1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AVR.h"
13 #include "ToolChains/Ananas.h"
14 #include "ToolChains/BareMetal.h"
15 #include "ToolChains/Clang.h"
16 #include "ToolChains/CloudABI.h"
17 #include "ToolChains/Contiki.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIP.h"
26 #include "ToolChains/Haiku.h"
27 #include "ToolChains/Hexagon.h"
28 #include "ToolChains/Hurd.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSP430.h"
32 #include "ToolChains/MSVC.h"
33 #include "ToolChains/MinGW.h"
34 #include "ToolChains/Minix.h"
35 #include "ToolChains/MipsLinux.h"
36 #include "ToolChains/Myriad.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OpenBSD.h"
40 #include "ToolChains/PS4CPU.h"
41 #include "ToolChains/PPCLinux.h"
42 #include "ToolChains/RISCVToolchain.h"
43 #include "ToolChains/Solaris.h"
44 #include "ToolChains/TCE.h"
45 #include "ToolChains/WebAssembly.h"
46 #include "ToolChains/XCore.h"
47 #include "clang/Basic/Version.h"
48 #include "clang/Config/config.h"
49 #include "clang/Driver/Action.h"
50 #include "clang/Driver/Compilation.h"
51 #include "clang/Driver/DriverDiagnostic.h"
52 #include "clang/Driver/Job.h"
53 #include "clang/Driver/Options.h"
54 #include "clang/Driver/SanitizerArgs.h"
55 #include "clang/Driver/Tool.h"
56 #include "clang/Driver/ToolChain.h"
57 #include "llvm/ADT/ArrayRef.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringSet.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/Config/llvm-config.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/OptSpecifier.h"
67 #include "llvm/Option/OptTable.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/Path.h"
74 #include "llvm/Support/PrettyStackTrace.h"
75 #include "llvm/Support/Process.h"
76 #include "llvm/Support/Program.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetRegistry.h"
79 #include "llvm/Support/VirtualFileSystem.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <map>
82 #include <memory>
83 #include <utility>
84 #if LLVM_ON_UNIX
85 #include <unistd.h> // getpid
86 #include <sysexits.h> // EX_IOERR
87 #endif
88 
89 using namespace clang::driver;
90 using namespace clang;
91 using namespace llvm::opt;
92 
93 // static
94 std::string Driver::GetResourcesPath(StringRef BinaryPath,
95                                      StringRef CustomResourceDir) {
96   // Since the resource directory is embedded in the module hash, it's important
97   // that all places that need it call this function, so that they get the
98   // exact same string ("a/../b/" and "b/" get different hashes, for example).
99 
100   // Dir is bin/ or lib/, depending on where BinaryPath is.
101   std::string Dir = llvm::sys::path::parent_path(BinaryPath);
102 
103   SmallString<128> P(Dir);
104   if (CustomResourceDir != "") {
105     llvm::sys::path::append(P, CustomResourceDir);
106   } else {
107     // On Windows, libclang.dll is in bin/.
108     // On non-Windows, libclang.so/.dylib is in lib/.
109     // With a static-library build of libclang, LibClangPath will contain the
110     // path of the embedding binary, which for LLVM binaries will be in bin/.
111     // ../lib gets us to lib/ in both cases.
112     P = llvm::sys::path::parent_path(Dir);
113     llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
114                             CLANG_VERSION_STRING);
115   }
116 
117   return P.str();
118 }
119 
120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
121                DiagnosticsEngine &Diags,
122                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
123     : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
124       Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
125       LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
126       SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
127       CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
128       CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
129       CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
130       CCGenDiagnostics(false), TargetTriple(TargetTriple),
131       CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
132       GenReproducer(false), SuppressMissingInputWarning(false) {
133 
134   // Provide a sane fallback if no VFS is specified.
135   if (!this->VFS)
136     this->VFS = llvm::vfs::createPhysicalFileSystem().release();
137 
138   Name = llvm::sys::path::filename(ClangExecutable);
139   Dir = llvm::sys::path::parent_path(ClangExecutable);
140   InstalledDir = Dir; // Provide a sensible default installed dir.
141 
142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
143   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
144 #endif
145 #if defined(CLANG_CONFIG_FILE_USER_DIR)
146   UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
147 #endif
148 
149   // Compute the path to the resource directory.
150   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
151 }
152 
153 void Driver::ParseDriverMode(StringRef ProgramName,
154                              ArrayRef<const char *> Args) {
155   if (ClangNameParts.isEmpty())
156     ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
157   setDriverModeFromOption(ClangNameParts.DriverMode);
158 
159   for (const char *ArgPtr : Args) {
160     // Ignore nullptrs, they are the response file's EOL markers.
161     if (ArgPtr == nullptr)
162       continue;
163     const StringRef Arg = ArgPtr;
164     setDriverModeFromOption(Arg);
165   }
166 }
167 
168 void Driver::setDriverModeFromOption(StringRef Opt) {
169   const std::string OptName =
170       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
171   if (!Opt.startswith(OptName))
172     return;
173   StringRef Value = Opt.drop_front(OptName.size());
174 
175   if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
176                    .Case("gcc", GCCMode)
177                    .Case("g++", GXXMode)
178                    .Case("cpp", CPPMode)
179                    .Case("cl", CLMode)
180                    .Default(None))
181     Mode = *M;
182   else
183     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
184 }
185 
186 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
187                                      bool IsClCompatMode,
188                                      bool &ContainsError) {
189   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
190   ContainsError = false;
191 
192   unsigned IncludedFlagsBitmask;
193   unsigned ExcludedFlagsBitmask;
194   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
195       getIncludeExcludeOptionFlagMasks(IsClCompatMode);
196 
197   unsigned MissingArgIndex, MissingArgCount;
198   InputArgList Args =
199       getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
200                           IncludedFlagsBitmask, ExcludedFlagsBitmask);
201 
202   // Check for missing argument error.
203   if (MissingArgCount) {
204     Diag(diag::err_drv_missing_argument)
205         << Args.getArgString(MissingArgIndex) << MissingArgCount;
206     ContainsError |=
207         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
208                                  SourceLocation()) > DiagnosticsEngine::Warning;
209   }
210 
211   // Check for unsupported options.
212   for (const Arg *A : Args) {
213     if (A->getOption().hasFlag(options::Unsupported)) {
214       unsigned DiagID;
215       auto ArgString = A->getAsString(Args);
216       std::string Nearest;
217       if (getOpts().findNearest(
218             ArgString, Nearest, IncludedFlagsBitmask,
219             ExcludedFlagsBitmask | options::Unsupported) > 1) {
220         DiagID = diag::err_drv_unsupported_opt;
221         Diag(DiagID) << ArgString;
222       } else {
223         DiagID = diag::err_drv_unsupported_opt_with_suggestion;
224         Diag(DiagID) << ArgString << Nearest;
225       }
226       ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
227                        DiagnosticsEngine::Warning;
228       continue;
229     }
230 
231     // Warn about -mcpu= without an argument.
232     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
233       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
234       ContainsError |= Diags.getDiagnosticLevel(
235                            diag::warn_drv_empty_joined_argument,
236                            SourceLocation()) > DiagnosticsEngine::Warning;
237     }
238   }
239 
240   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
241     unsigned DiagID;
242     auto ArgString = A->getAsString(Args);
243     std::string Nearest;
244     if (getOpts().findNearest(
245           ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
246       DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
247                           : diag::err_drv_unknown_argument;
248       Diags.Report(DiagID) << ArgString;
249     } else {
250       DiagID = IsCLMode()
251                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
252                    : diag::err_drv_unknown_argument_with_suggestion;
253       Diags.Report(DiagID) << ArgString << Nearest;
254     }
255     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
256                      DiagnosticsEngine::Warning;
257   }
258 
259   return Args;
260 }
261 
262 // Determine which compilation mode we are in. We look for options which
263 // affect the phase, starting with the earliest phases, and record which
264 // option we used to determine the final phase.
265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
266                                  Arg **FinalPhaseArg) const {
267   Arg *PhaseArg = nullptr;
268   phases::ID FinalPhase;
269 
270   // -{E,EP,P,M,MM} only run the preprocessor.
271   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
272       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
273       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
274       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
275     FinalPhase = phases::Preprocess;
276 
277     // --precompile only runs up to precompilation.
278   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
279     FinalPhase = phases::Precompile;
280 
281     // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
282   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
283              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
284              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
285              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
286              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
287              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
288              (PhaseArg = DAL.getLastArg(options::OPT__analyze,
289                                         options::OPT__analyze_auto)) ||
290              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
291     FinalPhase = phases::Compile;
292 
293     // -S only runs up to the backend.
294   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
295     FinalPhase = phases::Backend;
296 
297     // -c compilation only runs up to the assembler.
298   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
299     FinalPhase = phases::Assemble;
300 
301     // Otherwise do everything.
302   } else
303     FinalPhase = phases::Link;
304 
305   if (FinalPhaseArg)
306     *FinalPhaseArg = PhaseArg;
307 
308   return FinalPhase;
309 }
310 
311 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
312                          StringRef Value, bool Claim = true) {
313   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
314                    Args.getBaseArgs().MakeIndex(Value), Value.data());
315   Args.AddSynthesizedArg(A);
316   if (Claim)
317     A->claim();
318   return A;
319 }
320 
321 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
322   DerivedArgList *DAL = new DerivedArgList(Args);
323 
324   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
325   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
326   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
327   for (Arg *A : Args) {
328     // Unfortunately, we have to parse some forwarding options (-Xassembler,
329     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
330     // (assembler and preprocessor), or bypass a previous driver ('collect2').
331 
332     // Rewrite linker options, to replace --no-demangle with a custom internal
333     // option.
334     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
335          A->getOption().matches(options::OPT_Xlinker)) &&
336         A->containsValue("--no-demangle")) {
337       // Add the rewritten no-demangle argument.
338       DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
339 
340       // Add the remaining values as Xlinker arguments.
341       for (StringRef Val : A->getValues())
342         if (Val != "--no-demangle")
343           DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
344 
345       continue;
346     }
347 
348     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
349     // some build systems. We don't try to be complete here because we don't
350     // care to encourage this usage model.
351     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
352         (A->getValue(0) == StringRef("-MD") ||
353          A->getValue(0) == StringRef("-MMD"))) {
354       // Rewrite to -MD/-MMD along with -MF.
355       if (A->getValue(0) == StringRef("-MD"))
356         DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
357       else
358         DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
359       if (A->getNumValues() == 2)
360         DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
361                             A->getValue(1));
362       continue;
363     }
364 
365     // Rewrite reserved library names.
366     if (A->getOption().matches(options::OPT_l)) {
367       StringRef Value = A->getValue();
368 
369       // Rewrite unless -nostdlib is present.
370       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
371           Value == "stdc++") {
372         DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
373         continue;
374       }
375 
376       // Rewrite unconditionally.
377       if (Value == "cc_kext") {
378         DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
379         continue;
380       }
381     }
382 
383     // Pick up inputs via the -- option.
384     if (A->getOption().matches(options::OPT__DASH_DASH)) {
385       A->claim();
386       for (StringRef Val : A->getValues())
387         DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
388       continue;
389     }
390 
391     DAL->append(A);
392   }
393 
394   // Enforce -static if -miamcu is present.
395   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
396     DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
397 
398 // Add a default value of -mlinker-version=, if one was given and the user
399 // didn't specify one.
400 #if defined(HOST_LINK_VERSION)
401   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
402       strlen(HOST_LINK_VERSION) > 0) {
403     DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
404                       HOST_LINK_VERSION);
405     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
406   }
407 #endif
408 
409   return DAL;
410 }
411 
412 /// Compute target triple from args.
413 ///
414 /// This routine provides the logic to compute a target triple from various
415 /// args passed to the driver and the default triple string.
416 static llvm::Triple computeTargetTriple(const Driver &D,
417                                         StringRef TargetTriple,
418                                         const ArgList &Args,
419                                         StringRef DarwinArchName = "") {
420   // FIXME: Already done in Compilation *Driver::BuildCompilation
421   if (const Arg *A = Args.getLastArg(options::OPT_target))
422     TargetTriple = A->getValue();
423 
424   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
425 
426   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
427   // -gnu* only, and we can not change this, so we have to detect that case as
428   // being the Hurd OS.
429   if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
430       TargetTriple.find("-pc-gnu") != StringRef::npos)
431     Target.setOSName("hurd");
432 
433   // Handle Apple-specific options available here.
434   if (Target.isOSBinFormatMachO()) {
435     // If an explicit Darwin arch name is given, that trumps all.
436     if (!DarwinArchName.empty()) {
437       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
438       return Target;
439     }
440 
441     // Handle the Darwin '-arch' flag.
442     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
443       StringRef ArchName = A->getValue();
444       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
445     }
446   }
447 
448   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
449   // '-mbig-endian'/'-EB'.
450   if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
451                                options::OPT_mbig_endian)) {
452     if (A->getOption().matches(options::OPT_mlittle_endian)) {
453       llvm::Triple LE = Target.getLittleEndianArchVariant();
454       if (LE.getArch() != llvm::Triple::UnknownArch)
455         Target = std::move(LE);
456     } else {
457       llvm::Triple BE = Target.getBigEndianArchVariant();
458       if (BE.getArch() != llvm::Triple::UnknownArch)
459         Target = std::move(BE);
460     }
461   }
462 
463   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
464   if (Target.getArch() == llvm::Triple::tce ||
465       Target.getOS() == llvm::Triple::Minix)
466     return Target;
467 
468   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
469   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
470                            options::OPT_m32, options::OPT_m16);
471   if (A) {
472     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
473 
474     if (A->getOption().matches(options::OPT_m64)) {
475       AT = Target.get64BitArchVariant().getArch();
476       if (Target.getEnvironment() == llvm::Triple::GNUX32)
477         Target.setEnvironment(llvm::Triple::GNU);
478     } else if (A->getOption().matches(options::OPT_mx32) &&
479                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
480       AT = llvm::Triple::x86_64;
481       Target.setEnvironment(llvm::Triple::GNUX32);
482     } else if (A->getOption().matches(options::OPT_m32)) {
483       AT = Target.get32BitArchVariant().getArch();
484       if (Target.getEnvironment() == llvm::Triple::GNUX32)
485         Target.setEnvironment(llvm::Triple::GNU);
486     } else if (A->getOption().matches(options::OPT_m16) &&
487                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
488       AT = llvm::Triple::x86;
489       Target.setEnvironment(llvm::Triple::CODE16);
490     }
491 
492     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
493       Target.setArch(AT);
494   }
495 
496   // Handle -miamcu flag.
497   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
498     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
499       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
500                                                        << Target.str();
501 
502     if (A && !A->getOption().matches(options::OPT_m32))
503       D.Diag(diag::err_drv_argument_not_allowed_with)
504           << "-miamcu" << A->getBaseArg().getAsString(Args);
505 
506     Target.setArch(llvm::Triple::x86);
507     Target.setArchName("i586");
508     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
509     Target.setEnvironmentName("");
510     Target.setOS(llvm::Triple::ELFIAMCU);
511     Target.setVendor(llvm::Triple::UnknownVendor);
512     Target.setVendorName("intel");
513   }
514 
515   // If target is MIPS adjust the target triple
516   // accordingly to provided ABI name.
517   A = Args.getLastArg(options::OPT_mabi_EQ);
518   if (A && Target.isMIPS()) {
519     StringRef ABIName = A->getValue();
520     if (ABIName == "32") {
521       Target = Target.get32BitArchVariant();
522       if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
523           Target.getEnvironment() == llvm::Triple::GNUABIN32)
524         Target.setEnvironment(llvm::Triple::GNU);
525     } else if (ABIName == "n32") {
526       Target = Target.get64BitArchVariant();
527       if (Target.getEnvironment() == llvm::Triple::GNU ||
528           Target.getEnvironment() == llvm::Triple::GNUABI64)
529         Target.setEnvironment(llvm::Triple::GNUABIN32);
530     } else if (ABIName == "64") {
531       Target = Target.get64BitArchVariant();
532       if (Target.getEnvironment() == llvm::Triple::GNU ||
533           Target.getEnvironment() == llvm::Triple::GNUABIN32)
534         Target.setEnvironment(llvm::Triple::GNUABI64);
535     }
536   }
537 
538   return Target;
539 }
540 
541 // Parse the LTO options and record the type of LTO compilation
542 // based on which -f(no-)?lto(=.*)? option occurs last.
543 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
544   LTOMode = LTOK_None;
545   if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
546                     options::OPT_fno_lto, false))
547     return;
548 
549   StringRef LTOName("full");
550 
551   const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
552   if (A)
553     LTOName = A->getValue();
554 
555   LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
556                 .Case("full", LTOK_Full)
557                 .Case("thin", LTOK_Thin)
558                 .Default(LTOK_Unknown);
559 
560   if (LTOMode == LTOK_Unknown) {
561     assert(A);
562     Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
563                                                     << A->getValue();
564   }
565 }
566 
567 /// Compute the desired OpenMP runtime from the flags provided.
568 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
569   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
570 
571   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
572   if (A)
573     RuntimeName = A->getValue();
574 
575   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
576                 .Case("libomp", OMPRT_OMP)
577                 .Case("libgomp", OMPRT_GOMP)
578                 .Case("libiomp5", OMPRT_IOMP5)
579                 .Default(OMPRT_Unknown);
580 
581   if (RT == OMPRT_Unknown) {
582     if (A)
583       Diag(diag::err_drv_unsupported_option_argument)
584           << A->getOption().getName() << A->getValue();
585     else
586       // FIXME: We could use a nicer diagnostic here.
587       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
588   }
589 
590   return RT;
591 }
592 
593 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
594                                               InputList &Inputs) {
595 
596   //
597   // CUDA/HIP
598   //
599   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
600   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
601   bool IsCuda =
602       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
603         return types::isCuda(I.first);
604       });
605   bool IsHIP =
606       llvm::any_of(Inputs,
607                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
608                      return types::isHIP(I.first);
609                    }) ||
610       C.getInputArgs().hasArg(options::OPT_hip_link);
611   if (IsCuda && IsHIP) {
612     Diag(clang::diag::err_drv_mix_cuda_hip);
613     return;
614   }
615   if (IsCuda) {
616     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
617     const llvm::Triple &HostTriple = HostTC->getTriple();
618     StringRef DeviceTripleStr;
619     auto OFK = Action::OFK_Cuda;
620     DeviceTripleStr =
621         HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
622     llvm::Triple CudaTriple(DeviceTripleStr);
623     // Use the CUDA and host triples as the key into the ToolChains map,
624     // because the device toolchain we create depends on both.
625     auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
626     if (!CudaTC) {
627       CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
628           *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
629     }
630     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
631   } else if (IsHIP) {
632     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
633     const llvm::Triple &HostTriple = HostTC->getTriple();
634     StringRef DeviceTripleStr;
635     auto OFK = Action::OFK_HIP;
636     DeviceTripleStr = "amdgcn-amd-amdhsa";
637     llvm::Triple HIPTriple(DeviceTripleStr);
638     // Use the HIP and host triples as the key into the ToolChains map,
639     // because the device toolchain we create depends on both.
640     auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
641     if (!HIPTC) {
642       HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
643           *this, HIPTriple, *HostTC, C.getInputArgs());
644     }
645     C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
646   }
647 
648   //
649   // OpenMP
650   //
651   // We need to generate an OpenMP toolchain if the user specified targets with
652   // the -fopenmp-targets option.
653   if (Arg *OpenMPTargets =
654           C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
655     if (OpenMPTargets->getNumValues()) {
656       // We expect that -fopenmp-targets is always used in conjunction with the
657       // option -fopenmp specifying a valid runtime with offloading support,
658       // i.e. libomp or libiomp.
659       bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
660           options::OPT_fopenmp, options::OPT_fopenmp_EQ,
661           options::OPT_fno_openmp, false);
662       if (HasValidOpenMPRuntime) {
663         OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
664         HasValidOpenMPRuntime =
665             OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
666       }
667 
668       if (HasValidOpenMPRuntime) {
669         llvm::StringMap<const char *> FoundNormalizedTriples;
670         for (const char *Val : OpenMPTargets->getValues()) {
671           llvm::Triple TT(Val);
672           std::string NormalizedName = TT.normalize();
673 
674           // Make sure we don't have a duplicate triple.
675           auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
676           if (Duplicate != FoundNormalizedTriples.end()) {
677             Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
678                 << Val << Duplicate->second;
679             continue;
680           }
681 
682           // Store the current triple so that we can check for duplicates in the
683           // following iterations.
684           FoundNormalizedTriples[NormalizedName] = Val;
685 
686           // If the specified target is invalid, emit a diagnostic.
687           if (TT.getArch() == llvm::Triple::UnknownArch)
688             Diag(clang::diag::err_drv_invalid_omp_target) << Val;
689           else {
690             const ToolChain *TC;
691             // CUDA toolchains have to be selected differently. They pair host
692             // and device in their implementation.
693             if (TT.isNVPTX()) {
694               const ToolChain *HostTC =
695                   C.getSingleOffloadToolChain<Action::OFK_Host>();
696               assert(HostTC && "Host toolchain should be always defined.");
697               auto &CudaTC =
698                   ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
699               if (!CudaTC)
700                 CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
701                     *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
702               TC = CudaTC.get();
703             } else
704               TC = &getToolChain(C.getInputArgs(), TT);
705             C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
706           }
707         }
708       } else
709         Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
710     } else
711       Diag(clang::diag::warn_drv_empty_joined_argument)
712           << OpenMPTargets->getAsString(C.getInputArgs());
713   }
714 
715   //
716   // TODO: Add support for other offloading programming models here.
717   //
718 }
719 
720 /// Looks the given directories for the specified file.
721 ///
722 /// \param[out] FilePath File path, if the file was found.
723 /// \param[in]  Dirs Directories used for the search.
724 /// \param[in]  FileName Name of the file to search for.
725 /// \return True if file was found.
726 ///
727 /// Looks for file specified by FileName sequentially in directories specified
728 /// by Dirs.
729 ///
730 static bool searchForFile(SmallVectorImpl<char> &FilePath,
731                           ArrayRef<std::string> Dirs,
732                           StringRef FileName) {
733   SmallString<128> WPath;
734   for (const StringRef &Dir : Dirs) {
735     if (Dir.empty())
736       continue;
737     WPath.clear();
738     llvm::sys::path::append(WPath, Dir, FileName);
739     llvm::sys::path::native(WPath);
740     if (llvm::sys::fs::is_regular_file(WPath)) {
741       FilePath = std::move(WPath);
742       return true;
743     }
744   }
745   return false;
746 }
747 
748 bool Driver::readConfigFile(StringRef FileName) {
749   // Try reading the given file.
750   SmallVector<const char *, 32> NewCfgArgs;
751   if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
752     Diag(diag::err_drv_cannot_read_config_file) << FileName;
753     return true;
754   }
755 
756   // Read options from config file.
757   llvm::SmallString<128> CfgFileName(FileName);
758   llvm::sys::path::native(CfgFileName);
759   ConfigFile = CfgFileName.str();
760   bool ContainErrors;
761   CfgOptions = llvm::make_unique<InputArgList>(
762       ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
763   if (ContainErrors) {
764     CfgOptions.reset();
765     return true;
766   }
767 
768   if (CfgOptions->hasArg(options::OPT_config)) {
769     CfgOptions.reset();
770     Diag(diag::err_drv_nested_config_file);
771     return true;
772   }
773 
774   // Claim all arguments that come from a configuration file so that the driver
775   // does not warn on any that is unused.
776   for (Arg *A : *CfgOptions)
777     A->claim();
778   return false;
779 }
780 
781 bool Driver::loadConfigFile() {
782   std::string CfgFileName;
783   bool FileSpecifiedExplicitly = false;
784 
785   // Process options that change search path for config files.
786   if (CLOptions) {
787     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
788       SmallString<128> CfgDir;
789       CfgDir.append(
790           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
791       if (!CfgDir.empty()) {
792         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
793           SystemConfigDir.clear();
794         else
795           SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
796       }
797     }
798     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
799       SmallString<128> CfgDir;
800       CfgDir.append(
801           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
802       if (!CfgDir.empty()) {
803         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
804           UserConfigDir.clear();
805         else
806           UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
807       }
808     }
809   }
810 
811   // First try to find config file specified in command line.
812   if (CLOptions) {
813     std::vector<std::string> ConfigFiles =
814         CLOptions->getAllArgValues(options::OPT_config);
815     if (ConfigFiles.size() > 1) {
816       Diag(diag::err_drv_duplicate_config);
817       return true;
818     }
819 
820     if (!ConfigFiles.empty()) {
821       CfgFileName = ConfigFiles.front();
822       assert(!CfgFileName.empty());
823 
824       // If argument contains directory separator, treat it as a path to
825       // configuration file.
826       if (llvm::sys::path::has_parent_path(CfgFileName)) {
827         SmallString<128> CfgFilePath;
828         if (llvm::sys::path::is_relative(CfgFileName))
829           llvm::sys::fs::current_path(CfgFilePath);
830         llvm::sys::path::append(CfgFilePath, CfgFileName);
831         if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
832           Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
833           return true;
834         }
835         return readConfigFile(CfgFilePath);
836       }
837 
838       FileSpecifiedExplicitly = true;
839     }
840   }
841 
842   // If config file is not specified explicitly, try to deduce configuration
843   // from executable name. For instance, an executable 'armv7l-clang' will
844   // search for config file 'armv7l-clang.cfg'.
845   if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
846     CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
847 
848   if (CfgFileName.empty())
849     return false;
850 
851   // Determine architecture part of the file name, if it is present.
852   StringRef CfgFileArch = CfgFileName;
853   size_t ArchPrefixLen = CfgFileArch.find('-');
854   if (ArchPrefixLen == StringRef::npos)
855     ArchPrefixLen = CfgFileArch.size();
856   llvm::Triple CfgTriple;
857   CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
858   CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
859   if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
860     ArchPrefixLen = 0;
861 
862   if (!StringRef(CfgFileName).endswith(".cfg"))
863     CfgFileName += ".cfg";
864 
865   // If config file starts with architecture name and command line options
866   // redefine architecture (with options like -m32 -LE etc), try finding new
867   // config file with that architecture.
868   SmallString<128> FixedConfigFile;
869   size_t FixedArchPrefixLen = 0;
870   if (ArchPrefixLen) {
871     // Get architecture name from config file name like 'i386.cfg' or
872     // 'armv7l-clang.cfg'.
873     // Check if command line options changes effective triple.
874     llvm::Triple EffectiveTriple = computeTargetTriple(*this,
875                                              CfgTriple.getTriple(), *CLOptions);
876     if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
877       FixedConfigFile = EffectiveTriple.getArchName();
878       FixedArchPrefixLen = FixedConfigFile.size();
879       // Append the rest of original file name so that file name transforms
880       // like: i386-clang.cfg -> x86_64-clang.cfg.
881       if (ArchPrefixLen < CfgFileName.size())
882         FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
883     }
884   }
885 
886   // Prepare list of directories where config file is searched for.
887   SmallVector<std::string, 3> CfgFileSearchDirs;
888   CfgFileSearchDirs.push_back(UserConfigDir);
889   CfgFileSearchDirs.push_back(SystemConfigDir);
890   CfgFileSearchDirs.push_back(Dir);
891 
892   // Try to find config file. First try file with corrected architecture.
893   llvm::SmallString<128> CfgFilePath;
894   if (!FixedConfigFile.empty()) {
895     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
896       return readConfigFile(CfgFilePath);
897     // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
898     FixedConfigFile.resize(FixedArchPrefixLen);
899     FixedConfigFile.append(".cfg");
900     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
901       return readConfigFile(CfgFilePath);
902   }
903 
904   // Then try original file name.
905   if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
906     return readConfigFile(CfgFilePath);
907 
908   // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
909   if (!ClangNameParts.ModeSuffix.empty() &&
910       !ClangNameParts.TargetPrefix.empty()) {
911     CfgFileName.assign(ClangNameParts.TargetPrefix);
912     CfgFileName.append(".cfg");
913     if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
914       return readConfigFile(CfgFilePath);
915   }
916 
917   // Report error but only if config file was specified explicitly, by option
918   // --config. If it was deduced from executable name, it is not an error.
919   if (FileSpecifiedExplicitly) {
920     Diag(diag::err_drv_config_file_not_found) << CfgFileName;
921     for (const std::string &SearchDir : CfgFileSearchDirs)
922       if (!SearchDir.empty())
923         Diag(diag::note_drv_config_file_searched_in) << SearchDir;
924     return true;
925   }
926 
927   return false;
928 }
929 
930 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
931   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
932 
933   // FIXME: Handle environment options which affect driver behavior, somewhere
934   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
935 
936   if (Optional<std::string> CompilerPathValue =
937           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
938     StringRef CompilerPath = *CompilerPathValue;
939     while (!CompilerPath.empty()) {
940       std::pair<StringRef, StringRef> Split =
941           CompilerPath.split(llvm::sys::EnvPathSeparator);
942       PrefixDirs.push_back(Split.first);
943       CompilerPath = Split.second;
944     }
945   }
946 
947   // We look for the driver mode option early, because the mode can affect
948   // how other options are parsed.
949   ParseDriverMode(ClangExecutable, ArgList.slice(1));
950 
951   // FIXME: What are we going to do with -V and -b?
952 
953   // Arguments specified in command line.
954   bool ContainsError;
955   CLOptions = llvm::make_unique<InputArgList>(
956       ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
957 
958   // Try parsing configuration file.
959   if (!ContainsError)
960     ContainsError = loadConfigFile();
961   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
962 
963   // All arguments, from both config file and command line.
964   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
965                                               : std::move(*CLOptions));
966 
967   auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
968       unsigned Index = Args.MakeIndex(Opt->getSpelling());
969       Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
970                                      Index, BaseArg);
971       Copy->getValues() = Opt->getValues();
972       if (Opt->isClaimed())
973         Copy->claim();
974       Args.append(Copy);
975   };
976 
977   if (HasConfigFile)
978     for (auto *Opt : *CLOptions) {
979       if (Opt->getOption().matches(options::OPT_config))
980         continue;
981       const Arg *BaseArg = &Opt->getBaseArg();
982       if (BaseArg == Opt)
983         BaseArg = nullptr;
984       appendOneArg(Opt, BaseArg);
985     }
986 
987   // In CL mode, look for any pass-through arguments
988   if (IsCLMode() && !ContainsError) {
989     SmallVector<const char *, 16> CLModePassThroughArgList;
990     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
991       A->claim();
992       CLModePassThroughArgList.push_back(A->getValue());
993     }
994 
995     if (!CLModePassThroughArgList.empty()) {
996       // Parse any pass through args using default clang processing rather
997       // than clang-cl processing.
998       auto CLModePassThroughOptions = llvm::make_unique<InputArgList>(
999           ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1000 
1001       if (!ContainsError)
1002         for (auto *Opt : *CLModePassThroughOptions) {
1003           appendOneArg(Opt, nullptr);
1004         }
1005     }
1006   }
1007 
1008   // Check for working directory option before accessing any files
1009   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1010     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1011       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1012 
1013   // FIXME: This stuff needs to go into the Compilation, not the driver.
1014   bool CCCPrintPhases;
1015 
1016   // Silence driver warnings if requested
1017   Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1018 
1019   // -no-canonical-prefixes is used very early in main.
1020   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1021 
1022   // Ignore -pipe.
1023   Args.ClaimAllArgs(options::OPT_pipe);
1024 
1025   // Extract -ccc args.
1026   //
1027   // FIXME: We need to figure out where this behavior should live. Most of it
1028   // should be outside in the client; the parts that aren't should have proper
1029   // options, either by introducing new ones or by overloading gcc ones like -V
1030   // or -b.
1031   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1032   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1033   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1034     CCCGenericGCCName = A->getValue();
1035   GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1036                                options::OPT_fno_crash_diagnostics,
1037                                !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1038   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1039   // and getToolChain is const.
1040   if (IsCLMode()) {
1041     // clang-cl targets MSVC-style Win32.
1042     llvm::Triple T(TargetTriple);
1043     T.setOS(llvm::Triple::Win32);
1044     T.setVendor(llvm::Triple::PC);
1045     T.setEnvironment(llvm::Triple::MSVC);
1046     T.setObjectFormat(llvm::Triple::COFF);
1047     TargetTriple = T.str();
1048   }
1049   if (const Arg *A = Args.getLastArg(options::OPT_target))
1050     TargetTriple = A->getValue();
1051   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1052     Dir = InstalledDir = A->getValue();
1053   for (const Arg *A : Args.filtered(options::OPT_B)) {
1054     A->claim();
1055     PrefixDirs.push_back(A->getValue(0));
1056   }
1057   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1058     SysRoot = A->getValue();
1059   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1060     DyldPrefix = A->getValue();
1061 
1062   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1063     ResourceDir = A->getValue();
1064 
1065   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1066     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1067                     .Case("cwd", SaveTempsCwd)
1068                     .Case("obj", SaveTempsObj)
1069                     .Default(SaveTempsCwd);
1070   }
1071 
1072   setLTOMode(Args);
1073 
1074   // Process -fembed-bitcode= flags.
1075   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1076     StringRef Name = A->getValue();
1077     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1078         .Case("off", EmbedNone)
1079         .Case("all", EmbedBitcode)
1080         .Case("bitcode", EmbedBitcode)
1081         .Case("marker", EmbedMarker)
1082         .Default(~0U);
1083     if (Model == ~0U) {
1084       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1085                                                 << Name;
1086     } else
1087       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1088   }
1089 
1090   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1091       llvm::make_unique<InputArgList>(std::move(Args));
1092 
1093   // Perform the default argument translations.
1094   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1095 
1096   // Owned by the host.
1097   const ToolChain &TC = getToolChain(
1098       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1099 
1100   // The compilation takes ownership of Args.
1101   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1102                                    ContainsError);
1103 
1104   if (!HandleImmediateArgs(*C))
1105     return C;
1106 
1107   // Construct the list of inputs.
1108   InputList Inputs;
1109   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1110 
1111   // Populate the tool chains for the offloading devices, if any.
1112   CreateOffloadingDeviceToolChains(*C, Inputs);
1113 
1114   // Construct the list of abstract actions to perform for this compilation. On
1115   // MachO targets this uses the driver-driver and universal actions.
1116   if (TC.getTriple().isOSBinFormatMachO())
1117     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1118   else
1119     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1120 
1121   if (CCCPrintPhases) {
1122     PrintActions(*C);
1123     return C;
1124   }
1125 
1126   BuildJobs(*C);
1127 
1128   return C;
1129 }
1130 
1131 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1132   llvm::opt::ArgStringList ASL;
1133   for (const auto *A : Args)
1134     A->render(Args, ASL);
1135 
1136   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1137     if (I != ASL.begin())
1138       OS << ' ';
1139     Command::printArg(OS, *I, true);
1140   }
1141   OS << '\n';
1142 }
1143 
1144 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1145                                     SmallString<128> &CrashDiagDir) {
1146   using namespace llvm::sys;
1147   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1148          "Only knows about .crash files on Darwin");
1149 
1150   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1151   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1152   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1153   path::home_directory(CrashDiagDir);
1154   if (CrashDiagDir.startswith("/var/root"))
1155     CrashDiagDir = "/";
1156   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1157   int PID =
1158 #if LLVM_ON_UNIX
1159       getpid();
1160 #else
1161       0;
1162 #endif
1163   std::error_code EC;
1164   fs::file_status FileStatus;
1165   TimePoint<> LastAccessTime;
1166   SmallString<128> CrashFilePath;
1167   // Lookup the .crash files and get the one generated by a subprocess spawned
1168   // by this driver invocation.
1169   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1170        File != FileEnd && !EC; File.increment(EC)) {
1171     StringRef FileName = path::filename(File->path());
1172     if (!FileName.startswith(Name))
1173       continue;
1174     if (fs::status(File->path(), FileStatus))
1175       continue;
1176     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1177         llvm::MemoryBuffer::getFile(File->path());
1178     if (!CrashFile)
1179       continue;
1180     // The first line should start with "Process:", otherwise this isn't a real
1181     // .crash file.
1182     StringRef Data = CrashFile.get()->getBuffer();
1183     if (!Data.startswith("Process:"))
1184       continue;
1185     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1186     size_t ParentProcPos = Data.find("Parent Process:");
1187     if (ParentProcPos == StringRef::npos)
1188       continue;
1189     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1190     if (LineEnd == StringRef::npos)
1191       continue;
1192     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1193     int OpenBracket = -1, CloseBracket = -1;
1194     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1195       if (ParentProcess[i] == '[')
1196         OpenBracket = i;
1197       if (ParentProcess[i] == ']')
1198         CloseBracket = i;
1199     }
1200     // Extract the parent process PID from the .crash file and check whether
1201     // it matches this driver invocation pid.
1202     int CrashPID;
1203     if (OpenBracket < 0 || CloseBracket < 0 ||
1204         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1205             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1206       continue;
1207     }
1208 
1209     // Found a .crash file matching the driver pid. To avoid getting an older
1210     // and misleading crash file, continue looking for the most recent.
1211     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1212     // multiple crashes poiting to the same parent process. Since the driver
1213     // does not collect pid information for the dispatched invocation there's
1214     // currently no way to distinguish among them.
1215     const auto FileAccessTime = FileStatus.getLastModificationTime();
1216     if (FileAccessTime > LastAccessTime) {
1217       CrashFilePath.assign(File->path());
1218       LastAccessTime = FileAccessTime;
1219     }
1220   }
1221 
1222   // If found, copy it over to the location of other reproducer files.
1223   if (!CrashFilePath.empty()) {
1224     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1225     if (EC)
1226       return false;
1227     return true;
1228   }
1229 
1230   return false;
1231 }
1232 
1233 // When clang crashes, produce diagnostic information including the fully
1234 // preprocessed source file(s).  Request that the developer attach the
1235 // diagnostic information to a bug report.
1236 void Driver::generateCompilationDiagnostics(
1237     Compilation &C, const Command &FailingCommand,
1238     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1239   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1240     return;
1241 
1242   // Don't try to generate diagnostics for link or dsymutil jobs.
1243   if (FailingCommand.getCreator().isLinkJob() ||
1244       FailingCommand.getCreator().isDsymutilJob())
1245     return;
1246 
1247   // Print the version of the compiler.
1248   PrintVersion(C, llvm::errs());
1249 
1250   Diag(clang::diag::note_drv_command_failed_diag_msg)
1251       << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1252          "crash backtrace, preprocessed source, and associated run script.";
1253 
1254   // Suppress driver output and emit preprocessor output to temp file.
1255   Mode = CPPMode;
1256   CCGenDiagnostics = true;
1257 
1258   // Save the original job command(s).
1259   Command Cmd = FailingCommand;
1260 
1261   // Keep track of whether we produce any errors while trying to produce
1262   // preprocessed sources.
1263   DiagnosticErrorTrap Trap(Diags);
1264 
1265   // Suppress tool output.
1266   C.initCompilationForDiagnostics();
1267 
1268   // Construct the list of inputs.
1269   InputList Inputs;
1270   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1271 
1272   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1273     bool IgnoreInput = false;
1274 
1275     // Ignore input from stdin or any inputs that cannot be preprocessed.
1276     // Check type first as not all linker inputs have a value.
1277     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1278       IgnoreInput = true;
1279     } else if (!strcmp(it->second->getValue(), "-")) {
1280       Diag(clang::diag::note_drv_command_failed_diag_msg)
1281           << "Error generating preprocessed source(s) - "
1282              "ignoring input from stdin.";
1283       IgnoreInput = true;
1284     }
1285 
1286     if (IgnoreInput) {
1287       it = Inputs.erase(it);
1288       ie = Inputs.end();
1289     } else {
1290       ++it;
1291     }
1292   }
1293 
1294   if (Inputs.empty()) {
1295     Diag(clang::diag::note_drv_command_failed_diag_msg)
1296         << "Error generating preprocessed source(s) - "
1297            "no preprocessable inputs.";
1298     return;
1299   }
1300 
1301   // Don't attempt to generate preprocessed files if multiple -arch options are
1302   // used, unless they're all duplicates.
1303   llvm::StringSet<> ArchNames;
1304   for (const Arg *A : C.getArgs()) {
1305     if (A->getOption().matches(options::OPT_arch)) {
1306       StringRef ArchName = A->getValue();
1307       ArchNames.insert(ArchName);
1308     }
1309   }
1310   if (ArchNames.size() > 1) {
1311     Diag(clang::diag::note_drv_command_failed_diag_msg)
1312         << "Error generating preprocessed source(s) - cannot generate "
1313            "preprocessed source with multiple -arch options.";
1314     return;
1315   }
1316 
1317   // Construct the list of abstract actions to perform for this compilation. On
1318   // Darwin OSes this uses the driver-driver and builds universal actions.
1319   const ToolChain &TC = C.getDefaultToolChain();
1320   if (TC.getTriple().isOSBinFormatMachO())
1321     BuildUniversalActions(C, TC, Inputs);
1322   else
1323     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1324 
1325   BuildJobs(C);
1326 
1327   // If there were errors building the compilation, quit now.
1328   if (Trap.hasErrorOccurred()) {
1329     Diag(clang::diag::note_drv_command_failed_diag_msg)
1330         << "Error generating preprocessed source(s).";
1331     return;
1332   }
1333 
1334   // Generate preprocessed output.
1335   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1336   C.ExecuteJobs(C.getJobs(), FailingCommands);
1337 
1338   // If any of the preprocessing commands failed, clean up and exit.
1339   if (!FailingCommands.empty()) {
1340     Diag(clang::diag::note_drv_command_failed_diag_msg)
1341         << "Error generating preprocessed source(s).";
1342     return;
1343   }
1344 
1345   const ArgStringList &TempFiles = C.getTempFiles();
1346   if (TempFiles.empty()) {
1347     Diag(clang::diag::note_drv_command_failed_diag_msg)
1348         << "Error generating preprocessed source(s).";
1349     return;
1350   }
1351 
1352   Diag(clang::diag::note_drv_command_failed_diag_msg)
1353       << "\n********************\n\n"
1354          "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1355          "Preprocessed source(s) and associated run script(s) are located at:";
1356 
1357   SmallString<128> VFS;
1358   SmallString<128> ReproCrashFilename;
1359   for (const char *TempFile : TempFiles) {
1360     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1361     if (Report)
1362       Report->TemporaryFiles.push_back(TempFile);
1363     if (ReproCrashFilename.empty()) {
1364       ReproCrashFilename = TempFile;
1365       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1366     }
1367     if (StringRef(TempFile).endswith(".cache")) {
1368       // In some cases (modules) we'll dump extra data to help with reproducing
1369       // the crash into a directory next to the output.
1370       VFS = llvm::sys::path::filename(TempFile);
1371       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1372     }
1373   }
1374 
1375   // Assume associated files are based off of the first temporary file.
1376   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1377 
1378   llvm::SmallString<128> Script(CrashInfo.Filename);
1379   llvm::sys::path::replace_extension(Script, "sh");
1380   std::error_code EC;
1381   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1382   if (EC) {
1383     Diag(clang::diag::note_drv_command_failed_diag_msg)
1384         << "Error generating run script: " << Script << " " << EC.message();
1385   } else {
1386     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1387              << "# Driver args: ";
1388     printArgList(ScriptOS, C.getInputArgs());
1389     ScriptOS << "# Original command: ";
1390     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1391     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1392     if (!AdditionalInformation.empty())
1393       ScriptOS << "\n# Additional information: " << AdditionalInformation
1394                << "\n";
1395     if (Report)
1396       Report->TemporaryFiles.push_back(Script.str());
1397     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1398   }
1399 
1400   // On darwin, provide information about the .crash diagnostic report.
1401   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1402     SmallString<128> CrashDiagDir;
1403     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1404       Diag(clang::diag::note_drv_command_failed_diag_msg)
1405           << ReproCrashFilename.str();
1406     } else { // Suggest a directory for the user to look for .crash files.
1407       llvm::sys::path::append(CrashDiagDir, Name);
1408       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1409       Diag(clang::diag::note_drv_command_failed_diag_msg)
1410           << "Crash backtrace is located in";
1411       Diag(clang::diag::note_drv_command_failed_diag_msg)
1412           << CrashDiagDir.str();
1413       Diag(clang::diag::note_drv_command_failed_diag_msg)
1414           << "(choose the .crash file that corresponds to your crash)";
1415     }
1416   }
1417 
1418   for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1419                                             options::OPT_frewrite_map_file_EQ))
1420     Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1421 
1422   Diag(clang::diag::note_drv_command_failed_diag_msg)
1423       << "\n\n********************";
1424 }
1425 
1426 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1427   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1428   // capacity if the tool does not support response files, there is a chance/
1429   // that things will just work without a response file, so we silently just
1430   // skip it.
1431   if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None ||
1432       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1433                                                    Cmd.getArguments()))
1434     return;
1435 
1436   std::string TmpName = GetTemporaryPath("response", "txt");
1437   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1438 }
1439 
1440 int Driver::ExecuteCompilation(
1441     Compilation &C,
1442     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1443   // Just print if -### was present.
1444   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1445     C.getJobs().Print(llvm::errs(), "\n", true);
1446     return 0;
1447   }
1448 
1449   // If there were errors building the compilation, quit now.
1450   if (Diags.hasErrorOccurred())
1451     return 1;
1452 
1453   // Set up response file names for each command, if necessary
1454   for (auto &Job : C.getJobs())
1455     setUpResponseFiles(C, Job);
1456 
1457   C.ExecuteJobs(C.getJobs(), FailingCommands);
1458 
1459   // If the command succeeded, we are done.
1460   if (FailingCommands.empty())
1461     return 0;
1462 
1463   // Otherwise, remove result files and print extra information about abnormal
1464   // failures.
1465   int Res = 0;
1466   for (const auto &CmdPair : FailingCommands) {
1467     int CommandRes = CmdPair.first;
1468     const Command *FailingCommand = CmdPair.second;
1469 
1470     // Remove result files if we're not saving temps.
1471     if (!isSaveTempsEnabled()) {
1472       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1473       C.CleanupFileMap(C.getResultFiles(), JA, true);
1474 
1475       // Failure result files are valid unless we crashed.
1476       if (CommandRes < 0)
1477         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1478     }
1479 
1480 #if LLVM_ON_UNIX
1481     // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1482     // for SIGPIPE. Do not print diagnostics for this case.
1483     if (CommandRes == EX_IOERR) {
1484       Res = CommandRes;
1485       continue;
1486     }
1487 #endif
1488 
1489     // Print extra information about abnormal failures, if possible.
1490     //
1491     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1492     // status was 1, assume the command failed normally. In particular, if it
1493     // was the compiler then assume it gave a reasonable error code. Failures
1494     // in other tools are less common, and they generally have worse
1495     // diagnostics, so always print the diagnostic there.
1496     const Tool &FailingTool = FailingCommand->getCreator();
1497 
1498     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1499       // FIXME: See FIXME above regarding result code interpretation.
1500       if (CommandRes < 0)
1501         Diag(clang::diag::err_drv_command_signalled)
1502             << FailingTool.getShortName();
1503       else
1504         Diag(clang::diag::err_drv_command_failed)
1505             << FailingTool.getShortName() << CommandRes;
1506     }
1507   }
1508   return Res;
1509 }
1510 
1511 void Driver::PrintHelp(bool ShowHidden) const {
1512   unsigned IncludedFlagsBitmask;
1513   unsigned ExcludedFlagsBitmask;
1514   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1515       getIncludeExcludeOptionFlagMasks(IsCLMode());
1516 
1517   ExcludedFlagsBitmask |= options::NoDriverOption;
1518   if (!ShowHidden)
1519     ExcludedFlagsBitmask |= HelpHidden;
1520 
1521   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1522   getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1523                       IncludedFlagsBitmask, ExcludedFlagsBitmask,
1524                       /*ShowAllAliases=*/false);
1525 }
1526 
1527 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1528   // FIXME: The following handlers should use a callback mechanism, we don't
1529   // know what the client would like to do.
1530   OS << getClangFullVersion() << '\n';
1531   const ToolChain &TC = C.getDefaultToolChain();
1532   OS << "Target: " << TC.getTripleString() << '\n';
1533 
1534   // Print the threading model.
1535   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1536     // Don't print if the ToolChain would have barfed on it already
1537     if (TC.isThreadModelSupported(A->getValue()))
1538       OS << "Thread model: " << A->getValue();
1539   } else
1540     OS << "Thread model: " << TC.getThreadModel();
1541   OS << '\n';
1542 
1543   // Print out the install directory.
1544   OS << "InstalledDir: " << InstalledDir << '\n';
1545 
1546   // If configuration file was used, print its path.
1547   if (!ConfigFile.empty())
1548     OS << "Configuration file: " << ConfigFile << '\n';
1549 }
1550 
1551 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1552 /// option.
1553 static void PrintDiagnosticCategories(raw_ostream &OS) {
1554   // Skip the empty category.
1555   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1556        ++i)
1557     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1558 }
1559 
1560 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1561   if (PassedFlags == "")
1562     return;
1563   // Print out all options that start with a given argument. This is used for
1564   // shell autocompletion.
1565   std::vector<std::string> SuggestedCompletions;
1566   std::vector<std::string> Flags;
1567 
1568   unsigned short DisableFlags =
1569       options::NoDriverOption | options::Unsupported | options::Ignored;
1570 
1571   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1572   // because the latter indicates that the user put space before pushing tab
1573   // which should end up in a file completion.
1574   const bool HasSpace = PassedFlags.endswith(",");
1575 
1576   // Parse PassedFlags by "," as all the command-line flags are passed to this
1577   // function separated by ","
1578   StringRef TargetFlags = PassedFlags;
1579   while (TargetFlags != "") {
1580     StringRef CurFlag;
1581     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1582     Flags.push_back(std::string(CurFlag));
1583   }
1584 
1585   // We want to show cc1-only options only when clang is invoked with -cc1 or
1586   // -Xclang.
1587   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1588     DisableFlags &= ~options::NoDriverOption;
1589 
1590   StringRef Cur;
1591   Cur = Flags.at(Flags.size() - 1);
1592   StringRef Prev;
1593   if (Flags.size() >= 2) {
1594     Prev = Flags.at(Flags.size() - 2);
1595     SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1596   }
1597 
1598   if (SuggestedCompletions.empty())
1599     SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1600 
1601   // If Flags were empty, it means the user typed `clang [tab]` where we should
1602   // list all possible flags. If there was no value completion and the user
1603   // pressed tab after a space, we should fall back to a file completion.
1604   // We're printing a newline to be consistent with what we print at the end of
1605   // this function.
1606   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1607     llvm::outs() << '\n';
1608     return;
1609   }
1610 
1611   // When flag ends with '=' and there was no value completion, return empty
1612   // string and fall back to the file autocompletion.
1613   if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1614     // If the flag is in the form of "--autocomplete=-foo",
1615     // we were requested to print out all option names that start with "-foo".
1616     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1617     SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1618 
1619     // We have to query the -W flags manually as they're not in the OptTable.
1620     // TODO: Find a good way to add them to OptTable instead and them remove
1621     // this code.
1622     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1623       if (S.startswith(Cur))
1624         SuggestedCompletions.push_back(S);
1625   }
1626 
1627   // Sort the autocomplete candidates so that shells print them out in a
1628   // deterministic order. We could sort in any way, but we chose
1629   // case-insensitive sorting for consistency with the -help option
1630   // which prints out options in the case-insensitive alphabetical order.
1631   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1632     if (int X = A.compare_lower(B))
1633       return X < 0;
1634     return A.compare(B) > 0;
1635   });
1636 
1637   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1638 }
1639 
1640 bool Driver::HandleImmediateArgs(const Compilation &C) {
1641   // The order these options are handled in gcc is all over the place, but we
1642   // don't expect inconsistencies w.r.t. that to matter in practice.
1643 
1644   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1645     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1646     return false;
1647   }
1648 
1649   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1650     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1651     // return an answer which matches our definition of __VERSION__.
1652     llvm::outs() << CLANG_VERSION_STRING << "\n";
1653     return false;
1654   }
1655 
1656   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1657     PrintDiagnosticCategories(llvm::outs());
1658     return false;
1659   }
1660 
1661   if (C.getArgs().hasArg(options::OPT_help) ||
1662       C.getArgs().hasArg(options::OPT__help_hidden)) {
1663     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1664     return false;
1665   }
1666 
1667   if (C.getArgs().hasArg(options::OPT__version)) {
1668     // Follow gcc behavior and use stdout for --version and stderr for -v.
1669     PrintVersion(C, llvm::outs());
1670     return false;
1671   }
1672 
1673   if (C.getArgs().hasArg(options::OPT_v) ||
1674       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1675     PrintVersion(C, llvm::errs());
1676     SuppressMissingInputWarning = true;
1677   }
1678 
1679   if (C.getArgs().hasArg(options::OPT_v)) {
1680     if (!SystemConfigDir.empty())
1681       llvm::errs() << "System configuration file directory: "
1682                    << SystemConfigDir << "\n";
1683     if (!UserConfigDir.empty())
1684       llvm::errs() << "User configuration file directory: "
1685                    << UserConfigDir << "\n";
1686   }
1687 
1688   const ToolChain &TC = C.getDefaultToolChain();
1689 
1690   if (C.getArgs().hasArg(options::OPT_v))
1691     TC.printVerboseInfo(llvm::errs());
1692 
1693   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1694     llvm::outs() << ResourceDir << '\n';
1695     return false;
1696   }
1697 
1698   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1699     llvm::outs() << "programs: =";
1700     bool separator = false;
1701     for (const std::string &Path : TC.getProgramPaths()) {
1702       if (separator)
1703         llvm::outs() << llvm::sys::EnvPathSeparator;
1704       llvm::outs() << Path;
1705       separator = true;
1706     }
1707     llvm::outs() << "\n";
1708     llvm::outs() << "libraries: =" << ResourceDir;
1709 
1710     StringRef sysroot = C.getSysRoot();
1711 
1712     for (const std::string &Path : TC.getFilePaths()) {
1713       // Always print a separator. ResourceDir was the first item shown.
1714       llvm::outs() << llvm::sys::EnvPathSeparator;
1715       // Interpretation of leading '=' is needed only for NetBSD.
1716       if (Path[0] == '=')
1717         llvm::outs() << sysroot << Path.substr(1);
1718       else
1719         llvm::outs() << Path;
1720     }
1721     llvm::outs() << "\n";
1722     return false;
1723   }
1724 
1725   // FIXME: The following handlers should use a callback mechanism, we don't
1726   // know what the client would like to do.
1727   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1728     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1729     return false;
1730   }
1731 
1732   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1733     StringRef ProgName = A->getValue();
1734 
1735     // Null program name cannot have a path.
1736     if (! ProgName.empty())
1737       llvm::outs() << GetProgramPath(ProgName, TC);
1738 
1739     llvm::outs() << "\n";
1740     return false;
1741   }
1742 
1743   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1744     StringRef PassedFlags = A->getValue();
1745     HandleAutocompletions(PassedFlags);
1746     return false;
1747   }
1748 
1749   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1750     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1751     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1752     RegisterEffectiveTriple TripleRAII(TC, Triple);
1753     switch (RLT) {
1754     case ToolChain::RLT_CompilerRT:
1755       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1756       break;
1757     case ToolChain::RLT_Libgcc:
1758       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1759       break;
1760     }
1761     return false;
1762   }
1763 
1764   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1765     for (const Multilib &Multilib : TC.getMultilibs())
1766       llvm::outs() << Multilib << "\n";
1767     return false;
1768   }
1769 
1770   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1771     const Multilib &Multilib = TC.getMultilib();
1772     if (Multilib.gccSuffix().empty())
1773       llvm::outs() << ".\n";
1774     else {
1775       StringRef Suffix(Multilib.gccSuffix());
1776       assert(Suffix.front() == '/');
1777       llvm::outs() << Suffix.substr(1) << "\n";
1778     }
1779     return false;
1780   }
1781 
1782   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1783     llvm::outs() << TC.getTripleString() << "\n";
1784     return false;
1785   }
1786 
1787   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1788     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1789     llvm::outs() << Triple.getTriple() << "\n";
1790     return false;
1791   }
1792 
1793   return true;
1794 }
1795 
1796 // Display an action graph human-readably.  Action A is the "sink" node
1797 // and latest-occuring action. Traversal is in pre-order, visiting the
1798 // inputs to each action before printing the action itself.
1799 static unsigned PrintActions1(const Compilation &C, Action *A,
1800                               std::map<Action *, unsigned> &Ids) {
1801   if (Ids.count(A)) // A was already visited.
1802     return Ids[A];
1803 
1804   std::string str;
1805   llvm::raw_string_ostream os(str);
1806 
1807   os << Action::getClassName(A->getKind()) << ", ";
1808   if (InputAction *IA = dyn_cast<InputAction>(A)) {
1809     os << "\"" << IA->getInputArg().getValue() << "\"";
1810   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1811     os << '"' << BIA->getArchName() << '"' << ", {"
1812        << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1813   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1814     bool IsFirst = true;
1815     OA->doOnEachDependence(
1816         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1817           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1818           // sm_35 this will generate:
1819           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1820           // (nvptx64-nvidia-cuda:sm_35) {#ID}
1821           if (!IsFirst)
1822             os << ", ";
1823           os << '"';
1824           if (TC)
1825             os << A->getOffloadingKindPrefix();
1826           else
1827             os << "host";
1828           os << " (";
1829           os << TC->getTriple().normalize();
1830 
1831           if (BoundArch)
1832             os << ":" << BoundArch;
1833           os << ")";
1834           os << '"';
1835           os << " {" << PrintActions1(C, A, Ids) << "}";
1836           IsFirst = false;
1837         });
1838   } else {
1839     const ActionList *AL = &A->getInputs();
1840 
1841     if (AL->size()) {
1842       const char *Prefix = "{";
1843       for (Action *PreRequisite : *AL) {
1844         os << Prefix << PrintActions1(C, PreRequisite, Ids);
1845         Prefix = ", ";
1846       }
1847       os << "}";
1848     } else
1849       os << "{}";
1850   }
1851 
1852   // Append offload info for all options other than the offloading action
1853   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1854   std::string offload_str;
1855   llvm::raw_string_ostream offload_os(offload_str);
1856   if (!isa<OffloadAction>(A)) {
1857     auto S = A->getOffloadingKindPrefix();
1858     if (!S.empty()) {
1859       offload_os << ", (" << S;
1860       if (A->getOffloadingArch())
1861         offload_os << ", " << A->getOffloadingArch();
1862       offload_os << ")";
1863     }
1864   }
1865 
1866   unsigned Id = Ids.size();
1867   Ids[A] = Id;
1868   llvm::errs() << Id << ": " << os.str() << ", "
1869                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1870 
1871   return Id;
1872 }
1873 
1874 // Print the action graphs in a compilation C.
1875 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1876 void Driver::PrintActions(const Compilation &C) const {
1877   std::map<Action *, unsigned> Ids;
1878   for (Action *A : C.getActions())
1879     PrintActions1(C, A, Ids);
1880 }
1881 
1882 /// Check whether the given input tree contains any compilation or
1883 /// assembly actions.
1884 static bool ContainsCompileOrAssembleAction(const Action *A) {
1885   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1886       isa<AssembleJobAction>(A))
1887     return true;
1888 
1889   for (const Action *Input : A->inputs())
1890     if (ContainsCompileOrAssembleAction(Input))
1891       return true;
1892 
1893   return false;
1894 }
1895 
1896 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
1897                                    const InputList &BAInputs) const {
1898   DerivedArgList &Args = C.getArgs();
1899   ActionList &Actions = C.getActions();
1900   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1901   // Collect the list of architectures. Duplicates are allowed, but should only
1902   // be handled once (in the order seen).
1903   llvm::StringSet<> ArchNames;
1904   SmallVector<const char *, 4> Archs;
1905   for (Arg *A : Args) {
1906     if (A->getOption().matches(options::OPT_arch)) {
1907       // Validate the option here; we don't save the type here because its
1908       // particular spelling may participate in other driver choices.
1909       llvm::Triple::ArchType Arch =
1910           tools::darwin::getArchTypeForMachOArchName(A->getValue());
1911       if (Arch == llvm::Triple::UnknownArch) {
1912         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1913         continue;
1914       }
1915 
1916       A->claim();
1917       if (ArchNames.insert(A->getValue()).second)
1918         Archs.push_back(A->getValue());
1919     }
1920   }
1921 
1922   // When there is no explicit arch for this platform, make sure we still bind
1923   // the architecture (to the default) so that -Xarch_ is handled correctly.
1924   if (!Archs.size())
1925     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1926 
1927   ActionList SingleActions;
1928   BuildActions(C, Args, BAInputs, SingleActions);
1929 
1930   // Add in arch bindings for every top level action, as well as lipo and
1931   // dsymutil steps if needed.
1932   for (Action* Act : SingleActions) {
1933     // Make sure we can lipo this kind of output. If not (and it is an actual
1934     // output) then we disallow, since we can't create an output file with the
1935     // right name without overwriting it. We could remove this oddity by just
1936     // changing the output names to include the arch, which would also fix
1937     // -save-temps. Compatibility wins for now.
1938 
1939     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1940       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1941           << types::getTypeName(Act->getType());
1942 
1943     ActionList Inputs;
1944     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1945       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1946 
1947     // Lipo if necessary, we do it this way because we need to set the arch flag
1948     // so that -Xarch_ gets overwritten.
1949     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1950       Actions.append(Inputs.begin(), Inputs.end());
1951     else
1952       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1953 
1954     // Handle debug info queries.
1955     Arg *A = Args.getLastArg(options::OPT_g_Group);
1956     if (A && !A->getOption().matches(options::OPT_g0) &&
1957         !A->getOption().matches(options::OPT_gstabs) &&
1958         ContainsCompileOrAssembleAction(Actions.back())) {
1959 
1960       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1961       // have a compile input. We need to run 'dsymutil' ourselves in such cases
1962       // because the debug info will refer to a temporary object file which
1963       // will be removed at the end of the compilation process.
1964       if (Act->getType() == types::TY_Image) {
1965         ActionList Inputs;
1966         Inputs.push_back(Actions.back());
1967         Actions.pop_back();
1968         Actions.push_back(
1969             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1970       }
1971 
1972       // Verify the debug info output.
1973       if (Args.hasArg(options::OPT_verify_debug_info)) {
1974         Action* LastAction = Actions.back();
1975         Actions.pop_back();
1976         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1977             LastAction, types::TY_Nothing));
1978       }
1979     }
1980   }
1981 }
1982 
1983 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
1984                                     types::ID Ty, bool TypoCorrect) const {
1985   if (!getCheckInputsExist())
1986     return true;
1987 
1988   // stdin always exists.
1989   if (Value == "-")
1990     return true;
1991 
1992   if (getVFS().exists(Value))
1993     return true;
1994 
1995   if (IsCLMode()) {
1996     if (!llvm::sys::path::is_absolute(Twine(Value)) &&
1997         llvm::sys::Process::FindInEnvPath("LIB", Value))
1998       return true;
1999 
2000     if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2001       // Arguments to the /link flag might cause the linker to search for object
2002       // and library files in paths we don't know about. Don't error in such
2003       // cases.
2004       return true;
2005     }
2006   }
2007 
2008   if (TypoCorrect) {
2009     // Check if the filename is a typo for an option flag. OptTable thinks
2010     // that all args that are not known options and that start with / are
2011     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2012     // the option `/diagnostics:caret` than a reference to a file in the root
2013     // directory.
2014     unsigned IncludedFlagsBitmask;
2015     unsigned ExcludedFlagsBitmask;
2016     std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2017         getIncludeExcludeOptionFlagMasks(IsCLMode());
2018     std::string Nearest;
2019     if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2020                               ExcludedFlagsBitmask) <= 1) {
2021       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2022           << Value << Nearest;
2023       return false;
2024     }
2025   }
2026 
2027   Diag(clang::diag::err_drv_no_such_file) << Value;
2028   return false;
2029 }
2030 
2031 // Construct a the list of inputs and their types.
2032 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2033                          InputList &Inputs) const {
2034   // Track the current user specified (-x) input. We also explicitly track the
2035   // argument used to set the type; we only want to claim the type when we
2036   // actually use it, so we warn about unused -x arguments.
2037   types::ID InputType = types::TY_Nothing;
2038   Arg *InputTypeArg = nullptr;
2039 
2040   // The last /TC or /TP option sets the input type to C or C++ globally.
2041   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2042                                          options::OPT__SLASH_TP)) {
2043     InputTypeArg = TCTP;
2044     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2045                     ? types::TY_C
2046                     : types::TY_CXX;
2047 
2048     Arg *Previous = nullptr;
2049     bool ShowNote = false;
2050     for (Arg *A :
2051          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2052       if (Previous) {
2053         Diag(clang::diag::warn_drv_overriding_flag_option)
2054           << Previous->getSpelling() << A->getSpelling();
2055         ShowNote = true;
2056       }
2057       Previous = A;
2058     }
2059     if (ShowNote)
2060       Diag(clang::diag::note_drv_t_option_is_global);
2061 
2062     // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2063     assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2064   }
2065 
2066   for (Arg *A : Args) {
2067     if (A->getOption().getKind() == Option::InputClass) {
2068       const char *Value = A->getValue();
2069       types::ID Ty = types::TY_INVALID;
2070 
2071       // Infer the input type if necessary.
2072       if (InputType == types::TY_Nothing) {
2073         // If there was an explicit arg for this, claim it.
2074         if (InputTypeArg)
2075           InputTypeArg->claim();
2076 
2077         // stdin must be handled specially.
2078         if (memcmp(Value, "-", 2) == 0) {
2079           // If running with -E, treat as a C input (this changes the builtin
2080           // macros, for example). This may be overridden by -ObjC below.
2081           //
2082           // Otherwise emit an error but still use a valid type to avoid
2083           // spurious errors (e.g., no inputs).
2084           if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2085             Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2086                             : clang::diag::err_drv_unknown_stdin_type);
2087           Ty = types::TY_C;
2088         } else {
2089           // Otherwise lookup by extension.
2090           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2091           // clang-cl /E, or Object otherwise.
2092           // We use a host hook here because Darwin at least has its own
2093           // idea of what .s is.
2094           if (const char *Ext = strrchr(Value, '.'))
2095             Ty = TC.LookupTypeForExtension(Ext + 1);
2096 
2097           if (Ty == types::TY_INVALID) {
2098             if (CCCIsCPP())
2099               Ty = types::TY_C;
2100             else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2101               Ty = types::TY_CXX;
2102             else
2103               Ty = types::TY_Object;
2104           }
2105 
2106           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2107           // should autodetect some input files as C++ for g++ compatibility.
2108           if (CCCIsCXX()) {
2109             types::ID OldTy = Ty;
2110             Ty = types::lookupCXXTypeForCType(Ty);
2111 
2112             if (Ty != OldTy)
2113               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2114                   << getTypeName(OldTy) << getTypeName(Ty);
2115           }
2116         }
2117 
2118         // -ObjC and -ObjC++ override the default language, but only for "source
2119         // files". We just treat everything that isn't a linker input as a
2120         // source file.
2121         //
2122         // FIXME: Clean this up if we move the phase sequence into the type.
2123         if (Ty != types::TY_Object) {
2124           if (Args.hasArg(options::OPT_ObjC))
2125             Ty = types::TY_ObjC;
2126           else if (Args.hasArg(options::OPT_ObjCXX))
2127             Ty = types::TY_ObjCXX;
2128         }
2129       } else {
2130         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2131         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2132           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2133           // object files.
2134           const char *Ext = strrchr(Value, '.');
2135           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2136             Ty = types::TY_Object;
2137         }
2138         if (Ty == types::TY_INVALID) {
2139           Ty = InputType;
2140           InputTypeArg->claim();
2141         }
2142       }
2143 
2144       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2145         Inputs.push_back(std::make_pair(Ty, A));
2146 
2147     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2148       StringRef Value = A->getValue();
2149       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2150                                  /*TypoCorrect=*/false)) {
2151         Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2152         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2153       }
2154       A->claim();
2155     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2156       StringRef Value = A->getValue();
2157       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2158                                  /*TypoCorrect=*/false)) {
2159         Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2160         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2161       }
2162       A->claim();
2163     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2164       // Just treat as object type, we could make a special type for this if
2165       // necessary.
2166       Inputs.push_back(std::make_pair(types::TY_Object, A));
2167 
2168     } else if (A->getOption().matches(options::OPT_x)) {
2169       InputTypeArg = A;
2170       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2171       A->claim();
2172 
2173       // Follow gcc behavior and treat as linker input for invalid -x
2174       // options. Its not clear why we shouldn't just revert to unknown; but
2175       // this isn't very important, we might as well be bug compatible.
2176       if (!InputType) {
2177         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2178         InputType = types::TY_Object;
2179       }
2180     } else if (A->getOption().getID() == options::OPT__SLASH_U) {
2181       assert(A->getNumValues() == 1 && "The /U option has one value.");
2182       StringRef Val = A->getValue(0);
2183       if (Val.find_first_of("/\\") != StringRef::npos) {
2184         // Warn about e.g. "/Users/me/myfile.c".
2185         Diag(diag::warn_slash_u_filename) << Val;
2186         Diag(diag::note_use_dashdash);
2187       }
2188     }
2189   }
2190   if (CCCIsCPP() && Inputs.empty()) {
2191     // If called as standalone preprocessor, stdin is processed
2192     // if no other input is present.
2193     Arg *A = MakeInputArg(Args, *Opts, "-");
2194     Inputs.push_back(std::make_pair(types::TY_C, A));
2195   }
2196 }
2197 
2198 namespace {
2199 /// Provides a convenient interface for different programming models to generate
2200 /// the required device actions.
2201 class OffloadingActionBuilder final {
2202   /// Flag used to trace errors in the builder.
2203   bool IsValid = false;
2204 
2205   /// The compilation that is using this builder.
2206   Compilation &C;
2207 
2208   /// Map between an input argument and the offload kinds used to process it.
2209   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2210 
2211   /// Builder interface. It doesn't build anything or keep any state.
2212   class DeviceActionBuilder {
2213   public:
2214     typedef llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhasesTy;
2215 
2216     enum ActionBuilderReturnCode {
2217       // The builder acted successfully on the current action.
2218       ABRT_Success,
2219       // The builder didn't have to act on the current action.
2220       ABRT_Inactive,
2221       // The builder was successful and requested the host action to not be
2222       // generated.
2223       ABRT_Ignore_Host,
2224     };
2225 
2226   protected:
2227     /// Compilation associated with this builder.
2228     Compilation &C;
2229 
2230     /// Tool chains associated with this builder. The same programming
2231     /// model may have associated one or more tool chains.
2232     SmallVector<const ToolChain *, 2> ToolChains;
2233 
2234     /// The derived arguments associated with this builder.
2235     DerivedArgList &Args;
2236 
2237     /// The inputs associated with this builder.
2238     const Driver::InputList &Inputs;
2239 
2240     /// The associated offload kind.
2241     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2242 
2243   public:
2244     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2245                         const Driver::InputList &Inputs,
2246                         Action::OffloadKind AssociatedOffloadKind)
2247         : C(C), Args(Args), Inputs(Inputs),
2248           AssociatedOffloadKind(AssociatedOffloadKind) {}
2249     virtual ~DeviceActionBuilder() {}
2250 
2251     /// Fill up the array \a DA with all the device dependences that should be
2252     /// added to the provided host action \a HostAction. By default it is
2253     /// inactive.
2254     virtual ActionBuilderReturnCode
2255     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2256                          phases::ID CurPhase, phases::ID FinalPhase,
2257                          PhasesTy &Phases) {
2258       return ABRT_Inactive;
2259     }
2260 
2261     /// Update the state to include the provided host action \a HostAction as a
2262     /// dependency of the current device action. By default it is inactive.
2263     virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2264       return ABRT_Inactive;
2265     }
2266 
2267     /// Append top level actions generated by the builder. Return true if errors
2268     /// were found.
2269     virtual void appendTopLevelActions(ActionList &AL) {}
2270 
2271     /// Append linker actions generated by the builder. Return true if errors
2272     /// were found.
2273     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2274 
2275     /// Initialize the builder. Return true if any initialization errors are
2276     /// found.
2277     virtual bool initialize() { return false; }
2278 
2279     /// Return true if the builder can use bundling/unbundling.
2280     virtual bool canUseBundlerUnbundler() const { return false; }
2281 
2282     /// Return true if this builder is valid. We have a valid builder if we have
2283     /// associated device tool chains.
2284     bool isValid() { return !ToolChains.empty(); }
2285 
2286     /// Return the associated offload kind.
2287     Action::OffloadKind getAssociatedOffloadKind() {
2288       return AssociatedOffloadKind;
2289     }
2290   };
2291 
2292   /// Base class for CUDA/HIP action builder. It injects device code in
2293   /// the host backend action.
2294   class CudaActionBuilderBase : public DeviceActionBuilder {
2295   protected:
2296     /// Flags to signal if the user requested host-only or device-only
2297     /// compilation.
2298     bool CompileHostOnly = false;
2299     bool CompileDeviceOnly = false;
2300 
2301     /// List of GPU architectures to use in this compilation.
2302     SmallVector<CudaArch, 4> GpuArchList;
2303 
2304     /// The CUDA actions for the current input.
2305     ActionList CudaDeviceActions;
2306 
2307     /// The CUDA fat binary if it was generated for the current input.
2308     Action *CudaFatBinary = nullptr;
2309 
2310     /// Flag that is set to true if this builder acted on the current input.
2311     bool IsActive = false;
2312 
2313     /// Flag for -fgpu-rdc.
2314     bool Relocatable = false;
2315   public:
2316     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2317                           const Driver::InputList &Inputs,
2318                           Action::OffloadKind OFKind)
2319         : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2320 
2321     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2322       // While generating code for CUDA, we only depend on the host input action
2323       // to trigger the creation of all the CUDA device actions.
2324 
2325       // If we are dealing with an input action, replicate it for each GPU
2326       // architecture. If we are in host-only mode we return 'success' so that
2327       // the host uses the CUDA offload kind.
2328       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2329         assert(!GpuArchList.empty() &&
2330                "We should have at least one GPU architecture.");
2331 
2332         // If the host input is not CUDA or HIP, we don't need to bother about
2333         // this input.
2334         if (IA->getType() != types::TY_CUDA &&
2335             IA->getType() != types::TY_HIP) {
2336           // The builder will ignore this input.
2337           IsActive = false;
2338           return ABRT_Inactive;
2339         }
2340 
2341         // Set the flag to true, so that the builder acts on the current input.
2342         IsActive = true;
2343 
2344         if (CompileHostOnly)
2345           return ABRT_Success;
2346 
2347         // Replicate inputs for each GPU architecture.
2348         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2349                                                  : types::TY_CUDA_DEVICE;
2350         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2351           CudaDeviceActions.push_back(
2352               C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2353         }
2354 
2355         return ABRT_Success;
2356       }
2357 
2358       // If this is an unbundling action use it as is for each CUDA toolchain.
2359       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2360 
2361         // If -fgpu-rdc is disabled, should not unbundle since there is no
2362         // device code to link.
2363         if (!Relocatable)
2364           return ABRT_Inactive;
2365 
2366         CudaDeviceActions.clear();
2367         auto *IA = cast<InputAction>(UA->getInputs().back());
2368         std::string FileName = IA->getInputArg().getAsString(Args);
2369         // Check if the type of the file is the same as the action. Do not
2370         // unbundle it if it is not. Do not unbundle .so files, for example,
2371         // which are not object files.
2372         if (IA->getType() == types::TY_Object &&
2373             (!llvm::sys::path::has_extension(FileName) ||
2374              types::lookupTypeForExtension(
2375                  llvm::sys::path::extension(FileName).drop_front()) !=
2376                  types::TY_Object))
2377           return ABRT_Inactive;
2378 
2379         for (auto Arch : GpuArchList) {
2380           CudaDeviceActions.push_back(UA);
2381           UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2382                                           AssociatedOffloadKind);
2383         }
2384         return ABRT_Success;
2385       }
2386 
2387       return IsActive ? ABRT_Success : ABRT_Inactive;
2388     }
2389 
2390     void appendTopLevelActions(ActionList &AL) override {
2391       // Utility to append actions to the top level list.
2392       auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2393         OffloadAction::DeviceDependences Dep;
2394         Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2395                 AssociatedOffloadKind);
2396         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2397       };
2398 
2399       // If we have a fat binary, add it to the list.
2400       if (CudaFatBinary) {
2401         AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2402         CudaDeviceActions.clear();
2403         CudaFatBinary = nullptr;
2404         return;
2405       }
2406 
2407       if (CudaDeviceActions.empty())
2408         return;
2409 
2410       // If we have CUDA actions at this point, that's because we have a have
2411       // partial compilation, so we should have an action for each GPU
2412       // architecture.
2413       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2414              "Expecting one action per GPU architecture.");
2415       assert(ToolChains.size() == 1 &&
2416              "Expecting to have a sing CUDA toolchain.");
2417       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2418         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2419 
2420       CudaDeviceActions.clear();
2421     }
2422 
2423     bool initialize() override {
2424       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2425              AssociatedOffloadKind == Action::OFK_HIP);
2426 
2427       // We don't need to support CUDA.
2428       if (AssociatedOffloadKind == Action::OFK_Cuda &&
2429           !C.hasOffloadToolChain<Action::OFK_Cuda>())
2430         return false;
2431 
2432       // We don't need to support HIP.
2433       if (AssociatedOffloadKind == Action::OFK_HIP &&
2434           !C.hasOffloadToolChain<Action::OFK_HIP>())
2435         return false;
2436 
2437       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2438           options::OPT_fno_gpu_rdc, /*Default=*/false);
2439 
2440       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2441       assert(HostTC && "No toolchain for host compilation.");
2442       if (HostTC->getTriple().isNVPTX() ||
2443           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2444         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2445         // an error and abort pipeline construction early so we don't trip
2446         // asserts that assume device-side compilation.
2447         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2448             << HostTC->getTriple().getArchName();
2449         return true;
2450       }
2451 
2452       ToolChains.push_back(
2453           AssociatedOffloadKind == Action::OFK_Cuda
2454               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2455               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2456 
2457       Arg *PartialCompilationArg = Args.getLastArg(
2458           options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2459           options::OPT_cuda_compile_host_device);
2460       CompileHostOnly = PartialCompilationArg &&
2461                         PartialCompilationArg->getOption().matches(
2462                             options::OPT_cuda_host_only);
2463       CompileDeviceOnly = PartialCompilationArg &&
2464                           PartialCompilationArg->getOption().matches(
2465                               options::OPT_cuda_device_only);
2466 
2467       // Collect all cuda_gpu_arch parameters, removing duplicates.
2468       std::set<CudaArch> GpuArchs;
2469       bool Error = false;
2470       for (Arg *A : Args) {
2471         if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2472               A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2473           continue;
2474         A->claim();
2475 
2476         const StringRef ArchStr = A->getValue();
2477         if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2478             ArchStr == "all") {
2479           GpuArchs.clear();
2480           continue;
2481         }
2482         CudaArch Arch = StringToCudaArch(ArchStr);
2483         if (Arch == CudaArch::UNKNOWN) {
2484           C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2485           Error = true;
2486         } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2487           GpuArchs.insert(Arch);
2488         else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2489           GpuArchs.erase(Arch);
2490         else
2491           llvm_unreachable("Unexpected option.");
2492       }
2493 
2494       // Collect list of GPUs remaining in the set.
2495       for (CudaArch Arch : GpuArchs)
2496         GpuArchList.push_back(Arch);
2497 
2498       // Default to sm_20 which is the lowest common denominator for
2499       // supported GPUs.  sm_20 code should work correctly, if
2500       // suboptimally, on all newer GPUs.
2501       if (GpuArchList.empty())
2502         GpuArchList.push_back(CudaArch::SM_20);
2503 
2504       return Error;
2505     }
2506   };
2507 
2508   /// \brief CUDA action builder. It injects device code in the host backend
2509   /// action.
2510   class CudaActionBuilder final : public CudaActionBuilderBase {
2511   public:
2512     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2513                       const Driver::InputList &Inputs)
2514         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2515 
2516     ActionBuilderReturnCode
2517     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2518                          phases::ID CurPhase, phases::ID FinalPhase,
2519                          PhasesTy &Phases) override {
2520       if (!IsActive)
2521         return ABRT_Inactive;
2522 
2523       // If we don't have more CUDA actions, we don't have any dependences to
2524       // create for the host.
2525       if (CudaDeviceActions.empty())
2526         return ABRT_Success;
2527 
2528       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2529              "Expecting one action per GPU architecture.");
2530       assert(!CompileHostOnly &&
2531              "Not expecting CUDA actions in host-only compilation.");
2532 
2533       // If we are generating code for the device or we are in a backend phase,
2534       // we attempt to generate the fat binary. We compile each arch to ptx and
2535       // assemble to cubin, then feed the cubin *and* the ptx into a device
2536       // "link" action, which uses fatbinary to combine these cubins into one
2537       // fatbin.  The fatbin is then an input to the host action if not in
2538       // device-only mode.
2539       if (CompileDeviceOnly || CurPhase == phases::Backend) {
2540         ActionList DeviceActions;
2541         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2542           // Produce the device action from the current phase up to the assemble
2543           // phase.
2544           for (auto Ph : Phases) {
2545             // Skip the phases that were already dealt with.
2546             if (Ph < CurPhase)
2547               continue;
2548             // We have to be consistent with the host final phase.
2549             if (Ph > FinalPhase)
2550               break;
2551 
2552             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2553                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2554 
2555             if (Ph == phases::Assemble)
2556               break;
2557           }
2558 
2559           // If we didn't reach the assemble phase, we can't generate the fat
2560           // binary. We don't need to generate the fat binary if we are not in
2561           // device-only mode.
2562           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2563               CompileDeviceOnly)
2564             continue;
2565 
2566           Action *AssembleAction = CudaDeviceActions[I];
2567           assert(AssembleAction->getType() == types::TY_Object);
2568           assert(AssembleAction->getInputs().size() == 1);
2569 
2570           Action *BackendAction = AssembleAction->getInputs()[0];
2571           assert(BackendAction->getType() == types::TY_PP_Asm);
2572 
2573           for (auto &A : {AssembleAction, BackendAction}) {
2574             OffloadAction::DeviceDependences DDep;
2575             DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2576                      Action::OFK_Cuda);
2577             DeviceActions.push_back(
2578                 C.MakeAction<OffloadAction>(DDep, A->getType()));
2579           }
2580         }
2581 
2582         // We generate the fat binary if we have device input actions.
2583         if (!DeviceActions.empty()) {
2584           CudaFatBinary =
2585               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2586 
2587           if (!CompileDeviceOnly) {
2588             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2589                    Action::OFK_Cuda);
2590             // Clear the fat binary, it is already a dependence to an host
2591             // action.
2592             CudaFatBinary = nullptr;
2593           }
2594 
2595           // Remove the CUDA actions as they are already connected to an host
2596           // action or fat binary.
2597           CudaDeviceActions.clear();
2598         }
2599 
2600         // We avoid creating host action in device-only mode.
2601         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2602       } else if (CurPhase > phases::Backend) {
2603         // If we are past the backend phase and still have a device action, we
2604         // don't have to do anything as this action is already a device
2605         // top-level action.
2606         return ABRT_Success;
2607       }
2608 
2609       assert(CurPhase < phases::Backend && "Generating single CUDA "
2610                                            "instructions should only occur "
2611                                            "before the backend phase!");
2612 
2613       // By default, we produce an action for each device arch.
2614       for (Action *&A : CudaDeviceActions)
2615         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2616 
2617       return ABRT_Success;
2618     }
2619   };
2620   /// \brief HIP action builder. It injects device code in the host backend
2621   /// action.
2622   class HIPActionBuilder final : public CudaActionBuilderBase {
2623     /// The linker inputs obtained for each device arch.
2624     SmallVector<ActionList, 8> DeviceLinkerInputs;
2625 
2626   public:
2627     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2628                      const Driver::InputList &Inputs)
2629         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2630 
2631     bool canUseBundlerUnbundler() const override { return true; }
2632 
2633     ActionBuilderReturnCode
2634     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2635                          phases::ID CurPhase, phases::ID FinalPhase,
2636                          PhasesTy &Phases) override {
2637       // amdgcn does not support linking of object files, therefore we skip
2638       // backend and assemble phases to output LLVM IR. Except for generating
2639       // non-relocatable device coee, where we generate fat binary for device
2640       // code and pass to host in Backend phase.
2641       if (CudaDeviceActions.empty() ||
2642           (CurPhase == phases::Backend && Relocatable) ||
2643           CurPhase == phases::Assemble)
2644         return ABRT_Success;
2645 
2646       assert(((CurPhase == phases::Link && Relocatable) ||
2647               CudaDeviceActions.size() == GpuArchList.size()) &&
2648              "Expecting one action per GPU architecture.");
2649       assert(!CompileHostOnly &&
2650              "Not expecting CUDA actions in host-only compilation.");
2651 
2652       if (!Relocatable && CurPhase == phases::Backend) {
2653         // If we are in backend phase, we attempt to generate the fat binary.
2654         // We compile each arch to IR and use a link action to generate code
2655         // object containing ISA. Then we use a special "link" action to create
2656         // a fat binary containing all the code objects for different GPU's.
2657         // The fat binary is then an input to the host action.
2658         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2659           // Create a link action to link device IR with device library
2660           // and generate ISA.
2661           ActionList AL;
2662           AL.push_back(CudaDeviceActions[I]);
2663           CudaDeviceActions[I] =
2664               C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2665 
2666           // OffloadingActionBuilder propagates device arch until an offload
2667           // action. Since the next action for creating fatbin does
2668           // not have device arch, whereas the above link action and its input
2669           // have device arch, an offload action is needed to stop the null
2670           // device arch of the next action being propagated to the above link
2671           // action.
2672           OffloadAction::DeviceDependences DDep;
2673           DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2674                    CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2675           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2676               DDep, CudaDeviceActions[I]->getType());
2677         }
2678         // Create HIP fat binary with a special "link" action.
2679         CudaFatBinary =
2680             C.MakeAction<LinkJobAction>(CudaDeviceActions,
2681                 types::TY_HIP_FATBIN);
2682 
2683         if (!CompileDeviceOnly) {
2684           DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2685                  AssociatedOffloadKind);
2686           // Clear the fat binary, it is already a dependence to an host
2687           // action.
2688           CudaFatBinary = nullptr;
2689         }
2690 
2691         // Remove the CUDA actions as they are already connected to an host
2692         // action or fat binary.
2693         CudaDeviceActions.clear();
2694 
2695         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2696       } else if (CurPhase == phases::Link) {
2697         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2698         // This happens to each device action originated from each input file.
2699         // Later on, device actions in DeviceLinkerInputs are used to create
2700         // device link actions in appendLinkDependences and the created device
2701         // link actions are passed to the offload action as device dependence.
2702         DeviceLinkerInputs.resize(CudaDeviceActions.size());
2703         auto LI = DeviceLinkerInputs.begin();
2704         for (auto *A : CudaDeviceActions) {
2705           LI->push_back(A);
2706           ++LI;
2707         }
2708 
2709         // We will pass the device action as a host dependence, so we don't
2710         // need to do anything else with them.
2711         CudaDeviceActions.clear();
2712         return ABRT_Success;
2713       }
2714 
2715       // By default, we produce an action for each device arch.
2716       for (Action *&A : CudaDeviceActions)
2717         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2718                                                AssociatedOffloadKind);
2719 
2720       return ABRT_Success;
2721     }
2722 
2723     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2724       // Append a new link action for each device.
2725       unsigned I = 0;
2726       for (auto &LI : DeviceLinkerInputs) {
2727         auto *DeviceLinkAction =
2728             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2729         DA.add(*DeviceLinkAction, *ToolChains[0],
2730                CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2731         ++I;
2732       }
2733     }
2734   };
2735 
2736   /// OpenMP action builder. The host bitcode is passed to the device frontend
2737   /// and all the device linked images are passed to the host link phase.
2738   class OpenMPActionBuilder final : public DeviceActionBuilder {
2739     /// The OpenMP actions for the current input.
2740     ActionList OpenMPDeviceActions;
2741 
2742     /// The linker inputs obtained for each toolchain.
2743     SmallVector<ActionList, 8> DeviceLinkerInputs;
2744 
2745   public:
2746     OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2747                         const Driver::InputList &Inputs)
2748         : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2749 
2750     ActionBuilderReturnCode
2751     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2752                          phases::ID CurPhase, phases::ID FinalPhase,
2753                          PhasesTy &Phases) override {
2754       if (OpenMPDeviceActions.empty())
2755         return ABRT_Inactive;
2756 
2757       // We should always have an action for each input.
2758       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2759              "Number of OpenMP actions and toolchains do not match.");
2760 
2761       // The host only depends on device action in the linking phase, when all
2762       // the device images have to be embedded in the host image.
2763       if (CurPhase == phases::Link) {
2764         assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2765                "Toolchains and linker inputs sizes do not match.");
2766         auto LI = DeviceLinkerInputs.begin();
2767         for (auto *A : OpenMPDeviceActions) {
2768           LI->push_back(A);
2769           ++LI;
2770         }
2771 
2772         // We passed the device action as a host dependence, so we don't need to
2773         // do anything else with them.
2774         OpenMPDeviceActions.clear();
2775         return ABRT_Success;
2776       }
2777 
2778       // By default, we produce an action for each device arch.
2779       for (Action *&A : OpenMPDeviceActions)
2780         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2781 
2782       return ABRT_Success;
2783     }
2784 
2785     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2786 
2787       // If this is an input action replicate it for each OpenMP toolchain.
2788       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2789         OpenMPDeviceActions.clear();
2790         for (unsigned I = 0; I < ToolChains.size(); ++I)
2791           OpenMPDeviceActions.push_back(
2792               C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2793         return ABRT_Success;
2794       }
2795 
2796       // If this is an unbundling action use it as is for each OpenMP toolchain.
2797       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2798         OpenMPDeviceActions.clear();
2799         auto *IA = cast<InputAction>(UA->getInputs().back());
2800         std::string FileName = IA->getInputArg().getAsString(Args);
2801         // Check if the type of the file is the same as the action. Do not
2802         // unbundle it if it is not. Do not unbundle .so files, for example,
2803         // which are not object files.
2804         if (IA->getType() == types::TY_Object &&
2805             (!llvm::sys::path::has_extension(FileName) ||
2806              types::lookupTypeForExtension(
2807                  llvm::sys::path::extension(FileName).drop_front()) !=
2808                  types::TY_Object))
2809           return ABRT_Inactive;
2810         for (unsigned I = 0; I < ToolChains.size(); ++I) {
2811           OpenMPDeviceActions.push_back(UA);
2812           UA->registerDependentActionInfo(
2813               ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2814         }
2815         return ABRT_Success;
2816       }
2817 
2818       // When generating code for OpenMP we use the host compile phase result as
2819       // a dependence to the device compile phase so that it can learn what
2820       // declarations should be emitted. However, this is not the only use for
2821       // the host action, so we prevent it from being collapsed.
2822       if (isa<CompileJobAction>(HostAction)) {
2823         HostAction->setCannotBeCollapsedWithNextDependentAction();
2824         assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2825                "Toolchains and device action sizes do not match.");
2826         OffloadAction::HostDependence HDep(
2827             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2828             /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2829         auto TC = ToolChains.begin();
2830         for (Action *&A : OpenMPDeviceActions) {
2831           assert(isa<CompileJobAction>(A));
2832           OffloadAction::DeviceDependences DDep;
2833           DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2834           A = C.MakeAction<OffloadAction>(HDep, DDep);
2835           ++TC;
2836         }
2837       }
2838       return ABRT_Success;
2839     }
2840 
2841     void appendTopLevelActions(ActionList &AL) override {
2842       if (OpenMPDeviceActions.empty())
2843         return;
2844 
2845       // We should always have an action for each input.
2846       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2847              "Number of OpenMP actions and toolchains do not match.");
2848 
2849       // Append all device actions followed by the proper offload action.
2850       auto TI = ToolChains.begin();
2851       for (auto *A : OpenMPDeviceActions) {
2852         OffloadAction::DeviceDependences Dep;
2853         Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2854         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2855         ++TI;
2856       }
2857       // We no longer need the action stored in this builder.
2858       OpenMPDeviceActions.clear();
2859     }
2860 
2861     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2862       assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2863              "Toolchains and linker inputs sizes do not match.");
2864 
2865       // Append a new link action for each device.
2866       auto TC = ToolChains.begin();
2867       for (auto &LI : DeviceLinkerInputs) {
2868         auto *DeviceLinkAction =
2869             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2870         DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2871                Action::OFK_OpenMP);
2872         ++TC;
2873       }
2874     }
2875 
2876     bool initialize() override {
2877       // Get the OpenMP toolchains. If we don't get any, the action builder will
2878       // know there is nothing to do related to OpenMP offloading.
2879       auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2880       for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2881            ++TI)
2882         ToolChains.push_back(TI->second);
2883 
2884       DeviceLinkerInputs.resize(ToolChains.size());
2885       return false;
2886     }
2887 
2888     bool canUseBundlerUnbundler() const override {
2889       // OpenMP should use bundled files whenever possible.
2890       return true;
2891     }
2892   };
2893 
2894   ///
2895   /// TODO: Add the implementation for other specialized builders here.
2896   ///
2897 
2898   /// Specialized builders being used by this offloading action builder.
2899   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2900 
2901   /// Flag set to true if all valid builders allow file bundling/unbundling.
2902   bool CanUseBundler;
2903 
2904 public:
2905   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2906                           const Driver::InputList &Inputs)
2907       : C(C) {
2908     // Create a specialized builder for each device toolchain.
2909 
2910     IsValid = true;
2911 
2912     // Create a specialized builder for CUDA.
2913     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2914 
2915     // Create a specialized builder for HIP.
2916     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2917 
2918     // Create a specialized builder for OpenMP.
2919     SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2920 
2921     //
2922     // TODO: Build other specialized builders here.
2923     //
2924 
2925     // Initialize all the builders, keeping track of errors. If all valid
2926     // builders agree that we can use bundling, set the flag to true.
2927     unsigned ValidBuilders = 0u;
2928     unsigned ValidBuildersSupportingBundling = 0u;
2929     for (auto *SB : SpecializedBuilders) {
2930       IsValid = IsValid && !SB->initialize();
2931 
2932       // Update the counters if the builder is valid.
2933       if (SB->isValid()) {
2934         ++ValidBuilders;
2935         if (SB->canUseBundlerUnbundler())
2936           ++ValidBuildersSupportingBundling;
2937       }
2938     }
2939     CanUseBundler =
2940         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2941   }
2942 
2943   ~OffloadingActionBuilder() {
2944     for (auto *SB : SpecializedBuilders)
2945       delete SB;
2946   }
2947 
2948   /// Generate an action that adds device dependences (if any) to a host action.
2949   /// If no device dependence actions exist, just return the host action \a
2950   /// HostAction. If an error is found or if no builder requires the host action
2951   /// to be generated, return nullptr.
2952   Action *
2953   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2954                                    phases::ID CurPhase, phases::ID FinalPhase,
2955                                    DeviceActionBuilder::PhasesTy &Phases) {
2956     if (!IsValid)
2957       return nullptr;
2958 
2959     if (SpecializedBuilders.empty())
2960       return HostAction;
2961 
2962     assert(HostAction && "Invalid host action!");
2963 
2964     OffloadAction::DeviceDependences DDeps;
2965     // Check if all the programming models agree we should not emit the host
2966     // action. Also, keep track of the offloading kinds employed.
2967     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2968     unsigned InactiveBuilders = 0u;
2969     unsigned IgnoringBuilders = 0u;
2970     for (auto *SB : SpecializedBuilders) {
2971       if (!SB->isValid()) {
2972         ++InactiveBuilders;
2973         continue;
2974       }
2975 
2976       auto RetCode =
2977           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2978 
2979       // If the builder explicitly says the host action should be ignored,
2980       // we need to increment the variable that tracks the builders that request
2981       // the host object to be ignored.
2982       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2983         ++IgnoringBuilders;
2984 
2985       // Unless the builder was inactive for this action, we have to record the
2986       // offload kind because the host will have to use it.
2987       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2988         OffloadKind |= SB->getAssociatedOffloadKind();
2989     }
2990 
2991     // If all builders agree that the host object should be ignored, just return
2992     // nullptr.
2993     if (IgnoringBuilders &&
2994         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
2995       return nullptr;
2996 
2997     if (DDeps.getActions().empty())
2998       return HostAction;
2999 
3000     // We have dependences we need to bundle together. We use an offload action
3001     // for that.
3002     OffloadAction::HostDependence HDep(
3003         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3004         /*BoundArch=*/nullptr, DDeps);
3005     return C.MakeAction<OffloadAction>(HDep, DDeps);
3006   }
3007 
3008   /// Generate an action that adds a host dependence to a device action. The
3009   /// results will be kept in this action builder. Return true if an error was
3010   /// found.
3011   bool addHostDependenceToDeviceActions(Action *&HostAction,
3012                                         const Arg *InputArg) {
3013     if (!IsValid)
3014       return true;
3015 
3016     // If we are supporting bundling/unbundling and the current action is an
3017     // input action of non-source file, we replace the host action by the
3018     // unbundling action. The bundler tool has the logic to detect if an input
3019     // is a bundle or not and if the input is not a bundle it assumes it is a
3020     // host file. Therefore it is safe to create an unbundling action even if
3021     // the input is not a bundle.
3022     if (CanUseBundler && isa<InputAction>(HostAction) &&
3023         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3024         !types::isSrcFile(HostAction->getType())) {
3025       auto UnbundlingHostAction =
3026           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3027       UnbundlingHostAction->registerDependentActionInfo(
3028           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3029           /*BoundArch=*/StringRef(), Action::OFK_Host);
3030       HostAction = UnbundlingHostAction;
3031     }
3032 
3033     assert(HostAction && "Invalid host action!");
3034 
3035     // Register the offload kinds that are used.
3036     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3037     for (auto *SB : SpecializedBuilders) {
3038       if (!SB->isValid())
3039         continue;
3040 
3041       auto RetCode = SB->addDeviceDepences(HostAction);
3042 
3043       // Host dependences for device actions are not compatible with that same
3044       // action being ignored.
3045       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3046              "Host dependence not expected to be ignored.!");
3047 
3048       // Unless the builder was inactive for this action, we have to record the
3049       // offload kind because the host will have to use it.
3050       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3051         OffloadKind |= SB->getAssociatedOffloadKind();
3052     }
3053 
3054     // Do not use unbundler if the Host does not depend on device action.
3055     if (OffloadKind == Action::OFK_None && CanUseBundler)
3056       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3057         HostAction = UA->getInputs().back();
3058 
3059     return false;
3060   }
3061 
3062   /// Add the offloading top level actions to the provided action list. This
3063   /// function can replace the host action by a bundling action if the
3064   /// programming models allow it.
3065   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3066                              const Arg *InputArg) {
3067     // Get the device actions to be appended.
3068     ActionList OffloadAL;
3069     for (auto *SB : SpecializedBuilders) {
3070       if (!SB->isValid())
3071         continue;
3072       SB->appendTopLevelActions(OffloadAL);
3073     }
3074 
3075     // If we can use the bundler, replace the host action by the bundling one in
3076     // the resulting list. Otherwise, just append the device actions. For
3077     // device only compilation, HostAction is a null pointer, therefore only do
3078     // this when HostAction is not a null pointer.
3079     if (CanUseBundler && HostAction && !OffloadAL.empty()) {
3080       // Add the host action to the list in order to create the bundling action.
3081       OffloadAL.push_back(HostAction);
3082 
3083       // We expect that the host action was just appended to the action list
3084       // before this method was called.
3085       assert(HostAction == AL.back() && "Host action not in the list??");
3086       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3087       AL.back() = HostAction;
3088     } else
3089       AL.append(OffloadAL.begin(), OffloadAL.end());
3090 
3091     // Propagate to the current host action (if any) the offload information
3092     // associated with the current input.
3093     if (HostAction)
3094       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3095                                            /*BoundArch=*/nullptr);
3096     return false;
3097   }
3098 
3099   /// Processes the host linker action. This currently consists of replacing it
3100   /// with an offload action if there are device link objects and propagate to
3101   /// the host action all the offload kinds used in the current compilation. The
3102   /// resulting action is returned.
3103   Action *processHostLinkAction(Action *HostAction) {
3104     // Add all the dependences from the device linking actions.
3105     OffloadAction::DeviceDependences DDeps;
3106     for (auto *SB : SpecializedBuilders) {
3107       if (!SB->isValid())
3108         continue;
3109 
3110       SB->appendLinkDependences(DDeps);
3111     }
3112 
3113     // Calculate all the offload kinds used in the current compilation.
3114     unsigned ActiveOffloadKinds = 0u;
3115     for (auto &I : InputArgToOffloadKindMap)
3116       ActiveOffloadKinds |= I.second;
3117 
3118     // If we don't have device dependencies, we don't have to create an offload
3119     // action.
3120     if (DDeps.getActions().empty()) {
3121       // Propagate all the active kinds to host action. Given that it is a link
3122       // action it is assumed to depend on all actions generated so far.
3123       HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3124                                            /*BoundArch=*/nullptr);
3125       return HostAction;
3126     }
3127 
3128     // Create the offload action with all dependences. When an offload action
3129     // is created the kinds are propagated to the host action, so we don't have
3130     // to do that explicitly here.
3131     OffloadAction::HostDependence HDep(
3132         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3133         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3134     return C.MakeAction<OffloadAction>(HDep, DDeps);
3135   }
3136 };
3137 } // anonymous namespace.
3138 
3139 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3140                           const InputList &Inputs, ActionList &Actions) const {
3141   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3142 
3143   if (!SuppressMissingInputWarning && Inputs.empty()) {
3144     Diag(clang::diag::err_drv_no_input_files);
3145     return;
3146   }
3147 
3148   Arg *FinalPhaseArg;
3149   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3150 
3151   if (FinalPhase == phases::Link) {
3152     if (Args.hasArg(options::OPT_emit_llvm))
3153       Diag(clang::diag::err_drv_emit_llvm_link);
3154     if (IsCLMode() && LTOMode != LTOK_None &&
3155         !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3156       Diag(clang::diag::err_drv_lto_without_lld);
3157   }
3158 
3159   // Reject -Z* at the top level, these options should never have been exposed
3160   // by gcc.
3161   if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3162     Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3163 
3164   // Diagnose misuse of /Fo.
3165   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3166     StringRef V = A->getValue();
3167     if (Inputs.size() > 1 && !V.empty() &&
3168         !llvm::sys::path::is_separator(V.back())) {
3169       // Check whether /Fo tries to name an output file for multiple inputs.
3170       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3171           << A->getSpelling() << V;
3172       Args.eraseArg(options::OPT__SLASH_Fo);
3173     }
3174   }
3175 
3176   // Diagnose misuse of /Fa.
3177   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3178     StringRef V = A->getValue();
3179     if (Inputs.size() > 1 && !V.empty() &&
3180         !llvm::sys::path::is_separator(V.back())) {
3181       // Check whether /Fa tries to name an asm file for multiple inputs.
3182       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3183           << A->getSpelling() << V;
3184       Args.eraseArg(options::OPT__SLASH_Fa);
3185     }
3186   }
3187 
3188   // Diagnose misuse of /o.
3189   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3190     if (A->getValue()[0] == '\0') {
3191       // It has to have a value.
3192       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3193       Args.eraseArg(options::OPT__SLASH_o);
3194     }
3195   }
3196 
3197   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3198   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3199   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3200   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3201     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3202     Args.eraseArg(options::OPT__SLASH_Yc);
3203     Args.eraseArg(options::OPT__SLASH_Yu);
3204     YcArg = YuArg = nullptr;
3205   }
3206   if (YcArg && Inputs.size() > 1) {
3207     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3208     Args.eraseArg(options::OPT__SLASH_Yc);
3209     YcArg = nullptr;
3210   }
3211   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3212     // If only preprocessing or /Y- is used, all pch handling is disabled.
3213     // Rather than check for it everywhere, just remove clang-cl pch-related
3214     // flags here.
3215     Args.eraseArg(options::OPT__SLASH_Fp);
3216     Args.eraseArg(options::OPT__SLASH_Yc);
3217     Args.eraseArg(options::OPT__SLASH_Yu);
3218     YcArg = YuArg = nullptr;
3219   }
3220 
3221   // Builder to be used to build offloading actions.
3222   OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3223 
3224   // Construct the actions to perform.
3225   HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3226   ActionList LinkerInputs;
3227 
3228   llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
3229   for (auto &I : Inputs) {
3230     types::ID InputType = I.first;
3231     const Arg *InputArg = I.second;
3232 
3233     PL.clear();
3234     types::getCompilationPhases(InputType, PL);
3235 
3236     // If the first step comes after the final phase we are doing as part of
3237     // this compilation, warn the user about it.
3238     phases::ID InitialPhase = PL[0];
3239     if (InitialPhase > FinalPhase) {
3240       if (InputArg->isClaimed())
3241         continue;
3242 
3243       // Claim here to avoid the more general unused warning.
3244       InputArg->claim();
3245 
3246       // Suppress all unused style warnings with -Qunused-arguments
3247       if (Args.hasArg(options::OPT_Qunused_arguments))
3248         continue;
3249 
3250       // Special case when final phase determined by binary name, rather than
3251       // by a command-line argument with a corresponding Arg.
3252       if (CCCIsCPP())
3253         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3254             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3255       // Special case '-E' warning on a previously preprocessed file to make
3256       // more sense.
3257       else if (InitialPhase == phases::Compile &&
3258                FinalPhase == phases::Preprocess &&
3259                getPreprocessedType(InputType) == types::TY_INVALID)
3260         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3261             << InputArg->getAsString(Args) << !!FinalPhaseArg
3262             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3263       else
3264         Diag(clang::diag::warn_drv_input_file_unused)
3265             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3266             << !!FinalPhaseArg
3267             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3268       continue;
3269     }
3270 
3271     if (YcArg) {
3272       // Add a separate precompile phase for the compile phase.
3273       if (FinalPhase >= phases::Compile) {
3274         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3275         llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL;
3276         types::getCompilationPhases(HeaderType, PCHPL);
3277         // Build the pipeline for the pch file.
3278         Action *ClangClPch =
3279             C.MakeAction<InputAction>(*InputArg, HeaderType);
3280         for (phases::ID Phase : PCHPL)
3281           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3282         assert(ClangClPch);
3283         Actions.push_back(ClangClPch);
3284         // The driver currently exits after the first failed command.  This
3285         // relies on that behavior, to make sure if the pch generation fails,
3286         // the main compilation won't run.
3287         // FIXME: If the main compilation fails, the PCH generation should
3288         // probably not be considered successful either.
3289       }
3290     }
3291 
3292     // Build the pipeline for this file.
3293     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3294 
3295     // Use the current host action in any of the offloading actions, if
3296     // required.
3297     if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3298       break;
3299 
3300     for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3301          i != e; ++i) {
3302       phases::ID Phase = *i;
3303 
3304       // We are done if this step is past what the user requested.
3305       if (Phase > FinalPhase)
3306         break;
3307 
3308       // Add any offload action the host action depends on.
3309       Current = OffloadBuilder.addDeviceDependencesToHostAction(
3310           Current, InputArg, Phase, FinalPhase, PL);
3311       if (!Current)
3312         break;
3313 
3314       // Queue linker inputs.
3315       if (Phase == phases::Link) {
3316         assert((i + 1) == e && "linking must be final compilation step.");
3317         LinkerInputs.push_back(Current);
3318         Current = nullptr;
3319         break;
3320       }
3321 
3322       // Each precompiled header file after a module file action is a module
3323       // header of that same module file, rather than being compiled to a
3324       // separate PCH.
3325       if (Phase == phases::Precompile && HeaderModuleAction &&
3326           getPrecompiledType(InputType) == types::TY_PCH) {
3327         HeaderModuleAction->addModuleHeaderInput(Current);
3328         Current = nullptr;
3329         break;
3330       }
3331 
3332       // FIXME: Should we include any prior module file outputs as inputs of
3333       // later actions in the same command line?
3334 
3335       // Otherwise construct the appropriate action.
3336       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3337 
3338       // We didn't create a new action, so we will just move to the next phase.
3339       if (NewCurrent == Current)
3340         continue;
3341 
3342       if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3343         HeaderModuleAction = HMA;
3344 
3345       Current = NewCurrent;
3346 
3347       // Use the current host action in any of the offloading actions, if
3348       // required.
3349       if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3350         break;
3351 
3352       if (Current->getType() == types::TY_Nothing)
3353         break;
3354     }
3355 
3356     // If we ended with something, add to the output list.
3357     if (Current)
3358       Actions.push_back(Current);
3359 
3360     // Add any top level actions generated for offloading.
3361     OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3362   }
3363 
3364   // Add a link action if necessary.
3365   if (!LinkerInputs.empty()) {
3366     Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3367     LA = OffloadBuilder.processHostLinkAction(LA);
3368     Actions.push_back(LA);
3369   }
3370 
3371   // If we are linking, claim any options which are obviously only used for
3372   // compilation.
3373   if (FinalPhase == phases::Link && PL.size() == 1) {
3374     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3375     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3376   }
3377 
3378   // Claim ignored clang-cl options.
3379   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3380 
3381   // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3382   // to non-CUDA compilations and should not trigger warnings there.
3383   Args.ClaimAllArgs(options::OPT_cuda_host_only);
3384   Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3385 }
3386 
3387 Action *Driver::ConstructPhaseAction(
3388     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3389     Action::OffloadKind TargetDeviceOffloadKind) const {
3390   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3391 
3392   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3393   // encode this in the steps because the intermediate type depends on
3394   // arguments. Just special case here.
3395   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3396     return Input;
3397 
3398   // Build the appropriate action.
3399   switch (Phase) {
3400   case phases::Link:
3401     llvm_unreachable("link action invalid here.");
3402   case phases::Preprocess: {
3403     types::ID OutputTy;
3404     // -{M, MM} alter the output type.
3405     if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3406       OutputTy = types::TY_Dependencies;
3407     } else {
3408       OutputTy = Input->getType();
3409       if (!Args.hasFlag(options::OPT_frewrite_includes,
3410                         options::OPT_fno_rewrite_includes, false) &&
3411           !Args.hasFlag(options::OPT_frewrite_imports,
3412                         options::OPT_fno_rewrite_imports, false) &&
3413           !CCGenDiagnostics)
3414         OutputTy = types::getPreprocessedType(OutputTy);
3415       assert(OutputTy != types::TY_INVALID &&
3416              "Cannot preprocess this input type!");
3417     }
3418     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3419   }
3420   case phases::Precompile: {
3421     types::ID OutputTy = getPrecompiledType(Input->getType());
3422     assert(OutputTy != types::TY_INVALID &&
3423            "Cannot precompile this input type!");
3424 
3425     // If we're given a module name, precompile header file inputs as a
3426     // module, not as a precompiled header.
3427     const char *ModName = nullptr;
3428     if (OutputTy == types::TY_PCH) {
3429       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3430         ModName = A->getValue();
3431       if (ModName)
3432         OutputTy = types::TY_ModuleFile;
3433     }
3434 
3435     if (Args.hasArg(options::OPT_fsyntax_only)) {
3436       // Syntax checks should not emit a PCH file
3437       OutputTy = types::TY_Nothing;
3438     }
3439 
3440     if (ModName)
3441       return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3442                                                            ModName);
3443     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3444   }
3445   case phases::Compile: {
3446     if (Args.hasArg(options::OPT_fsyntax_only))
3447       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3448     if (Args.hasArg(options::OPT_rewrite_objc))
3449       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3450     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3451       return C.MakeAction<CompileJobAction>(Input,
3452                                             types::TY_RewrittenLegacyObjC);
3453     if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3454       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3455     if (Args.hasArg(options::OPT__migrate))
3456       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3457     if (Args.hasArg(options::OPT_emit_ast))
3458       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3459     if (Args.hasArg(options::OPT_module_file_info))
3460       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3461     if (Args.hasArg(options::OPT_verify_pch))
3462       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3463     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3464   }
3465   case phases::Backend: {
3466     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3467       types::ID Output =
3468           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3469       return C.MakeAction<BackendJobAction>(Input, Output);
3470     }
3471     if (Args.hasArg(options::OPT_emit_llvm)) {
3472       types::ID Output =
3473           Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3474       return C.MakeAction<BackendJobAction>(Input, Output);
3475     }
3476     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3477   }
3478   case phases::Assemble:
3479     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3480   }
3481 
3482   llvm_unreachable("invalid phase in ConstructPhaseAction");
3483 }
3484 
3485 void Driver::BuildJobs(Compilation &C) const {
3486   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3487 
3488   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3489 
3490   // It is an error to provide a -o option if we are making multiple output
3491   // files.
3492   if (FinalOutput) {
3493     unsigned NumOutputs = 0;
3494     for (const Action *A : C.getActions())
3495       if (A->getType() != types::TY_Nothing)
3496         ++NumOutputs;
3497 
3498     if (NumOutputs > 1) {
3499       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3500       FinalOutput = nullptr;
3501     }
3502   }
3503 
3504   // Collect the list of architectures.
3505   llvm::StringSet<> ArchNames;
3506   if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3507     for (const Arg *A : C.getArgs())
3508       if (A->getOption().matches(options::OPT_arch))
3509         ArchNames.insert(A->getValue());
3510 
3511   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3512   std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3513   for (Action *A : C.getActions()) {
3514     // If we are linking an image for multiple archs then the linker wants
3515     // -arch_multiple and -final_output <final image name>. Unfortunately, this
3516     // doesn't fit in cleanly because we have to pass this information down.
3517     //
3518     // FIXME: This is a hack; find a cleaner way to integrate this into the
3519     // process.
3520     const char *LinkingOutput = nullptr;
3521     if (isa<LipoJobAction>(A)) {
3522       if (FinalOutput)
3523         LinkingOutput = FinalOutput->getValue();
3524       else
3525         LinkingOutput = getDefaultImageName();
3526     }
3527 
3528     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
3529                        /*BoundArch*/ StringRef(),
3530                        /*AtTopLevel*/ true,
3531                        /*MultipleArchs*/ ArchNames.size() > 1,
3532                        /*LinkingOutput*/ LinkingOutput, CachedResults,
3533                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
3534   }
3535 
3536   // If the user passed -Qunused-arguments or there were errors, don't warn
3537   // about any unused arguments.
3538   if (Diags.hasErrorOccurred() ||
3539       C.getArgs().hasArg(options::OPT_Qunused_arguments))
3540     return;
3541 
3542   // Claim -### here.
3543   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3544 
3545   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3546   (void)C.getArgs().hasArg(options::OPT_driver_mode);
3547   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3548 
3549   for (Arg *A : C.getArgs()) {
3550     // FIXME: It would be nice to be able to send the argument to the
3551     // DiagnosticsEngine, so that extra values, position, and so on could be
3552     // printed.
3553     if (!A->isClaimed()) {
3554       if (A->getOption().hasFlag(options::NoArgumentUnused))
3555         continue;
3556 
3557       // Suppress the warning automatically if this is just a flag, and it is an
3558       // instance of an argument we already claimed.
3559       const Option &Opt = A->getOption();
3560       if (Opt.getKind() == Option::FlagClass) {
3561         bool DuplicateClaimed = false;
3562 
3563         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3564           if (AA->isClaimed()) {
3565             DuplicateClaimed = true;
3566             break;
3567           }
3568         }
3569 
3570         if (DuplicateClaimed)
3571           continue;
3572       }
3573 
3574       // In clang-cl, don't mention unknown arguments here since they have
3575       // already been warned about.
3576       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3577         Diag(clang::diag::warn_drv_unused_argument)
3578             << A->getAsString(C.getArgs());
3579     }
3580   }
3581 }
3582 
3583 namespace {
3584 /// Utility class to control the collapse of dependent actions and select the
3585 /// tools accordingly.
3586 class ToolSelector final {
3587   /// The tool chain this selector refers to.
3588   const ToolChain &TC;
3589 
3590   /// The compilation this selector refers to.
3591   const Compilation &C;
3592 
3593   /// The base action this selector refers to.
3594   const JobAction *BaseAction;
3595 
3596   /// Set to true if the current toolchain refers to host actions.
3597   bool IsHostSelector;
3598 
3599   /// Set to true if save-temps and embed-bitcode functionalities are active.
3600   bool SaveTemps;
3601   bool EmbedBitcode;
3602 
3603   /// Get previous dependent action or null if that does not exist. If
3604   /// \a CanBeCollapsed is false, that action must be legal to collapse or
3605   /// null will be returned.
3606   const JobAction *getPrevDependentAction(const ActionList &Inputs,
3607                                           ActionList &SavedOffloadAction,
3608                                           bool CanBeCollapsed = true) {
3609     // An option can be collapsed only if it has a single input.
3610     if (Inputs.size() != 1)
3611       return nullptr;
3612 
3613     Action *CurAction = *Inputs.begin();
3614     if (CanBeCollapsed &&
3615         !CurAction->isCollapsingWithNextDependentActionLegal())
3616       return nullptr;
3617 
3618     // If the input action is an offload action. Look through it and save any
3619     // offload action that can be dropped in the event of a collapse.
3620     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3621       // If the dependent action is a device action, we will attempt to collapse
3622       // only with other device actions. Otherwise, we would do the same but
3623       // with host actions only.
3624       if (!IsHostSelector) {
3625         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3626           CurAction =
3627               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3628           if (CanBeCollapsed &&
3629               !CurAction->isCollapsingWithNextDependentActionLegal())
3630             return nullptr;
3631           SavedOffloadAction.push_back(OA);
3632           return dyn_cast<JobAction>(CurAction);
3633         }
3634       } else if (OA->hasHostDependence()) {
3635         CurAction = OA->getHostDependence();
3636         if (CanBeCollapsed &&
3637             !CurAction->isCollapsingWithNextDependentActionLegal())
3638           return nullptr;
3639         SavedOffloadAction.push_back(OA);
3640         return dyn_cast<JobAction>(CurAction);
3641       }
3642       return nullptr;
3643     }
3644 
3645     return dyn_cast<JobAction>(CurAction);
3646   }
3647 
3648   /// Return true if an assemble action can be collapsed.
3649   bool canCollapseAssembleAction() const {
3650     return TC.useIntegratedAs() && !SaveTemps &&
3651            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3652            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3653            !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3654   }
3655 
3656   /// Return true if a preprocessor action can be collapsed.
3657   bool canCollapsePreprocessorAction() const {
3658     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3659            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3660            !C.getArgs().hasArg(options::OPT_rewrite_objc);
3661   }
3662 
3663   /// Struct that relates an action with the offload actions that would be
3664   /// collapsed with it.
3665   struct JobActionInfo final {
3666     /// The action this info refers to.
3667     const JobAction *JA = nullptr;
3668     /// The offload actions we need to take care off if this action is
3669     /// collapsed.
3670     ActionList SavedOffloadAction;
3671   };
3672 
3673   /// Append collapsed offload actions from the give nnumber of elements in the
3674   /// action info array.
3675   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3676                                            ArrayRef<JobActionInfo> &ActionInfo,
3677                                            unsigned ElementNum) {
3678     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3679     for (unsigned I = 0; I < ElementNum; ++I)
3680       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3681                                     ActionInfo[I].SavedOffloadAction.end());
3682   }
3683 
3684   /// Functions that attempt to perform the combining. They detect if that is
3685   /// legal, and if so they update the inputs \a Inputs and the offload action
3686   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3687   /// the combined action is returned. If the combining is not legal or if the
3688   /// tool does not exist, null is returned.
3689   /// Currently three kinds of collapsing are supported:
3690   ///  - Assemble + Backend + Compile;
3691   ///  - Assemble + Backend ;
3692   ///  - Backend + Compile.
3693   const Tool *
3694   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3695                                 ActionList &Inputs,
3696                                 ActionList &CollapsedOffloadAction) {
3697     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3698       return nullptr;
3699     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3700     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3701     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3702     if (!AJ || !BJ || !CJ)
3703       return nullptr;
3704 
3705     // Get compiler tool.
3706     const Tool *T = TC.SelectTool(*CJ);
3707     if (!T)
3708       return nullptr;
3709 
3710     // When using -fembed-bitcode, it is required to have the same tool (clang)
3711     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3712     if (EmbedBitcode) {
3713       const Tool *BT = TC.SelectTool(*BJ);
3714       if (BT == T)
3715         return nullptr;
3716     }
3717 
3718     if (!T->hasIntegratedAssembler())
3719       return nullptr;
3720 
3721     Inputs = CJ->getInputs();
3722     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3723                                  /*NumElements=*/3);
3724     return T;
3725   }
3726   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3727                                      ActionList &Inputs,
3728                                      ActionList &CollapsedOffloadAction) {
3729     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3730       return nullptr;
3731     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3732     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3733     if (!AJ || !BJ)
3734       return nullptr;
3735 
3736     // Retrieve the compile job, backend action must always be preceded by one.
3737     ActionList CompileJobOffloadActions;
3738     auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3739                                       /*CanBeCollapsed=*/false);
3740     if (!AJ || !BJ || !CJ)
3741       return nullptr;
3742 
3743     assert(isa<CompileJobAction>(CJ) &&
3744            "Expecting compile job preceding backend job.");
3745 
3746     // Get compiler tool.
3747     const Tool *T = TC.SelectTool(*CJ);
3748     if (!T)
3749       return nullptr;
3750 
3751     if (!T->hasIntegratedAssembler())
3752       return nullptr;
3753 
3754     Inputs = BJ->getInputs();
3755     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3756                                  /*NumElements=*/2);
3757     return T;
3758   }
3759   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3760                                     ActionList &Inputs,
3761                                     ActionList &CollapsedOffloadAction) {
3762     if (ActionInfo.size() < 2)
3763       return nullptr;
3764     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3765     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3766     if (!BJ || !CJ)
3767       return nullptr;
3768 
3769     // Check if the initial input (to the compile job or its predessor if one
3770     // exists) is LLVM bitcode. In that case, no preprocessor step is required
3771     // and we can still collapse the compile and backend jobs when we have
3772     // -save-temps. I.e. there is no need for a separate compile job just to
3773     // emit unoptimized bitcode.
3774     bool InputIsBitcode = true;
3775     for (size_t i = 1; i < ActionInfo.size(); i++)
3776       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3777           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3778         InputIsBitcode = false;
3779         break;
3780       }
3781     if (!InputIsBitcode && !canCollapsePreprocessorAction())
3782       return nullptr;
3783 
3784     // Get compiler tool.
3785     const Tool *T = TC.SelectTool(*CJ);
3786     if (!T)
3787       return nullptr;
3788 
3789     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3790       return nullptr;
3791 
3792     Inputs = CJ->getInputs();
3793     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3794                                  /*NumElements=*/2);
3795     return T;
3796   }
3797 
3798   /// Updates the inputs if the obtained tool supports combining with
3799   /// preprocessor action, and the current input is indeed a preprocessor
3800   /// action. If combining results in the collapse of offloading actions, those
3801   /// are appended to \a CollapsedOffloadAction.
3802   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3803                                ActionList &CollapsedOffloadAction) {
3804     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3805       return;
3806 
3807     // Attempt to get a preprocessor action dependence.
3808     ActionList PreprocessJobOffloadActions;
3809     ActionList NewInputs;
3810     for (Action *A : Inputs) {
3811       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3812       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3813         NewInputs.push_back(A);
3814         continue;
3815       }
3816 
3817       // This is legal to combine. Append any offload action we found and add the
3818       // current input to preprocessor inputs.
3819       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3820                                     PreprocessJobOffloadActions.end());
3821       NewInputs.append(PJ->input_begin(), PJ->input_end());
3822     }
3823     Inputs = NewInputs;
3824   }
3825 
3826 public:
3827   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3828                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3829       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3830         EmbedBitcode(EmbedBitcode) {
3831     assert(BaseAction && "Invalid base action.");
3832     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3833   }
3834 
3835   /// Check if a chain of actions can be combined and return the tool that can
3836   /// handle the combination of actions. The pointer to the current inputs \a
3837   /// Inputs and the list of offload actions \a CollapsedOffloadActions
3838   /// connected to collapsed actions are updated accordingly. The latter enables
3839   /// the caller of the selector to process them afterwards instead of just
3840   /// dropping them. If no suitable tool is found, null will be returned.
3841   const Tool *getTool(ActionList &Inputs,
3842                       ActionList &CollapsedOffloadAction) {
3843     //
3844     // Get the largest chain of actions that we could combine.
3845     //
3846 
3847     SmallVector<JobActionInfo, 5> ActionChain(1);
3848     ActionChain.back().JA = BaseAction;
3849     while (ActionChain.back().JA) {
3850       const Action *CurAction = ActionChain.back().JA;
3851 
3852       // Grow the chain by one element.
3853       ActionChain.resize(ActionChain.size() + 1);
3854       JobActionInfo &AI = ActionChain.back();
3855 
3856       // Attempt to fill it with the
3857       AI.JA =
3858           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3859     }
3860 
3861     // Pop the last action info as it could not be filled.
3862     ActionChain.pop_back();
3863 
3864     //
3865     // Attempt to combine actions. If all combining attempts failed, just return
3866     // the tool of the provided action. At the end we attempt to combine the
3867     // action with any preprocessor action it may depend on.
3868     //
3869 
3870     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3871                                                   CollapsedOffloadAction);
3872     if (!T)
3873       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3874     if (!T)
3875       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3876     if (!T) {
3877       Inputs = BaseAction->getInputs();
3878       T = TC.SelectTool(*BaseAction);
3879     }
3880 
3881     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3882     return T;
3883   }
3884 };
3885 }
3886 
3887 /// Return a string that uniquely identifies the result of a job. The bound arch
3888 /// is not necessarily represented in the toolchain's triple -- for example,
3889 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3890 /// Also, we need to add the offloading device kind, as the same tool chain can
3891 /// be used for host and device for some programming models, e.g. OpenMP.
3892 static std::string GetTriplePlusArchString(const ToolChain *TC,
3893                                            StringRef BoundArch,
3894                                            Action::OffloadKind OffloadKind) {
3895   std::string TriplePlusArch = TC->getTriple().normalize();
3896   if (!BoundArch.empty()) {
3897     TriplePlusArch += "-";
3898     TriplePlusArch += BoundArch;
3899   }
3900   TriplePlusArch += "-";
3901   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3902   return TriplePlusArch;
3903 }
3904 
3905 InputInfo Driver::BuildJobsForAction(
3906     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3907     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3908     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3909     Action::OffloadKind TargetDeviceOffloadKind) const {
3910   std::pair<const Action *, std::string> ActionTC = {
3911       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3912   auto CachedResult = CachedResults.find(ActionTC);
3913   if (CachedResult != CachedResults.end()) {
3914     return CachedResult->second;
3915   }
3916   InputInfo Result = BuildJobsForActionNoCache(
3917       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3918       CachedResults, TargetDeviceOffloadKind);
3919   CachedResults[ActionTC] = Result;
3920   return Result;
3921 }
3922 
3923 InputInfo Driver::BuildJobsForActionNoCache(
3924     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3925     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3926     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3927     Action::OffloadKind TargetDeviceOffloadKind) const {
3928   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3929 
3930   InputInfoList OffloadDependencesInputInfo;
3931   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3932   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3933     // The 'Darwin' toolchain is initialized only when its arguments are
3934     // computed. Get the default arguments for OFK_None to ensure that
3935     // initialization is performed before processing the offload action.
3936     // FIXME: Remove when darwin's toolchain is initialized during construction.
3937     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3938 
3939     // The offload action is expected to be used in four different situations.
3940     //
3941     // a) Set a toolchain/architecture/kind for a host action:
3942     //    Host Action 1 -> OffloadAction -> Host Action 2
3943     //
3944     // b) Set a toolchain/architecture/kind for a device action;
3945     //    Device Action 1 -> OffloadAction -> Device Action 2
3946     //
3947     // c) Specify a device dependence to a host action;
3948     //    Device Action 1  _
3949     //                      \
3950     //      Host Action 1  ---> OffloadAction -> Host Action 2
3951     //
3952     // d) Specify a host dependence to a device action.
3953     //      Host Action 1  _
3954     //                      \
3955     //    Device Action 1  ---> OffloadAction -> Device Action 2
3956     //
3957     // For a) and b), we just return the job generated for the dependence. For
3958     // c) and d) we override the current action with the host/device dependence
3959     // if the current toolchain is host/device and set the offload dependences
3960     // info with the jobs obtained from the device/host dependence(s).
3961 
3962     // If there is a single device option, just generate the job for it.
3963     if (OA->hasSingleDeviceDependence()) {
3964       InputInfo DevA;
3965       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3966                                        const char *DepBoundArch) {
3967         DevA =
3968             BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3969                                /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
3970                                CachedResults, DepA->getOffloadingDeviceKind());
3971       });
3972       return DevA;
3973     }
3974 
3975     // If 'Action 2' is host, we generate jobs for the device dependences and
3976     // override the current action with the host dependence. Otherwise, we
3977     // generate the host dependences and override the action with the device
3978     // dependence. The dependences can't therefore be a top-level action.
3979     OA->doOnEachDependence(
3980         /*IsHostDependence=*/BuildingForOffloadDevice,
3981         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3982           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3983               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
3984               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
3985               DepA->getOffloadingDeviceKind()));
3986         });
3987 
3988     A = BuildingForOffloadDevice
3989             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
3990             : OA->getHostDependence();
3991   }
3992 
3993   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
3994     // FIXME: It would be nice to not claim this here; maybe the old scheme of
3995     // just using Args was better?
3996     const Arg &Input = IA->getInputArg();
3997     Input.claim();
3998     if (Input.getOption().matches(options::OPT_INPUT)) {
3999       const char *Name = Input.getValue();
4000       return InputInfo(A, Name, /* BaseInput = */ Name);
4001     }
4002     return InputInfo(A, &Input, /* BaseInput = */ "");
4003   }
4004 
4005   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4006     const ToolChain *TC;
4007     StringRef ArchName = BAA->getArchName();
4008 
4009     if (!ArchName.empty())
4010       TC = &getToolChain(C.getArgs(),
4011                          computeTargetTriple(*this, TargetTriple,
4012                                              C.getArgs(), ArchName));
4013     else
4014       TC = &C.getDefaultToolChain();
4015 
4016     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4017                               MultipleArchs, LinkingOutput, CachedResults,
4018                               TargetDeviceOffloadKind);
4019   }
4020 
4021 
4022   ActionList Inputs = A->getInputs();
4023 
4024   const JobAction *JA = cast<JobAction>(A);
4025   ActionList CollapsedOffloadActions;
4026 
4027   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4028                   embedBitcodeInObject() && !isUsingLTO());
4029   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4030 
4031   if (!T)
4032     return InputInfo();
4033 
4034   // If we've collapsed action list that contained OffloadAction we
4035   // need to build jobs for host/device-side inputs it may have held.
4036   for (const auto *OA : CollapsedOffloadActions)
4037     cast<OffloadAction>(OA)->doOnEachDependence(
4038         /*IsHostDependence=*/BuildingForOffloadDevice,
4039         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4040           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4041               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4042               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4043               DepA->getOffloadingDeviceKind()));
4044         });
4045 
4046   // Only use pipes when there is exactly one input.
4047   InputInfoList InputInfos;
4048   for (const Action *Input : Inputs) {
4049     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4050     // shouldn't get temporary output names.
4051     // FIXME: Clean this up.
4052     bool SubJobAtTopLevel =
4053         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4054     InputInfos.push_back(BuildJobsForAction(
4055         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4056         CachedResults, A->getOffloadingDeviceKind()));
4057   }
4058 
4059   // Always use the first input as the base input.
4060   const char *BaseInput = InputInfos[0].getBaseInput();
4061 
4062   // ... except dsymutil actions, which use their actual input as the base
4063   // input.
4064   if (JA->getType() == types::TY_dSYM)
4065     BaseInput = InputInfos[0].getFilename();
4066 
4067   // ... and in header module compilations, which use the module name.
4068   if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4069     BaseInput = ModuleJA->getModuleName();
4070 
4071   // Append outputs of offload device jobs to the input list
4072   if (!OffloadDependencesInputInfo.empty())
4073     InputInfos.append(OffloadDependencesInputInfo.begin(),
4074                       OffloadDependencesInputInfo.end());
4075 
4076   // Set the effective triple of the toolchain for the duration of this job.
4077   llvm::Triple EffectiveTriple;
4078   const ToolChain &ToolTC = T->getToolChain();
4079   const ArgList &Args =
4080       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4081   if (InputInfos.size() != 1) {
4082     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4083   } else {
4084     // Pass along the input type if it can be unambiguously determined.
4085     EffectiveTriple = llvm::Triple(
4086         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4087   }
4088   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4089 
4090   // Determine the place to write output to, if any.
4091   InputInfo Result;
4092   InputInfoList UnbundlingResults;
4093   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4094     // If we have an unbundling job, we need to create results for all the
4095     // outputs. We also update the results cache so that other actions using
4096     // this unbundling action can get the right results.
4097     for (auto &UI : UA->getDependentActionsInfo()) {
4098       assert(UI.DependentOffloadKind != Action::OFK_None &&
4099              "Unbundling with no offloading??");
4100 
4101       // Unbundling actions are never at the top level. When we generate the
4102       // offloading prefix, we also do that for the host file because the
4103       // unbundling action does not change the type of the output which can
4104       // cause a overwrite.
4105       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4106           UI.DependentOffloadKind,
4107           UI.DependentToolChain->getTriple().normalize(),
4108           /*CreatePrefixForHost=*/true);
4109       auto CurI = InputInfo(
4110           UA,
4111           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4112                              /*AtTopLevel=*/false,
4113                              MultipleArchs ||
4114                                  UI.DependentOffloadKind == Action::OFK_HIP,
4115                              OffloadingPrefix),
4116           BaseInput);
4117       // Save the unbundling result.
4118       UnbundlingResults.push_back(CurI);
4119 
4120       // Get the unique string identifier for this dependence and cache the
4121       // result.
4122       StringRef Arch;
4123       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4124         if (UI.DependentOffloadKind == Action::OFK_Host)
4125           Arch = StringRef();
4126         else
4127           Arch = UI.DependentBoundArch;
4128       } else
4129         Arch = BoundArch;
4130 
4131       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4132                                                 UI.DependentOffloadKind)}] =
4133           CurI;
4134     }
4135 
4136     // Now that we have all the results generated, select the one that should be
4137     // returned for the current depending action.
4138     std::pair<const Action *, std::string> ActionTC = {
4139         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4140     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4141            "Result does not exist??");
4142     Result = CachedResults[ActionTC];
4143   } else if (JA->getType() == types::TY_Nothing)
4144     Result = InputInfo(A, BaseInput);
4145   else {
4146     // We only have to generate a prefix for the host if this is not a top-level
4147     // action.
4148     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4149         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4150         /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4151             !AtTopLevel);
4152     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4153                                              AtTopLevel, MultipleArchs,
4154                                              OffloadingPrefix),
4155                        BaseInput);
4156   }
4157 
4158   if (CCCPrintBindings && !CCGenDiagnostics) {
4159     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4160                  << " - \"" << T->getName() << "\", inputs: [";
4161     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4162       llvm::errs() << InputInfos[i].getAsString();
4163       if (i + 1 != e)
4164         llvm::errs() << ", ";
4165     }
4166     if (UnbundlingResults.empty())
4167       llvm::errs() << "], output: " << Result.getAsString() << "\n";
4168     else {
4169       llvm::errs() << "], outputs: [";
4170       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4171         llvm::errs() << UnbundlingResults[i].getAsString();
4172         if (i + 1 != e)
4173           llvm::errs() << ", ";
4174       }
4175       llvm::errs() << "] \n";
4176     }
4177   } else {
4178     if (UnbundlingResults.empty())
4179       T->ConstructJob(
4180           C, *JA, Result, InputInfos,
4181           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4182           LinkingOutput);
4183     else
4184       T->ConstructJobMultipleOutputs(
4185           C, *JA, UnbundlingResults, InputInfos,
4186           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4187           LinkingOutput);
4188   }
4189   return Result;
4190 }
4191 
4192 const char *Driver::getDefaultImageName() const {
4193   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4194   return Target.isOSWindows() ? "a.exe" : "a.out";
4195 }
4196 
4197 /// Create output filename based on ArgValue, which could either be a
4198 /// full filename, filename without extension, or a directory. If ArgValue
4199 /// does not provide a filename, then use BaseName, and use the extension
4200 /// suitable for FileType.
4201 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4202                                         StringRef BaseName,
4203                                         types::ID FileType) {
4204   SmallString<128> Filename = ArgValue;
4205 
4206   if (ArgValue.empty()) {
4207     // If the argument is empty, output to BaseName in the current dir.
4208     Filename = BaseName;
4209   } else if (llvm::sys::path::is_separator(Filename.back())) {
4210     // If the argument is a directory, output to BaseName in that dir.
4211     llvm::sys::path::append(Filename, BaseName);
4212   }
4213 
4214   if (!llvm::sys::path::has_extension(ArgValue)) {
4215     // If the argument didn't provide an extension, then set it.
4216     const char *Extension = types::getTypeTempSuffix(FileType, true);
4217 
4218     if (FileType == types::TY_Image &&
4219         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4220       // The output file is a dll.
4221       Extension = "dll";
4222     }
4223 
4224     llvm::sys::path::replace_extension(Filename, Extension);
4225   }
4226 
4227   return Args.MakeArgString(Filename.c_str());
4228 }
4229 
4230 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4231                                        const char *BaseInput,
4232                                        StringRef BoundArch, bool AtTopLevel,
4233                                        bool MultipleArchs,
4234                                        StringRef OffloadingPrefix) const {
4235   llvm::PrettyStackTraceString CrashInfo("Computing output path");
4236   // Output to a user requested destination?
4237   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4238     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4239       return C.addResultFile(FinalOutput->getValue(), &JA);
4240   }
4241 
4242   // For /P, preprocess to file named after BaseInput.
4243   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4244     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4245     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4246     StringRef NameArg;
4247     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4248       NameArg = A->getValue();
4249     return C.addResultFile(
4250         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4251         &JA);
4252   }
4253 
4254   // Default to writing to stdout?
4255   if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4256     return "-";
4257 
4258   // Is this the assembly listing for /FA?
4259   if (JA.getType() == types::TY_PP_Asm &&
4260       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4261        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4262     // Use /Fa and the input filename to determine the asm file name.
4263     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4264     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4265     return C.addResultFile(
4266         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4267         &JA);
4268   }
4269 
4270   // Output to a temporary file?
4271   if ((!AtTopLevel && !isSaveTempsEnabled() &&
4272        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4273       CCGenDiagnostics) {
4274     StringRef Name = llvm::sys::path::filename(BaseInput);
4275     std::pair<StringRef, StringRef> Split = Name.split('.');
4276     SmallString<128> TmpName;
4277     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4278     Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4279     if (CCGenDiagnostics && A) {
4280       SmallString<128> CrashDirectory(A->getValue());
4281       if (!getVFS().exists(CrashDirectory))
4282         llvm::sys::fs::create_directories(CrashDirectory);
4283       llvm::sys::path::append(CrashDirectory, Split.first);
4284       const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4285       std::error_code EC = llvm::sys::fs::createUniqueFile(
4286           CrashDirectory + Middle + Suffix, TmpName);
4287       if (EC) {
4288         Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4289         return "";
4290       }
4291     } else {
4292       TmpName = GetTemporaryPath(Split.first, Suffix);
4293     }
4294     return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4295   }
4296 
4297   SmallString<128> BasePath(BaseInput);
4298   StringRef BaseName;
4299 
4300   // Dsymutil actions should use the full path.
4301   if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4302     BaseName = BasePath;
4303   else
4304     BaseName = llvm::sys::path::filename(BasePath);
4305 
4306   // Determine what the derived output name should be.
4307   const char *NamedOutput;
4308 
4309   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4310       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4311     // The /Fo or /o flag decides the object filename.
4312     StringRef Val =
4313         C.getArgs()
4314             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4315             ->getValue();
4316     NamedOutput =
4317         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4318   } else if (JA.getType() == types::TY_Image &&
4319              C.getArgs().hasArg(options::OPT__SLASH_Fe,
4320                                 options::OPT__SLASH_o)) {
4321     // The /Fe or /o flag names the linked file.
4322     StringRef Val =
4323         C.getArgs()
4324             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4325             ->getValue();
4326     NamedOutput =
4327         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4328   } else if (JA.getType() == types::TY_Image) {
4329     if (IsCLMode()) {
4330       // clang-cl uses BaseName for the executable name.
4331       NamedOutput =
4332           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4333     } else {
4334       SmallString<128> Output(getDefaultImageName());
4335       Output += OffloadingPrefix;
4336       if (MultipleArchs && !BoundArch.empty()) {
4337         Output += "-";
4338         Output.append(BoundArch);
4339       }
4340       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4341     }
4342   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4343     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4344   } else {
4345     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4346     assert(Suffix && "All types used for output should have a suffix.");
4347 
4348     std::string::size_type End = std::string::npos;
4349     if (!types::appendSuffixForType(JA.getType()))
4350       End = BaseName.rfind('.');
4351     SmallString<128> Suffixed(BaseName.substr(0, End));
4352     Suffixed += OffloadingPrefix;
4353     if (MultipleArchs && !BoundArch.empty()) {
4354       Suffixed += "-";
4355       Suffixed.append(BoundArch);
4356     }
4357     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4358     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4359     // optimized bitcode output.
4360     if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4361         JA.getType() == types::TY_LLVM_BC)
4362       Suffixed += ".tmp";
4363     Suffixed += '.';
4364     Suffixed += Suffix;
4365     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4366   }
4367 
4368   // Prepend object file path if -save-temps=obj
4369   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4370       JA.getType() != types::TY_PCH) {
4371     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4372     SmallString<128> TempPath(FinalOutput->getValue());
4373     llvm::sys::path::remove_filename(TempPath);
4374     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4375     llvm::sys::path::append(TempPath, OutputFileName);
4376     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4377   }
4378 
4379   // If we're saving temps and the temp file conflicts with the input file,
4380   // then avoid overwriting input file.
4381   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4382     bool SameFile = false;
4383     SmallString<256> Result;
4384     llvm::sys::fs::current_path(Result);
4385     llvm::sys::path::append(Result, BaseName);
4386     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4387     // Must share the same path to conflict.
4388     if (SameFile) {
4389       StringRef Name = llvm::sys::path::filename(BaseInput);
4390       std::pair<StringRef, StringRef> Split = Name.split('.');
4391       std::string TmpName = GetTemporaryPath(
4392           Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4393       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4394     }
4395   }
4396 
4397   // As an annoying special case, PCH generation doesn't strip the pathname.
4398   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4399     llvm::sys::path::remove_filename(BasePath);
4400     if (BasePath.empty())
4401       BasePath = NamedOutput;
4402     else
4403       llvm::sys::path::append(BasePath, NamedOutput);
4404     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4405   } else {
4406     return C.addResultFile(NamedOutput, &JA);
4407   }
4408 }
4409 
4410 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4411   // Search for Name in a list of paths.
4412   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4413       -> llvm::Optional<std::string> {
4414     // Respect a limited subset of the '-Bprefix' functionality in GCC by
4415     // attempting to use this prefix when looking for file paths.
4416     for (const auto &Dir : P) {
4417       if (Dir.empty())
4418         continue;
4419       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4420       llvm::sys::path::append(P, Name);
4421       if (llvm::sys::fs::exists(Twine(P)))
4422         return P.str().str();
4423     }
4424     return None;
4425   };
4426 
4427   if (auto P = SearchPaths(PrefixDirs))
4428     return *P;
4429 
4430   SmallString<128> R(ResourceDir);
4431   llvm::sys::path::append(R, Name);
4432   if (llvm::sys::fs::exists(Twine(R)))
4433     return R.str();
4434 
4435   SmallString<128> P(TC.getCompilerRTPath());
4436   llvm::sys::path::append(P, Name);
4437   if (llvm::sys::fs::exists(Twine(P)))
4438     return P.str();
4439 
4440   SmallString<128> D(Dir);
4441   llvm::sys::path::append(D, "..", Name);
4442   if (llvm::sys::fs::exists(Twine(D)))
4443     return D.str();
4444 
4445   if (auto P = SearchPaths(TC.getLibraryPaths()))
4446     return *P;
4447 
4448   if (auto P = SearchPaths(TC.getFilePaths()))
4449     return *P;
4450 
4451   return Name;
4452 }
4453 
4454 void Driver::generatePrefixedToolNames(
4455     StringRef Tool, const ToolChain &TC,
4456     SmallVectorImpl<std::string> &Names) const {
4457   // FIXME: Needs a better variable than TargetTriple
4458   Names.emplace_back((TargetTriple + "-" + Tool).str());
4459   Names.emplace_back(Tool);
4460 
4461   // Allow the discovery of tools prefixed with LLVM's default target triple.
4462   std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4463   if (DefaultTargetTriple != TargetTriple)
4464     Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4465 }
4466 
4467 static bool ScanDirForExecutable(SmallString<128> &Dir,
4468                                  ArrayRef<std::string> Names) {
4469   for (const auto &Name : Names) {
4470     llvm::sys::path::append(Dir, Name);
4471     if (llvm::sys::fs::can_execute(Twine(Dir)))
4472       return true;
4473     llvm::sys::path::remove_filename(Dir);
4474   }
4475   return false;
4476 }
4477 
4478 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4479   SmallVector<std::string, 2> TargetSpecificExecutables;
4480   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4481 
4482   // Respect a limited subset of the '-Bprefix' functionality in GCC by
4483   // attempting to use this prefix when looking for program paths.
4484   for (const auto &PrefixDir : PrefixDirs) {
4485     if (llvm::sys::fs::is_directory(PrefixDir)) {
4486       SmallString<128> P(PrefixDir);
4487       if (ScanDirForExecutable(P, TargetSpecificExecutables))
4488         return P.str();
4489     } else {
4490       SmallString<128> P((PrefixDir + Name).str());
4491       if (llvm::sys::fs::can_execute(Twine(P)))
4492         return P.str();
4493     }
4494   }
4495 
4496   const ToolChain::path_list &List = TC.getProgramPaths();
4497   for (const auto &Path : List) {
4498     SmallString<128> P(Path);
4499     if (ScanDirForExecutable(P, TargetSpecificExecutables))
4500       return P.str();
4501   }
4502 
4503   // If all else failed, search the path.
4504   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4505     if (llvm::ErrorOr<std::string> P =
4506             llvm::sys::findProgramByName(TargetSpecificExecutable))
4507       return *P;
4508 
4509   return Name;
4510 }
4511 
4512 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4513   SmallString<128> Path;
4514   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4515   if (EC) {
4516     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4517     return "";
4518   }
4519 
4520   return Path.str();
4521 }
4522 
4523 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4524   SmallString<128> Path;
4525   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4526   if (EC) {
4527     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4528     return "";
4529   }
4530 
4531   return Path.str();
4532 }
4533 
4534 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4535   SmallString<128> Output;
4536   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4537     // FIXME: If anybody needs it, implement this obscure rule:
4538     // "If you specify a directory without a file name, the default file name
4539     // is VCx0.pch., where x is the major version of Visual C++ in use."
4540     Output = FpArg->getValue();
4541 
4542     // "If you do not specify an extension as part of the path name, an
4543     // extension of .pch is assumed. "
4544     if (!llvm::sys::path::has_extension(Output))
4545       Output += ".pch";
4546   } else {
4547     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4548       Output = YcArg->getValue();
4549     if (Output.empty())
4550       Output = BaseName;
4551     llvm::sys::path::replace_extension(Output, ".pch");
4552   }
4553   return Output.str();
4554 }
4555 
4556 const ToolChain &Driver::getToolChain(const ArgList &Args,
4557                                       const llvm::Triple &Target) const {
4558 
4559   auto &TC = ToolChains[Target.str()];
4560   if (!TC) {
4561     switch (Target.getOS()) {
4562     case llvm::Triple::Haiku:
4563       TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4564       break;
4565     case llvm::Triple::Ananas:
4566       TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4567       break;
4568     case llvm::Triple::CloudABI:
4569       TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4570       break;
4571     case llvm::Triple::Darwin:
4572     case llvm::Triple::MacOSX:
4573     case llvm::Triple::IOS:
4574     case llvm::Triple::TvOS:
4575     case llvm::Triple::WatchOS:
4576       TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4577       break;
4578     case llvm::Triple::DragonFly:
4579       TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4580       break;
4581     case llvm::Triple::OpenBSD:
4582       TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4583       break;
4584     case llvm::Triple::NetBSD:
4585       TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4586       break;
4587     case llvm::Triple::FreeBSD:
4588       TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4589       break;
4590     case llvm::Triple::Minix:
4591       TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4592       break;
4593     case llvm::Triple::Linux:
4594     case llvm::Triple::ELFIAMCU:
4595       if (Target.getArch() == llvm::Triple::hexagon)
4596         TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4597                                                              Args);
4598       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4599                !Target.hasEnvironment())
4600         TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4601                                                               Args);
4602       else if (Target.getArch() == llvm::Triple::ppc ||
4603                Target.getArch() == llvm::Triple::ppc64 ||
4604                Target.getArch() == llvm::Triple::ppc64le)
4605         TC = llvm::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4606                                                               Args);
4607       else
4608         TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4609       break;
4610     case llvm::Triple::NaCl:
4611       TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4612       break;
4613     case llvm::Triple::Fuchsia:
4614       TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4615       break;
4616     case llvm::Triple::Solaris:
4617       TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4618       break;
4619     case llvm::Triple::AMDHSA:
4620       TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4621       break;
4622     case llvm::Triple::Win32:
4623       switch (Target.getEnvironment()) {
4624       default:
4625         if (Target.isOSBinFormatELF())
4626           TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4627         else if (Target.isOSBinFormatMachO())
4628           TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4629         else
4630           TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4631         break;
4632       case llvm::Triple::GNU:
4633         TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4634         break;
4635       case llvm::Triple::Itanium:
4636         TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4637                                                                   Args);
4638         break;
4639       case llvm::Triple::MSVC:
4640       case llvm::Triple::UnknownEnvironment:
4641         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4642                 .startswith_lower("bfd"))
4643           TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4644               *this, Target, Args);
4645         else
4646           TC =
4647               llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4648         break;
4649       }
4650       break;
4651     case llvm::Triple::PS4:
4652       TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4653       break;
4654     case llvm::Triple::Contiki:
4655       TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4656       break;
4657     case llvm::Triple::Hurd:
4658       TC = llvm::make_unique<toolchains::Hurd>(*this, Target, Args);
4659       break;
4660     default:
4661       // Of these targets, Hexagon is the only one that might have
4662       // an OS of Linux, in which case it got handled above already.
4663       switch (Target.getArch()) {
4664       case llvm::Triple::tce:
4665         TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4666         break;
4667       case llvm::Triple::tcele:
4668         TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4669         break;
4670       case llvm::Triple::hexagon:
4671         TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4672                                                              Args);
4673         break;
4674       case llvm::Triple::lanai:
4675         TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4676         break;
4677       case llvm::Triple::xcore:
4678         TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4679         break;
4680       case llvm::Triple::wasm32:
4681       case llvm::Triple::wasm64:
4682         TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4683         break;
4684       case llvm::Triple::avr:
4685         TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4686         break;
4687       case llvm::Triple::msp430:
4688         TC =
4689             llvm::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4690         break;
4691       case llvm::Triple::riscv32:
4692       case llvm::Triple::riscv64:
4693         TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4694         break;
4695       default:
4696         if (Target.getVendor() == llvm::Triple::Myriad)
4697           TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4698                                                               Args);
4699         else if (toolchains::BareMetal::handlesTarget(Target))
4700           TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4701         else if (Target.isOSBinFormatELF())
4702           TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4703         else if (Target.isOSBinFormatMachO())
4704           TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4705         else
4706           TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4707       }
4708     }
4709   }
4710 
4711   // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
4712   // compiles always need two toolchains, the CUDA toolchain and the host
4713   // toolchain.  So the only valid way to create a CUDA toolchain is via
4714   // CreateOffloadingDeviceToolChains.
4715 
4716   return *TC;
4717 }
4718 
4719 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
4720   // Say "no" if there is not exactly one input of a type clang understands.
4721   if (JA.size() != 1 ||
4722       !types::isAcceptedByClang((*JA.input_begin())->getType()))
4723     return false;
4724 
4725   // And say "no" if this is not a kind of action clang understands.
4726   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4727       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4728     return false;
4729 
4730   return true;
4731 }
4732 
4733 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4734 /// grouped values as integers. Numbers which are not provided are set to 0.
4735 ///
4736 /// \return True if the entire string was parsed (9.2), or all groups were
4737 /// parsed (10.3.5extrastuff).
4738 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4739                                unsigned &Micro, bool &HadExtra) {
4740   HadExtra = false;
4741 
4742   Major = Minor = Micro = 0;
4743   if (Str.empty())
4744     return false;
4745 
4746   if (Str.consumeInteger(10, Major))
4747     return false;
4748   if (Str.empty())
4749     return true;
4750   if (Str[0] != '.')
4751     return false;
4752 
4753   Str = Str.drop_front(1);
4754 
4755   if (Str.consumeInteger(10, Minor))
4756     return false;
4757   if (Str.empty())
4758     return true;
4759   if (Str[0] != '.')
4760     return false;
4761   Str = Str.drop_front(1);
4762 
4763   if (Str.consumeInteger(10, Micro))
4764     return false;
4765   if (!Str.empty())
4766     HadExtra = true;
4767   return true;
4768 }
4769 
4770 /// Parse digits from a string \p Str and fulfill \p Digits with
4771 /// the parsed numbers. This method assumes that the max number of
4772 /// digits to look for is equal to Digits.size().
4773 ///
4774 /// \return True if the entire string was parsed and there are
4775 /// no extra characters remaining at the end.
4776 bool Driver::GetReleaseVersion(StringRef Str,
4777                                MutableArrayRef<unsigned> Digits) {
4778   if (Str.empty())
4779     return false;
4780 
4781   unsigned CurDigit = 0;
4782   while (CurDigit < Digits.size()) {
4783     unsigned Digit;
4784     if (Str.consumeInteger(10, Digit))
4785       return false;
4786     Digits[CurDigit] = Digit;
4787     if (Str.empty())
4788       return true;
4789     if (Str[0] != '.')
4790       return false;
4791     Str = Str.drop_front(1);
4792     CurDigit++;
4793   }
4794 
4795   // More digits than requested, bail out...
4796   return false;
4797 }
4798 
4799 std::pair<unsigned, unsigned>
4800 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
4801   unsigned IncludedFlagsBitmask = 0;
4802   unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4803 
4804   if (IsClCompatMode) {
4805     // Include CL and Core options.
4806     IncludedFlagsBitmask |= options::CLOption;
4807     IncludedFlagsBitmask |= options::CoreOption;
4808   } else {
4809     ExcludedFlagsBitmask |= options::CLOption;
4810   }
4811 
4812   return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4813 }
4814 
4815 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4816   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4817 }
4818