1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "InputInfo.h" 11 #include "ToolChains/AMDGPU.h" 12 #include "ToolChains/AVR.h" 13 #include "ToolChains/Ananas.h" 14 #include "ToolChains/BareMetal.h" 15 #include "ToolChains/Clang.h" 16 #include "ToolChains/CloudABI.h" 17 #include "ToolChains/Contiki.h" 18 #include "ToolChains/CrossWindows.h" 19 #include "ToolChains/Cuda.h" 20 #include "ToolChains/Darwin.h" 21 #include "ToolChains/DragonFly.h" 22 #include "ToolChains/FreeBSD.h" 23 #include "ToolChains/Fuchsia.h" 24 #include "ToolChains/Gnu.h" 25 #include "ToolChains/HIP.h" 26 #include "ToolChains/Haiku.h" 27 #include "ToolChains/Hexagon.h" 28 #include "ToolChains/Hurd.h" 29 #include "ToolChains/Lanai.h" 30 #include "ToolChains/Linux.h" 31 #include "ToolChains/MSP430.h" 32 #include "ToolChains/MSVC.h" 33 #include "ToolChains/MinGW.h" 34 #include "ToolChains/Minix.h" 35 #include "ToolChains/MipsLinux.h" 36 #include "ToolChains/Myriad.h" 37 #include "ToolChains/NaCl.h" 38 #include "ToolChains/NetBSD.h" 39 #include "ToolChains/OpenBSD.h" 40 #include "ToolChains/PS4CPU.h" 41 #include "ToolChains/PPCLinux.h" 42 #include "ToolChains/RISCVToolchain.h" 43 #include "ToolChains/Solaris.h" 44 #include "ToolChains/TCE.h" 45 #include "ToolChains/WebAssembly.h" 46 #include "ToolChains/XCore.h" 47 #include "clang/Basic/Version.h" 48 #include "clang/Config/config.h" 49 #include "clang/Driver/Action.h" 50 #include "clang/Driver/Compilation.h" 51 #include "clang/Driver/DriverDiagnostic.h" 52 #include "clang/Driver/Job.h" 53 #include "clang/Driver/Options.h" 54 #include "clang/Driver/SanitizerArgs.h" 55 #include "clang/Driver/Tool.h" 56 #include "clang/Driver/ToolChain.h" 57 #include "llvm/ADT/ArrayRef.h" 58 #include "llvm/ADT/STLExtras.h" 59 #include "llvm/ADT/SmallSet.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/ADT/StringSet.h" 62 #include "llvm/ADT/StringSwitch.h" 63 #include "llvm/Config/llvm-config.h" 64 #include "llvm/Option/Arg.h" 65 #include "llvm/Option/ArgList.h" 66 #include "llvm/Option/OptSpecifier.h" 67 #include "llvm/Option/OptTable.h" 68 #include "llvm/Option/Option.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/FileSystem.h" 72 #include "llvm/Support/FormatVariadic.h" 73 #include "llvm/Support/Path.h" 74 #include "llvm/Support/PrettyStackTrace.h" 75 #include "llvm/Support/Process.h" 76 #include "llvm/Support/Program.h" 77 #include "llvm/Support/StringSaver.h" 78 #include "llvm/Support/TargetRegistry.h" 79 #include "llvm/Support/VirtualFileSystem.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include <map> 82 #include <memory> 83 #include <utility> 84 #if LLVM_ON_UNIX 85 #include <unistd.h> // getpid 86 #include <sysexits.h> // EX_IOERR 87 #endif 88 89 using namespace clang::driver; 90 using namespace clang; 91 using namespace llvm::opt; 92 93 // static 94 std::string Driver::GetResourcesPath(StringRef BinaryPath, 95 StringRef CustomResourceDir) { 96 // Since the resource directory is embedded in the module hash, it's important 97 // that all places that need it call this function, so that they get the 98 // exact same string ("a/../b/" and "b/" get different hashes, for example). 99 100 // Dir is bin/ or lib/, depending on where BinaryPath is. 101 std::string Dir = llvm::sys::path::parent_path(BinaryPath); 102 103 SmallString<128> P(Dir); 104 if (CustomResourceDir != "") { 105 llvm::sys::path::append(P, CustomResourceDir); 106 } else { 107 // On Windows, libclang.dll is in bin/. 108 // On non-Windows, libclang.so/.dylib is in lib/. 109 // With a static-library build of libclang, LibClangPath will contain the 110 // path of the embedding binary, which for LLVM binaries will be in bin/. 111 // ../lib gets us to lib/ in both cases. 112 P = llvm::sys::path::parent_path(Dir); 113 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", 114 CLANG_VERSION_STRING); 115 } 116 117 return P.str(); 118 } 119 120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 121 DiagnosticsEngine &Diags, 122 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 123 : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)), 124 Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), 125 LTOMode(LTOK_None), ClangExecutable(ClangExecutable), 126 SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"), 127 CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr), 128 CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false), 129 CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false), 130 CCGenDiagnostics(false), TargetTriple(TargetTriple), 131 CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true), 132 GenReproducer(false), SuppressMissingInputWarning(false) { 133 134 // Provide a sane fallback if no VFS is specified. 135 if (!this->VFS) 136 this->VFS = llvm::vfs::createPhysicalFileSystem().release(); 137 138 Name = llvm::sys::path::filename(ClangExecutable); 139 Dir = llvm::sys::path::parent_path(ClangExecutable); 140 InstalledDir = Dir; // Provide a sensible default installed dir. 141 142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 143 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 144 #endif 145 #if defined(CLANG_CONFIG_FILE_USER_DIR) 146 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 147 #endif 148 149 // Compute the path to the resource directory. 150 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); 151 } 152 153 void Driver::ParseDriverMode(StringRef ProgramName, 154 ArrayRef<const char *> Args) { 155 if (ClangNameParts.isEmpty()) 156 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 157 setDriverModeFromOption(ClangNameParts.DriverMode); 158 159 for (const char *ArgPtr : Args) { 160 // Ignore nullptrs, they are the response file's EOL markers. 161 if (ArgPtr == nullptr) 162 continue; 163 const StringRef Arg = ArgPtr; 164 setDriverModeFromOption(Arg); 165 } 166 } 167 168 void Driver::setDriverModeFromOption(StringRef Opt) { 169 const std::string OptName = 170 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 171 if (!Opt.startswith(OptName)) 172 return; 173 StringRef Value = Opt.drop_front(OptName.size()); 174 175 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 176 .Case("gcc", GCCMode) 177 .Case("g++", GXXMode) 178 .Case("cpp", CPPMode) 179 .Case("cl", CLMode) 180 .Default(None)) 181 Mode = *M; 182 else 183 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 184 } 185 186 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 187 bool IsClCompatMode, 188 bool &ContainsError) { 189 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 190 ContainsError = false; 191 192 unsigned IncludedFlagsBitmask; 193 unsigned ExcludedFlagsBitmask; 194 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 195 getIncludeExcludeOptionFlagMasks(IsClCompatMode); 196 197 unsigned MissingArgIndex, MissingArgCount; 198 InputArgList Args = 199 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 200 IncludedFlagsBitmask, ExcludedFlagsBitmask); 201 202 // Check for missing argument error. 203 if (MissingArgCount) { 204 Diag(diag::err_drv_missing_argument) 205 << Args.getArgString(MissingArgIndex) << MissingArgCount; 206 ContainsError |= 207 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 208 SourceLocation()) > DiagnosticsEngine::Warning; 209 } 210 211 // Check for unsupported options. 212 for (const Arg *A : Args) { 213 if (A->getOption().hasFlag(options::Unsupported)) { 214 unsigned DiagID; 215 auto ArgString = A->getAsString(Args); 216 std::string Nearest; 217 if (getOpts().findNearest( 218 ArgString, Nearest, IncludedFlagsBitmask, 219 ExcludedFlagsBitmask | options::Unsupported) > 1) { 220 DiagID = diag::err_drv_unsupported_opt; 221 Diag(DiagID) << ArgString; 222 } else { 223 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 224 Diag(DiagID) << ArgString << Nearest; 225 } 226 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 227 DiagnosticsEngine::Warning; 228 continue; 229 } 230 231 // Warn about -mcpu= without an argument. 232 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 233 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 234 ContainsError |= Diags.getDiagnosticLevel( 235 diag::warn_drv_empty_joined_argument, 236 SourceLocation()) > DiagnosticsEngine::Warning; 237 } 238 } 239 240 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 241 unsigned DiagID; 242 auto ArgString = A->getAsString(Args); 243 std::string Nearest; 244 if (getOpts().findNearest( 245 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 246 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 247 : diag::err_drv_unknown_argument; 248 Diags.Report(DiagID) << ArgString; 249 } else { 250 DiagID = IsCLMode() 251 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 252 : diag::err_drv_unknown_argument_with_suggestion; 253 Diags.Report(DiagID) << ArgString << Nearest; 254 } 255 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 256 DiagnosticsEngine::Warning; 257 } 258 259 return Args; 260 } 261 262 // Determine which compilation mode we are in. We look for options which 263 // affect the phase, starting with the earliest phases, and record which 264 // option we used to determine the final phase. 265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 266 Arg **FinalPhaseArg) const { 267 Arg *PhaseArg = nullptr; 268 phases::ID FinalPhase; 269 270 // -{E,EP,P,M,MM} only run the preprocessor. 271 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 272 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 273 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 274 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 275 FinalPhase = phases::Preprocess; 276 277 // --precompile only runs up to precompilation. 278 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 279 FinalPhase = phases::Precompile; 280 281 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 282 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 283 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 284 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 285 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 286 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 287 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 288 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 289 (PhaseArg = DAL.getLastArg(options::OPT_emit_iterface_stubs)) || 290 (PhaseArg = DAL.getLastArg(options::OPT__analyze, 291 options::OPT__analyze_auto)) || 292 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 293 FinalPhase = phases::Compile; 294 295 // -S only runs up to the backend. 296 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 297 FinalPhase = phases::Backend; 298 299 // -c compilation only runs up to the assembler. 300 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 301 FinalPhase = phases::Assemble; 302 303 // Otherwise do everything. 304 } else 305 FinalPhase = phases::Link; 306 307 if (FinalPhaseArg) 308 *FinalPhaseArg = PhaseArg; 309 310 return FinalPhase; 311 } 312 313 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts, 314 StringRef Value, bool Claim = true) { 315 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 316 Args.getBaseArgs().MakeIndex(Value), Value.data()); 317 Args.AddSynthesizedArg(A); 318 if (Claim) 319 A->claim(); 320 return A; 321 } 322 323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 324 DerivedArgList *DAL = new DerivedArgList(Args); 325 326 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 327 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 328 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 329 for (Arg *A : Args) { 330 // Unfortunately, we have to parse some forwarding options (-Xassembler, 331 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 332 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 333 334 // Rewrite linker options, to replace --no-demangle with a custom internal 335 // option. 336 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 337 A->getOption().matches(options::OPT_Xlinker)) && 338 A->containsValue("--no-demangle")) { 339 // Add the rewritten no-demangle argument. 340 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle)); 341 342 // Add the remaining values as Xlinker arguments. 343 for (StringRef Val : A->getValues()) 344 if (Val != "--no-demangle") 345 DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val); 346 347 continue; 348 } 349 350 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 351 // some build systems. We don't try to be complete here because we don't 352 // care to encourage this usage model. 353 if (A->getOption().matches(options::OPT_Wp_COMMA) && 354 (A->getValue(0) == StringRef("-MD") || 355 A->getValue(0) == StringRef("-MMD"))) { 356 // Rewrite to -MD/-MMD along with -MF. 357 if (A->getValue(0) == StringRef("-MD")) 358 DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD)); 359 else 360 DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD)); 361 if (A->getNumValues() == 2) 362 DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF), 363 A->getValue(1)); 364 continue; 365 } 366 367 // Rewrite reserved library names. 368 if (A->getOption().matches(options::OPT_l)) { 369 StringRef Value = A->getValue(); 370 371 // Rewrite unless -nostdlib is present. 372 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 373 Value == "stdc++") { 374 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx)); 375 continue; 376 } 377 378 // Rewrite unconditionally. 379 if (Value == "cc_kext") { 380 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext)); 381 continue; 382 } 383 } 384 385 // Pick up inputs via the -- option. 386 if (A->getOption().matches(options::OPT__DASH_DASH)) { 387 A->claim(); 388 for (StringRef Val : A->getValues()) 389 DAL->append(MakeInputArg(*DAL, *Opts, Val, false)); 390 continue; 391 } 392 393 DAL->append(A); 394 } 395 396 // Enforce -static if -miamcu is present. 397 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 398 DAL->AddFlagArg(0, Opts->getOption(options::OPT_static)); 399 400 // Add a default value of -mlinker-version=, if one was given and the user 401 // didn't specify one. 402 #if defined(HOST_LINK_VERSION) 403 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 404 strlen(HOST_LINK_VERSION) > 0) { 405 DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ), 406 HOST_LINK_VERSION); 407 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 408 } 409 #endif 410 411 return DAL; 412 } 413 414 /// Compute target triple from args. 415 /// 416 /// This routine provides the logic to compute a target triple from various 417 /// args passed to the driver and the default triple string. 418 static llvm::Triple computeTargetTriple(const Driver &D, 419 StringRef TargetTriple, 420 const ArgList &Args, 421 StringRef DarwinArchName = "") { 422 // FIXME: Already done in Compilation *Driver::BuildCompilation 423 if (const Arg *A = Args.getLastArg(options::OPT_target)) 424 TargetTriple = A->getValue(); 425 426 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 427 428 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 429 // -gnu* only, and we can not change this, so we have to detect that case as 430 // being the Hurd OS. 431 if (TargetTriple.find("-unknown-gnu") != StringRef::npos || 432 TargetTriple.find("-pc-gnu") != StringRef::npos) 433 Target.setOSName("hurd"); 434 435 // Handle Apple-specific options available here. 436 if (Target.isOSBinFormatMachO()) { 437 // If an explicit Darwin arch name is given, that trumps all. 438 if (!DarwinArchName.empty()) { 439 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 440 return Target; 441 } 442 443 // Handle the Darwin '-arch' flag. 444 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 445 StringRef ArchName = A->getValue(); 446 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 447 } 448 } 449 450 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 451 // '-mbig-endian'/'-EB'. 452 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 453 options::OPT_mbig_endian)) { 454 if (A->getOption().matches(options::OPT_mlittle_endian)) { 455 llvm::Triple LE = Target.getLittleEndianArchVariant(); 456 if (LE.getArch() != llvm::Triple::UnknownArch) 457 Target = std::move(LE); 458 } else { 459 llvm::Triple BE = Target.getBigEndianArchVariant(); 460 if (BE.getArch() != llvm::Triple::UnknownArch) 461 Target = std::move(BE); 462 } 463 } 464 465 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 466 if (Target.getArch() == llvm::Triple::tce || 467 Target.getOS() == llvm::Triple::Minix) 468 return Target; 469 470 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 471 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 472 options::OPT_m32, options::OPT_m16); 473 if (A) { 474 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 475 476 if (A->getOption().matches(options::OPT_m64)) { 477 AT = Target.get64BitArchVariant().getArch(); 478 if (Target.getEnvironment() == llvm::Triple::GNUX32) 479 Target.setEnvironment(llvm::Triple::GNU); 480 } else if (A->getOption().matches(options::OPT_mx32) && 481 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 482 AT = llvm::Triple::x86_64; 483 Target.setEnvironment(llvm::Triple::GNUX32); 484 } else if (A->getOption().matches(options::OPT_m32)) { 485 AT = Target.get32BitArchVariant().getArch(); 486 if (Target.getEnvironment() == llvm::Triple::GNUX32) 487 Target.setEnvironment(llvm::Triple::GNU); 488 } else if (A->getOption().matches(options::OPT_m16) && 489 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 490 AT = llvm::Triple::x86; 491 Target.setEnvironment(llvm::Triple::CODE16); 492 } 493 494 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 495 Target.setArch(AT); 496 } 497 498 // Handle -miamcu flag. 499 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 500 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 501 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 502 << Target.str(); 503 504 if (A && !A->getOption().matches(options::OPT_m32)) 505 D.Diag(diag::err_drv_argument_not_allowed_with) 506 << "-miamcu" << A->getBaseArg().getAsString(Args); 507 508 Target.setArch(llvm::Triple::x86); 509 Target.setArchName("i586"); 510 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 511 Target.setEnvironmentName(""); 512 Target.setOS(llvm::Triple::ELFIAMCU); 513 Target.setVendor(llvm::Triple::UnknownVendor); 514 Target.setVendorName("intel"); 515 } 516 517 // If target is MIPS adjust the target triple 518 // accordingly to provided ABI name. 519 A = Args.getLastArg(options::OPT_mabi_EQ); 520 if (A && Target.isMIPS()) { 521 StringRef ABIName = A->getValue(); 522 if (ABIName == "32") { 523 Target = Target.get32BitArchVariant(); 524 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 525 Target.getEnvironment() == llvm::Triple::GNUABIN32) 526 Target.setEnvironment(llvm::Triple::GNU); 527 } else if (ABIName == "n32") { 528 Target = Target.get64BitArchVariant(); 529 if (Target.getEnvironment() == llvm::Triple::GNU || 530 Target.getEnvironment() == llvm::Triple::GNUABI64) 531 Target.setEnvironment(llvm::Triple::GNUABIN32); 532 } else if (ABIName == "64") { 533 Target = Target.get64BitArchVariant(); 534 if (Target.getEnvironment() == llvm::Triple::GNU || 535 Target.getEnvironment() == llvm::Triple::GNUABIN32) 536 Target.setEnvironment(llvm::Triple::GNUABI64); 537 } 538 } 539 540 return Target; 541 } 542 543 // Parse the LTO options and record the type of LTO compilation 544 // based on which -f(no-)?lto(=.*)? option occurs last. 545 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 546 LTOMode = LTOK_None; 547 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 548 options::OPT_fno_lto, false)) 549 return; 550 551 StringRef LTOName("full"); 552 553 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 554 if (A) 555 LTOName = A->getValue(); 556 557 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 558 .Case("full", LTOK_Full) 559 .Case("thin", LTOK_Thin) 560 .Default(LTOK_Unknown); 561 562 if (LTOMode == LTOK_Unknown) { 563 assert(A); 564 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 565 << A->getValue(); 566 } 567 } 568 569 /// Compute the desired OpenMP runtime from the flags provided. 570 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 571 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 572 573 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 574 if (A) 575 RuntimeName = A->getValue(); 576 577 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 578 .Case("libomp", OMPRT_OMP) 579 .Case("libgomp", OMPRT_GOMP) 580 .Case("libiomp5", OMPRT_IOMP5) 581 .Default(OMPRT_Unknown); 582 583 if (RT == OMPRT_Unknown) { 584 if (A) 585 Diag(diag::err_drv_unsupported_option_argument) 586 << A->getOption().getName() << A->getValue(); 587 else 588 // FIXME: We could use a nicer diagnostic here. 589 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 590 } 591 592 return RT; 593 } 594 595 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 596 InputList &Inputs) { 597 598 // 599 // CUDA/HIP 600 // 601 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 602 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 603 bool IsCuda = 604 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 605 return types::isCuda(I.first); 606 }); 607 bool IsHIP = 608 llvm::any_of(Inputs, 609 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 610 return types::isHIP(I.first); 611 }) || 612 C.getInputArgs().hasArg(options::OPT_hip_link); 613 if (IsCuda && IsHIP) { 614 Diag(clang::diag::err_drv_mix_cuda_hip); 615 return; 616 } 617 if (IsCuda) { 618 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 619 const llvm::Triple &HostTriple = HostTC->getTriple(); 620 StringRef DeviceTripleStr; 621 auto OFK = Action::OFK_Cuda; 622 DeviceTripleStr = 623 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; 624 llvm::Triple CudaTriple(DeviceTripleStr); 625 // Use the CUDA and host triples as the key into the ToolChains map, 626 // because the device toolchain we create depends on both. 627 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 628 if (!CudaTC) { 629 CudaTC = llvm::make_unique<toolchains::CudaToolChain>( 630 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); 631 } 632 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 633 } else if (IsHIP) { 634 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 635 const llvm::Triple &HostTriple = HostTC->getTriple(); 636 StringRef DeviceTripleStr; 637 auto OFK = Action::OFK_HIP; 638 DeviceTripleStr = "amdgcn-amd-amdhsa"; 639 llvm::Triple HIPTriple(DeviceTripleStr); 640 // Use the HIP and host triples as the key into the ToolChains map, 641 // because the device toolchain we create depends on both. 642 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; 643 if (!HIPTC) { 644 HIPTC = llvm::make_unique<toolchains::HIPToolChain>( 645 *this, HIPTriple, *HostTC, C.getInputArgs()); 646 } 647 C.addOffloadDeviceToolChain(HIPTC.get(), OFK); 648 } 649 650 // 651 // OpenMP 652 // 653 // We need to generate an OpenMP toolchain if the user specified targets with 654 // the -fopenmp-targets option. 655 if (Arg *OpenMPTargets = 656 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 657 if (OpenMPTargets->getNumValues()) { 658 // We expect that -fopenmp-targets is always used in conjunction with the 659 // option -fopenmp specifying a valid runtime with offloading support, 660 // i.e. libomp or libiomp. 661 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 662 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 663 options::OPT_fno_openmp, false); 664 if (HasValidOpenMPRuntime) { 665 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 666 HasValidOpenMPRuntime = 667 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 668 } 669 670 if (HasValidOpenMPRuntime) { 671 llvm::StringMap<const char *> FoundNormalizedTriples; 672 for (const char *Val : OpenMPTargets->getValues()) { 673 llvm::Triple TT(Val); 674 std::string NormalizedName = TT.normalize(); 675 676 // Make sure we don't have a duplicate triple. 677 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 678 if (Duplicate != FoundNormalizedTriples.end()) { 679 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 680 << Val << Duplicate->second; 681 continue; 682 } 683 684 // Store the current triple so that we can check for duplicates in the 685 // following iterations. 686 FoundNormalizedTriples[NormalizedName] = Val; 687 688 // If the specified target is invalid, emit a diagnostic. 689 if (TT.getArch() == llvm::Triple::UnknownArch) 690 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 691 else { 692 const ToolChain *TC; 693 // CUDA toolchains have to be selected differently. They pair host 694 // and device in their implementation. 695 if (TT.isNVPTX()) { 696 const ToolChain *HostTC = 697 C.getSingleOffloadToolChain<Action::OFK_Host>(); 698 assert(HostTC && "Host toolchain should be always defined."); 699 auto &CudaTC = 700 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 701 if (!CudaTC) 702 CudaTC = llvm::make_unique<toolchains::CudaToolChain>( 703 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 704 TC = CudaTC.get(); 705 } else 706 TC = &getToolChain(C.getInputArgs(), TT); 707 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 708 } 709 } 710 } else 711 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 712 } else 713 Diag(clang::diag::warn_drv_empty_joined_argument) 714 << OpenMPTargets->getAsString(C.getInputArgs()); 715 } 716 717 // 718 // TODO: Add support for other offloading programming models here. 719 // 720 } 721 722 /// Looks the given directories for the specified file. 723 /// 724 /// \param[out] FilePath File path, if the file was found. 725 /// \param[in] Dirs Directories used for the search. 726 /// \param[in] FileName Name of the file to search for. 727 /// \return True if file was found. 728 /// 729 /// Looks for file specified by FileName sequentially in directories specified 730 /// by Dirs. 731 /// 732 static bool searchForFile(SmallVectorImpl<char> &FilePath, 733 ArrayRef<std::string> Dirs, 734 StringRef FileName) { 735 SmallString<128> WPath; 736 for (const StringRef &Dir : Dirs) { 737 if (Dir.empty()) 738 continue; 739 WPath.clear(); 740 llvm::sys::path::append(WPath, Dir, FileName); 741 llvm::sys::path::native(WPath); 742 if (llvm::sys::fs::is_regular_file(WPath)) { 743 FilePath = std::move(WPath); 744 return true; 745 } 746 } 747 return false; 748 } 749 750 bool Driver::readConfigFile(StringRef FileName) { 751 // Try reading the given file. 752 SmallVector<const char *, 32> NewCfgArgs; 753 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 754 Diag(diag::err_drv_cannot_read_config_file) << FileName; 755 return true; 756 } 757 758 // Read options from config file. 759 llvm::SmallString<128> CfgFileName(FileName); 760 llvm::sys::path::native(CfgFileName); 761 ConfigFile = CfgFileName.str(); 762 bool ContainErrors; 763 CfgOptions = llvm::make_unique<InputArgList>( 764 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); 765 if (ContainErrors) { 766 CfgOptions.reset(); 767 return true; 768 } 769 770 if (CfgOptions->hasArg(options::OPT_config)) { 771 CfgOptions.reset(); 772 Diag(diag::err_drv_nested_config_file); 773 return true; 774 } 775 776 // Claim all arguments that come from a configuration file so that the driver 777 // does not warn on any that is unused. 778 for (Arg *A : *CfgOptions) 779 A->claim(); 780 return false; 781 } 782 783 bool Driver::loadConfigFile() { 784 std::string CfgFileName; 785 bool FileSpecifiedExplicitly = false; 786 787 // Process options that change search path for config files. 788 if (CLOptions) { 789 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 790 SmallString<128> CfgDir; 791 CfgDir.append( 792 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 793 if (!CfgDir.empty()) { 794 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 795 SystemConfigDir.clear(); 796 else 797 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 798 } 799 } 800 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 801 SmallString<128> CfgDir; 802 CfgDir.append( 803 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 804 if (!CfgDir.empty()) { 805 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 806 UserConfigDir.clear(); 807 else 808 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 809 } 810 } 811 } 812 813 // First try to find config file specified in command line. 814 if (CLOptions) { 815 std::vector<std::string> ConfigFiles = 816 CLOptions->getAllArgValues(options::OPT_config); 817 if (ConfigFiles.size() > 1) { 818 Diag(diag::err_drv_duplicate_config); 819 return true; 820 } 821 822 if (!ConfigFiles.empty()) { 823 CfgFileName = ConfigFiles.front(); 824 assert(!CfgFileName.empty()); 825 826 // If argument contains directory separator, treat it as a path to 827 // configuration file. 828 if (llvm::sys::path::has_parent_path(CfgFileName)) { 829 SmallString<128> CfgFilePath; 830 if (llvm::sys::path::is_relative(CfgFileName)) 831 llvm::sys::fs::current_path(CfgFilePath); 832 llvm::sys::path::append(CfgFilePath, CfgFileName); 833 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 834 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 835 return true; 836 } 837 return readConfigFile(CfgFilePath); 838 } 839 840 FileSpecifiedExplicitly = true; 841 } 842 } 843 844 // If config file is not specified explicitly, try to deduce configuration 845 // from executable name. For instance, an executable 'armv7l-clang' will 846 // search for config file 'armv7l-clang.cfg'. 847 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 848 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 849 850 if (CfgFileName.empty()) 851 return false; 852 853 // Determine architecture part of the file name, if it is present. 854 StringRef CfgFileArch = CfgFileName; 855 size_t ArchPrefixLen = CfgFileArch.find('-'); 856 if (ArchPrefixLen == StringRef::npos) 857 ArchPrefixLen = CfgFileArch.size(); 858 llvm::Triple CfgTriple; 859 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 860 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 861 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 862 ArchPrefixLen = 0; 863 864 if (!StringRef(CfgFileName).endswith(".cfg")) 865 CfgFileName += ".cfg"; 866 867 // If config file starts with architecture name and command line options 868 // redefine architecture (with options like -m32 -LE etc), try finding new 869 // config file with that architecture. 870 SmallString<128> FixedConfigFile; 871 size_t FixedArchPrefixLen = 0; 872 if (ArchPrefixLen) { 873 // Get architecture name from config file name like 'i386.cfg' or 874 // 'armv7l-clang.cfg'. 875 // Check if command line options changes effective triple. 876 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 877 CfgTriple.getTriple(), *CLOptions); 878 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 879 FixedConfigFile = EffectiveTriple.getArchName(); 880 FixedArchPrefixLen = FixedConfigFile.size(); 881 // Append the rest of original file name so that file name transforms 882 // like: i386-clang.cfg -> x86_64-clang.cfg. 883 if (ArchPrefixLen < CfgFileName.size()) 884 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 885 } 886 } 887 888 // Prepare list of directories where config file is searched for. 889 SmallVector<std::string, 3> CfgFileSearchDirs; 890 CfgFileSearchDirs.push_back(UserConfigDir); 891 CfgFileSearchDirs.push_back(SystemConfigDir); 892 CfgFileSearchDirs.push_back(Dir); 893 894 // Try to find config file. First try file with corrected architecture. 895 llvm::SmallString<128> CfgFilePath; 896 if (!FixedConfigFile.empty()) { 897 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 898 return readConfigFile(CfgFilePath); 899 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 900 FixedConfigFile.resize(FixedArchPrefixLen); 901 FixedConfigFile.append(".cfg"); 902 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 903 return readConfigFile(CfgFilePath); 904 } 905 906 // Then try original file name. 907 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 908 return readConfigFile(CfgFilePath); 909 910 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 911 if (!ClangNameParts.ModeSuffix.empty() && 912 !ClangNameParts.TargetPrefix.empty()) { 913 CfgFileName.assign(ClangNameParts.TargetPrefix); 914 CfgFileName.append(".cfg"); 915 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 916 return readConfigFile(CfgFilePath); 917 } 918 919 // Report error but only if config file was specified explicitly, by option 920 // --config. If it was deduced from executable name, it is not an error. 921 if (FileSpecifiedExplicitly) { 922 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 923 for (const std::string &SearchDir : CfgFileSearchDirs) 924 if (!SearchDir.empty()) 925 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 926 return true; 927 } 928 929 return false; 930 } 931 932 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 933 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 934 935 // FIXME: Handle environment options which affect driver behavior, somewhere 936 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 937 938 if (Optional<std::string> CompilerPathValue = 939 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 940 StringRef CompilerPath = *CompilerPathValue; 941 while (!CompilerPath.empty()) { 942 std::pair<StringRef, StringRef> Split = 943 CompilerPath.split(llvm::sys::EnvPathSeparator); 944 PrefixDirs.push_back(Split.first); 945 CompilerPath = Split.second; 946 } 947 } 948 949 // We look for the driver mode option early, because the mode can affect 950 // how other options are parsed. 951 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 952 953 // FIXME: What are we going to do with -V and -b? 954 955 // Arguments specified in command line. 956 bool ContainsError; 957 CLOptions = llvm::make_unique<InputArgList>( 958 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); 959 960 // Try parsing configuration file. 961 if (!ContainsError) 962 ContainsError = loadConfigFile(); 963 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 964 965 // All arguments, from both config file and command line. 966 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 967 : std::move(*CLOptions)); 968 969 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { 970 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 971 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), 972 Index, BaseArg); 973 Copy->getValues() = Opt->getValues(); 974 if (Opt->isClaimed()) 975 Copy->claim(); 976 Args.append(Copy); 977 }; 978 979 if (HasConfigFile) 980 for (auto *Opt : *CLOptions) { 981 if (Opt->getOption().matches(options::OPT_config)) 982 continue; 983 const Arg *BaseArg = &Opt->getBaseArg(); 984 if (BaseArg == Opt) 985 BaseArg = nullptr; 986 appendOneArg(Opt, BaseArg); 987 } 988 989 // In CL mode, look for any pass-through arguments 990 if (IsCLMode() && !ContainsError) { 991 SmallVector<const char *, 16> CLModePassThroughArgList; 992 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 993 A->claim(); 994 CLModePassThroughArgList.push_back(A->getValue()); 995 } 996 997 if (!CLModePassThroughArgList.empty()) { 998 // Parse any pass through args using default clang processing rather 999 // than clang-cl processing. 1000 auto CLModePassThroughOptions = llvm::make_unique<InputArgList>( 1001 ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); 1002 1003 if (!ContainsError) 1004 for (auto *Opt : *CLModePassThroughOptions) { 1005 appendOneArg(Opt, nullptr); 1006 } 1007 } 1008 } 1009 1010 // Check for working directory option before accessing any files 1011 if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) 1012 if (VFS->setCurrentWorkingDirectory(WD->getValue())) 1013 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); 1014 1015 // FIXME: This stuff needs to go into the Compilation, not the driver. 1016 bool CCCPrintPhases; 1017 1018 // Silence driver warnings if requested 1019 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 1020 1021 // -no-canonical-prefixes is used very early in main. 1022 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1023 1024 // Ignore -pipe. 1025 Args.ClaimAllArgs(options::OPT_pipe); 1026 1027 // Extract -ccc args. 1028 // 1029 // FIXME: We need to figure out where this behavior should live. Most of it 1030 // should be outside in the client; the parts that aren't should have proper 1031 // options, either by introducing new ones or by overloading gcc ones like -V 1032 // or -b. 1033 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1034 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1035 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1036 CCCGenericGCCName = A->getValue(); 1037 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 1038 options::OPT_fno_crash_diagnostics, 1039 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 1040 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1041 // and getToolChain is const. 1042 if (IsCLMode()) { 1043 // clang-cl targets MSVC-style Win32. 1044 llvm::Triple T(TargetTriple); 1045 T.setOS(llvm::Triple::Win32); 1046 T.setVendor(llvm::Triple::PC); 1047 T.setEnvironment(llvm::Triple::MSVC); 1048 T.setObjectFormat(llvm::Triple::COFF); 1049 TargetTriple = T.str(); 1050 } 1051 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1052 TargetTriple = A->getValue(); 1053 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1054 Dir = InstalledDir = A->getValue(); 1055 for (const Arg *A : Args.filtered(options::OPT_B)) { 1056 A->claim(); 1057 PrefixDirs.push_back(A->getValue(0)); 1058 } 1059 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1060 SysRoot = A->getValue(); 1061 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1062 DyldPrefix = A->getValue(); 1063 1064 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1065 ResourceDir = A->getValue(); 1066 1067 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1068 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1069 .Case("cwd", SaveTempsCwd) 1070 .Case("obj", SaveTempsObj) 1071 .Default(SaveTempsCwd); 1072 } 1073 1074 setLTOMode(Args); 1075 1076 // Process -fembed-bitcode= flags. 1077 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1078 StringRef Name = A->getValue(); 1079 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1080 .Case("off", EmbedNone) 1081 .Case("all", EmbedBitcode) 1082 .Case("bitcode", EmbedBitcode) 1083 .Case("marker", EmbedMarker) 1084 .Default(~0U); 1085 if (Model == ~0U) { 1086 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1087 << Name; 1088 } else 1089 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1090 } 1091 1092 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1093 llvm::make_unique<InputArgList>(std::move(Args)); 1094 1095 // Perform the default argument translations. 1096 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1097 1098 // Owned by the host. 1099 const ToolChain &TC = getToolChain( 1100 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1101 1102 // The compilation takes ownership of Args. 1103 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1104 ContainsError); 1105 1106 if (!HandleImmediateArgs(*C)) 1107 return C; 1108 1109 // Construct the list of inputs. 1110 InputList Inputs; 1111 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1112 1113 // Populate the tool chains for the offloading devices, if any. 1114 CreateOffloadingDeviceToolChains(*C, Inputs); 1115 1116 // Construct the list of abstract actions to perform for this compilation. On 1117 // MachO targets this uses the driver-driver and universal actions. 1118 if (TC.getTriple().isOSBinFormatMachO()) 1119 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1120 else 1121 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1122 1123 if (CCCPrintPhases) { 1124 PrintActions(*C); 1125 return C; 1126 } 1127 1128 BuildJobs(*C); 1129 1130 return C; 1131 } 1132 1133 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1134 llvm::opt::ArgStringList ASL; 1135 for (const auto *A : Args) 1136 A->render(Args, ASL); 1137 1138 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1139 if (I != ASL.begin()) 1140 OS << ' '; 1141 Command::printArg(OS, *I, true); 1142 } 1143 OS << '\n'; 1144 } 1145 1146 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1147 SmallString<128> &CrashDiagDir) { 1148 using namespace llvm::sys; 1149 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1150 "Only knows about .crash files on Darwin"); 1151 1152 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1153 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1154 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1155 path::home_directory(CrashDiagDir); 1156 if (CrashDiagDir.startswith("/var/root")) 1157 CrashDiagDir = "/"; 1158 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1159 int PID = 1160 #if LLVM_ON_UNIX 1161 getpid(); 1162 #else 1163 0; 1164 #endif 1165 std::error_code EC; 1166 fs::file_status FileStatus; 1167 TimePoint<> LastAccessTime; 1168 SmallString<128> CrashFilePath; 1169 // Lookup the .crash files and get the one generated by a subprocess spawned 1170 // by this driver invocation. 1171 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1172 File != FileEnd && !EC; File.increment(EC)) { 1173 StringRef FileName = path::filename(File->path()); 1174 if (!FileName.startswith(Name)) 1175 continue; 1176 if (fs::status(File->path(), FileStatus)) 1177 continue; 1178 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1179 llvm::MemoryBuffer::getFile(File->path()); 1180 if (!CrashFile) 1181 continue; 1182 // The first line should start with "Process:", otherwise this isn't a real 1183 // .crash file. 1184 StringRef Data = CrashFile.get()->getBuffer(); 1185 if (!Data.startswith("Process:")) 1186 continue; 1187 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1188 size_t ParentProcPos = Data.find("Parent Process:"); 1189 if (ParentProcPos == StringRef::npos) 1190 continue; 1191 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1192 if (LineEnd == StringRef::npos) 1193 continue; 1194 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1195 int OpenBracket = -1, CloseBracket = -1; 1196 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1197 if (ParentProcess[i] == '[') 1198 OpenBracket = i; 1199 if (ParentProcess[i] == ']') 1200 CloseBracket = i; 1201 } 1202 // Extract the parent process PID from the .crash file and check whether 1203 // it matches this driver invocation pid. 1204 int CrashPID; 1205 if (OpenBracket < 0 || CloseBracket < 0 || 1206 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1207 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1208 continue; 1209 } 1210 1211 // Found a .crash file matching the driver pid. To avoid getting an older 1212 // and misleading crash file, continue looking for the most recent. 1213 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1214 // multiple crashes poiting to the same parent process. Since the driver 1215 // does not collect pid information for the dispatched invocation there's 1216 // currently no way to distinguish among them. 1217 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1218 if (FileAccessTime > LastAccessTime) { 1219 CrashFilePath.assign(File->path()); 1220 LastAccessTime = FileAccessTime; 1221 } 1222 } 1223 1224 // If found, copy it over to the location of other reproducer files. 1225 if (!CrashFilePath.empty()) { 1226 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1227 if (EC) 1228 return false; 1229 return true; 1230 } 1231 1232 return false; 1233 } 1234 1235 // When clang crashes, produce diagnostic information including the fully 1236 // preprocessed source file(s). Request that the developer attach the 1237 // diagnostic information to a bug report. 1238 void Driver::generateCompilationDiagnostics( 1239 Compilation &C, const Command &FailingCommand, 1240 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1241 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1242 return; 1243 1244 // Don't try to generate diagnostics for link or dsymutil jobs. 1245 if (FailingCommand.getCreator().isLinkJob() || 1246 FailingCommand.getCreator().isDsymutilJob()) 1247 return; 1248 1249 // Print the version of the compiler. 1250 PrintVersion(C, llvm::errs()); 1251 1252 Diag(clang::diag::note_drv_command_failed_diag_msg) 1253 << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " 1254 "crash backtrace, preprocessed source, and associated run script."; 1255 1256 // Suppress driver output and emit preprocessor output to temp file. 1257 Mode = CPPMode; 1258 CCGenDiagnostics = true; 1259 1260 // Save the original job command(s). 1261 Command Cmd = FailingCommand; 1262 1263 // Keep track of whether we produce any errors while trying to produce 1264 // preprocessed sources. 1265 DiagnosticErrorTrap Trap(Diags); 1266 1267 // Suppress tool output. 1268 C.initCompilationForDiagnostics(); 1269 1270 // Construct the list of inputs. 1271 InputList Inputs; 1272 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1273 1274 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1275 bool IgnoreInput = false; 1276 1277 // Ignore input from stdin or any inputs that cannot be preprocessed. 1278 // Check type first as not all linker inputs have a value. 1279 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1280 IgnoreInput = true; 1281 } else if (!strcmp(it->second->getValue(), "-")) { 1282 Diag(clang::diag::note_drv_command_failed_diag_msg) 1283 << "Error generating preprocessed source(s) - " 1284 "ignoring input from stdin."; 1285 IgnoreInput = true; 1286 } 1287 1288 if (IgnoreInput) { 1289 it = Inputs.erase(it); 1290 ie = Inputs.end(); 1291 } else { 1292 ++it; 1293 } 1294 } 1295 1296 if (Inputs.empty()) { 1297 Diag(clang::diag::note_drv_command_failed_diag_msg) 1298 << "Error generating preprocessed source(s) - " 1299 "no preprocessable inputs."; 1300 return; 1301 } 1302 1303 // Don't attempt to generate preprocessed files if multiple -arch options are 1304 // used, unless they're all duplicates. 1305 llvm::StringSet<> ArchNames; 1306 for (const Arg *A : C.getArgs()) { 1307 if (A->getOption().matches(options::OPT_arch)) { 1308 StringRef ArchName = A->getValue(); 1309 ArchNames.insert(ArchName); 1310 } 1311 } 1312 if (ArchNames.size() > 1) { 1313 Diag(clang::diag::note_drv_command_failed_diag_msg) 1314 << "Error generating preprocessed source(s) - cannot generate " 1315 "preprocessed source with multiple -arch options."; 1316 return; 1317 } 1318 1319 // Construct the list of abstract actions to perform for this compilation. On 1320 // Darwin OSes this uses the driver-driver and builds universal actions. 1321 const ToolChain &TC = C.getDefaultToolChain(); 1322 if (TC.getTriple().isOSBinFormatMachO()) 1323 BuildUniversalActions(C, TC, Inputs); 1324 else 1325 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1326 1327 BuildJobs(C); 1328 1329 // If there were errors building the compilation, quit now. 1330 if (Trap.hasErrorOccurred()) { 1331 Diag(clang::diag::note_drv_command_failed_diag_msg) 1332 << "Error generating preprocessed source(s)."; 1333 return; 1334 } 1335 1336 // Generate preprocessed output. 1337 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1338 C.ExecuteJobs(C.getJobs(), FailingCommands); 1339 1340 // If any of the preprocessing commands failed, clean up and exit. 1341 if (!FailingCommands.empty()) { 1342 Diag(clang::diag::note_drv_command_failed_diag_msg) 1343 << "Error generating preprocessed source(s)."; 1344 return; 1345 } 1346 1347 const ArgStringList &TempFiles = C.getTempFiles(); 1348 if (TempFiles.empty()) { 1349 Diag(clang::diag::note_drv_command_failed_diag_msg) 1350 << "Error generating preprocessed source(s)."; 1351 return; 1352 } 1353 1354 Diag(clang::diag::note_drv_command_failed_diag_msg) 1355 << "\n********************\n\n" 1356 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1357 "Preprocessed source(s) and associated run script(s) are located at:"; 1358 1359 SmallString<128> VFS; 1360 SmallString<128> ReproCrashFilename; 1361 for (const char *TempFile : TempFiles) { 1362 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1363 if (Report) 1364 Report->TemporaryFiles.push_back(TempFile); 1365 if (ReproCrashFilename.empty()) { 1366 ReproCrashFilename = TempFile; 1367 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1368 } 1369 if (StringRef(TempFile).endswith(".cache")) { 1370 // In some cases (modules) we'll dump extra data to help with reproducing 1371 // the crash into a directory next to the output. 1372 VFS = llvm::sys::path::filename(TempFile); 1373 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1374 } 1375 } 1376 1377 // Assume associated files are based off of the first temporary file. 1378 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1379 1380 llvm::SmallString<128> Script(CrashInfo.Filename); 1381 llvm::sys::path::replace_extension(Script, "sh"); 1382 std::error_code EC; 1383 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); 1384 if (EC) { 1385 Diag(clang::diag::note_drv_command_failed_diag_msg) 1386 << "Error generating run script: " << Script << " " << EC.message(); 1387 } else { 1388 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1389 << "# Driver args: "; 1390 printArgList(ScriptOS, C.getInputArgs()); 1391 ScriptOS << "# Original command: "; 1392 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1393 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1394 if (!AdditionalInformation.empty()) 1395 ScriptOS << "\n# Additional information: " << AdditionalInformation 1396 << "\n"; 1397 if (Report) 1398 Report->TemporaryFiles.push_back(Script.str()); 1399 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1400 } 1401 1402 // On darwin, provide information about the .crash diagnostic report. 1403 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1404 SmallString<128> CrashDiagDir; 1405 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1406 Diag(clang::diag::note_drv_command_failed_diag_msg) 1407 << ReproCrashFilename.str(); 1408 } else { // Suggest a directory for the user to look for .crash files. 1409 llvm::sys::path::append(CrashDiagDir, Name); 1410 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1411 Diag(clang::diag::note_drv_command_failed_diag_msg) 1412 << "Crash backtrace is located in"; 1413 Diag(clang::diag::note_drv_command_failed_diag_msg) 1414 << CrashDiagDir.str(); 1415 Diag(clang::diag::note_drv_command_failed_diag_msg) 1416 << "(choose the .crash file that corresponds to your crash)"; 1417 } 1418 } 1419 1420 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1421 options::OPT_frewrite_map_file_EQ)) 1422 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1423 1424 Diag(clang::diag::note_drv_command_failed_diag_msg) 1425 << "\n\n********************"; 1426 } 1427 1428 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1429 // Since commandLineFitsWithinSystemLimits() may underestimate system's 1430 // capacity if the tool does not support response files, there is a chance/ 1431 // that things will just work without a response file, so we silently just 1432 // skip it. 1433 if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || 1434 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 1435 Cmd.getArguments())) 1436 return; 1437 1438 std::string TmpName = GetTemporaryPath("response", "txt"); 1439 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1440 } 1441 1442 int Driver::ExecuteCompilation( 1443 Compilation &C, 1444 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1445 // Just print if -### was present. 1446 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1447 C.getJobs().Print(llvm::errs(), "\n", true); 1448 return 0; 1449 } 1450 1451 // If there were errors building the compilation, quit now. 1452 if (Diags.hasErrorOccurred()) 1453 return 1; 1454 1455 // Set up response file names for each command, if necessary 1456 for (auto &Job : C.getJobs()) 1457 setUpResponseFiles(C, Job); 1458 1459 C.ExecuteJobs(C.getJobs(), FailingCommands); 1460 1461 // If the command succeeded, we are done. 1462 if (FailingCommands.empty()) 1463 return 0; 1464 1465 // Otherwise, remove result files and print extra information about abnormal 1466 // failures. 1467 int Res = 0; 1468 for (const auto &CmdPair : FailingCommands) { 1469 int CommandRes = CmdPair.first; 1470 const Command *FailingCommand = CmdPair.second; 1471 1472 // Remove result files if we're not saving temps. 1473 if (!isSaveTempsEnabled()) { 1474 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1475 C.CleanupFileMap(C.getResultFiles(), JA, true); 1476 1477 // Failure result files are valid unless we crashed. 1478 if (CommandRes < 0) 1479 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1480 } 1481 1482 #if LLVM_ON_UNIX 1483 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code 1484 // for SIGPIPE. Do not print diagnostics for this case. 1485 if (CommandRes == EX_IOERR) { 1486 Res = CommandRes; 1487 continue; 1488 } 1489 #endif 1490 1491 // Print extra information about abnormal failures, if possible. 1492 // 1493 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1494 // status was 1, assume the command failed normally. In particular, if it 1495 // was the compiler then assume it gave a reasonable error code. Failures 1496 // in other tools are less common, and they generally have worse 1497 // diagnostics, so always print the diagnostic there. 1498 const Tool &FailingTool = FailingCommand->getCreator(); 1499 1500 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 1501 // FIXME: See FIXME above regarding result code interpretation. 1502 if (CommandRes < 0) 1503 Diag(clang::diag::err_drv_command_signalled) 1504 << FailingTool.getShortName(); 1505 else 1506 Diag(clang::diag::err_drv_command_failed) 1507 << FailingTool.getShortName() << CommandRes; 1508 } 1509 } 1510 return Res; 1511 } 1512 1513 void Driver::PrintHelp(bool ShowHidden) const { 1514 unsigned IncludedFlagsBitmask; 1515 unsigned ExcludedFlagsBitmask; 1516 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1517 getIncludeExcludeOptionFlagMasks(IsCLMode()); 1518 1519 ExcludedFlagsBitmask |= options::NoDriverOption; 1520 if (!ShowHidden) 1521 ExcludedFlagsBitmask |= HelpHidden; 1522 1523 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 1524 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 1525 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1526 /*ShowAllAliases=*/false); 1527 } 1528 1529 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1530 // FIXME: The following handlers should use a callback mechanism, we don't 1531 // know what the client would like to do. 1532 OS << getClangFullVersion() << '\n'; 1533 const ToolChain &TC = C.getDefaultToolChain(); 1534 OS << "Target: " << TC.getTripleString() << '\n'; 1535 1536 // Print the threading model. 1537 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1538 // Don't print if the ToolChain would have barfed on it already 1539 if (TC.isThreadModelSupported(A->getValue())) 1540 OS << "Thread model: " << A->getValue(); 1541 } else 1542 OS << "Thread model: " << TC.getThreadModel(); 1543 OS << '\n'; 1544 1545 // Print out the install directory. 1546 OS << "InstalledDir: " << InstalledDir << '\n'; 1547 1548 // If configuration file was used, print its path. 1549 if (!ConfigFile.empty()) 1550 OS << "Configuration file: " << ConfigFile << '\n'; 1551 } 1552 1553 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1554 /// option. 1555 static void PrintDiagnosticCategories(raw_ostream &OS) { 1556 // Skip the empty category. 1557 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1558 ++i) 1559 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1560 } 1561 1562 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1563 if (PassedFlags == "") 1564 return; 1565 // Print out all options that start with a given argument. This is used for 1566 // shell autocompletion. 1567 std::vector<std::string> SuggestedCompletions; 1568 std::vector<std::string> Flags; 1569 1570 unsigned short DisableFlags = 1571 options::NoDriverOption | options::Unsupported | options::Ignored; 1572 1573 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 1574 // because the latter indicates that the user put space before pushing tab 1575 // which should end up in a file completion. 1576 const bool HasSpace = PassedFlags.endswith(","); 1577 1578 // Parse PassedFlags by "," as all the command-line flags are passed to this 1579 // function separated by "," 1580 StringRef TargetFlags = PassedFlags; 1581 while (TargetFlags != "") { 1582 StringRef CurFlag; 1583 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1584 Flags.push_back(std::string(CurFlag)); 1585 } 1586 1587 // We want to show cc1-only options only when clang is invoked with -cc1 or 1588 // -Xclang. 1589 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 1590 DisableFlags &= ~options::NoDriverOption; 1591 1592 StringRef Cur; 1593 Cur = Flags.at(Flags.size() - 1); 1594 StringRef Prev; 1595 if (Flags.size() >= 2) { 1596 Prev = Flags.at(Flags.size() - 2); 1597 SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur); 1598 } 1599 1600 if (SuggestedCompletions.empty()) 1601 SuggestedCompletions = Opts->suggestValueCompletions(Cur, ""); 1602 1603 // If Flags were empty, it means the user typed `clang [tab]` where we should 1604 // list all possible flags. If there was no value completion and the user 1605 // pressed tab after a space, we should fall back to a file completion. 1606 // We're printing a newline to be consistent with what we print at the end of 1607 // this function. 1608 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 1609 llvm::outs() << '\n'; 1610 return; 1611 } 1612 1613 // When flag ends with '=' and there was no value completion, return empty 1614 // string and fall back to the file autocompletion. 1615 if (SuggestedCompletions.empty() && !Cur.endswith("=")) { 1616 // If the flag is in the form of "--autocomplete=-foo", 1617 // we were requested to print out all option names that start with "-foo". 1618 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1619 SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags); 1620 1621 // We have to query the -W flags manually as they're not in the OptTable. 1622 // TODO: Find a good way to add them to OptTable instead and them remove 1623 // this code. 1624 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1625 if (S.startswith(Cur)) 1626 SuggestedCompletions.push_back(S); 1627 } 1628 1629 // Sort the autocomplete candidates so that shells print them out in a 1630 // deterministic order. We could sort in any way, but we chose 1631 // case-insensitive sorting for consistency with the -help option 1632 // which prints out options in the case-insensitive alphabetical order. 1633 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 1634 if (int X = A.compare_lower(B)) 1635 return X < 0; 1636 return A.compare(B) > 0; 1637 }); 1638 1639 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1640 } 1641 1642 bool Driver::HandleImmediateArgs(const Compilation &C) { 1643 // The order these options are handled in gcc is all over the place, but we 1644 // don't expect inconsistencies w.r.t. that to matter in practice. 1645 1646 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1647 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1648 return false; 1649 } 1650 1651 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1652 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1653 // return an answer which matches our definition of __VERSION__. 1654 llvm::outs() << CLANG_VERSION_STRING << "\n"; 1655 return false; 1656 } 1657 1658 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1659 PrintDiagnosticCategories(llvm::outs()); 1660 return false; 1661 } 1662 1663 if (C.getArgs().hasArg(options::OPT_help) || 1664 C.getArgs().hasArg(options::OPT__help_hidden)) { 1665 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1666 return false; 1667 } 1668 1669 if (C.getArgs().hasArg(options::OPT__version)) { 1670 // Follow gcc behavior and use stdout for --version and stderr for -v. 1671 PrintVersion(C, llvm::outs()); 1672 return false; 1673 } 1674 1675 if (C.getArgs().hasArg(options::OPT_v) || 1676 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 1677 C.getArgs().hasArg(options::OPT_print_supported_cpus)) { 1678 PrintVersion(C, llvm::errs()); 1679 SuppressMissingInputWarning = true; 1680 } 1681 1682 if (C.getArgs().hasArg(options::OPT_v)) { 1683 if (!SystemConfigDir.empty()) 1684 llvm::errs() << "System configuration file directory: " 1685 << SystemConfigDir << "\n"; 1686 if (!UserConfigDir.empty()) 1687 llvm::errs() << "User configuration file directory: " 1688 << UserConfigDir << "\n"; 1689 } 1690 1691 const ToolChain &TC = C.getDefaultToolChain(); 1692 1693 if (C.getArgs().hasArg(options::OPT_v)) 1694 TC.printVerboseInfo(llvm::errs()); 1695 1696 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1697 llvm::outs() << ResourceDir << '\n'; 1698 return false; 1699 } 1700 1701 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1702 llvm::outs() << "programs: ="; 1703 bool separator = false; 1704 for (const std::string &Path : TC.getProgramPaths()) { 1705 if (separator) 1706 llvm::outs() << llvm::sys::EnvPathSeparator; 1707 llvm::outs() << Path; 1708 separator = true; 1709 } 1710 llvm::outs() << "\n"; 1711 llvm::outs() << "libraries: =" << ResourceDir; 1712 1713 StringRef sysroot = C.getSysRoot(); 1714 1715 for (const std::string &Path : TC.getFilePaths()) { 1716 // Always print a separator. ResourceDir was the first item shown. 1717 llvm::outs() << llvm::sys::EnvPathSeparator; 1718 // Interpretation of leading '=' is needed only for NetBSD. 1719 if (Path[0] == '=') 1720 llvm::outs() << sysroot << Path.substr(1); 1721 else 1722 llvm::outs() << Path; 1723 } 1724 llvm::outs() << "\n"; 1725 return false; 1726 } 1727 1728 // FIXME: The following handlers should use a callback mechanism, we don't 1729 // know what the client would like to do. 1730 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1731 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1732 return false; 1733 } 1734 1735 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1736 StringRef ProgName = A->getValue(); 1737 1738 // Null program name cannot have a path. 1739 if (! ProgName.empty()) 1740 llvm::outs() << GetProgramPath(ProgName, TC); 1741 1742 llvm::outs() << "\n"; 1743 return false; 1744 } 1745 1746 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1747 StringRef PassedFlags = A->getValue(); 1748 HandleAutocompletions(PassedFlags); 1749 return false; 1750 } 1751 1752 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1753 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1754 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1755 RegisterEffectiveTriple TripleRAII(TC, Triple); 1756 switch (RLT) { 1757 case ToolChain::RLT_CompilerRT: 1758 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1759 break; 1760 case ToolChain::RLT_Libgcc: 1761 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1762 break; 1763 } 1764 return false; 1765 } 1766 1767 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1768 for (const Multilib &Multilib : TC.getMultilibs()) 1769 llvm::outs() << Multilib << "\n"; 1770 return false; 1771 } 1772 1773 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1774 const Multilib &Multilib = TC.getMultilib(); 1775 if (Multilib.gccSuffix().empty()) 1776 llvm::outs() << ".\n"; 1777 else { 1778 StringRef Suffix(Multilib.gccSuffix()); 1779 assert(Suffix.front() == '/'); 1780 llvm::outs() << Suffix.substr(1) << "\n"; 1781 } 1782 return false; 1783 } 1784 1785 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 1786 llvm::outs() << TC.getTripleString() << "\n"; 1787 return false; 1788 } 1789 1790 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 1791 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1792 llvm::outs() << Triple.getTriple() << "\n"; 1793 return false; 1794 } 1795 1796 return true; 1797 } 1798 1799 // Display an action graph human-readably. Action A is the "sink" node 1800 // and latest-occuring action. Traversal is in pre-order, visiting the 1801 // inputs to each action before printing the action itself. 1802 static unsigned PrintActions1(const Compilation &C, Action *A, 1803 std::map<Action *, unsigned> &Ids) { 1804 if (Ids.count(A)) // A was already visited. 1805 return Ids[A]; 1806 1807 std::string str; 1808 llvm::raw_string_ostream os(str); 1809 1810 os << Action::getClassName(A->getKind()) << ", "; 1811 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1812 os << "\"" << IA->getInputArg().getValue() << "\""; 1813 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1814 os << '"' << BIA->getArchName() << '"' << ", {" 1815 << PrintActions1(C, *BIA->input_begin(), Ids) << "}"; 1816 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1817 bool IsFirst = true; 1818 OA->doOnEachDependence( 1819 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1820 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1821 // sm_35 this will generate: 1822 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1823 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1824 if (!IsFirst) 1825 os << ", "; 1826 os << '"'; 1827 if (TC) 1828 os << A->getOffloadingKindPrefix(); 1829 else 1830 os << "host"; 1831 os << " ("; 1832 os << TC->getTriple().normalize(); 1833 1834 if (BoundArch) 1835 os << ":" << BoundArch; 1836 os << ")"; 1837 os << '"'; 1838 os << " {" << PrintActions1(C, A, Ids) << "}"; 1839 IsFirst = false; 1840 }); 1841 } else { 1842 const ActionList *AL = &A->getInputs(); 1843 1844 if (AL->size()) { 1845 const char *Prefix = "{"; 1846 for (Action *PreRequisite : *AL) { 1847 os << Prefix << PrintActions1(C, PreRequisite, Ids); 1848 Prefix = ", "; 1849 } 1850 os << "}"; 1851 } else 1852 os << "{}"; 1853 } 1854 1855 // Append offload info for all options other than the offloading action 1856 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1857 std::string offload_str; 1858 llvm::raw_string_ostream offload_os(offload_str); 1859 if (!isa<OffloadAction>(A)) { 1860 auto S = A->getOffloadingKindPrefix(); 1861 if (!S.empty()) { 1862 offload_os << ", (" << S; 1863 if (A->getOffloadingArch()) 1864 offload_os << ", " << A->getOffloadingArch(); 1865 offload_os << ")"; 1866 } 1867 } 1868 1869 unsigned Id = Ids.size(); 1870 Ids[A] = Id; 1871 llvm::errs() << Id << ": " << os.str() << ", " 1872 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1873 1874 return Id; 1875 } 1876 1877 // Print the action graphs in a compilation C. 1878 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1879 void Driver::PrintActions(const Compilation &C) const { 1880 std::map<Action *, unsigned> Ids; 1881 for (Action *A : C.getActions()) 1882 PrintActions1(C, A, Ids); 1883 } 1884 1885 /// Check whether the given input tree contains any compilation or 1886 /// assembly actions. 1887 static bool ContainsCompileOrAssembleAction(const Action *A) { 1888 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1889 isa<AssembleJobAction>(A)) 1890 return true; 1891 1892 for (const Action *Input : A->inputs()) 1893 if (ContainsCompileOrAssembleAction(Input)) 1894 return true; 1895 1896 return false; 1897 } 1898 1899 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1900 const InputList &BAInputs) const { 1901 DerivedArgList &Args = C.getArgs(); 1902 ActionList &Actions = C.getActions(); 1903 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 1904 // Collect the list of architectures. Duplicates are allowed, but should only 1905 // be handled once (in the order seen). 1906 llvm::StringSet<> ArchNames; 1907 SmallVector<const char *, 4> Archs; 1908 for (Arg *A : Args) { 1909 if (A->getOption().matches(options::OPT_arch)) { 1910 // Validate the option here; we don't save the type here because its 1911 // particular spelling may participate in other driver choices. 1912 llvm::Triple::ArchType Arch = 1913 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 1914 if (Arch == llvm::Triple::UnknownArch) { 1915 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 1916 continue; 1917 } 1918 1919 A->claim(); 1920 if (ArchNames.insert(A->getValue()).second) 1921 Archs.push_back(A->getValue()); 1922 } 1923 } 1924 1925 // When there is no explicit arch for this platform, make sure we still bind 1926 // the architecture (to the default) so that -Xarch_ is handled correctly. 1927 if (!Archs.size()) 1928 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 1929 1930 ActionList SingleActions; 1931 BuildActions(C, Args, BAInputs, SingleActions); 1932 1933 // Add in arch bindings for every top level action, as well as lipo and 1934 // dsymutil steps if needed. 1935 for (Action* Act : SingleActions) { 1936 // Make sure we can lipo this kind of output. If not (and it is an actual 1937 // output) then we disallow, since we can't create an output file with the 1938 // right name without overwriting it. We could remove this oddity by just 1939 // changing the output names to include the arch, which would also fix 1940 // -save-temps. Compatibility wins for now. 1941 1942 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 1943 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 1944 << types::getTypeName(Act->getType()); 1945 1946 ActionList Inputs; 1947 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 1948 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 1949 1950 // Lipo if necessary, we do it this way because we need to set the arch flag 1951 // so that -Xarch_ gets overwritten. 1952 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 1953 Actions.append(Inputs.begin(), Inputs.end()); 1954 else 1955 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 1956 1957 // Handle debug info queries. 1958 Arg *A = Args.getLastArg(options::OPT_g_Group); 1959 if (A && !A->getOption().matches(options::OPT_g0) && 1960 !A->getOption().matches(options::OPT_gstabs) && 1961 ContainsCompileOrAssembleAction(Actions.back())) { 1962 1963 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 1964 // have a compile input. We need to run 'dsymutil' ourselves in such cases 1965 // because the debug info will refer to a temporary object file which 1966 // will be removed at the end of the compilation process. 1967 if (Act->getType() == types::TY_Image) { 1968 ActionList Inputs; 1969 Inputs.push_back(Actions.back()); 1970 Actions.pop_back(); 1971 Actions.push_back( 1972 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 1973 } 1974 1975 // Verify the debug info output. 1976 if (Args.hasArg(options::OPT_verify_debug_info)) { 1977 Action* LastAction = Actions.back(); 1978 Actions.pop_back(); 1979 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 1980 LastAction, types::TY_Nothing)); 1981 } 1982 } 1983 } 1984 } 1985 1986 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 1987 types::ID Ty, bool TypoCorrect) const { 1988 if (!getCheckInputsExist()) 1989 return true; 1990 1991 // stdin always exists. 1992 if (Value == "-") 1993 return true; 1994 1995 if (getVFS().exists(Value)) 1996 return true; 1997 1998 if (IsCLMode()) { 1999 if (!llvm::sys::path::is_absolute(Twine(Value)) && 2000 llvm::sys::Process::FindInEnvPath("LIB", Value)) 2001 return true; 2002 2003 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 2004 // Arguments to the /link flag might cause the linker to search for object 2005 // and library files in paths we don't know about. Don't error in such 2006 // cases. 2007 return true; 2008 } 2009 } 2010 2011 if (TypoCorrect) { 2012 // Check if the filename is a typo for an option flag. OptTable thinks 2013 // that all args that are not known options and that start with / are 2014 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2015 // the option `/diagnostics:caret` than a reference to a file in the root 2016 // directory. 2017 unsigned IncludedFlagsBitmask; 2018 unsigned ExcludedFlagsBitmask; 2019 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 2020 getIncludeExcludeOptionFlagMasks(IsCLMode()); 2021 std::string Nearest; 2022 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, 2023 ExcludedFlagsBitmask) <= 1) { 2024 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2025 << Value << Nearest; 2026 return false; 2027 } 2028 } 2029 2030 Diag(clang::diag::err_drv_no_such_file) << Value; 2031 return false; 2032 } 2033 2034 // Construct a the list of inputs and their types. 2035 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2036 InputList &Inputs) const { 2037 // Track the current user specified (-x) input. We also explicitly track the 2038 // argument used to set the type; we only want to claim the type when we 2039 // actually use it, so we warn about unused -x arguments. 2040 types::ID InputType = types::TY_Nothing; 2041 Arg *InputTypeArg = nullptr; 2042 2043 // The last /TC or /TP option sets the input type to C or C++ globally. 2044 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2045 options::OPT__SLASH_TP)) { 2046 InputTypeArg = TCTP; 2047 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2048 ? types::TY_C 2049 : types::TY_CXX; 2050 2051 Arg *Previous = nullptr; 2052 bool ShowNote = false; 2053 for (Arg *A : 2054 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2055 if (Previous) { 2056 Diag(clang::diag::warn_drv_overriding_flag_option) 2057 << Previous->getSpelling() << A->getSpelling(); 2058 ShowNote = true; 2059 } 2060 Previous = A; 2061 } 2062 if (ShowNote) 2063 Diag(clang::diag::note_drv_t_option_is_global); 2064 2065 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 2066 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 2067 } 2068 2069 for (Arg *A : Args) { 2070 if (A->getOption().getKind() == Option::InputClass) { 2071 const char *Value = A->getValue(); 2072 types::ID Ty = types::TY_INVALID; 2073 2074 // Infer the input type if necessary. 2075 if (InputType == types::TY_Nothing) { 2076 // If there was an explicit arg for this, claim it. 2077 if (InputTypeArg) 2078 InputTypeArg->claim(); 2079 2080 // stdin must be handled specially. 2081 if (memcmp(Value, "-", 2) == 0) { 2082 // If running with -E, treat as a C input (this changes the builtin 2083 // macros, for example). This may be overridden by -ObjC below. 2084 // 2085 // Otherwise emit an error but still use a valid type to avoid 2086 // spurious errors (e.g., no inputs). 2087 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2088 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2089 : clang::diag::err_drv_unknown_stdin_type); 2090 Ty = types::TY_C; 2091 } else { 2092 // Otherwise lookup by extension. 2093 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2094 // clang-cl /E, or Object otherwise. 2095 // We use a host hook here because Darwin at least has its own 2096 // idea of what .s is. 2097 if (const char *Ext = strrchr(Value, '.')) 2098 Ty = TC.LookupTypeForExtension(Ext + 1); 2099 2100 if (Ty == types::TY_INVALID) { 2101 if (CCCIsCPP()) 2102 Ty = types::TY_C; 2103 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) 2104 Ty = types::TY_CXX; 2105 else 2106 Ty = types::TY_Object; 2107 } 2108 2109 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2110 // should autodetect some input files as C++ for g++ compatibility. 2111 if (CCCIsCXX()) { 2112 types::ID OldTy = Ty; 2113 Ty = types::lookupCXXTypeForCType(Ty); 2114 2115 if (Ty != OldTy) 2116 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2117 << getTypeName(OldTy) << getTypeName(Ty); 2118 } 2119 } 2120 2121 // -ObjC and -ObjC++ override the default language, but only for "source 2122 // files". We just treat everything that isn't a linker input as a 2123 // source file. 2124 // 2125 // FIXME: Clean this up if we move the phase sequence into the type. 2126 if (Ty != types::TY_Object) { 2127 if (Args.hasArg(options::OPT_ObjC)) 2128 Ty = types::TY_ObjC; 2129 else if (Args.hasArg(options::OPT_ObjCXX)) 2130 Ty = types::TY_ObjCXX; 2131 } 2132 } else { 2133 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 2134 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 2135 // If emulating cl.exe, make sure that /TC and /TP don't affect input 2136 // object files. 2137 const char *Ext = strrchr(Value, '.'); 2138 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 2139 Ty = types::TY_Object; 2140 } 2141 if (Ty == types::TY_INVALID) { 2142 Ty = InputType; 2143 InputTypeArg->claim(); 2144 } 2145 } 2146 2147 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 2148 Inputs.push_back(std::make_pair(Ty, A)); 2149 2150 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 2151 StringRef Value = A->getValue(); 2152 if (DiagnoseInputExistence(Args, Value, types::TY_C, 2153 /*TypoCorrect=*/false)) { 2154 Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue()); 2155 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 2156 } 2157 A->claim(); 2158 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 2159 StringRef Value = A->getValue(); 2160 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 2161 /*TypoCorrect=*/false)) { 2162 Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue()); 2163 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 2164 } 2165 A->claim(); 2166 } else if (A->getOption().hasFlag(options::LinkerInput)) { 2167 // Just treat as object type, we could make a special type for this if 2168 // necessary. 2169 Inputs.push_back(std::make_pair(types::TY_Object, A)); 2170 2171 } else if (A->getOption().matches(options::OPT_x)) { 2172 InputTypeArg = A; 2173 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 2174 A->claim(); 2175 2176 // Follow gcc behavior and treat as linker input for invalid -x 2177 // options. Its not clear why we shouldn't just revert to unknown; but 2178 // this isn't very important, we might as well be bug compatible. 2179 if (!InputType) { 2180 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2181 InputType = types::TY_Object; 2182 } 2183 } else if (A->getOption().getID() == options::OPT__SLASH_U) { 2184 assert(A->getNumValues() == 1 && "The /U option has one value."); 2185 StringRef Val = A->getValue(0); 2186 if (Val.find_first_of("/\\") != StringRef::npos) { 2187 // Warn about e.g. "/Users/me/myfile.c". 2188 Diag(diag::warn_slash_u_filename) << Val; 2189 Diag(diag::note_use_dashdash); 2190 } 2191 } 2192 } 2193 if (CCCIsCPP() && Inputs.empty()) { 2194 // If called as standalone preprocessor, stdin is processed 2195 // if no other input is present. 2196 Arg *A = MakeInputArg(Args, *Opts, "-"); 2197 Inputs.push_back(std::make_pair(types::TY_C, A)); 2198 } 2199 } 2200 2201 namespace { 2202 /// Provides a convenient interface for different programming models to generate 2203 /// the required device actions. 2204 class OffloadingActionBuilder final { 2205 /// Flag used to trace errors in the builder. 2206 bool IsValid = false; 2207 2208 /// The compilation that is using this builder. 2209 Compilation &C; 2210 2211 /// Map between an input argument and the offload kinds used to process it. 2212 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2213 2214 /// Builder interface. It doesn't build anything or keep any state. 2215 class DeviceActionBuilder { 2216 public: 2217 typedef llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhasesTy; 2218 2219 enum ActionBuilderReturnCode { 2220 // The builder acted successfully on the current action. 2221 ABRT_Success, 2222 // The builder didn't have to act on the current action. 2223 ABRT_Inactive, 2224 // The builder was successful and requested the host action to not be 2225 // generated. 2226 ABRT_Ignore_Host, 2227 }; 2228 2229 protected: 2230 /// Compilation associated with this builder. 2231 Compilation &C; 2232 2233 /// Tool chains associated with this builder. The same programming 2234 /// model may have associated one or more tool chains. 2235 SmallVector<const ToolChain *, 2> ToolChains; 2236 2237 /// The derived arguments associated with this builder. 2238 DerivedArgList &Args; 2239 2240 /// The inputs associated with this builder. 2241 const Driver::InputList &Inputs; 2242 2243 /// The associated offload kind. 2244 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2245 2246 public: 2247 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2248 const Driver::InputList &Inputs, 2249 Action::OffloadKind AssociatedOffloadKind) 2250 : C(C), Args(Args), Inputs(Inputs), 2251 AssociatedOffloadKind(AssociatedOffloadKind) {} 2252 virtual ~DeviceActionBuilder() {} 2253 2254 /// Fill up the array \a DA with all the device dependences that should be 2255 /// added to the provided host action \a HostAction. By default it is 2256 /// inactive. 2257 virtual ActionBuilderReturnCode 2258 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2259 phases::ID CurPhase, phases::ID FinalPhase, 2260 PhasesTy &Phases) { 2261 return ABRT_Inactive; 2262 } 2263 2264 /// Update the state to include the provided host action \a HostAction as a 2265 /// dependency of the current device action. By default it is inactive. 2266 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2267 return ABRT_Inactive; 2268 } 2269 2270 /// Append top level actions generated by the builder. Return true if errors 2271 /// were found. 2272 virtual void appendTopLevelActions(ActionList &AL) {} 2273 2274 /// Append linker actions generated by the builder. Return true if errors 2275 /// were found. 2276 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2277 2278 /// Initialize the builder. Return true if any initialization errors are 2279 /// found. 2280 virtual bool initialize() { return false; } 2281 2282 /// Return true if the builder can use bundling/unbundling. 2283 virtual bool canUseBundlerUnbundler() const { return false; } 2284 2285 /// Return true if this builder is valid. We have a valid builder if we have 2286 /// associated device tool chains. 2287 bool isValid() { return !ToolChains.empty(); } 2288 2289 /// Return the associated offload kind. 2290 Action::OffloadKind getAssociatedOffloadKind() { 2291 return AssociatedOffloadKind; 2292 } 2293 }; 2294 2295 /// Base class for CUDA/HIP action builder. It injects device code in 2296 /// the host backend action. 2297 class CudaActionBuilderBase : public DeviceActionBuilder { 2298 protected: 2299 /// Flags to signal if the user requested host-only or device-only 2300 /// compilation. 2301 bool CompileHostOnly = false; 2302 bool CompileDeviceOnly = false; 2303 2304 /// List of GPU architectures to use in this compilation. 2305 SmallVector<CudaArch, 4> GpuArchList; 2306 2307 /// The CUDA actions for the current input. 2308 ActionList CudaDeviceActions; 2309 2310 /// The CUDA fat binary if it was generated for the current input. 2311 Action *CudaFatBinary = nullptr; 2312 2313 /// Flag that is set to true if this builder acted on the current input. 2314 bool IsActive = false; 2315 2316 /// Flag for -fgpu-rdc. 2317 bool Relocatable = false; 2318 public: 2319 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 2320 const Driver::InputList &Inputs, 2321 Action::OffloadKind OFKind) 2322 : DeviceActionBuilder(C, Args, Inputs, OFKind) {} 2323 2324 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2325 // While generating code for CUDA, we only depend on the host input action 2326 // to trigger the creation of all the CUDA device actions. 2327 2328 // If we are dealing with an input action, replicate it for each GPU 2329 // architecture. If we are in host-only mode we return 'success' so that 2330 // the host uses the CUDA offload kind. 2331 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2332 assert(!GpuArchList.empty() && 2333 "We should have at least one GPU architecture."); 2334 2335 // If the host input is not CUDA or HIP, we don't need to bother about 2336 // this input. 2337 if (IA->getType() != types::TY_CUDA && 2338 IA->getType() != types::TY_HIP) { 2339 // The builder will ignore this input. 2340 IsActive = false; 2341 return ABRT_Inactive; 2342 } 2343 2344 // Set the flag to true, so that the builder acts on the current input. 2345 IsActive = true; 2346 2347 if (CompileHostOnly) 2348 return ABRT_Success; 2349 2350 // Replicate inputs for each GPU architecture. 2351 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 2352 : types::TY_CUDA_DEVICE; 2353 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2354 CudaDeviceActions.push_back( 2355 C.MakeAction<InputAction>(IA->getInputArg(), Ty)); 2356 } 2357 2358 return ABRT_Success; 2359 } 2360 2361 // If this is an unbundling action use it as is for each CUDA toolchain. 2362 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2363 2364 // If -fgpu-rdc is disabled, should not unbundle since there is no 2365 // device code to link. 2366 if (!Relocatable) 2367 return ABRT_Inactive; 2368 2369 CudaDeviceActions.clear(); 2370 auto *IA = cast<InputAction>(UA->getInputs().back()); 2371 std::string FileName = IA->getInputArg().getAsString(Args); 2372 // Check if the type of the file is the same as the action. Do not 2373 // unbundle it if it is not. Do not unbundle .so files, for example, 2374 // which are not object files. 2375 if (IA->getType() == types::TY_Object && 2376 (!llvm::sys::path::has_extension(FileName) || 2377 types::lookupTypeForExtension( 2378 llvm::sys::path::extension(FileName).drop_front()) != 2379 types::TY_Object)) 2380 return ABRT_Inactive; 2381 2382 for (auto Arch : GpuArchList) { 2383 CudaDeviceActions.push_back(UA); 2384 UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch), 2385 AssociatedOffloadKind); 2386 } 2387 return ABRT_Success; 2388 } 2389 2390 return IsActive ? ABRT_Success : ABRT_Inactive; 2391 } 2392 2393 void appendTopLevelActions(ActionList &AL) override { 2394 // Utility to append actions to the top level list. 2395 auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { 2396 OffloadAction::DeviceDependences Dep; 2397 Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), 2398 AssociatedOffloadKind); 2399 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2400 }; 2401 2402 // If we have a fat binary, add it to the list. 2403 if (CudaFatBinary) { 2404 AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); 2405 CudaDeviceActions.clear(); 2406 CudaFatBinary = nullptr; 2407 return; 2408 } 2409 2410 if (CudaDeviceActions.empty()) 2411 return; 2412 2413 // If we have CUDA actions at this point, that's because we have a have 2414 // partial compilation, so we should have an action for each GPU 2415 // architecture. 2416 assert(CudaDeviceActions.size() == GpuArchList.size() && 2417 "Expecting one action per GPU architecture."); 2418 assert(ToolChains.size() == 1 && 2419 "Expecting to have a sing CUDA toolchain."); 2420 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2421 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2422 2423 CudaDeviceActions.clear(); 2424 } 2425 2426 bool initialize() override { 2427 assert(AssociatedOffloadKind == Action::OFK_Cuda || 2428 AssociatedOffloadKind == Action::OFK_HIP); 2429 2430 // We don't need to support CUDA. 2431 if (AssociatedOffloadKind == Action::OFK_Cuda && 2432 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 2433 return false; 2434 2435 // We don't need to support HIP. 2436 if (AssociatedOffloadKind == Action::OFK_HIP && 2437 !C.hasOffloadToolChain<Action::OFK_HIP>()) 2438 return false; 2439 2440 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 2441 options::OPT_fno_gpu_rdc, /*Default=*/false); 2442 2443 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2444 assert(HostTC && "No toolchain for host compilation."); 2445 if (HostTC->getTriple().isNVPTX() || 2446 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 2447 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 2448 // an error and abort pipeline construction early so we don't trip 2449 // asserts that assume device-side compilation. 2450 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 2451 << HostTC->getTriple().getArchName(); 2452 return true; 2453 } 2454 2455 ToolChains.push_back( 2456 AssociatedOffloadKind == Action::OFK_Cuda 2457 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 2458 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 2459 2460 Arg *PartialCompilationArg = Args.getLastArg( 2461 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2462 options::OPT_cuda_compile_host_device); 2463 CompileHostOnly = PartialCompilationArg && 2464 PartialCompilationArg->getOption().matches( 2465 options::OPT_cuda_host_only); 2466 CompileDeviceOnly = PartialCompilationArg && 2467 PartialCompilationArg->getOption().matches( 2468 options::OPT_cuda_device_only); 2469 2470 // Collect all cuda_gpu_arch parameters, removing duplicates. 2471 std::set<CudaArch> GpuArchs; 2472 bool Error = false; 2473 for (Arg *A : Args) { 2474 if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || 2475 A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) 2476 continue; 2477 A->claim(); 2478 2479 const StringRef ArchStr = A->getValue(); 2480 if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && 2481 ArchStr == "all") { 2482 GpuArchs.clear(); 2483 continue; 2484 } 2485 CudaArch Arch = StringToCudaArch(ArchStr); 2486 if (Arch == CudaArch::UNKNOWN) { 2487 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2488 Error = true; 2489 } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) 2490 GpuArchs.insert(Arch); 2491 else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) 2492 GpuArchs.erase(Arch); 2493 else 2494 llvm_unreachable("Unexpected option."); 2495 } 2496 2497 // Collect list of GPUs remaining in the set. 2498 for (CudaArch Arch : GpuArchs) 2499 GpuArchList.push_back(Arch); 2500 2501 // Default to sm_20 which is the lowest common denominator for 2502 // supported GPUs. sm_20 code should work correctly, if 2503 // suboptimally, on all newer GPUs. 2504 if (GpuArchList.empty()) 2505 GpuArchList.push_back(CudaArch::SM_20); 2506 2507 return Error; 2508 } 2509 }; 2510 2511 /// \brief CUDA action builder. It injects device code in the host backend 2512 /// action. 2513 class CudaActionBuilder final : public CudaActionBuilderBase { 2514 public: 2515 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2516 const Driver::InputList &Inputs) 2517 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {} 2518 2519 ActionBuilderReturnCode 2520 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2521 phases::ID CurPhase, phases::ID FinalPhase, 2522 PhasesTy &Phases) override { 2523 if (!IsActive) 2524 return ABRT_Inactive; 2525 2526 // If we don't have more CUDA actions, we don't have any dependences to 2527 // create for the host. 2528 if (CudaDeviceActions.empty()) 2529 return ABRT_Success; 2530 2531 assert(CudaDeviceActions.size() == GpuArchList.size() && 2532 "Expecting one action per GPU architecture."); 2533 assert(!CompileHostOnly && 2534 "Not expecting CUDA actions in host-only compilation."); 2535 2536 // If we are generating code for the device or we are in a backend phase, 2537 // we attempt to generate the fat binary. We compile each arch to ptx and 2538 // assemble to cubin, then feed the cubin *and* the ptx into a device 2539 // "link" action, which uses fatbinary to combine these cubins into one 2540 // fatbin. The fatbin is then an input to the host action if not in 2541 // device-only mode. 2542 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2543 ActionList DeviceActions; 2544 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2545 // Produce the device action from the current phase up to the assemble 2546 // phase. 2547 for (auto Ph : Phases) { 2548 // Skip the phases that were already dealt with. 2549 if (Ph < CurPhase) 2550 continue; 2551 // We have to be consistent with the host final phase. 2552 if (Ph > FinalPhase) 2553 break; 2554 2555 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2556 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2557 2558 if (Ph == phases::Assemble) 2559 break; 2560 } 2561 2562 // If we didn't reach the assemble phase, we can't generate the fat 2563 // binary. We don't need to generate the fat binary if we are not in 2564 // device-only mode. 2565 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2566 CompileDeviceOnly) 2567 continue; 2568 2569 Action *AssembleAction = CudaDeviceActions[I]; 2570 assert(AssembleAction->getType() == types::TY_Object); 2571 assert(AssembleAction->getInputs().size() == 1); 2572 2573 Action *BackendAction = AssembleAction->getInputs()[0]; 2574 assert(BackendAction->getType() == types::TY_PP_Asm); 2575 2576 for (auto &A : {AssembleAction, BackendAction}) { 2577 OffloadAction::DeviceDependences DDep; 2578 DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), 2579 Action::OFK_Cuda); 2580 DeviceActions.push_back( 2581 C.MakeAction<OffloadAction>(DDep, A->getType())); 2582 } 2583 } 2584 2585 // We generate the fat binary if we have device input actions. 2586 if (!DeviceActions.empty()) { 2587 CudaFatBinary = 2588 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2589 2590 if (!CompileDeviceOnly) { 2591 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2592 Action::OFK_Cuda); 2593 // Clear the fat binary, it is already a dependence to an host 2594 // action. 2595 CudaFatBinary = nullptr; 2596 } 2597 2598 // Remove the CUDA actions as they are already connected to an host 2599 // action or fat binary. 2600 CudaDeviceActions.clear(); 2601 } 2602 2603 // We avoid creating host action in device-only mode. 2604 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2605 } else if (CurPhase > phases::Backend) { 2606 // If we are past the backend phase and still have a device action, we 2607 // don't have to do anything as this action is already a device 2608 // top-level action. 2609 return ABRT_Success; 2610 } 2611 2612 assert(CurPhase < phases::Backend && "Generating single CUDA " 2613 "instructions should only occur " 2614 "before the backend phase!"); 2615 2616 // By default, we produce an action for each device arch. 2617 for (Action *&A : CudaDeviceActions) 2618 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2619 2620 return ABRT_Success; 2621 } 2622 }; 2623 /// \brief HIP action builder. It injects device code in the host backend 2624 /// action. 2625 class HIPActionBuilder final : public CudaActionBuilderBase { 2626 /// The linker inputs obtained for each device arch. 2627 SmallVector<ActionList, 8> DeviceLinkerInputs; 2628 2629 public: 2630 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 2631 const Driver::InputList &Inputs) 2632 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {} 2633 2634 bool canUseBundlerUnbundler() const override { return true; } 2635 2636 ActionBuilderReturnCode 2637 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2638 phases::ID CurPhase, phases::ID FinalPhase, 2639 PhasesTy &Phases) override { 2640 // amdgcn does not support linking of object files, therefore we skip 2641 // backend and assemble phases to output LLVM IR. Except for generating 2642 // non-relocatable device coee, where we generate fat binary for device 2643 // code and pass to host in Backend phase. 2644 if (CudaDeviceActions.empty() || 2645 (CurPhase == phases::Backend && Relocatable) || 2646 CurPhase == phases::Assemble) 2647 return ABRT_Success; 2648 2649 assert(((CurPhase == phases::Link && Relocatable) || 2650 CudaDeviceActions.size() == GpuArchList.size()) && 2651 "Expecting one action per GPU architecture."); 2652 assert(!CompileHostOnly && 2653 "Not expecting CUDA actions in host-only compilation."); 2654 2655 if (!Relocatable && CurPhase == phases::Backend) { 2656 // If we are in backend phase, we attempt to generate the fat binary. 2657 // We compile each arch to IR and use a link action to generate code 2658 // object containing ISA. Then we use a special "link" action to create 2659 // a fat binary containing all the code objects for different GPU's. 2660 // The fat binary is then an input to the host action. 2661 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2662 // Create a link action to link device IR with device library 2663 // and generate ISA. 2664 ActionList AL; 2665 AL.push_back(CudaDeviceActions[I]); 2666 CudaDeviceActions[I] = 2667 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 2668 2669 // OffloadingActionBuilder propagates device arch until an offload 2670 // action. Since the next action for creating fatbin does 2671 // not have device arch, whereas the above link action and its input 2672 // have device arch, an offload action is needed to stop the null 2673 // device arch of the next action being propagated to the above link 2674 // action. 2675 OffloadAction::DeviceDependences DDep; 2676 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), 2677 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2678 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 2679 DDep, CudaDeviceActions[I]->getType()); 2680 } 2681 // Create HIP fat binary with a special "link" action. 2682 CudaFatBinary = 2683 C.MakeAction<LinkJobAction>(CudaDeviceActions, 2684 types::TY_HIP_FATBIN); 2685 2686 if (!CompileDeviceOnly) { 2687 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2688 AssociatedOffloadKind); 2689 // Clear the fat binary, it is already a dependence to an host 2690 // action. 2691 CudaFatBinary = nullptr; 2692 } 2693 2694 // Remove the CUDA actions as they are already connected to an host 2695 // action or fat binary. 2696 CudaDeviceActions.clear(); 2697 2698 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2699 } else if (CurPhase == phases::Link) { 2700 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 2701 // This happens to each device action originated from each input file. 2702 // Later on, device actions in DeviceLinkerInputs are used to create 2703 // device link actions in appendLinkDependences and the created device 2704 // link actions are passed to the offload action as device dependence. 2705 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 2706 auto LI = DeviceLinkerInputs.begin(); 2707 for (auto *A : CudaDeviceActions) { 2708 LI->push_back(A); 2709 ++LI; 2710 } 2711 2712 // We will pass the device action as a host dependence, so we don't 2713 // need to do anything else with them. 2714 CudaDeviceActions.clear(); 2715 return ABRT_Success; 2716 } 2717 2718 // By default, we produce an action for each device arch. 2719 for (Action *&A : CudaDeviceActions) 2720 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 2721 AssociatedOffloadKind); 2722 2723 return ABRT_Success; 2724 } 2725 2726 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2727 // Append a new link action for each device. 2728 unsigned I = 0; 2729 for (auto &LI : DeviceLinkerInputs) { 2730 auto *DeviceLinkAction = 2731 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2732 DA.add(*DeviceLinkAction, *ToolChains[0], 2733 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2734 ++I; 2735 } 2736 } 2737 }; 2738 2739 /// OpenMP action builder. The host bitcode is passed to the device frontend 2740 /// and all the device linked images are passed to the host link phase. 2741 class OpenMPActionBuilder final : public DeviceActionBuilder { 2742 /// The OpenMP actions for the current input. 2743 ActionList OpenMPDeviceActions; 2744 2745 /// The linker inputs obtained for each toolchain. 2746 SmallVector<ActionList, 8> DeviceLinkerInputs; 2747 2748 public: 2749 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2750 const Driver::InputList &Inputs) 2751 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2752 2753 ActionBuilderReturnCode 2754 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2755 phases::ID CurPhase, phases::ID FinalPhase, 2756 PhasesTy &Phases) override { 2757 if (OpenMPDeviceActions.empty()) 2758 return ABRT_Inactive; 2759 2760 // We should always have an action for each input. 2761 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2762 "Number of OpenMP actions and toolchains do not match."); 2763 2764 // The host only depends on device action in the linking phase, when all 2765 // the device images have to be embedded in the host image. 2766 if (CurPhase == phases::Link) { 2767 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2768 "Toolchains and linker inputs sizes do not match."); 2769 auto LI = DeviceLinkerInputs.begin(); 2770 for (auto *A : OpenMPDeviceActions) { 2771 LI->push_back(A); 2772 ++LI; 2773 } 2774 2775 // We passed the device action as a host dependence, so we don't need to 2776 // do anything else with them. 2777 OpenMPDeviceActions.clear(); 2778 return ABRT_Success; 2779 } 2780 2781 // By default, we produce an action for each device arch. 2782 for (Action *&A : OpenMPDeviceActions) 2783 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2784 2785 return ABRT_Success; 2786 } 2787 2788 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2789 2790 // If this is an input action replicate it for each OpenMP toolchain. 2791 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2792 OpenMPDeviceActions.clear(); 2793 for (unsigned I = 0; I < ToolChains.size(); ++I) 2794 OpenMPDeviceActions.push_back( 2795 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 2796 return ABRT_Success; 2797 } 2798 2799 // If this is an unbundling action use it as is for each OpenMP toolchain. 2800 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2801 OpenMPDeviceActions.clear(); 2802 auto *IA = cast<InputAction>(UA->getInputs().back()); 2803 std::string FileName = IA->getInputArg().getAsString(Args); 2804 // Check if the type of the file is the same as the action. Do not 2805 // unbundle it if it is not. Do not unbundle .so files, for example, 2806 // which are not object files. 2807 if (IA->getType() == types::TY_Object && 2808 (!llvm::sys::path::has_extension(FileName) || 2809 types::lookupTypeForExtension( 2810 llvm::sys::path::extension(FileName).drop_front()) != 2811 types::TY_Object)) 2812 return ABRT_Inactive; 2813 for (unsigned I = 0; I < ToolChains.size(); ++I) { 2814 OpenMPDeviceActions.push_back(UA); 2815 UA->registerDependentActionInfo( 2816 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 2817 } 2818 return ABRT_Success; 2819 } 2820 2821 // When generating code for OpenMP we use the host compile phase result as 2822 // a dependence to the device compile phase so that it can learn what 2823 // declarations should be emitted. However, this is not the only use for 2824 // the host action, so we prevent it from being collapsed. 2825 if (isa<CompileJobAction>(HostAction)) { 2826 HostAction->setCannotBeCollapsedWithNextDependentAction(); 2827 assert(ToolChains.size() == OpenMPDeviceActions.size() && 2828 "Toolchains and device action sizes do not match."); 2829 OffloadAction::HostDependence HDep( 2830 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2831 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2832 auto TC = ToolChains.begin(); 2833 for (Action *&A : OpenMPDeviceActions) { 2834 assert(isa<CompileJobAction>(A)); 2835 OffloadAction::DeviceDependences DDep; 2836 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2837 A = C.MakeAction<OffloadAction>(HDep, DDep); 2838 ++TC; 2839 } 2840 } 2841 return ABRT_Success; 2842 } 2843 2844 void appendTopLevelActions(ActionList &AL) override { 2845 if (OpenMPDeviceActions.empty()) 2846 return; 2847 2848 // We should always have an action for each input. 2849 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2850 "Number of OpenMP actions and toolchains do not match."); 2851 2852 // Append all device actions followed by the proper offload action. 2853 auto TI = ToolChains.begin(); 2854 for (auto *A : OpenMPDeviceActions) { 2855 OffloadAction::DeviceDependences Dep; 2856 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2857 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2858 ++TI; 2859 } 2860 // We no longer need the action stored in this builder. 2861 OpenMPDeviceActions.clear(); 2862 } 2863 2864 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2865 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2866 "Toolchains and linker inputs sizes do not match."); 2867 2868 // Append a new link action for each device. 2869 auto TC = ToolChains.begin(); 2870 for (auto &LI : DeviceLinkerInputs) { 2871 auto *DeviceLinkAction = 2872 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2873 DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 2874 Action::OFK_OpenMP); 2875 ++TC; 2876 } 2877 } 2878 2879 bool initialize() override { 2880 // Get the OpenMP toolchains. If we don't get any, the action builder will 2881 // know there is nothing to do related to OpenMP offloading. 2882 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 2883 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 2884 ++TI) 2885 ToolChains.push_back(TI->second); 2886 2887 DeviceLinkerInputs.resize(ToolChains.size()); 2888 return false; 2889 } 2890 2891 bool canUseBundlerUnbundler() const override { 2892 // OpenMP should use bundled files whenever possible. 2893 return true; 2894 } 2895 }; 2896 2897 /// 2898 /// TODO: Add the implementation for other specialized builders here. 2899 /// 2900 2901 /// Specialized builders being used by this offloading action builder. 2902 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 2903 2904 /// Flag set to true if all valid builders allow file bundling/unbundling. 2905 bool CanUseBundler; 2906 2907 public: 2908 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 2909 const Driver::InputList &Inputs) 2910 : C(C) { 2911 // Create a specialized builder for each device toolchain. 2912 2913 IsValid = true; 2914 2915 // Create a specialized builder for CUDA. 2916 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 2917 2918 // Create a specialized builder for HIP. 2919 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 2920 2921 // Create a specialized builder for OpenMP. 2922 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 2923 2924 // 2925 // TODO: Build other specialized builders here. 2926 // 2927 2928 // Initialize all the builders, keeping track of errors. If all valid 2929 // builders agree that we can use bundling, set the flag to true. 2930 unsigned ValidBuilders = 0u; 2931 unsigned ValidBuildersSupportingBundling = 0u; 2932 for (auto *SB : SpecializedBuilders) { 2933 IsValid = IsValid && !SB->initialize(); 2934 2935 // Update the counters if the builder is valid. 2936 if (SB->isValid()) { 2937 ++ValidBuilders; 2938 if (SB->canUseBundlerUnbundler()) 2939 ++ValidBuildersSupportingBundling; 2940 } 2941 } 2942 CanUseBundler = 2943 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 2944 } 2945 2946 ~OffloadingActionBuilder() { 2947 for (auto *SB : SpecializedBuilders) 2948 delete SB; 2949 } 2950 2951 /// Generate an action that adds device dependences (if any) to a host action. 2952 /// If no device dependence actions exist, just return the host action \a 2953 /// HostAction. If an error is found or if no builder requires the host action 2954 /// to be generated, return nullptr. 2955 Action * 2956 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 2957 phases::ID CurPhase, phases::ID FinalPhase, 2958 DeviceActionBuilder::PhasesTy &Phases) { 2959 if (!IsValid) 2960 return nullptr; 2961 2962 if (SpecializedBuilders.empty()) 2963 return HostAction; 2964 2965 assert(HostAction && "Invalid host action!"); 2966 2967 OffloadAction::DeviceDependences DDeps; 2968 // Check if all the programming models agree we should not emit the host 2969 // action. Also, keep track of the offloading kinds employed. 2970 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 2971 unsigned InactiveBuilders = 0u; 2972 unsigned IgnoringBuilders = 0u; 2973 for (auto *SB : SpecializedBuilders) { 2974 if (!SB->isValid()) { 2975 ++InactiveBuilders; 2976 continue; 2977 } 2978 2979 auto RetCode = 2980 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 2981 2982 // If the builder explicitly says the host action should be ignored, 2983 // we need to increment the variable that tracks the builders that request 2984 // the host object to be ignored. 2985 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 2986 ++IgnoringBuilders; 2987 2988 // Unless the builder was inactive for this action, we have to record the 2989 // offload kind because the host will have to use it. 2990 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 2991 OffloadKind |= SB->getAssociatedOffloadKind(); 2992 } 2993 2994 // If all builders agree that the host object should be ignored, just return 2995 // nullptr. 2996 if (IgnoringBuilders && 2997 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 2998 return nullptr; 2999 3000 if (DDeps.getActions().empty()) 3001 return HostAction; 3002 3003 // We have dependences we need to bundle together. We use an offload action 3004 // for that. 3005 OffloadAction::HostDependence HDep( 3006 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3007 /*BoundArch=*/nullptr, DDeps); 3008 return C.MakeAction<OffloadAction>(HDep, DDeps); 3009 } 3010 3011 /// Generate an action that adds a host dependence to a device action. The 3012 /// results will be kept in this action builder. Return true if an error was 3013 /// found. 3014 bool addHostDependenceToDeviceActions(Action *&HostAction, 3015 const Arg *InputArg) { 3016 if (!IsValid) 3017 return true; 3018 3019 // If we are supporting bundling/unbundling and the current action is an 3020 // input action of non-source file, we replace the host action by the 3021 // unbundling action. The bundler tool has the logic to detect if an input 3022 // is a bundle or not and if the input is not a bundle it assumes it is a 3023 // host file. Therefore it is safe to create an unbundling action even if 3024 // the input is not a bundle. 3025 if (CanUseBundler && isa<InputAction>(HostAction) && 3026 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 3027 !types::isSrcFile(HostAction->getType())) { 3028 auto UnbundlingHostAction = 3029 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 3030 UnbundlingHostAction->registerDependentActionInfo( 3031 C.getSingleOffloadToolChain<Action::OFK_Host>(), 3032 /*BoundArch=*/StringRef(), Action::OFK_Host); 3033 HostAction = UnbundlingHostAction; 3034 } 3035 3036 assert(HostAction && "Invalid host action!"); 3037 3038 // Register the offload kinds that are used. 3039 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3040 for (auto *SB : SpecializedBuilders) { 3041 if (!SB->isValid()) 3042 continue; 3043 3044 auto RetCode = SB->addDeviceDepences(HostAction); 3045 3046 // Host dependences for device actions are not compatible with that same 3047 // action being ignored. 3048 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 3049 "Host dependence not expected to be ignored.!"); 3050 3051 // Unless the builder was inactive for this action, we have to record the 3052 // offload kind because the host will have to use it. 3053 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3054 OffloadKind |= SB->getAssociatedOffloadKind(); 3055 } 3056 3057 // Do not use unbundler if the Host does not depend on device action. 3058 if (OffloadKind == Action::OFK_None && CanUseBundler) 3059 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 3060 HostAction = UA->getInputs().back(); 3061 3062 return false; 3063 } 3064 3065 /// Add the offloading top level actions to the provided action list. This 3066 /// function can replace the host action by a bundling action if the 3067 /// programming models allow it. 3068 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 3069 const Arg *InputArg) { 3070 // Get the device actions to be appended. 3071 ActionList OffloadAL; 3072 for (auto *SB : SpecializedBuilders) { 3073 if (!SB->isValid()) 3074 continue; 3075 SB->appendTopLevelActions(OffloadAL); 3076 } 3077 3078 // If we can use the bundler, replace the host action by the bundling one in 3079 // the resulting list. Otherwise, just append the device actions. For 3080 // device only compilation, HostAction is a null pointer, therefore only do 3081 // this when HostAction is not a null pointer. 3082 if (CanUseBundler && HostAction && !OffloadAL.empty()) { 3083 // Add the host action to the list in order to create the bundling action. 3084 OffloadAL.push_back(HostAction); 3085 3086 // We expect that the host action was just appended to the action list 3087 // before this method was called. 3088 assert(HostAction == AL.back() && "Host action not in the list??"); 3089 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 3090 AL.back() = HostAction; 3091 } else 3092 AL.append(OffloadAL.begin(), OffloadAL.end()); 3093 3094 // Propagate to the current host action (if any) the offload information 3095 // associated with the current input. 3096 if (HostAction) 3097 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 3098 /*BoundArch=*/nullptr); 3099 return false; 3100 } 3101 3102 /// Processes the host linker action. This currently consists of replacing it 3103 /// with an offload action if there are device link objects and propagate to 3104 /// the host action all the offload kinds used in the current compilation. The 3105 /// resulting action is returned. 3106 Action *processHostLinkAction(Action *HostAction) { 3107 // Add all the dependences from the device linking actions. 3108 OffloadAction::DeviceDependences DDeps; 3109 for (auto *SB : SpecializedBuilders) { 3110 if (!SB->isValid()) 3111 continue; 3112 3113 SB->appendLinkDependences(DDeps); 3114 } 3115 3116 // Calculate all the offload kinds used in the current compilation. 3117 unsigned ActiveOffloadKinds = 0u; 3118 for (auto &I : InputArgToOffloadKindMap) 3119 ActiveOffloadKinds |= I.second; 3120 3121 // If we don't have device dependencies, we don't have to create an offload 3122 // action. 3123 if (DDeps.getActions().empty()) { 3124 // Propagate all the active kinds to host action. Given that it is a link 3125 // action it is assumed to depend on all actions generated so far. 3126 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 3127 /*BoundArch=*/nullptr); 3128 return HostAction; 3129 } 3130 3131 // Create the offload action with all dependences. When an offload action 3132 // is created the kinds are propagated to the host action, so we don't have 3133 // to do that explicitly here. 3134 OffloadAction::HostDependence HDep( 3135 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3136 /*BoundArch*/ nullptr, ActiveOffloadKinds); 3137 return C.MakeAction<OffloadAction>(HDep, DDeps); 3138 } 3139 }; 3140 } // anonymous namespace. 3141 3142 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 3143 const InputList &Inputs, ActionList &Actions) const { 3144 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 3145 3146 if (!SuppressMissingInputWarning && Inputs.empty()) { 3147 Diag(clang::diag::err_drv_no_input_files); 3148 return; 3149 } 3150 3151 Arg *FinalPhaseArg; 3152 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 3153 3154 if (FinalPhase == phases::Link) { 3155 if (Args.hasArg(options::OPT_emit_llvm)) 3156 Diag(clang::diag::err_drv_emit_llvm_link); 3157 if (IsCLMode() && LTOMode != LTOK_None && 3158 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 3159 Diag(clang::diag::err_drv_lto_without_lld); 3160 } 3161 3162 // Reject -Z* at the top level, these options should never have been exposed 3163 // by gcc. 3164 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 3165 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 3166 3167 // Diagnose misuse of /Fo. 3168 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 3169 StringRef V = A->getValue(); 3170 if (Inputs.size() > 1 && !V.empty() && 3171 !llvm::sys::path::is_separator(V.back())) { 3172 // Check whether /Fo tries to name an output file for multiple inputs. 3173 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3174 << A->getSpelling() << V; 3175 Args.eraseArg(options::OPT__SLASH_Fo); 3176 } 3177 } 3178 3179 // Diagnose misuse of /Fa. 3180 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 3181 StringRef V = A->getValue(); 3182 if (Inputs.size() > 1 && !V.empty() && 3183 !llvm::sys::path::is_separator(V.back())) { 3184 // Check whether /Fa tries to name an asm file for multiple inputs. 3185 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3186 << A->getSpelling() << V; 3187 Args.eraseArg(options::OPT__SLASH_Fa); 3188 } 3189 } 3190 3191 // Diagnose misuse of /o. 3192 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 3193 if (A->getValue()[0] == '\0') { 3194 // It has to have a value. 3195 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 3196 Args.eraseArg(options::OPT__SLASH_o); 3197 } 3198 } 3199 3200 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 3201 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 3202 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 3203 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 3204 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 3205 Args.eraseArg(options::OPT__SLASH_Yc); 3206 Args.eraseArg(options::OPT__SLASH_Yu); 3207 YcArg = YuArg = nullptr; 3208 } 3209 if (YcArg && Inputs.size() > 1) { 3210 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 3211 Args.eraseArg(options::OPT__SLASH_Yc); 3212 YcArg = nullptr; 3213 } 3214 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 3215 // If only preprocessing or /Y- is used, all pch handling is disabled. 3216 // Rather than check for it everywhere, just remove clang-cl pch-related 3217 // flags here. 3218 Args.eraseArg(options::OPT__SLASH_Fp); 3219 Args.eraseArg(options::OPT__SLASH_Yc); 3220 Args.eraseArg(options::OPT__SLASH_Yu); 3221 YcArg = YuArg = nullptr; 3222 } 3223 3224 // Builder to be used to build offloading actions. 3225 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 3226 3227 // Construct the actions to perform. 3228 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; 3229 ActionList LinkerInputs; 3230 3231 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3232 for (auto &I : Inputs) { 3233 types::ID InputType = I.first; 3234 const Arg *InputArg = I.second; 3235 3236 PL.clear(); 3237 types::getCompilationPhases(InputType, PL); 3238 3239 // If the first step comes after the final phase we are doing as part of 3240 // this compilation, warn the user about it. 3241 phases::ID InitialPhase = PL[0]; 3242 if (InitialPhase > FinalPhase) { 3243 if (InputArg->isClaimed()) 3244 continue; 3245 3246 // Claim here to avoid the more general unused warning. 3247 InputArg->claim(); 3248 3249 // Suppress all unused style warnings with -Qunused-arguments 3250 if (Args.hasArg(options::OPT_Qunused_arguments)) 3251 continue; 3252 3253 // Special case when final phase determined by binary name, rather than 3254 // by a command-line argument with a corresponding Arg. 3255 if (CCCIsCPP()) 3256 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 3257 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 3258 // Special case '-E' warning on a previously preprocessed file to make 3259 // more sense. 3260 else if (InitialPhase == phases::Compile && 3261 FinalPhase == phases::Preprocess && 3262 getPreprocessedType(InputType) == types::TY_INVALID) 3263 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 3264 << InputArg->getAsString(Args) << !!FinalPhaseArg 3265 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3266 else 3267 Diag(clang::diag::warn_drv_input_file_unused) 3268 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 3269 << !!FinalPhaseArg 3270 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3271 continue; 3272 } 3273 3274 if (YcArg) { 3275 // Add a separate precompile phase for the compile phase. 3276 if (FinalPhase >= phases::Compile) { 3277 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 3278 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL; 3279 types::getCompilationPhases(HeaderType, PCHPL); 3280 // Build the pipeline for the pch file. 3281 Action *ClangClPch = 3282 C.MakeAction<InputAction>(*InputArg, HeaderType); 3283 for (phases::ID Phase : PCHPL) 3284 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 3285 assert(ClangClPch); 3286 Actions.push_back(ClangClPch); 3287 // The driver currently exits after the first failed command. This 3288 // relies on that behavior, to make sure if the pch generation fails, 3289 // the main compilation won't run. 3290 // FIXME: If the main compilation fails, the PCH generation should 3291 // probably not be considered successful either. 3292 } 3293 } 3294 3295 // Build the pipeline for this file. 3296 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3297 3298 // Use the current host action in any of the offloading actions, if 3299 // required. 3300 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3301 break; 3302 3303 for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end(); 3304 i != e; ++i) { 3305 phases::ID Phase = *i; 3306 3307 // We are done if this step is past what the user requested. 3308 if (Phase > FinalPhase) 3309 break; 3310 3311 // Add any offload action the host action depends on. 3312 Current = OffloadBuilder.addDeviceDependencesToHostAction( 3313 Current, InputArg, Phase, FinalPhase, PL); 3314 if (!Current) 3315 break; 3316 3317 // Queue linker inputs. 3318 if (Phase == phases::Link) { 3319 assert((i + 1) == e && "linking must be final compilation step."); 3320 LinkerInputs.push_back(Current); 3321 Current = nullptr; 3322 break; 3323 } 3324 3325 // Each precompiled header file after a module file action is a module 3326 // header of that same module file, rather than being compiled to a 3327 // separate PCH. 3328 if (Phase == phases::Precompile && HeaderModuleAction && 3329 getPrecompiledType(InputType) == types::TY_PCH) { 3330 HeaderModuleAction->addModuleHeaderInput(Current); 3331 Current = nullptr; 3332 break; 3333 } 3334 3335 // FIXME: Should we include any prior module file outputs as inputs of 3336 // later actions in the same command line? 3337 3338 // Otherwise construct the appropriate action. 3339 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 3340 3341 // We didn't create a new action, so we will just move to the next phase. 3342 if (NewCurrent == Current) 3343 continue; 3344 3345 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent)) 3346 HeaderModuleAction = HMA; 3347 3348 Current = NewCurrent; 3349 3350 // Use the current host action in any of the offloading actions, if 3351 // required. 3352 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3353 break; 3354 3355 if (Current->getType() == types::TY_Nothing) 3356 break; 3357 } 3358 3359 // If we ended with something, add to the output list. 3360 if (Current) 3361 Actions.push_back(Current); 3362 3363 // Add any top level actions generated for offloading. 3364 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 3365 } 3366 3367 // Add a link action if necessary. 3368 if (!LinkerInputs.empty()) { 3369 Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3370 LA = OffloadBuilder.processHostLinkAction(LA); 3371 Actions.push_back(LA); 3372 } 3373 3374 // If we are linking, claim any options which are obviously only used for 3375 // compilation. 3376 if (FinalPhase == phases::Link && PL.size() == 1) { 3377 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3378 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3379 } 3380 3381 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom 3382 // Compile phase that prints out supported cpu models and quits. 3383 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { 3384 // Use the -mcpu=? flag as the dummy input to cc1. 3385 Actions.clear(); 3386 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); 3387 Actions.push_back( 3388 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 3389 for (auto &I : Inputs) 3390 I.second->claim(); 3391 } 3392 3393 // Claim ignored clang-cl options. 3394 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3395 3396 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3397 // to non-CUDA compilations and should not trigger warnings there. 3398 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3399 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3400 } 3401 3402 Action *Driver::ConstructPhaseAction( 3403 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3404 Action::OffloadKind TargetDeviceOffloadKind) const { 3405 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3406 3407 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3408 // encode this in the steps because the intermediate type depends on 3409 // arguments. Just special case here. 3410 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3411 return Input; 3412 3413 // Build the appropriate action. 3414 switch (Phase) { 3415 case phases::Link: 3416 llvm_unreachable("link action invalid here."); 3417 case phases::Preprocess: { 3418 types::ID OutputTy; 3419 // -{M, MM} alter the output type. 3420 if (Args.hasArg(options::OPT_M, options::OPT_MM)) { 3421 OutputTy = types::TY_Dependencies; 3422 } else { 3423 OutputTy = Input->getType(); 3424 if (!Args.hasFlag(options::OPT_frewrite_includes, 3425 options::OPT_fno_rewrite_includes, false) && 3426 !Args.hasFlag(options::OPT_frewrite_imports, 3427 options::OPT_fno_rewrite_imports, false) && 3428 !CCGenDiagnostics) 3429 OutputTy = types::getPreprocessedType(OutputTy); 3430 assert(OutputTy != types::TY_INVALID && 3431 "Cannot preprocess this input type!"); 3432 } 3433 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3434 } 3435 case phases::Precompile: { 3436 types::ID OutputTy = getPrecompiledType(Input->getType()); 3437 assert(OutputTy != types::TY_INVALID && 3438 "Cannot precompile this input type!"); 3439 3440 // If we're given a module name, precompile header file inputs as a 3441 // module, not as a precompiled header. 3442 const char *ModName = nullptr; 3443 if (OutputTy == types::TY_PCH) { 3444 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 3445 ModName = A->getValue(); 3446 if (ModName) 3447 OutputTy = types::TY_ModuleFile; 3448 } 3449 3450 if (Args.hasArg(options::OPT_fsyntax_only)) { 3451 // Syntax checks should not emit a PCH file 3452 OutputTy = types::TY_Nothing; 3453 } 3454 3455 if (ModName) 3456 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy, 3457 ModName); 3458 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3459 } 3460 case phases::Compile: { 3461 if (Args.hasArg(options::OPT_fsyntax_only)) 3462 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3463 if (Args.hasArg(options::OPT_rewrite_objc)) 3464 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3465 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3466 return C.MakeAction<CompileJobAction>(Input, 3467 types::TY_RewrittenLegacyObjC); 3468 if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto)) 3469 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3470 if (Args.hasArg(options::OPT__migrate)) 3471 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3472 if (Args.hasArg(options::OPT_emit_ast)) 3473 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3474 if (Args.hasArg(options::OPT_module_file_info)) 3475 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3476 if (Args.hasArg(options::OPT_verify_pch)) 3477 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3478 if (Args.hasArg(options::OPT_emit_iterface_stubs)) 3479 return C.MakeAction<CompileJobAction>(Input, types::TY_IFS); 3480 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3481 } 3482 case phases::Backend: { 3483 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3484 types::ID Output = 3485 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3486 return C.MakeAction<BackendJobAction>(Input, Output); 3487 } 3488 if (Args.hasArg(options::OPT_emit_llvm)) { 3489 types::ID Output = 3490 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3491 return C.MakeAction<BackendJobAction>(Input, Output); 3492 } 3493 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3494 } 3495 case phases::Assemble: 3496 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3497 } 3498 3499 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3500 } 3501 3502 void Driver::BuildJobs(Compilation &C) const { 3503 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3504 3505 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3506 3507 // It is an error to provide a -o option if we are making multiple output 3508 // files. 3509 if (FinalOutput) { 3510 unsigned NumOutputs = 0; 3511 for (const Action *A : C.getActions()) 3512 if (A->getType() != types::TY_Nothing) 3513 ++NumOutputs; 3514 3515 if (NumOutputs > 1) { 3516 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3517 FinalOutput = nullptr; 3518 } 3519 } 3520 3521 // Collect the list of architectures. 3522 llvm::StringSet<> ArchNames; 3523 if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO()) 3524 for (const Arg *A : C.getArgs()) 3525 if (A->getOption().matches(options::OPT_arch)) 3526 ArchNames.insert(A->getValue()); 3527 3528 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3529 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3530 for (Action *A : C.getActions()) { 3531 // If we are linking an image for multiple archs then the linker wants 3532 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3533 // doesn't fit in cleanly because we have to pass this information down. 3534 // 3535 // FIXME: This is a hack; find a cleaner way to integrate this into the 3536 // process. 3537 const char *LinkingOutput = nullptr; 3538 if (isa<LipoJobAction>(A)) { 3539 if (FinalOutput) 3540 LinkingOutput = FinalOutput->getValue(); 3541 else 3542 LinkingOutput = getDefaultImageName(); 3543 } 3544 3545 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3546 /*BoundArch*/ StringRef(), 3547 /*AtTopLevel*/ true, 3548 /*MultipleArchs*/ ArchNames.size() > 1, 3549 /*LinkingOutput*/ LinkingOutput, CachedResults, 3550 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3551 } 3552 3553 // If the user passed -Qunused-arguments or there were errors, don't warn 3554 // about any unused arguments. 3555 if (Diags.hasErrorOccurred() || 3556 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3557 return; 3558 3559 // Claim -### here. 3560 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 3561 3562 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 3563 (void)C.getArgs().hasArg(options::OPT_driver_mode); 3564 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 3565 3566 for (Arg *A : C.getArgs()) { 3567 // FIXME: It would be nice to be able to send the argument to the 3568 // DiagnosticsEngine, so that extra values, position, and so on could be 3569 // printed. 3570 if (!A->isClaimed()) { 3571 if (A->getOption().hasFlag(options::NoArgumentUnused)) 3572 continue; 3573 3574 // Suppress the warning automatically if this is just a flag, and it is an 3575 // instance of an argument we already claimed. 3576 const Option &Opt = A->getOption(); 3577 if (Opt.getKind() == Option::FlagClass) { 3578 bool DuplicateClaimed = false; 3579 3580 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 3581 if (AA->isClaimed()) { 3582 DuplicateClaimed = true; 3583 break; 3584 } 3585 } 3586 3587 if (DuplicateClaimed) 3588 continue; 3589 } 3590 3591 // In clang-cl, don't mention unknown arguments here since they have 3592 // already been warned about. 3593 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 3594 Diag(clang::diag::warn_drv_unused_argument) 3595 << A->getAsString(C.getArgs()); 3596 } 3597 } 3598 } 3599 3600 namespace { 3601 /// Utility class to control the collapse of dependent actions and select the 3602 /// tools accordingly. 3603 class ToolSelector final { 3604 /// The tool chain this selector refers to. 3605 const ToolChain &TC; 3606 3607 /// The compilation this selector refers to. 3608 const Compilation &C; 3609 3610 /// The base action this selector refers to. 3611 const JobAction *BaseAction; 3612 3613 /// Set to true if the current toolchain refers to host actions. 3614 bool IsHostSelector; 3615 3616 /// Set to true if save-temps and embed-bitcode functionalities are active. 3617 bool SaveTemps; 3618 bool EmbedBitcode; 3619 3620 /// Get previous dependent action or null if that does not exist. If 3621 /// \a CanBeCollapsed is false, that action must be legal to collapse or 3622 /// null will be returned. 3623 const JobAction *getPrevDependentAction(const ActionList &Inputs, 3624 ActionList &SavedOffloadAction, 3625 bool CanBeCollapsed = true) { 3626 // An option can be collapsed only if it has a single input. 3627 if (Inputs.size() != 1) 3628 return nullptr; 3629 3630 Action *CurAction = *Inputs.begin(); 3631 if (CanBeCollapsed && 3632 !CurAction->isCollapsingWithNextDependentActionLegal()) 3633 return nullptr; 3634 3635 // If the input action is an offload action. Look through it and save any 3636 // offload action that can be dropped in the event of a collapse. 3637 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 3638 // If the dependent action is a device action, we will attempt to collapse 3639 // only with other device actions. Otherwise, we would do the same but 3640 // with host actions only. 3641 if (!IsHostSelector) { 3642 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 3643 CurAction = 3644 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 3645 if (CanBeCollapsed && 3646 !CurAction->isCollapsingWithNextDependentActionLegal()) 3647 return nullptr; 3648 SavedOffloadAction.push_back(OA); 3649 return dyn_cast<JobAction>(CurAction); 3650 } 3651 } else if (OA->hasHostDependence()) { 3652 CurAction = OA->getHostDependence(); 3653 if (CanBeCollapsed && 3654 !CurAction->isCollapsingWithNextDependentActionLegal()) 3655 return nullptr; 3656 SavedOffloadAction.push_back(OA); 3657 return dyn_cast<JobAction>(CurAction); 3658 } 3659 return nullptr; 3660 } 3661 3662 return dyn_cast<JobAction>(CurAction); 3663 } 3664 3665 /// Return true if an assemble action can be collapsed. 3666 bool canCollapseAssembleAction() const { 3667 return TC.useIntegratedAs() && !SaveTemps && 3668 !C.getArgs().hasArg(options::OPT_via_file_asm) && 3669 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 3670 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 3671 } 3672 3673 /// Return true if a preprocessor action can be collapsed. 3674 bool canCollapsePreprocessorAction() const { 3675 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 3676 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 3677 !C.getArgs().hasArg(options::OPT_rewrite_objc); 3678 } 3679 3680 /// Struct that relates an action with the offload actions that would be 3681 /// collapsed with it. 3682 struct JobActionInfo final { 3683 /// The action this info refers to. 3684 const JobAction *JA = nullptr; 3685 /// The offload actions we need to take care off if this action is 3686 /// collapsed. 3687 ActionList SavedOffloadAction; 3688 }; 3689 3690 /// Append collapsed offload actions from the give nnumber of elements in the 3691 /// action info array. 3692 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 3693 ArrayRef<JobActionInfo> &ActionInfo, 3694 unsigned ElementNum) { 3695 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 3696 for (unsigned I = 0; I < ElementNum; ++I) 3697 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 3698 ActionInfo[I].SavedOffloadAction.end()); 3699 } 3700 3701 /// Functions that attempt to perform the combining. They detect if that is 3702 /// legal, and if so they update the inputs \a Inputs and the offload action 3703 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 3704 /// the combined action is returned. If the combining is not legal or if the 3705 /// tool does not exist, null is returned. 3706 /// Currently three kinds of collapsing are supported: 3707 /// - Assemble + Backend + Compile; 3708 /// - Assemble + Backend ; 3709 /// - Backend + Compile. 3710 const Tool * 3711 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3712 ActionList &Inputs, 3713 ActionList &CollapsedOffloadAction) { 3714 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 3715 return nullptr; 3716 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3717 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3718 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 3719 if (!AJ || !BJ || !CJ) 3720 return nullptr; 3721 3722 // Get compiler tool. 3723 const Tool *T = TC.SelectTool(*CJ); 3724 if (!T) 3725 return nullptr; 3726 3727 // When using -fembed-bitcode, it is required to have the same tool (clang) 3728 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 3729 if (EmbedBitcode) { 3730 const Tool *BT = TC.SelectTool(*BJ); 3731 if (BT == T) 3732 return nullptr; 3733 } 3734 3735 if (!T->hasIntegratedAssembler()) 3736 return nullptr; 3737 3738 Inputs = CJ->getInputs(); 3739 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3740 /*NumElements=*/3); 3741 return T; 3742 } 3743 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 3744 ActionList &Inputs, 3745 ActionList &CollapsedOffloadAction) { 3746 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 3747 return nullptr; 3748 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3749 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3750 if (!AJ || !BJ) 3751 return nullptr; 3752 3753 // Retrieve the compile job, backend action must always be preceded by one. 3754 ActionList CompileJobOffloadActions; 3755 auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions, 3756 /*CanBeCollapsed=*/false); 3757 if (!AJ || !BJ || !CJ) 3758 return nullptr; 3759 3760 assert(isa<CompileJobAction>(CJ) && 3761 "Expecting compile job preceding backend job."); 3762 3763 // Get compiler tool. 3764 const Tool *T = TC.SelectTool(*CJ); 3765 if (!T) 3766 return nullptr; 3767 3768 if (!T->hasIntegratedAssembler()) 3769 return nullptr; 3770 3771 Inputs = BJ->getInputs(); 3772 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3773 /*NumElements=*/2); 3774 return T; 3775 } 3776 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3777 ActionList &Inputs, 3778 ActionList &CollapsedOffloadAction) { 3779 if (ActionInfo.size() < 2) 3780 return nullptr; 3781 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 3782 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 3783 if (!BJ || !CJ) 3784 return nullptr; 3785 3786 // Check if the initial input (to the compile job or its predessor if one 3787 // exists) is LLVM bitcode. In that case, no preprocessor step is required 3788 // and we can still collapse the compile and backend jobs when we have 3789 // -save-temps. I.e. there is no need for a separate compile job just to 3790 // emit unoptimized bitcode. 3791 bool InputIsBitcode = true; 3792 for (size_t i = 1; i < ActionInfo.size(); i++) 3793 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 3794 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 3795 InputIsBitcode = false; 3796 break; 3797 } 3798 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 3799 return nullptr; 3800 3801 // Get compiler tool. 3802 const Tool *T = TC.SelectTool(*CJ); 3803 if (!T) 3804 return nullptr; 3805 3806 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 3807 return nullptr; 3808 3809 Inputs = CJ->getInputs(); 3810 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3811 /*NumElements=*/2); 3812 return T; 3813 } 3814 3815 /// Updates the inputs if the obtained tool supports combining with 3816 /// preprocessor action, and the current input is indeed a preprocessor 3817 /// action. If combining results in the collapse of offloading actions, those 3818 /// are appended to \a CollapsedOffloadAction. 3819 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 3820 ActionList &CollapsedOffloadAction) { 3821 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 3822 return; 3823 3824 // Attempt to get a preprocessor action dependence. 3825 ActionList PreprocessJobOffloadActions; 3826 ActionList NewInputs; 3827 for (Action *A : Inputs) { 3828 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 3829 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 3830 NewInputs.push_back(A); 3831 continue; 3832 } 3833 3834 // This is legal to combine. Append any offload action we found and add the 3835 // current input to preprocessor inputs. 3836 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 3837 PreprocessJobOffloadActions.end()); 3838 NewInputs.append(PJ->input_begin(), PJ->input_end()); 3839 } 3840 Inputs = NewInputs; 3841 } 3842 3843 public: 3844 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 3845 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 3846 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 3847 EmbedBitcode(EmbedBitcode) { 3848 assert(BaseAction && "Invalid base action."); 3849 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 3850 } 3851 3852 /// Check if a chain of actions can be combined and return the tool that can 3853 /// handle the combination of actions. The pointer to the current inputs \a 3854 /// Inputs and the list of offload actions \a CollapsedOffloadActions 3855 /// connected to collapsed actions are updated accordingly. The latter enables 3856 /// the caller of the selector to process them afterwards instead of just 3857 /// dropping them. If no suitable tool is found, null will be returned. 3858 const Tool *getTool(ActionList &Inputs, 3859 ActionList &CollapsedOffloadAction) { 3860 // 3861 // Get the largest chain of actions that we could combine. 3862 // 3863 3864 SmallVector<JobActionInfo, 5> ActionChain(1); 3865 ActionChain.back().JA = BaseAction; 3866 while (ActionChain.back().JA) { 3867 const Action *CurAction = ActionChain.back().JA; 3868 3869 // Grow the chain by one element. 3870 ActionChain.resize(ActionChain.size() + 1); 3871 JobActionInfo &AI = ActionChain.back(); 3872 3873 // Attempt to fill it with the 3874 AI.JA = 3875 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 3876 } 3877 3878 // Pop the last action info as it could not be filled. 3879 ActionChain.pop_back(); 3880 3881 // 3882 // Attempt to combine actions. If all combining attempts failed, just return 3883 // the tool of the provided action. At the end we attempt to combine the 3884 // action with any preprocessor action it may depend on. 3885 // 3886 3887 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 3888 CollapsedOffloadAction); 3889 if (!T) 3890 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 3891 if (!T) 3892 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 3893 if (!T) { 3894 Inputs = BaseAction->getInputs(); 3895 T = TC.SelectTool(*BaseAction); 3896 } 3897 3898 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 3899 return T; 3900 } 3901 }; 3902 } 3903 3904 /// Return a string that uniquely identifies the result of a job. The bound arch 3905 /// is not necessarily represented in the toolchain's triple -- for example, 3906 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 3907 /// Also, we need to add the offloading device kind, as the same tool chain can 3908 /// be used for host and device for some programming models, e.g. OpenMP. 3909 static std::string GetTriplePlusArchString(const ToolChain *TC, 3910 StringRef BoundArch, 3911 Action::OffloadKind OffloadKind) { 3912 std::string TriplePlusArch = TC->getTriple().normalize(); 3913 if (!BoundArch.empty()) { 3914 TriplePlusArch += "-"; 3915 TriplePlusArch += BoundArch; 3916 } 3917 TriplePlusArch += "-"; 3918 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 3919 return TriplePlusArch; 3920 } 3921 3922 InputInfo Driver::BuildJobsForAction( 3923 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 3924 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 3925 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 3926 Action::OffloadKind TargetDeviceOffloadKind) const { 3927 std::pair<const Action *, std::string> ActionTC = { 3928 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 3929 auto CachedResult = CachedResults.find(ActionTC); 3930 if (CachedResult != CachedResults.end()) { 3931 return CachedResult->second; 3932 } 3933 InputInfo Result = BuildJobsForActionNoCache( 3934 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 3935 CachedResults, TargetDeviceOffloadKind); 3936 CachedResults[ActionTC] = Result; 3937 return Result; 3938 } 3939 3940 InputInfo Driver::BuildJobsForActionNoCache( 3941 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 3942 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 3943 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 3944 Action::OffloadKind TargetDeviceOffloadKind) const { 3945 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3946 3947 InputInfoList OffloadDependencesInputInfo; 3948 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 3949 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 3950 // The 'Darwin' toolchain is initialized only when its arguments are 3951 // computed. Get the default arguments for OFK_None to ensure that 3952 // initialization is performed before processing the offload action. 3953 // FIXME: Remove when darwin's toolchain is initialized during construction. 3954 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 3955 3956 // The offload action is expected to be used in four different situations. 3957 // 3958 // a) Set a toolchain/architecture/kind for a host action: 3959 // Host Action 1 -> OffloadAction -> Host Action 2 3960 // 3961 // b) Set a toolchain/architecture/kind for a device action; 3962 // Device Action 1 -> OffloadAction -> Device Action 2 3963 // 3964 // c) Specify a device dependence to a host action; 3965 // Device Action 1 _ 3966 // \ 3967 // Host Action 1 ---> OffloadAction -> Host Action 2 3968 // 3969 // d) Specify a host dependence to a device action. 3970 // Host Action 1 _ 3971 // \ 3972 // Device Action 1 ---> OffloadAction -> Device Action 2 3973 // 3974 // For a) and b), we just return the job generated for the dependence. For 3975 // c) and d) we override the current action with the host/device dependence 3976 // if the current toolchain is host/device and set the offload dependences 3977 // info with the jobs obtained from the device/host dependence(s). 3978 3979 // If there is a single device option, just generate the job for it. 3980 if (OA->hasSingleDeviceDependence()) { 3981 InputInfo DevA; 3982 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 3983 const char *DepBoundArch) { 3984 DevA = 3985 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 3986 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 3987 CachedResults, DepA->getOffloadingDeviceKind()); 3988 }); 3989 return DevA; 3990 } 3991 3992 // If 'Action 2' is host, we generate jobs for the device dependences and 3993 // override the current action with the host dependence. Otherwise, we 3994 // generate the host dependences and override the action with the device 3995 // dependence. The dependences can't therefore be a top-level action. 3996 OA->doOnEachDependence( 3997 /*IsHostDependence=*/BuildingForOffloadDevice, 3998 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 3999 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4000 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 4001 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 4002 DepA->getOffloadingDeviceKind())); 4003 }); 4004 4005 A = BuildingForOffloadDevice 4006 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 4007 : OA->getHostDependence(); 4008 } 4009 4010 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 4011 // FIXME: It would be nice to not claim this here; maybe the old scheme of 4012 // just using Args was better? 4013 const Arg &Input = IA->getInputArg(); 4014 Input.claim(); 4015 if (Input.getOption().matches(options::OPT_INPUT)) { 4016 const char *Name = Input.getValue(); 4017 return InputInfo(A, Name, /* BaseInput = */ Name); 4018 } 4019 return InputInfo(A, &Input, /* BaseInput = */ ""); 4020 } 4021 4022 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 4023 const ToolChain *TC; 4024 StringRef ArchName = BAA->getArchName(); 4025 4026 if (!ArchName.empty()) 4027 TC = &getToolChain(C.getArgs(), 4028 computeTargetTriple(*this, TargetTriple, 4029 C.getArgs(), ArchName)); 4030 else 4031 TC = &C.getDefaultToolChain(); 4032 4033 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 4034 MultipleArchs, LinkingOutput, CachedResults, 4035 TargetDeviceOffloadKind); 4036 } 4037 4038 4039 ActionList Inputs = A->getInputs(); 4040 4041 const JobAction *JA = cast<JobAction>(A); 4042 ActionList CollapsedOffloadActions; 4043 4044 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 4045 embedBitcodeInObject() && !isUsingLTO()); 4046 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 4047 4048 if (!T) 4049 return InputInfo(); 4050 4051 // If we've collapsed action list that contained OffloadAction we 4052 // need to build jobs for host/device-side inputs it may have held. 4053 for (const auto *OA : CollapsedOffloadActions) 4054 cast<OffloadAction>(OA)->doOnEachDependence( 4055 /*IsHostDependence=*/BuildingForOffloadDevice, 4056 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4057 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4058 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 4059 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 4060 DepA->getOffloadingDeviceKind())); 4061 }); 4062 4063 // Only use pipes when there is exactly one input. 4064 InputInfoList InputInfos; 4065 for (const Action *Input : Inputs) { 4066 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 4067 // shouldn't get temporary output names. 4068 // FIXME: Clean this up. 4069 bool SubJobAtTopLevel = 4070 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 4071 InputInfos.push_back(BuildJobsForAction( 4072 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 4073 CachedResults, A->getOffloadingDeviceKind())); 4074 } 4075 4076 // Always use the first input as the base input. 4077 const char *BaseInput = InputInfos[0].getBaseInput(); 4078 4079 // ... except dsymutil actions, which use their actual input as the base 4080 // input. 4081 if (JA->getType() == types::TY_dSYM) 4082 BaseInput = InputInfos[0].getFilename(); 4083 4084 // ... and in header module compilations, which use the module name. 4085 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA)) 4086 BaseInput = ModuleJA->getModuleName(); 4087 4088 // Append outputs of offload device jobs to the input list 4089 if (!OffloadDependencesInputInfo.empty()) 4090 InputInfos.append(OffloadDependencesInputInfo.begin(), 4091 OffloadDependencesInputInfo.end()); 4092 4093 // Set the effective triple of the toolchain for the duration of this job. 4094 llvm::Triple EffectiveTriple; 4095 const ToolChain &ToolTC = T->getToolChain(); 4096 const ArgList &Args = 4097 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 4098 if (InputInfos.size() != 1) { 4099 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 4100 } else { 4101 // Pass along the input type if it can be unambiguously determined. 4102 EffectiveTriple = llvm::Triple( 4103 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 4104 } 4105 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 4106 4107 // Determine the place to write output to, if any. 4108 InputInfo Result; 4109 InputInfoList UnbundlingResults; 4110 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 4111 // If we have an unbundling job, we need to create results for all the 4112 // outputs. We also update the results cache so that other actions using 4113 // this unbundling action can get the right results. 4114 for (auto &UI : UA->getDependentActionsInfo()) { 4115 assert(UI.DependentOffloadKind != Action::OFK_None && 4116 "Unbundling with no offloading??"); 4117 4118 // Unbundling actions are never at the top level. When we generate the 4119 // offloading prefix, we also do that for the host file because the 4120 // unbundling action does not change the type of the output which can 4121 // cause a overwrite. 4122 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4123 UI.DependentOffloadKind, 4124 UI.DependentToolChain->getTriple().normalize(), 4125 /*CreatePrefixForHost=*/true); 4126 auto CurI = InputInfo( 4127 UA, 4128 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 4129 /*AtTopLevel=*/false, 4130 MultipleArchs || 4131 UI.DependentOffloadKind == Action::OFK_HIP, 4132 OffloadingPrefix), 4133 BaseInput); 4134 // Save the unbundling result. 4135 UnbundlingResults.push_back(CurI); 4136 4137 // Get the unique string identifier for this dependence and cache the 4138 // result. 4139 StringRef Arch; 4140 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 4141 if (UI.DependentOffloadKind == Action::OFK_Host) 4142 Arch = StringRef(); 4143 else 4144 Arch = UI.DependentBoundArch; 4145 } else 4146 Arch = BoundArch; 4147 4148 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 4149 UI.DependentOffloadKind)}] = 4150 CurI; 4151 } 4152 4153 // Now that we have all the results generated, select the one that should be 4154 // returned for the current depending action. 4155 std::pair<const Action *, std::string> ActionTC = { 4156 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4157 assert(CachedResults.find(ActionTC) != CachedResults.end() && 4158 "Result does not exist??"); 4159 Result = CachedResults[ActionTC]; 4160 } else if (JA->getType() == types::TY_Nothing) 4161 Result = InputInfo(A, BaseInput); 4162 else { 4163 // We only have to generate a prefix for the host if this is not a top-level 4164 // action. 4165 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4166 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 4167 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 4168 !AtTopLevel); 4169 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 4170 AtTopLevel, MultipleArchs, 4171 OffloadingPrefix), 4172 BaseInput); 4173 } 4174 4175 if (CCCPrintBindings && !CCGenDiagnostics) { 4176 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 4177 << " - \"" << T->getName() << "\", inputs: ["; 4178 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 4179 llvm::errs() << InputInfos[i].getAsString(); 4180 if (i + 1 != e) 4181 llvm::errs() << ", "; 4182 } 4183 if (UnbundlingResults.empty()) 4184 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 4185 else { 4186 llvm::errs() << "], outputs: ["; 4187 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 4188 llvm::errs() << UnbundlingResults[i].getAsString(); 4189 if (i + 1 != e) 4190 llvm::errs() << ", "; 4191 } 4192 llvm::errs() << "] \n"; 4193 } 4194 } else { 4195 if (UnbundlingResults.empty()) 4196 T->ConstructJob( 4197 C, *JA, Result, InputInfos, 4198 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4199 LinkingOutput); 4200 else 4201 T->ConstructJobMultipleOutputs( 4202 C, *JA, UnbundlingResults, InputInfos, 4203 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4204 LinkingOutput); 4205 } 4206 return Result; 4207 } 4208 4209 const char *Driver::getDefaultImageName() const { 4210 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 4211 return Target.isOSWindows() ? "a.exe" : "a.out"; 4212 } 4213 4214 /// Create output filename based on ArgValue, which could either be a 4215 /// full filename, filename without extension, or a directory. If ArgValue 4216 /// does not provide a filename, then use BaseName, and use the extension 4217 /// suitable for FileType. 4218 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 4219 StringRef BaseName, 4220 types::ID FileType) { 4221 SmallString<128> Filename = ArgValue; 4222 4223 if (ArgValue.empty()) { 4224 // If the argument is empty, output to BaseName in the current dir. 4225 Filename = BaseName; 4226 } else if (llvm::sys::path::is_separator(Filename.back())) { 4227 // If the argument is a directory, output to BaseName in that dir. 4228 llvm::sys::path::append(Filename, BaseName); 4229 } 4230 4231 if (!llvm::sys::path::has_extension(ArgValue)) { 4232 // If the argument didn't provide an extension, then set it. 4233 const char *Extension = types::getTypeTempSuffix(FileType, true); 4234 4235 if (FileType == types::TY_Image && 4236 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 4237 // The output file is a dll. 4238 Extension = "dll"; 4239 } 4240 4241 llvm::sys::path::replace_extension(Filename, Extension); 4242 } 4243 4244 return Args.MakeArgString(Filename.c_str()); 4245 } 4246 4247 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 4248 const char *BaseInput, 4249 StringRef BoundArch, bool AtTopLevel, 4250 bool MultipleArchs, 4251 StringRef OffloadingPrefix) const { 4252 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 4253 // Output to a user requested destination? 4254 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 4255 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4256 return C.addResultFile(FinalOutput->getValue(), &JA); 4257 } 4258 4259 // For /P, preprocess to file named after BaseInput. 4260 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 4261 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 4262 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4263 StringRef NameArg; 4264 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 4265 NameArg = A->getValue(); 4266 return C.addResultFile( 4267 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 4268 &JA); 4269 } 4270 4271 // Default to writing to stdout? 4272 if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA)) 4273 return "-"; 4274 4275 // Is this the assembly listing for /FA? 4276 if (JA.getType() == types::TY_PP_Asm && 4277 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 4278 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 4279 // Use /Fa and the input filename to determine the asm file name. 4280 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4281 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 4282 return C.addResultFile( 4283 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 4284 &JA); 4285 } 4286 4287 // Output to a temporary file? 4288 if ((!AtTopLevel && !isSaveTempsEnabled() && 4289 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 4290 CCGenDiagnostics) { 4291 StringRef Name = llvm::sys::path::filename(BaseInput); 4292 std::pair<StringRef, StringRef> Split = Name.split('.'); 4293 SmallString<128> TmpName; 4294 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4295 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 4296 if (CCGenDiagnostics && A) { 4297 SmallString<128> CrashDirectory(A->getValue()); 4298 if (!getVFS().exists(CrashDirectory)) 4299 llvm::sys::fs::create_directories(CrashDirectory); 4300 llvm::sys::path::append(CrashDirectory, Split.first); 4301 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; 4302 std::error_code EC = llvm::sys::fs::createUniqueFile( 4303 CrashDirectory + Middle + Suffix, TmpName); 4304 if (EC) { 4305 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4306 return ""; 4307 } 4308 } else { 4309 TmpName = GetTemporaryPath(Split.first, Suffix); 4310 } 4311 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4312 } 4313 4314 SmallString<128> BasePath(BaseInput); 4315 StringRef BaseName; 4316 4317 // Dsymutil actions should use the full path. 4318 if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 4319 BaseName = BasePath; 4320 else 4321 BaseName = llvm::sys::path::filename(BasePath); 4322 4323 // Determine what the derived output name should be. 4324 const char *NamedOutput; 4325 4326 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 4327 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 4328 // The /Fo or /o flag decides the object filename. 4329 StringRef Val = 4330 C.getArgs() 4331 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 4332 ->getValue(); 4333 NamedOutput = 4334 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 4335 } else if (JA.getType() == types::TY_Image && 4336 C.getArgs().hasArg(options::OPT__SLASH_Fe, 4337 options::OPT__SLASH_o)) { 4338 // The /Fe or /o flag names the linked file. 4339 StringRef Val = 4340 C.getArgs() 4341 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 4342 ->getValue(); 4343 NamedOutput = 4344 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 4345 } else if (JA.getType() == types::TY_Image) { 4346 if (IsCLMode()) { 4347 // clang-cl uses BaseName for the executable name. 4348 NamedOutput = 4349 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 4350 } else { 4351 SmallString<128> Output(getDefaultImageName()); 4352 Output += OffloadingPrefix; 4353 if (MultipleArchs && !BoundArch.empty()) { 4354 Output += "-"; 4355 Output.append(BoundArch); 4356 } 4357 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 4358 } 4359 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 4360 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 4361 } else { 4362 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4363 assert(Suffix && "All types used for output should have a suffix."); 4364 4365 std::string::size_type End = std::string::npos; 4366 if (!types::appendSuffixForType(JA.getType())) 4367 End = BaseName.rfind('.'); 4368 SmallString<128> Suffixed(BaseName.substr(0, End)); 4369 Suffixed += OffloadingPrefix; 4370 if (MultipleArchs && !BoundArch.empty()) { 4371 Suffixed += "-"; 4372 Suffixed.append(BoundArch); 4373 } 4374 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 4375 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 4376 // optimized bitcode output. 4377 if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) && 4378 JA.getType() == types::TY_LLVM_BC) 4379 Suffixed += ".tmp"; 4380 Suffixed += '.'; 4381 Suffixed += Suffix; 4382 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 4383 } 4384 4385 // Prepend object file path if -save-temps=obj 4386 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 4387 JA.getType() != types::TY_PCH) { 4388 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 4389 SmallString<128> TempPath(FinalOutput->getValue()); 4390 llvm::sys::path::remove_filename(TempPath); 4391 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 4392 llvm::sys::path::append(TempPath, OutputFileName); 4393 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 4394 } 4395 4396 // If we're saving temps and the temp file conflicts with the input file, 4397 // then avoid overwriting input file. 4398 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 4399 bool SameFile = false; 4400 SmallString<256> Result; 4401 llvm::sys::fs::current_path(Result); 4402 llvm::sys::path::append(Result, BaseName); 4403 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 4404 // Must share the same path to conflict. 4405 if (SameFile) { 4406 StringRef Name = llvm::sys::path::filename(BaseInput); 4407 std::pair<StringRef, StringRef> Split = Name.split('.'); 4408 std::string TmpName = GetTemporaryPath( 4409 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 4410 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4411 } 4412 } 4413 4414 // As an annoying special case, PCH generation doesn't strip the pathname. 4415 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 4416 llvm::sys::path::remove_filename(BasePath); 4417 if (BasePath.empty()) 4418 BasePath = NamedOutput; 4419 else 4420 llvm::sys::path::append(BasePath, NamedOutput); 4421 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 4422 } else { 4423 return C.addResultFile(NamedOutput, &JA); 4424 } 4425 } 4426 4427 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 4428 // Search for Name in a list of paths. 4429 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 4430 -> llvm::Optional<std::string> { 4431 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4432 // attempting to use this prefix when looking for file paths. 4433 for (const auto &Dir : P) { 4434 if (Dir.empty()) 4435 continue; 4436 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4437 llvm::sys::path::append(P, Name); 4438 if (llvm::sys::fs::exists(Twine(P))) 4439 return P.str().str(); 4440 } 4441 return None; 4442 }; 4443 4444 if (auto P = SearchPaths(PrefixDirs)) 4445 return *P; 4446 4447 SmallString<128> R(ResourceDir); 4448 llvm::sys::path::append(R, Name); 4449 if (llvm::sys::fs::exists(Twine(R))) 4450 return R.str(); 4451 4452 SmallString<128> P(TC.getCompilerRTPath()); 4453 llvm::sys::path::append(P, Name); 4454 if (llvm::sys::fs::exists(Twine(P))) 4455 return P.str(); 4456 4457 SmallString<128> D(Dir); 4458 llvm::sys::path::append(D, "..", Name); 4459 if (llvm::sys::fs::exists(Twine(D))) 4460 return D.str(); 4461 4462 if (auto P = SearchPaths(TC.getLibraryPaths())) 4463 return *P; 4464 4465 if (auto P = SearchPaths(TC.getFilePaths())) 4466 return *P; 4467 4468 return Name; 4469 } 4470 4471 void Driver::generatePrefixedToolNames( 4472 StringRef Tool, const ToolChain &TC, 4473 SmallVectorImpl<std::string> &Names) const { 4474 // FIXME: Needs a better variable than TargetTriple 4475 Names.emplace_back((TargetTriple + "-" + Tool).str()); 4476 Names.emplace_back(Tool); 4477 4478 // Allow the discovery of tools prefixed with LLVM's default target triple. 4479 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4480 if (DefaultTargetTriple != TargetTriple) 4481 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4482 } 4483 4484 static bool ScanDirForExecutable(SmallString<128> &Dir, 4485 ArrayRef<std::string> Names) { 4486 for (const auto &Name : Names) { 4487 llvm::sys::path::append(Dir, Name); 4488 if (llvm::sys::fs::can_execute(Twine(Dir))) 4489 return true; 4490 llvm::sys::path::remove_filename(Dir); 4491 } 4492 return false; 4493 } 4494 4495 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4496 SmallVector<std::string, 2> TargetSpecificExecutables; 4497 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4498 4499 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4500 // attempting to use this prefix when looking for program paths. 4501 for (const auto &PrefixDir : PrefixDirs) { 4502 if (llvm::sys::fs::is_directory(PrefixDir)) { 4503 SmallString<128> P(PrefixDir); 4504 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4505 return P.str(); 4506 } else { 4507 SmallString<128> P((PrefixDir + Name).str()); 4508 if (llvm::sys::fs::can_execute(Twine(P))) 4509 return P.str(); 4510 } 4511 } 4512 4513 const ToolChain::path_list &List = TC.getProgramPaths(); 4514 for (const auto &Path : List) { 4515 SmallString<128> P(Path); 4516 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4517 return P.str(); 4518 } 4519 4520 // If all else failed, search the path. 4521 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) 4522 if (llvm::ErrorOr<std::string> P = 4523 llvm::sys::findProgramByName(TargetSpecificExecutable)) 4524 return *P; 4525 4526 return Name; 4527 } 4528 4529 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 4530 SmallString<128> Path; 4531 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 4532 if (EC) { 4533 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4534 return ""; 4535 } 4536 4537 return Path.str(); 4538 } 4539 4540 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 4541 SmallString<128> Path; 4542 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 4543 if (EC) { 4544 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4545 return ""; 4546 } 4547 4548 return Path.str(); 4549 } 4550 4551 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 4552 SmallString<128> Output; 4553 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 4554 // FIXME: If anybody needs it, implement this obscure rule: 4555 // "If you specify a directory without a file name, the default file name 4556 // is VCx0.pch., where x is the major version of Visual C++ in use." 4557 Output = FpArg->getValue(); 4558 4559 // "If you do not specify an extension as part of the path name, an 4560 // extension of .pch is assumed. " 4561 if (!llvm::sys::path::has_extension(Output)) 4562 Output += ".pch"; 4563 } else { 4564 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 4565 Output = YcArg->getValue(); 4566 if (Output.empty()) 4567 Output = BaseName; 4568 llvm::sys::path::replace_extension(Output, ".pch"); 4569 } 4570 return Output.str(); 4571 } 4572 4573 const ToolChain &Driver::getToolChain(const ArgList &Args, 4574 const llvm::Triple &Target) const { 4575 4576 auto &TC = ToolChains[Target.str()]; 4577 if (!TC) { 4578 switch (Target.getOS()) { 4579 case llvm::Triple::Haiku: 4580 TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args); 4581 break; 4582 case llvm::Triple::Ananas: 4583 TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args); 4584 break; 4585 case llvm::Triple::CloudABI: 4586 TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args); 4587 break; 4588 case llvm::Triple::Darwin: 4589 case llvm::Triple::MacOSX: 4590 case llvm::Triple::IOS: 4591 case llvm::Triple::TvOS: 4592 case llvm::Triple::WatchOS: 4593 TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args); 4594 break; 4595 case llvm::Triple::DragonFly: 4596 TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args); 4597 break; 4598 case llvm::Triple::OpenBSD: 4599 TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args); 4600 break; 4601 case llvm::Triple::NetBSD: 4602 TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args); 4603 break; 4604 case llvm::Triple::FreeBSD: 4605 TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args); 4606 break; 4607 case llvm::Triple::Minix: 4608 TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args); 4609 break; 4610 case llvm::Triple::Linux: 4611 case llvm::Triple::ELFIAMCU: 4612 if (Target.getArch() == llvm::Triple::hexagon) 4613 TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target, 4614 Args); 4615 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 4616 !Target.hasEnvironment()) 4617 TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 4618 Args); 4619 else if (Target.getArch() == llvm::Triple::ppc || 4620 Target.getArch() == llvm::Triple::ppc64 || 4621 Target.getArch() == llvm::Triple::ppc64le) 4622 TC = llvm::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 4623 Args); 4624 else 4625 TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args); 4626 break; 4627 case llvm::Triple::NaCl: 4628 TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 4629 break; 4630 case llvm::Triple::Fuchsia: 4631 TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args); 4632 break; 4633 case llvm::Triple::Solaris: 4634 TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args); 4635 break; 4636 case llvm::Triple::AMDHSA: 4637 case llvm::Triple::AMDPAL: 4638 case llvm::Triple::Mesa3D: 4639 TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 4640 break; 4641 case llvm::Triple::Win32: 4642 switch (Target.getEnvironment()) { 4643 default: 4644 if (Target.isOSBinFormatELF()) 4645 TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4646 else if (Target.isOSBinFormatMachO()) 4647 TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args); 4648 else 4649 TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4650 break; 4651 case llvm::Triple::GNU: 4652 TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args); 4653 break; 4654 case llvm::Triple::Itanium: 4655 TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 4656 Args); 4657 break; 4658 case llvm::Triple::MSVC: 4659 case llvm::Triple::UnknownEnvironment: 4660 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 4661 .startswith_lower("bfd")) 4662 TC = llvm::make_unique<toolchains::CrossWindowsToolChain>( 4663 *this, Target, Args); 4664 else 4665 TC = 4666 llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 4667 break; 4668 } 4669 break; 4670 case llvm::Triple::PS4: 4671 TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args); 4672 break; 4673 case llvm::Triple::Contiki: 4674 TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args); 4675 break; 4676 case llvm::Triple::Hurd: 4677 TC = llvm::make_unique<toolchains::Hurd>(*this, Target, Args); 4678 break; 4679 default: 4680 // Of these targets, Hexagon is the only one that might have 4681 // an OS of Linux, in which case it got handled above already. 4682 switch (Target.getArch()) { 4683 case llvm::Triple::tce: 4684 TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 4685 break; 4686 case llvm::Triple::tcele: 4687 TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 4688 break; 4689 case llvm::Triple::hexagon: 4690 TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target, 4691 Args); 4692 break; 4693 case llvm::Triple::lanai: 4694 TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 4695 break; 4696 case llvm::Triple::xcore: 4697 TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 4698 break; 4699 case llvm::Triple::wasm32: 4700 case llvm::Triple::wasm64: 4701 TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args); 4702 break; 4703 case llvm::Triple::avr: 4704 TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 4705 break; 4706 case llvm::Triple::msp430: 4707 TC = 4708 llvm::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 4709 break; 4710 case llvm::Triple::riscv32: 4711 case llvm::Triple::riscv64: 4712 TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 4713 break; 4714 default: 4715 if (Target.getVendor() == llvm::Triple::Myriad) 4716 TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target, 4717 Args); 4718 else if (toolchains::BareMetal::handlesTarget(Target)) 4719 TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args); 4720 else if (Target.isOSBinFormatELF()) 4721 TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4722 else if (Target.isOSBinFormatMachO()) 4723 TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args); 4724 else 4725 TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4726 } 4727 } 4728 } 4729 4730 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 4731 // compiles always need two toolchains, the CUDA toolchain and the host 4732 // toolchain. So the only valid way to create a CUDA toolchain is via 4733 // CreateOffloadingDeviceToolChains. 4734 4735 return *TC; 4736 } 4737 4738 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 4739 // Say "no" if there is not exactly one input of a type clang understands. 4740 if (JA.size() != 1 || 4741 !types::isAcceptedByClang((*JA.input_begin())->getType())) 4742 return false; 4743 4744 // And say "no" if this is not a kind of action clang understands. 4745 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 4746 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4747 return false; 4748 4749 return true; 4750 } 4751 4752 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 4753 /// grouped values as integers. Numbers which are not provided are set to 0. 4754 /// 4755 /// \return True if the entire string was parsed (9.2), or all groups were 4756 /// parsed (10.3.5extrastuff). 4757 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 4758 unsigned &Micro, bool &HadExtra) { 4759 HadExtra = false; 4760 4761 Major = Minor = Micro = 0; 4762 if (Str.empty()) 4763 return false; 4764 4765 if (Str.consumeInteger(10, Major)) 4766 return false; 4767 if (Str.empty()) 4768 return true; 4769 if (Str[0] != '.') 4770 return false; 4771 4772 Str = Str.drop_front(1); 4773 4774 if (Str.consumeInteger(10, Minor)) 4775 return false; 4776 if (Str.empty()) 4777 return true; 4778 if (Str[0] != '.') 4779 return false; 4780 Str = Str.drop_front(1); 4781 4782 if (Str.consumeInteger(10, Micro)) 4783 return false; 4784 if (!Str.empty()) 4785 HadExtra = true; 4786 return true; 4787 } 4788 4789 /// Parse digits from a string \p Str and fulfill \p Digits with 4790 /// the parsed numbers. This method assumes that the max number of 4791 /// digits to look for is equal to Digits.size(). 4792 /// 4793 /// \return True if the entire string was parsed and there are 4794 /// no extra characters remaining at the end. 4795 bool Driver::GetReleaseVersion(StringRef Str, 4796 MutableArrayRef<unsigned> Digits) { 4797 if (Str.empty()) 4798 return false; 4799 4800 unsigned CurDigit = 0; 4801 while (CurDigit < Digits.size()) { 4802 unsigned Digit; 4803 if (Str.consumeInteger(10, Digit)) 4804 return false; 4805 Digits[CurDigit] = Digit; 4806 if (Str.empty()) 4807 return true; 4808 if (Str[0] != '.') 4809 return false; 4810 Str = Str.drop_front(1); 4811 CurDigit++; 4812 } 4813 4814 // More digits than requested, bail out... 4815 return false; 4816 } 4817 4818 std::pair<unsigned, unsigned> 4819 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { 4820 unsigned IncludedFlagsBitmask = 0; 4821 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 4822 4823 if (IsClCompatMode) { 4824 // Include CL and Core options. 4825 IncludedFlagsBitmask |= options::CLOption; 4826 IncludedFlagsBitmask |= options::CoreOption; 4827 } else { 4828 ExcludedFlagsBitmask |= options::CLOption; 4829 } 4830 4831 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 4832 } 4833 4834 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 4835 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 4836 } 4837