1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Driver/Driver.h" 11 #include "InputInfo.h" 12 #include "ToolChains/AMDGPU.h" 13 #include "ToolChains/AVR.h" 14 #include "ToolChains/Ananas.h" 15 #include "ToolChains/Clang.h" 16 #include "ToolChains/CloudABI.h" 17 #include "ToolChains/Contiki.h" 18 #include "ToolChains/CrossWindows.h" 19 #include "ToolChains/Cuda.h" 20 #include "ToolChains/Darwin.h" 21 #include "ToolChains/DragonFly.h" 22 #include "ToolChains/FreeBSD.h" 23 #include "ToolChains/Fuchsia.h" 24 #include "ToolChains/Gnu.h" 25 #include "ToolChains/BareMetal.h" 26 #include "ToolChains/Haiku.h" 27 #include "ToolChains/Hexagon.h" 28 #include "ToolChains/Lanai.h" 29 #include "ToolChains/Linux.h" 30 #include "ToolChains/MinGW.h" 31 #include "ToolChains/Minix.h" 32 #include "ToolChains/MipsLinux.h" 33 #include "ToolChains/MSVC.h" 34 #include "ToolChains/Myriad.h" 35 #include "ToolChains/NaCl.h" 36 #include "ToolChains/NetBSD.h" 37 #include "ToolChains/OpenBSD.h" 38 #include "ToolChains/PS4CPU.h" 39 #include "ToolChains/Solaris.h" 40 #include "ToolChains/TCE.h" 41 #include "ToolChains/WebAssembly.h" 42 #include "ToolChains/XCore.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/Basic/VirtualFileSystem.h" 45 #include "clang/Config/config.h" 46 #include "clang/Driver/Action.h" 47 #include "clang/Driver/Compilation.h" 48 #include "clang/Driver/DriverDiagnostic.h" 49 #include "clang/Driver/Job.h" 50 #include "clang/Driver/Options.h" 51 #include "clang/Driver/SanitizerArgs.h" 52 #include "clang/Driver/Tool.h" 53 #include "clang/Driver/ToolChain.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/STLExtras.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringSet.h" 59 #include "llvm/ADT/StringSwitch.h" 60 #include "llvm/Option/Arg.h" 61 #include "llvm/Option/ArgList.h" 62 #include "llvm/Option/OptSpecifier.h" 63 #include "llvm/Option/OptTable.h" 64 #include "llvm/Option/Option.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/FileSystem.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/PrettyStackTrace.h" 70 #include "llvm/Support/Process.h" 71 #include "llvm/Support/Program.h" 72 #include "llvm/Support/TargetRegistry.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Support/StringSaver.h" 75 #include <map> 76 #include <memory> 77 #include <utility> 78 #if LLVM_ON_UNIX 79 #include <unistd.h> // getpid 80 #endif 81 82 using namespace clang::driver; 83 using namespace clang; 84 using namespace llvm::opt; 85 86 Driver::Driver(StringRef ClangExecutable, StringRef DefaultTargetTriple, 87 DiagnosticsEngine &Diags, 88 IntrusiveRefCntPtr<vfs::FileSystem> VFS) 89 : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)), 90 Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), 91 LTOMode(LTOK_None), ClangExecutable(ClangExecutable), 92 SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"), 93 CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr), 94 CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false), 95 CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false), 96 CCGenDiagnostics(false), DefaultTargetTriple(DefaultTargetTriple), 97 CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true), 98 CCCUsePCH(true), GenReproducer(false), 99 SuppressMissingInputWarning(false) { 100 101 // Provide a sane fallback if no VFS is specified. 102 if (!this->VFS) 103 this->VFS = vfs::getRealFileSystem(); 104 105 Name = llvm::sys::path::filename(ClangExecutable); 106 Dir = llvm::sys::path::parent_path(ClangExecutable); 107 InstalledDir = Dir; // Provide a sensible default installed dir. 108 109 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 110 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 111 #endif 112 #if defined(CLANG_CONFIG_FILE_USER_DIR) 113 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 114 #endif 115 116 // Compute the path to the resource directory. 117 StringRef ClangResourceDir(CLANG_RESOURCE_DIR); 118 SmallString<128> P(Dir); 119 if (ClangResourceDir != "") { 120 llvm::sys::path::append(P, ClangResourceDir); 121 } else { 122 StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX); 123 P = llvm::sys::path::parent_path(Dir); 124 llvm::sys::path::append(P, Twine("lib") + ClangLibdirSuffix, "clang", 125 CLANG_VERSION_STRING); 126 } 127 ResourceDir = P.str(); 128 } 129 130 void Driver::ParseDriverMode(StringRef ProgramName, 131 ArrayRef<const char *> Args) { 132 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 133 setDriverModeFromOption(ClangNameParts.DriverMode); 134 135 for (const char *ArgPtr : Args) { 136 // Ignore nullptrs, they are the response file's EOL markers. 137 if (ArgPtr == nullptr) 138 continue; 139 const StringRef Arg = ArgPtr; 140 setDriverModeFromOption(Arg); 141 } 142 } 143 144 void Driver::setDriverModeFromOption(StringRef Opt) { 145 const std::string OptName = 146 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 147 if (!Opt.startswith(OptName)) 148 return; 149 StringRef Value = Opt.drop_front(OptName.size()); 150 151 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 152 .Case("gcc", GCCMode) 153 .Case("g++", GXXMode) 154 .Case("cpp", CPPMode) 155 .Case("cl", CLMode) 156 .Default(None)) 157 Mode = *M; 158 else 159 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 160 } 161 162 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 163 bool &ContainsError) { 164 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 165 ContainsError = false; 166 167 unsigned IncludedFlagsBitmask; 168 unsigned ExcludedFlagsBitmask; 169 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 170 getIncludeExcludeOptionFlagMasks(); 171 172 unsigned MissingArgIndex, MissingArgCount; 173 InputArgList Args = 174 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 175 IncludedFlagsBitmask, ExcludedFlagsBitmask); 176 177 // Check for missing argument error. 178 if (MissingArgCount) { 179 Diag(diag::err_drv_missing_argument) 180 << Args.getArgString(MissingArgIndex) << MissingArgCount; 181 ContainsError |= 182 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 183 SourceLocation()) > DiagnosticsEngine::Warning; 184 } 185 186 // Check for unsupported options. 187 for (const Arg *A : Args) { 188 if (A->getOption().hasFlag(options::Unsupported)) { 189 unsigned DiagID; 190 auto ArgString = A->getAsString(Args); 191 std::string Nearest; 192 if (getOpts().findNearest( 193 ArgString, Nearest, IncludedFlagsBitmask, 194 ExcludedFlagsBitmask | options::Unsupported) > 1) { 195 DiagID = diag::err_drv_unsupported_opt; 196 Diag(DiagID) << ArgString; 197 } else { 198 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 199 Diag(DiagID) << ArgString << Nearest; 200 } 201 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 202 DiagnosticsEngine::Warning; 203 continue; 204 } 205 206 // Warn about -mcpu= without an argument. 207 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 208 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 209 ContainsError |= Diags.getDiagnosticLevel( 210 diag::warn_drv_empty_joined_argument, 211 SourceLocation()) > DiagnosticsEngine::Warning; 212 } 213 } 214 215 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 216 unsigned DiagID; 217 auto ArgString = A->getAsString(Args); 218 std::string Nearest; 219 if (getOpts().findNearest( 220 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 221 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 222 : diag::err_drv_unknown_argument; 223 Diags.Report(DiagID) << ArgString; 224 } else { 225 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 226 : diag::err_drv_unknown_argument_with_suggestion; 227 Diags.Report(DiagID) << ArgString << Nearest; 228 } 229 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 230 DiagnosticsEngine::Warning; 231 } 232 233 return Args; 234 } 235 236 // Determine which compilation mode we are in. We look for options which 237 // affect the phase, starting with the earliest phases, and record which 238 // option we used to determine the final phase. 239 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 240 Arg **FinalPhaseArg) const { 241 Arg *PhaseArg = nullptr; 242 phases::ID FinalPhase; 243 244 // -{E,EP,P,M,MM} only run the preprocessor. 245 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 246 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 247 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 248 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 249 FinalPhase = phases::Preprocess; 250 251 // --precompile only runs up to precompilation. 252 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 253 FinalPhase = phases::Precompile; 254 255 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 256 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 257 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 258 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 259 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 260 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 261 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 262 (PhaseArg = DAL.getLastArg(options::OPT__analyze, 263 options::OPT__analyze_auto)) || 264 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 265 FinalPhase = phases::Compile; 266 267 // -S only runs up to the backend. 268 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 269 FinalPhase = phases::Backend; 270 271 // -c compilation only runs up to the assembler. 272 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 273 FinalPhase = phases::Assemble; 274 275 // Otherwise do everything. 276 } else 277 FinalPhase = phases::Link; 278 279 if (FinalPhaseArg) 280 *FinalPhaseArg = PhaseArg; 281 282 return FinalPhase; 283 } 284 285 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts, 286 StringRef Value) { 287 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 288 Args.getBaseArgs().MakeIndex(Value), Value.data()); 289 Args.AddSynthesizedArg(A); 290 A->claim(); 291 return A; 292 } 293 294 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 295 DerivedArgList *DAL = new DerivedArgList(Args); 296 297 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 298 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 299 for (Arg *A : Args) { 300 // Unfortunately, we have to parse some forwarding options (-Xassembler, 301 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 302 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 303 304 // Rewrite linker options, to replace --no-demangle with a custom internal 305 // option. 306 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 307 A->getOption().matches(options::OPT_Xlinker)) && 308 A->containsValue("--no-demangle")) { 309 // Add the rewritten no-demangle argument. 310 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle)); 311 312 // Add the remaining values as Xlinker arguments. 313 for (StringRef Val : A->getValues()) 314 if (Val != "--no-demangle") 315 DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val); 316 317 continue; 318 } 319 320 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 321 // some build systems. We don't try to be complete here because we don't 322 // care to encourage this usage model. 323 if (A->getOption().matches(options::OPT_Wp_COMMA) && 324 (A->getValue(0) == StringRef("-MD") || 325 A->getValue(0) == StringRef("-MMD"))) { 326 // Rewrite to -MD/-MMD along with -MF. 327 if (A->getValue(0) == StringRef("-MD")) 328 DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD)); 329 else 330 DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD)); 331 if (A->getNumValues() == 2) 332 DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF), 333 A->getValue(1)); 334 continue; 335 } 336 337 // Rewrite reserved library names. 338 if (A->getOption().matches(options::OPT_l)) { 339 StringRef Value = A->getValue(); 340 341 // Rewrite unless -nostdlib is present. 342 if (!HasNostdlib && !HasNodefaultlib && Value == "stdc++") { 343 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx)); 344 continue; 345 } 346 347 // Rewrite unconditionally. 348 if (Value == "cc_kext") { 349 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext)); 350 continue; 351 } 352 } 353 354 // Pick up inputs via the -- option. 355 if (A->getOption().matches(options::OPT__DASH_DASH)) { 356 A->claim(); 357 for (StringRef Val : A->getValues()) 358 DAL->append(MakeInputArg(*DAL, *Opts, Val)); 359 continue; 360 } 361 362 DAL->append(A); 363 } 364 365 // Enforce -static if -miamcu is present. 366 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 367 DAL->AddFlagArg(0, Opts->getOption(options::OPT_static)); 368 369 // Add a default value of -mlinker-version=, if one was given and the user 370 // didn't specify one. 371 #if defined(HOST_LINK_VERSION) 372 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 373 strlen(HOST_LINK_VERSION) > 0) { 374 DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ), 375 HOST_LINK_VERSION); 376 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 377 } 378 #endif 379 380 return DAL; 381 } 382 383 /// \brief Compute target triple from args. 384 /// 385 /// This routine provides the logic to compute a target triple from various 386 /// args passed to the driver and the default triple string. 387 static llvm::Triple computeTargetTriple(const Driver &D, 388 StringRef DefaultTargetTriple, 389 const ArgList &Args, 390 StringRef DarwinArchName = "") { 391 // FIXME: Already done in Compilation *Driver::BuildCompilation 392 if (const Arg *A = Args.getLastArg(options::OPT_target)) 393 DefaultTargetTriple = A->getValue(); 394 395 llvm::Triple Target(llvm::Triple::normalize(DefaultTargetTriple)); 396 397 // Handle Apple-specific options available here. 398 if (Target.isOSBinFormatMachO()) { 399 // If an explicit Darwin arch name is given, that trumps all. 400 if (!DarwinArchName.empty()) { 401 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 402 return Target; 403 } 404 405 // Handle the Darwin '-arch' flag. 406 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 407 StringRef ArchName = A->getValue(); 408 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 409 } 410 } 411 412 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 413 // '-mbig-endian'/'-EB'. 414 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 415 options::OPT_mbig_endian)) { 416 if (A->getOption().matches(options::OPT_mlittle_endian)) { 417 llvm::Triple LE = Target.getLittleEndianArchVariant(); 418 if (LE.getArch() != llvm::Triple::UnknownArch) 419 Target = std::move(LE); 420 } else { 421 llvm::Triple BE = Target.getBigEndianArchVariant(); 422 if (BE.getArch() != llvm::Triple::UnknownArch) 423 Target = std::move(BE); 424 } 425 } 426 427 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 428 if (Target.getArch() == llvm::Triple::tce || 429 Target.getOS() == llvm::Triple::Minix) 430 return Target; 431 432 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 433 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 434 options::OPT_m32, options::OPT_m16); 435 if (A) { 436 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 437 438 if (A->getOption().matches(options::OPT_m64)) { 439 AT = Target.get64BitArchVariant().getArch(); 440 if (Target.getEnvironment() == llvm::Triple::GNUX32) 441 Target.setEnvironment(llvm::Triple::GNU); 442 } else if (A->getOption().matches(options::OPT_mx32) && 443 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 444 AT = llvm::Triple::x86_64; 445 Target.setEnvironment(llvm::Triple::GNUX32); 446 } else if (A->getOption().matches(options::OPT_m32)) { 447 AT = Target.get32BitArchVariant().getArch(); 448 if (Target.getEnvironment() == llvm::Triple::GNUX32) 449 Target.setEnvironment(llvm::Triple::GNU); 450 } else if (A->getOption().matches(options::OPT_m16) && 451 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 452 AT = llvm::Triple::x86; 453 Target.setEnvironment(llvm::Triple::CODE16); 454 } 455 456 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 457 Target.setArch(AT); 458 } 459 460 // Handle -miamcu flag. 461 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 462 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 463 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 464 << Target.str(); 465 466 if (A && !A->getOption().matches(options::OPT_m32)) 467 D.Diag(diag::err_drv_argument_not_allowed_with) 468 << "-miamcu" << A->getBaseArg().getAsString(Args); 469 470 Target.setArch(llvm::Triple::x86); 471 Target.setArchName("i586"); 472 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 473 Target.setEnvironmentName(""); 474 Target.setOS(llvm::Triple::ELFIAMCU); 475 Target.setVendor(llvm::Triple::UnknownVendor); 476 Target.setVendorName("intel"); 477 } 478 479 return Target; 480 } 481 482 // \brief Parse the LTO options and record the type of LTO compilation 483 // based on which -f(no-)?lto(=.*)? option occurs last. 484 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 485 LTOMode = LTOK_None; 486 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 487 options::OPT_fno_lto, false)) 488 return; 489 490 StringRef LTOName("full"); 491 492 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 493 if (A) 494 LTOName = A->getValue(); 495 496 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 497 .Case("full", LTOK_Full) 498 .Case("thin", LTOK_Thin) 499 .Default(LTOK_Unknown); 500 501 if (LTOMode == LTOK_Unknown) { 502 assert(A); 503 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 504 << A->getValue(); 505 } 506 } 507 508 /// Compute the desired OpenMP runtime from the flags provided. 509 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 510 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 511 512 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 513 if (A) 514 RuntimeName = A->getValue(); 515 516 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 517 .Case("libomp", OMPRT_OMP) 518 .Case("libgomp", OMPRT_GOMP) 519 .Case("libiomp5", OMPRT_IOMP5) 520 .Default(OMPRT_Unknown); 521 522 if (RT == OMPRT_Unknown) { 523 if (A) 524 Diag(diag::err_drv_unsupported_option_argument) 525 << A->getOption().getName() << A->getValue(); 526 else 527 // FIXME: We could use a nicer diagnostic here. 528 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 529 } 530 531 return RT; 532 } 533 534 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 535 InputList &Inputs) { 536 537 // 538 // CUDA 539 // 540 // We need to generate a CUDA toolchain if any of the inputs has a CUDA type. 541 if (llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 542 return types::isCuda(I.first); 543 })) { 544 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 545 const llvm::Triple &HostTriple = HostTC->getTriple(); 546 llvm::Triple CudaTriple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" 547 : "nvptx-nvidia-cuda"); 548 // Use the CUDA and host triples as the key into the ToolChains map, because 549 // the device toolchain we create depends on both. 550 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 551 if (!CudaTC) { 552 CudaTC = llvm::make_unique<toolchains::CudaToolChain>( 553 *this, CudaTriple, *HostTC, C.getInputArgs(), Action::OFK_Cuda); 554 } 555 C.addOffloadDeviceToolChain(CudaTC.get(), Action::OFK_Cuda); 556 } 557 558 // 559 // OpenMP 560 // 561 // We need to generate an OpenMP toolchain if the user specified targets with 562 // the -fopenmp-targets option. 563 if (Arg *OpenMPTargets = 564 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 565 if (OpenMPTargets->getNumValues()) { 566 // We expect that -fopenmp-targets is always used in conjunction with the 567 // option -fopenmp specifying a valid runtime with offloading support, 568 // i.e. libomp or libiomp. 569 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 570 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 571 options::OPT_fno_openmp, false); 572 if (HasValidOpenMPRuntime) { 573 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 574 HasValidOpenMPRuntime = 575 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 576 } 577 578 if (HasValidOpenMPRuntime) { 579 llvm::StringMap<const char *> FoundNormalizedTriples; 580 for (const char *Val : OpenMPTargets->getValues()) { 581 llvm::Triple TT(Val); 582 std::string NormalizedName = TT.normalize(); 583 584 // Make sure we don't have a duplicate triple. 585 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 586 if (Duplicate != FoundNormalizedTriples.end()) { 587 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 588 << Val << Duplicate->second; 589 continue; 590 } 591 592 // Store the current triple so that we can check for duplicates in the 593 // following iterations. 594 FoundNormalizedTriples[NormalizedName] = Val; 595 596 // If the specified target is invalid, emit a diagnostic. 597 if (TT.getArch() == llvm::Triple::UnknownArch) 598 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 599 else { 600 const ToolChain *TC; 601 // CUDA toolchains have to be selected differently. They pair host 602 // and device in their implementation. 603 if (TT.isNVPTX()) { 604 const ToolChain *HostTC = 605 C.getSingleOffloadToolChain<Action::OFK_Host>(); 606 assert(HostTC && "Host toolchain should be always defined."); 607 auto &CudaTC = 608 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 609 if (!CudaTC) 610 CudaTC = llvm::make_unique<toolchains::CudaToolChain>( 611 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 612 TC = CudaTC.get(); 613 } else 614 TC = &getToolChain(C.getInputArgs(), TT); 615 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 616 } 617 } 618 } else 619 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 620 } else 621 Diag(clang::diag::warn_drv_empty_joined_argument) 622 << OpenMPTargets->getAsString(C.getInputArgs()); 623 } 624 625 // 626 // TODO: Add support for other offloading programming models here. 627 // 628 } 629 630 /// Looks the given directories for the specified file. 631 /// 632 /// \param[out] FilePath File path, if the file was found. 633 /// \param[in] Dirs Directories used for the search. 634 /// \param[in] FileName Name of the file to search for. 635 /// \return True if file was found. 636 /// 637 /// Looks for file specified by FileName sequentially in directories specified 638 /// by Dirs. 639 /// 640 static bool searchForFile(SmallVectorImpl<char> &FilePath, 641 ArrayRef<std::string> Dirs, 642 StringRef FileName) { 643 SmallString<128> WPath; 644 for (const StringRef &Dir : Dirs) { 645 if (Dir.empty()) 646 continue; 647 WPath.clear(); 648 llvm::sys::path::append(WPath, Dir, FileName); 649 llvm::sys::path::native(WPath); 650 if (llvm::sys::fs::is_regular_file(WPath)) { 651 FilePath = std::move(WPath); 652 return true; 653 } 654 } 655 return false; 656 } 657 658 bool Driver::readConfigFile(StringRef FileName) { 659 // Try reading the given file. 660 SmallVector<const char *, 32> NewCfgArgs; 661 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 662 Diag(diag::err_drv_cannot_read_config_file) << FileName; 663 return true; 664 } 665 666 // Read options from config file. 667 llvm::SmallString<128> CfgFileName(FileName); 668 llvm::sys::path::native(CfgFileName); 669 ConfigFile = CfgFileName.str(); 670 bool ContainErrors; 671 CfgOptions = llvm::make_unique<InputArgList>( 672 ParseArgStrings(NewCfgArgs, ContainErrors)); 673 if (ContainErrors) { 674 CfgOptions.reset(); 675 return true; 676 } 677 678 if (CfgOptions->hasArg(options::OPT_config)) { 679 CfgOptions.reset(); 680 Diag(diag::err_drv_nested_config_file); 681 return true; 682 } 683 684 // Claim all arguments that come from a configuration file so that the driver 685 // does not warn on any that is unused. 686 for (Arg *A : *CfgOptions) 687 A->claim(); 688 return false; 689 } 690 691 bool Driver::loadConfigFile() { 692 std::string CfgFileName; 693 bool FileSpecifiedExplicitly = false; 694 695 // Process options that change search path for config files. 696 if (CLOptions) { 697 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 698 SmallString<128> CfgDir; 699 CfgDir.append( 700 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 701 if (!CfgDir.empty()) { 702 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 703 SystemConfigDir.clear(); 704 else 705 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 706 } 707 } 708 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 709 SmallString<128> CfgDir; 710 CfgDir.append( 711 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 712 if (!CfgDir.empty()) { 713 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 714 UserConfigDir.clear(); 715 else 716 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 717 } 718 } 719 } 720 721 // First try to find config file specified in command line. 722 if (CLOptions) { 723 std::vector<std::string> ConfigFiles = 724 CLOptions->getAllArgValues(options::OPT_config); 725 if (ConfigFiles.size() > 1) { 726 Diag(diag::err_drv_duplicate_config); 727 return true; 728 } 729 730 if (!ConfigFiles.empty()) { 731 CfgFileName = ConfigFiles.front(); 732 assert(!CfgFileName.empty()); 733 734 // If argument contains directory separator, treat it as a path to 735 // configuration file. 736 if (llvm::sys::path::has_parent_path(CfgFileName)) { 737 SmallString<128> CfgFilePath; 738 if (llvm::sys::path::is_relative(CfgFileName)) 739 llvm::sys::fs::current_path(CfgFilePath); 740 llvm::sys::path::append(CfgFilePath, CfgFileName); 741 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 742 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 743 return true; 744 } 745 return readConfigFile(CfgFilePath); 746 } 747 748 FileSpecifiedExplicitly = true; 749 } 750 } 751 752 // If config file is not specified explicitly, try to deduce configuration 753 // from executable name. For instance, an executable 'armv7l-clang' will 754 // search for config file 'armv7l-clang.cfg'. 755 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 756 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 757 758 if (CfgFileName.empty()) 759 return false; 760 761 // Determine architecture part of the file name, if it is present. 762 StringRef CfgFileArch = CfgFileName; 763 size_t ArchPrefixLen = CfgFileArch.find('-'); 764 if (ArchPrefixLen == StringRef::npos) 765 ArchPrefixLen = CfgFileArch.size(); 766 llvm::Triple CfgTriple; 767 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 768 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 769 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 770 ArchPrefixLen = 0; 771 772 if (!StringRef(CfgFileName).endswith(".cfg")) 773 CfgFileName += ".cfg"; 774 775 // If config file starts with architecture name and command line options 776 // redefine architecture (with options like -m32 -LE etc), try finding new 777 // config file with that architecture. 778 SmallString<128> FixedConfigFile; 779 size_t FixedArchPrefixLen = 0; 780 if (ArchPrefixLen) { 781 // Get architecture name from config file name like 'i386.cfg' or 782 // 'armv7l-clang.cfg'. 783 // Check if command line options changes effective triple. 784 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 785 CfgTriple.getTriple(), *CLOptions); 786 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 787 FixedConfigFile = EffectiveTriple.getArchName(); 788 FixedArchPrefixLen = FixedConfigFile.size(); 789 // Append the rest of original file name so that file name transforms 790 // like: i386-clang.cfg -> x86_64-clang.cfg. 791 if (ArchPrefixLen < CfgFileName.size()) 792 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 793 } 794 } 795 796 // Prepare list of directories where config file is searched for. 797 SmallVector<std::string, 3> CfgFileSearchDirs; 798 CfgFileSearchDirs.push_back(UserConfigDir); 799 CfgFileSearchDirs.push_back(SystemConfigDir); 800 CfgFileSearchDirs.push_back(Dir); 801 802 // Try to find config file. First try file with corrected architecture. 803 llvm::SmallString<128> CfgFilePath; 804 if (!FixedConfigFile.empty()) { 805 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 806 return readConfigFile(CfgFilePath); 807 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 808 FixedConfigFile.resize(FixedArchPrefixLen); 809 FixedConfigFile.append(".cfg"); 810 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 811 return readConfigFile(CfgFilePath); 812 } 813 814 // Then try original file name. 815 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 816 return readConfigFile(CfgFilePath); 817 818 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 819 if (!ClangNameParts.ModeSuffix.empty() && 820 !ClangNameParts.TargetPrefix.empty()) { 821 CfgFileName.assign(ClangNameParts.TargetPrefix); 822 CfgFileName.append(".cfg"); 823 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 824 return readConfigFile(CfgFilePath); 825 } 826 827 // Report error but only if config file was specified explicitly, by option 828 // --config. If it was deduced from executable name, it is not an error. 829 if (FileSpecifiedExplicitly) { 830 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 831 for (const std::string &SearchDir : CfgFileSearchDirs) 832 if (!SearchDir.empty()) 833 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 834 return true; 835 } 836 837 return false; 838 } 839 840 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 841 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 842 843 // FIXME: Handle environment options which affect driver behavior, somewhere 844 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 845 846 if (Optional<std::string> CompilerPathValue = 847 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 848 StringRef CompilerPath = *CompilerPathValue; 849 while (!CompilerPath.empty()) { 850 std::pair<StringRef, StringRef> Split = 851 CompilerPath.split(llvm::sys::EnvPathSeparator); 852 PrefixDirs.push_back(Split.first); 853 CompilerPath = Split.second; 854 } 855 } 856 857 // We look for the driver mode option early, because the mode can affect 858 // how other options are parsed. 859 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 860 861 // FIXME: What are we going to do with -V and -b? 862 863 // Arguments specified in command line. 864 bool ContainsError; 865 CLOptions = llvm::make_unique<InputArgList>( 866 ParseArgStrings(ArgList.slice(1), ContainsError)); 867 868 // Try parsing configuration file. 869 if (!ContainsError) 870 ContainsError = loadConfigFile(); 871 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 872 873 // All arguments, from both config file and command line. 874 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 875 : std::move(*CLOptions)); 876 if (HasConfigFile) 877 for (auto *Opt : *CLOptions) { 878 const Arg *BaseArg = &Opt->getBaseArg(); 879 if (BaseArg == Opt) 880 BaseArg = nullptr; 881 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), 882 Args.size(), BaseArg); 883 Copy->getValues() = Opt->getValues(); 884 if (Opt->isClaimed()) 885 Copy->claim(); 886 Args.append(Copy); 887 } 888 889 // FIXME: This stuff needs to go into the Compilation, not the driver. 890 bool CCCPrintPhases; 891 892 // Silence driver warnings if requested 893 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 894 895 // -no-canonical-prefixes is used very early in main. 896 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 897 898 // Ignore -pipe. 899 Args.ClaimAllArgs(options::OPT_pipe); 900 901 // Extract -ccc args. 902 // 903 // FIXME: We need to figure out where this behavior should live. Most of it 904 // should be outside in the client; the parts that aren't should have proper 905 // options, either by introducing new ones or by overloading gcc ones like -V 906 // or -b. 907 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 908 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 909 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 910 CCCGenericGCCName = A->getValue(); 911 CCCUsePCH = 912 Args.hasFlag(options::OPT_ccc_pch_is_pch, options::OPT_ccc_pch_is_pth); 913 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 914 options::OPT_fno_crash_diagnostics, 915 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 916 // FIXME: DefaultTargetTriple is used by the target-prefixed calls to as/ld 917 // and getToolChain is const. 918 if (IsCLMode()) { 919 // clang-cl targets MSVC-style Win32. 920 llvm::Triple T(DefaultTargetTriple); 921 T.setOS(llvm::Triple::Win32); 922 T.setVendor(llvm::Triple::PC); 923 T.setEnvironment(llvm::Triple::MSVC); 924 T.setObjectFormat(llvm::Triple::COFF); 925 DefaultTargetTriple = T.str(); 926 } 927 if (const Arg *A = Args.getLastArg(options::OPT_target)) 928 DefaultTargetTriple = A->getValue(); 929 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 930 Dir = InstalledDir = A->getValue(); 931 for (const Arg *A : Args.filtered(options::OPT_B)) { 932 A->claim(); 933 PrefixDirs.push_back(A->getValue(0)); 934 } 935 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 936 SysRoot = A->getValue(); 937 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 938 DyldPrefix = A->getValue(); 939 940 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 941 ResourceDir = A->getValue(); 942 943 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 944 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 945 .Case("cwd", SaveTempsCwd) 946 .Case("obj", SaveTempsObj) 947 .Default(SaveTempsCwd); 948 } 949 950 setLTOMode(Args); 951 952 // Process -fembed-bitcode= flags. 953 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 954 StringRef Name = A->getValue(); 955 unsigned Model = llvm::StringSwitch<unsigned>(Name) 956 .Case("off", EmbedNone) 957 .Case("all", EmbedBitcode) 958 .Case("bitcode", EmbedBitcode) 959 .Case("marker", EmbedMarker) 960 .Default(~0U); 961 if (Model == ~0U) { 962 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 963 << Name; 964 } else 965 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 966 } 967 968 std::unique_ptr<llvm::opt::InputArgList> UArgs = 969 llvm::make_unique<InputArgList>(std::move(Args)); 970 971 // Perform the default argument translations. 972 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 973 974 // Owned by the host. 975 const ToolChain &TC = getToolChain( 976 *UArgs, computeTargetTriple(*this, DefaultTargetTriple, *UArgs)); 977 978 // The compilation takes ownership of Args. 979 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 980 ContainsError); 981 982 if (!HandleImmediateArgs(*C)) 983 return C; 984 985 // Construct the list of inputs. 986 InputList Inputs; 987 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 988 989 // Populate the tool chains for the offloading devices, if any. 990 CreateOffloadingDeviceToolChains(*C, Inputs); 991 992 // Construct the list of abstract actions to perform for this compilation. On 993 // MachO targets this uses the driver-driver and universal actions. 994 if (TC.getTriple().isOSBinFormatMachO()) 995 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 996 else 997 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 998 999 if (CCCPrintPhases) { 1000 PrintActions(*C); 1001 return C; 1002 } 1003 1004 BuildJobs(*C); 1005 1006 return C; 1007 } 1008 1009 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1010 llvm::opt::ArgStringList ASL; 1011 for (const auto *A : Args) 1012 A->render(Args, ASL); 1013 1014 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1015 if (I != ASL.begin()) 1016 OS << ' '; 1017 Command::printArg(OS, *I, true); 1018 } 1019 OS << '\n'; 1020 } 1021 1022 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1023 SmallString<128> &CrashDiagDir) { 1024 using namespace llvm::sys; 1025 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1026 "Only knows about .crash files on Darwin"); 1027 1028 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1029 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1030 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1031 path::home_directory(CrashDiagDir); 1032 if (CrashDiagDir.startswith("/var/root")) 1033 CrashDiagDir = "/"; 1034 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1035 int PID = 1036 #if LLVM_ON_UNIX 1037 getpid(); 1038 #else 1039 0; 1040 #endif 1041 std::error_code EC; 1042 fs::file_status FileStatus; 1043 TimePoint<> LastAccessTime; 1044 SmallString<128> CrashFilePath; 1045 // Lookup the .crash files and get the one generated by a subprocess spawned 1046 // by this driver invocation. 1047 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1048 File != FileEnd && !EC; File.increment(EC)) { 1049 StringRef FileName = path::filename(File->path()); 1050 if (!FileName.startswith(Name)) 1051 continue; 1052 if (fs::status(File->path(), FileStatus)) 1053 continue; 1054 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1055 llvm::MemoryBuffer::getFile(File->path()); 1056 if (!CrashFile) 1057 continue; 1058 // The first line should start with "Process:", otherwise this isn't a real 1059 // .crash file. 1060 StringRef Data = CrashFile.get()->getBuffer(); 1061 if (!Data.startswith("Process:")) 1062 continue; 1063 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1064 size_t ParentProcPos = Data.find("Parent Process:"); 1065 if (ParentProcPos == StringRef::npos) 1066 continue; 1067 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1068 if (LineEnd == StringRef::npos) 1069 continue; 1070 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1071 int OpenBracket = -1, CloseBracket = -1; 1072 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1073 if (ParentProcess[i] == '[') 1074 OpenBracket = i; 1075 if (ParentProcess[i] == ']') 1076 CloseBracket = i; 1077 } 1078 // Extract the parent process PID from the .crash file and check whether 1079 // it matches this driver invocation pid. 1080 int CrashPID; 1081 if (OpenBracket < 0 || CloseBracket < 0 || 1082 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1083 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1084 continue; 1085 } 1086 1087 // Found a .crash file matching the driver pid. To avoid getting an older 1088 // and misleading crash file, continue looking for the most recent. 1089 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1090 // multiple crashes poiting to the same parent process. Since the driver 1091 // does not collect pid information for the dispatched invocation there's 1092 // currently no way to distinguish among them. 1093 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1094 if (FileAccessTime > LastAccessTime) { 1095 CrashFilePath.assign(File->path()); 1096 LastAccessTime = FileAccessTime; 1097 } 1098 } 1099 1100 // If found, copy it over to the location of other reproducer files. 1101 if (!CrashFilePath.empty()) { 1102 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1103 if (EC) 1104 return false; 1105 return true; 1106 } 1107 1108 return false; 1109 } 1110 1111 // When clang crashes, produce diagnostic information including the fully 1112 // preprocessed source file(s). Request that the developer attach the 1113 // diagnostic information to a bug report. 1114 void Driver::generateCompilationDiagnostics( 1115 Compilation &C, const Command &FailingCommand, 1116 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1117 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1118 return; 1119 1120 // Don't try to generate diagnostics for link or dsymutil jobs. 1121 if (FailingCommand.getCreator().isLinkJob() || 1122 FailingCommand.getCreator().isDsymutilJob()) 1123 return; 1124 1125 // Print the version of the compiler. 1126 PrintVersion(C, llvm::errs()); 1127 1128 Diag(clang::diag::note_drv_command_failed_diag_msg) 1129 << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " 1130 "crash backtrace, preprocessed source, and associated run script."; 1131 1132 // Suppress driver output and emit preprocessor output to temp file. 1133 Mode = CPPMode; 1134 CCGenDiagnostics = true; 1135 1136 // Save the original job command(s). 1137 Command Cmd = FailingCommand; 1138 1139 // Keep track of whether we produce any errors while trying to produce 1140 // preprocessed sources. 1141 DiagnosticErrorTrap Trap(Diags); 1142 1143 // Suppress tool output. 1144 C.initCompilationForDiagnostics(); 1145 1146 // Construct the list of inputs. 1147 InputList Inputs; 1148 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1149 1150 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1151 bool IgnoreInput = false; 1152 1153 // Ignore input from stdin or any inputs that cannot be preprocessed. 1154 // Check type first as not all linker inputs have a value. 1155 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1156 IgnoreInput = true; 1157 } else if (!strcmp(it->second->getValue(), "-")) { 1158 Diag(clang::diag::note_drv_command_failed_diag_msg) 1159 << "Error generating preprocessed source(s) - " 1160 "ignoring input from stdin."; 1161 IgnoreInput = true; 1162 } 1163 1164 if (IgnoreInput) { 1165 it = Inputs.erase(it); 1166 ie = Inputs.end(); 1167 } else { 1168 ++it; 1169 } 1170 } 1171 1172 if (Inputs.empty()) { 1173 Diag(clang::diag::note_drv_command_failed_diag_msg) 1174 << "Error generating preprocessed source(s) - " 1175 "no preprocessable inputs."; 1176 return; 1177 } 1178 1179 // Don't attempt to generate preprocessed files if multiple -arch options are 1180 // used, unless they're all duplicates. 1181 llvm::StringSet<> ArchNames; 1182 for (const Arg *A : C.getArgs()) { 1183 if (A->getOption().matches(options::OPT_arch)) { 1184 StringRef ArchName = A->getValue(); 1185 ArchNames.insert(ArchName); 1186 } 1187 } 1188 if (ArchNames.size() > 1) { 1189 Diag(clang::diag::note_drv_command_failed_diag_msg) 1190 << "Error generating preprocessed source(s) - cannot generate " 1191 "preprocessed source with multiple -arch options."; 1192 return; 1193 } 1194 1195 // Construct the list of abstract actions to perform for this compilation. On 1196 // Darwin OSes this uses the driver-driver and builds universal actions. 1197 const ToolChain &TC = C.getDefaultToolChain(); 1198 if (TC.getTriple().isOSBinFormatMachO()) 1199 BuildUniversalActions(C, TC, Inputs); 1200 else 1201 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1202 1203 BuildJobs(C); 1204 1205 // If there were errors building the compilation, quit now. 1206 if (Trap.hasErrorOccurred()) { 1207 Diag(clang::diag::note_drv_command_failed_diag_msg) 1208 << "Error generating preprocessed source(s)."; 1209 return; 1210 } 1211 1212 // Generate preprocessed output. 1213 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1214 C.ExecuteJobs(C.getJobs(), FailingCommands); 1215 1216 // If any of the preprocessing commands failed, clean up and exit. 1217 if (!FailingCommands.empty()) { 1218 if (!isSaveTempsEnabled()) 1219 C.CleanupFileList(C.getTempFiles(), true); 1220 1221 Diag(clang::diag::note_drv_command_failed_diag_msg) 1222 << "Error generating preprocessed source(s)."; 1223 return; 1224 } 1225 1226 const ArgStringList &TempFiles = C.getTempFiles(); 1227 if (TempFiles.empty()) { 1228 Diag(clang::diag::note_drv_command_failed_diag_msg) 1229 << "Error generating preprocessed source(s)."; 1230 return; 1231 } 1232 1233 Diag(clang::diag::note_drv_command_failed_diag_msg) 1234 << "\n********************\n\n" 1235 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1236 "Preprocessed source(s) and associated run script(s) are located at:"; 1237 1238 SmallString<128> VFS; 1239 SmallString<128> ReproCrashFilename; 1240 for (const char *TempFile : TempFiles) { 1241 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1242 if (Report) 1243 Report->TemporaryFiles.push_back(TempFile); 1244 if (ReproCrashFilename.empty()) { 1245 ReproCrashFilename = TempFile; 1246 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1247 } 1248 if (StringRef(TempFile).endswith(".cache")) { 1249 // In some cases (modules) we'll dump extra data to help with reproducing 1250 // the crash into a directory next to the output. 1251 VFS = llvm::sys::path::filename(TempFile); 1252 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1253 } 1254 } 1255 1256 // Assume associated files are based off of the first temporary file. 1257 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1258 1259 std::string Script = CrashInfo.Filename.rsplit('.').first.str() + ".sh"; 1260 std::error_code EC; 1261 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::F_Excl); 1262 if (EC) { 1263 Diag(clang::diag::note_drv_command_failed_diag_msg) 1264 << "Error generating run script: " + Script + " " + EC.message(); 1265 } else { 1266 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1267 << "# Driver args: "; 1268 printArgList(ScriptOS, C.getInputArgs()); 1269 ScriptOS << "# Original command: "; 1270 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1271 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1272 if (!AdditionalInformation.empty()) 1273 ScriptOS << "\n# Additional information: " << AdditionalInformation 1274 << "\n"; 1275 if (Report) 1276 Report->TemporaryFiles.push_back(Script); 1277 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1278 } 1279 1280 // On darwin, provide information about the .crash diagnostic report. 1281 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1282 SmallString<128> CrashDiagDir; 1283 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1284 Diag(clang::diag::note_drv_command_failed_diag_msg) 1285 << ReproCrashFilename.str(); 1286 } else { // Suggest a directory for the user to look for .crash files. 1287 llvm::sys::path::append(CrashDiagDir, Name); 1288 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1289 Diag(clang::diag::note_drv_command_failed_diag_msg) 1290 << "Crash backtrace is located in"; 1291 Diag(clang::diag::note_drv_command_failed_diag_msg) 1292 << CrashDiagDir.str(); 1293 Diag(clang::diag::note_drv_command_failed_diag_msg) 1294 << "(choose the .crash file that corresponds to your crash)"; 1295 } 1296 } 1297 1298 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1299 options::OPT_frewrite_map_file_EQ)) 1300 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1301 1302 Diag(clang::diag::note_drv_command_failed_diag_msg) 1303 << "\n\n********************"; 1304 } 1305 1306 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1307 // Since commandLineFitsWithinSystemLimits() may underestimate system's capacity 1308 // if the tool does not support response files, there is a chance/ that things 1309 // will just work without a response file, so we silently just skip it. 1310 if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || 1311 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments())) 1312 return; 1313 1314 std::string TmpName = GetTemporaryPath("response", "txt"); 1315 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1316 } 1317 1318 int Driver::ExecuteCompilation( 1319 Compilation &C, 1320 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1321 // Just print if -### was present. 1322 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1323 C.getJobs().Print(llvm::errs(), "\n", true); 1324 return 0; 1325 } 1326 1327 // If there were errors building the compilation, quit now. 1328 if (Diags.hasErrorOccurred()) 1329 return 1; 1330 1331 // Set up response file names for each command, if necessary 1332 for (auto &Job : C.getJobs()) 1333 setUpResponseFiles(C, Job); 1334 1335 C.ExecuteJobs(C.getJobs(), FailingCommands); 1336 1337 // Remove temp files. 1338 C.CleanupFileList(C.getTempFiles()); 1339 1340 // If the command succeeded, we are done. 1341 if (FailingCommands.empty()) 1342 return 0; 1343 1344 // Otherwise, remove result files and print extra information about abnormal 1345 // failures. 1346 for (const auto &CmdPair : FailingCommands) { 1347 int Res = CmdPair.first; 1348 const Command *FailingCommand = CmdPair.second; 1349 1350 // Remove result files if we're not saving temps. 1351 if (!isSaveTempsEnabled()) { 1352 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1353 C.CleanupFileMap(C.getResultFiles(), JA, true); 1354 1355 // Failure result files are valid unless we crashed. 1356 if (Res < 0) 1357 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1358 } 1359 1360 // Print extra information about abnormal failures, if possible. 1361 // 1362 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1363 // status was 1, assume the command failed normally. In particular, if it 1364 // was the compiler then assume it gave a reasonable error code. Failures 1365 // in other tools are less common, and they generally have worse 1366 // diagnostics, so always print the diagnostic there. 1367 const Tool &FailingTool = FailingCommand->getCreator(); 1368 1369 if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) { 1370 // FIXME: See FIXME above regarding result code interpretation. 1371 if (Res < 0) 1372 Diag(clang::diag::err_drv_command_signalled) 1373 << FailingTool.getShortName(); 1374 else 1375 Diag(clang::diag::err_drv_command_failed) << FailingTool.getShortName() 1376 << Res; 1377 } 1378 } 1379 return 0; 1380 } 1381 1382 void Driver::PrintHelp(bool ShowHidden) const { 1383 unsigned IncludedFlagsBitmask; 1384 unsigned ExcludedFlagsBitmask; 1385 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1386 getIncludeExcludeOptionFlagMasks(); 1387 1388 ExcludedFlagsBitmask |= options::NoDriverOption; 1389 if (!ShowHidden) 1390 ExcludedFlagsBitmask |= HelpHidden; 1391 1392 getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(), 1393 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1394 /*ShowAllAliases=*/false); 1395 } 1396 1397 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1398 // FIXME: The following handlers should use a callback mechanism, we don't 1399 // know what the client would like to do. 1400 OS << getClangFullVersion() << '\n'; 1401 const ToolChain &TC = C.getDefaultToolChain(); 1402 OS << "Target: " << TC.getTripleString() << '\n'; 1403 1404 // Print the threading model. 1405 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1406 // Don't print if the ToolChain would have barfed on it already 1407 if (TC.isThreadModelSupported(A->getValue())) 1408 OS << "Thread model: " << A->getValue(); 1409 } else 1410 OS << "Thread model: " << TC.getThreadModel(); 1411 OS << '\n'; 1412 1413 // Print out the install directory. 1414 OS << "InstalledDir: " << InstalledDir << '\n'; 1415 1416 // If configuration file was used, print its path. 1417 if (!ConfigFile.empty()) 1418 OS << "Configuration file: " << ConfigFile << '\n'; 1419 } 1420 1421 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1422 /// option. 1423 static void PrintDiagnosticCategories(raw_ostream &OS) { 1424 // Skip the empty category. 1425 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1426 ++i) 1427 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1428 } 1429 1430 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1431 if (PassedFlags == "") 1432 return; 1433 // Print out all options that start with a given argument. This is used for 1434 // shell autocompletion. 1435 std::vector<std::string> SuggestedCompletions; 1436 std::vector<std::string> Flags; 1437 1438 unsigned short DisableFlags = 1439 options::NoDriverOption | options::Unsupported | options::Ignored; 1440 1441 // Parse PassedFlags by "," as all the command-line flags are passed to this 1442 // function separated by "," 1443 StringRef TargetFlags = PassedFlags; 1444 while (TargetFlags != "") { 1445 StringRef CurFlag; 1446 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1447 Flags.push_back(std::string(CurFlag)); 1448 } 1449 1450 // We want to show cc1-only options only when clang is invoked with -cc1 or 1451 // -Xclang. 1452 if (std::find(Flags.begin(), Flags.end(), "-Xclang") != Flags.end() || 1453 std::find(Flags.begin(), Flags.end(), "-cc1") != Flags.end()) 1454 DisableFlags &= ~options::NoDriverOption; 1455 1456 StringRef Cur; 1457 Cur = Flags.at(Flags.size() - 1); 1458 StringRef Prev; 1459 if (Flags.size() >= 2) { 1460 Prev = Flags.at(Flags.size() - 2); 1461 SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur); 1462 } 1463 1464 if (SuggestedCompletions.empty()) 1465 SuggestedCompletions = Opts->suggestValueCompletions(Cur, ""); 1466 1467 if (SuggestedCompletions.empty()) { 1468 // If the flag is in the form of "--autocomplete=-foo", 1469 // we were requested to print out all option names that start with "-foo". 1470 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1471 SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags); 1472 1473 // We have to query the -W flags manually as they're not in the OptTable. 1474 // TODO: Find a good way to add them to OptTable instead and them remove 1475 // this code. 1476 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1477 if (S.startswith(Cur)) 1478 SuggestedCompletions.push_back(S); 1479 } 1480 1481 // Sort the autocomplete candidates so that shells print them out in a 1482 // deterministic order. We could sort in any way, but we chose 1483 // case-insensitive sorting for consistency with the -help option 1484 // which prints out options in the case-insensitive alphabetical order. 1485 llvm::sort(SuggestedCompletions.begin(), SuggestedCompletions.end(), 1486 [](StringRef A, StringRef B) { 1487 if (int X = A.compare_lower(B)) 1488 return X < 0; 1489 return A.compare(B) > 0; 1490 }); 1491 1492 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1493 } 1494 1495 bool Driver::HandleImmediateArgs(const Compilation &C) { 1496 // The order these options are handled in gcc is all over the place, but we 1497 // don't expect inconsistencies w.r.t. that to matter in practice. 1498 1499 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1500 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1501 return false; 1502 } 1503 1504 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1505 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1506 // return an answer which matches our definition of __VERSION__. 1507 // 1508 // If we want to return a more correct answer some day, then we should 1509 // introduce a non-pedantically GCC compatible mode to Clang in which we 1510 // provide sensible definitions for -dumpversion, __VERSION__, etc. 1511 llvm::outs() << "4.2.1\n"; 1512 return false; 1513 } 1514 1515 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1516 PrintDiagnosticCategories(llvm::outs()); 1517 return false; 1518 } 1519 1520 if (C.getArgs().hasArg(options::OPT_help) || 1521 C.getArgs().hasArg(options::OPT__help_hidden)) { 1522 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1523 return false; 1524 } 1525 1526 if (C.getArgs().hasArg(options::OPT__version)) { 1527 // Follow gcc behavior and use stdout for --version and stderr for -v. 1528 PrintVersion(C, llvm::outs()); 1529 return false; 1530 } 1531 1532 if (C.getArgs().hasArg(options::OPT_v) || 1533 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1534 PrintVersion(C, llvm::errs()); 1535 SuppressMissingInputWarning = true; 1536 } 1537 1538 if (C.getArgs().hasArg(options::OPT_v)) { 1539 if (!SystemConfigDir.empty()) 1540 llvm::errs() << "System configuration file directory: " 1541 << SystemConfigDir << "\n"; 1542 if (!UserConfigDir.empty()) 1543 llvm::errs() << "User configuration file directory: " 1544 << UserConfigDir << "\n"; 1545 } 1546 1547 const ToolChain &TC = C.getDefaultToolChain(); 1548 1549 if (C.getArgs().hasArg(options::OPT_v)) 1550 TC.printVerboseInfo(llvm::errs()); 1551 1552 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1553 llvm::outs() << ResourceDir << '\n'; 1554 return false; 1555 } 1556 1557 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1558 llvm::outs() << "programs: ="; 1559 bool separator = false; 1560 for (const std::string &Path : TC.getProgramPaths()) { 1561 if (separator) 1562 llvm::outs() << ':'; 1563 llvm::outs() << Path; 1564 separator = true; 1565 } 1566 llvm::outs() << "\n"; 1567 llvm::outs() << "libraries: =" << ResourceDir; 1568 1569 StringRef sysroot = C.getSysRoot(); 1570 1571 for (const std::string &Path : TC.getFilePaths()) { 1572 // Always print a separator. ResourceDir was the first item shown. 1573 llvm::outs() << ':'; 1574 // Interpretation of leading '=' is needed only for NetBSD. 1575 if (Path[0] == '=') 1576 llvm::outs() << sysroot << Path.substr(1); 1577 else 1578 llvm::outs() << Path; 1579 } 1580 llvm::outs() << "\n"; 1581 return false; 1582 } 1583 1584 // FIXME: The following handlers should use a callback mechanism, we don't 1585 // know what the client would like to do. 1586 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1587 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1588 return false; 1589 } 1590 1591 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1592 llvm::outs() << GetProgramPath(A->getValue(), TC) << "\n"; 1593 return false; 1594 } 1595 1596 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1597 StringRef PassedFlags = A->getValue(); 1598 HandleAutocompletions(PassedFlags); 1599 return false; 1600 } 1601 1602 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1603 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1604 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1605 RegisterEffectiveTriple TripleRAII(TC, Triple); 1606 switch (RLT) { 1607 case ToolChain::RLT_CompilerRT: 1608 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1609 break; 1610 case ToolChain::RLT_Libgcc: 1611 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1612 break; 1613 } 1614 return false; 1615 } 1616 1617 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1618 for (const Multilib &Multilib : TC.getMultilibs()) 1619 llvm::outs() << Multilib << "\n"; 1620 return false; 1621 } 1622 1623 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1624 for (const Multilib &Multilib : TC.getMultilibs()) { 1625 if (Multilib.gccSuffix().empty()) 1626 llvm::outs() << ".\n"; 1627 else { 1628 StringRef Suffix(Multilib.gccSuffix()); 1629 assert(Suffix.front() == '/'); 1630 llvm::outs() << Suffix.substr(1) << "\n"; 1631 } 1632 } 1633 return false; 1634 } 1635 return true; 1636 } 1637 1638 // Display an action graph human-readably. Action A is the "sink" node 1639 // and latest-occuring action. Traversal is in pre-order, visiting the 1640 // inputs to each action before printing the action itself. 1641 static unsigned PrintActions1(const Compilation &C, Action *A, 1642 std::map<Action *, unsigned> &Ids) { 1643 if (Ids.count(A)) // A was already visited. 1644 return Ids[A]; 1645 1646 std::string str; 1647 llvm::raw_string_ostream os(str); 1648 1649 os << Action::getClassName(A->getKind()) << ", "; 1650 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1651 os << "\"" << IA->getInputArg().getValue() << "\""; 1652 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1653 os << '"' << BIA->getArchName() << '"' << ", {" 1654 << PrintActions1(C, *BIA->input_begin(), Ids) << "}"; 1655 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1656 bool IsFirst = true; 1657 OA->doOnEachDependence( 1658 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1659 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1660 // sm_35 this will generate: 1661 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1662 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1663 if (!IsFirst) 1664 os << ", "; 1665 os << '"'; 1666 if (TC) 1667 os << A->getOffloadingKindPrefix(); 1668 else 1669 os << "host"; 1670 os << " ("; 1671 os << TC->getTriple().normalize(); 1672 1673 if (BoundArch) 1674 os << ":" << BoundArch; 1675 os << ")"; 1676 os << '"'; 1677 os << " {" << PrintActions1(C, A, Ids) << "}"; 1678 IsFirst = false; 1679 }); 1680 } else { 1681 const ActionList *AL = &A->getInputs(); 1682 1683 if (AL->size()) { 1684 const char *Prefix = "{"; 1685 for (Action *PreRequisite : *AL) { 1686 os << Prefix << PrintActions1(C, PreRequisite, Ids); 1687 Prefix = ", "; 1688 } 1689 os << "}"; 1690 } else 1691 os << "{}"; 1692 } 1693 1694 // Append offload info for all options other than the offloading action 1695 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1696 std::string offload_str; 1697 llvm::raw_string_ostream offload_os(offload_str); 1698 if (!isa<OffloadAction>(A)) { 1699 auto S = A->getOffloadingKindPrefix(); 1700 if (!S.empty()) { 1701 offload_os << ", (" << S; 1702 if (A->getOffloadingArch()) 1703 offload_os << ", " << A->getOffloadingArch(); 1704 offload_os << ")"; 1705 } 1706 } 1707 1708 unsigned Id = Ids.size(); 1709 Ids[A] = Id; 1710 llvm::errs() << Id << ": " << os.str() << ", " 1711 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1712 1713 return Id; 1714 } 1715 1716 // Print the action graphs in a compilation C. 1717 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1718 void Driver::PrintActions(const Compilation &C) const { 1719 std::map<Action *, unsigned> Ids; 1720 for (Action *A : C.getActions()) 1721 PrintActions1(C, A, Ids); 1722 } 1723 1724 /// \brief Check whether the given input tree contains any compilation or 1725 /// assembly actions. 1726 static bool ContainsCompileOrAssembleAction(const Action *A) { 1727 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1728 isa<AssembleJobAction>(A)) 1729 return true; 1730 1731 for (const Action *Input : A->inputs()) 1732 if (ContainsCompileOrAssembleAction(Input)) 1733 return true; 1734 1735 return false; 1736 } 1737 1738 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1739 const InputList &BAInputs) const { 1740 DerivedArgList &Args = C.getArgs(); 1741 ActionList &Actions = C.getActions(); 1742 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 1743 // Collect the list of architectures. Duplicates are allowed, but should only 1744 // be handled once (in the order seen). 1745 llvm::StringSet<> ArchNames; 1746 SmallVector<const char *, 4> Archs; 1747 for (Arg *A : Args) { 1748 if (A->getOption().matches(options::OPT_arch)) { 1749 // Validate the option here; we don't save the type here because its 1750 // particular spelling may participate in other driver choices. 1751 llvm::Triple::ArchType Arch = 1752 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 1753 if (Arch == llvm::Triple::UnknownArch) { 1754 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 1755 continue; 1756 } 1757 1758 A->claim(); 1759 if (ArchNames.insert(A->getValue()).second) 1760 Archs.push_back(A->getValue()); 1761 } 1762 } 1763 1764 // When there is no explicit arch for this platform, make sure we still bind 1765 // the architecture (to the default) so that -Xarch_ is handled correctly. 1766 if (!Archs.size()) 1767 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 1768 1769 ActionList SingleActions; 1770 BuildActions(C, Args, BAInputs, SingleActions); 1771 1772 // Add in arch bindings for every top level action, as well as lipo and 1773 // dsymutil steps if needed. 1774 for (Action* Act : SingleActions) { 1775 // Make sure we can lipo this kind of output. If not (and it is an actual 1776 // output) then we disallow, since we can't create an output file with the 1777 // right name without overwriting it. We could remove this oddity by just 1778 // changing the output names to include the arch, which would also fix 1779 // -save-temps. Compatibility wins for now. 1780 1781 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 1782 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 1783 << types::getTypeName(Act->getType()); 1784 1785 ActionList Inputs; 1786 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 1787 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 1788 1789 // Lipo if necessary, we do it this way because we need to set the arch flag 1790 // so that -Xarch_ gets overwritten. 1791 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 1792 Actions.append(Inputs.begin(), Inputs.end()); 1793 else 1794 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 1795 1796 // Handle debug info queries. 1797 Arg *A = Args.getLastArg(options::OPT_g_Group); 1798 if (A && !A->getOption().matches(options::OPT_g0) && 1799 !A->getOption().matches(options::OPT_gstabs) && 1800 ContainsCompileOrAssembleAction(Actions.back())) { 1801 1802 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 1803 // have a compile input. We need to run 'dsymutil' ourselves in such cases 1804 // because the debug info will refer to a temporary object file which 1805 // will be removed at the end of the compilation process. 1806 if (Act->getType() == types::TY_Image) { 1807 ActionList Inputs; 1808 Inputs.push_back(Actions.back()); 1809 Actions.pop_back(); 1810 Actions.push_back( 1811 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 1812 } 1813 1814 // Verify the debug info output. 1815 if (Args.hasArg(options::OPT_verify_debug_info)) { 1816 Action* LastAction = Actions.back(); 1817 Actions.pop_back(); 1818 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 1819 LastAction, types::TY_Nothing)); 1820 } 1821 } 1822 } 1823 } 1824 1825 /// \brief Check that the file referenced by Value exists. If it doesn't, 1826 /// issue a diagnostic and return false. 1827 static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args, 1828 StringRef Value, types::ID Ty) { 1829 if (!D.getCheckInputsExist()) 1830 return true; 1831 1832 // stdin always exists. 1833 if (Value == "-") 1834 return true; 1835 1836 SmallString<64> Path(Value); 1837 if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) { 1838 if (!llvm::sys::path::is_absolute(Path)) { 1839 SmallString<64> Directory(WorkDir->getValue()); 1840 llvm::sys::path::append(Directory, Value); 1841 Path.assign(Directory); 1842 } 1843 } 1844 1845 if (llvm::sys::fs::exists(Twine(Path))) 1846 return true; 1847 1848 if (D.IsCLMode()) { 1849 if (!llvm::sys::path::is_absolute(Twine(Path)) && 1850 llvm::sys::Process::FindInEnvPath("LIB", Value)) 1851 return true; 1852 1853 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 1854 // Arguments to the /link flag might cause the linker to search for object 1855 // and library files in paths we don't know about. Don't error in such 1856 // cases. 1857 return true; 1858 } 1859 } 1860 1861 D.Diag(clang::diag::err_drv_no_such_file) << Path; 1862 return false; 1863 } 1864 1865 // Construct a the list of inputs and their types. 1866 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 1867 InputList &Inputs) const { 1868 // Track the current user specified (-x) input. We also explicitly track the 1869 // argument used to set the type; we only want to claim the type when we 1870 // actually use it, so we warn about unused -x arguments. 1871 types::ID InputType = types::TY_Nothing; 1872 Arg *InputTypeArg = nullptr; 1873 1874 // The last /TC or /TP option sets the input type to C or C++ globally. 1875 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 1876 options::OPT__SLASH_TP)) { 1877 InputTypeArg = TCTP; 1878 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 1879 ? types::TY_C 1880 : types::TY_CXX; 1881 1882 Arg *Previous = nullptr; 1883 bool ShowNote = false; 1884 for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 1885 if (Previous) { 1886 Diag(clang::diag::warn_drv_overriding_flag_option) 1887 << Previous->getSpelling() << A->getSpelling(); 1888 ShowNote = true; 1889 } 1890 Previous = A; 1891 } 1892 if (ShowNote) 1893 Diag(clang::diag::note_drv_t_option_is_global); 1894 1895 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 1896 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 1897 } 1898 1899 for (Arg *A : Args) { 1900 if (A->getOption().getKind() == Option::InputClass) { 1901 const char *Value = A->getValue(); 1902 types::ID Ty = types::TY_INVALID; 1903 1904 // Infer the input type if necessary. 1905 if (InputType == types::TY_Nothing) { 1906 // If there was an explicit arg for this, claim it. 1907 if (InputTypeArg) 1908 InputTypeArg->claim(); 1909 1910 // stdin must be handled specially. 1911 if (memcmp(Value, "-", 2) == 0) { 1912 // If running with -E, treat as a C input (this changes the builtin 1913 // macros, for example). This may be overridden by -ObjC below. 1914 // 1915 // Otherwise emit an error but still use a valid type to avoid 1916 // spurious errors (e.g., no inputs). 1917 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 1918 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 1919 : clang::diag::err_drv_unknown_stdin_type); 1920 Ty = types::TY_C; 1921 } else { 1922 // Otherwise lookup by extension. 1923 // Fallback is C if invoked as C preprocessor or Object otherwise. 1924 // We use a host hook here because Darwin at least has its own 1925 // idea of what .s is. 1926 if (const char *Ext = strrchr(Value, '.')) 1927 Ty = TC.LookupTypeForExtension(Ext + 1); 1928 1929 if (Ty == types::TY_INVALID) { 1930 if (CCCIsCPP()) 1931 Ty = types::TY_C; 1932 else 1933 Ty = types::TY_Object; 1934 } 1935 1936 // If the driver is invoked as C++ compiler (like clang++ or c++) it 1937 // should autodetect some input files as C++ for g++ compatibility. 1938 if (CCCIsCXX()) { 1939 types::ID OldTy = Ty; 1940 Ty = types::lookupCXXTypeForCType(Ty); 1941 1942 if (Ty != OldTy) 1943 Diag(clang::diag::warn_drv_treating_input_as_cxx) 1944 << getTypeName(OldTy) << getTypeName(Ty); 1945 } 1946 } 1947 1948 // -ObjC and -ObjC++ override the default language, but only for "source 1949 // files". We just treat everything that isn't a linker input as a 1950 // source file. 1951 // 1952 // FIXME: Clean this up if we move the phase sequence into the type. 1953 if (Ty != types::TY_Object) { 1954 if (Args.hasArg(options::OPT_ObjC)) 1955 Ty = types::TY_ObjC; 1956 else if (Args.hasArg(options::OPT_ObjCXX)) 1957 Ty = types::TY_ObjCXX; 1958 } 1959 } else { 1960 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 1961 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 1962 // If emulating cl.exe, make sure that /TC and /TP don't affect input 1963 // object files. 1964 const char *Ext = strrchr(Value, '.'); 1965 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 1966 Ty = types::TY_Object; 1967 } 1968 if (Ty == types::TY_INVALID) { 1969 Ty = InputType; 1970 InputTypeArg->claim(); 1971 } 1972 } 1973 1974 if (DiagnoseInputExistence(*this, Args, Value, Ty)) 1975 Inputs.push_back(std::make_pair(Ty, A)); 1976 1977 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 1978 StringRef Value = A->getValue(); 1979 if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) { 1980 Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue()); 1981 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 1982 } 1983 A->claim(); 1984 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 1985 StringRef Value = A->getValue(); 1986 if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) { 1987 Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue()); 1988 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 1989 } 1990 A->claim(); 1991 } else if (A->getOption().hasFlag(options::LinkerInput)) { 1992 // Just treat as object type, we could make a special type for this if 1993 // necessary. 1994 Inputs.push_back(std::make_pair(types::TY_Object, A)); 1995 1996 } else if (A->getOption().matches(options::OPT_x)) { 1997 InputTypeArg = A; 1998 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 1999 A->claim(); 2000 2001 // Follow gcc behavior and treat as linker input for invalid -x 2002 // options. Its not clear why we shouldn't just revert to unknown; but 2003 // this isn't very important, we might as well be bug compatible. 2004 if (!InputType) { 2005 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2006 InputType = types::TY_Object; 2007 } 2008 } else if (A->getOption().getID() == options::OPT__SLASH_U) { 2009 assert(A->getNumValues() == 1 && "The /U option has one value."); 2010 StringRef Val = A->getValue(0); 2011 if (Val.find_first_of("/\\") != StringRef::npos) { 2012 // Warn about e.g. "/Users/me/myfile.c". 2013 Diag(diag::warn_slash_u_filename) << Val; 2014 Diag(diag::note_use_dashdash); 2015 } 2016 } 2017 } 2018 if (CCCIsCPP() && Inputs.empty()) { 2019 // If called as standalone preprocessor, stdin is processed 2020 // if no other input is present. 2021 Arg *A = MakeInputArg(Args, *Opts, "-"); 2022 Inputs.push_back(std::make_pair(types::TY_C, A)); 2023 } 2024 } 2025 2026 namespace { 2027 /// Provides a convenient interface for different programming models to generate 2028 /// the required device actions. 2029 class OffloadingActionBuilder final { 2030 /// Flag used to trace errors in the builder. 2031 bool IsValid = false; 2032 2033 /// The compilation that is using this builder. 2034 Compilation &C; 2035 2036 /// Map between an input argument and the offload kinds used to process it. 2037 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2038 2039 /// Builder interface. It doesn't build anything or keep any state. 2040 class DeviceActionBuilder { 2041 public: 2042 typedef llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhasesTy; 2043 2044 enum ActionBuilderReturnCode { 2045 // The builder acted successfully on the current action. 2046 ABRT_Success, 2047 // The builder didn't have to act on the current action. 2048 ABRT_Inactive, 2049 // The builder was successful and requested the host action to not be 2050 // generated. 2051 ABRT_Ignore_Host, 2052 }; 2053 2054 protected: 2055 /// Compilation associated with this builder. 2056 Compilation &C; 2057 2058 /// Tool chains associated with this builder. The same programming 2059 /// model may have associated one or more tool chains. 2060 SmallVector<const ToolChain *, 2> ToolChains; 2061 2062 /// The derived arguments associated with this builder. 2063 DerivedArgList &Args; 2064 2065 /// The inputs associated with this builder. 2066 const Driver::InputList &Inputs; 2067 2068 /// The associated offload kind. 2069 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2070 2071 public: 2072 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2073 const Driver::InputList &Inputs, 2074 Action::OffloadKind AssociatedOffloadKind) 2075 : C(C), Args(Args), Inputs(Inputs), 2076 AssociatedOffloadKind(AssociatedOffloadKind) {} 2077 virtual ~DeviceActionBuilder() {} 2078 2079 /// Fill up the array \a DA with all the device dependences that should be 2080 /// added to the provided host action \a HostAction. By default it is 2081 /// inactive. 2082 virtual ActionBuilderReturnCode 2083 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2084 phases::ID CurPhase, phases::ID FinalPhase, 2085 PhasesTy &Phases) { 2086 return ABRT_Inactive; 2087 } 2088 2089 /// Update the state to include the provided host action \a HostAction as a 2090 /// dependency of the current device action. By default it is inactive. 2091 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2092 return ABRT_Inactive; 2093 } 2094 2095 /// Append top level actions generated by the builder. Return true if errors 2096 /// were found. 2097 virtual void appendTopLevelActions(ActionList &AL) {} 2098 2099 /// Append linker actions generated by the builder. Return true if errors 2100 /// were found. 2101 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2102 2103 /// Initialize the builder. Return true if any initialization errors are 2104 /// found. 2105 virtual bool initialize() { return false; } 2106 2107 /// Return true if the builder can use bundling/unbundling. 2108 virtual bool canUseBundlerUnbundler() const { return false; } 2109 2110 /// Return true if this builder is valid. We have a valid builder if we have 2111 /// associated device tool chains. 2112 bool isValid() { return !ToolChains.empty(); } 2113 2114 /// Return the associated offload kind. 2115 Action::OffloadKind getAssociatedOffloadKind() { 2116 return AssociatedOffloadKind; 2117 } 2118 }; 2119 2120 /// \brief CUDA action builder. It injects device code in the host backend 2121 /// action. 2122 class CudaActionBuilder final : public DeviceActionBuilder { 2123 /// Flags to signal if the user requested host-only or device-only 2124 /// compilation. 2125 bool CompileHostOnly = false; 2126 bool CompileDeviceOnly = false; 2127 2128 /// List of GPU architectures to use in this compilation. 2129 SmallVector<CudaArch, 4> GpuArchList; 2130 2131 /// The CUDA actions for the current input. 2132 ActionList CudaDeviceActions; 2133 2134 /// The CUDA fat binary if it was generated for the current input. 2135 Action *CudaFatBinary = nullptr; 2136 2137 /// Flag that is set to true if this builder acted on the current input. 2138 bool IsActive = false; 2139 2140 public: 2141 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2142 const Driver::InputList &Inputs) 2143 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_Cuda) {} 2144 2145 ActionBuilderReturnCode 2146 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2147 phases::ID CurPhase, phases::ID FinalPhase, 2148 PhasesTy &Phases) override { 2149 if (!IsActive) 2150 return ABRT_Inactive; 2151 2152 // If we don't have more CUDA actions, we don't have any dependences to 2153 // create for the host. 2154 if (CudaDeviceActions.empty()) 2155 return ABRT_Success; 2156 2157 assert(CudaDeviceActions.size() == GpuArchList.size() && 2158 "Expecting one action per GPU architecture."); 2159 assert(!CompileHostOnly && 2160 "Not expecting CUDA actions in host-only compilation."); 2161 2162 // If we are generating code for the device or we are in a backend phase, 2163 // we attempt to generate the fat binary. We compile each arch to ptx and 2164 // assemble to cubin, then feed the cubin *and* the ptx into a device 2165 // "link" action, which uses fatbinary to combine these cubins into one 2166 // fatbin. The fatbin is then an input to the host action if not in 2167 // device-only mode. 2168 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2169 ActionList DeviceActions; 2170 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2171 // Produce the device action from the current phase up to the assemble 2172 // phase. 2173 for (auto Ph : Phases) { 2174 // Skip the phases that were already dealt with. 2175 if (Ph < CurPhase) 2176 continue; 2177 // We have to be consistent with the host final phase. 2178 if (Ph > FinalPhase) 2179 break; 2180 2181 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2182 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2183 2184 if (Ph == phases::Assemble) 2185 break; 2186 } 2187 2188 // If we didn't reach the assemble phase, we can't generate the fat 2189 // binary. We don't need to generate the fat binary if we are not in 2190 // device-only mode. 2191 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2192 CompileDeviceOnly) 2193 continue; 2194 2195 Action *AssembleAction = CudaDeviceActions[I]; 2196 assert(AssembleAction->getType() == types::TY_Object); 2197 assert(AssembleAction->getInputs().size() == 1); 2198 2199 Action *BackendAction = AssembleAction->getInputs()[0]; 2200 assert(BackendAction->getType() == types::TY_PP_Asm); 2201 2202 for (auto &A : {AssembleAction, BackendAction}) { 2203 OffloadAction::DeviceDependences DDep; 2204 DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), 2205 Action::OFK_Cuda); 2206 DeviceActions.push_back( 2207 C.MakeAction<OffloadAction>(DDep, A->getType())); 2208 } 2209 } 2210 2211 // We generate the fat binary if we have device input actions. 2212 if (!DeviceActions.empty()) { 2213 CudaFatBinary = 2214 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2215 2216 if (!CompileDeviceOnly) { 2217 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2218 Action::OFK_Cuda); 2219 // Clear the fat binary, it is already a dependence to an host 2220 // action. 2221 CudaFatBinary = nullptr; 2222 } 2223 2224 // Remove the CUDA actions as they are already connected to an host 2225 // action or fat binary. 2226 CudaDeviceActions.clear(); 2227 } 2228 2229 // We avoid creating host action in device-only mode. 2230 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2231 } else if (CurPhase > phases::Backend) { 2232 // If we are past the backend phase and still have a device action, we 2233 // don't have to do anything as this action is already a device 2234 // top-level action. 2235 return ABRT_Success; 2236 } 2237 2238 assert(CurPhase < phases::Backend && "Generating single CUDA " 2239 "instructions should only occur " 2240 "before the backend phase!"); 2241 2242 // By default, we produce an action for each device arch. 2243 for (Action *&A : CudaDeviceActions) 2244 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2245 2246 return ABRT_Success; 2247 } 2248 2249 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2250 // While generating code for CUDA, we only depend on the host input action 2251 // to trigger the creation of all the CUDA device actions. 2252 2253 // If we are dealing with an input action, replicate it for each GPU 2254 // architecture. If we are in host-only mode we return 'success' so that 2255 // the host uses the CUDA offload kind. 2256 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2257 assert(!GpuArchList.empty() && 2258 "We should have at least one GPU architecture."); 2259 2260 // If the host input is not CUDA, we don't need to bother about this 2261 // input. 2262 if (IA->getType() != types::TY_CUDA) { 2263 // The builder will ignore this input. 2264 IsActive = false; 2265 return ABRT_Inactive; 2266 } 2267 2268 // Set the flag to true, so that the builder acts on the current input. 2269 IsActive = true; 2270 2271 if (CompileHostOnly) 2272 return ABRT_Success; 2273 2274 // Replicate inputs for each GPU architecture. 2275 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2276 CudaDeviceActions.push_back(C.MakeAction<InputAction>( 2277 IA->getInputArg(), types::TY_CUDA_DEVICE)); 2278 2279 return ABRT_Success; 2280 } 2281 2282 return IsActive ? ABRT_Success : ABRT_Inactive; 2283 } 2284 2285 void appendTopLevelActions(ActionList &AL) override { 2286 // Utility to append actions to the top level list. 2287 auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { 2288 OffloadAction::DeviceDependences Dep; 2289 Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), 2290 Action::OFK_Cuda); 2291 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2292 }; 2293 2294 // If we have a fat binary, add it to the list. 2295 if (CudaFatBinary) { 2296 AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); 2297 CudaDeviceActions.clear(); 2298 CudaFatBinary = nullptr; 2299 return; 2300 } 2301 2302 if (CudaDeviceActions.empty()) 2303 return; 2304 2305 // If we have CUDA actions at this point, that's because we have a have 2306 // partial compilation, so we should have an action for each GPU 2307 // architecture. 2308 assert(CudaDeviceActions.size() == GpuArchList.size() && 2309 "Expecting one action per GPU architecture."); 2310 assert(ToolChains.size() == 1 && 2311 "Expecting to have a sing CUDA toolchain."); 2312 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2313 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2314 2315 CudaDeviceActions.clear(); 2316 } 2317 2318 bool initialize() override { 2319 // We don't need to support CUDA. 2320 if (!C.hasOffloadToolChain<Action::OFK_Cuda>()) 2321 return false; 2322 2323 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2324 assert(HostTC && "No toolchain for host compilation."); 2325 if (HostTC->getTriple().isNVPTX()) { 2326 // We do not support targeting NVPTX for host compilation. Throw 2327 // an error and abort pipeline construction early so we don't trip 2328 // asserts that assume device-side compilation. 2329 C.getDriver().Diag(diag::err_drv_cuda_nvptx_host); 2330 return true; 2331 } 2332 2333 ToolChains.push_back(C.getSingleOffloadToolChain<Action::OFK_Cuda>()); 2334 2335 Arg *PartialCompilationArg = Args.getLastArg( 2336 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2337 options::OPT_cuda_compile_host_device); 2338 CompileHostOnly = PartialCompilationArg && 2339 PartialCompilationArg->getOption().matches( 2340 options::OPT_cuda_host_only); 2341 CompileDeviceOnly = PartialCompilationArg && 2342 PartialCompilationArg->getOption().matches( 2343 options::OPT_cuda_device_only); 2344 2345 // Collect all cuda_gpu_arch parameters, removing duplicates. 2346 std::set<CudaArch> GpuArchs; 2347 bool Error = false; 2348 for (Arg *A : Args) { 2349 if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || 2350 A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) 2351 continue; 2352 A->claim(); 2353 2354 const StringRef ArchStr = A->getValue(); 2355 if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && 2356 ArchStr == "all") { 2357 GpuArchs.clear(); 2358 continue; 2359 } 2360 CudaArch Arch = StringToCudaArch(ArchStr); 2361 if (Arch == CudaArch::UNKNOWN) { 2362 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2363 Error = true; 2364 } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) 2365 GpuArchs.insert(Arch); 2366 else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) 2367 GpuArchs.erase(Arch); 2368 else 2369 llvm_unreachable("Unexpected option."); 2370 } 2371 2372 // Collect list of GPUs remaining in the set. 2373 for (CudaArch Arch : GpuArchs) 2374 GpuArchList.push_back(Arch); 2375 2376 // Default to sm_20 which is the lowest common denominator for 2377 // supported GPUs. sm_20 code should work correctly, if 2378 // suboptimally, on all newer GPUs. 2379 if (GpuArchList.empty()) 2380 GpuArchList.push_back(CudaArch::SM_20); 2381 2382 return Error; 2383 } 2384 }; 2385 2386 /// OpenMP action builder. The host bitcode is passed to the device frontend 2387 /// and all the device linked images are passed to the host link phase. 2388 class OpenMPActionBuilder final : public DeviceActionBuilder { 2389 /// The OpenMP actions for the current input. 2390 ActionList OpenMPDeviceActions; 2391 2392 /// The linker inputs obtained for each toolchain. 2393 SmallVector<ActionList, 8> DeviceLinkerInputs; 2394 2395 public: 2396 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2397 const Driver::InputList &Inputs) 2398 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2399 2400 ActionBuilderReturnCode 2401 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2402 phases::ID CurPhase, phases::ID FinalPhase, 2403 PhasesTy &Phases) override { 2404 2405 // We should always have an action for each input. 2406 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2407 "Number of OpenMP actions and toolchains do not match."); 2408 2409 // The host only depends on device action in the linking phase, when all 2410 // the device images have to be embedded in the host image. 2411 if (CurPhase == phases::Link) { 2412 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2413 "Toolchains and linker inputs sizes do not match."); 2414 auto LI = DeviceLinkerInputs.begin(); 2415 for (auto *A : OpenMPDeviceActions) { 2416 LI->push_back(A); 2417 ++LI; 2418 } 2419 2420 // We passed the device action as a host dependence, so we don't need to 2421 // do anything else with them. 2422 OpenMPDeviceActions.clear(); 2423 return ABRT_Success; 2424 } 2425 2426 // By default, we produce an action for each device arch. 2427 for (Action *&A : OpenMPDeviceActions) 2428 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2429 2430 return ABRT_Success; 2431 } 2432 2433 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2434 2435 // If this is an input action replicate it for each OpenMP toolchain. 2436 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2437 OpenMPDeviceActions.clear(); 2438 for (unsigned I = 0; I < ToolChains.size(); ++I) 2439 OpenMPDeviceActions.push_back( 2440 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 2441 return ABRT_Success; 2442 } 2443 2444 // If this is an unbundling action use it as is for each OpenMP toolchain. 2445 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2446 OpenMPDeviceActions.clear(); 2447 for (unsigned I = 0; I < ToolChains.size(); ++I) { 2448 OpenMPDeviceActions.push_back(UA); 2449 UA->registerDependentActionInfo( 2450 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 2451 } 2452 return ABRT_Success; 2453 } 2454 2455 // When generating code for OpenMP we use the host compile phase result as 2456 // a dependence to the device compile phase so that it can learn what 2457 // declarations should be emitted. However, this is not the only use for 2458 // the host action, so we prevent it from being collapsed. 2459 if (isa<CompileJobAction>(HostAction)) { 2460 HostAction->setCannotBeCollapsedWithNextDependentAction(); 2461 assert(ToolChains.size() == OpenMPDeviceActions.size() && 2462 "Toolchains and device action sizes do not match."); 2463 OffloadAction::HostDependence HDep( 2464 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2465 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2466 auto TC = ToolChains.begin(); 2467 for (Action *&A : OpenMPDeviceActions) { 2468 assert(isa<CompileJobAction>(A)); 2469 OffloadAction::DeviceDependences DDep; 2470 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2471 A = C.MakeAction<OffloadAction>(HDep, DDep); 2472 ++TC; 2473 } 2474 } 2475 return ABRT_Success; 2476 } 2477 2478 void appendTopLevelActions(ActionList &AL) override { 2479 if (OpenMPDeviceActions.empty()) 2480 return; 2481 2482 // We should always have an action for each input. 2483 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2484 "Number of OpenMP actions and toolchains do not match."); 2485 2486 // Append all device actions followed by the proper offload action. 2487 auto TI = ToolChains.begin(); 2488 for (auto *A : OpenMPDeviceActions) { 2489 OffloadAction::DeviceDependences Dep; 2490 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2491 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2492 ++TI; 2493 } 2494 // We no longer need the action stored in this builder. 2495 OpenMPDeviceActions.clear(); 2496 } 2497 2498 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2499 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2500 "Toolchains and linker inputs sizes do not match."); 2501 2502 // Append a new link action for each device. 2503 auto TC = ToolChains.begin(); 2504 for (auto &LI : DeviceLinkerInputs) { 2505 auto *DeviceLinkAction = 2506 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2507 DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 2508 Action::OFK_OpenMP); 2509 ++TC; 2510 } 2511 } 2512 2513 bool initialize() override { 2514 // Get the OpenMP toolchains. If we don't get any, the action builder will 2515 // know there is nothing to do related to OpenMP offloading. 2516 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 2517 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 2518 ++TI) 2519 ToolChains.push_back(TI->second); 2520 2521 DeviceLinkerInputs.resize(ToolChains.size()); 2522 return false; 2523 } 2524 2525 bool canUseBundlerUnbundler() const override { 2526 // OpenMP should use bundled files whenever possible. 2527 return true; 2528 } 2529 }; 2530 2531 /// 2532 /// TODO: Add the implementation for other specialized builders here. 2533 /// 2534 2535 /// Specialized builders being used by this offloading action builder. 2536 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 2537 2538 /// Flag set to true if all valid builders allow file bundling/unbundling. 2539 bool CanUseBundler; 2540 2541 public: 2542 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 2543 const Driver::InputList &Inputs) 2544 : C(C) { 2545 // Create a specialized builder for each device toolchain. 2546 2547 IsValid = true; 2548 2549 // Create a specialized builder for CUDA. 2550 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 2551 2552 // Create a specialized builder for OpenMP. 2553 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 2554 2555 // 2556 // TODO: Build other specialized builders here. 2557 // 2558 2559 // Initialize all the builders, keeping track of errors. If all valid 2560 // builders agree that we can use bundling, set the flag to true. 2561 unsigned ValidBuilders = 0u; 2562 unsigned ValidBuildersSupportingBundling = 0u; 2563 for (auto *SB : SpecializedBuilders) { 2564 IsValid = IsValid && !SB->initialize(); 2565 2566 // Update the counters if the builder is valid. 2567 if (SB->isValid()) { 2568 ++ValidBuilders; 2569 if (SB->canUseBundlerUnbundler()) 2570 ++ValidBuildersSupportingBundling; 2571 } 2572 } 2573 CanUseBundler = 2574 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 2575 } 2576 2577 ~OffloadingActionBuilder() { 2578 for (auto *SB : SpecializedBuilders) 2579 delete SB; 2580 } 2581 2582 /// Generate an action that adds device dependences (if any) to a host action. 2583 /// If no device dependence actions exist, just return the host action \a 2584 /// HostAction. If an error is found or if no builder requires the host action 2585 /// to be generated, return nullptr. 2586 Action * 2587 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 2588 phases::ID CurPhase, phases::ID FinalPhase, 2589 DeviceActionBuilder::PhasesTy &Phases) { 2590 if (!IsValid) 2591 return nullptr; 2592 2593 if (SpecializedBuilders.empty()) 2594 return HostAction; 2595 2596 assert(HostAction && "Invalid host action!"); 2597 2598 OffloadAction::DeviceDependences DDeps; 2599 // Check if all the programming models agree we should not emit the host 2600 // action. Also, keep track of the offloading kinds employed. 2601 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 2602 unsigned InactiveBuilders = 0u; 2603 unsigned IgnoringBuilders = 0u; 2604 for (auto *SB : SpecializedBuilders) { 2605 if (!SB->isValid()) { 2606 ++InactiveBuilders; 2607 continue; 2608 } 2609 2610 auto RetCode = 2611 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 2612 2613 // If the builder explicitly says the host action should be ignored, 2614 // we need to increment the variable that tracks the builders that request 2615 // the host object to be ignored. 2616 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 2617 ++IgnoringBuilders; 2618 2619 // Unless the builder was inactive for this action, we have to record the 2620 // offload kind because the host will have to use it. 2621 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 2622 OffloadKind |= SB->getAssociatedOffloadKind(); 2623 } 2624 2625 // If all builders agree that the host object should be ignored, just return 2626 // nullptr. 2627 if (IgnoringBuilders && 2628 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 2629 return nullptr; 2630 2631 if (DDeps.getActions().empty()) 2632 return HostAction; 2633 2634 // We have dependences we need to bundle together. We use an offload action 2635 // for that. 2636 OffloadAction::HostDependence HDep( 2637 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2638 /*BoundArch=*/nullptr, DDeps); 2639 return C.MakeAction<OffloadAction>(HDep, DDeps); 2640 } 2641 2642 /// Generate an action that adds a host dependence to a device action. The 2643 /// results will be kept in this action builder. Return true if an error was 2644 /// found. 2645 bool addHostDependenceToDeviceActions(Action *&HostAction, 2646 const Arg *InputArg) { 2647 if (!IsValid) 2648 return true; 2649 2650 // If we are supporting bundling/unbundling and the current action is an 2651 // input action of non-source file, we replace the host action by the 2652 // unbundling action. The bundler tool has the logic to detect if an input 2653 // is a bundle or not and if the input is not a bundle it assumes it is a 2654 // host file. Therefore it is safe to create an unbundling action even if 2655 // the input is not a bundle. 2656 if (CanUseBundler && isa<InputAction>(HostAction) && 2657 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 2658 !types::isSrcFile(HostAction->getType())) { 2659 auto UnbundlingHostAction = 2660 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 2661 UnbundlingHostAction->registerDependentActionInfo( 2662 C.getSingleOffloadToolChain<Action::OFK_Host>(), 2663 /*BoundArch=*/StringRef(), Action::OFK_Host); 2664 HostAction = UnbundlingHostAction; 2665 } 2666 2667 assert(HostAction && "Invalid host action!"); 2668 2669 // Register the offload kinds that are used. 2670 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 2671 for (auto *SB : SpecializedBuilders) { 2672 if (!SB->isValid()) 2673 continue; 2674 2675 auto RetCode = SB->addDeviceDepences(HostAction); 2676 2677 // Host dependences for device actions are not compatible with that same 2678 // action being ignored. 2679 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 2680 "Host dependence not expected to be ignored.!"); 2681 2682 // Unless the builder was inactive for this action, we have to record the 2683 // offload kind because the host will have to use it. 2684 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 2685 OffloadKind |= SB->getAssociatedOffloadKind(); 2686 } 2687 2688 return false; 2689 } 2690 2691 /// Add the offloading top level actions to the provided action list. This 2692 /// function can replace the host action by a bundling action if the 2693 /// programming models allow it. 2694 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 2695 const Arg *InputArg) { 2696 // Get the device actions to be appended. 2697 ActionList OffloadAL; 2698 for (auto *SB : SpecializedBuilders) { 2699 if (!SB->isValid()) 2700 continue; 2701 SB->appendTopLevelActions(OffloadAL); 2702 } 2703 2704 // If we can use the bundler, replace the host action by the bundling one in 2705 // the resulting list. Otherwise, just append the device actions. 2706 if (CanUseBundler && !OffloadAL.empty()) { 2707 // Add the host action to the list in order to create the bundling action. 2708 OffloadAL.push_back(HostAction); 2709 2710 // We expect that the host action was just appended to the action list 2711 // before this method was called. 2712 assert(HostAction == AL.back() && "Host action not in the list??"); 2713 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 2714 AL.back() = HostAction; 2715 } else 2716 AL.append(OffloadAL.begin(), OffloadAL.end()); 2717 2718 // Propagate to the current host action (if any) the offload information 2719 // associated with the current input. 2720 if (HostAction) 2721 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 2722 /*BoundArch=*/nullptr); 2723 return false; 2724 } 2725 2726 /// Processes the host linker action. This currently consists of replacing it 2727 /// with an offload action if there are device link objects and propagate to 2728 /// the host action all the offload kinds used in the current compilation. The 2729 /// resulting action is returned. 2730 Action *processHostLinkAction(Action *HostAction) { 2731 // Add all the dependences from the device linking actions. 2732 OffloadAction::DeviceDependences DDeps; 2733 for (auto *SB : SpecializedBuilders) { 2734 if (!SB->isValid()) 2735 continue; 2736 2737 SB->appendLinkDependences(DDeps); 2738 } 2739 2740 // Calculate all the offload kinds used in the current compilation. 2741 unsigned ActiveOffloadKinds = 0u; 2742 for (auto &I : InputArgToOffloadKindMap) 2743 ActiveOffloadKinds |= I.second; 2744 2745 // If we don't have device dependencies, we don't have to create an offload 2746 // action. 2747 if (DDeps.getActions().empty()) { 2748 // Propagate all the active kinds to host action. Given that it is a link 2749 // action it is assumed to depend on all actions generated so far. 2750 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 2751 /*BoundArch=*/nullptr); 2752 return HostAction; 2753 } 2754 2755 // Create the offload action with all dependences. When an offload action 2756 // is created the kinds are propagated to the host action, so we don't have 2757 // to do that explicitly here. 2758 OffloadAction::HostDependence HDep( 2759 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2760 /*BoundArch*/ nullptr, ActiveOffloadKinds); 2761 return C.MakeAction<OffloadAction>(HDep, DDeps); 2762 } 2763 }; 2764 } // anonymous namespace. 2765 2766 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 2767 const InputList &Inputs, ActionList &Actions) const { 2768 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 2769 2770 if (!SuppressMissingInputWarning && Inputs.empty()) { 2771 Diag(clang::diag::err_drv_no_input_files); 2772 return; 2773 } 2774 2775 Arg *FinalPhaseArg; 2776 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 2777 2778 if (FinalPhase == phases::Link) { 2779 if (Args.hasArg(options::OPT_emit_llvm)) 2780 Diag(clang::diag::err_drv_emit_llvm_link); 2781 if (IsCLMode() && LTOMode != LTOK_None && 2782 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 2783 Diag(clang::diag::err_drv_lto_without_lld); 2784 } 2785 2786 // Reject -Z* at the top level, these options should never have been exposed 2787 // by gcc. 2788 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 2789 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 2790 2791 // Diagnose misuse of /Fo. 2792 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 2793 StringRef V = A->getValue(); 2794 if (Inputs.size() > 1 && !V.empty() && 2795 !llvm::sys::path::is_separator(V.back())) { 2796 // Check whether /Fo tries to name an output file for multiple inputs. 2797 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 2798 << A->getSpelling() << V; 2799 Args.eraseArg(options::OPT__SLASH_Fo); 2800 } 2801 } 2802 2803 // Diagnose misuse of /Fa. 2804 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 2805 StringRef V = A->getValue(); 2806 if (Inputs.size() > 1 && !V.empty() && 2807 !llvm::sys::path::is_separator(V.back())) { 2808 // Check whether /Fa tries to name an asm file for multiple inputs. 2809 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 2810 << A->getSpelling() << V; 2811 Args.eraseArg(options::OPT__SLASH_Fa); 2812 } 2813 } 2814 2815 // Diagnose misuse of /o. 2816 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 2817 if (A->getValue()[0] == '\0') { 2818 // It has to have a value. 2819 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 2820 Args.eraseArg(options::OPT__SLASH_o); 2821 } 2822 } 2823 2824 // Diagnose unsupported forms of /Yc /Yu. Ignore /Yc/Yu for now if: 2825 // * no filename after it 2826 // * both /Yc and /Yu passed but with different filenames 2827 // * corresponding file not also passed as /FI 2828 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 2829 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 2830 if (YcArg && YcArg->getValue()[0] == '\0') { 2831 Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YcArg->getSpelling(); 2832 Args.eraseArg(options::OPT__SLASH_Yc); 2833 YcArg = nullptr; 2834 } 2835 if (YuArg && YuArg->getValue()[0] == '\0') { 2836 Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YuArg->getSpelling(); 2837 Args.eraseArg(options::OPT__SLASH_Yu); 2838 YuArg = nullptr; 2839 } 2840 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 2841 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 2842 Args.eraseArg(options::OPT__SLASH_Yc); 2843 Args.eraseArg(options::OPT__SLASH_Yu); 2844 YcArg = YuArg = nullptr; 2845 } 2846 if (YcArg || YuArg) { 2847 StringRef Val = YcArg ? YcArg->getValue() : YuArg->getValue(); 2848 bool FoundMatchingInclude = false; 2849 for (const Arg *Inc : Args.filtered(options::OPT_include)) { 2850 // FIXME: Do case-insensitive matching and consider / and \ as equal. 2851 if (Inc->getValue() == Val) 2852 FoundMatchingInclude = true; 2853 } 2854 if (!FoundMatchingInclude) { 2855 Diag(clang::diag::warn_drv_ycyu_no_fi_arg_clang_cl) 2856 << (YcArg ? YcArg : YuArg)->getSpelling(); 2857 Args.eraseArg(options::OPT__SLASH_Yc); 2858 Args.eraseArg(options::OPT__SLASH_Yu); 2859 YcArg = YuArg = nullptr; 2860 } 2861 } 2862 if (YcArg && Inputs.size() > 1) { 2863 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 2864 Args.eraseArg(options::OPT__SLASH_Yc); 2865 YcArg = nullptr; 2866 } 2867 if (Args.hasArg(options::OPT__SLASH_Y_)) { 2868 // /Y- disables all pch handling. Rather than check for it everywhere, 2869 // just remove clang-cl pch-related flags here. 2870 Args.eraseArg(options::OPT__SLASH_Fp); 2871 Args.eraseArg(options::OPT__SLASH_Yc); 2872 Args.eraseArg(options::OPT__SLASH_Yu); 2873 YcArg = YuArg = nullptr; 2874 } 2875 2876 // Builder to be used to build offloading actions. 2877 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 2878 2879 // Construct the actions to perform. 2880 ActionList LinkerInputs; 2881 2882 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 2883 for (auto &I : Inputs) { 2884 types::ID InputType = I.first; 2885 const Arg *InputArg = I.second; 2886 2887 PL.clear(); 2888 types::getCompilationPhases(InputType, PL); 2889 2890 // If the first step comes after the final phase we are doing as part of 2891 // this compilation, warn the user about it. 2892 phases::ID InitialPhase = PL[0]; 2893 if (InitialPhase > FinalPhase) { 2894 // Claim here to avoid the more general unused warning. 2895 InputArg->claim(); 2896 2897 // Suppress all unused style warnings with -Qunused-arguments 2898 if (Args.hasArg(options::OPT_Qunused_arguments)) 2899 continue; 2900 2901 // Special case when final phase determined by binary name, rather than 2902 // by a command-line argument with a corresponding Arg. 2903 if (CCCIsCPP()) 2904 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 2905 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 2906 // Special case '-E' warning on a previously preprocessed file to make 2907 // more sense. 2908 else if (InitialPhase == phases::Compile && 2909 FinalPhase == phases::Preprocess && 2910 getPreprocessedType(InputType) == types::TY_INVALID) 2911 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 2912 << InputArg->getAsString(Args) << !!FinalPhaseArg 2913 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 2914 else 2915 Diag(clang::diag::warn_drv_input_file_unused) 2916 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 2917 << !!FinalPhaseArg 2918 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 2919 continue; 2920 } 2921 2922 if (YcArg) { 2923 // Add a separate precompile phase for the compile phase. 2924 if (FinalPhase >= phases::Compile) { 2925 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 2926 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL; 2927 types::getCompilationPhases(HeaderType, PCHPL); 2928 Arg *PchInputArg = MakeInputArg(Args, *Opts, YcArg->getValue()); 2929 2930 // Build the pipeline for the pch file. 2931 Action *ClangClPch = 2932 C.MakeAction<InputAction>(*PchInputArg, HeaderType); 2933 for (phases::ID Phase : PCHPL) 2934 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 2935 assert(ClangClPch); 2936 Actions.push_back(ClangClPch); 2937 // The driver currently exits after the first failed command. This 2938 // relies on that behavior, to make sure if the pch generation fails, 2939 // the main compilation won't run. 2940 } 2941 } 2942 2943 // Build the pipeline for this file. 2944 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 2945 2946 // Use the current host action in any of the offloading actions, if 2947 // required. 2948 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 2949 break; 2950 2951 for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end(); 2952 i != e; ++i) { 2953 phases::ID Phase = *i; 2954 2955 // We are done if this step is past what the user requested. 2956 if (Phase > FinalPhase) 2957 break; 2958 2959 // Add any offload action the host action depends on. 2960 Current = OffloadBuilder.addDeviceDependencesToHostAction( 2961 Current, InputArg, Phase, FinalPhase, PL); 2962 if (!Current) 2963 break; 2964 2965 // Queue linker inputs. 2966 if (Phase == phases::Link) { 2967 assert((i + 1) == e && "linking must be final compilation step."); 2968 LinkerInputs.push_back(Current); 2969 Current = nullptr; 2970 break; 2971 } 2972 2973 // Otherwise construct the appropriate action. 2974 auto *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 2975 2976 // We didn't create a new action, so we will just move to the next phase. 2977 if (NewCurrent == Current) 2978 continue; 2979 2980 Current = NewCurrent; 2981 2982 // Use the current host action in any of the offloading actions, if 2983 // required. 2984 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 2985 break; 2986 2987 if (Current->getType() == types::TY_Nothing) 2988 break; 2989 } 2990 2991 // If we ended with something, add to the output list. 2992 if (Current) 2993 Actions.push_back(Current); 2994 2995 // Add any top level actions generated for offloading. 2996 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 2997 } 2998 2999 // Add a link action if necessary. 3000 if (!LinkerInputs.empty()) { 3001 Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3002 LA = OffloadBuilder.processHostLinkAction(LA); 3003 Actions.push_back(LA); 3004 } 3005 3006 // If we are linking, claim any options which are obviously only used for 3007 // compilation. 3008 if (FinalPhase == phases::Link && PL.size() == 1) { 3009 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3010 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3011 } 3012 3013 // Claim ignored clang-cl options. 3014 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3015 3016 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3017 // to non-CUDA compilations and should not trigger warnings there. 3018 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3019 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3020 } 3021 3022 Action *Driver::ConstructPhaseAction( 3023 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3024 Action::OffloadKind TargetDeviceOffloadKind) const { 3025 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3026 3027 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3028 // encode this in the steps because the intermediate type depends on 3029 // arguments. Just special case here. 3030 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3031 return Input; 3032 3033 // Build the appropriate action. 3034 switch (Phase) { 3035 case phases::Link: 3036 llvm_unreachable("link action invalid here."); 3037 case phases::Preprocess: { 3038 types::ID OutputTy; 3039 // -{M, MM} alter the output type. 3040 if (Args.hasArg(options::OPT_M, options::OPT_MM)) { 3041 OutputTy = types::TY_Dependencies; 3042 } else { 3043 OutputTy = Input->getType(); 3044 if (!Args.hasFlag(options::OPT_frewrite_includes, 3045 options::OPT_fno_rewrite_includes, false) && 3046 !Args.hasFlag(options::OPT_frewrite_imports, 3047 options::OPT_fno_rewrite_imports, false) && 3048 !CCGenDiagnostics) 3049 OutputTy = types::getPreprocessedType(OutputTy); 3050 assert(OutputTy != types::TY_INVALID && 3051 "Cannot preprocess this input type!"); 3052 } 3053 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3054 } 3055 case phases::Precompile: { 3056 types::ID OutputTy = getPrecompiledType(Input->getType()); 3057 assert(OutputTy != types::TY_INVALID && 3058 "Cannot precompile this input type!"); 3059 if (Args.hasArg(options::OPT_fsyntax_only)) { 3060 // Syntax checks should not emit a PCH file 3061 OutputTy = types::TY_Nothing; 3062 } 3063 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3064 } 3065 case phases::Compile: { 3066 if (Args.hasArg(options::OPT_fsyntax_only)) 3067 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3068 if (Args.hasArg(options::OPT_rewrite_objc)) 3069 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3070 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3071 return C.MakeAction<CompileJobAction>(Input, 3072 types::TY_RewrittenLegacyObjC); 3073 if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto)) 3074 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3075 if (Args.hasArg(options::OPT__migrate)) 3076 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3077 if (Args.hasArg(options::OPT_emit_ast)) 3078 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3079 if (Args.hasArg(options::OPT_module_file_info)) 3080 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3081 if (Args.hasArg(options::OPT_verify_pch)) 3082 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3083 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3084 } 3085 case phases::Backend: { 3086 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3087 types::ID Output = 3088 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3089 return C.MakeAction<BackendJobAction>(Input, Output); 3090 } 3091 if (Args.hasArg(options::OPT_emit_llvm)) { 3092 types::ID Output = 3093 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3094 return C.MakeAction<BackendJobAction>(Input, Output); 3095 } 3096 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3097 } 3098 case phases::Assemble: 3099 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3100 } 3101 3102 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3103 } 3104 3105 void Driver::BuildJobs(Compilation &C) const { 3106 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3107 3108 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3109 3110 // It is an error to provide a -o option if we are making multiple output 3111 // files. 3112 if (FinalOutput) { 3113 unsigned NumOutputs = 0; 3114 for (const Action *A : C.getActions()) 3115 if (A->getType() != types::TY_Nothing) 3116 ++NumOutputs; 3117 3118 if (NumOutputs > 1) { 3119 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3120 FinalOutput = nullptr; 3121 } 3122 } 3123 3124 // Collect the list of architectures. 3125 llvm::StringSet<> ArchNames; 3126 if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO()) 3127 for (const Arg *A : C.getArgs()) 3128 if (A->getOption().matches(options::OPT_arch)) 3129 ArchNames.insert(A->getValue()); 3130 3131 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3132 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3133 for (Action *A : C.getActions()) { 3134 // If we are linking an image for multiple archs then the linker wants 3135 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3136 // doesn't fit in cleanly because we have to pass this information down. 3137 // 3138 // FIXME: This is a hack; find a cleaner way to integrate this into the 3139 // process. 3140 const char *LinkingOutput = nullptr; 3141 if (isa<LipoJobAction>(A)) { 3142 if (FinalOutput) 3143 LinkingOutput = FinalOutput->getValue(); 3144 else 3145 LinkingOutput = getDefaultImageName(); 3146 } 3147 3148 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3149 /*BoundArch*/ StringRef(), 3150 /*AtTopLevel*/ true, 3151 /*MultipleArchs*/ ArchNames.size() > 1, 3152 /*LinkingOutput*/ LinkingOutput, CachedResults, 3153 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3154 } 3155 3156 // If the user passed -Qunused-arguments or there were errors, don't warn 3157 // about any unused arguments. 3158 if (Diags.hasErrorOccurred() || 3159 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3160 return; 3161 3162 // Claim -### here. 3163 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 3164 3165 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 3166 (void)C.getArgs().hasArg(options::OPT_driver_mode); 3167 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 3168 3169 for (Arg *A : C.getArgs()) { 3170 // FIXME: It would be nice to be able to send the argument to the 3171 // DiagnosticsEngine, so that extra values, position, and so on could be 3172 // printed. 3173 if (!A->isClaimed()) { 3174 if (A->getOption().hasFlag(options::NoArgumentUnused)) 3175 continue; 3176 3177 // Suppress the warning automatically if this is just a flag, and it is an 3178 // instance of an argument we already claimed. 3179 const Option &Opt = A->getOption(); 3180 if (Opt.getKind() == Option::FlagClass) { 3181 bool DuplicateClaimed = false; 3182 3183 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 3184 if (AA->isClaimed()) { 3185 DuplicateClaimed = true; 3186 break; 3187 } 3188 } 3189 3190 if (DuplicateClaimed) 3191 continue; 3192 } 3193 3194 // In clang-cl, don't mention unknown arguments here since they have 3195 // already been warned about. 3196 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 3197 Diag(clang::diag::warn_drv_unused_argument) 3198 << A->getAsString(C.getArgs()); 3199 } 3200 } 3201 } 3202 3203 namespace { 3204 /// Utility class to control the collapse of dependent actions and select the 3205 /// tools accordingly. 3206 class ToolSelector final { 3207 /// The tool chain this selector refers to. 3208 const ToolChain &TC; 3209 3210 /// The compilation this selector refers to. 3211 const Compilation &C; 3212 3213 /// The base action this selector refers to. 3214 const JobAction *BaseAction; 3215 3216 /// Set to true if the current toolchain refers to host actions. 3217 bool IsHostSelector; 3218 3219 /// Set to true if save-temps and embed-bitcode functionalities are active. 3220 bool SaveTemps; 3221 bool EmbedBitcode; 3222 3223 /// Get previous dependent action or null if that does not exist. If 3224 /// \a CanBeCollapsed is false, that action must be legal to collapse or 3225 /// null will be returned. 3226 const JobAction *getPrevDependentAction(const ActionList &Inputs, 3227 ActionList &SavedOffloadAction, 3228 bool CanBeCollapsed = true) { 3229 // An option can be collapsed only if it has a single input. 3230 if (Inputs.size() != 1) 3231 return nullptr; 3232 3233 Action *CurAction = *Inputs.begin(); 3234 if (CanBeCollapsed && 3235 !CurAction->isCollapsingWithNextDependentActionLegal()) 3236 return nullptr; 3237 3238 // If the input action is an offload action. Look through it and save any 3239 // offload action that can be dropped in the event of a collapse. 3240 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 3241 // If the dependent action is a device action, we will attempt to collapse 3242 // only with other device actions. Otherwise, we would do the same but 3243 // with host actions only. 3244 if (!IsHostSelector) { 3245 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 3246 CurAction = 3247 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 3248 if (CanBeCollapsed && 3249 !CurAction->isCollapsingWithNextDependentActionLegal()) 3250 return nullptr; 3251 SavedOffloadAction.push_back(OA); 3252 return dyn_cast<JobAction>(CurAction); 3253 } 3254 } else if (OA->hasHostDependence()) { 3255 CurAction = OA->getHostDependence(); 3256 if (CanBeCollapsed && 3257 !CurAction->isCollapsingWithNextDependentActionLegal()) 3258 return nullptr; 3259 SavedOffloadAction.push_back(OA); 3260 return dyn_cast<JobAction>(CurAction); 3261 } 3262 return nullptr; 3263 } 3264 3265 return dyn_cast<JobAction>(CurAction); 3266 } 3267 3268 /// Return true if an assemble action can be collapsed. 3269 bool canCollapseAssembleAction() const { 3270 return TC.useIntegratedAs() && !SaveTemps && 3271 !C.getArgs().hasArg(options::OPT_via_file_asm) && 3272 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 3273 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 3274 } 3275 3276 /// Return true if a preprocessor action can be collapsed. 3277 bool canCollapsePreprocessorAction() const { 3278 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 3279 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 3280 !C.getArgs().hasArg(options::OPT_rewrite_objc); 3281 } 3282 3283 /// Struct that relates an action with the offload actions that would be 3284 /// collapsed with it. 3285 struct JobActionInfo final { 3286 /// The action this info refers to. 3287 const JobAction *JA = nullptr; 3288 /// The offload actions we need to take care off if this action is 3289 /// collapsed. 3290 ActionList SavedOffloadAction; 3291 }; 3292 3293 /// Append collapsed offload actions from the give nnumber of elements in the 3294 /// action info array. 3295 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 3296 ArrayRef<JobActionInfo> &ActionInfo, 3297 unsigned ElementNum) { 3298 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 3299 for (unsigned I = 0; I < ElementNum; ++I) 3300 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 3301 ActionInfo[I].SavedOffloadAction.end()); 3302 } 3303 3304 /// Functions that attempt to perform the combining. They detect if that is 3305 /// legal, and if so they update the inputs \a Inputs and the offload action 3306 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 3307 /// the combined action is returned. If the combining is not legal or if the 3308 /// tool does not exist, null is returned. 3309 /// Currently three kinds of collapsing are supported: 3310 /// - Assemble + Backend + Compile; 3311 /// - Assemble + Backend ; 3312 /// - Backend + Compile. 3313 const Tool * 3314 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3315 const ActionList *&Inputs, 3316 ActionList &CollapsedOffloadAction) { 3317 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 3318 return nullptr; 3319 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3320 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3321 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 3322 if (!AJ || !BJ || !CJ) 3323 return nullptr; 3324 3325 // Get compiler tool. 3326 const Tool *T = TC.SelectTool(*CJ); 3327 if (!T) 3328 return nullptr; 3329 3330 // When using -fembed-bitcode, it is required to have the same tool (clang) 3331 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 3332 if (EmbedBitcode) { 3333 const Tool *BT = TC.SelectTool(*BJ); 3334 if (BT == T) 3335 return nullptr; 3336 } 3337 3338 if (!T->hasIntegratedAssembler()) 3339 return nullptr; 3340 3341 Inputs = &CJ->getInputs(); 3342 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3343 /*NumElements=*/3); 3344 return T; 3345 } 3346 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 3347 const ActionList *&Inputs, 3348 ActionList &CollapsedOffloadAction) { 3349 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 3350 return nullptr; 3351 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3352 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3353 if (!AJ || !BJ) 3354 return nullptr; 3355 3356 // Retrieve the compile job, backend action must always be preceded by one. 3357 ActionList CompileJobOffloadActions; 3358 auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions, 3359 /*CanBeCollapsed=*/false); 3360 if (!AJ || !BJ || !CJ) 3361 return nullptr; 3362 3363 assert(isa<CompileJobAction>(CJ) && 3364 "Expecting compile job preceding backend job."); 3365 3366 // Get compiler tool. 3367 const Tool *T = TC.SelectTool(*CJ); 3368 if (!T) 3369 return nullptr; 3370 3371 if (!T->hasIntegratedAssembler()) 3372 return nullptr; 3373 3374 Inputs = &BJ->getInputs(); 3375 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3376 /*NumElements=*/2); 3377 return T; 3378 } 3379 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3380 const ActionList *&Inputs, 3381 ActionList &CollapsedOffloadAction) { 3382 if (ActionInfo.size() < 2 || !canCollapsePreprocessorAction()) 3383 return nullptr; 3384 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 3385 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 3386 if (!BJ || !CJ) 3387 return nullptr; 3388 3389 // Get compiler tool. 3390 const Tool *T = TC.SelectTool(*CJ); 3391 if (!T) 3392 return nullptr; 3393 3394 if (T->canEmitIR() && (SaveTemps || EmbedBitcode)) 3395 return nullptr; 3396 3397 Inputs = &CJ->getInputs(); 3398 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3399 /*NumElements=*/2); 3400 return T; 3401 } 3402 3403 /// Updates the inputs if the obtained tool supports combining with 3404 /// preprocessor action, and the current input is indeed a preprocessor 3405 /// action. If combining results in the collapse of offloading actions, those 3406 /// are appended to \a CollapsedOffloadAction. 3407 void combineWithPreprocessor(const Tool *T, const ActionList *&Inputs, 3408 ActionList &CollapsedOffloadAction) { 3409 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 3410 return; 3411 3412 // Attempt to get a preprocessor action dependence. 3413 ActionList PreprocessJobOffloadActions; 3414 auto *PJ = getPrevDependentAction(*Inputs, PreprocessJobOffloadActions); 3415 if (!PJ || !isa<PreprocessJobAction>(PJ)) 3416 return; 3417 3418 // This is legal to combine. Append any offload action we found and set the 3419 // current inputs to preprocessor inputs. 3420 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 3421 PreprocessJobOffloadActions.end()); 3422 Inputs = &PJ->getInputs(); 3423 } 3424 3425 public: 3426 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 3427 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 3428 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 3429 EmbedBitcode(EmbedBitcode) { 3430 assert(BaseAction && "Invalid base action."); 3431 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 3432 } 3433 3434 /// Check if a chain of actions can be combined and return the tool that can 3435 /// handle the combination of actions. The pointer to the current inputs \a 3436 /// Inputs and the list of offload actions \a CollapsedOffloadActions 3437 /// connected to collapsed actions are updated accordingly. The latter enables 3438 /// the caller of the selector to process them afterwards instead of just 3439 /// dropping them. If no suitable tool is found, null will be returned. 3440 const Tool *getTool(const ActionList *&Inputs, 3441 ActionList &CollapsedOffloadAction) { 3442 // 3443 // Get the largest chain of actions that we could combine. 3444 // 3445 3446 SmallVector<JobActionInfo, 5> ActionChain(1); 3447 ActionChain.back().JA = BaseAction; 3448 while (ActionChain.back().JA) { 3449 const Action *CurAction = ActionChain.back().JA; 3450 3451 // Grow the chain by one element. 3452 ActionChain.resize(ActionChain.size() + 1); 3453 JobActionInfo &AI = ActionChain.back(); 3454 3455 // Attempt to fill it with the 3456 AI.JA = 3457 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 3458 } 3459 3460 // Pop the last action info as it could not be filled. 3461 ActionChain.pop_back(); 3462 3463 // 3464 // Attempt to combine actions. If all combining attempts failed, just return 3465 // the tool of the provided action. At the end we attempt to combine the 3466 // action with any preprocessor action it may depend on. 3467 // 3468 3469 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 3470 CollapsedOffloadAction); 3471 if (!T) 3472 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 3473 if (!T) 3474 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 3475 if (!T) { 3476 Inputs = &BaseAction->getInputs(); 3477 T = TC.SelectTool(*BaseAction); 3478 } 3479 3480 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 3481 return T; 3482 } 3483 }; 3484 } 3485 3486 /// Return a string that uniquely identifies the result of a job. The bound arch 3487 /// is not necessarily represented in the toolchain's triple -- for example, 3488 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 3489 /// Also, we need to add the offloading device kind, as the same tool chain can 3490 /// be used for host and device for some programming models, e.g. OpenMP. 3491 static std::string GetTriplePlusArchString(const ToolChain *TC, 3492 StringRef BoundArch, 3493 Action::OffloadKind OffloadKind) { 3494 std::string TriplePlusArch = TC->getTriple().normalize(); 3495 if (!BoundArch.empty()) { 3496 TriplePlusArch += "-"; 3497 TriplePlusArch += BoundArch; 3498 } 3499 TriplePlusArch += "-"; 3500 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 3501 return TriplePlusArch; 3502 } 3503 3504 InputInfo Driver::BuildJobsForAction( 3505 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 3506 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 3507 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 3508 Action::OffloadKind TargetDeviceOffloadKind) const { 3509 std::pair<const Action *, std::string> ActionTC = { 3510 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 3511 auto CachedResult = CachedResults.find(ActionTC); 3512 if (CachedResult != CachedResults.end()) { 3513 return CachedResult->second; 3514 } 3515 InputInfo Result = BuildJobsForActionNoCache( 3516 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 3517 CachedResults, TargetDeviceOffloadKind); 3518 CachedResults[ActionTC] = Result; 3519 return Result; 3520 } 3521 3522 InputInfo Driver::BuildJobsForActionNoCache( 3523 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 3524 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 3525 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 3526 Action::OffloadKind TargetDeviceOffloadKind) const { 3527 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3528 3529 InputInfoList OffloadDependencesInputInfo; 3530 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 3531 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 3532 // The 'Darwin' toolchain is initialized only when its arguments are 3533 // computed. Get the default arguments for OFK_None to ensure that 3534 // initialization is performed before processing the offload action. 3535 // FIXME: Remove when darwin's toolchain is initialized during construction. 3536 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 3537 3538 // The offload action is expected to be used in four different situations. 3539 // 3540 // a) Set a toolchain/architecture/kind for a host action: 3541 // Host Action 1 -> OffloadAction -> Host Action 2 3542 // 3543 // b) Set a toolchain/architecture/kind for a device action; 3544 // Device Action 1 -> OffloadAction -> Device Action 2 3545 // 3546 // c) Specify a device dependence to a host action; 3547 // Device Action 1 _ 3548 // \ 3549 // Host Action 1 ---> OffloadAction -> Host Action 2 3550 // 3551 // d) Specify a host dependence to a device action. 3552 // Host Action 1 _ 3553 // \ 3554 // Device Action 1 ---> OffloadAction -> Device Action 2 3555 // 3556 // For a) and b), we just return the job generated for the dependence. For 3557 // c) and d) we override the current action with the host/device dependence 3558 // if the current toolchain is host/device and set the offload dependences 3559 // info with the jobs obtained from the device/host dependence(s). 3560 3561 // If there is a single device option, just generate the job for it. 3562 if (OA->hasSingleDeviceDependence()) { 3563 InputInfo DevA; 3564 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 3565 const char *DepBoundArch) { 3566 DevA = 3567 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 3568 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 3569 CachedResults, DepA->getOffloadingDeviceKind()); 3570 }); 3571 return DevA; 3572 } 3573 3574 // If 'Action 2' is host, we generate jobs for the device dependences and 3575 // override the current action with the host dependence. Otherwise, we 3576 // generate the host dependences and override the action with the device 3577 // dependence. The dependences can't therefore be a top-level action. 3578 OA->doOnEachDependence( 3579 /*IsHostDependence=*/BuildingForOffloadDevice, 3580 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 3581 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 3582 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 3583 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 3584 DepA->getOffloadingDeviceKind())); 3585 }); 3586 3587 A = BuildingForOffloadDevice 3588 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 3589 : OA->getHostDependence(); 3590 } 3591 3592 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 3593 // FIXME: It would be nice to not claim this here; maybe the old scheme of 3594 // just using Args was better? 3595 const Arg &Input = IA->getInputArg(); 3596 Input.claim(); 3597 if (Input.getOption().matches(options::OPT_INPUT)) { 3598 const char *Name = Input.getValue(); 3599 return InputInfo(A, Name, /* BaseInput = */ Name); 3600 } 3601 return InputInfo(A, &Input, /* BaseInput = */ ""); 3602 } 3603 3604 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 3605 const ToolChain *TC; 3606 StringRef ArchName = BAA->getArchName(); 3607 3608 if (!ArchName.empty()) 3609 TC = &getToolChain(C.getArgs(), 3610 computeTargetTriple(*this, DefaultTargetTriple, 3611 C.getArgs(), ArchName)); 3612 else 3613 TC = &C.getDefaultToolChain(); 3614 3615 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 3616 MultipleArchs, LinkingOutput, CachedResults, 3617 TargetDeviceOffloadKind); 3618 } 3619 3620 3621 const ActionList *Inputs = &A->getInputs(); 3622 3623 const JobAction *JA = cast<JobAction>(A); 3624 ActionList CollapsedOffloadActions; 3625 3626 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 3627 embedBitcodeInObject() && !isUsingLTO()); 3628 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 3629 3630 if (!T) 3631 return InputInfo(); 3632 3633 // If we've collapsed action list that contained OffloadAction we 3634 // need to build jobs for host/device-side inputs it may have held. 3635 for (const auto *OA : CollapsedOffloadActions) 3636 cast<OffloadAction>(OA)->doOnEachDependence( 3637 /*IsHostDependence=*/BuildingForOffloadDevice, 3638 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 3639 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 3640 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 3641 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 3642 DepA->getOffloadingDeviceKind())); 3643 }); 3644 3645 // Only use pipes when there is exactly one input. 3646 InputInfoList InputInfos; 3647 for (const Action *Input : *Inputs) { 3648 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 3649 // shouldn't get temporary output names. 3650 // FIXME: Clean this up. 3651 bool SubJobAtTopLevel = 3652 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 3653 InputInfos.push_back(BuildJobsForAction( 3654 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 3655 CachedResults, A->getOffloadingDeviceKind())); 3656 } 3657 3658 // Always use the first input as the base input. 3659 const char *BaseInput = InputInfos[0].getBaseInput(); 3660 3661 // ... except dsymutil actions, which use their actual input as the base 3662 // input. 3663 if (JA->getType() == types::TY_dSYM) 3664 BaseInput = InputInfos[0].getFilename(); 3665 3666 // Append outputs of offload device jobs to the input list 3667 if (!OffloadDependencesInputInfo.empty()) 3668 InputInfos.append(OffloadDependencesInputInfo.begin(), 3669 OffloadDependencesInputInfo.end()); 3670 3671 // Set the effective triple of the toolchain for the duration of this job. 3672 llvm::Triple EffectiveTriple; 3673 const ToolChain &ToolTC = T->getToolChain(); 3674 const ArgList &Args = 3675 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 3676 if (InputInfos.size() != 1) { 3677 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 3678 } else { 3679 // Pass along the input type if it can be unambiguously determined. 3680 EffectiveTriple = llvm::Triple( 3681 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 3682 } 3683 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 3684 3685 // Determine the place to write output to, if any. 3686 InputInfo Result; 3687 InputInfoList UnbundlingResults; 3688 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 3689 // If we have an unbundling job, we need to create results for all the 3690 // outputs. We also update the results cache so that other actions using 3691 // this unbundling action can get the right results. 3692 for (auto &UI : UA->getDependentActionsInfo()) { 3693 assert(UI.DependentOffloadKind != Action::OFK_None && 3694 "Unbundling with no offloading??"); 3695 3696 // Unbundling actions are never at the top level. When we generate the 3697 // offloading prefix, we also do that for the host file because the 3698 // unbundling action does not change the type of the output which can 3699 // cause a overwrite. 3700 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 3701 UI.DependentOffloadKind, 3702 UI.DependentToolChain->getTriple().normalize(), 3703 /*CreatePrefixForHost=*/true); 3704 auto CurI = InputInfo( 3705 UA, GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 3706 /*AtTopLevel=*/false, MultipleArchs, 3707 OffloadingPrefix), 3708 BaseInput); 3709 // Save the unbundling result. 3710 UnbundlingResults.push_back(CurI); 3711 3712 // Get the unique string identifier for this dependence and cache the 3713 // result. 3714 CachedResults[{A, GetTriplePlusArchString( 3715 UI.DependentToolChain, BoundArch, 3716 UI.DependentOffloadKind)}] = CurI; 3717 } 3718 3719 // Now that we have all the results generated, select the one that should be 3720 // returned for the current depending action. 3721 std::pair<const Action *, std::string> ActionTC = { 3722 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 3723 assert(CachedResults.find(ActionTC) != CachedResults.end() && 3724 "Result does not exist??"); 3725 Result = CachedResults[ActionTC]; 3726 } else if (JA->getType() == types::TY_Nothing) 3727 Result = InputInfo(A, BaseInput); 3728 else { 3729 // We only have to generate a prefix for the host if this is not a top-level 3730 // action. 3731 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 3732 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 3733 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 3734 !AtTopLevel); 3735 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 3736 AtTopLevel, MultipleArchs, 3737 OffloadingPrefix), 3738 BaseInput); 3739 } 3740 3741 if (CCCPrintBindings && !CCGenDiagnostics) { 3742 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 3743 << " - \"" << T->getName() << "\", inputs: ["; 3744 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 3745 llvm::errs() << InputInfos[i].getAsString(); 3746 if (i + 1 != e) 3747 llvm::errs() << ", "; 3748 } 3749 if (UnbundlingResults.empty()) 3750 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 3751 else { 3752 llvm::errs() << "], outputs: ["; 3753 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 3754 llvm::errs() << UnbundlingResults[i].getAsString(); 3755 if (i + 1 != e) 3756 llvm::errs() << ", "; 3757 } 3758 llvm::errs() << "] \n"; 3759 } 3760 } else { 3761 if (UnbundlingResults.empty()) 3762 T->ConstructJob( 3763 C, *JA, Result, InputInfos, 3764 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 3765 LinkingOutput); 3766 else 3767 T->ConstructJobMultipleOutputs( 3768 C, *JA, UnbundlingResults, InputInfos, 3769 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 3770 LinkingOutput); 3771 } 3772 return Result; 3773 } 3774 3775 const char *Driver::getDefaultImageName() const { 3776 llvm::Triple Target(llvm::Triple::normalize(DefaultTargetTriple)); 3777 return Target.isOSWindows() ? "a.exe" : "a.out"; 3778 } 3779 3780 /// \brief Create output filename based on ArgValue, which could either be a 3781 /// full filename, filename without extension, or a directory. If ArgValue 3782 /// does not provide a filename, then use BaseName, and use the extension 3783 /// suitable for FileType. 3784 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 3785 StringRef BaseName, 3786 types::ID FileType) { 3787 SmallString<128> Filename = ArgValue; 3788 3789 if (ArgValue.empty()) { 3790 // If the argument is empty, output to BaseName in the current dir. 3791 Filename = BaseName; 3792 } else if (llvm::sys::path::is_separator(Filename.back())) { 3793 // If the argument is a directory, output to BaseName in that dir. 3794 llvm::sys::path::append(Filename, BaseName); 3795 } 3796 3797 if (!llvm::sys::path::has_extension(ArgValue)) { 3798 // If the argument didn't provide an extension, then set it. 3799 const char *Extension = types::getTypeTempSuffix(FileType, true); 3800 3801 if (FileType == types::TY_Image && 3802 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 3803 // The output file is a dll. 3804 Extension = "dll"; 3805 } 3806 3807 llvm::sys::path::replace_extension(Filename, Extension); 3808 } 3809 3810 return Args.MakeArgString(Filename.c_str()); 3811 } 3812 3813 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 3814 const char *BaseInput, 3815 StringRef BoundArch, bool AtTopLevel, 3816 bool MultipleArchs, 3817 StringRef OffloadingPrefix) const { 3818 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 3819 // Output to a user requested destination? 3820 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 3821 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 3822 return C.addResultFile(FinalOutput->getValue(), &JA); 3823 } 3824 3825 // For /P, preprocess to file named after BaseInput. 3826 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 3827 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 3828 StringRef BaseName = llvm::sys::path::filename(BaseInput); 3829 StringRef NameArg; 3830 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 3831 NameArg = A->getValue(); 3832 return C.addResultFile( 3833 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 3834 &JA); 3835 } 3836 3837 // Default to writing to stdout? 3838 if (AtTopLevel && !CCGenDiagnostics && 3839 (isa<PreprocessJobAction>(JA) || JA.getType() == types::TY_ModuleFile)) 3840 return "-"; 3841 3842 // Is this the assembly listing for /FA? 3843 if (JA.getType() == types::TY_PP_Asm && 3844 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 3845 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 3846 // Use /Fa and the input filename to determine the asm file name. 3847 StringRef BaseName = llvm::sys::path::filename(BaseInput); 3848 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 3849 return C.addResultFile( 3850 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 3851 &JA); 3852 } 3853 3854 // Output to a temporary file? 3855 if ((!AtTopLevel && !isSaveTempsEnabled() && 3856 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 3857 CCGenDiagnostics) { 3858 StringRef Name = llvm::sys::path::filename(BaseInput); 3859 std::pair<StringRef, StringRef> Split = Name.split('.'); 3860 std::string TmpName = GetTemporaryPath( 3861 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 3862 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 3863 } 3864 3865 SmallString<128> BasePath(BaseInput); 3866 StringRef BaseName; 3867 3868 // Dsymutil actions should use the full path. 3869 if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 3870 BaseName = BasePath; 3871 else 3872 BaseName = llvm::sys::path::filename(BasePath); 3873 3874 // Determine what the derived output name should be. 3875 const char *NamedOutput; 3876 3877 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 3878 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 3879 // The /Fo or /o flag decides the object filename. 3880 StringRef Val = 3881 C.getArgs() 3882 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 3883 ->getValue(); 3884 NamedOutput = 3885 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 3886 } else if (JA.getType() == types::TY_Image && 3887 C.getArgs().hasArg(options::OPT__SLASH_Fe, 3888 options::OPT__SLASH_o)) { 3889 // The /Fe or /o flag names the linked file. 3890 StringRef Val = 3891 C.getArgs() 3892 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 3893 ->getValue(); 3894 NamedOutput = 3895 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 3896 } else if (JA.getType() == types::TY_Image) { 3897 if (IsCLMode()) { 3898 // clang-cl uses BaseName for the executable name. 3899 NamedOutput = 3900 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 3901 } else { 3902 SmallString<128> Output(getDefaultImageName()); 3903 Output += OffloadingPrefix; 3904 if (MultipleArchs && !BoundArch.empty()) { 3905 Output += "-"; 3906 Output.append(BoundArch); 3907 } 3908 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 3909 } 3910 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 3911 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 3912 } else { 3913 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 3914 assert(Suffix && "All types used for output should have a suffix."); 3915 3916 std::string::size_type End = std::string::npos; 3917 if (!types::appendSuffixForType(JA.getType())) 3918 End = BaseName.rfind('.'); 3919 SmallString<128> Suffixed(BaseName.substr(0, End)); 3920 Suffixed += OffloadingPrefix; 3921 if (MultipleArchs && !BoundArch.empty()) { 3922 Suffixed += "-"; 3923 Suffixed.append(BoundArch); 3924 } 3925 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 3926 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 3927 // optimized bitcode output. 3928 if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) && 3929 JA.getType() == types::TY_LLVM_BC) 3930 Suffixed += ".tmp"; 3931 Suffixed += '.'; 3932 Suffixed += Suffix; 3933 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 3934 } 3935 3936 // Prepend object file path if -save-temps=obj 3937 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 3938 JA.getType() != types::TY_PCH) { 3939 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3940 SmallString<128> TempPath(FinalOutput->getValue()); 3941 llvm::sys::path::remove_filename(TempPath); 3942 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 3943 llvm::sys::path::append(TempPath, OutputFileName); 3944 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 3945 } 3946 3947 // If we're saving temps and the temp file conflicts with the input file, 3948 // then avoid overwriting input file. 3949 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 3950 bool SameFile = false; 3951 SmallString<256> Result; 3952 llvm::sys::fs::current_path(Result); 3953 llvm::sys::path::append(Result, BaseName); 3954 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 3955 // Must share the same path to conflict. 3956 if (SameFile) { 3957 StringRef Name = llvm::sys::path::filename(BaseInput); 3958 std::pair<StringRef, StringRef> Split = Name.split('.'); 3959 std::string TmpName = GetTemporaryPath( 3960 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 3961 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 3962 } 3963 } 3964 3965 // As an annoying special case, PCH generation doesn't strip the pathname. 3966 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 3967 llvm::sys::path::remove_filename(BasePath); 3968 if (BasePath.empty()) 3969 BasePath = NamedOutput; 3970 else 3971 llvm::sys::path::append(BasePath, NamedOutput); 3972 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 3973 } else { 3974 return C.addResultFile(NamedOutput, &JA); 3975 } 3976 } 3977 3978 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 3979 // Respect a limited subset of the '-Bprefix' functionality in GCC by 3980 // attempting to use this prefix when looking for file paths. 3981 for (const std::string &Dir : PrefixDirs) { 3982 if (Dir.empty()) 3983 continue; 3984 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 3985 llvm::sys::path::append(P, Name); 3986 if (llvm::sys::fs::exists(Twine(P))) 3987 return P.str(); 3988 } 3989 3990 SmallString<128> R(ResourceDir); 3991 llvm::sys::path::append(R, Name); 3992 if (llvm::sys::fs::exists(Twine(R))) 3993 return R.str(); 3994 3995 SmallString<128> P(TC.getCompilerRTPath()); 3996 llvm::sys::path::append(P, Name); 3997 if (llvm::sys::fs::exists(Twine(P))) 3998 return P.str(); 3999 4000 for (const std::string &Dir : TC.getFilePaths()) { 4001 if (Dir.empty()) 4002 continue; 4003 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4004 llvm::sys::path::append(P, Name); 4005 if (llvm::sys::fs::exists(Twine(P))) 4006 return P.str(); 4007 } 4008 4009 return Name; 4010 } 4011 4012 void Driver::generatePrefixedToolNames( 4013 StringRef Tool, const ToolChain &TC, 4014 SmallVectorImpl<std::string> &Names) const { 4015 // FIXME: Needs a better variable than DefaultTargetTriple 4016 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4017 Names.emplace_back(Tool); 4018 4019 // Allow the discovery of tools prefixed with LLVM's default target triple. 4020 std::string LLVMDefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4021 if (LLVMDefaultTargetTriple != DefaultTargetTriple) 4022 Names.emplace_back((LLVMDefaultTargetTriple + "-" + Tool).str()); 4023 } 4024 4025 static bool ScanDirForExecutable(SmallString<128> &Dir, 4026 ArrayRef<std::string> Names) { 4027 for (const auto &Name : Names) { 4028 llvm::sys::path::append(Dir, Name); 4029 if (llvm::sys::fs::can_execute(Twine(Dir))) 4030 return true; 4031 llvm::sys::path::remove_filename(Dir); 4032 } 4033 return false; 4034 } 4035 4036 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4037 SmallVector<std::string, 2> TargetSpecificExecutables; 4038 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4039 4040 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4041 // attempting to use this prefix when looking for program paths. 4042 for (const auto &PrefixDir : PrefixDirs) { 4043 if (llvm::sys::fs::is_directory(PrefixDir)) { 4044 SmallString<128> P(PrefixDir); 4045 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4046 return P.str(); 4047 } else { 4048 SmallString<128> P((PrefixDir + Name).str()); 4049 if (llvm::sys::fs::can_execute(Twine(P))) 4050 return P.str(); 4051 } 4052 } 4053 4054 const ToolChain::path_list &List = TC.getProgramPaths(); 4055 for (const auto &Path : List) { 4056 SmallString<128> P(Path); 4057 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4058 return P.str(); 4059 } 4060 4061 // If all else failed, search the path. 4062 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) 4063 if (llvm::ErrorOr<std::string> P = 4064 llvm::sys::findProgramByName(TargetSpecificExecutable)) 4065 return *P; 4066 4067 return Name; 4068 } 4069 4070 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 4071 SmallString<128> Path; 4072 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 4073 if (EC) { 4074 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4075 return ""; 4076 } 4077 4078 return Path.str(); 4079 } 4080 4081 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 4082 SmallString<128> Output; 4083 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 4084 // FIXME: If anybody needs it, implement this obscure rule: 4085 // "If you specify a directory without a file name, the default file name 4086 // is VCx0.pch., where x is the major version of Visual C++ in use." 4087 Output = FpArg->getValue(); 4088 4089 // "If you do not specify an extension as part of the path name, an 4090 // extension of .pch is assumed. " 4091 if (!llvm::sys::path::has_extension(Output)) 4092 Output += ".pch"; 4093 } else { 4094 Output = BaseName; 4095 llvm::sys::path::replace_extension(Output, ".pch"); 4096 } 4097 return Output.str(); 4098 } 4099 4100 const ToolChain &Driver::getToolChain(const ArgList &Args, 4101 const llvm::Triple &Target) const { 4102 4103 auto &TC = ToolChains[Target.str()]; 4104 if (!TC) { 4105 switch (Target.getOS()) { 4106 case llvm::Triple::Haiku: 4107 TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args); 4108 break; 4109 case llvm::Triple::Ananas: 4110 TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args); 4111 break; 4112 case llvm::Triple::CloudABI: 4113 TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args); 4114 break; 4115 case llvm::Triple::Darwin: 4116 case llvm::Triple::MacOSX: 4117 case llvm::Triple::IOS: 4118 case llvm::Triple::TvOS: 4119 case llvm::Triple::WatchOS: 4120 TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args); 4121 break; 4122 case llvm::Triple::DragonFly: 4123 TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args); 4124 break; 4125 case llvm::Triple::OpenBSD: 4126 TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args); 4127 break; 4128 case llvm::Triple::NetBSD: 4129 TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args); 4130 break; 4131 case llvm::Triple::FreeBSD: 4132 TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args); 4133 break; 4134 case llvm::Triple::Minix: 4135 TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args); 4136 break; 4137 case llvm::Triple::Linux: 4138 case llvm::Triple::ELFIAMCU: 4139 if (Target.getArch() == llvm::Triple::hexagon) 4140 TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target, 4141 Args); 4142 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 4143 !Target.hasEnvironment()) 4144 TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 4145 Args); 4146 else 4147 TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args); 4148 break; 4149 case llvm::Triple::NaCl: 4150 TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 4151 break; 4152 case llvm::Triple::Fuchsia: 4153 TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args); 4154 break; 4155 case llvm::Triple::Solaris: 4156 TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args); 4157 break; 4158 case llvm::Triple::AMDHSA: 4159 TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 4160 break; 4161 case llvm::Triple::Win32: 4162 switch (Target.getEnvironment()) { 4163 default: 4164 if (Target.isOSBinFormatELF()) 4165 TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4166 else if (Target.isOSBinFormatMachO()) 4167 TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args); 4168 else 4169 TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4170 break; 4171 case llvm::Triple::GNU: 4172 TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args); 4173 break; 4174 case llvm::Triple::Itanium: 4175 TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 4176 Args); 4177 break; 4178 case llvm::Triple::MSVC: 4179 case llvm::Triple::UnknownEnvironment: 4180 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 4181 .startswith_lower("bfd")) 4182 TC = llvm::make_unique<toolchains::CrossWindowsToolChain>( 4183 *this, Target, Args); 4184 else 4185 TC = 4186 llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 4187 break; 4188 } 4189 break; 4190 case llvm::Triple::PS4: 4191 TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args); 4192 break; 4193 case llvm::Triple::Contiki: 4194 TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args); 4195 break; 4196 default: 4197 // Of these targets, Hexagon is the only one that might have 4198 // an OS of Linux, in which case it got handled above already. 4199 switch (Target.getArch()) { 4200 case llvm::Triple::tce: 4201 TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 4202 break; 4203 case llvm::Triple::tcele: 4204 TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 4205 break; 4206 case llvm::Triple::hexagon: 4207 TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target, 4208 Args); 4209 break; 4210 case llvm::Triple::lanai: 4211 TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 4212 break; 4213 case llvm::Triple::xcore: 4214 TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 4215 break; 4216 case llvm::Triple::wasm32: 4217 case llvm::Triple::wasm64: 4218 TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args); 4219 break; 4220 case llvm::Triple::avr: 4221 TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 4222 break; 4223 default: 4224 if (Target.getVendor() == llvm::Triple::Myriad) 4225 TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target, 4226 Args); 4227 else if (toolchains::BareMetal::handlesTarget(Target)) 4228 TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args); 4229 else if (Target.isOSBinFormatELF()) 4230 TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4231 else if (Target.isOSBinFormatMachO()) 4232 TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args); 4233 else 4234 TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4235 } 4236 } 4237 } 4238 4239 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 4240 // compiles always need two toolchains, the CUDA toolchain and the host 4241 // toolchain. So the only valid way to create a CUDA toolchain is via 4242 // CreateOffloadingDeviceToolChains. 4243 4244 return *TC; 4245 } 4246 4247 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 4248 // Say "no" if there is not exactly one input of a type clang understands. 4249 if (JA.size() != 1 || 4250 !types::isAcceptedByClang((*JA.input_begin())->getType())) 4251 return false; 4252 4253 // And say "no" if this is not a kind of action clang understands. 4254 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 4255 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4256 return false; 4257 4258 return true; 4259 } 4260 4261 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 4262 /// grouped values as integers. Numbers which are not provided are set to 0. 4263 /// 4264 /// \return True if the entire string was parsed (9.2), or all groups were 4265 /// parsed (10.3.5extrastuff). 4266 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 4267 unsigned &Micro, bool &HadExtra) { 4268 HadExtra = false; 4269 4270 Major = Minor = Micro = 0; 4271 if (Str.empty()) 4272 return false; 4273 4274 if (Str.consumeInteger(10, Major)) 4275 return false; 4276 if (Str.empty()) 4277 return true; 4278 if (Str[0] != '.') 4279 return false; 4280 4281 Str = Str.drop_front(1); 4282 4283 if (Str.consumeInteger(10, Minor)) 4284 return false; 4285 if (Str.empty()) 4286 return true; 4287 if (Str[0] != '.') 4288 return false; 4289 Str = Str.drop_front(1); 4290 4291 if (Str.consumeInteger(10, Micro)) 4292 return false; 4293 if (!Str.empty()) 4294 HadExtra = true; 4295 return true; 4296 } 4297 4298 /// Parse digits from a string \p Str and fulfill \p Digits with 4299 /// the parsed numbers. This method assumes that the max number of 4300 /// digits to look for is equal to Digits.size(). 4301 /// 4302 /// \return True if the entire string was parsed and there are 4303 /// no extra characters remaining at the end. 4304 bool Driver::GetReleaseVersion(StringRef Str, 4305 MutableArrayRef<unsigned> Digits) { 4306 if (Str.empty()) 4307 return false; 4308 4309 unsigned CurDigit = 0; 4310 while (CurDigit < Digits.size()) { 4311 unsigned Digit; 4312 if (Str.consumeInteger(10, Digit)) 4313 return false; 4314 Digits[CurDigit] = Digit; 4315 if (Str.empty()) 4316 return true; 4317 if (Str[0] != '.') 4318 return false; 4319 Str = Str.drop_front(1); 4320 CurDigit++; 4321 } 4322 4323 // More digits than requested, bail out... 4324 return false; 4325 } 4326 4327 std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks() const { 4328 unsigned IncludedFlagsBitmask = 0; 4329 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 4330 4331 if (Mode == CLMode) { 4332 // Include CL and Core options. 4333 IncludedFlagsBitmask |= options::CLOption; 4334 IncludedFlagsBitmask |= options::CoreOption; 4335 } else { 4336 ExcludedFlagsBitmask |= options::CLOption; 4337 } 4338 4339 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 4340 } 4341 4342 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 4343 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 4344 } 4345