when HostAction is not a null pointer.
3298     if (CanUseBundler && HostAction &&
3299         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3300       // Add the host action to the list in order to create the bundling action.
3301       OffloadAL.push_back(HostAction);
3302 
3303       // We expect that the host action was just appended to the action list
3304       // before this method was called.
3305       assert(HostAction == AL.back() && "Host action not in the list??");
3306       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3307       AL.back() = HostAction;
3308     } else
3309       AL.append(OffloadAL.begin(), OffloadAL.end());
3310 
3311     // Propagate to the current host action (if any) the offload information
3312     // associated with the current input.
3313     if (HostAction)
3314       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3315                                            /*BoundArch=*/nullptr);
3316     return false;
3317   }
3318 
3319   Action* makeHostLinkAction() {
3320     // Build a list of device linking actions.
3321     ActionList DeviceAL;
3322     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3323       if (!SB->isValid())
3324         continue;
3325       SB->appendLinkDeviceActions(DeviceAL);
3326     }
3327 
3328     if (DeviceAL.empty())
3329       return nullptr;
3330 
3331     // Let builders add host linking actions.
3332     Action* HA;
3333     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3334       if (!SB->isValid())
3335         continue;
3336       HA = SB->appendLinkHostActions(DeviceAL);
3337     }
3338     return HA;
3339   }
3340 
3341   /// Processes the host linker action. This currently consists of replacing it
3342   /// with an offload action if there are device link objects and propagate to
3343   /// the host action all the offload kinds used in the current compilation. The
3344   /// resulting action is returned.
3345   Action *processHostLinkAction(Action *HostAction) {
3346     // Add all the dependences from the device linking actions.
3347     OffloadAction::DeviceDependences DDeps;
3348     for (auto *SB : SpecializedBuilders) {
3349       if (!SB->isValid())
3350         continue;
3351 
3352       SB->appendLinkDependences(DDeps);
3353     }
3354 
3355     // Calculate all the offload kinds used in the current compilation.
3356     unsigned ActiveOffloadKinds = 0u;
3357     for (auto &I : InputArgToOffloadKindMap)
3358       ActiveOffloadKinds |= I.second;
3359 
3360     // If we don't have device dependencies, we don't have to create an offload
3361     // action.
3362     if (DDeps.getActions().empty()) {
3363       // Propagate all the active kinds to host action. Given that it is a link
3364       // action it is assumed to depend on all actions generated so far.
3365       HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3366                                            /*BoundArch=*/nullptr);
3367       return HostAction;
3368     }
3369 
3370     // Create the offload action with all dependences. When an offload action
3371     // is created the kinds are propagated to the host action, so we don't have
3372     // to do that explicitly here.
3373     OffloadAction::HostDependence HDep(
3374         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3375         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3376     return C.MakeAction<OffloadAction>(HDep, DDeps);
3377   }
3378 };
3379 } // anonymous namespace.
3380 
3381 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3382                              const InputList &Inputs,
3383                              ActionList &Actions) const {
3384 
3385   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3386   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3387   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3388   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3389     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3390     Args.eraseArg(options::OPT__SLASH_Yc);
3391     Args.eraseArg(options::OPT__SLASH_Yu);
3392     YcArg = YuArg = nullptr;
3393   }
3394   if (YcArg && Inputs.size() > 1) {
3395     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3396     Args.eraseArg(options::OPT__SLASH_Yc);
3397     YcArg = nullptr;
3398   }
3399 
3400   Arg *FinalPhaseArg;
3401   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3402 
3403   if (FinalPhase == phases::Link) {
3404     if (Args.hasArg(options::OPT_emit_llvm))
3405       Diag(clang::diag::err_drv_emit_llvm_link);
3406     if (IsCLMode() && LTOMode != LTOK_None &&
3407         !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3408       Diag(clang::diag::err_drv_lto_without_lld);
3409   }
3410 
3411   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3412     // If only preprocessing or /Y- is used, all pch handling is disabled.
3413     // Rather than check for it everywhere, just remove clang-cl pch-related
3414     // flags here.
3415     Args.eraseArg(options::OPT__SLASH_Fp);
3416     Args.eraseArg(options::OPT__SLASH_Yc);
3417     Args.eraseArg(options::OPT__SLASH_Yu);
3418     YcArg = YuArg = nullptr;
3419   }
3420 
3421   unsigned LastPLSize = 0;
3422   for (auto &I : Inputs) {
3423     types::ID InputType = I.first;
3424     const Arg *InputArg = I.second;
3425 
3426     auto PL = types::getCompilationPhases(InputType);
3427     LastPLSize = PL.size();
3428 
3429     // If the first step comes after the final phase we are doing as part of
3430     // this compilation, warn the user about it.
3431     phases::ID InitialPhase = PL[0];
3432     if (InitialPhase > FinalPhase) {
3433       if (InputArg->isClaimed())
3434         continue;
3435 
3436       // Claim here to avoid the more general unused warning.
3437       InputArg->claim();
3438 
3439       // Suppress all unused style warnings with -Qunused-arguments
3440       if (Args.hasArg(options::OPT_Qunused_arguments))
3441         continue;
3442 
3443       // Special case when final phase determined by binary name, rather than
3444       // by a command-line argument with a corresponding Arg.
3445       if (CCCIsCPP())
3446         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3447             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3448       // Special case '-E' warning on a previously preprocessed file to make
3449       // more sense.
3450       else if (InitialPhase == phases::Compile &&
3451                (Args.getLastArg(options::OPT__SLASH_EP,
3452                                 options::OPT__SLASH_P) ||
3453                 Args.getLastArg(options::OPT_E) ||
3454                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3455                getPreprocessedType(InputType) == types::TY_INVALID)
3456         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3457             << InputArg->getAsString(Args) << !!FinalPhaseArg
3458             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3459       else
3460         Diag(clang::diag::warn_drv_input_file_unused)
3461             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3462             << !!FinalPhaseArg
3463             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3464       continue;
3465     }
3466 
3467     if (YcArg) {
3468       // Add a separate precompile phase for the compile phase.
3469       if (FinalPhase >= phases::Compile) {
3470         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3471         // Build the pipeline for the pch file.
3472         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3473         for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3474           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3475         assert(ClangClPch);
3476         Actions.push_back(ClangClPch);
3477         // The driver currently exits after the first failed command.  This
3478         // relies on that behavior, to make sure if the pch generation fails,
3479         // the main compilation won't run.
3480         // FIXME: If the main compilation fails, the PCH generation should
3481         // probably not be considered successful either.
3482       }
3483     }
3484   }
3485 
3486   // If we are linking, claim any options which are obviously only used for
3487   // compilation.
3488   // FIXME: Understand why the last Phase List length is used here.
3489   if (FinalPhase == phases::Link && LastPLSize == 1) {
3490     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3491     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3492   }
3493 }
3494 
3495 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3496                           const InputList &Inputs, ActionList &Actions) const {
3497   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3498 
3499   if (!SuppressMissingInputWarning && Inputs.empty()) {
3500     Diag(clang::diag::err_drv_no_input_files);
3501     return;
3502   }
3503 
3504   // Reject -Z* at the top level, these options should never have been exposed
3505   // by gcc.
3506   if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3507     Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3508 
3509   // Diagnose misuse of /Fo.
3510   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3511     StringRef V = A->getValue();
3512     if (Inputs.size() > 1 && !V.empty() &&
3513         !llvm::sys::path::is_separator(V.back())) {
3514       // Check whether /Fo tries to name an output file for multiple inputs.
3515       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3516           << A->getSpelling() << V;
3517       Args.eraseArg(options::OPT__SLASH_Fo);
3518     }
3519   }
3520 
3521   // Diagnose misuse of /Fa.
3522   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3523     StringRef V = A->getValue();
3524     if (Inputs.size() > 1 && !V.empty() &&
3525         !llvm::sys::path::is_separator(V.back())) {
3526       // Check whether /Fa tries to name an asm file for multiple inputs.
3527       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3528           << A->getSpelling() << V;
3529       Args.eraseArg(options::OPT__SLASH_Fa);
3530     }
3531   }
3532 
3533   // Diagnose misuse of /o.
3534   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3535     if (A->getValue()[0] == '\0') {
3536       // It has to have a value.
3537       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3538       Args.eraseArg(options::OPT__SLASH_o);
3539     }
3540   }
3541 
3542   handleArguments(C, Args, Inputs, Actions);
3543 
3544   // Builder to be used to build offloading actions.
3545   OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3546 
3547   // Construct the actions to perform.
3548   HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3549   ActionList LinkerInputs;
3550   ActionList MergerInputs;
3551 
3552   for (auto &I : Inputs) {
3553     types::ID InputType = I.first;
3554     const Arg *InputArg = I.second;
3555 
3556     auto PL = types::getCompilationPhases(*this, Args, InputType);
3557     if (PL.empty())
3558       continue;
3559 
3560     auto FullPL = types::getCompilationPhases(InputType);
3561 
3562     // Build the pipeline for this file.
3563     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3564 
3565     // Use the current host action in any of the offloading actions, if
3566     // required.
3567     if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3568       break;
3569 
3570     for (phases::ID Phase : PL) {
3571 
3572       // Add any offload action the host action depends on.
3573       Current = OffloadBuilder.addDeviceDependencesToHostAction(
3574           Current, InputArg, Phase, PL.back(), FullPL);
3575       if (!Current)
3576         break;
3577 
3578       // Queue linker inputs.
3579       if (Phase == phases::Link) {
3580         assert(Phase == PL.back() && "linking must be final compilation step.");
3581         LinkerInputs.push_back(Current);
3582         Current = nullptr;
3583         break;
3584       }
3585 
3586       // TODO: Consider removing this because the merged may not end up being
3587       // the final Phase in the pipeline. Perhaps the merged could just merge
3588       // and then pass an artifact of some sort to the Link Phase.
3589       // Queue merger inputs.
3590       if (Phase == phases::IfsMerge) {
3591         assert(Phase == PL.back() && "merging must be final compilation step.");
3592         MergerInputs.push_back(Current);
3593         Current = nullptr;
3594         break;
3595       }
3596 
3597       // Each precompiled header file after a module file action is a module
3598       // header of that same module file, rather than being compiled to a
3599       // separate PCH.
3600       if (Phase == phases::Precompile && HeaderModuleAction &&
3601           getPrecompiledType(InputType) == types::TY_PCH) {
3602         HeaderModuleAction->addModuleHeaderInput(Current);
3603         Current = nullptr;
3604         break;
3605       }
3606 
3607       // FIXME: Should we include any prior module file outputs as inputs of
3608       // later actions in the same command line?
3609 
3610       // Otherwise construct the appropriate action.
3611       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3612 
3613       // We didn't create a new action, so we will just move to the next phase.
3614       if (NewCurrent == Current)
3615         continue;
3616 
3617       if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3618         HeaderModuleAction = HMA;
3619 
3620       Current = NewCurrent;
3621 
3622       // Use the current host action in any of the offloading actions, if
3623       // required.
3624       if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3625         break;
3626 
3627       if (Current->getType() == types::TY_Nothing)
3628         break;
3629     }
3630 
3631     // If we ended with something, add to the output list.
3632     if (Current)
3633       Actions.push_back(Current);
3634 
3635     // Add any top level actions generated for offloading.
3636     OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3637   }
3638 
3639   // Add a link action if necessary.
3640   if (!LinkerInputs.empty()) {
3641     if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3642       LinkerInputs.push_back(Wrapper);
3643     Action *LA;
3644     // Check if this Linker Job should emit a static library.
3645     if (ShouldEmitStaticLibrary(Args)) {
3646       LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
3647     } else {
3648       LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3649     }
3650     LA = OffloadBuilder.processHostLinkAction(LA);
3651     Actions.push_back(LA);
3652   }
3653 
3654   // Add an interface stubs merge action if necessary.
3655   if (!MergerInputs.empty())
3656     Actions.push_back(
3657         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3658 
3659   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3660     auto PhaseList = types::getCompilationPhases(
3661         types::TY_IFS_CPP,
3662         Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase);
3663 
3664     ActionList MergerInputs;
3665 
3666     for (auto &I : Inputs) {
3667       types::ID InputType = I.first;
3668       const Arg *InputArg = I.second;
3669 
3670       // Currently clang and the llvm assembler do not support generating symbol
3671       // stubs from assembly, so we skip the input on asm files. For ifs files
3672       // we rely on the normal pipeline setup in the pipeline setup code above.
3673       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3674           InputType == types::TY_Asm)
3675         continue;
3676 
3677       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3678 
3679       for (auto Phase : PhaseList) {
3680         switch (Phase) {
3681         default:
3682           llvm_unreachable(
3683               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
3684         case phases::Compile: {
3685           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
3686           // files where the .o file is located. The compile action can not
3687           // handle this.
3688           if (InputType == types::TY_Object)
3689             break;
3690 
3691           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
3692           break;
3693         }
3694         case phases::IfsMerge: {
3695           assert(Phase == PhaseList.back() &&
3696                  "merging must be final compilation step.");
3697           MergerInputs.push_back(Current);
3698           Current = nullptr;
3699           break;
3700         }
3701         }
3702       }
3703 
3704       // If we ended with something, add to the output list.
3705       if (Current)
3706         Actions.push_back(Current);
3707     }
3708 
3709     // Add an interface stubs merge action if necessary.
3710     if (!MergerInputs.empty())
3711       Actions.push_back(
3712           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3713   }
3714 
3715   // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3716   // Compile phase that prints out supported cpu models and quits.
3717   if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3718     // Use the -mcpu=? flag as the dummy input to cc1.
3719     Actions.clear();
3720     Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3721     Actions.push_back(
3722         C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3723     for (auto &I : Inputs)
3724       I.second->claim();
3725   }
3726 
3727   // Claim ignored clang-cl options.
3728   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3729 
3730   // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3731   // to non-CUDA compilations and should not trigger warnings there.
3732   Args.ClaimAllArgs(options::OPT_cuda_host_only);
3733   Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3734 }
3735 
3736 Action *Driver::ConstructPhaseAction(
3737     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3738     Action::OffloadKind TargetDeviceOffloadKind) const {
3739   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3740 
3741   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3742   // encode this in the steps because the intermediate type depends on
3743   // arguments. Just special case here.
3744   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3745     return Input;
3746 
3747   // Build the appropriate action.
3748   switch (Phase) {
3749   case phases::Link:
3750     llvm_unreachable("link action invalid here.");
3751   case phases::IfsMerge:
3752     llvm_unreachable("ifsmerge action invalid here.");
3753   case phases::Preprocess: {
3754     types::ID OutputTy;
3755     // -M and -MM specify the dependency file name by altering the output type,
3756     // -if -MD and -MMD are not specified.
3757     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3758         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3759       OutputTy = types::TY_Dependencies;
3760     } else {
3761       OutputTy = Input->getType();
3762       if (!Args.hasFlag(options::OPT_frewrite_includes,
3763                         options::OPT_fno_rewrite_includes, false) &&
3764           !Args.hasFlag(options::OPT_frewrite_imports,
3765                         options::OPT_fno_rewrite_imports, false) &&
3766           !CCGenDiagnostics)
3767         OutputTy = types::getPreprocessedType(OutputTy);
3768       assert(OutputTy != types::TY_INVALID &&
3769              "Cannot preprocess this input type!");
3770     }
3771     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3772   }
3773   case phases::Precompile: {
3774     types::ID OutputTy = getPrecompiledType(Input->getType());
3775     assert(OutputTy != types::TY_INVALID &&
3776            "Cannot precompile this input type!");
3777 
3778     // If we're given a module name, precompile header file inputs as a
3779     // module, not as a precompiled header.
3780     const char *ModName = nullptr;
3781     if (OutputTy == types::TY_PCH) {
3782       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3783         ModName = A->getValue();
3784       if (ModName)
3785         OutputTy = types::TY_ModuleFile;
3786     }
3787 
3788     if (Args.hasArg(options::OPT_fsyntax_only)) {
3789       // Syntax checks should not emit a PCH file
3790       OutputTy = types::TY_Nothing;
3791     }
3792 
3793     if (ModName)
3794       return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3795                                                            ModName);
3796     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3797   }
3798   case phases::Compile: {
3799     if (Args.hasArg(options::OPT_fsyntax_only))
3800       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3801     if (Args.hasArg(options::OPT_rewrite_objc))
3802       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3803     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3804       return C.MakeAction<CompileJobAction>(Input,
3805                                             types::TY_RewrittenLegacyObjC);
3806     if (Args.hasArg(options::OPT__analyze))
3807       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3808     if (Args.hasArg(options::OPT__migrate))
3809       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3810     if (Args.hasArg(options::OPT_emit_ast))
3811       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3812     if (Args.hasArg(options::OPT_module_file_info))
3813       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3814     if (Args.hasArg(options::OPT_verify_pch))
3815       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3816     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3817   }
3818   case phases::Backend: {
3819     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3820       types::ID Output =
3821           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3822       return C.MakeAction<BackendJobAction>(Input, Output);
3823     }
3824     if (Args.hasArg(options::OPT_emit_llvm) ||
3825         (TargetDeviceOffloadKind == Action::OFK_HIP &&
3826          Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
3827                       false))) {
3828       types::ID Output =
3829           Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3830       return C.MakeAction<BackendJobAction>(Input, Output);
3831     }
3832     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3833   }
3834   case phases::Assemble:
3835     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3836   }
3837 
3838   llvm_unreachable("invalid phase in ConstructPhaseAction");
3839 }
3840 
3841 void Driver::BuildJobs(Compilation &C) const {
3842   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3843 
3844   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3845 
3846   // It is an error to provide a -o option if we are making multiple output
3847   // files. There are exceptions:
3848   //
3849   // IfsMergeJob: when generating interface stubs enabled we want to be able to
3850   // generate the stub file at the same time that we generate the real
3851   // library/a.out. So when a .o, .so, etc are the output, with clang interface
3852   // stubs there will also be a .ifs and .ifso at the same location.
3853   //
3854   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
3855   // and -c is passed, we still want to be able to generate a .ifs file while
3856   // we are also generating .o files. So we allow more than one output file in
3857   // this case as well.
3858   //
3859   if (FinalOutput) {
3860     unsigned NumOutputs = 0;
3861     unsigned NumIfsOutputs = 0;
3862     for (const Action *A : C.getActions())
3863       if (A->getType() != types::TY_Nothing &&
3864           !(A->getKind() == Action::IfsMergeJobClass ||
3865             (A->getType() == clang::driver::types::TY_IFS_CPP &&
3866              A->getKind() == clang::driver::Action::CompileJobClass &&
3867              0 == NumIfsOutputs++) ||
3868             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
3869              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
3870         ++NumOutputs;
3871 
3872     if (NumOutputs > 1) {
3873       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3874       FinalOutput = nullptr;
3875     }
3876   }
3877 
3878   // Collect the list of architectures.
3879   llvm::StringSet<> ArchNames;
3880   if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3881     for (const Arg *A : C.getArgs())
3882       if (A->getOption().matches(options::OPT_arch))
3883         ArchNames.insert(A->getValue());
3884 
3885   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3886   std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3887   for (Action *A : C.getActions()) {
3888     // If we are linking an image for multiple archs then the linker wants
3889     // -arch_multiple and -final_output <final image name>. Unfortunately, this
3890     // doesn't fit in cleanly because we have to pass this information down.
3891     //
3892     // FIXME: This is a hack; find a cleaner way to integrate this into the
3893     // process.
3894     const char *LinkingOutput = nullptr;
3895     if (isa<LipoJobAction>(A)) {
3896       if (FinalOutput)
3897         LinkingOutput = FinalOutput->getValue();
3898       else
3899         LinkingOutput = getDefaultImageName();
3900     }
3901 
3902     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
3903                        /*BoundArch*/ StringRef(),
3904                        /*AtTopLevel*/ true,
3905                        /*MultipleArchs*/ ArchNames.size() > 1,
3906                        /*LinkingOutput*/ LinkingOutput, CachedResults,
3907                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
3908   }
3909 
3910   // If we have more than one job, then disable integrated-cc1 for now.
3911   if (C.getJobs().size() > 1)
3912     for (auto &J : C.getJobs())
3913       J.InProcess = false;
3914 
3915   // If the user passed -Qunused-arguments or there were errors, don't warn
3916   // about any unused arguments.
3917   if (Diags.hasErrorOccurred() ||
3918       C.getArgs().hasArg(options::OPT_Qunused_arguments))
3919     return;
3920 
3921   // Claim -### here.
3922   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3923 
3924   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3925   (void)C.getArgs().hasArg(options::OPT_driver_mode);
3926   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3927 
3928   for (Arg *A : C.getArgs()) {
3929     // FIXME: It would be nice to be able to send the argument to the
3930     // DiagnosticsEngine, so that extra values, position, and so on could be
3931     // printed.
3932     if (!A->isClaimed()) {
3933       if (A->getOption().hasFlag(options::NoArgumentUnused))
3934         continue;
3935 
3936       // Suppress the warning automatically if this is just a flag, and it is an
3937       // instance of an argument we already claimed.
3938       const Option &Opt = A->getOption();
3939       if (Opt.getKind() == Option::FlagClass) {
3940         bool DuplicateClaimed = false;
3941 
3942         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3943           if (AA->isClaimed()) {
3944             DuplicateClaimed = true;
3945             break;
3946           }
3947         }
3948 
3949         if (DuplicateClaimed)
3950           continue;
3951       }
3952 
3953       // In clang-cl, don't mention unknown arguments here since they have
3954       // already been warned about.
3955       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3956         Diag(clang::diag::warn_drv_unused_argument)
3957             << A->getAsString(C.getArgs());
3958     }
3959   }
3960 }
3961 
3962 namespace {
3963 /// Utility class to control the collapse of dependent actions and select the
3964 /// tools accordingly.
3965 class ToolSelector final {
3966   /// The tool chain this selector refers to.
3967   const ToolChain &TC;
3968 
3969   /// The compilation this selector refers to.
3970   const Compilation &C;
3971 
3972   /// The base action this selector refers to.
3973   const JobAction *BaseAction;
3974 
3975   /// Set to true if the current toolchain refers to host actions.
3976   bool IsHostSelector;
3977 
3978   /// Set to true if save-temps and embed-bitcode functionalities are active.
3979   bool SaveTemps;
3980   bool EmbedBitcode;
3981 
3982   /// Get previous dependent action or null if that does not exist. If
3983   /// \a CanBeCollapsed is false, that action must be legal to collapse or
3984   /// null will be returned.
3985   const JobAction *getPrevDependentAction(const ActionList &Inputs,
3986                                           ActionList &SavedOffloadAction,
3987                                           bool CanBeCollapsed = true) {
3988     // An option can be collapsed only if it has a single input.
3989     if (Inputs.size() != 1)
3990       return nullptr;
3991 
3992     Action *CurAction = *Inputs.begin();
3993     if (CanBeCollapsed &&
3994         !CurAction->isCollapsingWithNextDependentActionLegal())
3995       return nullptr;
3996 
3997     // If the input action is an offload action. Look through it and save any
3998     // offload action that can be dropped in the event of a collapse.
3999     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4000       // If the dependent action is a device action, we will attempt to collapse
4001       // only with other device actions. Otherwise, we would do the same but
4002       // with host actions only.
4003       if (!IsHostSelector) {
4004         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4005           CurAction =
4006               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4007           if (CanBeCollapsed &&
4008               !CurAction->isCollapsingWithNextDependentActionLegal())
4009             return nullptr;
4010           SavedOffloadAction.push_back(OA);
4011           return dyn_cast<JobAction>(CurAction);
4012         }
4013       } else if (OA->hasHostDependence()) {
4014         CurAction = OA->getHostDependence();
4015         if (CanBeCollapsed &&
4016             !CurAction->isCollapsingWithNextDependentActionLegal())
4017           return nullptr;
4018         SavedOffloadAction.push_back(OA);
4019         return dyn_cast<JobAction>(CurAction);
4020       }
4021       return nullptr;
4022     }
4023 
4024     return dyn_cast<JobAction>(CurAction);
4025   }
4026 
4027   /// Return true if an assemble action can be collapsed.
4028   bool canCollapseAssembleAction() const {
4029     return TC.useIntegratedAs() && !SaveTemps &&
4030            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4031            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4032            !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4033   }
4034 
4035   /// Return true if a preprocessor action can be collapsed.
4036   bool canCollapsePreprocessorAction() const {
4037     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4038            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4039            !C.getArgs().hasArg(options::OPT_rewrite_objc);
4040   }
4041 
4042   /// Struct that relates an action with the offload actions that would be
4043   /// collapsed with it.
4044   struct JobActionInfo final {
4045     /// The action this info refers to.
4046     const JobAction *JA = nullptr;
4047     /// The offload actions we need to take care off if this action is
4048     /// collapsed.
4049     ActionList SavedOffloadAction;
4050   };
4051 
4052   /// Append collapsed offload actions from the give nnumber of elements in the
4053   /// action info array.
4054   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4055                                            ArrayRef<JobActionInfo> &ActionInfo,
4056                                            unsigned ElementNum) {
4057     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4058     for (unsigned I = 0; I < ElementNum; ++I)
4059       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4060                                     ActionInfo[I].SavedOffloadAction.end());
4061   }
4062 
4063   /// Functions that attempt to perform the combining. They detect if that is
4064   /// legal, and if so they update the inputs \a Inputs and the offload action
4065   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4066   /// the combined action is returned. If the combining is not legal or if the
4067   /// tool does not exist, null is returned.
4068   /// Currently three kinds of collapsing are supported:
4069   ///  - Assemble + Backend + Compile;
4070   ///  - Assemble + Backend ;
4071   ///  - Backend + Compile.
4072   const Tool *
4073   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4074                                 ActionList &Inputs,
4075                                 ActionList &CollapsedOffloadAction) {
4076     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4077       return nullptr;
4078     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4079     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4080     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4081     if (!AJ || !BJ || !CJ)
4082       return nullptr;
4083 
4084     // Get compiler tool.
4085     const Tool *T = TC.SelectTool(*CJ);
4086     if (!T)
4087       return nullptr;
4088 
4089     // When using -fembed-bitcode, it is required to have the same tool (clang)
4090     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4091     if (EmbedBitcode) {
4092       const Tool *BT = TC.SelectTool(*BJ);
4093       if (BT == T)
4094         return nullptr;
4095     }
4096 
4097     if (!T->hasIntegratedAssembler())
4098       return nullptr;
4099 
4100     Inputs = CJ->getInputs();
4101     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4102                                  /*NumElements=*/3);
4103     return T;
4104   }
4105   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4106                                      ActionList &Inputs,
4107                                      ActionList &CollapsedOffloadAction) {
4108     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4109       return nullptr;
4110     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4111     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4112     if (!AJ || !BJ)
4113       return nullptr;
4114 
4115     // Get backend tool.
4116     const Tool *T = TC.SelectTool(*BJ);
4117     if (!T)
4118       return nullptr;
4119 
4120     if (!T->hasIntegratedAssembler())
4121       return nullptr;
4122 
4123     Inputs = BJ->getInputs();
4124     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4125                                  /*NumElements=*/2);
4126     return T;
4127   }
4128   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4129                                     ActionList &Inputs,
4130                                     ActionList &CollapsedOffloadAction) {
4131     if (ActionInfo.size() < 2)
4132       return nullptr;
4133     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4134     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4135     if (!BJ || !CJ)
4136       return nullptr;
4137 
4138     // Check if the initial input (to the compile job or its predessor if one
4139     // exists) is LLVM bitcode. In that case, no preprocessor step is required
4140     // and we can still collapse the compile and backend jobs when we have
4141     // -save-temps. I.e. there is no need for a separate compile job just to
4142     // emit unoptimized bitcode.
4143     bool InputIsBitcode = true;
4144     for (size_t i = 1; i < ActionInfo.size(); i++)
4145       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4146           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4147         InputIsBitcode = false;
4148         break;
4149       }
4150     if (!InputIsBitcode && !canCollapsePreprocessorAction())
4151       return nullptr;
4152 
4153     // Get compiler tool.
4154     const Tool *T = TC.SelectTool(*CJ);
4155     if (!T)
4156       return nullptr;
4157 
4158     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4159       return nullptr;
4160 
4161     Inputs = CJ->getInputs();
4162     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4163                                  /*NumElements=*/2);
4164     return T;
4165   }
4166 
4167   /// Updates the inputs if the obtained tool supports combining with
4168   /// preprocessor action, and the current input is indeed a preprocessor
4169   /// action. If combining results in the collapse of offloading actions, those
4170   /// are appended to \a CollapsedOffloadAction.
4171   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4172                                ActionList &CollapsedOffloadAction) {
4173     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4174       return;
4175 
4176     // Attempt to get a preprocessor action dependence.
4177     ActionList PreprocessJobOffloadActions;
4178     ActionList NewInputs;
4179     for (Action *A : Inputs) {
4180       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4181       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4182         NewInputs.push_back(A);
4183         continue;
4184       }
4185 
4186       // This is legal to combine. Append any offload action we found and add the
4187       // current input to preprocessor inputs.
4188       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4189                                     PreprocessJobOffloadActions.end());
4190       NewInputs.append(PJ->input_begin(), PJ->input_end());
4191     }
4192     Inputs = NewInputs;
4193   }
4194 
4195 public:
4196   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4197                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4198       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4199         EmbedBitcode(EmbedBitcode) {
4200     assert(BaseAction && "Invalid base action.");
4201     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4202   }
4203 
4204   /// Check if a chain of actions can be combined and return the tool that can
4205   /// handle the combination of actions. The pointer to the current inputs \a
4206   /// Inputs and the list of offload actions \a CollapsedOffloadActions
4207   /// connected to collapsed actions are updated accordingly. The latter enables
4208   /// the caller of the selector to process them afterwards instead of just
4209   /// dropping them. If no suitable tool is found, null will be returned.
4210   const Tool *getTool(ActionList &Inputs,
4211                       ActionList &CollapsedOffloadAction) {
4212     //
4213     // Get the largest chain of actions that we could combine.
4214     //
4215 
4216     SmallVector<JobActionInfo, 5> ActionChain(1);
4217     ActionChain.back().JA = BaseAction;
4218     while (ActionChain.back().JA) {
4219       const Action *CurAction = ActionChain.back().JA;
4220 
4221       // Grow the chain by one element.
4222       ActionChain.resize(ActionChain.size() + 1);
4223       JobActionInfo &AI = ActionChain.back();
4224 
4225       // Attempt to fill it with the
4226       AI.JA =
4227           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4228     }
4229 
4230     // Pop the last action info as it could not be filled.
4231     ActionChain.pop_back();
4232 
4233     //
4234     // Attempt to combine actions. If all combining attempts failed, just return
4235     // the tool of the provided action. At the end we attempt to combine the
4236     // action with any preprocessor action it may depend on.
4237     //
4238 
4239     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4240                                                   CollapsedOffloadAction);
4241     if (!T)
4242       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4243     if (!T)
4244       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4245     if (!T) {
4246       Inputs = BaseAction->getInputs();
4247       T = TC.SelectTool(*BaseAction);
4248     }
4249 
4250     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4251     return T;
4252   }
4253 };
4254 }
4255 
4256 /// Return a string that uniquely identifies the result of a job. The bound arch
4257 /// is not necessarily represented in the toolchain's triple -- for example,
4258 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
4259 /// Also, we need to add the offloading device kind, as the same tool chain can
4260 /// be used for host and device for some programming models, e.g. OpenMP.
4261 static std::string GetTriplePlusArchString(const ToolChain *TC,
4262                                            StringRef BoundArch,
4263                                            Action::OffloadKind OffloadKind) {
4264   std::string TriplePlusArch = TC->getTriple().normalize();
4265   if (!BoundArch.empty()) {
4266     TriplePlusArch += "-";
4267     TriplePlusArch += BoundArch;
4268   }
4269   TriplePlusArch += "-";
4270   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4271   return TriplePlusArch;
4272 }
4273 
4274 InputInfo Driver::BuildJobsForAction(
4275     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4276     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4277     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4278     Action::OffloadKind TargetDeviceOffloadKind) const {
4279   std::pair<const Action *, std::string> ActionTC = {
4280       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4281   auto CachedResult = CachedResults.find(ActionTC);
4282   if (CachedResult != CachedResults.end()) {
4283     return CachedResult->second;
4284   }
4285   InputInfo Result = BuildJobsForActionNoCache(
4286       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4287       CachedResults, TargetDeviceOffloadKind);
4288   CachedResults[ActionTC] = Result;
4289   return Result;
4290 }
4291 
4292 InputInfo Driver::BuildJobsForActionNoCache(
4293     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4294     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4295     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4296     Action::OffloadKind TargetDeviceOffloadKind) const {
4297   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4298 
4299   InputInfoList OffloadDependencesInputInfo;
4300   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4301   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4302     // The 'Darwin' toolchain is initialized only when its arguments are
4303     // computed. Get the default arguments for OFK_None to ensure that
4304     // initialization is performed before processing the offload action.
4305     // FIXME: Remove when darwin's toolchain is initialized during construction.
4306     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4307 
4308     // The offload action is expected to be used in four different situations.
4309     //
4310     // a) Set a toolchain/architecture/kind for a host action:
4311     //    Host Action 1 -> OffloadAction -> Host Action 2
4312     //
4313     // b) Set a toolchain/architecture/kind for a device action;
4314     //    Device Action 1 -> OffloadAction -> Device Action 2
4315     //
4316     // c) Specify a device dependence to a host action;
4317     //    Device Action 1  _
4318     //                      \
4319     //      Host Action 1  ---> OffloadAction -> Host Action 2
4320     //
4321     // d) Specify a host dependence to a device action.
4322     //      Host Action 1  _
4323     //                      \
4324     //    Device Action 1  ---> OffloadAction -> Device Action 2
4325     //
4326     // For a) and b), we just return the job generated for the dependence. For
4327     // c) and d) we override the current action with the host/device dependence
4328     // if the current toolchain is host/device and set the offload dependences
4329     // info with the jobs obtained from the device/host dependence(s).
4330 
4331     // If there is a single device option, just generate the job for it.
4332     if (OA->hasSingleDeviceDependence()) {
4333       InputInfo DevA;
4334       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4335                                        const char *DepBoundArch) {
4336         DevA =
4337             BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4338                                /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4339                                CachedResults, DepA->getOffloadingDeviceKind());
4340       });
4341       return DevA;
4342     }
4343 
4344     // If 'Action 2' is host, we generate jobs for the device dependences and
4345     // override the current action with the host dependence. Otherwise, we
4346     // generate the host dependences and override the action with the device
4347     // dependence. The dependences can't therefore be a top-level action.
4348     OA->doOnEachDependence(
4349         /*IsHostDependence=*/BuildingForOffloadDevice,
4350         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4351           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4352               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4353               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4354               DepA->getOffloadingDeviceKind()));
4355         });
4356 
4357     A = BuildingForOffloadDevice
4358             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4359             : OA->getHostDependence();
4360   }
4361 
4362   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4363     // FIXME: It would be nice to not claim this here; maybe the old scheme of
4364     // just using Args was better?
4365     const Arg &Input = IA->getInputArg();
4366     Input.claim();
4367     if (Input.getOption().matches(options::OPT_INPUT)) {
4368       const char *Name = Input.getValue();
4369       return InputInfo(A, Name, /* _BaseInput = */ Name);
4370     }
4371     return InputInfo(A, &Input, /* _BaseInput = */ "");
4372   }
4373 
4374   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4375     const ToolChain *TC;
4376     StringRef ArchName = BAA->getArchName();
4377 
4378     if (!ArchName.empty())
4379       TC = &getToolChain(C.getArgs(),
4380                          computeTargetTriple(*this, TargetTriple,
4381                                              C.getArgs(), ArchName));
4382     else
4383       TC = &C.getDefaultToolChain();
4384 
4385     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4386                               MultipleArchs, LinkingOutput, CachedResults,
4387                               TargetDeviceOffloadKind);
4388   }
4389 
4390 
4391   ActionList Inputs = A->getInputs();
4392 
4393   const JobAction *JA = cast<JobAction>(A);
4394   ActionList CollapsedOffloadActions;
4395 
4396   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4397                   embedBitcodeInObject() && !isUsingLTO());
4398   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4399 
4400   if (!T)
4401     return InputInfo();
4402 
4403   // If we've collapsed action list that contained OffloadAction we
4404   // need to build jobs for host/device-side inputs it may have held.
4405   for (const auto *OA : CollapsedOffloadActions)
4406     cast<OffloadAction>(OA)->doOnEachDependence(
4407         /*IsHostDependence=*/BuildingForOffloadDevice,
4408         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4409           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4410               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4411               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4412               DepA->getOffloadingDeviceKind()));
4413         });
4414 
4415   // Only use pipes when there is exactly one input.
4416   InputInfoList InputInfos;
4417   for (const Action *Input : Inputs) {
4418     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4419     // shouldn't get temporary output names.
4420     // FIXME: Clean this up.
4421     bool SubJobAtTopLevel =
4422         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4423     InputInfos.push_back(BuildJobsForAction(
4424         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4425         CachedResults, A->getOffloadingDeviceKind()));
4426   }
4427 
4428   // Always use the first input as the base input.
4429   const char *BaseInput = InputInfos[0].getBaseInput();
4430 
4431   // ... except dsymutil actions, which use their actual input as the base
4432   // input.
4433   if (JA->getType() == types::TY_dSYM)
4434     BaseInput = InputInfos[0].getFilename();
4435 
4436   // ... and in header module compilations, which use the module name.
4437   if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4438     BaseInput = ModuleJA->getModuleName();
4439 
4440   // Append outputs of offload device jobs to the input list
4441   if (!OffloadDependencesInputInfo.empty())
4442     InputInfos.append(OffloadDependencesInputInfo.begin(),
4443                       OffloadDependencesInputInfo.end());
4444 
4445   // Set the effective triple of the toolchain for the duration of this job.
4446   llvm::Triple EffectiveTriple;
4447   const ToolChain &ToolTC = T->getToolChain();
4448   const ArgList &Args =
4449       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4450   if (InputInfos.size() != 1) {
4451     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4452   } else {
4453     // Pass along the input type if it can be unambiguously determined.
4454     EffectiveTriple = llvm::Triple(
4455         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4456   }
4457   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4458 
4459   // Determine the place to write output to, if any.
4460   InputInfo Result;
4461   InputInfoList UnbundlingResults;
4462   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4463     // If we have an unbundling job, we need to create results for all the
4464     // outputs. We also update the results cache so that other actions using
4465     // this unbundling action can get the right results.
4466     for (auto &UI : UA->getDependentActionsInfo()) {
4467       assert(UI.DependentOffloadKind != Action::OFK_None &&
4468              "Unbundling with no offloading??");
4469 
4470       // Unbundling actions are never at the top level. When we generate the
4471       // offloading prefix, we also do that for the host file because the
4472       // unbundling action does not change the type of the output which can
4473       // cause a overwrite.
4474       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4475           UI.DependentOffloadKind,
4476           UI.DependentToolChain->getTriple().normalize(),
4477           /*CreatePrefixForHost=*/true);
4478       auto CurI = InputInfo(
4479           UA,
4480           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4481                              /*AtTopLevel=*/false,
4482                              MultipleArchs ||
4483                                  UI.DependentOffloadKind == Action::OFK_HIP,
4484                              OffloadingPrefix),
4485           BaseInput);
4486       // Save the unbundling result.
4487       UnbundlingResults.push_back(CurI);
4488 
4489       // Get the unique string identifier for this dependence and cache the
4490       // result.
4491       StringRef Arch;
4492       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4493         if (UI.DependentOffloadKind == Action::OFK_Host)
4494           Arch = StringRef();
4495         else
4496           Arch = UI.DependentBoundArch;
4497       } else
4498         Arch = BoundArch;
4499 
4500       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4501                                                 UI.DependentOffloadKind)}] =
4502           CurI;
4503     }
4504 
4505     // Now that we have all the results generated, select the one that should be
4506     // returned for the current depending action.
4507     std::pair<const Action *, std::string> ActionTC = {
4508         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4509     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4510            "Result does not exist??");
4511     Result = CachedResults[ActionTC];
4512   } else if (JA->getType() == types::TY_Nothing)
4513     Result = InputInfo(A, BaseInput);
4514   else {
4515     // We only have to generate a prefix for the host if this is not a top-level
4516     // action.
4517     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4518         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4519         /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4520             !AtTopLevel);
4521     if (isa<OffloadWrapperJobAction>(JA)) {
4522       OffloadingPrefix += "-wrapper";
4523       if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4524         BaseInput = FinalOutput->getValue();
4525       else
4526         BaseInput = getDefaultImageName();
4527     }
4528     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4529                                              AtTopLevel, MultipleArchs,
4530                                              OffloadingPrefix),
4531                        BaseInput);
4532   }
4533 
4534   if (CCCPrintBindings && !CCGenDiagnostics) {
4535     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4536                  << " - \"" << T->getName() << "\", inputs: [";
4537     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4538       llvm::errs() << InputInfos[i].getAsString();
4539       if (i + 1 != e)
4540         llvm::errs() << ", ";
4541     }
4542     if (UnbundlingResults.empty())
4543       llvm::errs() << "], output: " << Result.getAsString() << "\n";
4544     else {
4545       llvm::errs() << "], outputs: [";
4546       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4547         llvm::errs() << UnbundlingResults[i].getAsString();
4548         if (i + 1 != e)
4549           llvm::errs() << ", ";
4550       }
4551       llvm::errs() << "] \n";
4552     }
4553   } else {
4554     if (UnbundlingResults.empty())
4555       T->ConstructJob(
4556           C, *JA, Result, InputInfos,
4557           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4558           LinkingOutput);
4559     else
4560       T->ConstructJobMultipleOutputs(
4561           C, *JA, UnbundlingResults, InputInfos,
4562           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4563           LinkingOutput);
4564   }
4565   return Result;
4566 }
4567 
4568 const char *Driver::getDefaultImageName() const {
4569   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4570   return Target.isOSWindows() ? "a.exe" : "a.out";
4571 }
4572 
4573 /// Create output filename based on ArgValue, which could either be a
4574 /// full filename, filename without extension, or a directory. If ArgValue
4575 /// does not provide a filename, then use BaseName, and use the extension
4576 /// suitable for FileType.
4577 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4578                                         StringRef BaseName,
4579                                         types::ID FileType) {
4580   SmallString<128> Filename = ArgValue;
4581 
4582   if (ArgValue.empty()) {
4583     // If the argument is empty, output to BaseName in the current dir.
4584     Filename = BaseName;
4585   } else if (llvm::sys::path::is_separator(Filename.back())) {
4586     // If the argument is a directory, output to BaseName in that dir.
4587     llvm::sys::path::append(Filename, BaseName);
4588   }
4589 
4590   if (!llvm::sys::path::has_extension(ArgValue)) {
4591     // If the argument didn't provide an extension, then set it.
4592     const char *Extension = types::getTypeTempSuffix(FileType, true);
4593 
4594     if (FileType == types::TY_Image &&
4595         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4596       // The output file is a dll.
4597       Extension = "dll";
4598     }
4599 
4600     llvm::sys::path::replace_extension(Filename, Extension);
4601   }
4602 
4603   return Args.MakeArgString(Filename.c_str());
4604 }
4605 
4606 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4607                                        const char *BaseInput,
4608                                        StringRef BoundArch, bool AtTopLevel,
4609                                        bool MultipleArchs,
4610                                        StringRef OffloadingPrefix) const {
4611   llvm::PrettyStackTraceString CrashInfo("Computing output path");
4612   // Output to a user requested destination?
4613   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4614     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4615       return C.addResultFile(FinalOutput->getValue(), &JA);
4616   }
4617 
4618   // For /P, preprocess to file named after BaseInput.
4619   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4620     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4621     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4622     StringRef NameArg;
4623     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4624       NameArg = A->getValue();
4625     return C.addResultFile(
4626         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4627         &JA);
4628   }
4629 
4630   // Default to writing to stdout?
4631   if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4632     return "-";
4633 
4634   // Is this the assembly listing for /FA?
4635   if (JA.getType() == types::TY_PP_Asm &&
4636       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4637        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4638     // Use /Fa and the input filename to determine the asm file name.
4639     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4640     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4641     return C.addResultFile(
4642         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4643         &JA);
4644   }
4645 
4646   // Output to a temporary file?
4647   if ((!AtTopLevel && !isSaveTempsEnabled() &&
4648        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4649       CCGenDiagnostics) {
4650     StringRef Name = llvm::sys::path::filename(BaseInput);
4651     std::pair<StringRef, StringRef> Split = Name.split('.');
4652     SmallString<128> TmpName;
4653     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4654     Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4655     if (CCGenDiagnostics && A) {
4656       SmallString<128> CrashDirectory(A->getValue());
4657       if (!getVFS().exists(CrashDirectory))
4658         llvm::sys::fs::create_directories(CrashDirectory);
4659       llvm::sys::path::append(CrashDirectory, Split.first);
4660       const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4661       std::error_code EC = llvm::sys::fs::createUniqueFile(
4662           CrashDirectory + Middle + Suffix, TmpName);
4663       if (EC) {
4664         Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4665         return "";
4666       }
4667     } else {
4668       TmpName = GetTemporaryPath(Split.first, Suffix);
4669     }
4670     return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4671   }
4672 
4673   SmallString<128> BasePath(BaseInput);
4674   SmallString<128> ExternalPath("");
4675   StringRef BaseName;
4676 
4677   // Dsymutil actions should use the full path.
4678   if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
4679     ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
4680     // We use posix style here because the tests (specifically
4681     // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
4682     // even on Windows and if we don't then the similar test covering this
4683     // fails.
4684     llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
4685                             llvm::sys::path::filename(BasePath));
4686     BaseName = ExternalPath;
4687   } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4688     BaseName = BasePath;
4689   else
4690     BaseName = llvm::sys::path::filename(BasePath);
4691 
4692   // Determine what the derived output name should be.
4693   const char *NamedOutput;
4694 
4695   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4696       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4697     // The /Fo or /o flag decides the object filename.
4698     StringRef Val =
4699         C.getArgs()
4700             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4701             ->getValue();
4702     NamedOutput =
4703         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4704   } else if (JA.getType() == types::TY_Image &&
4705              C.getArgs().hasArg(options::OPT__SLASH_Fe,
4706                                 options::OPT__SLASH_o)) {
4707     // The /Fe or /o flag names the linked file.
4708     StringRef Val =
4709         C.getArgs()
4710             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4711             ->getValue();
4712     NamedOutput =
4713         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4714   } else if (JA.getType() == types::TY_Image) {
4715     if (IsCLMode()) {
4716       // clang-cl uses BaseName for the executable name.
4717       NamedOutput =
4718           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4719     } else {
4720       SmallString<128> Output(getDefaultImageName());
4721       // HIP image for device compilation with -fno-gpu-rdc is per compilation
4722       // unit.
4723       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4724                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
4725                                              options::OPT_fno_gpu_rdc, false);
4726       if (IsHIPNoRDC) {
4727         Output = BaseName;
4728         llvm::sys::path::replace_extension(Output, "");
4729       }
4730       Output += OffloadingPrefix;
4731       if (MultipleArchs && !BoundArch.empty()) {
4732         Output += "-";
4733         Output.append(BoundArch);
4734       }
4735       if (IsHIPNoRDC)
4736         Output += ".out";
4737       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4738     }
4739   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4740     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4741   } else {
4742     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4743     assert(Suffix && "All types used for output should have a suffix.");
4744 
4745     std::string::size_type End = std::string::npos;
4746     if (!types::appendSuffixForType(JA.getType()))
4747       End = BaseName.rfind('.');
4748     SmallString<128> Suffixed(BaseName.substr(0, End));
4749     Suffixed += OffloadingPrefix;
4750     if (MultipleArchs && !BoundArch.empty()) {
4751       Suffixed += "-";
4752       Suffixed.append(BoundArch);
4753     }
4754     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4755     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4756     // optimized bitcode output.
4757     auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
4758                                      const llvm::opt::DerivedArgList &Args) {
4759       // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
4760       // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
4761       // phase.)
4762       return isa<CompileJobAction>(JA) &&
4763              JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4764              Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4765                           false);
4766     };
4767     if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
4768         (C.getArgs().hasArg(options::OPT_emit_llvm) ||
4769          IsHIPRDCInCompilePhase(JA, C.getArgs())))
4770       Suffixed += ".tmp";
4771     Suffixed += '.';
4772     Suffixed += Suffix;
4773     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4774   }
4775 
4776   // Prepend object file path if -save-temps=obj
4777   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4778       JA.getType() != types::TY_PCH) {
4779     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4780     SmallString<128> TempPath(FinalOutput->getValue());
4781     llvm::sys::path::remove_filename(TempPath);
4782     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4783     llvm::sys::path::append(TempPath, OutputFileName);
4784     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4785   }
4786 
4787   // If we're saving temps and the temp file conflicts with the input file,
4788   // then avoid overwriting input file.
4789   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4790     bool SameFile = false;
4791     SmallString<256> Result;
4792     llvm::sys::fs::current_path(Result);
4793     llvm::sys::path::append(Result, BaseName);
4794     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4795     // Must share the same path to conflict.
4796     if (SameFile) {
4797       StringRef Name = llvm::sys::path::filename(BaseInput);
4798       std::pair<StringRef, StringRef> Split = Name.split('.');
4799       std::string TmpName = GetTemporaryPath(
4800           Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4801       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4802     }
4803   }
4804 
4805   // As an annoying special case, PCH generation doesn't strip the pathname.
4806   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4807     llvm::sys::path::remove_filename(BasePath);
4808     if (BasePath.empty())
4809       BasePath = NamedOutput;
4810     else
4811       llvm::sys::path::append(BasePath, NamedOutput);
4812     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4813   } else {
4814     return C.addResultFile(NamedOutput, &JA);
4815   }
4816 }
4817 
4818 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4819   // Search for Name in a list of paths.
4820   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4821       -> llvm::Optional<std::string> {
4822     // Respect a limited subset of the '-Bprefix' functionality in GCC by
4823     // attempting to use this prefix when looking for file paths.
4824     for (const auto &Dir : P) {
4825       if (Dir.empty())
4826         continue;
4827       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4828       llvm::sys::path::append(P, Name);
4829       if (llvm::sys::fs::exists(Twine(P)))
4830         return std::string(P);
4831     }
4832     return None;
4833   };
4834 
4835   if (auto P = SearchPaths(PrefixDirs))
4836     return *P;
4837 
4838   SmallString<128> R(ResourceDir);
4839   llvm::sys::path::append(R, Name);
4840   if (llvm::sys::fs::exists(Twine(R)))
4841     return std::string(R.str());
4842 
4843   SmallString<128> P(TC.getCompilerRTPath());
4844   llvm::sys::path::append(P, Name);
4845   if (llvm::sys::fs::exists(Twine(P)))
4846     return std::string(P.str());
4847 
4848   SmallString<128> D(Dir);
4849   llvm::sys::path::append(D, "..", Name);
4850   if (llvm::sys::fs::exists(Twine(D)))
4851     return std::string(D.str());
4852 
4853   if (auto P = SearchPaths(TC.getLibraryPaths()))
4854     return *P;
4855 
4856   if (auto P = SearchPaths(TC.getFilePaths()))
4857     return *P;
4858 
4859   return std::string(Name);
4860 }
4861 
4862 void Driver::generatePrefixedToolNames(
4863     StringRef Tool, const ToolChain &TC,
4864     SmallVectorImpl<std::string> &Names) const {
4865   // FIXME: Needs a better variable than TargetTriple
4866   Names.emplace_back((TargetTriple + "-" + Tool).str());
4867   Names.emplace_back(Tool);
4868 
4869   // Allow the discovery of tools prefixed with LLVM's default target triple.
4870   std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4871   if (DefaultTargetTriple != TargetTriple)
4872     Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4873 }
4874 
4875 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
4876   llvm::sys::path::append(Dir, Name);
4877   if (llvm::sys::fs::can_execute(Twine(Dir)))
4878     return true;
4879   llvm::sys::path::remove_filename(Dir);
4880   return false;
4881 }
4882 
4883 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4884   SmallVector<std::string, 2> TargetSpecificExecutables;
4885   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4886 
4887   // Respect a limited subset of the '-Bprefix' functionality in GCC by
4888   // attempting to use this prefix when looking for program paths.
4889   for (const auto &PrefixDir : PrefixDirs) {
4890     if (llvm::sys::fs::is_directory(PrefixDir)) {
4891       SmallString<128> P(PrefixDir);
4892       if (ScanDirForExecutable(P, Name))
4893         return std::string(P.str());
4894     } else {
4895       SmallString<128> P((PrefixDir + Name).str());
4896       if (llvm::sys::fs::can_execute(Twine(P)))
4897         return std::string(P.str());
4898     }
4899   }
4900 
4901   const ToolChain::path_list &List = TC.getProgramPaths();
4902   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
4903     // For each possible name of the tool look for it in
4904     // program paths first, then the path.
4905     // Higher priority names will be first, meaning that
4906     // a higher priority name in the path will be found
4907     // instead of a lower priority name in the program path.
4908     // E.g. <triple>-gcc on the path will be found instead
4909     // of gcc in the program path
4910     for (const auto &Path : List) {
4911       SmallString<128> P(Path);
4912       if (ScanDirForExecutable(P, TargetSpecificExecutable))
4913         return std::string(P.str());
4914     }
4915 
4916     // Fall back to the path
4917     if (llvm::ErrorOr<std::string> P =
4918             llvm::sys::findProgramByName(TargetSpecificExecutable))
4919       return *P;
4920   }
4921 
4922   return std::string(Name);
4923 }
4924 
4925 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4926   SmallString<128> Path;
4927   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4928   if (EC) {
4929     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4930     return "";
4931   }
4932 
4933   return std::string(Path.str());
4934 }
4935 
4936 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4937   SmallString<128> Path;
4938   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4939   if (EC) {
4940     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4941     return "";
4942   }
4943 
4944   return std::string(Path.str());
4945 }
4946 
4947 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4948   SmallString<128> Output;
4949   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4950     // FIXME: If anybody needs it, implement this obscure rule:
4951     // "If you specify a directory without a file name, the default file name
4952     // is VCx0.pch., where x is the major version of Visual C++ in use."
4953     Output = FpArg->getValue();
4954 
4955     // "If you do not specify an extension as part of the path name, an
4956     // extension of .pch is assumed. "
4957     if (!llvm::sys::path::has_extension(Output))
4958       Output += ".pch";
4959   } else {
4960     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4961       Output = YcArg->getValue();
4962     if (Output.empty())
4963       Output = BaseName;
4964     llvm::sys::path::replace_extension(Output, ".pch");
4965   }
4966   return std::string(Output.str());
4967 }
4968 
4969 const ToolChain &Driver::getToolChain(const ArgList &Args,
4970                                       const llvm::Triple &Target) const {
4971 
4972   auto &TC = ToolChains[Target.str()];
4973   if (!TC) {
4974     switch (Target.getOS()) {
4975     case llvm::Triple::AIX:
4976       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
4977       break;
4978     case llvm::Triple::Haiku:
4979       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
4980       break;
4981     case llvm::Triple::Ananas:
4982       TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
4983       break;
4984     case llvm::Triple::CloudABI:
4985       TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
4986       break;
4987     case llvm::Triple::Darwin:
4988     case llvm::Triple::MacOSX:
4989     case llvm::Triple::IOS:
4990     case llvm::Triple::TvOS:
4991     case llvm::Triple::WatchOS:
4992       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4993       break;
4994     case llvm::Triple::DragonFly:
4995       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
4996       break;
4997     case llvm::Triple::OpenBSD:
4998       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4999       break;
5000     case llvm::Triple::NetBSD:
5001       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5002       break;
5003     case llvm::Triple::FreeBSD:
5004       TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5005       break;
5006     case llvm::Triple::Minix:
5007       TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5008       break;
5009     case llvm::Triple::Linux:
5010     case llvm::Triple::ELFIAMCU:
5011       if (Target.getArch() == llvm::Triple::hexagon)
5012         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5013                                                              Args);
5014       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5015                !Target.hasEnvironment())
5016         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5017                                                               Args);
5018       else if (Target.getArch() == llvm::Triple::ppc ||
5019                Target.getArch() == llvm::Triple::ppc64 ||
5020                Target.getArch() == llvm::Triple::ppc64le)
5021         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5022                                                               Args);
5023       else if (Target.getArch() == llvm::Triple::ve)
5024         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5025 
5026       else
5027         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
5028       break;
5029     case llvm::Triple::NaCl:
5030       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
5031       break;
5032     case llvm::Triple::Fuchsia:
5033       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
5034       break;
5035     case llvm::Triple::Solaris:
5036       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
5037       break;
5038     case llvm::Triple::AMDHSA:
5039       TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
5040       break;
5041     case llvm::Triple::AMDPAL:
5042     case llvm::Triple::Mesa3D:
5043       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
5044       break;
5045     case llvm::Triple::Win32:
5046       switch (Target.getEnvironment()) {
5047       default:
5048         if (Target.isOSBinFormatELF())
5049           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5050         else if (Target.isOSBinFormatMachO())
5051           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5052         else
5053           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5054         break;
5055       case llvm::Triple::GNU:
5056         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
5057         break;
5058       case llvm::Triple::Itanium:
5059         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
5060                                                                   Args);
5061         break;
5062       case llvm::Triple::MSVC:
5063       case llvm::Triple::UnknownEnvironment:
5064         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
5065                 .startswith_lower("bfd"))
5066           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
5067               *this, Target, Args);
5068         else
5069           TC =
5070               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
5071         break;
5072       }
5073       break;
5074     case llvm::Triple::PS4:
5075       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
5076       break;
5077     case llvm::Triple::Contiki:
5078       TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
5079       break;
5080     case llvm::Triple::Hurd:
5081       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
5082       break;
5083     case llvm::Triple::ZOS:
5084       TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
5085       break;
5086     default:
5087       // Of these targets, Hexagon is the only one that might have
5088       // an OS of Linux, in which case it got handled above already.
5089       switch (Target.getArch()) {
5090       case llvm::Triple::tce:
5091         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
5092         break;
5093       case llvm::Triple::tcele:
5094         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
5095         break;
5096       case llvm::Triple::hexagon:
5097         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5098                                                              Args);
5099         break;
5100       case llvm::Triple::lanai:
5101         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
5102         break;
5103       case llvm::Triple::xcore:
5104         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
5105         break;
5106       case llvm::Triple::wasm32:
5107       case llvm::Triple::wasm64:
5108         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
5109         break;
5110       case llvm::Triple::avr:
5111         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
5112         break;
5113       case llvm::Triple::msp430:
5114         TC =
5115             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
5116         break;
5117       case llvm::Triple::riscv32:
5118       case llvm::Triple::riscv64:
5119         TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
5120         break;
5121       case llvm::Triple::ve:
5122         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5123         break;
5124       default:
5125         if (Target.getVendor() == llvm::Triple::Myriad)
5126           TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
5127                                                               Args);
5128         else if (toolchains::BareMetal::handlesTarget(Target))
5129           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5130         else if (Target.isOSBinFormatELF())
5131           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5132         else if (Target.isOSBinFormatMachO())
5133           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5134         else
5135           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5136       }
5137     }
5138   }
5139 
5140   // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
5141   // compiles always need two toolchains, the CUDA toolchain and the host
5142   // toolchain.  So the only valid way to create a CUDA toolchain is via
5143   // CreateOffloadingDeviceToolChains.
5144 
5145   return *TC;
5146 }
5147 
5148 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
5149   // Say "no" if there is not exactly one input of a type clang understands.
5150   if (JA.size() != 1 ||
5151       !types::isAcceptedByClang((*JA.input_begin())->getType()))
5152     return false;
5153 
5154   // And say "no" if this is not a kind of action clang understands.
5155   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
5156       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5157     return false;
5158 
5159   return true;
5160 }
5161 
5162 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
5163   // Say "no" if there is not exactly one input of a type flang understands.
5164   if (JA.size() != 1 ||
5165       !types::isFortran((*JA.input_begin())->getType()))
5166     return false;
5167 
5168   // And say "no" if this is not a kind of action flang understands.
5169   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5170     return false;
5171 
5172   return true;
5173 }
5174 
5175 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
5176   // Only emit static library if the flag is set explicitly.
5177   if (Args.hasArg(options::OPT_emit_static_lib))
5178     return true;
5179   return false;
5180 }
5181 
5182 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
5183 /// grouped values as integers. Numbers which are not provided are set to 0.
5184 ///
5185 /// \return True if the entire string was parsed (9.2), or all groups were
5186 /// parsed (10.3.5extrastuff).
5187 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
5188                                unsigned &Micro, bool &HadExtra) {
5189   HadExtra = false;
5190 
5191   Major = Minor = Micro = 0;
5192   if (Str.empty())
5193     return false;
5194 
5195   if (Str.consumeInteger(10, Major))
5196     return false;
5197   if (Str.empty())
5198     return true;
5199   if (Str[0] != '.')
5200     return false;
5201 
5202   Str = Str.drop_front(1);
5203 
5204   if (Str.consumeInteger(10, Minor))
5205     return false;
5206   if (Str.empty())
5207     return true;
5208   if (Str[0] != '.')
5209     return false;
5210   Str = Str.drop_front(1);
5211 
5212   if (Str.consumeInteger(10, Micro))
5213     return false;
5214   if (!Str.empty())
5215     HadExtra = true;
5216   return true;
5217 }
5218 
5219 /// Parse digits from a string \p Str and fulfill \p Digits with
5220 /// the parsed numbers. This method assumes that the max number of
5221 /// digits to look for is equal to Digits.size().
5222 ///
5223 /// \return True if the entire string was parsed and there are
5224 /// no extra characters remaining at the end.
5225 bool Driver::GetReleaseVersion(StringRef Str,
5226                                MutableArrayRef<unsigned> Digits) {
5227   if (Str.empty())
5228     return false;
5229 
5230   unsigned CurDigit = 0;
5231   while (CurDigit < Digits.size()) {
5232     unsigned Digit;
5233     if (Str.consumeInteger(10, Digit))
5234       return false;
5235     Digits[CurDigit] = Digit;
5236     if (Str.empty())
5237       return true;
5238     if (Str[0] != '.')
5239       return false;
5240     Str = Str.drop_front(1);
5241     CurDigit++;
5242   }
5243 
5244   // More digits than requested, bail out...
5245   return false;
5246 }
5247 
5248 std::pair<unsigned, unsigned>
5249 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5250   unsigned IncludedFlagsBitmask = 0;
5251   unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5252 
5253   if (IsClCompatMode) {
5254     // Include CL and Core options.
5255     IncludedFlagsBitmask |= options::CLOption;
5256     IncludedFlagsBitmask |= options::CoreOption;
5257   } else {
5258     ExcludedFlagsBitmask |= options::CLOption;
5259   }
5260 
5261   return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5262 }
5263 
5264 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5265   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5266 }
5267 
5268 bool clang::driver::willEmitRemarks(const ArgList &Args) {
5269   // -fsave-optimization-record enables it.
5270   if (Args.hasFlag(options::OPT_fsave_optimization_record,
5271                    options::OPT_fno_save_optimization_record, false))
5272     return true;
5273 
5274   // -fsave-optimization-record=<format> enables it as well.
5275   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5276                    options::OPT_fno_save_optimization_record, false))
5277     return true;
5278 
5279   // -foptimization-record-file alone enables it too.
5280   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5281                    options::OPT_fno_save_optimization_record, false))
5282     return true;
5283 
5284   // -foptimization-record-passes alone enables it too.
5285   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5286                    options::OPT_fno_save_optimization_record, false))
5287     return true;
5288   return false;
5289 }
5290