1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "InputInfo.h" 11 #include "ToolChains/AIX.h" 12 #include "ToolChains/AMDGPU.h" 13 #include "ToolChains/AVR.h" 14 #include "ToolChains/Ananas.h" 15 #include "ToolChains/BareMetal.h" 16 #include "ToolChains/Clang.h" 17 #include "ToolChains/CloudABI.h" 18 #include "ToolChains/Contiki.h" 19 #include "ToolChains/CrossWindows.h" 20 #include "ToolChains/Cuda.h" 21 #include "ToolChains/Darwin.h" 22 #include "ToolChains/DragonFly.h" 23 #include "ToolChains/FreeBSD.h" 24 #include "ToolChains/Fuchsia.h" 25 #include "ToolChains/Gnu.h" 26 #include "ToolChains/HIP.h" 27 #include "ToolChains/Haiku.h" 28 #include "ToolChains/Hexagon.h" 29 #include "ToolChains/Hurd.h" 30 #include "ToolChains/Lanai.h" 31 #include "ToolChains/Linux.h" 32 #include "ToolChains/MSP430.h" 33 #include "ToolChains/MSVC.h" 34 #include "ToolChains/MinGW.h" 35 #include "ToolChains/Minix.h" 36 #include "ToolChains/MipsLinux.h" 37 #include "ToolChains/Myriad.h" 38 #include "ToolChains/NaCl.h" 39 #include "ToolChains/NetBSD.h" 40 #include "ToolChains/OpenBSD.h" 41 #include "ToolChains/PPCLinux.h" 42 #include "ToolChains/PS4CPU.h" 43 #include "ToolChains/RISCVToolchain.h" 44 #include "ToolChains/Solaris.h" 45 #include "ToolChains/TCE.h" 46 #include "ToolChains/VEToolchain.h" 47 #include "ToolChains/WebAssembly.h" 48 #include "ToolChains/XCore.h" 49 #include "ToolChains/ZOS.h" 50 #include "clang/Basic/TargetID.h" 51 #include "clang/Basic/Version.h" 52 #include "clang/Config/config.h" 53 #include "clang/Driver/Action.h" 54 #include "clang/Driver/Compilation.h" 55 #include "clang/Driver/DriverDiagnostic.h" 56 #include "clang/Driver/Job.h" 57 #include "clang/Driver/Options.h" 58 #include "clang/Driver/SanitizerArgs.h" 59 #include "clang/Driver/Tool.h" 60 #include "clang/Driver/ToolChain.h" 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/ADT/StringExtras.h" 65 #include "llvm/ADT/StringSet.h" 66 #include "llvm/ADT/StringSwitch.h" 67 #include "llvm/Config/llvm-config.h" 68 #include "llvm/Option/Arg.h" 69 #include "llvm/Option/ArgList.h" 70 #include "llvm/Option/OptSpecifier.h" 71 #include "llvm/Option/OptTable.h" 72 #include "llvm/Option/Option.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/ExitCodes.h" 76 #include "llvm/Support/FileSystem.h" 77 #include "llvm/Support/FormatVariadic.h" 78 #include "llvm/Support/Host.h" 79 #include "llvm/Support/Path.h" 80 #include "llvm/Support/PrettyStackTrace.h" 81 #include "llvm/Support/Process.h" 82 #include "llvm/Support/Program.h" 83 #include "llvm/Support/StringSaver.h" 84 #include "llvm/Support/TargetRegistry.h" 85 #include "llvm/Support/VirtualFileSystem.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <map> 88 #include <memory> 89 #include <utility> 90 #if LLVM_ON_UNIX 91 #include <unistd.h> // getpid 92 #endif 93 94 using namespace clang::driver; 95 using namespace clang; 96 using namespace llvm::opt; 97 98 static llvm::Triple getHIPOffloadTargetTriple() { 99 static const llvm::Triple T("amdgcn-amd-amdhsa"); 100 return T; 101 } 102 103 // static 104 std::string Driver::GetResourcesPath(StringRef BinaryPath, 105 StringRef CustomResourceDir) { 106 // Since the resource directory is embedded in the module hash, it's important 107 // that all places that need it call this function, so that they get the 108 // exact same string ("a/../b/" and "b/" get different hashes, for example). 109 110 // Dir is bin/ or lib/, depending on where BinaryPath is. 111 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath)); 112 113 SmallString<128> P(Dir); 114 if (CustomResourceDir != "") { 115 llvm::sys::path::append(P, CustomResourceDir); 116 } else { 117 // On Windows, libclang.dll is in bin/. 118 // On non-Windows, libclang.so/.dylib is in lib/. 119 // With a static-library build of libclang, LibClangPath will contain the 120 // path of the embedding binary, which for LLVM binaries will be in bin/. 121 // ../lib gets us to lib/ in both cases. 122 P = llvm::sys::path::parent_path(Dir); 123 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", 124 CLANG_VERSION_STRING); 125 } 126 127 return std::string(P.str()); 128 } 129 130 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 131 DiagnosticsEngine &Diags, std::string Title, 132 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 133 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), 134 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None), 135 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), 136 DriverTitle(Title), CCPrintOptionsFilename(nullptr), 137 CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr), 138 CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false), 139 CCLogDiagnostics(false), CCGenDiagnostics(false), 140 TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc), 141 CheckInputsExist(true), GenReproducer(false), 142 SuppressMissingInputWarning(false) { 143 // Provide a sane fallback if no VFS is specified. 144 if (!this->VFS) 145 this->VFS = llvm::vfs::getRealFileSystem(); 146 147 Name = std::string(llvm::sys::path::filename(ClangExecutable)); 148 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable)); 149 InstalledDir = Dir; // Provide a sensible default installed dir. 150 151 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) { 152 // Prepend InstalledDir if SysRoot is relative 153 SmallString<128> P(InstalledDir); 154 llvm::sys::path::append(P, SysRoot); 155 SysRoot = std::string(P); 156 } 157 158 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 159 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 160 #endif 161 #if defined(CLANG_CONFIG_FILE_USER_DIR) 162 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 163 #endif 164 165 // Compute the path to the resource directory. 166 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); 167 } 168 169 void Driver::ParseDriverMode(StringRef ProgramName, 170 ArrayRef<const char *> Args) { 171 if (ClangNameParts.isEmpty()) 172 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 173 setDriverModeFromOption(ClangNameParts.DriverMode); 174 175 for (const char *ArgPtr : Args) { 176 // Ignore nullptrs, they are the response file's EOL markers. 177 if (ArgPtr == nullptr) 178 continue; 179 const StringRef Arg = ArgPtr; 180 setDriverModeFromOption(Arg); 181 } 182 } 183 184 void Driver::setDriverModeFromOption(StringRef Opt) { 185 const std::string OptName = 186 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 187 if (!Opt.startswith(OptName)) 188 return; 189 StringRef Value = Opt.drop_front(OptName.size()); 190 191 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 192 .Case("gcc", GCCMode) 193 .Case("g++", GXXMode) 194 .Case("cpp", CPPMode) 195 .Case("cl", CLMode) 196 .Case("flang", FlangMode) 197 .Default(None)) 198 Mode = *M; 199 else 200 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 201 } 202 203 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 204 bool IsClCompatMode, 205 bool &ContainsError) { 206 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 207 ContainsError = false; 208 209 unsigned IncludedFlagsBitmask; 210 unsigned ExcludedFlagsBitmask; 211 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 212 getIncludeExcludeOptionFlagMasks(IsClCompatMode); 213 214 // Make sure that Flang-only options don't pollute the Clang output 215 // TODO: Make sure that Clang-only options don't pollute Flang output 216 if (!IsFlangMode()) 217 ExcludedFlagsBitmask |= options::FlangOnlyOption; 218 219 unsigned MissingArgIndex, MissingArgCount; 220 InputArgList Args = 221 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 222 IncludedFlagsBitmask, ExcludedFlagsBitmask); 223 224 // Check for missing argument error. 225 if (MissingArgCount) { 226 Diag(diag::err_drv_missing_argument) 227 << Args.getArgString(MissingArgIndex) << MissingArgCount; 228 ContainsError |= 229 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 230 SourceLocation()) > DiagnosticsEngine::Warning; 231 } 232 233 // Check for unsupported options. 234 for (const Arg *A : Args) { 235 if (A->getOption().hasFlag(options::Unsupported)) { 236 unsigned DiagID; 237 auto ArgString = A->getAsString(Args); 238 std::string Nearest; 239 if (getOpts().findNearest( 240 ArgString, Nearest, IncludedFlagsBitmask, 241 ExcludedFlagsBitmask | options::Unsupported) > 1) { 242 DiagID = diag::err_drv_unsupported_opt; 243 Diag(DiagID) << ArgString; 244 } else { 245 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 246 Diag(DiagID) << ArgString << Nearest; 247 } 248 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 249 DiagnosticsEngine::Warning; 250 continue; 251 } 252 253 // Warn about -mcpu= without an argument. 254 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 255 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 256 ContainsError |= Diags.getDiagnosticLevel( 257 diag::warn_drv_empty_joined_argument, 258 SourceLocation()) > DiagnosticsEngine::Warning; 259 } 260 } 261 262 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 263 unsigned DiagID; 264 auto ArgString = A->getAsString(Args); 265 std::string Nearest; 266 if (getOpts().findNearest( 267 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 268 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 269 : diag::err_drv_unknown_argument; 270 Diags.Report(DiagID) << ArgString; 271 } else { 272 DiagID = IsCLMode() 273 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 274 : diag::err_drv_unknown_argument_with_suggestion; 275 Diags.Report(DiagID) << ArgString << Nearest; 276 } 277 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 278 DiagnosticsEngine::Warning; 279 } 280 281 return Args; 282 } 283 284 // Determine which compilation mode we are in. We look for options which 285 // affect the phase, starting with the earliest phases, and record which 286 // option we used to determine the final phase. 287 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 288 Arg **FinalPhaseArg) const { 289 Arg *PhaseArg = nullptr; 290 phases::ID FinalPhase; 291 292 // -{E,EP,P,M,MM} only run the preprocessor. 293 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 294 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 295 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 296 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 297 FinalPhase = phases::Preprocess; 298 299 // --precompile only runs up to precompilation. 300 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 301 FinalPhase = phases::Precompile; 302 303 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 304 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 305 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 306 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 307 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 308 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 309 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 310 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 311 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || 312 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 313 FinalPhase = phases::Compile; 314 315 // -S only runs up to the backend. 316 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 317 FinalPhase = phases::Backend; 318 319 // -c compilation only runs up to the assembler. 320 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 321 FinalPhase = phases::Assemble; 322 323 // Otherwise do everything. 324 } else 325 FinalPhase = phases::Link; 326 327 if (FinalPhaseArg) 328 *FinalPhaseArg = PhaseArg; 329 330 return FinalPhase; 331 } 332 333 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, 334 StringRef Value, bool Claim = true) { 335 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 336 Args.getBaseArgs().MakeIndex(Value), Value.data()); 337 Args.AddSynthesizedArg(A); 338 if (Claim) 339 A->claim(); 340 return A; 341 } 342 343 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 344 const llvm::opt::OptTable &Opts = getOpts(); 345 DerivedArgList *DAL = new DerivedArgList(Args); 346 347 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 348 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 349 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 350 for (Arg *A : Args) { 351 // Unfortunately, we have to parse some forwarding options (-Xassembler, 352 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 353 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 354 355 // Rewrite linker options, to replace --no-demangle with a custom internal 356 // option. 357 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 358 A->getOption().matches(options::OPT_Xlinker)) && 359 A->containsValue("--no-demangle")) { 360 // Add the rewritten no-demangle argument. 361 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); 362 363 // Add the remaining values as Xlinker arguments. 364 for (StringRef Val : A->getValues()) 365 if (Val != "--no-demangle") 366 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); 367 368 continue; 369 } 370 371 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 372 // some build systems. We don't try to be complete here because we don't 373 // care to encourage this usage model. 374 if (A->getOption().matches(options::OPT_Wp_COMMA) && 375 (A->getValue(0) == StringRef("-MD") || 376 A->getValue(0) == StringRef("-MMD"))) { 377 // Rewrite to -MD/-MMD along with -MF. 378 if (A->getValue(0) == StringRef("-MD")) 379 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); 380 else 381 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); 382 if (A->getNumValues() == 2) 383 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); 384 continue; 385 } 386 387 // Rewrite reserved library names. 388 if (A->getOption().matches(options::OPT_l)) { 389 StringRef Value = A->getValue(); 390 391 // Rewrite unless -nostdlib is present. 392 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 393 Value == "stdc++") { 394 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); 395 continue; 396 } 397 398 // Rewrite unconditionally. 399 if (Value == "cc_kext") { 400 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); 401 continue; 402 } 403 } 404 405 // Pick up inputs via the -- option. 406 if (A->getOption().matches(options::OPT__DASH_DASH)) { 407 A->claim(); 408 for (StringRef Val : A->getValues()) 409 DAL->append(MakeInputArg(*DAL, Opts, Val, false)); 410 continue; 411 } 412 413 DAL->append(A); 414 } 415 416 // Enforce -static if -miamcu is present. 417 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 418 DAL->AddFlagArg(0, Opts.getOption(options::OPT_static)); 419 420 // Add a default value of -mlinker-version=, if one was given and the user 421 // didn't specify one. 422 #if defined(HOST_LINK_VERSION) 423 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 424 strlen(HOST_LINK_VERSION) > 0) { 425 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), 426 HOST_LINK_VERSION); 427 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 428 } 429 #endif 430 431 return DAL; 432 } 433 434 /// Compute target triple from args. 435 /// 436 /// This routine provides the logic to compute a target triple from various 437 /// args passed to the driver and the default triple string. 438 static llvm::Triple computeTargetTriple(const Driver &D, 439 StringRef TargetTriple, 440 const ArgList &Args, 441 StringRef DarwinArchName = "") { 442 // FIXME: Already done in Compilation *Driver::BuildCompilation 443 if (const Arg *A = Args.getLastArg(options::OPT_target)) 444 TargetTriple = A->getValue(); 445 446 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 447 448 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 449 // -gnu* only, and we can not change this, so we have to detect that case as 450 // being the Hurd OS. 451 if (TargetTriple.find("-unknown-gnu") != StringRef::npos || 452 TargetTriple.find("-pc-gnu") != StringRef::npos) 453 Target.setOSName("hurd"); 454 455 // Handle Apple-specific options available here. 456 if (Target.isOSBinFormatMachO()) { 457 // If an explicit Darwin arch name is given, that trumps all. 458 if (!DarwinArchName.empty()) { 459 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 460 return Target; 461 } 462 463 // Handle the Darwin '-arch' flag. 464 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 465 StringRef ArchName = A->getValue(); 466 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 467 } 468 } 469 470 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 471 // '-mbig-endian'/'-EB'. 472 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 473 options::OPT_mbig_endian)) { 474 if (A->getOption().matches(options::OPT_mlittle_endian)) { 475 llvm::Triple LE = Target.getLittleEndianArchVariant(); 476 if (LE.getArch() != llvm::Triple::UnknownArch) 477 Target = std::move(LE); 478 } else { 479 llvm::Triple BE = Target.getBigEndianArchVariant(); 480 if (BE.getArch() != llvm::Triple::UnknownArch) 481 Target = std::move(BE); 482 } 483 } 484 485 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 486 if (Target.getArch() == llvm::Triple::tce || 487 Target.getOS() == llvm::Triple::Minix) 488 return Target; 489 490 // On AIX, the env OBJECT_MODE may affect the resulting arch variant. 491 if (Target.isOSAIX()) { 492 if (Optional<std::string> ObjectModeValue = 493 llvm::sys::Process::GetEnv("OBJECT_MODE")) { 494 StringRef ObjectMode = *ObjectModeValue; 495 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 496 497 if (ObjectMode.equals("64")) { 498 AT = Target.get64BitArchVariant().getArch(); 499 } else if (ObjectMode.equals("32")) { 500 AT = Target.get32BitArchVariant().getArch(); 501 } else { 502 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode; 503 } 504 505 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 506 Target.setArch(AT); 507 } 508 } 509 510 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 511 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 512 options::OPT_m32, options::OPT_m16); 513 if (A) { 514 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 515 516 if (A->getOption().matches(options::OPT_m64)) { 517 AT = Target.get64BitArchVariant().getArch(); 518 if (Target.getEnvironment() == llvm::Triple::GNUX32) 519 Target.setEnvironment(llvm::Triple::GNU); 520 } else if (A->getOption().matches(options::OPT_mx32) && 521 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 522 AT = llvm::Triple::x86_64; 523 Target.setEnvironment(llvm::Triple::GNUX32); 524 } else if (A->getOption().matches(options::OPT_m32)) { 525 AT = Target.get32BitArchVariant().getArch(); 526 if (Target.getEnvironment() == llvm::Triple::GNUX32) 527 Target.setEnvironment(llvm::Triple::GNU); 528 } else if (A->getOption().matches(options::OPT_m16) && 529 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 530 AT = llvm::Triple::x86; 531 Target.setEnvironment(llvm::Triple::CODE16); 532 } 533 534 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 535 Target.setArch(AT); 536 } 537 538 // Handle -miamcu flag. 539 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 540 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 541 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 542 << Target.str(); 543 544 if (A && !A->getOption().matches(options::OPT_m32)) 545 D.Diag(diag::err_drv_argument_not_allowed_with) 546 << "-miamcu" << A->getBaseArg().getAsString(Args); 547 548 Target.setArch(llvm::Triple::x86); 549 Target.setArchName("i586"); 550 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 551 Target.setEnvironmentName(""); 552 Target.setOS(llvm::Triple::ELFIAMCU); 553 Target.setVendor(llvm::Triple::UnknownVendor); 554 Target.setVendorName("intel"); 555 } 556 557 // If target is MIPS adjust the target triple 558 // accordingly to provided ABI name. 559 A = Args.getLastArg(options::OPT_mabi_EQ); 560 if (A && Target.isMIPS()) { 561 StringRef ABIName = A->getValue(); 562 if (ABIName == "32") { 563 Target = Target.get32BitArchVariant(); 564 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 565 Target.getEnvironment() == llvm::Triple::GNUABIN32) 566 Target.setEnvironment(llvm::Triple::GNU); 567 } else if (ABIName == "n32") { 568 Target = Target.get64BitArchVariant(); 569 if (Target.getEnvironment() == llvm::Triple::GNU || 570 Target.getEnvironment() == llvm::Triple::GNUABI64) 571 Target.setEnvironment(llvm::Triple::GNUABIN32); 572 } else if (ABIName == "64") { 573 Target = Target.get64BitArchVariant(); 574 if (Target.getEnvironment() == llvm::Triple::GNU || 575 Target.getEnvironment() == llvm::Triple::GNUABIN32) 576 Target.setEnvironment(llvm::Triple::GNUABI64); 577 } 578 } 579 580 // If target is RISC-V adjust the target triple according to 581 // provided architecture name 582 A = Args.getLastArg(options::OPT_march_EQ); 583 if (A && Target.isRISCV()) { 584 StringRef ArchName = A->getValue(); 585 if (ArchName.startswith_lower("rv32")) 586 Target.setArch(llvm::Triple::riscv32); 587 else if (ArchName.startswith_lower("rv64")) 588 Target.setArch(llvm::Triple::riscv64); 589 } 590 591 return Target; 592 } 593 594 // Parse the LTO options and record the type of LTO compilation 595 // based on which -f(no-)?lto(=.*)? option occurs last. 596 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 597 LTOMode = LTOK_None; 598 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 599 options::OPT_fno_lto, false)) 600 return; 601 602 StringRef LTOName("full"); 603 604 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 605 if (A) 606 LTOName = A->getValue(); 607 608 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 609 .Case("full", LTOK_Full) 610 .Case("thin", LTOK_Thin) 611 .Default(LTOK_Unknown); 612 613 if (LTOMode == LTOK_Unknown) { 614 assert(A); 615 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 616 << A->getValue(); 617 } 618 } 619 620 /// Compute the desired OpenMP runtime from the flags provided. 621 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 622 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 623 624 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 625 if (A) 626 RuntimeName = A->getValue(); 627 628 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 629 .Case("libomp", OMPRT_OMP) 630 .Case("libgomp", OMPRT_GOMP) 631 .Case("libiomp5", OMPRT_IOMP5) 632 .Default(OMPRT_Unknown); 633 634 if (RT == OMPRT_Unknown) { 635 if (A) 636 Diag(diag::err_drv_unsupported_option_argument) 637 << A->getOption().getName() << A->getValue(); 638 else 639 // FIXME: We could use a nicer diagnostic here. 640 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 641 } 642 643 return RT; 644 } 645 646 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 647 InputList &Inputs) { 648 649 // 650 // CUDA/HIP 651 // 652 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 653 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 654 bool IsCuda = 655 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 656 return types::isCuda(I.first); 657 }); 658 bool IsHIP = 659 llvm::any_of(Inputs, 660 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 661 return types::isHIP(I.first); 662 }) || 663 C.getInputArgs().hasArg(options::OPT_hip_link); 664 if (IsCuda && IsHIP) { 665 Diag(clang::diag::err_drv_mix_cuda_hip); 666 return; 667 } 668 if (IsCuda) { 669 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 670 const llvm::Triple &HostTriple = HostTC->getTriple(); 671 StringRef DeviceTripleStr; 672 auto OFK = Action::OFK_Cuda; 673 DeviceTripleStr = 674 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; 675 llvm::Triple CudaTriple(DeviceTripleStr); 676 // Use the CUDA and host triples as the key into the ToolChains map, 677 // because the device toolchain we create depends on both. 678 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 679 if (!CudaTC) { 680 CudaTC = std::make_unique<toolchains::CudaToolChain>( 681 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); 682 } 683 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 684 } else if (IsHIP) { 685 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 686 const llvm::Triple &HostTriple = HostTC->getTriple(); 687 auto OFK = Action::OFK_HIP; 688 llvm::Triple HIPTriple = getHIPOffloadTargetTriple(); 689 // Use the HIP and host triples as the key into the ToolChains map, 690 // because the device toolchain we create depends on both. 691 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; 692 if (!HIPTC) { 693 HIPTC = std::make_unique<toolchains::HIPToolChain>( 694 *this, HIPTriple, *HostTC, C.getInputArgs()); 695 } 696 C.addOffloadDeviceToolChain(HIPTC.get(), OFK); 697 } 698 699 // 700 // OpenMP 701 // 702 // We need to generate an OpenMP toolchain if the user specified targets with 703 // the -fopenmp-targets option. 704 if (Arg *OpenMPTargets = 705 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 706 if (OpenMPTargets->getNumValues()) { 707 // We expect that -fopenmp-targets is always used in conjunction with the 708 // option -fopenmp specifying a valid runtime with offloading support, 709 // i.e. libomp or libiomp. 710 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 711 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 712 options::OPT_fno_openmp, false); 713 if (HasValidOpenMPRuntime) { 714 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 715 HasValidOpenMPRuntime = 716 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 717 } 718 719 if (HasValidOpenMPRuntime) { 720 llvm::StringMap<const char *> FoundNormalizedTriples; 721 for (const char *Val : OpenMPTargets->getValues()) { 722 llvm::Triple TT(Val); 723 std::string NormalizedName = TT.normalize(); 724 725 // Make sure we don't have a duplicate triple. 726 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 727 if (Duplicate != FoundNormalizedTriples.end()) { 728 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 729 << Val << Duplicate->second; 730 continue; 731 } 732 733 // Store the current triple so that we can check for duplicates in the 734 // following iterations. 735 FoundNormalizedTriples[NormalizedName] = Val; 736 737 // If the specified target is invalid, emit a diagnostic. 738 if (TT.getArch() == llvm::Triple::UnknownArch) 739 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 740 else { 741 const ToolChain *TC; 742 // CUDA toolchains have to be selected differently. They pair host 743 // and device in their implementation. 744 if (TT.isNVPTX()) { 745 const ToolChain *HostTC = 746 C.getSingleOffloadToolChain<Action::OFK_Host>(); 747 assert(HostTC && "Host toolchain should be always defined."); 748 auto &CudaTC = 749 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 750 if (!CudaTC) 751 CudaTC = std::make_unique<toolchains::CudaToolChain>( 752 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 753 TC = CudaTC.get(); 754 } else 755 TC = &getToolChain(C.getInputArgs(), TT); 756 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 757 } 758 } 759 } else 760 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 761 } else 762 Diag(clang::diag::warn_drv_empty_joined_argument) 763 << OpenMPTargets->getAsString(C.getInputArgs()); 764 } 765 766 // 767 // TODO: Add support for other offloading programming models here. 768 // 769 } 770 771 /// Looks the given directories for the specified file. 772 /// 773 /// \param[out] FilePath File path, if the file was found. 774 /// \param[in] Dirs Directories used for the search. 775 /// \param[in] FileName Name of the file to search for. 776 /// \return True if file was found. 777 /// 778 /// Looks for file specified by FileName sequentially in directories specified 779 /// by Dirs. 780 /// 781 static bool searchForFile(SmallVectorImpl<char> &FilePath, 782 ArrayRef<StringRef> Dirs, StringRef FileName) { 783 SmallString<128> WPath; 784 for (const StringRef &Dir : Dirs) { 785 if (Dir.empty()) 786 continue; 787 WPath.clear(); 788 llvm::sys::path::append(WPath, Dir, FileName); 789 llvm::sys::path::native(WPath); 790 if (llvm::sys::fs::is_regular_file(WPath)) { 791 FilePath = std::move(WPath); 792 return true; 793 } 794 } 795 return false; 796 } 797 798 bool Driver::readConfigFile(StringRef FileName) { 799 // Try reading the given file. 800 SmallVector<const char *, 32> NewCfgArgs; 801 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 802 Diag(diag::err_drv_cannot_read_config_file) << FileName; 803 return true; 804 } 805 806 // Read options from config file. 807 llvm::SmallString<128> CfgFileName(FileName); 808 llvm::sys::path::native(CfgFileName); 809 ConfigFile = std::string(CfgFileName); 810 bool ContainErrors; 811 CfgOptions = std::make_unique<InputArgList>( 812 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); 813 if (ContainErrors) { 814 CfgOptions.reset(); 815 return true; 816 } 817 818 if (CfgOptions->hasArg(options::OPT_config)) { 819 CfgOptions.reset(); 820 Diag(diag::err_drv_nested_config_file); 821 return true; 822 } 823 824 // Claim all arguments that come from a configuration file so that the driver 825 // does not warn on any that is unused. 826 for (Arg *A : *CfgOptions) 827 A->claim(); 828 return false; 829 } 830 831 bool Driver::loadConfigFile() { 832 std::string CfgFileName; 833 bool FileSpecifiedExplicitly = false; 834 835 // Process options that change search path for config files. 836 if (CLOptions) { 837 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 838 SmallString<128> CfgDir; 839 CfgDir.append( 840 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 841 if (!CfgDir.empty()) { 842 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 843 SystemConfigDir.clear(); 844 else 845 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 846 } 847 } 848 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 849 SmallString<128> CfgDir; 850 CfgDir.append( 851 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 852 if (!CfgDir.empty()) { 853 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 854 UserConfigDir.clear(); 855 else 856 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 857 } 858 } 859 } 860 861 // First try to find config file specified in command line. 862 if (CLOptions) { 863 std::vector<std::string> ConfigFiles = 864 CLOptions->getAllArgValues(options::OPT_config); 865 if (ConfigFiles.size() > 1) { 866 if (!std::all_of(ConfigFiles.begin(), ConfigFiles.end(), 867 [ConfigFiles](const std::string &s) { 868 return s == ConfigFiles[0]; 869 })) { 870 Diag(diag::err_drv_duplicate_config); 871 return true; 872 } 873 } 874 875 if (!ConfigFiles.empty()) { 876 CfgFileName = ConfigFiles.front(); 877 assert(!CfgFileName.empty()); 878 879 // If argument contains directory separator, treat it as a path to 880 // configuration file. 881 if (llvm::sys::path::has_parent_path(CfgFileName)) { 882 SmallString<128> CfgFilePath; 883 if (llvm::sys::path::is_relative(CfgFileName)) 884 llvm::sys::fs::current_path(CfgFilePath); 885 llvm::sys::path::append(CfgFilePath, CfgFileName); 886 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 887 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 888 return true; 889 } 890 return readConfigFile(CfgFilePath); 891 } 892 893 FileSpecifiedExplicitly = true; 894 } 895 } 896 897 // If config file is not specified explicitly, try to deduce configuration 898 // from executable name. For instance, an executable 'armv7l-clang' will 899 // search for config file 'armv7l-clang.cfg'. 900 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 901 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 902 903 if (CfgFileName.empty()) 904 return false; 905 906 // Determine architecture part of the file name, if it is present. 907 StringRef CfgFileArch = CfgFileName; 908 size_t ArchPrefixLen = CfgFileArch.find('-'); 909 if (ArchPrefixLen == StringRef::npos) 910 ArchPrefixLen = CfgFileArch.size(); 911 llvm::Triple CfgTriple; 912 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 913 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 914 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 915 ArchPrefixLen = 0; 916 917 if (!StringRef(CfgFileName).endswith(".cfg")) 918 CfgFileName += ".cfg"; 919 920 // If config file starts with architecture name and command line options 921 // redefine architecture (with options like -m32 -LE etc), try finding new 922 // config file with that architecture. 923 SmallString<128> FixedConfigFile; 924 size_t FixedArchPrefixLen = 0; 925 if (ArchPrefixLen) { 926 // Get architecture name from config file name like 'i386.cfg' or 927 // 'armv7l-clang.cfg'. 928 // Check if command line options changes effective triple. 929 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 930 CfgTriple.getTriple(), *CLOptions); 931 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 932 FixedConfigFile = EffectiveTriple.getArchName(); 933 FixedArchPrefixLen = FixedConfigFile.size(); 934 // Append the rest of original file name so that file name transforms 935 // like: i386-clang.cfg -> x86_64-clang.cfg. 936 if (ArchPrefixLen < CfgFileName.size()) 937 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 938 } 939 } 940 941 // Prepare list of directories where config file is searched for. 942 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir}; 943 944 // Try to find config file. First try file with corrected architecture. 945 llvm::SmallString<128> CfgFilePath; 946 if (!FixedConfigFile.empty()) { 947 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 948 return readConfigFile(CfgFilePath); 949 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 950 FixedConfigFile.resize(FixedArchPrefixLen); 951 FixedConfigFile.append(".cfg"); 952 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 953 return readConfigFile(CfgFilePath); 954 } 955 956 // Then try original file name. 957 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 958 return readConfigFile(CfgFilePath); 959 960 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 961 if (!ClangNameParts.ModeSuffix.empty() && 962 !ClangNameParts.TargetPrefix.empty()) { 963 CfgFileName.assign(ClangNameParts.TargetPrefix); 964 CfgFileName.append(".cfg"); 965 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 966 return readConfigFile(CfgFilePath); 967 } 968 969 // Report error but only if config file was specified explicitly, by option 970 // --config. If it was deduced from executable name, it is not an error. 971 if (FileSpecifiedExplicitly) { 972 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 973 for (const StringRef &SearchDir : CfgFileSearchDirs) 974 if (!SearchDir.empty()) 975 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 976 return true; 977 } 978 979 return false; 980 } 981 982 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 983 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 984 985 // FIXME: Handle environment options which affect driver behavior, somewhere 986 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 987 988 // We look for the driver mode option early, because the mode can affect 989 // how other options are parsed. 990 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 991 992 // FIXME: What are we going to do with -V and -b? 993 994 // Arguments specified in command line. 995 bool ContainsError; 996 CLOptions = std::make_unique<InputArgList>( 997 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); 998 999 // Try parsing configuration file. 1000 if (!ContainsError) 1001 ContainsError = loadConfigFile(); 1002 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 1003 1004 // All arguments, from both config file and command line. 1005 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 1006 : std::move(*CLOptions)); 1007 1008 // The args for config files or /clang: flags belong to different InputArgList 1009 // objects than Args. This copies an Arg from one of those other InputArgLists 1010 // to the ownership of Args. 1011 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { 1012 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 1013 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), 1014 Index, BaseArg); 1015 Copy->getValues() = Opt->getValues(); 1016 if (Opt->isClaimed()) 1017 Copy->claim(); 1018 Args.append(Copy); 1019 }; 1020 1021 if (HasConfigFile) 1022 for (auto *Opt : *CLOptions) { 1023 if (Opt->getOption().matches(options::OPT_config)) 1024 continue; 1025 const Arg *BaseArg = &Opt->getBaseArg(); 1026 if (BaseArg == Opt) 1027 BaseArg = nullptr; 1028 appendOneArg(Opt, BaseArg); 1029 } 1030 1031 // In CL mode, look for any pass-through arguments 1032 if (IsCLMode() && !ContainsError) { 1033 SmallVector<const char *, 16> CLModePassThroughArgList; 1034 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 1035 A->claim(); 1036 CLModePassThroughArgList.push_back(A->getValue()); 1037 } 1038 1039 if (!CLModePassThroughArgList.empty()) { 1040 // Parse any pass through args using default clang processing rather 1041 // than clang-cl processing. 1042 auto CLModePassThroughOptions = std::make_unique<InputArgList>( 1043 ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); 1044 1045 if (!ContainsError) 1046 for (auto *Opt : *CLModePassThroughOptions) { 1047 appendOneArg(Opt, nullptr); 1048 } 1049 } 1050 } 1051 1052 // Check for working directory option before accessing any files 1053 if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) 1054 if (VFS->setCurrentWorkingDirectory(WD->getValue())) 1055 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); 1056 1057 // FIXME: This stuff needs to go into the Compilation, not the driver. 1058 bool CCCPrintPhases; 1059 1060 // Silence driver warnings if requested 1061 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 1062 1063 // -no-canonical-prefixes is used very early in main. 1064 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1065 1066 // f(no-)integated-cc1 is also used very early in main. 1067 Args.ClaimAllArgs(options::OPT_fintegrated_cc1); 1068 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1); 1069 1070 // Ignore -pipe. 1071 Args.ClaimAllArgs(options::OPT_pipe); 1072 1073 // Extract -ccc args. 1074 // 1075 // FIXME: We need to figure out where this behavior should live. Most of it 1076 // should be outside in the client; the parts that aren't should have proper 1077 // options, either by introducing new ones or by overloading gcc ones like -V 1078 // or -b. 1079 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1080 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1081 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1082 CCCGenericGCCName = A->getValue(); 1083 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 1084 options::OPT_fno_crash_diagnostics, 1085 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 1086 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1087 // and getToolChain is const. 1088 if (IsCLMode()) { 1089 // clang-cl targets MSVC-style Win32. 1090 llvm::Triple T(TargetTriple); 1091 T.setOS(llvm::Triple::Win32); 1092 T.setVendor(llvm::Triple::PC); 1093 T.setEnvironment(llvm::Triple::MSVC); 1094 T.setObjectFormat(llvm::Triple::COFF); 1095 TargetTriple = T.str(); 1096 } 1097 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1098 TargetTriple = A->getValue(); 1099 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1100 Dir = InstalledDir = A->getValue(); 1101 for (const Arg *A : Args.filtered(options::OPT_B)) { 1102 A->claim(); 1103 PrefixDirs.push_back(A->getValue(0)); 1104 } 1105 if (Optional<std::string> CompilerPathValue = 1106 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 1107 StringRef CompilerPath = *CompilerPathValue; 1108 while (!CompilerPath.empty()) { 1109 std::pair<StringRef, StringRef> Split = 1110 CompilerPath.split(llvm::sys::EnvPathSeparator); 1111 PrefixDirs.push_back(std::string(Split.first)); 1112 CompilerPath = Split.second; 1113 } 1114 } 1115 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1116 SysRoot = A->getValue(); 1117 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1118 DyldPrefix = A->getValue(); 1119 1120 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1121 ResourceDir = A->getValue(); 1122 1123 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1124 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1125 .Case("cwd", SaveTempsCwd) 1126 .Case("obj", SaveTempsObj) 1127 .Default(SaveTempsCwd); 1128 } 1129 1130 setLTOMode(Args); 1131 1132 // Process -fembed-bitcode= flags. 1133 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1134 StringRef Name = A->getValue(); 1135 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1136 .Case("off", EmbedNone) 1137 .Case("all", EmbedBitcode) 1138 .Case("bitcode", EmbedBitcode) 1139 .Case("marker", EmbedMarker) 1140 .Default(~0U); 1141 if (Model == ~0U) { 1142 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1143 << Name; 1144 } else 1145 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1146 } 1147 1148 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1149 std::make_unique<InputArgList>(std::move(Args)); 1150 1151 // Perform the default argument translations. 1152 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1153 1154 // Owned by the host. 1155 const ToolChain &TC = getToolChain( 1156 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1157 1158 // The compilation takes ownership of Args. 1159 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1160 ContainsError); 1161 1162 if (!HandleImmediateArgs(*C)) 1163 return C; 1164 1165 // Construct the list of inputs. 1166 InputList Inputs; 1167 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1168 1169 // Populate the tool chains for the offloading devices, if any. 1170 CreateOffloadingDeviceToolChains(*C, Inputs); 1171 1172 // Construct the list of abstract actions to perform for this compilation. On 1173 // MachO targets this uses the driver-driver and universal actions. 1174 if (TC.getTriple().isOSBinFormatMachO()) 1175 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1176 else 1177 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1178 1179 if (CCCPrintPhases) { 1180 PrintActions(*C); 1181 return C; 1182 } 1183 1184 BuildJobs(*C); 1185 1186 return C; 1187 } 1188 1189 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1190 llvm::opt::ArgStringList ASL; 1191 for (const auto *A : Args) 1192 A->render(Args, ASL); 1193 1194 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1195 if (I != ASL.begin()) 1196 OS << ' '; 1197 llvm::sys::printArg(OS, *I, true); 1198 } 1199 OS << '\n'; 1200 } 1201 1202 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1203 SmallString<128> &CrashDiagDir) { 1204 using namespace llvm::sys; 1205 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1206 "Only knows about .crash files on Darwin"); 1207 1208 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1209 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1210 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1211 path::home_directory(CrashDiagDir); 1212 if (CrashDiagDir.startswith("/var/root")) 1213 CrashDiagDir = "/"; 1214 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1215 int PID = 1216 #if LLVM_ON_UNIX 1217 getpid(); 1218 #else 1219 0; 1220 #endif 1221 std::error_code EC; 1222 fs::file_status FileStatus; 1223 TimePoint<> LastAccessTime; 1224 SmallString<128> CrashFilePath; 1225 // Lookup the .crash files and get the one generated by a subprocess spawned 1226 // by this driver invocation. 1227 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1228 File != FileEnd && !EC; File.increment(EC)) { 1229 StringRef FileName = path::filename(File->path()); 1230 if (!FileName.startswith(Name)) 1231 continue; 1232 if (fs::status(File->path(), FileStatus)) 1233 continue; 1234 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1235 llvm::MemoryBuffer::getFile(File->path()); 1236 if (!CrashFile) 1237 continue; 1238 // The first line should start with "Process:", otherwise this isn't a real 1239 // .crash file. 1240 StringRef Data = CrashFile.get()->getBuffer(); 1241 if (!Data.startswith("Process:")) 1242 continue; 1243 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1244 size_t ParentProcPos = Data.find("Parent Process:"); 1245 if (ParentProcPos == StringRef::npos) 1246 continue; 1247 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1248 if (LineEnd == StringRef::npos) 1249 continue; 1250 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1251 int OpenBracket = -1, CloseBracket = -1; 1252 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1253 if (ParentProcess[i] == '[') 1254 OpenBracket = i; 1255 if (ParentProcess[i] == ']') 1256 CloseBracket = i; 1257 } 1258 // Extract the parent process PID from the .crash file and check whether 1259 // it matches this driver invocation pid. 1260 int CrashPID; 1261 if (OpenBracket < 0 || CloseBracket < 0 || 1262 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1263 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1264 continue; 1265 } 1266 1267 // Found a .crash file matching the driver pid. To avoid getting an older 1268 // and misleading crash file, continue looking for the most recent. 1269 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1270 // multiple crashes poiting to the same parent process. Since the driver 1271 // does not collect pid information for the dispatched invocation there's 1272 // currently no way to distinguish among them. 1273 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1274 if (FileAccessTime > LastAccessTime) { 1275 CrashFilePath.assign(File->path()); 1276 LastAccessTime = FileAccessTime; 1277 } 1278 } 1279 1280 // If found, copy it over to the location of other reproducer files. 1281 if (!CrashFilePath.empty()) { 1282 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1283 if (EC) 1284 return false; 1285 return true; 1286 } 1287 1288 return false; 1289 } 1290 1291 // When clang crashes, produce diagnostic information including the fully 1292 // preprocessed source file(s). Request that the developer attach the 1293 // diagnostic information to a bug report. 1294 void Driver::generateCompilationDiagnostics( 1295 Compilation &C, const Command &FailingCommand, 1296 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1297 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1298 return; 1299 1300 // Don't try to generate diagnostics for link or dsymutil jobs. 1301 if (FailingCommand.getCreator().isLinkJob() || 1302 FailingCommand.getCreator().isDsymutilJob()) 1303 return; 1304 1305 // Print the version of the compiler. 1306 PrintVersion(C, llvm::errs()); 1307 1308 // Suppress driver output and emit preprocessor output to temp file. 1309 Mode = CPPMode; 1310 CCGenDiagnostics = true; 1311 1312 // Save the original job command(s). 1313 Command Cmd = FailingCommand; 1314 1315 // Keep track of whether we produce any errors while trying to produce 1316 // preprocessed sources. 1317 DiagnosticErrorTrap Trap(Diags); 1318 1319 // Suppress tool output. 1320 C.initCompilationForDiagnostics(); 1321 1322 // Construct the list of inputs. 1323 InputList Inputs; 1324 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1325 1326 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1327 bool IgnoreInput = false; 1328 1329 // Ignore input from stdin or any inputs that cannot be preprocessed. 1330 // Check type first as not all linker inputs have a value. 1331 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1332 IgnoreInput = true; 1333 } else if (!strcmp(it->second->getValue(), "-")) { 1334 Diag(clang::diag::note_drv_command_failed_diag_msg) 1335 << "Error generating preprocessed source(s) - " 1336 "ignoring input from stdin."; 1337 IgnoreInput = true; 1338 } 1339 1340 if (IgnoreInput) { 1341 it = Inputs.erase(it); 1342 ie = Inputs.end(); 1343 } else { 1344 ++it; 1345 } 1346 } 1347 1348 if (Inputs.empty()) { 1349 Diag(clang::diag::note_drv_command_failed_diag_msg) 1350 << "Error generating preprocessed source(s) - " 1351 "no preprocessable inputs."; 1352 return; 1353 } 1354 1355 // Don't attempt to generate preprocessed files if multiple -arch options are 1356 // used, unless they're all duplicates. 1357 llvm::StringSet<> ArchNames; 1358 for (const Arg *A : C.getArgs()) { 1359 if (A->getOption().matches(options::OPT_arch)) { 1360 StringRef ArchName = A->getValue(); 1361 ArchNames.insert(ArchName); 1362 } 1363 } 1364 if (ArchNames.size() > 1) { 1365 Diag(clang::diag::note_drv_command_failed_diag_msg) 1366 << "Error generating preprocessed source(s) - cannot generate " 1367 "preprocessed source with multiple -arch options."; 1368 return; 1369 } 1370 1371 // Construct the list of abstract actions to perform for this compilation. On 1372 // Darwin OSes this uses the driver-driver and builds universal actions. 1373 const ToolChain &TC = C.getDefaultToolChain(); 1374 if (TC.getTriple().isOSBinFormatMachO()) 1375 BuildUniversalActions(C, TC, Inputs); 1376 else 1377 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1378 1379 BuildJobs(C); 1380 1381 // If there were errors building the compilation, quit now. 1382 if (Trap.hasErrorOccurred()) { 1383 Diag(clang::diag::note_drv_command_failed_diag_msg) 1384 << "Error generating preprocessed source(s)."; 1385 return; 1386 } 1387 1388 // Generate preprocessed output. 1389 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1390 C.ExecuteJobs(C.getJobs(), FailingCommands); 1391 1392 // If any of the preprocessing commands failed, clean up and exit. 1393 if (!FailingCommands.empty()) { 1394 Diag(clang::diag::note_drv_command_failed_diag_msg) 1395 << "Error generating preprocessed source(s)."; 1396 return; 1397 } 1398 1399 const ArgStringList &TempFiles = C.getTempFiles(); 1400 if (TempFiles.empty()) { 1401 Diag(clang::diag::note_drv_command_failed_diag_msg) 1402 << "Error generating preprocessed source(s)."; 1403 return; 1404 } 1405 1406 Diag(clang::diag::note_drv_command_failed_diag_msg) 1407 << "\n********************\n\n" 1408 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1409 "Preprocessed source(s) and associated run script(s) are located at:"; 1410 1411 SmallString<128> VFS; 1412 SmallString<128> ReproCrashFilename; 1413 for (const char *TempFile : TempFiles) { 1414 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1415 if (Report) 1416 Report->TemporaryFiles.push_back(TempFile); 1417 if (ReproCrashFilename.empty()) { 1418 ReproCrashFilename = TempFile; 1419 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1420 } 1421 if (StringRef(TempFile).endswith(".cache")) { 1422 // In some cases (modules) we'll dump extra data to help with reproducing 1423 // the crash into a directory next to the output. 1424 VFS = llvm::sys::path::filename(TempFile); 1425 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1426 } 1427 } 1428 1429 // Assume associated files are based off of the first temporary file. 1430 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1431 1432 llvm::SmallString<128> Script(CrashInfo.Filename); 1433 llvm::sys::path::replace_extension(Script, "sh"); 1434 std::error_code EC; 1435 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); 1436 if (EC) { 1437 Diag(clang::diag::note_drv_command_failed_diag_msg) 1438 << "Error generating run script: " << Script << " " << EC.message(); 1439 } else { 1440 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1441 << "# Driver args: "; 1442 printArgList(ScriptOS, C.getInputArgs()); 1443 ScriptOS << "# Original command: "; 1444 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1445 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1446 if (!AdditionalInformation.empty()) 1447 ScriptOS << "\n# Additional information: " << AdditionalInformation 1448 << "\n"; 1449 if (Report) 1450 Report->TemporaryFiles.push_back(std::string(Script.str())); 1451 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1452 } 1453 1454 // On darwin, provide information about the .crash diagnostic report. 1455 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1456 SmallString<128> CrashDiagDir; 1457 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1458 Diag(clang::diag::note_drv_command_failed_diag_msg) 1459 << ReproCrashFilename.str(); 1460 } else { // Suggest a directory for the user to look for .crash files. 1461 llvm::sys::path::append(CrashDiagDir, Name); 1462 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1463 Diag(clang::diag::note_drv_command_failed_diag_msg) 1464 << "Crash backtrace is located in"; 1465 Diag(clang::diag::note_drv_command_failed_diag_msg) 1466 << CrashDiagDir.str(); 1467 Diag(clang::diag::note_drv_command_failed_diag_msg) 1468 << "(choose the .crash file that corresponds to your crash)"; 1469 } 1470 } 1471 1472 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1473 options::OPT_frewrite_map_file_EQ)) 1474 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1475 1476 Diag(clang::diag::note_drv_command_failed_diag_msg) 1477 << "\n\n********************"; 1478 } 1479 1480 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1481 // Since commandLineFitsWithinSystemLimits() may underestimate system's 1482 // capacity if the tool does not support response files, there is a chance/ 1483 // that things will just work without a response file, so we silently just 1484 // skip it. 1485 if (Cmd.getResponseFileSupport().ResponseKind == 1486 ResponseFileSupport::RF_None || 1487 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 1488 Cmd.getArguments())) 1489 return; 1490 1491 std::string TmpName = GetTemporaryPath("response", "txt"); 1492 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1493 } 1494 1495 int Driver::ExecuteCompilation( 1496 Compilation &C, 1497 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1498 // Just print if -### was present. 1499 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1500 C.getJobs().Print(llvm::errs(), "\n", true); 1501 return 0; 1502 } 1503 1504 // If there were errors building the compilation, quit now. 1505 if (Diags.hasErrorOccurred()) 1506 return 1; 1507 1508 // Set up response file names for each command, if necessary 1509 for (auto &Job : C.getJobs()) 1510 setUpResponseFiles(C, Job); 1511 1512 C.ExecuteJobs(C.getJobs(), FailingCommands); 1513 1514 // If the command succeeded, we are done. 1515 if (FailingCommands.empty()) 1516 return 0; 1517 1518 // Otherwise, remove result files and print extra information about abnormal 1519 // failures. 1520 int Res = 0; 1521 for (const auto &CmdPair : FailingCommands) { 1522 int CommandRes = CmdPair.first; 1523 const Command *FailingCommand = CmdPair.second; 1524 1525 // Remove result files if we're not saving temps. 1526 if (!isSaveTempsEnabled()) { 1527 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1528 C.CleanupFileMap(C.getResultFiles(), JA, true); 1529 1530 // Failure result files are valid unless we crashed. 1531 if (CommandRes < 0) 1532 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1533 } 1534 1535 #if LLVM_ON_UNIX 1536 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code 1537 // for SIGPIPE. Do not print diagnostics for this case. 1538 if (CommandRes == EX_IOERR) { 1539 Res = CommandRes; 1540 continue; 1541 } 1542 #endif 1543 1544 // Print extra information about abnormal failures, if possible. 1545 // 1546 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1547 // status was 1, assume the command failed normally. In particular, if it 1548 // was the compiler then assume it gave a reasonable error code. Failures 1549 // in other tools are less common, and they generally have worse 1550 // diagnostics, so always print the diagnostic there. 1551 const Tool &FailingTool = FailingCommand->getCreator(); 1552 1553 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 1554 // FIXME: See FIXME above regarding result code interpretation. 1555 if (CommandRes < 0) 1556 Diag(clang::diag::err_drv_command_signalled) 1557 << FailingTool.getShortName(); 1558 else 1559 Diag(clang::diag::err_drv_command_failed) 1560 << FailingTool.getShortName() << CommandRes; 1561 } 1562 } 1563 return Res; 1564 } 1565 1566 void Driver::PrintHelp(bool ShowHidden) const { 1567 unsigned IncludedFlagsBitmask; 1568 unsigned ExcludedFlagsBitmask; 1569 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1570 getIncludeExcludeOptionFlagMasks(IsCLMode()); 1571 1572 ExcludedFlagsBitmask |= options::NoDriverOption; 1573 if (!ShowHidden) 1574 ExcludedFlagsBitmask |= HelpHidden; 1575 1576 if (IsFlangMode()) 1577 IncludedFlagsBitmask |= options::FlangOption; 1578 else 1579 ExcludedFlagsBitmask |= options::FlangOnlyOption; 1580 1581 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 1582 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 1583 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1584 /*ShowAllAliases=*/false); 1585 } 1586 1587 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1588 if (IsFlangMode()) { 1589 OS << getClangToolFullVersion("flang-new") << '\n'; 1590 } else { 1591 // FIXME: The following handlers should use a callback mechanism, we don't 1592 // know what the client would like to do. 1593 OS << getClangFullVersion() << '\n'; 1594 } 1595 const ToolChain &TC = C.getDefaultToolChain(); 1596 OS << "Target: " << TC.getTripleString() << '\n'; 1597 1598 // Print the threading model. 1599 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1600 // Don't print if the ToolChain would have barfed on it already 1601 if (TC.isThreadModelSupported(A->getValue())) 1602 OS << "Thread model: " << A->getValue(); 1603 } else 1604 OS << "Thread model: " << TC.getThreadModel(); 1605 OS << '\n'; 1606 1607 // Print out the install directory. 1608 OS << "InstalledDir: " << InstalledDir << '\n'; 1609 1610 // If configuration file was used, print its path. 1611 if (!ConfigFile.empty()) 1612 OS << "Configuration file: " << ConfigFile << '\n'; 1613 } 1614 1615 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1616 /// option. 1617 static void PrintDiagnosticCategories(raw_ostream &OS) { 1618 // Skip the empty category. 1619 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1620 ++i) 1621 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1622 } 1623 1624 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1625 if (PassedFlags == "") 1626 return; 1627 // Print out all options that start with a given argument. This is used for 1628 // shell autocompletion. 1629 std::vector<std::string> SuggestedCompletions; 1630 std::vector<std::string> Flags; 1631 1632 unsigned int DisableFlags = 1633 options::NoDriverOption | options::Unsupported | options::Ignored; 1634 1635 // Make sure that Flang-only options don't pollute the Clang output 1636 // TODO: Make sure that Clang-only options don't pollute Flang output 1637 if (!IsFlangMode()) 1638 DisableFlags |= options::FlangOnlyOption; 1639 1640 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 1641 // because the latter indicates that the user put space before pushing tab 1642 // which should end up in a file completion. 1643 const bool HasSpace = PassedFlags.endswith(","); 1644 1645 // Parse PassedFlags by "," as all the command-line flags are passed to this 1646 // function separated by "," 1647 StringRef TargetFlags = PassedFlags; 1648 while (TargetFlags != "") { 1649 StringRef CurFlag; 1650 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1651 Flags.push_back(std::string(CurFlag)); 1652 } 1653 1654 // We want to show cc1-only options only when clang is invoked with -cc1 or 1655 // -Xclang. 1656 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 1657 DisableFlags &= ~options::NoDriverOption; 1658 1659 const llvm::opt::OptTable &Opts = getOpts(); 1660 StringRef Cur; 1661 Cur = Flags.at(Flags.size() - 1); 1662 StringRef Prev; 1663 if (Flags.size() >= 2) { 1664 Prev = Flags.at(Flags.size() - 2); 1665 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); 1666 } 1667 1668 if (SuggestedCompletions.empty()) 1669 SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); 1670 1671 // If Flags were empty, it means the user typed `clang [tab]` where we should 1672 // list all possible flags. If there was no value completion and the user 1673 // pressed tab after a space, we should fall back to a file completion. 1674 // We're printing a newline to be consistent with what we print at the end of 1675 // this function. 1676 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 1677 llvm::outs() << '\n'; 1678 return; 1679 } 1680 1681 // When flag ends with '=' and there was no value completion, return empty 1682 // string and fall back to the file autocompletion. 1683 if (SuggestedCompletions.empty() && !Cur.endswith("=")) { 1684 // If the flag is in the form of "--autocomplete=-foo", 1685 // we were requested to print out all option names that start with "-foo". 1686 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1687 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); 1688 1689 // We have to query the -W flags manually as they're not in the OptTable. 1690 // TODO: Find a good way to add them to OptTable instead and them remove 1691 // this code. 1692 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1693 if (S.startswith(Cur)) 1694 SuggestedCompletions.push_back(std::string(S)); 1695 } 1696 1697 // Sort the autocomplete candidates so that shells print them out in a 1698 // deterministic order. We could sort in any way, but we chose 1699 // case-insensitive sorting for consistency with the -help option 1700 // which prints out options in the case-insensitive alphabetical order. 1701 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 1702 if (int X = A.compare_lower(B)) 1703 return X < 0; 1704 return A.compare(B) > 0; 1705 }); 1706 1707 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1708 } 1709 1710 bool Driver::HandleImmediateArgs(const Compilation &C) { 1711 // The order these options are handled in gcc is all over the place, but we 1712 // don't expect inconsistencies w.r.t. that to matter in practice. 1713 1714 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1715 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1716 return false; 1717 } 1718 1719 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1720 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1721 // return an answer which matches our definition of __VERSION__. 1722 llvm::outs() << CLANG_VERSION_STRING << "\n"; 1723 return false; 1724 } 1725 1726 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1727 PrintDiagnosticCategories(llvm::outs()); 1728 return false; 1729 } 1730 1731 if (C.getArgs().hasArg(options::OPT_help) || 1732 C.getArgs().hasArg(options::OPT__help_hidden)) { 1733 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1734 return false; 1735 } 1736 1737 if (C.getArgs().hasArg(options::OPT__version)) { 1738 // Follow gcc behavior and use stdout for --version and stderr for -v. 1739 PrintVersion(C, llvm::outs()); 1740 return false; 1741 } 1742 1743 if (C.getArgs().hasArg(options::OPT_v) || 1744 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 1745 C.getArgs().hasArg(options::OPT_print_supported_cpus)) { 1746 PrintVersion(C, llvm::errs()); 1747 SuppressMissingInputWarning = true; 1748 } 1749 1750 if (C.getArgs().hasArg(options::OPT_v)) { 1751 if (!SystemConfigDir.empty()) 1752 llvm::errs() << "System configuration file directory: " 1753 << SystemConfigDir << "\n"; 1754 if (!UserConfigDir.empty()) 1755 llvm::errs() << "User configuration file directory: " 1756 << UserConfigDir << "\n"; 1757 } 1758 1759 const ToolChain &TC = C.getDefaultToolChain(); 1760 1761 if (C.getArgs().hasArg(options::OPT_v)) 1762 TC.printVerboseInfo(llvm::errs()); 1763 1764 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1765 llvm::outs() << ResourceDir << '\n'; 1766 return false; 1767 } 1768 1769 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1770 llvm::outs() << "programs: ="; 1771 bool separator = false; 1772 // Print -B and COMPILER_PATH. 1773 for (const std::string &Path : PrefixDirs) { 1774 if (separator) 1775 llvm::outs() << llvm::sys::EnvPathSeparator; 1776 llvm::outs() << Path; 1777 separator = true; 1778 } 1779 for (const std::string &Path : TC.getProgramPaths()) { 1780 if (separator) 1781 llvm::outs() << llvm::sys::EnvPathSeparator; 1782 llvm::outs() << Path; 1783 separator = true; 1784 } 1785 llvm::outs() << "\n"; 1786 llvm::outs() << "libraries: =" << ResourceDir; 1787 1788 StringRef sysroot = C.getSysRoot(); 1789 1790 for (const std::string &Path : TC.getFilePaths()) { 1791 // Always print a separator. ResourceDir was the first item shown. 1792 llvm::outs() << llvm::sys::EnvPathSeparator; 1793 // Interpretation of leading '=' is needed only for NetBSD. 1794 if (Path[0] == '=') 1795 llvm::outs() << sysroot << Path.substr(1); 1796 else 1797 llvm::outs() << Path; 1798 } 1799 llvm::outs() << "\n"; 1800 return false; 1801 } 1802 1803 // FIXME: The following handlers should use a callback mechanism, we don't 1804 // know what the client would like to do. 1805 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1806 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1807 return false; 1808 } 1809 1810 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1811 StringRef ProgName = A->getValue(); 1812 1813 // Null program name cannot have a path. 1814 if (! ProgName.empty()) 1815 llvm::outs() << GetProgramPath(ProgName, TC); 1816 1817 llvm::outs() << "\n"; 1818 return false; 1819 } 1820 1821 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1822 StringRef PassedFlags = A->getValue(); 1823 HandleAutocompletions(PassedFlags); 1824 return false; 1825 } 1826 1827 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1828 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1829 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1830 RegisterEffectiveTriple TripleRAII(TC, Triple); 1831 switch (RLT) { 1832 case ToolChain::RLT_CompilerRT: 1833 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1834 break; 1835 case ToolChain::RLT_Libgcc: 1836 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1837 break; 1838 } 1839 return false; 1840 } 1841 1842 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1843 for (const Multilib &Multilib : TC.getMultilibs()) 1844 llvm::outs() << Multilib << "\n"; 1845 return false; 1846 } 1847 1848 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1849 const Multilib &Multilib = TC.getMultilib(); 1850 if (Multilib.gccSuffix().empty()) 1851 llvm::outs() << ".\n"; 1852 else { 1853 StringRef Suffix(Multilib.gccSuffix()); 1854 assert(Suffix.front() == '/'); 1855 llvm::outs() << Suffix.substr(1) << "\n"; 1856 } 1857 return false; 1858 } 1859 1860 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 1861 llvm::outs() << TC.getTripleString() << "\n"; 1862 return false; 1863 } 1864 1865 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 1866 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1867 llvm::outs() << Triple.getTriple() << "\n"; 1868 return false; 1869 } 1870 1871 if (C.getArgs().hasArg(options::OPT_print_targets)) { 1872 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs()); 1873 return false; 1874 } 1875 1876 return true; 1877 } 1878 1879 enum { 1880 TopLevelAction = 0, 1881 HeadSibAction = 1, 1882 OtherSibAction = 2, 1883 }; 1884 1885 // Display an action graph human-readably. Action A is the "sink" node 1886 // and latest-occuring action. Traversal is in pre-order, visiting the 1887 // inputs to each action before printing the action itself. 1888 static unsigned PrintActions1(const Compilation &C, Action *A, 1889 std::map<Action *, unsigned> &Ids, 1890 Twine Indent = {}, int Kind = TopLevelAction) { 1891 if (Ids.count(A)) // A was already visited. 1892 return Ids[A]; 1893 1894 std::string str; 1895 llvm::raw_string_ostream os(str); 1896 1897 auto getSibIndent = [](int K) -> Twine { 1898 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; 1899 }; 1900 1901 Twine SibIndent = Indent + getSibIndent(Kind); 1902 int SibKind = HeadSibAction; 1903 os << Action::getClassName(A->getKind()) << ", "; 1904 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1905 os << "\"" << IA->getInputArg().getValue() << "\""; 1906 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1907 os << '"' << BIA->getArchName() << '"' << ", {" 1908 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; 1909 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1910 bool IsFirst = true; 1911 OA->doOnEachDependence( 1912 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1913 assert(TC && "Unknown host toolchain"); 1914 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1915 // sm_35 this will generate: 1916 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1917 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1918 if (!IsFirst) 1919 os << ", "; 1920 os << '"'; 1921 os << A->getOffloadingKindPrefix(); 1922 os << " ("; 1923 os << TC->getTriple().normalize(); 1924 if (BoundArch) 1925 os << ":" << BoundArch; 1926 os << ")"; 1927 os << '"'; 1928 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; 1929 IsFirst = false; 1930 SibKind = OtherSibAction; 1931 }); 1932 } else { 1933 const ActionList *AL = &A->getInputs(); 1934 1935 if (AL->size()) { 1936 const char *Prefix = "{"; 1937 for (Action *PreRequisite : *AL) { 1938 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); 1939 Prefix = ", "; 1940 SibKind = OtherSibAction; 1941 } 1942 os << "}"; 1943 } else 1944 os << "{}"; 1945 } 1946 1947 // Append offload info for all options other than the offloading action 1948 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1949 std::string offload_str; 1950 llvm::raw_string_ostream offload_os(offload_str); 1951 if (!isa<OffloadAction>(A)) { 1952 auto S = A->getOffloadingKindPrefix(); 1953 if (!S.empty()) { 1954 offload_os << ", (" << S; 1955 if (A->getOffloadingArch()) 1956 offload_os << ", " << A->getOffloadingArch(); 1957 offload_os << ")"; 1958 } 1959 } 1960 1961 auto getSelfIndent = [](int K) -> Twine { 1962 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; 1963 }; 1964 1965 unsigned Id = Ids.size(); 1966 Ids[A] = Id; 1967 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " 1968 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1969 1970 return Id; 1971 } 1972 1973 // Print the action graphs in a compilation C. 1974 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1975 void Driver::PrintActions(const Compilation &C) const { 1976 std::map<Action *, unsigned> Ids; 1977 for (Action *A : C.getActions()) 1978 PrintActions1(C, A, Ids); 1979 } 1980 1981 /// Check whether the given input tree contains any compilation or 1982 /// assembly actions. 1983 static bool ContainsCompileOrAssembleAction(const Action *A) { 1984 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1985 isa<AssembleJobAction>(A)) 1986 return true; 1987 1988 for (const Action *Input : A->inputs()) 1989 if (ContainsCompileOrAssembleAction(Input)) 1990 return true; 1991 1992 return false; 1993 } 1994 1995 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1996 const InputList &BAInputs) const { 1997 DerivedArgList &Args = C.getArgs(); 1998 ActionList &Actions = C.getActions(); 1999 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 2000 // Collect the list of architectures. Duplicates are allowed, but should only 2001 // be handled once (in the order seen). 2002 llvm::StringSet<> ArchNames; 2003 SmallVector<const char *, 4> Archs; 2004 for (Arg *A : Args) { 2005 if (A->getOption().matches(options::OPT_arch)) { 2006 // Validate the option here; we don't save the type here because its 2007 // particular spelling may participate in other driver choices. 2008 llvm::Triple::ArchType Arch = 2009 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 2010 if (Arch == llvm::Triple::UnknownArch) { 2011 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 2012 continue; 2013 } 2014 2015 A->claim(); 2016 if (ArchNames.insert(A->getValue()).second) 2017 Archs.push_back(A->getValue()); 2018 } 2019 } 2020 2021 // When there is no explicit arch for this platform, make sure we still bind 2022 // the architecture (to the default) so that -Xarch_ is handled correctly. 2023 if (!Archs.size()) 2024 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 2025 2026 ActionList SingleActions; 2027 BuildActions(C, Args, BAInputs, SingleActions); 2028 2029 // Add in arch bindings for every top level action, as well as lipo and 2030 // dsymutil steps if needed. 2031 for (Action* Act : SingleActions) { 2032 // Make sure we can lipo this kind of output. If not (and it is an actual 2033 // output) then we disallow, since we can't create an output file with the 2034 // right name without overwriting it. We could remove this oddity by just 2035 // changing the output names to include the arch, which would also fix 2036 // -save-temps. Compatibility wins for now. 2037 2038 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 2039 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 2040 << types::getTypeName(Act->getType()); 2041 2042 ActionList Inputs; 2043 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 2044 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 2045 2046 // Lipo if necessary, we do it this way because we need to set the arch flag 2047 // so that -Xarch_ gets overwritten. 2048 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 2049 Actions.append(Inputs.begin(), Inputs.end()); 2050 else 2051 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 2052 2053 // Handle debug info queries. 2054 Arg *A = Args.getLastArg(options::OPT_g_Group); 2055 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) && 2056 !A->getOption().matches(options::OPT_gstabs); 2057 if ((enablesDebugInfo || willEmitRemarks(Args)) && 2058 ContainsCompileOrAssembleAction(Actions.back())) { 2059 2060 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 2061 // have a compile input. We need to run 'dsymutil' ourselves in such cases 2062 // because the debug info will refer to a temporary object file which 2063 // will be removed at the end of the compilation process. 2064 if (Act->getType() == types::TY_Image) { 2065 ActionList Inputs; 2066 Inputs.push_back(Actions.back()); 2067 Actions.pop_back(); 2068 Actions.push_back( 2069 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 2070 } 2071 2072 // Verify the debug info output. 2073 if (Args.hasArg(options::OPT_verify_debug_info)) { 2074 Action* LastAction = Actions.back(); 2075 Actions.pop_back(); 2076 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 2077 LastAction, types::TY_Nothing)); 2078 } 2079 } 2080 } 2081 } 2082 2083 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 2084 types::ID Ty, bool TypoCorrect) const { 2085 if (!getCheckInputsExist()) 2086 return true; 2087 2088 // stdin always exists. 2089 if (Value == "-") 2090 return true; 2091 2092 if (getVFS().exists(Value)) 2093 return true; 2094 2095 if (IsCLMode()) { 2096 if (!llvm::sys::path::is_absolute(Twine(Value)) && 2097 llvm::sys::Process::FindInEnvPath("LIB", Value, ';')) 2098 return true; 2099 2100 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 2101 // Arguments to the /link flag might cause the linker to search for object 2102 // and library files in paths we don't know about. Don't error in such 2103 // cases. 2104 return true; 2105 } 2106 } 2107 2108 if (TypoCorrect) { 2109 // Check if the filename is a typo for an option flag. OptTable thinks 2110 // that all args that are not known options and that start with / are 2111 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2112 // the option `/diagnostics:caret` than a reference to a file in the root 2113 // directory. 2114 unsigned IncludedFlagsBitmask; 2115 unsigned ExcludedFlagsBitmask; 2116 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 2117 getIncludeExcludeOptionFlagMasks(IsCLMode()); 2118 std::string Nearest; 2119 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, 2120 ExcludedFlagsBitmask) <= 1) { 2121 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2122 << Value << Nearest; 2123 return false; 2124 } 2125 } 2126 2127 Diag(clang::diag::err_drv_no_such_file) << Value; 2128 return false; 2129 } 2130 2131 // Construct a the list of inputs and their types. 2132 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2133 InputList &Inputs) const { 2134 const llvm::opt::OptTable &Opts = getOpts(); 2135 // Track the current user specified (-x) input. We also explicitly track the 2136 // argument used to set the type; we only want to claim the type when we 2137 // actually use it, so we warn about unused -x arguments. 2138 types::ID InputType = types::TY_Nothing; 2139 Arg *InputTypeArg = nullptr; 2140 2141 // The last /TC or /TP option sets the input type to C or C++ globally. 2142 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2143 options::OPT__SLASH_TP)) { 2144 InputTypeArg = TCTP; 2145 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2146 ? types::TY_C 2147 : types::TY_CXX; 2148 2149 Arg *Previous = nullptr; 2150 bool ShowNote = false; 2151 for (Arg *A : 2152 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2153 if (Previous) { 2154 Diag(clang::diag::warn_drv_overriding_flag_option) 2155 << Previous->getSpelling() << A->getSpelling(); 2156 ShowNote = true; 2157 } 2158 Previous = A; 2159 } 2160 if (ShowNote) 2161 Diag(clang::diag::note_drv_t_option_is_global); 2162 2163 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 2164 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 2165 } 2166 2167 for (Arg *A : Args) { 2168 if (A->getOption().getKind() == Option::InputClass) { 2169 const char *Value = A->getValue(); 2170 types::ID Ty = types::TY_INVALID; 2171 2172 // Infer the input type if necessary. 2173 if (InputType == types::TY_Nothing) { 2174 // If there was an explicit arg for this, claim it. 2175 if (InputTypeArg) 2176 InputTypeArg->claim(); 2177 2178 // stdin must be handled specially. 2179 if (memcmp(Value, "-", 2) == 0) { 2180 // If running with -E, treat as a C input (this changes the builtin 2181 // macros, for example). This may be overridden by -ObjC below. 2182 // 2183 // Otherwise emit an error but still use a valid type to avoid 2184 // spurious errors (e.g., no inputs). 2185 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2186 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2187 : clang::diag::err_drv_unknown_stdin_type); 2188 Ty = types::TY_C; 2189 } else { 2190 // Otherwise lookup by extension. 2191 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2192 // clang-cl /E, or Object otherwise. 2193 // We use a host hook here because Darwin at least has its own 2194 // idea of what .s is. 2195 if (const char *Ext = strrchr(Value, '.')) 2196 Ty = TC.LookupTypeForExtension(Ext + 1); 2197 2198 if (Ty == types::TY_INVALID) { 2199 if (CCCIsCPP()) 2200 Ty = types::TY_C; 2201 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) 2202 Ty = types::TY_CXX; 2203 else 2204 Ty = types::TY_Object; 2205 } 2206 2207 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2208 // should autodetect some input files as C++ for g++ compatibility. 2209 if (CCCIsCXX()) { 2210 types::ID OldTy = Ty; 2211 Ty = types::lookupCXXTypeForCType(Ty); 2212 2213 if (Ty != OldTy) 2214 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2215 << getTypeName(OldTy) << getTypeName(Ty); 2216 } 2217 2218 // If running with -fthinlto-index=, extensions that normally identify 2219 // native object files actually identify LLVM bitcode files. 2220 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && 2221 Ty == types::TY_Object) 2222 Ty = types::TY_LLVM_BC; 2223 } 2224 2225 // -ObjC and -ObjC++ override the default language, but only for "source 2226 // files". We just treat everything that isn't a linker input as a 2227 // source file. 2228 // 2229 // FIXME: Clean this up if we move the phase sequence into the type. 2230 if (Ty != types::TY_Object) { 2231 if (Args.hasArg(options::OPT_ObjC)) 2232 Ty = types::TY_ObjC; 2233 else if (Args.hasArg(options::OPT_ObjCXX)) 2234 Ty = types::TY_ObjCXX; 2235 } 2236 } else { 2237 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 2238 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 2239 // If emulating cl.exe, make sure that /TC and /TP don't affect input 2240 // object files. 2241 const char *Ext = strrchr(Value, '.'); 2242 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 2243 Ty = types::TY_Object; 2244 } 2245 if (Ty == types::TY_INVALID) { 2246 Ty = InputType; 2247 InputTypeArg->claim(); 2248 } 2249 } 2250 2251 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 2252 Inputs.push_back(std::make_pair(Ty, A)); 2253 2254 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 2255 StringRef Value = A->getValue(); 2256 if (DiagnoseInputExistence(Args, Value, types::TY_C, 2257 /*TypoCorrect=*/false)) { 2258 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2259 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 2260 } 2261 A->claim(); 2262 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 2263 StringRef Value = A->getValue(); 2264 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 2265 /*TypoCorrect=*/false)) { 2266 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2267 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 2268 } 2269 A->claim(); 2270 } else if (A->getOption().hasFlag(options::LinkerInput)) { 2271 // Just treat as object type, we could make a special type for this if 2272 // necessary. 2273 Inputs.push_back(std::make_pair(types::TY_Object, A)); 2274 2275 } else if (A->getOption().matches(options::OPT_x)) { 2276 InputTypeArg = A; 2277 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 2278 A->claim(); 2279 2280 // Follow gcc behavior and treat as linker input for invalid -x 2281 // options. Its not clear why we shouldn't just revert to unknown; but 2282 // this isn't very important, we might as well be bug compatible. 2283 if (!InputType) { 2284 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2285 InputType = types::TY_Object; 2286 } 2287 } else if (A->getOption().getID() == options::OPT_U) { 2288 assert(A->getNumValues() == 1 && "The /U option has one value."); 2289 StringRef Val = A->getValue(0); 2290 if (Val.find_first_of("/\\") != StringRef::npos) { 2291 // Warn about e.g. "/Users/me/myfile.c". 2292 Diag(diag::warn_slash_u_filename) << Val; 2293 Diag(diag::note_use_dashdash); 2294 } 2295 } 2296 } 2297 if (CCCIsCPP() && Inputs.empty()) { 2298 // If called as standalone preprocessor, stdin is processed 2299 // if no other input is present. 2300 Arg *A = MakeInputArg(Args, Opts, "-"); 2301 Inputs.push_back(std::make_pair(types::TY_C, A)); 2302 } 2303 } 2304 2305 namespace { 2306 /// Provides a convenient interface for different programming models to generate 2307 /// the required device actions. 2308 class OffloadingActionBuilder final { 2309 /// Flag used to trace errors in the builder. 2310 bool IsValid = false; 2311 2312 /// The compilation that is using this builder. 2313 Compilation &C; 2314 2315 /// Map between an input argument and the offload kinds used to process it. 2316 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2317 2318 /// Builder interface. It doesn't build anything or keep any state. 2319 class DeviceActionBuilder { 2320 public: 2321 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; 2322 2323 enum ActionBuilderReturnCode { 2324 // The builder acted successfully on the current action. 2325 ABRT_Success, 2326 // The builder didn't have to act on the current action. 2327 ABRT_Inactive, 2328 // The builder was successful and requested the host action to not be 2329 // generated. 2330 ABRT_Ignore_Host, 2331 }; 2332 2333 protected: 2334 /// Compilation associated with this builder. 2335 Compilation &C; 2336 2337 /// Tool chains associated with this builder. The same programming 2338 /// model may have associated one or more tool chains. 2339 SmallVector<const ToolChain *, 2> ToolChains; 2340 2341 /// The derived arguments associated with this builder. 2342 DerivedArgList &Args; 2343 2344 /// The inputs associated with this builder. 2345 const Driver::InputList &Inputs; 2346 2347 /// The associated offload kind. 2348 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2349 2350 public: 2351 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2352 const Driver::InputList &Inputs, 2353 Action::OffloadKind AssociatedOffloadKind) 2354 : C(C), Args(Args), Inputs(Inputs), 2355 AssociatedOffloadKind(AssociatedOffloadKind) {} 2356 virtual ~DeviceActionBuilder() {} 2357 2358 /// Fill up the array \a DA with all the device dependences that should be 2359 /// added to the provided host action \a HostAction. By default it is 2360 /// inactive. 2361 virtual ActionBuilderReturnCode 2362 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2363 phases::ID CurPhase, phases::ID FinalPhase, 2364 PhasesTy &Phases) { 2365 return ABRT_Inactive; 2366 } 2367 2368 /// Update the state to include the provided host action \a HostAction as a 2369 /// dependency of the current device action. By default it is inactive. 2370 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2371 return ABRT_Inactive; 2372 } 2373 2374 /// Append top level actions generated by the builder. 2375 virtual void appendTopLevelActions(ActionList &AL) {} 2376 2377 /// Append linker device actions generated by the builder. 2378 virtual void appendLinkDeviceActions(ActionList &AL) {} 2379 2380 /// Append linker host action generated by the builder. 2381 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; } 2382 2383 /// Append linker actions generated by the builder. 2384 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2385 2386 /// Initialize the builder. Return true if any initialization errors are 2387 /// found. 2388 virtual bool initialize() { return false; } 2389 2390 /// Return true if the builder can use bundling/unbundling. 2391 virtual bool canUseBundlerUnbundler() const { return false; } 2392 2393 /// Return true if this builder is valid. We have a valid builder if we have 2394 /// associated device tool chains. 2395 bool isValid() { return !ToolChains.empty(); } 2396 2397 /// Return the associated offload kind. 2398 Action::OffloadKind getAssociatedOffloadKind() { 2399 return AssociatedOffloadKind; 2400 } 2401 }; 2402 2403 /// Base class for CUDA/HIP action builder. It injects device code in 2404 /// the host backend action. 2405 class CudaActionBuilderBase : public DeviceActionBuilder { 2406 protected: 2407 /// Flags to signal if the user requested host-only or device-only 2408 /// compilation. 2409 bool CompileHostOnly = false; 2410 bool CompileDeviceOnly = false; 2411 bool EmitLLVM = false; 2412 bool EmitAsm = false; 2413 2414 /// ID to identify each device compilation. For CUDA it is simply the 2415 /// GPU arch string. For HIP it is either the GPU arch string or GPU 2416 /// arch string plus feature strings delimited by a plus sign, e.g. 2417 /// gfx906+xnack. 2418 struct TargetID { 2419 /// Target ID string which is persistent throughout the compilation. 2420 const char *ID; 2421 TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); } 2422 TargetID(const char *ID) : ID(ID) {} 2423 operator const char *() { return ID; } 2424 operator StringRef() { return StringRef(ID); } 2425 }; 2426 /// List of GPU architectures to use in this compilation. 2427 SmallVector<TargetID, 4> GpuArchList; 2428 2429 /// The CUDA actions for the current input. 2430 ActionList CudaDeviceActions; 2431 2432 /// The CUDA fat binary if it was generated for the current input. 2433 Action *CudaFatBinary = nullptr; 2434 2435 /// Flag that is set to true if this builder acted on the current input. 2436 bool IsActive = false; 2437 2438 /// Flag for -fgpu-rdc. 2439 bool Relocatable = false; 2440 2441 /// Default GPU architecture if there's no one specified. 2442 CudaArch DefaultCudaArch = CudaArch::UNKNOWN; 2443 2444 public: 2445 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 2446 const Driver::InputList &Inputs, 2447 Action::OffloadKind OFKind) 2448 : DeviceActionBuilder(C, Args, Inputs, OFKind) {} 2449 2450 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2451 // While generating code for CUDA, we only depend on the host input action 2452 // to trigger the creation of all the CUDA device actions. 2453 2454 // If we are dealing with an input action, replicate it for each GPU 2455 // architecture. If we are in host-only mode we return 'success' so that 2456 // the host uses the CUDA offload kind. 2457 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2458 assert(!GpuArchList.empty() && 2459 "We should have at least one GPU architecture."); 2460 2461 // If the host input is not CUDA or HIP, we don't need to bother about 2462 // this input. 2463 if (!(IA->getType() == types::TY_CUDA || 2464 IA->getType() == types::TY_HIP || 2465 IA->getType() == types::TY_PP_HIP)) { 2466 // The builder will ignore this input. 2467 IsActive = false; 2468 return ABRT_Inactive; 2469 } 2470 2471 // Set the flag to true, so that the builder acts on the current input. 2472 IsActive = true; 2473 2474 if (CompileHostOnly) 2475 return ABRT_Success; 2476 2477 // Replicate inputs for each GPU architecture. 2478 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 2479 : types::TY_CUDA_DEVICE; 2480 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2481 CudaDeviceActions.push_back( 2482 C.MakeAction<InputAction>(IA->getInputArg(), Ty)); 2483 } 2484 2485 return ABRT_Success; 2486 } 2487 2488 // If this is an unbundling action use it as is for each CUDA toolchain. 2489 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2490 2491 // If -fgpu-rdc is disabled, should not unbundle since there is no 2492 // device code to link. 2493 if (UA->getType() == types::TY_Object && !Relocatable) 2494 return ABRT_Inactive; 2495 2496 CudaDeviceActions.clear(); 2497 auto *IA = cast<InputAction>(UA->getInputs().back()); 2498 std::string FileName = IA->getInputArg().getAsString(Args); 2499 // Check if the type of the file is the same as the action. Do not 2500 // unbundle it if it is not. Do not unbundle .so files, for example, 2501 // which are not object files. 2502 if (IA->getType() == types::TY_Object && 2503 (!llvm::sys::path::has_extension(FileName) || 2504 types::lookupTypeForExtension( 2505 llvm::sys::path::extension(FileName).drop_front()) != 2506 types::TY_Object)) 2507 return ABRT_Inactive; 2508 2509 for (auto Arch : GpuArchList) { 2510 CudaDeviceActions.push_back(UA); 2511 UA->registerDependentActionInfo(ToolChains[0], Arch, 2512 AssociatedOffloadKind); 2513 } 2514 return ABRT_Success; 2515 } 2516 2517 return IsActive ? ABRT_Success : ABRT_Inactive; 2518 } 2519 2520 void appendTopLevelActions(ActionList &AL) override { 2521 // Utility to append actions to the top level list. 2522 auto AddTopLevel = [&](Action *A, TargetID TargetID) { 2523 OffloadAction::DeviceDependences Dep; 2524 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind); 2525 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2526 }; 2527 2528 // If we have a fat binary, add it to the list. 2529 if (CudaFatBinary) { 2530 AddTopLevel(CudaFatBinary, CudaArch::UNUSED); 2531 CudaDeviceActions.clear(); 2532 CudaFatBinary = nullptr; 2533 return; 2534 } 2535 2536 if (CudaDeviceActions.empty()) 2537 return; 2538 2539 // If we have CUDA actions at this point, that's because we have a have 2540 // partial compilation, so we should have an action for each GPU 2541 // architecture. 2542 assert(CudaDeviceActions.size() == GpuArchList.size() && 2543 "Expecting one action per GPU architecture."); 2544 assert(ToolChains.size() == 1 && 2545 "Expecting to have a sing CUDA toolchain."); 2546 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2547 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2548 2549 CudaDeviceActions.clear(); 2550 } 2551 2552 /// Get canonicalized offload arch option. \returns empty StringRef if the 2553 /// option is invalid. 2554 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0; 2555 2556 virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>> 2557 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0; 2558 2559 bool initialize() override { 2560 assert(AssociatedOffloadKind == Action::OFK_Cuda || 2561 AssociatedOffloadKind == Action::OFK_HIP); 2562 2563 // We don't need to support CUDA. 2564 if (AssociatedOffloadKind == Action::OFK_Cuda && 2565 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 2566 return false; 2567 2568 // We don't need to support HIP. 2569 if (AssociatedOffloadKind == Action::OFK_HIP && 2570 !C.hasOffloadToolChain<Action::OFK_HIP>()) 2571 return false; 2572 2573 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 2574 options::OPT_fno_gpu_rdc, /*Default=*/false); 2575 2576 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2577 assert(HostTC && "No toolchain for host compilation."); 2578 if (HostTC->getTriple().isNVPTX() || 2579 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 2580 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 2581 // an error and abort pipeline construction early so we don't trip 2582 // asserts that assume device-side compilation. 2583 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 2584 << HostTC->getTriple().getArchName(); 2585 return true; 2586 } 2587 2588 ToolChains.push_back( 2589 AssociatedOffloadKind == Action::OFK_Cuda 2590 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 2591 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 2592 2593 Arg *PartialCompilationArg = Args.getLastArg( 2594 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2595 options::OPT_cuda_compile_host_device); 2596 CompileHostOnly = PartialCompilationArg && 2597 PartialCompilationArg->getOption().matches( 2598 options::OPT_cuda_host_only); 2599 CompileDeviceOnly = PartialCompilationArg && 2600 PartialCompilationArg->getOption().matches( 2601 options::OPT_cuda_device_only); 2602 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); 2603 EmitAsm = Args.getLastArg(options::OPT_S); 2604 2605 // Collect all cuda_gpu_arch parameters, removing duplicates. 2606 std::set<StringRef> GpuArchs; 2607 bool Error = false; 2608 for (Arg *A : Args) { 2609 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) || 2610 A->getOption().matches(options::OPT_no_offload_arch_EQ))) 2611 continue; 2612 A->claim(); 2613 2614 StringRef ArchStr = A->getValue(); 2615 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) && 2616 ArchStr == "all") { 2617 GpuArchs.clear(); 2618 continue; 2619 } 2620 ArchStr = getCanonicalOffloadArch(ArchStr); 2621 if (ArchStr.empty()) { 2622 Error = true; 2623 } else if (A->getOption().matches(options::OPT_offload_arch_EQ)) 2624 GpuArchs.insert(ArchStr); 2625 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ)) 2626 GpuArchs.erase(ArchStr); 2627 else 2628 llvm_unreachable("Unexpected option."); 2629 } 2630 2631 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs); 2632 if (ConflictingArchs) { 2633 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo) 2634 << ConflictingArchs.getValue().first 2635 << ConflictingArchs.getValue().second; 2636 C.setContainsError(); 2637 return true; 2638 } 2639 2640 // Collect list of GPUs remaining in the set. 2641 for (auto Arch : GpuArchs) 2642 GpuArchList.push_back(Arch.data()); 2643 2644 // Default to sm_20 which is the lowest common denominator for 2645 // supported GPUs. sm_20 code should work correctly, if 2646 // suboptimally, on all newer GPUs. 2647 if (GpuArchList.empty()) 2648 GpuArchList.push_back(DefaultCudaArch); 2649 2650 return Error; 2651 } 2652 }; 2653 2654 /// \brief CUDA action builder. It injects device code in the host backend 2655 /// action. 2656 class CudaActionBuilder final : public CudaActionBuilderBase { 2657 public: 2658 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2659 const Driver::InputList &Inputs) 2660 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { 2661 DefaultCudaArch = CudaArch::SM_20; 2662 } 2663 2664 StringRef getCanonicalOffloadArch(StringRef ArchStr) override { 2665 CudaArch Arch = StringToCudaArch(ArchStr); 2666 if (Arch == CudaArch::UNKNOWN) { 2667 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2668 return StringRef(); 2669 } 2670 return CudaArchToString(Arch); 2671 } 2672 2673 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>> 2674 getConflictOffloadArchCombination( 2675 const std::set<StringRef> &GpuArchs) override { 2676 return llvm::None; 2677 } 2678 2679 ActionBuilderReturnCode 2680 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2681 phases::ID CurPhase, phases::ID FinalPhase, 2682 PhasesTy &Phases) override { 2683 if (!IsActive) 2684 return ABRT_Inactive; 2685 2686 // If we don't have more CUDA actions, we don't have any dependences to 2687 // create for the host. 2688 if (CudaDeviceActions.empty()) 2689 return ABRT_Success; 2690 2691 assert(CudaDeviceActions.size() == GpuArchList.size() && 2692 "Expecting one action per GPU architecture."); 2693 assert(!CompileHostOnly && 2694 "Not expecting CUDA actions in host-only compilation."); 2695 2696 // If we are generating code for the device or we are in a backend phase, 2697 // we attempt to generate the fat binary. We compile each arch to ptx and 2698 // assemble to cubin, then feed the cubin *and* the ptx into a device 2699 // "link" action, which uses fatbinary to combine these cubins into one 2700 // fatbin. The fatbin is then an input to the host action if not in 2701 // device-only mode. 2702 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2703 ActionList DeviceActions; 2704 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2705 // Produce the device action from the current phase up to the assemble 2706 // phase. 2707 for (auto Ph : Phases) { 2708 // Skip the phases that were already dealt with. 2709 if (Ph < CurPhase) 2710 continue; 2711 // We have to be consistent with the host final phase. 2712 if (Ph > FinalPhase) 2713 break; 2714 2715 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2716 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2717 2718 if (Ph == phases::Assemble) 2719 break; 2720 } 2721 2722 // If we didn't reach the assemble phase, we can't generate the fat 2723 // binary. We don't need to generate the fat binary if we are not in 2724 // device-only mode. 2725 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2726 CompileDeviceOnly) 2727 continue; 2728 2729 Action *AssembleAction = CudaDeviceActions[I]; 2730 assert(AssembleAction->getType() == types::TY_Object); 2731 assert(AssembleAction->getInputs().size() == 1); 2732 2733 Action *BackendAction = AssembleAction->getInputs()[0]; 2734 assert(BackendAction->getType() == types::TY_PP_Asm); 2735 2736 for (auto &A : {AssembleAction, BackendAction}) { 2737 OffloadAction::DeviceDependences DDep; 2738 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda); 2739 DeviceActions.push_back( 2740 C.MakeAction<OffloadAction>(DDep, A->getType())); 2741 } 2742 } 2743 2744 // We generate the fat binary if we have device input actions. 2745 if (!DeviceActions.empty()) { 2746 CudaFatBinary = 2747 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2748 2749 if (!CompileDeviceOnly) { 2750 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2751 Action::OFK_Cuda); 2752 // Clear the fat binary, it is already a dependence to an host 2753 // action. 2754 CudaFatBinary = nullptr; 2755 } 2756 2757 // Remove the CUDA actions as they are already connected to an host 2758 // action or fat binary. 2759 CudaDeviceActions.clear(); 2760 } 2761 2762 // We avoid creating host action in device-only mode. 2763 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2764 } else if (CurPhase > phases::Backend) { 2765 // If we are past the backend phase and still have a device action, we 2766 // don't have to do anything as this action is already a device 2767 // top-level action. 2768 return ABRT_Success; 2769 } 2770 2771 assert(CurPhase < phases::Backend && "Generating single CUDA " 2772 "instructions should only occur " 2773 "before the backend phase!"); 2774 2775 // By default, we produce an action for each device arch. 2776 for (Action *&A : CudaDeviceActions) 2777 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2778 2779 return ABRT_Success; 2780 } 2781 }; 2782 /// \brief HIP action builder. It injects device code in the host backend 2783 /// action. 2784 class HIPActionBuilder final : public CudaActionBuilderBase { 2785 /// The linker inputs obtained for each device arch. 2786 SmallVector<ActionList, 8> DeviceLinkerInputs; 2787 2788 public: 2789 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 2790 const Driver::InputList &Inputs) 2791 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) { 2792 DefaultCudaArch = CudaArch::GFX803; 2793 } 2794 2795 bool canUseBundlerUnbundler() const override { return true; } 2796 2797 StringRef getCanonicalOffloadArch(StringRef IdStr) override { 2798 llvm::StringMap<bool> Features; 2799 auto ArchStr = 2800 parseTargetID(getHIPOffloadTargetTriple(), IdStr, &Features); 2801 if (!ArchStr) { 2802 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr; 2803 C.setContainsError(); 2804 return StringRef(); 2805 } 2806 auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features); 2807 return Args.MakeArgStringRef(CanId); 2808 }; 2809 2810 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>> 2811 getConflictOffloadArchCombination( 2812 const std::set<StringRef> &GpuArchs) override { 2813 return getConflictTargetIDCombination(GpuArchs); 2814 } 2815 2816 ActionBuilderReturnCode 2817 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2818 phases::ID CurPhase, phases::ID FinalPhase, 2819 PhasesTy &Phases) override { 2820 // amdgcn does not support linking of object files, therefore we skip 2821 // backend and assemble phases to output LLVM IR. Except for generating 2822 // non-relocatable device coee, where we generate fat binary for device 2823 // code and pass to host in Backend phase. 2824 if (CudaDeviceActions.empty()) 2825 return ABRT_Success; 2826 2827 assert(((CurPhase == phases::Link && Relocatable) || 2828 CudaDeviceActions.size() == GpuArchList.size()) && 2829 "Expecting one action per GPU architecture."); 2830 assert(!CompileHostOnly && 2831 "Not expecting CUDA actions in host-only compilation."); 2832 2833 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM && 2834 !EmitAsm) { 2835 // If we are in backend phase, we attempt to generate the fat binary. 2836 // We compile each arch to IR and use a link action to generate code 2837 // object containing ISA. Then we use a special "link" action to create 2838 // a fat binary containing all the code objects for different GPU's. 2839 // The fat binary is then an input to the host action. 2840 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2841 auto BackendAction = C.getDriver().ConstructPhaseAction( 2842 C, Args, phases::Backend, CudaDeviceActions[I], 2843 AssociatedOffloadKind); 2844 auto AssembleAction = C.getDriver().ConstructPhaseAction( 2845 C, Args, phases::Assemble, BackendAction, AssociatedOffloadKind); 2846 // Create a link action to link device IR with device library 2847 // and generate ISA. 2848 ActionList AL; 2849 AL.push_back(AssembleAction); 2850 CudaDeviceActions[I] = 2851 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 2852 2853 // OffloadingActionBuilder propagates device arch until an offload 2854 // action. Since the next action for creating fatbin does 2855 // not have device arch, whereas the above link action and its input 2856 // have device arch, an offload action is needed to stop the null 2857 // device arch of the next action being propagated to the above link 2858 // action. 2859 OffloadAction::DeviceDependences DDep; 2860 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I], 2861 AssociatedOffloadKind); 2862 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 2863 DDep, CudaDeviceActions[I]->getType()); 2864 } 2865 // Create HIP fat binary with a special "link" action. 2866 CudaFatBinary = 2867 C.MakeAction<LinkJobAction>(CudaDeviceActions, 2868 types::TY_HIP_FATBIN); 2869 2870 if (!CompileDeviceOnly) { 2871 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2872 AssociatedOffloadKind); 2873 // Clear the fat binary, it is already a dependence to an host 2874 // action. 2875 CudaFatBinary = nullptr; 2876 } 2877 2878 // Remove the CUDA actions as they are already connected to an host 2879 // action or fat binary. 2880 CudaDeviceActions.clear(); 2881 2882 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2883 } else if (CurPhase == phases::Link) { 2884 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 2885 // This happens to each device action originated from each input file. 2886 // Later on, device actions in DeviceLinkerInputs are used to create 2887 // device link actions in appendLinkDependences and the created device 2888 // link actions are passed to the offload action as device dependence. 2889 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 2890 auto LI = DeviceLinkerInputs.begin(); 2891 for (auto *A : CudaDeviceActions) { 2892 LI->push_back(A); 2893 ++LI; 2894 } 2895 2896 // We will pass the device action as a host dependence, so we don't 2897 // need to do anything else with them. 2898 CudaDeviceActions.clear(); 2899 return ABRT_Success; 2900 } 2901 2902 // By default, we produce an action for each device arch. 2903 for (Action *&A : CudaDeviceActions) 2904 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 2905 AssociatedOffloadKind); 2906 2907 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host 2908 : ABRT_Success; 2909 } 2910 2911 void appendLinkDeviceActions(ActionList &AL) override { 2912 if (DeviceLinkerInputs.size() == 0) 2913 return; 2914 2915 assert(DeviceLinkerInputs.size() == GpuArchList.size() && 2916 "Linker inputs and GPU arch list sizes do not match."); 2917 2918 // Append a new link action for each device. 2919 unsigned I = 0; 2920 for (auto &LI : DeviceLinkerInputs) { 2921 // Each entry in DeviceLinkerInputs corresponds to a GPU arch. 2922 auto *DeviceLinkAction = 2923 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2924 // Linking all inputs for the current GPU arch. 2925 // LI contains all the inputs for the linker. 2926 OffloadAction::DeviceDependences DeviceLinkDeps; 2927 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0], 2928 GpuArchList[I], AssociatedOffloadKind); 2929 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps, 2930 DeviceLinkAction->getType())); 2931 ++I; 2932 } 2933 DeviceLinkerInputs.clear(); 2934 2935 // Create a host object from all the device images by embedding them 2936 // in a fat binary. 2937 OffloadAction::DeviceDependences DDeps; 2938 auto *TopDeviceLinkAction = 2939 C.MakeAction<LinkJobAction>(AL, types::TY_Object); 2940 DDeps.add(*TopDeviceLinkAction, *ToolChains[0], 2941 nullptr, AssociatedOffloadKind); 2942 2943 // Offload the host object to the host linker. 2944 AL.push_back(C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType())); 2945 } 2946 2947 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); } 2948 2949 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} 2950 }; 2951 2952 /// OpenMP action builder. The host bitcode is passed to the device frontend 2953 /// and all the device linked images are passed to the host link phase. 2954 class OpenMPActionBuilder final : public DeviceActionBuilder { 2955 /// The OpenMP actions for the current input. 2956 ActionList OpenMPDeviceActions; 2957 2958 /// The linker inputs obtained for each toolchain. 2959 SmallVector<ActionList, 8> DeviceLinkerInputs; 2960 2961 public: 2962 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2963 const Driver::InputList &Inputs) 2964 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2965 2966 ActionBuilderReturnCode 2967 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2968 phases::ID CurPhase, phases::ID FinalPhase, 2969 PhasesTy &Phases) override { 2970 if (OpenMPDeviceActions.empty()) 2971 return ABRT_Inactive; 2972 2973 // We should always have an action for each input. 2974 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2975 "Number of OpenMP actions and toolchains do not match."); 2976 2977 // The host only depends on device action in the linking phase, when all 2978 // the device images have to be embedded in the host image. 2979 if (CurPhase == phases::Link) { 2980 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2981 "Toolchains and linker inputs sizes do not match."); 2982 auto LI = DeviceLinkerInputs.begin(); 2983 for (auto *A : OpenMPDeviceActions) { 2984 LI->push_back(A); 2985 ++LI; 2986 } 2987 2988 // We passed the device action as a host dependence, so we don't need to 2989 // do anything else with them. 2990 OpenMPDeviceActions.clear(); 2991 return ABRT_Success; 2992 } 2993 2994 // By default, we produce an action for each device arch. 2995 for (Action *&A : OpenMPDeviceActions) 2996 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2997 2998 return ABRT_Success; 2999 } 3000 3001 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 3002 3003 // If this is an input action replicate it for each OpenMP toolchain. 3004 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 3005 OpenMPDeviceActions.clear(); 3006 for (unsigned I = 0; I < ToolChains.size(); ++I) 3007 OpenMPDeviceActions.push_back( 3008 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 3009 return ABRT_Success; 3010 } 3011 3012 // If this is an unbundling action use it as is for each OpenMP toolchain. 3013 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 3014 OpenMPDeviceActions.clear(); 3015 auto *IA = cast<InputAction>(UA->getInputs().back()); 3016 std::string FileName = IA->getInputArg().getAsString(Args); 3017 // Check if the type of the file is the same as the action. Do not 3018 // unbundle it if it is not. Do not unbundle .so files, for example, 3019 // which are not object files. 3020 if (IA->getType() == types::TY_Object && 3021 (!llvm::sys::path::has_extension(FileName) || 3022 types::lookupTypeForExtension( 3023 llvm::sys::path::extension(FileName).drop_front()) != 3024 types::TY_Object)) 3025 return ABRT_Inactive; 3026 for (unsigned I = 0; I < ToolChains.size(); ++I) { 3027 OpenMPDeviceActions.push_back(UA); 3028 UA->registerDependentActionInfo( 3029 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 3030 } 3031 return ABRT_Success; 3032 } 3033 3034 // When generating code for OpenMP we use the host compile phase result as 3035 // a dependence to the device compile phase so that it can learn what 3036 // declarations should be emitted. However, this is not the only use for 3037 // the host action, so we prevent it from being collapsed. 3038 if (isa<CompileJobAction>(HostAction)) { 3039 HostAction->setCannotBeCollapsedWithNextDependentAction(); 3040 assert(ToolChains.size() == OpenMPDeviceActions.size() && 3041 "Toolchains and device action sizes do not match."); 3042 OffloadAction::HostDependence HDep( 3043 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3044 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 3045 auto TC = ToolChains.begin(); 3046 for (Action *&A : OpenMPDeviceActions) { 3047 assert(isa<CompileJobAction>(A)); 3048 OffloadAction::DeviceDependences DDep; 3049 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 3050 A = C.MakeAction<OffloadAction>(HDep, DDep); 3051 ++TC; 3052 } 3053 } 3054 return ABRT_Success; 3055 } 3056 3057 void appendTopLevelActions(ActionList &AL) override { 3058 if (OpenMPDeviceActions.empty()) 3059 return; 3060 3061 // We should always have an action for each input. 3062 assert(OpenMPDeviceActions.size() == ToolChains.size() && 3063 "Number of OpenMP actions and toolchains do not match."); 3064 3065 // Append all device actions followed by the proper offload action. 3066 auto TI = ToolChains.begin(); 3067 for (auto *A : OpenMPDeviceActions) { 3068 OffloadAction::DeviceDependences Dep; 3069 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 3070 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 3071 ++TI; 3072 } 3073 // We no longer need the action stored in this builder. 3074 OpenMPDeviceActions.clear(); 3075 } 3076 3077 void appendLinkDeviceActions(ActionList &AL) override { 3078 assert(ToolChains.size() == DeviceLinkerInputs.size() && 3079 "Toolchains and linker inputs sizes do not match."); 3080 3081 // Append a new link action for each device. 3082 auto TC = ToolChains.begin(); 3083 for (auto &LI : DeviceLinkerInputs) { 3084 auto *DeviceLinkAction = 3085 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 3086 OffloadAction::DeviceDependences DeviceLinkDeps; 3087 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 3088 Action::OFK_OpenMP); 3089 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps, 3090 DeviceLinkAction->getType())); 3091 ++TC; 3092 } 3093 DeviceLinkerInputs.clear(); 3094 } 3095 3096 Action* appendLinkHostActions(ActionList &AL) override { 3097 // Create wrapper bitcode from the result of device link actions and compile 3098 // it to an object which will be added to the host link command. 3099 auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC); 3100 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm); 3101 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object); 3102 } 3103 3104 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} 3105 3106 bool initialize() override { 3107 // Get the OpenMP toolchains. If we don't get any, the action builder will 3108 // know there is nothing to do related to OpenMP offloading. 3109 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 3110 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 3111 ++TI) 3112 ToolChains.push_back(TI->second); 3113 3114 DeviceLinkerInputs.resize(ToolChains.size()); 3115 return false; 3116 } 3117 3118 bool canUseBundlerUnbundler() const override { 3119 // OpenMP should use bundled files whenever possible. 3120 return true; 3121 } 3122 }; 3123 3124 /// 3125 /// TODO: Add the implementation for other specialized builders here. 3126 /// 3127 3128 /// Specialized builders being used by this offloading action builder. 3129 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 3130 3131 /// Flag set to true if all valid builders allow file bundling/unbundling. 3132 bool CanUseBundler; 3133 3134 public: 3135 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 3136 const Driver::InputList &Inputs) 3137 : C(C) { 3138 // Create a specialized builder for each device toolchain. 3139 3140 IsValid = true; 3141 3142 // Create a specialized builder for CUDA. 3143 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 3144 3145 // Create a specialized builder for HIP. 3146 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 3147 3148 // Create a specialized builder for OpenMP. 3149 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 3150 3151 // 3152 // TODO: Build other specialized builders here. 3153 // 3154 3155 // Initialize all the builders, keeping track of errors. If all valid 3156 // builders agree that we can use bundling, set the flag to true. 3157 unsigned ValidBuilders = 0u; 3158 unsigned ValidBuildersSupportingBundling = 0u; 3159 for (auto *SB : SpecializedBuilders) { 3160 IsValid = IsValid && !SB->initialize(); 3161 3162 // Update the counters if the builder is valid. 3163 if (SB->isValid()) { 3164 ++ValidBuilders; 3165 if (SB->canUseBundlerUnbundler()) 3166 ++ValidBuildersSupportingBundling; 3167 } 3168 } 3169 CanUseBundler = 3170 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 3171 } 3172 3173 ~OffloadingActionBuilder() { 3174 for (auto *SB : SpecializedBuilders) 3175 delete SB; 3176 } 3177 3178 /// Generate an action that adds device dependences (if any) to a host action. 3179 /// If no device dependence actions exist, just return the host action \a 3180 /// HostAction. If an error is found or if no builder requires the host action 3181 /// to be generated, return nullptr. 3182 Action * 3183 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 3184 phases::ID CurPhase, phases::ID FinalPhase, 3185 DeviceActionBuilder::PhasesTy &Phases) { 3186 if (!IsValid) 3187 return nullptr; 3188 3189 if (SpecializedBuilders.empty()) 3190 return HostAction; 3191 3192 assert(HostAction && "Invalid host action!"); 3193 3194 OffloadAction::DeviceDependences DDeps; 3195 // Check if all the programming models agree we should not emit the host 3196 // action. Also, keep track of the offloading kinds employed. 3197 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3198 unsigned InactiveBuilders = 0u; 3199 unsigned IgnoringBuilders = 0u; 3200 for (auto *SB : SpecializedBuilders) { 3201 if (!SB->isValid()) { 3202 ++InactiveBuilders; 3203 continue; 3204 } 3205 3206 auto RetCode = 3207 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 3208 3209 // If the builder explicitly says the host action should be ignored, 3210 // we need to increment the variable that tracks the builders that request 3211 // the host object to be ignored. 3212 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 3213 ++IgnoringBuilders; 3214 3215 // Unless the builder was inactive for this action, we have to record the 3216 // offload kind because the host will have to use it. 3217 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3218 OffloadKind |= SB->getAssociatedOffloadKind(); 3219 } 3220 3221 // If all builders agree that the host object should be ignored, just return 3222 // nullptr. 3223 if (IgnoringBuilders && 3224 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 3225 return nullptr; 3226 3227 if (DDeps.getActions().empty()) 3228 return HostAction; 3229 3230 // We have dependences we need to bundle together. We use an offload action 3231 // for that. 3232 OffloadAction::HostDependence HDep( 3233 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3234 /*BoundArch=*/nullptr, DDeps); 3235 return C.MakeAction<OffloadAction>(HDep, DDeps); 3236 } 3237 3238 /// Generate an action that adds a host dependence to a device action. The 3239 /// results will be kept in this action builder. Return true if an error was 3240 /// found. 3241 bool addHostDependenceToDeviceActions(Action *&HostAction, 3242 const Arg *InputArg) { 3243 if (!IsValid) 3244 return true; 3245 3246 // If we are supporting bundling/unbundling and the current action is an 3247 // input action of non-source file, we replace the host action by the 3248 // unbundling action. The bundler tool has the logic to detect if an input 3249 // is a bundle or not and if the input is not a bundle it assumes it is a 3250 // host file. Therefore it is safe to create an unbundling action even if 3251 // the input is not a bundle. 3252 if (CanUseBundler && isa<InputAction>(HostAction) && 3253 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 3254 (!types::isSrcFile(HostAction->getType()) || 3255 HostAction->getType() == types::TY_PP_HIP)) { 3256 auto UnbundlingHostAction = 3257 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 3258 UnbundlingHostAction->registerDependentActionInfo( 3259 C.getSingleOffloadToolChain<Action::OFK_Host>(), 3260 /*BoundArch=*/StringRef(), Action::OFK_Host); 3261 HostAction = UnbundlingHostAction; 3262 } 3263 3264 assert(HostAction && "Invalid host action!"); 3265 3266 // Register the offload kinds that are used. 3267 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3268 for (auto *SB : SpecializedBuilders) { 3269 if (!SB->isValid()) 3270 continue; 3271 3272 auto RetCode = SB->addDeviceDepences(HostAction); 3273 3274 // Host dependences for device actions are not compatible with that same 3275 // action being ignored. 3276 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 3277 "Host dependence not expected to be ignored.!"); 3278 3279 // Unless the builder was inactive for this action, we have to record the 3280 // offload kind because the host will have to use it. 3281 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3282 OffloadKind |= SB->getAssociatedOffloadKind(); 3283 } 3284 3285 // Do not use unbundler if the Host does not depend on device action. 3286 if (OffloadKind == Action::OFK_None && CanUseBundler) 3287 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 3288 HostAction = UA->getInputs().back(); 3289 3290 return false; 3291 } 3292 3293 /// Add the offloading top level actions to the provided action list. This 3294 /// function can replace the host action by a bundling action if the 3295 /// programming models allow it. 3296 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 3297 const Arg *InputArg) { 3298 // Get the device actions to be appended. 3299 ActionList OffloadAL; 3300 for (auto *SB : SpecializedBuilders) { 3301 if (!SB->isValid()) 3302 continue; 3303 SB->appendTopLevelActions(OffloadAL); 3304 } 3305 3306 // If we can use the bundler, replace the host action by the bundling one in 3307 // the resulting list. Otherwise, just append the device actions. For 3308 // device only compilation, HostAction is a null pointer, therefore only do 3309 // this when HostAction is not a null pointer. 3310 if (CanUseBundler && HostAction && 3311 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) { 3312 // Add the host action to the list in order to create the bundling action. 3313 OffloadAL.push_back(HostAction); 3314 3315 // We expect that the host action was just appended to the action list 3316 // before this method was called. 3317 assert(HostAction == AL.back() && "Host action not in the list??"); 3318 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 3319 AL.back() = HostAction; 3320 } else 3321 AL.append(OffloadAL.begin(), OffloadAL.end()); 3322 3323 // Propagate to the current host action (if any) the offload information 3324 // associated with the current input. 3325 if (HostAction) 3326 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 3327 /*BoundArch=*/nullptr); 3328 return false; 3329 } 3330 3331 Action* makeHostLinkAction() { 3332 // Build a list of device linking actions. 3333 ActionList DeviceAL; 3334 for (DeviceActionBuilder *SB : SpecializedBuilders) { 3335 if (!SB->isValid()) 3336 continue; 3337 SB->appendLinkDeviceActions(DeviceAL); 3338 } 3339 3340 if (DeviceAL.empty()) 3341 return nullptr; 3342 3343 // Let builders add host linking actions. 3344 Action* HA; 3345 for (DeviceActionBuilder *SB : SpecializedBuilders) { 3346 if (!SB->isValid()) 3347 continue; 3348 HA = SB->appendLinkHostActions(DeviceAL); 3349 } 3350 return HA; 3351 } 3352 3353 /// Processes the host linker action. This currently consists of replacing it 3354 /// with an offload action if there are device link objects and propagate to 3355 /// the host action all the offload kinds used in the current compilation. The 3356 /// resulting action is returned. 3357 Action *processHostLinkAction(Action *HostAction) { 3358 // Add all the dependences from the device linking actions. 3359 OffloadAction::DeviceDependences DDeps; 3360 for (auto *SB : SpecializedBuilders) { 3361 if (!SB->isValid()) 3362 continue; 3363 3364 SB->appendLinkDependences(DDeps); 3365 } 3366 3367 // Calculate all the offload kinds used in the current compilation. 3368 unsigned ActiveOffloadKinds = 0u; 3369 for (auto &I : InputArgToOffloadKindMap) 3370 ActiveOffloadKinds |= I.second; 3371 3372 // If we don't have device dependencies, we don't have to create an offload 3373 // action. 3374 if (DDeps.getActions().empty()) { 3375 // Propagate all the active kinds to host action. Given that it is a link 3376 // action it is assumed to depend on all actions generated so far. 3377 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 3378 /*BoundArch=*/nullptr); 3379 return HostAction; 3380 } 3381 3382 // Create the offload action with all dependences. When an offload action 3383 // is created the kinds are propagated to the host action, so we don't have 3384 // to do that explicitly here. 3385 OffloadAction::HostDependence HDep( 3386 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3387 /*BoundArch*/ nullptr, ActiveOffloadKinds); 3388 return C.MakeAction<OffloadAction>(HDep, DDeps); 3389 } 3390 }; 3391 } // anonymous namespace. 3392 3393 void Driver::handleArguments(Compilation &C, DerivedArgList &Args, 3394 const InputList &Inputs, 3395 ActionList &Actions) const { 3396 3397 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 3398 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 3399 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 3400 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 3401 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 3402 Args.eraseArg(options::OPT__SLASH_Yc); 3403 Args.eraseArg(options::OPT__SLASH_Yu); 3404 YcArg = YuArg = nullptr; 3405 } 3406 if (YcArg && Inputs.size() > 1) { 3407 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 3408 Args.eraseArg(options::OPT__SLASH_Yc); 3409 YcArg = nullptr; 3410 } 3411 3412 Arg *FinalPhaseArg; 3413 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 3414 3415 if (FinalPhase == phases::Link) { 3416 if (Args.hasArg(options::OPT_emit_llvm)) 3417 Diag(clang::diag::err_drv_emit_llvm_link); 3418 if (IsCLMode() && LTOMode != LTOK_None && 3419 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 3420 Diag(clang::diag::err_drv_lto_without_lld); 3421 } 3422 3423 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 3424 // If only preprocessing or /Y- is used, all pch handling is disabled. 3425 // Rather than check for it everywhere, just remove clang-cl pch-related 3426 // flags here. 3427 Args.eraseArg(options::OPT__SLASH_Fp); 3428 Args.eraseArg(options::OPT__SLASH_Yc); 3429 Args.eraseArg(options::OPT__SLASH_Yu); 3430 YcArg = YuArg = nullptr; 3431 } 3432 3433 unsigned LastPLSize = 0; 3434 for (auto &I : Inputs) { 3435 types::ID InputType = I.first; 3436 const Arg *InputArg = I.second; 3437 3438 auto PL = types::getCompilationPhases(InputType); 3439 LastPLSize = PL.size(); 3440 3441 // If the first step comes after the final phase we are doing as part of 3442 // this compilation, warn the user about it. 3443 phases::ID InitialPhase = PL[0]; 3444 if (InitialPhase > FinalPhase) { 3445 if (InputArg->isClaimed()) 3446 continue; 3447 3448 // Claim here to avoid the more general unused warning. 3449 InputArg->claim(); 3450 3451 // Suppress all unused style warnings with -Qunused-arguments 3452 if (Args.hasArg(options::OPT_Qunused_arguments)) 3453 continue; 3454 3455 // Special case when final phase determined by binary name, rather than 3456 // by a command-line argument with a corresponding Arg. 3457 if (CCCIsCPP()) 3458 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 3459 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 3460 // Special case '-E' warning on a previously preprocessed file to make 3461 // more sense. 3462 else if (InitialPhase == phases::Compile && 3463 (Args.getLastArg(options::OPT__SLASH_EP, 3464 options::OPT__SLASH_P) || 3465 Args.getLastArg(options::OPT_E) || 3466 Args.getLastArg(options::OPT_M, options::OPT_MM)) && 3467 getPreprocessedType(InputType) == types::TY_INVALID) 3468 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 3469 << InputArg->getAsString(Args) << !!FinalPhaseArg 3470 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3471 else 3472 Diag(clang::diag::warn_drv_input_file_unused) 3473 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 3474 << !!FinalPhaseArg 3475 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3476 continue; 3477 } 3478 3479 if (YcArg) { 3480 // Add a separate precompile phase for the compile phase. 3481 if (FinalPhase >= phases::Compile) { 3482 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 3483 // Build the pipeline for the pch file. 3484 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType); 3485 for (phases::ID Phase : types::getCompilationPhases(HeaderType)) 3486 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 3487 assert(ClangClPch); 3488 Actions.push_back(ClangClPch); 3489 // The driver currently exits after the first failed command. This 3490 // relies on that behavior, to make sure if the pch generation fails, 3491 // the main compilation won't run. 3492 // FIXME: If the main compilation fails, the PCH generation should 3493 // probably not be considered successful either. 3494 } 3495 } 3496 } 3497 3498 // If we are linking, claim any options which are obviously only used for 3499 // compilation. 3500 // FIXME: Understand why the last Phase List length is used here. 3501 if (FinalPhase == phases::Link && LastPLSize == 1) { 3502 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3503 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3504 } 3505 } 3506 3507 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 3508 const InputList &Inputs, ActionList &Actions) const { 3509 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 3510 3511 if (!SuppressMissingInputWarning && Inputs.empty()) { 3512 Diag(clang::diag::err_drv_no_input_files); 3513 return; 3514 } 3515 3516 // Reject -Z* at the top level, these options should never have been exposed 3517 // by gcc. 3518 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 3519 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 3520 3521 // Diagnose misuse of /Fo. 3522 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 3523 StringRef V = A->getValue(); 3524 if (Inputs.size() > 1 && !V.empty() && 3525 !llvm::sys::path::is_separator(V.back())) { 3526 // Check whether /Fo tries to name an output file for multiple inputs. 3527 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3528 << A->getSpelling() << V; 3529 Args.eraseArg(options::OPT__SLASH_Fo); 3530 } 3531 } 3532 3533 // Diagnose misuse of /Fa. 3534 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 3535 StringRef V = A->getValue(); 3536 if (Inputs.size() > 1 && !V.empty() && 3537 !llvm::sys::path::is_separator(V.back())) { 3538 // Check whether /Fa tries to name an asm file for multiple inputs. 3539 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3540 << A->getSpelling() << V; 3541 Args.eraseArg(options::OPT__SLASH_Fa); 3542 } 3543 } 3544 3545 // Diagnose misuse of /o. 3546 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 3547 if (A->getValue()[0] == '\0') { 3548 // It has to have a value. 3549 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 3550 Args.eraseArg(options::OPT__SLASH_o); 3551 } 3552 } 3553 3554 handleArguments(C, Args, Inputs, Actions); 3555 3556 // Builder to be used to build offloading actions. 3557 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 3558 3559 // Construct the actions to perform. 3560 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; 3561 ActionList LinkerInputs; 3562 ActionList MergerInputs; 3563 3564 for (auto &I : Inputs) { 3565 types::ID InputType = I.first; 3566 const Arg *InputArg = I.second; 3567 3568 auto PL = types::getCompilationPhases(*this, Args, InputType); 3569 if (PL.empty()) 3570 continue; 3571 3572 auto FullPL = types::getCompilationPhases(InputType); 3573 3574 // Build the pipeline for this file. 3575 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3576 3577 // Use the current host action in any of the offloading actions, if 3578 // required. 3579 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3580 break; 3581 3582 for (phases::ID Phase : PL) { 3583 3584 // Add any offload action the host action depends on. 3585 Current = OffloadBuilder.addDeviceDependencesToHostAction( 3586 Current, InputArg, Phase, PL.back(), FullPL); 3587 if (!Current) 3588 break; 3589 3590 // Queue linker inputs. 3591 if (Phase == phases::Link) { 3592 assert(Phase == PL.back() && "linking must be final compilation step."); 3593 LinkerInputs.push_back(Current); 3594 Current = nullptr; 3595 break; 3596 } 3597 3598 // TODO: Consider removing this because the merged may not end up being 3599 // the final Phase in the pipeline. Perhaps the merged could just merge 3600 // and then pass an artifact of some sort to the Link Phase. 3601 // Queue merger inputs. 3602 if (Phase == phases::IfsMerge) { 3603 assert(Phase == PL.back() && "merging must be final compilation step."); 3604 MergerInputs.push_back(Current); 3605 Current = nullptr; 3606 break; 3607 } 3608 3609 // Each precompiled header file after a module file action is a module 3610 // header of that same module file, rather than being compiled to a 3611 // separate PCH. 3612 if (Phase == phases::Precompile && HeaderModuleAction && 3613 getPrecompiledType(InputType) == types::TY_PCH) { 3614 HeaderModuleAction->addModuleHeaderInput(Current); 3615 Current = nullptr; 3616 break; 3617 } 3618 3619 // FIXME: Should we include any prior module file outputs as inputs of 3620 // later actions in the same command line? 3621 3622 // Otherwise construct the appropriate action. 3623 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 3624 3625 // We didn't create a new action, so we will just move to the next phase. 3626 if (NewCurrent == Current) 3627 continue; 3628 3629 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent)) 3630 HeaderModuleAction = HMA; 3631 3632 Current = NewCurrent; 3633 3634 // Use the current host action in any of the offloading actions, if 3635 // required. 3636 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3637 break; 3638 3639 if (Current->getType() == types::TY_Nothing) 3640 break; 3641 } 3642 3643 // If we ended with something, add to the output list. 3644 if (Current) 3645 Actions.push_back(Current); 3646 3647 // Add any top level actions generated for offloading. 3648 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 3649 } 3650 3651 // Add a link action if necessary. 3652 if (!LinkerInputs.empty()) { 3653 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction()) 3654 LinkerInputs.push_back(Wrapper); 3655 Action *LA; 3656 // Check if this Linker Job should emit a static library. 3657 if (ShouldEmitStaticLibrary(Args)) { 3658 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image); 3659 } else { 3660 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3661 } 3662 LA = OffloadBuilder.processHostLinkAction(LA); 3663 Actions.push_back(LA); 3664 } 3665 3666 // Add an interface stubs merge action if necessary. 3667 if (!MergerInputs.empty()) 3668 Actions.push_back( 3669 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 3670 3671 if (Args.hasArg(options::OPT_emit_interface_stubs)) { 3672 auto PhaseList = types::getCompilationPhases( 3673 types::TY_IFS_CPP, 3674 Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase); 3675 3676 ActionList MergerInputs; 3677 3678 for (auto &I : Inputs) { 3679 types::ID InputType = I.first; 3680 const Arg *InputArg = I.second; 3681 3682 // Currently clang and the llvm assembler do not support generating symbol 3683 // stubs from assembly, so we skip the input on asm files. For ifs files 3684 // we rely on the normal pipeline setup in the pipeline setup code above. 3685 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm || 3686 InputType == types::TY_Asm) 3687 continue; 3688 3689 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3690 3691 for (auto Phase : PhaseList) { 3692 switch (Phase) { 3693 default: 3694 llvm_unreachable( 3695 "IFS Pipeline can only consist of Compile followed by IfsMerge."); 3696 case phases::Compile: { 3697 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs 3698 // files where the .o file is located. The compile action can not 3699 // handle this. 3700 if (InputType == types::TY_Object) 3701 break; 3702 3703 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP); 3704 break; 3705 } 3706 case phases::IfsMerge: { 3707 assert(Phase == PhaseList.back() && 3708 "merging must be final compilation step."); 3709 MergerInputs.push_back(Current); 3710 Current = nullptr; 3711 break; 3712 } 3713 } 3714 } 3715 3716 // If we ended with something, add to the output list. 3717 if (Current) 3718 Actions.push_back(Current); 3719 } 3720 3721 // Add an interface stubs merge action if necessary. 3722 if (!MergerInputs.empty()) 3723 Actions.push_back( 3724 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 3725 } 3726 3727 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom 3728 // Compile phase that prints out supported cpu models and quits. 3729 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { 3730 // Use the -mcpu=? flag as the dummy input to cc1. 3731 Actions.clear(); 3732 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); 3733 Actions.push_back( 3734 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 3735 for (auto &I : Inputs) 3736 I.second->claim(); 3737 } 3738 3739 // Claim ignored clang-cl options. 3740 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3741 3742 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3743 // to non-CUDA compilations and should not trigger warnings there. 3744 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3745 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3746 } 3747 3748 Action *Driver::ConstructPhaseAction( 3749 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3750 Action::OffloadKind TargetDeviceOffloadKind) const { 3751 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3752 3753 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3754 // encode this in the steps because the intermediate type depends on 3755 // arguments. Just special case here. 3756 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3757 return Input; 3758 3759 // Build the appropriate action. 3760 switch (Phase) { 3761 case phases::Link: 3762 llvm_unreachable("link action invalid here."); 3763 case phases::IfsMerge: 3764 llvm_unreachable("ifsmerge action invalid here."); 3765 case phases::Preprocess: { 3766 types::ID OutputTy; 3767 // -M and -MM specify the dependency file name by altering the output type, 3768 // -if -MD and -MMD are not specified. 3769 if (Args.hasArg(options::OPT_M, options::OPT_MM) && 3770 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { 3771 OutputTy = types::TY_Dependencies; 3772 } else { 3773 OutputTy = Input->getType(); 3774 if (!Args.hasFlag(options::OPT_frewrite_includes, 3775 options::OPT_fno_rewrite_includes, false) && 3776 !Args.hasFlag(options::OPT_frewrite_imports, 3777 options::OPT_fno_rewrite_imports, false) && 3778 !CCGenDiagnostics) 3779 OutputTy = types::getPreprocessedType(OutputTy); 3780 assert(OutputTy != types::TY_INVALID && 3781 "Cannot preprocess this input type!"); 3782 } 3783 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3784 } 3785 case phases::Precompile: { 3786 types::ID OutputTy = getPrecompiledType(Input->getType()); 3787 assert(OutputTy != types::TY_INVALID && 3788 "Cannot precompile this input type!"); 3789 3790 // If we're given a module name, precompile header file inputs as a 3791 // module, not as a precompiled header. 3792 const char *ModName = nullptr; 3793 if (OutputTy == types::TY_PCH) { 3794 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 3795 ModName = A->getValue(); 3796 if (ModName) 3797 OutputTy = types::TY_ModuleFile; 3798 } 3799 3800 if (Args.hasArg(options::OPT_fsyntax_only)) { 3801 // Syntax checks should not emit a PCH file 3802 OutputTy = types::TY_Nothing; 3803 } 3804 3805 if (ModName) 3806 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy, 3807 ModName); 3808 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3809 } 3810 case phases::Compile: { 3811 if (Args.hasArg(options::OPT_fsyntax_only)) 3812 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3813 if (Args.hasArg(options::OPT_rewrite_objc)) 3814 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3815 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3816 return C.MakeAction<CompileJobAction>(Input, 3817 types::TY_RewrittenLegacyObjC); 3818 if (Args.hasArg(options::OPT__analyze)) 3819 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3820 if (Args.hasArg(options::OPT__migrate)) 3821 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3822 if (Args.hasArg(options::OPT_emit_ast)) 3823 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3824 if (Args.hasArg(options::OPT_module_file_info)) 3825 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3826 if (Args.hasArg(options::OPT_verify_pch)) 3827 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3828 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3829 } 3830 case phases::Backend: { 3831 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3832 types::ID Output = 3833 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3834 return C.MakeAction<BackendJobAction>(Input, Output); 3835 } 3836 if (Args.hasArg(options::OPT_emit_llvm) || 3837 (TargetDeviceOffloadKind == Action::OFK_HIP && 3838 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 3839 false))) { 3840 types::ID Output = 3841 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3842 return C.MakeAction<BackendJobAction>(Input, Output); 3843 } 3844 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3845 } 3846 case phases::Assemble: 3847 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3848 } 3849 3850 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3851 } 3852 3853 void Driver::BuildJobs(Compilation &C) const { 3854 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3855 3856 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3857 3858 // It is an error to provide a -o option if we are making multiple output 3859 // files. There are exceptions: 3860 // 3861 // IfsMergeJob: when generating interface stubs enabled we want to be able to 3862 // generate the stub file at the same time that we generate the real 3863 // library/a.out. So when a .o, .so, etc are the output, with clang interface 3864 // stubs there will also be a .ifs and .ifso at the same location. 3865 // 3866 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled 3867 // and -c is passed, we still want to be able to generate a .ifs file while 3868 // we are also generating .o files. So we allow more than one output file in 3869 // this case as well. 3870 // 3871 if (FinalOutput) { 3872 unsigned NumOutputs = 0; 3873 unsigned NumIfsOutputs = 0; 3874 for (const Action *A : C.getActions()) 3875 if (A->getType() != types::TY_Nothing && 3876 !(A->getKind() == Action::IfsMergeJobClass || 3877 (A->getType() == clang::driver::types::TY_IFS_CPP && 3878 A->getKind() == clang::driver::Action::CompileJobClass && 3879 0 == NumIfsOutputs++) || 3880 (A->getKind() == Action::BindArchClass && A->getInputs().size() && 3881 A->getInputs().front()->getKind() == Action::IfsMergeJobClass))) 3882 ++NumOutputs; 3883 3884 if (NumOutputs > 1) { 3885 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3886 FinalOutput = nullptr; 3887 } 3888 } 3889 3890 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple(); 3891 if (RawTriple.isOSAIX()) 3892 if (Arg *A = C.getArgs().getLastArg(options::OPT_G)) 3893 Diag(diag::err_drv_unsupported_opt_for_target) 3894 << A->getSpelling() << RawTriple.str(); 3895 3896 // Collect the list of architectures. 3897 llvm::StringSet<> ArchNames; 3898 if (RawTriple.isOSBinFormatMachO()) 3899 for (const Arg *A : C.getArgs()) 3900 if (A->getOption().matches(options::OPT_arch)) 3901 ArchNames.insert(A->getValue()); 3902 3903 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3904 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3905 for (Action *A : C.getActions()) { 3906 // If we are linking an image for multiple archs then the linker wants 3907 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3908 // doesn't fit in cleanly because we have to pass this information down. 3909 // 3910 // FIXME: This is a hack; find a cleaner way to integrate this into the 3911 // process. 3912 const char *LinkingOutput = nullptr; 3913 if (isa<LipoJobAction>(A)) { 3914 if (FinalOutput) 3915 LinkingOutput = FinalOutput->getValue(); 3916 else 3917 LinkingOutput = getDefaultImageName(); 3918 } 3919 3920 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3921 /*BoundArch*/ StringRef(), 3922 /*AtTopLevel*/ true, 3923 /*MultipleArchs*/ ArchNames.size() > 1, 3924 /*LinkingOutput*/ LinkingOutput, CachedResults, 3925 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3926 } 3927 3928 StringRef StatReportFile; 3929 bool PrintProcessStat = false; 3930 if (const Arg *A = C.getArgs().getLastArg(options::OPT_fproc_stat_report_EQ)) 3931 StatReportFile = A->getValue(); 3932 if (C.getArgs().hasArg(options::OPT_fproc_stat_report)) 3933 PrintProcessStat = true; 3934 3935 // If we have more than one job, then disable integrated-cc1 for now. Do this 3936 // also when we need to report process execution statistics. 3937 if (C.getJobs().size() > 1 || !StatReportFile.empty() || PrintProcessStat) 3938 for (auto &J : C.getJobs()) 3939 J.InProcess = false; 3940 3941 if (!StatReportFile.empty() || PrintProcessStat) { 3942 C.setPostCallback([=](const Command &Cmd, int Res) { 3943 Optional<llvm::sys::ProcessStatistics> ProcStat = 3944 Cmd.getProcessStatistics(); 3945 if (!ProcStat) 3946 return; 3947 if (PrintProcessStat) { 3948 using namespace llvm; 3949 // Human readable output. 3950 outs() << sys::path::filename(Cmd.getExecutable()) << ": " 3951 << "output="; 3952 if (Cmd.getOutputFilenames().empty()) 3953 outs() << "\"\""; 3954 else 3955 outs() << Cmd.getOutputFilenames().front(); 3956 outs() << ", total=" 3957 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms" 3958 << ", user=" 3959 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms" 3960 << ", mem=" << ProcStat->PeakMemory << " Kb\n"; 3961 } 3962 if (!StatReportFile.empty()) { 3963 // CSV format. 3964 std::string Buffer; 3965 llvm::raw_string_ostream Out(Buffer); 3966 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()), 3967 /*Quote*/ true); 3968 Out << ','; 3969 if (Cmd.getOutputFilenames().empty()) 3970 Out << "\"\""; 3971 else 3972 llvm::sys::printArg(Out, Cmd.getOutputFilenames().front(), true); 3973 Out << ',' << ProcStat->TotalTime.count() << ',' 3974 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory 3975 << '\n'; 3976 Out.flush(); 3977 std::error_code EC; 3978 llvm::raw_fd_ostream OS(StatReportFile, EC, llvm::sys::fs::OF_Append); 3979 if (EC) 3980 return; 3981 auto L = OS.lock(); 3982 if (!L) { 3983 llvm::errs() << "ERROR: Cannot lock file " << StatReportFile << ": " 3984 << toString(L.takeError()) << "\n"; 3985 return; 3986 } 3987 OS << Buffer; 3988 } 3989 }); 3990 } 3991 3992 // If the user passed -Qunused-arguments or there were errors, don't warn 3993 // about any unused arguments. 3994 if (Diags.hasErrorOccurred() || 3995 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3996 return; 3997 3998 // Claim -### here. 3999 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 4000 4001 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 4002 (void)C.getArgs().hasArg(options::OPT_driver_mode); 4003 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 4004 4005 for (Arg *A : C.getArgs()) { 4006 // FIXME: It would be nice to be able to send the argument to the 4007 // DiagnosticsEngine, so that extra values, position, and so on could be 4008 // printed. 4009 if (!A->isClaimed()) { 4010 if (A->getOption().hasFlag(options::NoArgumentUnused)) 4011 continue; 4012 4013 // Suppress the warning automatically if this is just a flag, and it is an 4014 // instance of an argument we already claimed. 4015 const Option &Opt = A->getOption(); 4016 if (Opt.getKind() == Option::FlagClass) { 4017 bool DuplicateClaimed = false; 4018 4019 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 4020 if (AA->isClaimed()) { 4021 DuplicateClaimed = true; 4022 break; 4023 } 4024 } 4025 4026 if (DuplicateClaimed) 4027 continue; 4028 } 4029 4030 // In clang-cl, don't mention unknown arguments here since they have 4031 // already been warned about. 4032 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 4033 Diag(clang::diag::warn_drv_unused_argument) 4034 << A->getAsString(C.getArgs()); 4035 } 4036 } 4037 } 4038 4039 namespace { 4040 /// Utility class to control the collapse of dependent actions and select the 4041 /// tools accordingly. 4042 class ToolSelector final { 4043 /// The tool chain this selector refers to. 4044 const ToolChain &TC; 4045 4046 /// The compilation this selector refers to. 4047 const Compilation &C; 4048 4049 /// The base action this selector refers to. 4050 const JobAction *BaseAction; 4051 4052 /// Set to true if the current toolchain refers to host actions. 4053 bool IsHostSelector; 4054 4055 /// Set to true if save-temps and embed-bitcode functionalities are active. 4056 bool SaveTemps; 4057 bool EmbedBitcode; 4058 4059 /// Get previous dependent action or null if that does not exist. If 4060 /// \a CanBeCollapsed is false, that action must be legal to collapse or 4061 /// null will be returned. 4062 const JobAction *getPrevDependentAction(const ActionList &Inputs, 4063 ActionList &SavedOffloadAction, 4064 bool CanBeCollapsed = true) { 4065 // An option can be collapsed only if it has a single input. 4066 if (Inputs.size() != 1) 4067 return nullptr; 4068 4069 Action *CurAction = *Inputs.begin(); 4070 if (CanBeCollapsed && 4071 !CurAction->isCollapsingWithNextDependentActionLegal()) 4072 return nullptr; 4073 4074 // If the input action is an offload action. Look through it and save any 4075 // offload action that can be dropped in the event of a collapse. 4076 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 4077 // If the dependent action is a device action, we will attempt to collapse 4078 // only with other device actions. Otherwise, we would do the same but 4079 // with host actions only. 4080 if (!IsHostSelector) { 4081 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 4082 CurAction = 4083 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 4084 if (CanBeCollapsed && 4085 !CurAction->isCollapsingWithNextDependentActionLegal()) 4086 return nullptr; 4087 SavedOffloadAction.push_back(OA); 4088 return dyn_cast<JobAction>(CurAction); 4089 } 4090 } else if (OA->hasHostDependence()) { 4091 CurAction = OA->getHostDependence(); 4092 if (CanBeCollapsed && 4093 !CurAction->isCollapsingWithNextDependentActionLegal()) 4094 return nullptr; 4095 SavedOffloadAction.push_back(OA); 4096 return dyn_cast<JobAction>(CurAction); 4097 } 4098 return nullptr; 4099 } 4100 4101 return dyn_cast<JobAction>(CurAction); 4102 } 4103 4104 /// Return true if an assemble action can be collapsed. 4105 bool canCollapseAssembleAction() const { 4106 return TC.useIntegratedAs() && !SaveTemps && 4107 !C.getArgs().hasArg(options::OPT_via_file_asm) && 4108 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 4109 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 4110 } 4111 4112 /// Return true if a preprocessor action can be collapsed. 4113 bool canCollapsePreprocessorAction() const { 4114 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 4115 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 4116 !C.getArgs().hasArg(options::OPT_rewrite_objc); 4117 } 4118 4119 /// Struct that relates an action with the offload actions that would be 4120 /// collapsed with it. 4121 struct JobActionInfo final { 4122 /// The action this info refers to. 4123 const JobAction *JA = nullptr; 4124 /// The offload actions we need to take care off if this action is 4125 /// collapsed. 4126 ActionList SavedOffloadAction; 4127 }; 4128 4129 /// Append collapsed offload actions from the give nnumber of elements in the 4130 /// action info array. 4131 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 4132 ArrayRef<JobActionInfo> &ActionInfo, 4133 unsigned ElementNum) { 4134 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 4135 for (unsigned I = 0; I < ElementNum; ++I) 4136 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 4137 ActionInfo[I].SavedOffloadAction.end()); 4138 } 4139 4140 /// Functions that attempt to perform the combining. They detect if that is 4141 /// legal, and if so they update the inputs \a Inputs and the offload action 4142 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 4143 /// the combined action is returned. If the combining is not legal or if the 4144 /// tool does not exist, null is returned. 4145 /// Currently three kinds of collapsing are supported: 4146 /// - Assemble + Backend + Compile; 4147 /// - Assemble + Backend ; 4148 /// - Backend + Compile. 4149 const Tool * 4150 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 4151 ActionList &Inputs, 4152 ActionList &CollapsedOffloadAction) { 4153 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 4154 return nullptr; 4155 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 4156 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 4157 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 4158 if (!AJ || !BJ || !CJ) 4159 return nullptr; 4160 4161 // Get compiler tool. 4162 const Tool *T = TC.SelectTool(*CJ); 4163 if (!T) 4164 return nullptr; 4165 4166 // When using -fembed-bitcode, it is required to have the same tool (clang) 4167 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 4168 if (EmbedBitcode) { 4169 const Tool *BT = TC.SelectTool(*BJ); 4170 if (BT == T) 4171 return nullptr; 4172 } 4173 4174 if (!T->hasIntegratedAssembler()) 4175 return nullptr; 4176 4177 Inputs = CJ->getInputs(); 4178 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 4179 /*NumElements=*/3); 4180 return T; 4181 } 4182 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 4183 ActionList &Inputs, 4184 ActionList &CollapsedOffloadAction) { 4185 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 4186 return nullptr; 4187 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 4188 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 4189 if (!AJ || !BJ) 4190 return nullptr; 4191 4192 // Get backend tool. 4193 const Tool *T = TC.SelectTool(*BJ); 4194 if (!T) 4195 return nullptr; 4196 4197 if (!T->hasIntegratedAssembler()) 4198 return nullptr; 4199 4200 Inputs = BJ->getInputs(); 4201 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 4202 /*NumElements=*/2); 4203 return T; 4204 } 4205 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 4206 ActionList &Inputs, 4207 ActionList &CollapsedOffloadAction) { 4208 if (ActionInfo.size() < 2) 4209 return nullptr; 4210 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 4211 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 4212 if (!BJ || !CJ) 4213 return nullptr; 4214 4215 // Check if the initial input (to the compile job or its predessor if one 4216 // exists) is LLVM bitcode. In that case, no preprocessor step is required 4217 // and we can still collapse the compile and backend jobs when we have 4218 // -save-temps. I.e. there is no need for a separate compile job just to 4219 // emit unoptimized bitcode. 4220 bool InputIsBitcode = true; 4221 for (size_t i = 1; i < ActionInfo.size(); i++) 4222 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 4223 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 4224 InputIsBitcode = false; 4225 break; 4226 } 4227 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 4228 return nullptr; 4229 4230 // Get compiler tool. 4231 const Tool *T = TC.SelectTool(*CJ); 4232 if (!T) 4233 return nullptr; 4234 4235 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 4236 return nullptr; 4237 4238 Inputs = CJ->getInputs(); 4239 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 4240 /*NumElements=*/2); 4241 return T; 4242 } 4243 4244 /// Updates the inputs if the obtained tool supports combining with 4245 /// preprocessor action, and the current input is indeed a preprocessor 4246 /// action. If combining results in the collapse of offloading actions, those 4247 /// are appended to \a CollapsedOffloadAction. 4248 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 4249 ActionList &CollapsedOffloadAction) { 4250 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 4251 return; 4252 4253 // Attempt to get a preprocessor action dependence. 4254 ActionList PreprocessJobOffloadActions; 4255 ActionList NewInputs; 4256 for (Action *A : Inputs) { 4257 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 4258 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 4259 NewInputs.push_back(A); 4260 continue; 4261 } 4262 4263 // This is legal to combine. Append any offload action we found and add the 4264 // current input to preprocessor inputs. 4265 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 4266 PreprocessJobOffloadActions.end()); 4267 NewInputs.append(PJ->input_begin(), PJ->input_end()); 4268 } 4269 Inputs = NewInputs; 4270 } 4271 4272 public: 4273 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 4274 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 4275 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 4276 EmbedBitcode(EmbedBitcode) { 4277 assert(BaseAction && "Invalid base action."); 4278 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 4279 } 4280 4281 /// Check if a chain of actions can be combined and return the tool that can 4282 /// handle the combination of actions. The pointer to the current inputs \a 4283 /// Inputs and the list of offload actions \a CollapsedOffloadActions 4284 /// connected to collapsed actions are updated accordingly. The latter enables 4285 /// the caller of the selector to process them afterwards instead of just 4286 /// dropping them. If no suitable tool is found, null will be returned. 4287 const Tool *getTool(ActionList &Inputs, 4288 ActionList &CollapsedOffloadAction) { 4289 // 4290 // Get the largest chain of actions that we could combine. 4291 // 4292 4293 SmallVector<JobActionInfo, 5> ActionChain(1); 4294 ActionChain.back().JA = BaseAction; 4295 while (ActionChain.back().JA) { 4296 const Action *CurAction = ActionChain.back().JA; 4297 4298 // Grow the chain by one element. 4299 ActionChain.resize(ActionChain.size() + 1); 4300 JobActionInfo &AI = ActionChain.back(); 4301 4302 // Attempt to fill it with the 4303 AI.JA = 4304 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 4305 } 4306 4307 // Pop the last action info as it could not be filled. 4308 ActionChain.pop_back(); 4309 4310 // 4311 // Attempt to combine actions. If all combining attempts failed, just return 4312 // the tool of the provided action. At the end we attempt to combine the 4313 // action with any preprocessor action it may depend on. 4314 // 4315 4316 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 4317 CollapsedOffloadAction); 4318 if (!T) 4319 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 4320 if (!T) 4321 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 4322 if (!T) { 4323 Inputs = BaseAction->getInputs(); 4324 T = TC.SelectTool(*BaseAction); 4325 } 4326 4327 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 4328 return T; 4329 } 4330 }; 4331 } 4332 4333 /// Return a string that uniquely identifies the result of a job. The bound arch 4334 /// is not necessarily represented in the toolchain's triple -- for example, 4335 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 4336 /// Also, we need to add the offloading device kind, as the same tool chain can 4337 /// be used for host and device for some programming models, e.g. OpenMP. 4338 static std::string GetTriplePlusArchString(const ToolChain *TC, 4339 StringRef BoundArch, 4340 Action::OffloadKind OffloadKind) { 4341 std::string TriplePlusArch = TC->getTriple().normalize(); 4342 if (!BoundArch.empty()) { 4343 TriplePlusArch += "-"; 4344 TriplePlusArch += BoundArch; 4345 } 4346 TriplePlusArch += "-"; 4347 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 4348 return TriplePlusArch; 4349 } 4350 4351 InputInfo Driver::BuildJobsForAction( 4352 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4353 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4354 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4355 Action::OffloadKind TargetDeviceOffloadKind) const { 4356 std::pair<const Action *, std::string> ActionTC = { 4357 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4358 auto CachedResult = CachedResults.find(ActionTC); 4359 if (CachedResult != CachedResults.end()) { 4360 return CachedResult->second; 4361 } 4362 InputInfo Result = BuildJobsForActionNoCache( 4363 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 4364 CachedResults, TargetDeviceOffloadKind); 4365 CachedResults[ActionTC] = Result; 4366 return Result; 4367 } 4368 4369 InputInfo Driver::BuildJobsForActionNoCache( 4370 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4371 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4372 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4373 Action::OffloadKind TargetDeviceOffloadKind) const { 4374 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 4375 4376 InputInfoList OffloadDependencesInputInfo; 4377 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 4378 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 4379 // The 'Darwin' toolchain is initialized only when its arguments are 4380 // computed. Get the default arguments for OFK_None to ensure that 4381 // initialization is performed before processing the offload action. 4382 // FIXME: Remove when darwin's toolchain is initialized during construction. 4383 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 4384 4385 // The offload action is expected to be used in four different situations. 4386 // 4387 // a) Set a toolchain/architecture/kind for a host action: 4388 // Host Action 1 -> OffloadAction -> Host Action 2 4389 // 4390 // b) Set a toolchain/architecture/kind for a device action; 4391 // Device Action 1 -> OffloadAction -> Device Action 2 4392 // 4393 // c) Specify a device dependence to a host action; 4394 // Device Action 1 _ 4395 // \ 4396 // Host Action 1 ---> OffloadAction -> Host Action 2 4397 // 4398 // d) Specify a host dependence to a device action. 4399 // Host Action 1 _ 4400 // \ 4401 // Device Action 1 ---> OffloadAction -> Device Action 2 4402 // 4403 // For a) and b), we just return the job generated for the dependence. For 4404 // c) and d) we override the current action with the host/device dependence 4405 // if the current toolchain is host/device and set the offload dependences 4406 // info with the jobs obtained from the device/host dependence(s). 4407 4408 // If there is a single device option, just generate the job for it. 4409 if (OA->hasSingleDeviceDependence()) { 4410 InputInfo DevA; 4411 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 4412 const char *DepBoundArch) { 4413 DevA = 4414 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 4415 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 4416 CachedResults, DepA->getOffloadingDeviceKind()); 4417 }); 4418 return DevA; 4419 } 4420 4421 // If 'Action 2' is host, we generate jobs for the device dependences and 4422 // override the current action with the host dependence. Otherwise, we 4423 // generate the host dependences and override the action with the device 4424 // dependence. The dependences can't therefore be a top-level action. 4425 OA->doOnEachDependence( 4426 /*IsHostDependence=*/BuildingForOffloadDevice, 4427 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4428 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4429 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 4430 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 4431 DepA->getOffloadingDeviceKind())); 4432 }); 4433 4434 A = BuildingForOffloadDevice 4435 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 4436 : OA->getHostDependence(); 4437 } 4438 4439 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 4440 // FIXME: It would be nice to not claim this here; maybe the old scheme of 4441 // just using Args was better? 4442 const Arg &Input = IA->getInputArg(); 4443 Input.claim(); 4444 if (Input.getOption().matches(options::OPT_INPUT)) { 4445 const char *Name = Input.getValue(); 4446 return InputInfo(A, Name, /* _BaseInput = */ Name); 4447 } 4448 return InputInfo(A, &Input, /* _BaseInput = */ ""); 4449 } 4450 4451 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 4452 const ToolChain *TC; 4453 StringRef ArchName = BAA->getArchName(); 4454 4455 if (!ArchName.empty()) 4456 TC = &getToolChain(C.getArgs(), 4457 computeTargetTriple(*this, TargetTriple, 4458 C.getArgs(), ArchName)); 4459 else 4460 TC = &C.getDefaultToolChain(); 4461 4462 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 4463 MultipleArchs, LinkingOutput, CachedResults, 4464 TargetDeviceOffloadKind); 4465 } 4466 4467 4468 ActionList Inputs = A->getInputs(); 4469 4470 const JobAction *JA = cast<JobAction>(A); 4471 ActionList CollapsedOffloadActions; 4472 4473 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 4474 embedBitcodeInObject() && !isUsingLTO()); 4475 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 4476 4477 if (!T) 4478 return InputInfo(); 4479 4480 // If we've collapsed action list that contained OffloadAction we 4481 // need to build jobs for host/device-side inputs it may have held. 4482 for (const auto *OA : CollapsedOffloadActions) 4483 cast<OffloadAction>(OA)->doOnEachDependence( 4484 /*IsHostDependence=*/BuildingForOffloadDevice, 4485 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4486 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4487 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 4488 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 4489 DepA->getOffloadingDeviceKind())); 4490 }); 4491 4492 // Only use pipes when there is exactly one input. 4493 InputInfoList InputInfos; 4494 for (const Action *Input : Inputs) { 4495 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 4496 // shouldn't get temporary output names. 4497 // FIXME: Clean this up. 4498 bool SubJobAtTopLevel = 4499 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 4500 InputInfos.push_back(BuildJobsForAction( 4501 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 4502 CachedResults, A->getOffloadingDeviceKind())); 4503 } 4504 4505 // Always use the first input as the base input. 4506 const char *BaseInput = InputInfos[0].getBaseInput(); 4507 4508 // ... except dsymutil actions, which use their actual input as the base 4509 // input. 4510 if (JA->getType() == types::TY_dSYM) 4511 BaseInput = InputInfos[0].getFilename(); 4512 4513 // ... and in header module compilations, which use the module name. 4514 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA)) 4515 BaseInput = ModuleJA->getModuleName(); 4516 4517 // Append outputs of offload device jobs to the input list 4518 if (!OffloadDependencesInputInfo.empty()) 4519 InputInfos.append(OffloadDependencesInputInfo.begin(), 4520 OffloadDependencesInputInfo.end()); 4521 4522 // Set the effective triple of the toolchain for the duration of this job. 4523 llvm::Triple EffectiveTriple; 4524 const ToolChain &ToolTC = T->getToolChain(); 4525 const ArgList &Args = 4526 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 4527 if (InputInfos.size() != 1) { 4528 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 4529 } else { 4530 // Pass along the input type if it can be unambiguously determined. 4531 EffectiveTriple = llvm::Triple( 4532 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 4533 } 4534 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 4535 4536 // Determine the place to write output to, if any. 4537 InputInfo Result; 4538 InputInfoList UnbundlingResults; 4539 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 4540 // If we have an unbundling job, we need to create results for all the 4541 // outputs. We also update the results cache so that other actions using 4542 // this unbundling action can get the right results. 4543 for (auto &UI : UA->getDependentActionsInfo()) { 4544 assert(UI.DependentOffloadKind != Action::OFK_None && 4545 "Unbundling with no offloading??"); 4546 4547 // Unbundling actions are never at the top level. When we generate the 4548 // offloading prefix, we also do that for the host file because the 4549 // unbundling action does not change the type of the output which can 4550 // cause a overwrite. 4551 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4552 UI.DependentOffloadKind, 4553 UI.DependentToolChain->getTriple().normalize(), 4554 /*CreatePrefixForHost=*/true); 4555 auto CurI = InputInfo( 4556 UA, 4557 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 4558 /*AtTopLevel=*/false, 4559 MultipleArchs || 4560 UI.DependentOffloadKind == Action::OFK_HIP, 4561 OffloadingPrefix), 4562 BaseInput); 4563 // Save the unbundling result. 4564 UnbundlingResults.push_back(CurI); 4565 4566 // Get the unique string identifier for this dependence and cache the 4567 // result. 4568 StringRef Arch; 4569 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 4570 if (UI.DependentOffloadKind == Action::OFK_Host) 4571 Arch = StringRef(); 4572 else 4573 Arch = UI.DependentBoundArch; 4574 } else 4575 Arch = BoundArch; 4576 4577 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 4578 UI.DependentOffloadKind)}] = 4579 CurI; 4580 } 4581 4582 // Now that we have all the results generated, select the one that should be 4583 // returned for the current depending action. 4584 std::pair<const Action *, std::string> ActionTC = { 4585 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4586 assert(CachedResults.find(ActionTC) != CachedResults.end() && 4587 "Result does not exist??"); 4588 Result = CachedResults[ActionTC]; 4589 } else if (JA->getType() == types::TY_Nothing) 4590 Result = InputInfo(A, BaseInput); 4591 else { 4592 // We only have to generate a prefix for the host if this is not a top-level 4593 // action. 4594 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4595 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 4596 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 4597 !AtTopLevel); 4598 if (isa<OffloadWrapperJobAction>(JA)) { 4599 OffloadingPrefix += "-wrapper"; 4600 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4601 BaseInput = FinalOutput->getValue(); 4602 else 4603 BaseInput = getDefaultImageName(); 4604 } 4605 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 4606 AtTopLevel, MultipleArchs, 4607 OffloadingPrefix), 4608 BaseInput); 4609 } 4610 4611 if (CCCPrintBindings && !CCGenDiagnostics) { 4612 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 4613 << " - \"" << T->getName() << "\", inputs: ["; 4614 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 4615 llvm::errs() << InputInfos[i].getAsString(); 4616 if (i + 1 != e) 4617 llvm::errs() << ", "; 4618 } 4619 if (UnbundlingResults.empty()) 4620 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 4621 else { 4622 llvm::errs() << "], outputs: ["; 4623 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 4624 llvm::errs() << UnbundlingResults[i].getAsString(); 4625 if (i + 1 != e) 4626 llvm::errs() << ", "; 4627 } 4628 llvm::errs() << "] \n"; 4629 } 4630 } else { 4631 if (UnbundlingResults.empty()) 4632 T->ConstructJob( 4633 C, *JA, Result, InputInfos, 4634 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4635 LinkingOutput); 4636 else 4637 T->ConstructJobMultipleOutputs( 4638 C, *JA, UnbundlingResults, InputInfos, 4639 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4640 LinkingOutput); 4641 } 4642 return Result; 4643 } 4644 4645 const char *Driver::getDefaultImageName() const { 4646 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 4647 return Target.isOSWindows() ? "a.exe" : "a.out"; 4648 } 4649 4650 /// Create output filename based on ArgValue, which could either be a 4651 /// full filename, filename without extension, or a directory. If ArgValue 4652 /// does not provide a filename, then use BaseName, and use the extension 4653 /// suitable for FileType. 4654 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 4655 StringRef BaseName, 4656 types::ID FileType) { 4657 SmallString<128> Filename = ArgValue; 4658 4659 if (ArgValue.empty()) { 4660 // If the argument is empty, output to BaseName in the current dir. 4661 Filename = BaseName; 4662 } else if (llvm::sys::path::is_separator(Filename.back())) { 4663 // If the argument is a directory, output to BaseName in that dir. 4664 llvm::sys::path::append(Filename, BaseName); 4665 } 4666 4667 if (!llvm::sys::path::has_extension(ArgValue)) { 4668 // If the argument didn't provide an extension, then set it. 4669 const char *Extension = types::getTypeTempSuffix(FileType, true); 4670 4671 if (FileType == types::TY_Image && 4672 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 4673 // The output file is a dll. 4674 Extension = "dll"; 4675 } 4676 4677 llvm::sys::path::replace_extension(Filename, Extension); 4678 } 4679 4680 return Args.MakeArgString(Filename.c_str()); 4681 } 4682 4683 static bool HasPreprocessOutput(const Action &JA) { 4684 if (isa<PreprocessJobAction>(JA)) 4685 return true; 4686 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0])) 4687 return true; 4688 if (isa<OffloadBundlingJobAction>(JA) && 4689 HasPreprocessOutput(*(JA.getInputs()[0]))) 4690 return true; 4691 return false; 4692 } 4693 4694 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 4695 const char *BaseInput, 4696 StringRef OrigBoundArch, bool AtTopLevel, 4697 bool MultipleArchs, 4698 StringRef OffloadingPrefix) const { 4699 std::string BoundArch = OrigBoundArch.str(); 4700 #if defined(_WIN32) 4701 // BoundArch may contains ':', which is invalid in file names on Windows, 4702 // therefore replace it with '%'. 4703 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@'); 4704 #endif 4705 4706 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 4707 // Output to a user requested destination? 4708 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 4709 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4710 return C.addResultFile(FinalOutput->getValue(), &JA); 4711 } 4712 4713 // For /P, preprocess to file named after BaseInput. 4714 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 4715 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 4716 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4717 StringRef NameArg; 4718 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 4719 NameArg = A->getValue(); 4720 return C.addResultFile( 4721 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 4722 &JA); 4723 } 4724 4725 // Default to writing to stdout? 4726 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) { 4727 return "-"; 4728 } 4729 4730 // Is this the assembly listing for /FA? 4731 if (JA.getType() == types::TY_PP_Asm && 4732 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 4733 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 4734 // Use /Fa and the input filename to determine the asm file name. 4735 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4736 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 4737 return C.addResultFile( 4738 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 4739 &JA); 4740 } 4741 4742 // Output to a temporary file? 4743 if ((!AtTopLevel && !isSaveTempsEnabled() && 4744 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 4745 CCGenDiagnostics) { 4746 StringRef Name = llvm::sys::path::filename(BaseInput); 4747 std::pair<StringRef, StringRef> Split = Name.split('.'); 4748 SmallString<128> TmpName; 4749 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4750 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 4751 if (CCGenDiagnostics && A) { 4752 SmallString<128> CrashDirectory(A->getValue()); 4753 if (!getVFS().exists(CrashDirectory)) 4754 llvm::sys::fs::create_directories(CrashDirectory); 4755 llvm::sys::path::append(CrashDirectory, Split.first); 4756 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; 4757 std::error_code EC = llvm::sys::fs::createUniqueFile( 4758 CrashDirectory + Middle + Suffix, TmpName); 4759 if (EC) { 4760 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4761 return ""; 4762 } 4763 } else { 4764 TmpName = GetTemporaryPath(Split.first, Suffix); 4765 } 4766 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4767 } 4768 4769 SmallString<128> BasePath(BaseInput); 4770 SmallString<128> ExternalPath(""); 4771 StringRef BaseName; 4772 4773 // Dsymutil actions should use the full path. 4774 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) { 4775 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue(); 4776 // We use posix style here because the tests (specifically 4777 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable 4778 // even on Windows and if we don't then the similar test covering this 4779 // fails. 4780 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix, 4781 llvm::sys::path::filename(BasePath)); 4782 BaseName = ExternalPath; 4783 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 4784 BaseName = BasePath; 4785 else 4786 BaseName = llvm::sys::path::filename(BasePath); 4787 4788 // Determine what the derived output name should be. 4789 const char *NamedOutput; 4790 4791 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 4792 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 4793 // The /Fo or /o flag decides the object filename. 4794 StringRef Val = 4795 C.getArgs() 4796 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 4797 ->getValue(); 4798 NamedOutput = 4799 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 4800 } else if (JA.getType() == types::TY_Image && 4801 C.getArgs().hasArg(options::OPT__SLASH_Fe, 4802 options::OPT__SLASH_o)) { 4803 // The /Fe or /o flag names the linked file. 4804 StringRef Val = 4805 C.getArgs() 4806 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 4807 ->getValue(); 4808 NamedOutput = 4809 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 4810 } else if (JA.getType() == types::TY_Image) { 4811 if (IsCLMode()) { 4812 // clang-cl uses BaseName for the executable name. 4813 NamedOutput = 4814 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 4815 } else { 4816 SmallString<128> Output(getDefaultImageName()); 4817 // HIP image for device compilation with -fno-gpu-rdc is per compilation 4818 // unit. 4819 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP && 4820 !C.getArgs().hasFlag(options::OPT_fgpu_rdc, 4821 options::OPT_fno_gpu_rdc, false); 4822 if (IsHIPNoRDC) { 4823 Output = BaseName; 4824 llvm::sys::path::replace_extension(Output, ""); 4825 } 4826 Output += OffloadingPrefix; 4827 if (MultipleArchs && !BoundArch.empty()) { 4828 Output += "-"; 4829 Output.append(BoundArch); 4830 } 4831 if (IsHIPNoRDC) 4832 Output += ".out"; 4833 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 4834 } 4835 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 4836 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 4837 } else { 4838 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4839 assert(Suffix && "All types used for output should have a suffix."); 4840 4841 std::string::size_type End = std::string::npos; 4842 if (!types::appendSuffixForType(JA.getType())) 4843 End = BaseName.rfind('.'); 4844 SmallString<128> Suffixed(BaseName.substr(0, End)); 4845 Suffixed += OffloadingPrefix; 4846 if (MultipleArchs && !BoundArch.empty()) { 4847 Suffixed += "-"; 4848 Suffixed.append(BoundArch); 4849 } 4850 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 4851 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 4852 // optimized bitcode output. 4853 auto IsHIPRDCInCompilePhase = [](const JobAction &JA, 4854 const llvm::opt::DerivedArgList &Args) { 4855 // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a 4856 // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile 4857 // phase.) 4858 return isa<CompileJobAction>(JA) && 4859 JA.getOffloadingDeviceKind() == Action::OFK_HIP && 4860 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 4861 false); 4862 }; 4863 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC && 4864 (C.getArgs().hasArg(options::OPT_emit_llvm) || 4865 IsHIPRDCInCompilePhase(JA, C.getArgs()))) 4866 Suffixed += ".tmp"; 4867 Suffixed += '.'; 4868 Suffixed += Suffix; 4869 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 4870 } 4871 4872 // Prepend object file path if -save-temps=obj 4873 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 4874 JA.getType() != types::TY_PCH) { 4875 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 4876 SmallString<128> TempPath(FinalOutput->getValue()); 4877 llvm::sys::path::remove_filename(TempPath); 4878 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 4879 llvm::sys::path::append(TempPath, OutputFileName); 4880 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 4881 } 4882 4883 // If we're saving temps and the temp file conflicts with the input file, 4884 // then avoid overwriting input file. 4885 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 4886 bool SameFile = false; 4887 SmallString<256> Result; 4888 llvm::sys::fs::current_path(Result); 4889 llvm::sys::path::append(Result, BaseName); 4890 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 4891 // Must share the same path to conflict. 4892 if (SameFile) { 4893 StringRef Name = llvm::sys::path::filename(BaseInput); 4894 std::pair<StringRef, StringRef> Split = Name.split('.'); 4895 std::string TmpName = GetTemporaryPath( 4896 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 4897 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4898 } 4899 } 4900 4901 // As an annoying special case, PCH generation doesn't strip the pathname. 4902 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 4903 llvm::sys::path::remove_filename(BasePath); 4904 if (BasePath.empty()) 4905 BasePath = NamedOutput; 4906 else 4907 llvm::sys::path::append(BasePath, NamedOutput); 4908 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 4909 } else { 4910 return C.addResultFile(NamedOutput, &JA); 4911 } 4912 } 4913 4914 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 4915 // Search for Name in a list of paths. 4916 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 4917 -> llvm::Optional<std::string> { 4918 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4919 // attempting to use this prefix when looking for file paths. 4920 for (const auto &Dir : P) { 4921 if (Dir.empty()) 4922 continue; 4923 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4924 llvm::sys::path::append(P, Name); 4925 if (llvm::sys::fs::exists(Twine(P))) 4926 return std::string(P); 4927 } 4928 return None; 4929 }; 4930 4931 if (auto P = SearchPaths(PrefixDirs)) 4932 return *P; 4933 4934 SmallString<128> R(ResourceDir); 4935 llvm::sys::path::append(R, Name); 4936 if (llvm::sys::fs::exists(Twine(R))) 4937 return std::string(R.str()); 4938 4939 SmallString<128> P(TC.getCompilerRTPath()); 4940 llvm::sys::path::append(P, Name); 4941 if (llvm::sys::fs::exists(Twine(P))) 4942 return std::string(P.str()); 4943 4944 SmallString<128> D(Dir); 4945 llvm::sys::path::append(D, "..", Name); 4946 if (llvm::sys::fs::exists(Twine(D))) 4947 return std::string(D.str()); 4948 4949 if (auto P = SearchPaths(TC.getLibraryPaths())) 4950 return *P; 4951 4952 if (auto P = SearchPaths(TC.getFilePaths())) 4953 return *P; 4954 4955 return std::string(Name); 4956 } 4957 4958 void Driver::generatePrefixedToolNames( 4959 StringRef Tool, const ToolChain &TC, 4960 SmallVectorImpl<std::string> &Names) const { 4961 // FIXME: Needs a better variable than TargetTriple 4962 Names.emplace_back((TargetTriple + "-" + Tool).str()); 4963 Names.emplace_back(Tool); 4964 4965 // Allow the discovery of tools prefixed with LLVM's default target triple. 4966 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4967 if (DefaultTargetTriple != TargetTriple) 4968 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4969 } 4970 4971 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) { 4972 llvm::sys::path::append(Dir, Name); 4973 if (llvm::sys::fs::can_execute(Twine(Dir))) 4974 return true; 4975 llvm::sys::path::remove_filename(Dir); 4976 return false; 4977 } 4978 4979 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4980 SmallVector<std::string, 2> TargetSpecificExecutables; 4981 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4982 4983 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4984 // attempting to use this prefix when looking for program paths. 4985 for (const auto &PrefixDir : PrefixDirs) { 4986 if (llvm::sys::fs::is_directory(PrefixDir)) { 4987 SmallString<128> P(PrefixDir); 4988 if (ScanDirForExecutable(P, Name)) 4989 return std::string(P.str()); 4990 } else { 4991 SmallString<128> P((PrefixDir + Name).str()); 4992 if (llvm::sys::fs::can_execute(Twine(P))) 4993 return std::string(P.str()); 4994 } 4995 } 4996 4997 const ToolChain::path_list &List = TC.getProgramPaths(); 4998 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) { 4999 // For each possible name of the tool look for it in 5000 // program paths first, then the path. 5001 // Higher priority names will be first, meaning that 5002 // a higher priority name in the path will be found 5003 // instead of a lower priority name in the program path. 5004 // E.g. <triple>-gcc on the path will be found instead 5005 // of gcc in the program path 5006 for (const auto &Path : List) { 5007 SmallString<128> P(Path); 5008 if (ScanDirForExecutable(P, TargetSpecificExecutable)) 5009 return std::string(P.str()); 5010 } 5011 5012 // Fall back to the path 5013 if (llvm::ErrorOr<std::string> P = 5014 llvm::sys::findProgramByName(TargetSpecificExecutable)) 5015 return *P; 5016 } 5017 5018 return std::string(Name); 5019 } 5020 5021 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 5022 SmallString<128> Path; 5023 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 5024 if (EC) { 5025 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 5026 return ""; 5027 } 5028 5029 return std::string(Path.str()); 5030 } 5031 5032 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 5033 SmallString<128> Path; 5034 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 5035 if (EC) { 5036 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 5037 return ""; 5038 } 5039 5040 return std::string(Path.str()); 5041 } 5042 5043 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 5044 SmallString<128> Output; 5045 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 5046 // FIXME: If anybody needs it, implement this obscure rule: 5047 // "If you specify a directory without a file name, the default file name 5048 // is VCx0.pch., where x is the major version of Visual C++ in use." 5049 Output = FpArg->getValue(); 5050 5051 // "If you do not specify an extension as part of the path name, an 5052 // extension of .pch is assumed. " 5053 if (!llvm::sys::path::has_extension(Output)) 5054 Output += ".pch"; 5055 } else { 5056 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 5057 Output = YcArg->getValue(); 5058 if (Output.empty()) 5059 Output = BaseName; 5060 llvm::sys::path::replace_extension(Output, ".pch"); 5061 } 5062 return std::string(Output.str()); 5063 } 5064 5065 const ToolChain &Driver::getToolChain(const ArgList &Args, 5066 const llvm::Triple &Target) const { 5067 5068 auto &TC = ToolChains[Target.str()]; 5069 if (!TC) { 5070 switch (Target.getOS()) { 5071 case llvm::Triple::AIX: 5072 TC = std::make_unique<toolchains::AIX>(*this, Target, Args); 5073 break; 5074 case llvm::Triple::Haiku: 5075 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args); 5076 break; 5077 case llvm::Triple::Ananas: 5078 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args); 5079 break; 5080 case llvm::Triple::CloudABI: 5081 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args); 5082 break; 5083 case llvm::Triple::Darwin: 5084 case llvm::Triple::MacOSX: 5085 case llvm::Triple::IOS: 5086 case llvm::Triple::TvOS: 5087 case llvm::Triple::WatchOS: 5088 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args); 5089 break; 5090 case llvm::Triple::DragonFly: 5091 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args); 5092 break; 5093 case llvm::Triple::OpenBSD: 5094 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args); 5095 break; 5096 case llvm::Triple::NetBSD: 5097 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args); 5098 break; 5099 case llvm::Triple::FreeBSD: 5100 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args); 5101 break; 5102 case llvm::Triple::Minix: 5103 TC = std::make_unique<toolchains::Minix>(*this, Target, Args); 5104 break; 5105 case llvm::Triple::Linux: 5106 case llvm::Triple::ELFIAMCU: 5107 if (Target.getArch() == llvm::Triple::hexagon) 5108 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 5109 Args); 5110 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 5111 !Target.hasEnvironment()) 5112 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 5113 Args); 5114 else if (Target.getArch() == llvm::Triple::ppc || 5115 Target.getArch() == llvm::Triple::ppc64 || 5116 Target.getArch() == llvm::Triple::ppc64le) 5117 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 5118 Args); 5119 else if (Target.getArch() == llvm::Triple::ve) 5120 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args); 5121 5122 else 5123 TC = std::make_unique<toolchains::Linux>(*this, Target, Args); 5124 break; 5125 case llvm::Triple::NaCl: 5126 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 5127 break; 5128 case llvm::Triple::Fuchsia: 5129 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args); 5130 break; 5131 case llvm::Triple::Solaris: 5132 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args); 5133 break; 5134 case llvm::Triple::AMDHSA: 5135 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args); 5136 break; 5137 case llvm::Triple::AMDPAL: 5138 case llvm::Triple::Mesa3D: 5139 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 5140 break; 5141 case llvm::Triple::Win32: 5142 switch (Target.getEnvironment()) { 5143 default: 5144 if (Target.isOSBinFormatELF()) 5145 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 5146 else if (Target.isOSBinFormatMachO()) 5147 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 5148 else 5149 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 5150 break; 5151 case llvm::Triple::GNU: 5152 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args); 5153 break; 5154 case llvm::Triple::Itanium: 5155 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 5156 Args); 5157 break; 5158 case llvm::Triple::MSVC: 5159 case llvm::Triple::UnknownEnvironment: 5160 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 5161 .startswith_lower("bfd")) 5162 TC = std::make_unique<toolchains::CrossWindowsToolChain>( 5163 *this, Target, Args); 5164 else 5165 TC = 5166 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 5167 break; 5168 } 5169 break; 5170 case llvm::Triple::PS4: 5171 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args); 5172 break; 5173 case llvm::Triple::Contiki: 5174 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args); 5175 break; 5176 case llvm::Triple::Hurd: 5177 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args); 5178 break; 5179 case llvm::Triple::ZOS: 5180 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args); 5181 break; 5182 default: 5183 // Of these targets, Hexagon is the only one that might have 5184 // an OS of Linux, in which case it got handled above already. 5185 switch (Target.getArch()) { 5186 case llvm::Triple::tce: 5187 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 5188 break; 5189 case llvm::Triple::tcele: 5190 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 5191 break; 5192 case llvm::Triple::hexagon: 5193 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 5194 Args); 5195 break; 5196 case llvm::Triple::lanai: 5197 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 5198 break; 5199 case llvm::Triple::xcore: 5200 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 5201 break; 5202 case llvm::Triple::wasm32: 5203 case llvm::Triple::wasm64: 5204 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args); 5205 break; 5206 case llvm::Triple::avr: 5207 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 5208 break; 5209 case llvm::Triple::msp430: 5210 TC = 5211 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 5212 break; 5213 case llvm::Triple::riscv32: 5214 case llvm::Triple::riscv64: 5215 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args)) 5216 TC = 5217 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 5218 else 5219 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 5220 break; 5221 case llvm::Triple::ve: 5222 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args); 5223 break; 5224 default: 5225 if (Target.getVendor() == llvm::Triple::Myriad) 5226 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target, 5227 Args); 5228 else if (toolchains::BareMetal::handlesTarget(Target)) 5229 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 5230 else if (Target.isOSBinFormatELF()) 5231 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 5232 else if (Target.isOSBinFormatMachO()) 5233 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 5234 else 5235 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 5236 } 5237 } 5238 } 5239 5240 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 5241 // compiles always need two toolchains, the CUDA toolchain and the host 5242 // toolchain. So the only valid way to create a CUDA toolchain is via 5243 // CreateOffloadingDeviceToolChains. 5244 5245 return *TC; 5246 } 5247 5248 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 5249 // Say "no" if there is not exactly one input of a type clang understands. 5250 if (JA.size() != 1 || 5251 !types::isAcceptedByClang((*JA.input_begin())->getType())) 5252 return false; 5253 5254 // And say "no" if this is not a kind of action clang understands. 5255 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 5256 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 5257 return false; 5258 5259 return true; 5260 } 5261 5262 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const { 5263 // Say "no" if there is not exactly one input of a type flang understands. 5264 if (JA.size() != 1 || 5265 !types::isFortran((*JA.input_begin())->getType())) 5266 return false; 5267 5268 // And say "no" if this is not a kind of action flang understands. 5269 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 5270 return false; 5271 5272 return true; 5273 } 5274 5275 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const { 5276 // Only emit static library if the flag is set explicitly. 5277 if (Args.hasArg(options::OPT_emit_static_lib)) 5278 return true; 5279 return false; 5280 } 5281 5282 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 5283 /// grouped values as integers. Numbers which are not provided are set to 0. 5284 /// 5285 /// \return True if the entire string was parsed (9.2), or all groups were 5286 /// parsed (10.3.5extrastuff). 5287 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 5288 unsigned &Micro, bool &HadExtra) { 5289 HadExtra = false; 5290 5291 Major = Minor = Micro = 0; 5292 if (Str.empty()) 5293 return false; 5294 5295 if (Str.consumeInteger(10, Major)) 5296 return false; 5297 if (Str.empty()) 5298 return true; 5299 if (Str[0] != '.') 5300 return false; 5301 5302 Str = Str.drop_front(1); 5303 5304 if (Str.consumeInteger(10, Minor)) 5305 return false; 5306 if (Str.empty()) 5307 return true; 5308 if (Str[0] != '.') 5309 return false; 5310 Str = Str.drop_front(1); 5311 5312 if (Str.consumeInteger(10, Micro)) 5313 return false; 5314 if (!Str.empty()) 5315 HadExtra = true; 5316 return true; 5317 } 5318 5319 /// Parse digits from a string \p Str and fulfill \p Digits with 5320 /// the parsed numbers. This method assumes that the max number of 5321 /// digits to look for is equal to Digits.size(). 5322 /// 5323 /// \return True if the entire string was parsed and there are 5324 /// no extra characters remaining at the end. 5325 bool Driver::GetReleaseVersion(StringRef Str, 5326 MutableArrayRef<unsigned> Digits) { 5327 if (Str.empty()) 5328 return false; 5329 5330 unsigned CurDigit = 0; 5331 while (CurDigit < Digits.size()) { 5332 unsigned Digit; 5333 if (Str.consumeInteger(10, Digit)) 5334 return false; 5335 Digits[CurDigit] = Digit; 5336 if (Str.empty()) 5337 return true; 5338 if (Str[0] != '.') 5339 return false; 5340 Str = Str.drop_front(1); 5341 CurDigit++; 5342 } 5343 5344 // More digits than requested, bail out... 5345 return false; 5346 } 5347 5348 std::pair<unsigned, unsigned> 5349 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { 5350 unsigned IncludedFlagsBitmask = 0; 5351 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 5352 5353 if (IsClCompatMode) { 5354 // Include CL and Core options. 5355 IncludedFlagsBitmask |= options::CLOption; 5356 IncludedFlagsBitmask |= options::CoreOption; 5357 } else { 5358 ExcludedFlagsBitmask |= options::CLOption; 5359 } 5360 5361 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 5362 } 5363 5364 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 5365 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 5366 } 5367 5368 bool clang::driver::willEmitRemarks(const ArgList &Args) { 5369 // -fsave-optimization-record enables it. 5370 if (Args.hasFlag(options::OPT_fsave_optimization_record, 5371 options::OPT_fno_save_optimization_record, false)) 5372 return true; 5373 5374 // -fsave-optimization-record=<format> enables it as well. 5375 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ, 5376 options::OPT_fno_save_optimization_record, false)) 5377 return true; 5378 5379 // -foptimization-record-file alone enables it too. 5380 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ, 5381 options::OPT_fno_save_optimization_record, false)) 5382 return true; 5383 5384 // -foptimization-record-passes alone enables it too. 5385 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ, 5386 options::OPT_fno_save_optimization_record, false)) 5387 return true; 5388 return false; 5389 } 5390