1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AVR.h"
13 #include "ToolChains/Ananas.h"
14 #include "ToolChains/BareMetal.h"
15 #include "ToolChains/Clang.h"
16 #include "ToolChains/CloudABI.h"
17 #include "ToolChains/Contiki.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIP.h"
26 #include "ToolChains/Haiku.h"
27 #include "ToolChains/Hexagon.h"
28 #include "ToolChains/Hurd.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSP430.h"
32 #include "ToolChains/MSVC.h"
33 #include "ToolChains/MinGW.h"
34 #include "ToolChains/Minix.h"
35 #include "ToolChains/MipsLinux.h"
36 #include "ToolChains/Myriad.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OpenBSD.h"
40 #include "ToolChains/PS4CPU.h"
41 #include "ToolChains/PPCLinux.h"
42 #include "ToolChains/RISCVToolchain.h"
43 #include "ToolChains/Solaris.h"
44 #include "ToolChains/TCE.h"
45 #include "ToolChains/WebAssembly.h"
46 #include "ToolChains/XCore.h"
47 #include "clang/Basic/Version.h"
48 #include "clang/Config/config.h"
49 #include "clang/Driver/Action.h"
50 #include "clang/Driver/Compilation.h"
51 #include "clang/Driver/DriverDiagnostic.h"
52 #include "clang/Driver/Job.h"
53 #include "clang/Driver/Options.h"
54 #include "clang/Driver/SanitizerArgs.h"
55 #include "clang/Driver/Tool.h"
56 #include "clang/Driver/ToolChain.h"
57 #include "llvm/ADT/ArrayRef.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringSet.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/Config/llvm-config.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/OptSpecifier.h"
67 #include "llvm/Option/OptTable.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/Path.h"
74 #include "llvm/Support/PrettyStackTrace.h"
75 #include "llvm/Support/Process.h"
76 #include "llvm/Support/Program.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetRegistry.h"
79 #include "llvm/Support/VirtualFileSystem.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <map>
82 #include <memory>
83 #include <utility>
84 #if LLVM_ON_UNIX
85 #include <unistd.h> // getpid
86 #include <sysexits.h> // EX_IOERR
87 #endif
88 
89 using namespace clang::driver;
90 using namespace clang;
91 using namespace llvm::opt;
92 
93 // static
94 std::string Driver::GetResourcesPath(StringRef BinaryPath,
95                                      StringRef CustomResourceDir) {
96   // Since the resource directory is embedded in the module hash, it's important
97   // that all places that need it call this function, so that they get the
98   // exact same string ("a/../b/" and "b/" get different hashes, for example).
99 
100   // Dir is bin/ or lib/, depending on where BinaryPath is.
101   std::string Dir = llvm::sys::path::parent_path(BinaryPath);
102 
103   SmallString<128> P(Dir);
104   if (CustomResourceDir != "") {
105     llvm::sys::path::append(P, CustomResourceDir);
106   } else {
107     // On Windows, libclang.dll is in bin/.
108     // On non-Windows, libclang.so/.dylib is in lib/.
109     // With a static-library build of libclang, LibClangPath will contain the
110     // path of the embedding binary, which for LLVM binaries will be in bin/.
111     // ../lib gets us to lib/ in both cases.
112     P = llvm::sys::path::parent_path(Dir);
113     llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
114                             CLANG_VERSION_STRING);
115   }
116 
117   return P.str();
118 }
119 
120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
121                DiagnosticsEngine &Diags,
122                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
123     : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
124       Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
125       LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
126       SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
127       CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
128       CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
129       CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
130       CCGenDiagnostics(false), TargetTriple(TargetTriple),
131       CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
132       GenReproducer(false), SuppressMissingInputWarning(false) {
133 
134   // Provide a sane fallback if no VFS is specified.
135   if (!this->VFS)
136     this->VFS = llvm::vfs::createPhysicalFileSystem().release();
137 
138   Name = llvm::sys::path::filename(ClangExecutable);
139   Dir = llvm::sys::path::parent_path(ClangExecutable);
140   InstalledDir = Dir; // Provide a sensible default installed dir.
141 
142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
143   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
144 #endif
145 #if defined(CLANG_CONFIG_FILE_USER_DIR)
146   UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
147 #endif
148 
149   // Compute the path to the resource directory.
150   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
151 }
152 
153 void Driver::ParseDriverMode(StringRef ProgramName,
154                              ArrayRef<const char *> Args) {
155   if (ClangNameParts.isEmpty())
156     ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
157   setDriverModeFromOption(ClangNameParts.DriverMode);
158 
159   for (const char *ArgPtr : Args) {
160     // Ignore nullptrs, they are the response file's EOL markers.
161     if (ArgPtr == nullptr)
162       continue;
163     const StringRef Arg = ArgPtr;
164     setDriverModeFromOption(Arg);
165   }
166 }
167 
168 void Driver::setDriverModeFromOption(StringRef Opt) {
169   const std::string OptName =
170       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
171   if (!Opt.startswith(OptName))
172     return;
173   StringRef Value = Opt.drop_front(OptName.size());
174 
175   if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
176                    .Case("gcc", GCCMode)
177                    .Case("g++", GXXMode)
178                    .Case("cpp", CPPMode)
179                    .Case("cl", CLMode)
180                    .Default(None))
181     Mode = *M;
182   else
183     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
184 }
185 
186 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
187                                      bool IsClCompatMode,
188                                      bool &ContainsError) {
189   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
190   ContainsError = false;
191 
192   unsigned IncludedFlagsBitmask;
193   unsigned ExcludedFlagsBitmask;
194   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
195       getIncludeExcludeOptionFlagMasks(IsClCompatMode);
196 
197   unsigned MissingArgIndex, MissingArgCount;
198   InputArgList Args =
199       getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
200                           IncludedFlagsBitmask, ExcludedFlagsBitmask);
201 
202   // Check for missing argument error.
203   if (MissingArgCount) {
204     Diag(diag::err_drv_missing_argument)
205         << Args.getArgString(MissingArgIndex) << MissingArgCount;
206     ContainsError |=
207         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
208                                  SourceLocation()) > DiagnosticsEngine::Warning;
209   }
210 
211   // Check for unsupported options.
212   for (const Arg *A : Args) {
213     if (A->getOption().hasFlag(options::Unsupported)) {
214       unsigned DiagID;
215       auto ArgString = A->getAsString(Args);
216       std::string Nearest;
217       if (getOpts().findNearest(
218             ArgString, Nearest, IncludedFlagsBitmask,
219             ExcludedFlagsBitmask | options::Unsupported) > 1) {
220         DiagID = diag::err_drv_unsupported_opt;
221         Diag(DiagID) << ArgString;
222       } else {
223         DiagID = diag::err_drv_unsupported_opt_with_suggestion;
224         Diag(DiagID) << ArgString << Nearest;
225       }
226       ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
227                        DiagnosticsEngine::Warning;
228       continue;
229     }
230 
231     // Warn about -mcpu= without an argument.
232     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
233       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
234       ContainsError |= Diags.getDiagnosticLevel(
235                            diag::warn_drv_empty_joined_argument,
236                            SourceLocation()) > DiagnosticsEngine::Warning;
237     }
238   }
239 
240   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
241     unsigned DiagID;
242     auto ArgString = A->getAsString(Args);
243     std::string Nearest;
244     if (getOpts().findNearest(
245           ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
246       DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
247                           : diag::err_drv_unknown_argument;
248       Diags.Report(DiagID) << ArgString;
249     } else {
250       DiagID = IsCLMode()
251                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
252                    : diag::err_drv_unknown_argument_with_suggestion;
253       Diags.Report(DiagID) << ArgString << Nearest;
254     }
255     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
256                      DiagnosticsEngine::Warning;
257   }
258 
259   return Args;
260 }
261 
262 // Determine which compilation mode we are in. We look for options which
263 // affect the phase, starting with the earliest phases, and record which
264 // option we used to determine the final phase.
265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
266                                  Arg **FinalPhaseArg) const {
267   Arg *PhaseArg = nullptr;
268   phases::ID FinalPhase;
269 
270   // -{E,EP,P,M,MM} only run the preprocessor.
271   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
272       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
273       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
274       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
275     FinalPhase = phases::Preprocess;
276 
277     // --precompile only runs up to precompilation.
278   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
279     FinalPhase = phases::Precompile;
280 
281     // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
282   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
283              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
284              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
285              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
286              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
287              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
288              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
289              (PhaseArg = DAL.getLastArg(options::OPT_emit_iterface_stubs)) ||
290              (PhaseArg = DAL.getLastArg(options::OPT__analyze,
291                                         options::OPT__analyze_auto)) ||
292              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
293     FinalPhase = phases::Compile;
294 
295     // -S only runs up to the backend.
296   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
297     FinalPhase = phases::Backend;
298 
299     // -c compilation only runs up to the assembler.
300   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
301     FinalPhase = phases::Assemble;
302 
303     // Otherwise do everything.
304   } else
305     FinalPhase = phases::Link;
306 
307   if (FinalPhaseArg)
308     *FinalPhaseArg = PhaseArg;
309 
310   return FinalPhase;
311 }
312 
313 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
314                          StringRef Value, bool Claim = true) {
315   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
316                    Args.getBaseArgs().MakeIndex(Value), Value.data());
317   Args.AddSynthesizedArg(A);
318   if (Claim)
319     A->claim();
320   return A;
321 }
322 
323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
324   DerivedArgList *DAL = new DerivedArgList(Args);
325 
326   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
327   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
328   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
329   for (Arg *A : Args) {
330     // Unfortunately, we have to parse some forwarding options (-Xassembler,
331     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
332     // (assembler and preprocessor), or bypass a previous driver ('collect2').
333 
334     // Rewrite linker options, to replace --no-demangle with a custom internal
335     // option.
336     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
337          A->getOption().matches(options::OPT_Xlinker)) &&
338         A->containsValue("--no-demangle")) {
339       // Add the rewritten no-demangle argument.
340       DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
341 
342       // Add the remaining values as Xlinker arguments.
343       for (StringRef Val : A->getValues())
344         if (Val != "--no-demangle")
345           DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
346 
347       continue;
348     }
349 
350     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
351     // some build systems. We don't try to be complete here because we don't
352     // care to encourage this usage model.
353     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
354         (A->getValue(0) == StringRef("-MD") ||
355          A->getValue(0) == StringRef("-MMD"))) {
356       // Rewrite to -MD/-MMD along with -MF.
357       if (A->getValue(0) == StringRef("-MD"))
358         DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
359       else
360         DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
361       if (A->getNumValues() == 2)
362         DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
363                             A->getValue(1));
364       continue;
365     }
366 
367     // Rewrite reserved library names.
368     if (A->getOption().matches(options::OPT_l)) {
369       StringRef Value = A->getValue();
370 
371       // Rewrite unless -nostdlib is present.
372       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
373           Value == "stdc++") {
374         DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
375         continue;
376       }
377 
378       // Rewrite unconditionally.
379       if (Value == "cc_kext") {
380         DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
381         continue;
382       }
383     }
384 
385     // Pick up inputs via the -- option.
386     if (A->getOption().matches(options::OPT__DASH_DASH)) {
387       A->claim();
388       for (StringRef Val : A->getValues())
389         DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
390       continue;
391     }
392 
393     DAL->append(A);
394   }
395 
396   // Enforce -static if -miamcu is present.
397   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
398     DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
399 
400 // Add a default value of -mlinker-version=, if one was given and the user
401 // didn't specify one.
402 #if defined(HOST_LINK_VERSION)
403   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
404       strlen(HOST_LINK_VERSION) > 0) {
405     DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
406                       HOST_LINK_VERSION);
407     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
408   }
409 #endif
410 
411   return DAL;
412 }
413 
414 /// Compute target triple from args.
415 ///
416 /// This routine provides the logic to compute a target triple from various
417 /// args passed to the driver and the default triple string.
418 static llvm::Triple computeTargetTriple(const Driver &D,
419                                         StringRef TargetTriple,
420                                         const ArgList &Args,
421                                         StringRef DarwinArchName = "") {
422   // FIXME: Already done in Compilation *Driver::BuildCompilation
423   if (const Arg *A = Args.getLastArg(options::OPT_target))
424     TargetTriple = A->getValue();
425 
426   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
427 
428   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
429   // -gnu* only, and we can not change this, so we have to detect that case as
430   // being the Hurd OS.
431   if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
432       TargetTriple.find("-pc-gnu") != StringRef::npos)
433     Target.setOSName("hurd");
434 
435   // Handle Apple-specific options available here.
436   if (Target.isOSBinFormatMachO()) {
437     // If an explicit Darwin arch name is given, that trumps all.
438     if (!DarwinArchName.empty()) {
439       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
440       return Target;
441     }
442 
443     // Handle the Darwin '-arch' flag.
444     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
445       StringRef ArchName = A->getValue();
446       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
447     }
448   }
449 
450   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
451   // '-mbig-endian'/'-EB'.
452   if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
453                                options::OPT_mbig_endian)) {
454     if (A->getOption().matches(options::OPT_mlittle_endian)) {
455       llvm::Triple LE = Target.getLittleEndianArchVariant();
456       if (LE.getArch() != llvm::Triple::UnknownArch)
457         Target = std::move(LE);
458     } else {
459       llvm::Triple BE = Target.getBigEndianArchVariant();
460       if (BE.getArch() != llvm::Triple::UnknownArch)
461         Target = std::move(BE);
462     }
463   }
464 
465   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
466   if (Target.getArch() == llvm::Triple::tce ||
467       Target.getOS() == llvm::Triple::Minix)
468     return Target;
469 
470   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
471   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
472                            options::OPT_m32, options::OPT_m16);
473   if (A) {
474     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
475 
476     if (A->getOption().matches(options::OPT_m64)) {
477       AT = Target.get64BitArchVariant().getArch();
478       if (Target.getEnvironment() == llvm::Triple::GNUX32)
479         Target.setEnvironment(llvm::Triple::GNU);
480     } else if (A->getOption().matches(options::OPT_mx32) &&
481                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
482       AT = llvm::Triple::x86_64;
483       Target.setEnvironment(llvm::Triple::GNUX32);
484     } else if (A->getOption().matches(options::OPT_m32)) {
485       AT = Target.get32BitArchVariant().getArch();
486       if (Target.getEnvironment() == llvm::Triple::GNUX32)
487         Target.setEnvironment(llvm::Triple::GNU);
488     } else if (A->getOption().matches(options::OPT_m16) &&
489                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
490       AT = llvm::Triple::x86;
491       Target.setEnvironment(llvm::Triple::CODE16);
492     }
493 
494     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
495       Target.setArch(AT);
496   }
497 
498   // Handle -miamcu flag.
499   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
500     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
501       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
502                                                        << Target.str();
503 
504     if (A && !A->getOption().matches(options::OPT_m32))
505       D.Diag(diag::err_drv_argument_not_allowed_with)
506           << "-miamcu" << A->getBaseArg().getAsString(Args);
507 
508     Target.setArch(llvm::Triple::x86);
509     Target.setArchName("i586");
510     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
511     Target.setEnvironmentName("");
512     Target.setOS(llvm::Triple::ELFIAMCU);
513     Target.setVendor(llvm::Triple::UnknownVendor);
514     Target.setVendorName("intel");
515   }
516 
517   // If target is MIPS adjust the target triple
518   // accordingly to provided ABI name.
519   A = Args.getLastArg(options::OPT_mabi_EQ);
520   if (A && Target.isMIPS()) {
521     StringRef ABIName = A->getValue();
522     if (ABIName == "32") {
523       Target = Target.get32BitArchVariant();
524       if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
525           Target.getEnvironment() == llvm::Triple::GNUABIN32)
526         Target.setEnvironment(llvm::Triple::GNU);
527     } else if (ABIName == "n32") {
528       Target = Target.get64BitArchVariant();
529       if (Target.getEnvironment() == llvm::Triple::GNU ||
530           Target.getEnvironment() == llvm::Triple::GNUABI64)
531         Target.setEnvironment(llvm::Triple::GNUABIN32);
532     } else if (ABIName == "64") {
533       Target = Target.get64BitArchVariant();
534       if (Target.getEnvironment() == llvm::Triple::GNU ||
535           Target.getEnvironment() == llvm::Triple::GNUABIN32)
536         Target.setEnvironment(llvm::Triple::GNUABI64);
537     }
538   }
539 
540   return Target;
541 }
542 
543 // Parse the LTO options and record the type of LTO compilation
544 // based on which -f(no-)?lto(=.*)? option occurs last.
545 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
546   LTOMode = LTOK_None;
547   if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
548                     options::OPT_fno_lto, false))
549     return;
550 
551   StringRef LTOName("full");
552 
553   const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
554   if (A)
555     LTOName = A->getValue();
556 
557   LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
558                 .Case("full", LTOK_Full)
559                 .Case("thin", LTOK_Thin)
560                 .Default(LTOK_Unknown);
561 
562   if (LTOMode == LTOK_Unknown) {
563     assert(A);
564     Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
565                                                     << A->getValue();
566   }
567 }
568 
569 /// Compute the desired OpenMP runtime from the flags provided.
570 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
571   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
572 
573   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
574   if (A)
575     RuntimeName = A->getValue();
576 
577   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
578                 .Case("libomp", OMPRT_OMP)
579                 .Case("libgomp", OMPRT_GOMP)
580                 .Case("libiomp5", OMPRT_IOMP5)
581                 .Default(OMPRT_Unknown);
582 
583   if (RT == OMPRT_Unknown) {
584     if (A)
585       Diag(diag::err_drv_unsupported_option_argument)
586           << A->getOption().getName() << A->getValue();
587     else
588       // FIXME: We could use a nicer diagnostic here.
589       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
590   }
591 
592   return RT;
593 }
594 
595 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
596                                               InputList &Inputs) {
597 
598   //
599   // CUDA/HIP
600   //
601   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
602   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
603   bool IsCuda =
604       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
605         return types::isCuda(I.first);
606       });
607   bool IsHIP =
608       llvm::any_of(Inputs,
609                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
610                      return types::isHIP(I.first);
611                    }) ||
612       C.getInputArgs().hasArg(options::OPT_hip_link);
613   if (IsCuda && IsHIP) {
614     Diag(clang::diag::err_drv_mix_cuda_hip);
615     return;
616   }
617   if (IsCuda) {
618     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
619     const llvm::Triple &HostTriple = HostTC->getTriple();
620     StringRef DeviceTripleStr;
621     auto OFK = Action::OFK_Cuda;
622     DeviceTripleStr =
623         HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
624     llvm::Triple CudaTriple(DeviceTripleStr);
625     // Use the CUDA and host triples as the key into the ToolChains map,
626     // because the device toolchain we create depends on both.
627     auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
628     if (!CudaTC) {
629       CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
630           *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
631     }
632     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
633   } else if (IsHIP) {
634     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
635     const llvm::Triple &HostTriple = HostTC->getTriple();
636     StringRef DeviceTripleStr;
637     auto OFK = Action::OFK_HIP;
638     DeviceTripleStr = "amdgcn-amd-amdhsa";
639     llvm::Triple HIPTriple(DeviceTripleStr);
640     // Use the HIP and host triples as the key into the ToolChains map,
641     // because the device toolchain we create depends on both.
642     auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
643     if (!HIPTC) {
644       HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
645           *this, HIPTriple, *HostTC, C.getInputArgs());
646     }
647     C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
648   }
649 
650   //
651   // OpenMP
652   //
653   // We need to generate an OpenMP toolchain if the user specified targets with
654   // the -fopenmp-targets option.
655   if (Arg *OpenMPTargets =
656           C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
657     if (OpenMPTargets->getNumValues()) {
658       // We expect that -fopenmp-targets is always used in conjunction with the
659       // option -fopenmp specifying a valid runtime with offloading support,
660       // i.e. libomp or libiomp.
661       bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
662           options::OPT_fopenmp, options::OPT_fopenmp_EQ,
663           options::OPT_fno_openmp, false);
664       if (HasValidOpenMPRuntime) {
665         OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
666         HasValidOpenMPRuntime =
667             OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
668       }
669 
670       if (HasValidOpenMPRuntime) {
671         llvm::StringMap<const char *> FoundNormalizedTriples;
672         for (const char *Val : OpenMPTargets->getValues()) {
673           llvm::Triple TT(Val);
674           std::string NormalizedName = TT.normalize();
675 
676           // Make sure we don't have a duplicate triple.
677           auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
678           if (Duplicate != FoundNormalizedTriples.end()) {
679             Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
680                 << Val << Duplicate->second;
681             continue;
682           }
683 
684           // Store the current triple so that we can check for duplicates in the
685           // following iterations.
686           FoundNormalizedTriples[NormalizedName] = Val;
687 
688           // If the specified target is invalid, emit a diagnostic.
689           if (TT.getArch() == llvm::Triple::UnknownArch)
690             Diag(clang::diag::err_drv_invalid_omp_target) << Val;
691           else {
692             const ToolChain *TC;
693             // CUDA toolchains have to be selected differently. They pair host
694             // and device in their implementation.
695             if (TT.isNVPTX()) {
696               const ToolChain *HostTC =
697                   C.getSingleOffloadToolChain<Action::OFK_Host>();
698               assert(HostTC && "Host toolchain should be always defined.");
699               auto &CudaTC =
700                   ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
701               if (!CudaTC)
702                 CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
703                     *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
704               TC = CudaTC.get();
705             } else
706               TC = &getToolChain(C.getInputArgs(), TT);
707             C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
708           }
709         }
710       } else
711         Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
712     } else
713       Diag(clang::diag::warn_drv_empty_joined_argument)
714           << OpenMPTargets->getAsString(C.getInputArgs());
715   }
716 
717   //
718   // TODO: Add support for other offloading programming models here.
719   //
720 }
721 
722 /// Looks the given directories for the specified file.
723 ///
724 /// \param[out] FilePath File path, if the file was found.
725 /// \param[in]  Dirs Directories used for the search.
726 /// \param[in]  FileName Name of the file to search for.
727 /// \return True if file was found.
728 ///
729 /// Looks for file specified by FileName sequentially in directories specified
730 /// by Dirs.
731 ///
732 static bool searchForFile(SmallVectorImpl<char> &FilePath,
733                           ArrayRef<std::string> Dirs,
734                           StringRef FileName) {
735   SmallString<128> WPath;
736   for (const StringRef &Dir : Dirs) {
737     if (Dir.empty())
738       continue;
739     WPath.clear();
740     llvm::sys::path::append(WPath, Dir, FileName);
741     llvm::sys::path::native(WPath);
742     if (llvm::sys::fs::is_regular_file(WPath)) {
743       FilePath = std::move(WPath);
744       return true;
745     }
746   }
747   return false;
748 }
749 
750 bool Driver::readConfigFile(StringRef FileName) {
751   // Try reading the given file.
752   SmallVector<const char *, 32> NewCfgArgs;
753   if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
754     Diag(diag::err_drv_cannot_read_config_file) << FileName;
755     return true;
756   }
757 
758   // Read options from config file.
759   llvm::SmallString<128> CfgFileName(FileName);
760   llvm::sys::path::native(CfgFileName);
761   ConfigFile = CfgFileName.str();
762   bool ContainErrors;
763   CfgOptions = llvm::make_unique<InputArgList>(
764       ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
765   if (ContainErrors) {
766     CfgOptions.reset();
767     return true;
768   }
769 
770   if (CfgOptions->hasArg(options::OPT_config)) {
771     CfgOptions.reset();
772     Diag(diag::err_drv_nested_config_file);
773     return true;
774   }
775 
776   // Claim all arguments that come from a configuration file so that the driver
777   // does not warn on any that is unused.
778   for (Arg *A : *CfgOptions)
779     A->claim();
780   return false;
781 }
782 
783 bool Driver::loadConfigFile() {
784   std::string CfgFileName;
785   bool FileSpecifiedExplicitly = false;
786 
787   // Process options that change search path for config files.
788   if (CLOptions) {
789     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
790       SmallString<128> CfgDir;
791       CfgDir.append(
792           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
793       if (!CfgDir.empty()) {
794         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
795           SystemConfigDir.clear();
796         else
797           SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
798       }
799     }
800     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
801       SmallString<128> CfgDir;
802       CfgDir.append(
803           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
804       if (!CfgDir.empty()) {
805         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
806           UserConfigDir.clear();
807         else
808           UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
809       }
810     }
811   }
812 
813   // First try to find config file specified in command line.
814   if (CLOptions) {
815     std::vector<std::string> ConfigFiles =
816         CLOptions->getAllArgValues(options::OPT_config);
817     if (ConfigFiles.size() > 1) {
818       Diag(diag::err_drv_duplicate_config);
819       return true;
820     }
821 
822     if (!ConfigFiles.empty()) {
823       CfgFileName = ConfigFiles.front();
824       assert(!CfgFileName.empty());
825 
826       // If argument contains directory separator, treat it as a path to
827       // configuration file.
828       if (llvm::sys::path::has_parent_path(CfgFileName)) {
829         SmallString<128> CfgFilePath;
830         if (llvm::sys::path::is_relative(CfgFileName))
831           llvm::sys::fs::current_path(CfgFilePath);
832         llvm::sys::path::append(CfgFilePath, CfgFileName);
833         if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
834           Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
835           return true;
836         }
837         return readConfigFile(CfgFilePath);
838       }
839 
840       FileSpecifiedExplicitly = true;
841     }
842   }
843 
844   // If config file is not specified explicitly, try to deduce configuration
845   // from executable name. For instance, an executable 'armv7l-clang' will
846   // search for config file 'armv7l-clang.cfg'.
847   if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
848     CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
849 
850   if (CfgFileName.empty())
851     return false;
852 
853   // Determine architecture part of the file name, if it is present.
854   StringRef CfgFileArch = CfgFileName;
855   size_t ArchPrefixLen = CfgFileArch.find('-');
856   if (ArchPrefixLen == StringRef::npos)
857     ArchPrefixLen = CfgFileArch.size();
858   llvm::Triple CfgTriple;
859   CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
860   CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
861   if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
862     ArchPrefixLen = 0;
863 
864   if (!StringRef(CfgFileName).endswith(".cfg"))
865     CfgFileName += ".cfg";
866 
867   // If config file starts with architecture name and command line options
868   // redefine architecture (with options like -m32 -LE etc), try finding new
869   // config file with that architecture.
870   SmallString<128> FixedConfigFile;
871   size_t FixedArchPrefixLen = 0;
872   if (ArchPrefixLen) {
873     // Get architecture name from config file name like 'i386.cfg' or
874     // 'armv7l-clang.cfg'.
875     // Check if command line options changes effective triple.
876     llvm::Triple EffectiveTriple = computeTargetTriple(*this,
877                                              CfgTriple.getTriple(), *CLOptions);
878     if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
879       FixedConfigFile = EffectiveTriple.getArchName();
880       FixedArchPrefixLen = FixedConfigFile.size();
881       // Append the rest of original file name so that file name transforms
882       // like: i386-clang.cfg -> x86_64-clang.cfg.
883       if (ArchPrefixLen < CfgFileName.size())
884         FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
885     }
886   }
887 
888   // Prepare list of directories where config file is searched for.
889   SmallVector<std::string, 3> CfgFileSearchDirs;
890   CfgFileSearchDirs.push_back(UserConfigDir);
891   CfgFileSearchDirs.push_back(SystemConfigDir);
892   CfgFileSearchDirs.push_back(Dir);
893 
894   // Try to find config file. First try file with corrected architecture.
895   llvm::SmallString<128> CfgFilePath;
896   if (!FixedConfigFile.empty()) {
897     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
898       return readConfigFile(CfgFilePath);
899     // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
900     FixedConfigFile.resize(FixedArchPrefixLen);
901     FixedConfigFile.append(".cfg");
902     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
903       return readConfigFile(CfgFilePath);
904   }
905 
906   // Then try original file name.
907   if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
908     return readConfigFile(CfgFilePath);
909 
910   // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
911   if (!ClangNameParts.ModeSuffix.empty() &&
912       !ClangNameParts.TargetPrefix.empty()) {
913     CfgFileName.assign(ClangNameParts.TargetPrefix);
914     CfgFileName.append(".cfg");
915     if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
916       return readConfigFile(CfgFilePath);
917   }
918 
919   // Report error but only if config file was specified explicitly, by option
920   // --config. If it was deduced from executable name, it is not an error.
921   if (FileSpecifiedExplicitly) {
922     Diag(diag::err_drv_config_file_not_found) << CfgFileName;
923     for (const std::string &SearchDir : CfgFileSearchDirs)
924       if (!SearchDir.empty())
925         Diag(diag::note_drv_config_file_searched_in) << SearchDir;
926     return true;
927   }
928 
929   return false;
930 }
931 
932 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
933   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
934 
935   // FIXME: Handle environment options which affect driver behavior, somewhere
936   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
937 
938   if (Optional<std::string> CompilerPathValue =
939           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
940     StringRef CompilerPath = *CompilerPathValue;
941     while (!CompilerPath.empty()) {
942       std::pair<StringRef, StringRef> Split =
943           CompilerPath.split(llvm::sys::EnvPathSeparator);
944       PrefixDirs.push_back(Split.first);
945       CompilerPath = Split.second;
946     }
947   }
948 
949   // We look for the driver mode option early, because the mode can affect
950   // how other options are parsed.
951   ParseDriverMode(ClangExecutable, ArgList.slice(1));
952 
953   // FIXME: What are we going to do with -V and -b?
954 
955   // Arguments specified in command line.
956   bool ContainsError;
957   CLOptions = llvm::make_unique<InputArgList>(
958       ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
959 
960   // Try parsing configuration file.
961   if (!ContainsError)
962     ContainsError = loadConfigFile();
963   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
964 
965   // All arguments, from both config file and command line.
966   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
967                                               : std::move(*CLOptions));
968 
969   auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
970       unsigned Index = Args.MakeIndex(Opt->getSpelling());
971       Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
972                                      Index, BaseArg);
973       Copy->getValues() = Opt->getValues();
974       if (Opt->isClaimed())
975         Copy->claim();
976       Args.append(Copy);
977   };
978 
979   if (HasConfigFile)
980     for (auto *Opt : *CLOptions) {
981       if (Opt->getOption().matches(options::OPT_config))
982         continue;
983       const Arg *BaseArg = &Opt->getBaseArg();
984       if (BaseArg == Opt)
985         BaseArg = nullptr;
986       appendOneArg(Opt, BaseArg);
987     }
988 
989   // In CL mode, look for any pass-through arguments
990   if (IsCLMode() && !ContainsError) {
991     SmallVector<const char *, 16> CLModePassThroughArgList;
992     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
993       A->claim();
994       CLModePassThroughArgList.push_back(A->getValue());
995     }
996 
997     if (!CLModePassThroughArgList.empty()) {
998       // Parse any pass through args using default clang processing rather
999       // than clang-cl processing.
1000       auto CLModePassThroughOptions = llvm::make_unique<InputArgList>(
1001           ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1002 
1003       if (!ContainsError)
1004         for (auto *Opt : *CLModePassThroughOptions) {
1005           appendOneArg(Opt, nullptr);
1006         }
1007     }
1008   }
1009 
1010   // Check for working directory option before accessing any files
1011   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1012     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1013       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1014 
1015   // FIXME: This stuff needs to go into the Compilation, not the driver.
1016   bool CCCPrintPhases;
1017 
1018   // Silence driver warnings if requested
1019   Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1020 
1021   // -no-canonical-prefixes is used very early in main.
1022   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1023 
1024   // Ignore -pipe.
1025   Args.ClaimAllArgs(options::OPT_pipe);
1026 
1027   // Extract -ccc args.
1028   //
1029   // FIXME: We need to figure out where this behavior should live. Most of it
1030   // should be outside in the client; the parts that aren't should have proper
1031   // options, either by introducing new ones or by overloading gcc ones like -V
1032   // or -b.
1033   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1034   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1035   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1036     CCCGenericGCCName = A->getValue();
1037   GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1038                                options::OPT_fno_crash_diagnostics,
1039                                !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1040   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1041   // and getToolChain is const.
1042   if (IsCLMode()) {
1043     // clang-cl targets MSVC-style Win32.
1044     llvm::Triple T(TargetTriple);
1045     T.setOS(llvm::Triple::Win32);
1046     T.setVendor(llvm::Triple::PC);
1047     T.setEnvironment(llvm::Triple::MSVC);
1048     T.setObjectFormat(llvm::Triple::COFF);
1049     TargetTriple = T.str();
1050   }
1051   if (const Arg *A = Args.getLastArg(options::OPT_target))
1052     TargetTriple = A->getValue();
1053   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1054     Dir = InstalledDir = A->getValue();
1055   for (const Arg *A : Args.filtered(options::OPT_B)) {
1056     A->claim();
1057     PrefixDirs.push_back(A->getValue(0));
1058   }
1059   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1060     SysRoot = A->getValue();
1061   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1062     DyldPrefix = A->getValue();
1063 
1064   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1065     ResourceDir = A->getValue();
1066 
1067   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1068     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1069                     .Case("cwd", SaveTempsCwd)
1070                     .Case("obj", SaveTempsObj)
1071                     .Default(SaveTempsCwd);
1072   }
1073 
1074   setLTOMode(Args);
1075 
1076   // Process -fembed-bitcode= flags.
1077   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1078     StringRef Name = A->getValue();
1079     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1080         .Case("off", EmbedNone)
1081         .Case("all", EmbedBitcode)
1082         .Case("bitcode", EmbedBitcode)
1083         .Case("marker", EmbedMarker)
1084         .Default(~0U);
1085     if (Model == ~0U) {
1086       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1087                                                 << Name;
1088     } else
1089       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1090   }
1091 
1092   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1093       llvm::make_unique<InputArgList>(std::move(Args));
1094 
1095   // Perform the default argument translations.
1096   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1097 
1098   // Owned by the host.
1099   const ToolChain &TC = getToolChain(
1100       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1101 
1102   // The compilation takes ownership of Args.
1103   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1104                                    ContainsError);
1105 
1106   if (!HandleImmediateArgs(*C))
1107     return C;
1108 
1109   // Construct the list of inputs.
1110   InputList Inputs;
1111   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1112 
1113   // Populate the tool chains for the offloading devices, if any.
1114   CreateOffloadingDeviceToolChains(*C, Inputs);
1115 
1116   // Construct the list of abstract actions to perform for this compilation. On
1117   // MachO targets this uses the driver-driver and universal actions.
1118   if (TC.getTriple().isOSBinFormatMachO())
1119     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1120   else
1121     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1122 
1123   if (CCCPrintPhases) {
1124     PrintActions(*C);
1125     return C;
1126   }
1127 
1128   BuildJobs(*C);
1129 
1130   return C;
1131 }
1132 
1133 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1134   llvm::opt::ArgStringList ASL;
1135   for (const auto *A : Args)
1136     A->render(Args, ASL);
1137 
1138   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1139     if (I != ASL.begin())
1140       OS << ' ';
1141     Command::printArg(OS, *I, true);
1142   }
1143   OS << '\n';
1144 }
1145 
1146 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1147                                     SmallString<128> &CrashDiagDir) {
1148   using namespace llvm::sys;
1149   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1150          "Only knows about .crash files on Darwin");
1151 
1152   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1153   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1154   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1155   path::home_directory(CrashDiagDir);
1156   if (CrashDiagDir.startswith("/var/root"))
1157     CrashDiagDir = "/";
1158   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1159   int PID =
1160 #if LLVM_ON_UNIX
1161       getpid();
1162 #else
1163       0;
1164 #endif
1165   std::error_code EC;
1166   fs::file_status FileStatus;
1167   TimePoint<> LastAccessTime;
1168   SmallString<128> CrashFilePath;
1169   // Lookup the .crash files and get the one generated by a subprocess spawned
1170   // by this driver invocation.
1171   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1172        File != FileEnd && !EC; File.increment(EC)) {
1173     StringRef FileName = path::filename(File->path());
1174     if (!FileName.startswith(Name))
1175       continue;
1176     if (fs::status(File->path(), FileStatus))
1177       continue;
1178     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1179         llvm::MemoryBuffer::getFile(File->path());
1180     if (!CrashFile)
1181       continue;
1182     // The first line should start with "Process:", otherwise this isn't a real
1183     // .crash file.
1184     StringRef Data = CrashFile.get()->getBuffer();
1185     if (!Data.startswith("Process:"))
1186       continue;
1187     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1188     size_t ParentProcPos = Data.find("Parent Process:");
1189     if (ParentProcPos == StringRef::npos)
1190       continue;
1191     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1192     if (LineEnd == StringRef::npos)
1193       continue;
1194     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1195     int OpenBracket = -1, CloseBracket = -1;
1196     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1197       if (ParentProcess[i] == '[')
1198         OpenBracket = i;
1199       if (ParentProcess[i] == ']')
1200         CloseBracket = i;
1201     }
1202     // Extract the parent process PID from the .crash file and check whether
1203     // it matches this driver invocation pid.
1204     int CrashPID;
1205     if (OpenBracket < 0 || CloseBracket < 0 ||
1206         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1207             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1208       continue;
1209     }
1210 
1211     // Found a .crash file matching the driver pid. To avoid getting an older
1212     // and misleading crash file, continue looking for the most recent.
1213     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1214     // multiple crashes poiting to the same parent process. Since the driver
1215     // does not collect pid information for the dispatched invocation there's
1216     // currently no way to distinguish among them.
1217     const auto FileAccessTime = FileStatus.getLastModificationTime();
1218     if (FileAccessTime > LastAccessTime) {
1219       CrashFilePath.assign(File->path());
1220       LastAccessTime = FileAccessTime;
1221     }
1222   }
1223 
1224   // If found, copy it over to the location of other reproducer files.
1225   if (!CrashFilePath.empty()) {
1226     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1227     if (EC)
1228       return false;
1229     return true;
1230   }
1231 
1232   return false;
1233 }
1234 
1235 // When clang crashes, produce diagnostic information including the fully
1236 // preprocessed source file(s).  Request that the developer attach the
1237 // diagnostic information to a bug report.
1238 void Driver::generateCompilationDiagnostics(
1239     Compilation &C, const Command &FailingCommand,
1240     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1241   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1242     return;
1243 
1244   // Don't try to generate diagnostics for link or dsymutil jobs.
1245   if (FailingCommand.getCreator().isLinkJob() ||
1246       FailingCommand.getCreator().isDsymutilJob())
1247     return;
1248 
1249   // Print the version of the compiler.
1250   PrintVersion(C, llvm::errs());
1251 
1252   Diag(clang::diag::note_drv_command_failed_diag_msg)
1253       << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1254          "crash backtrace, preprocessed source, and associated run script.";
1255 
1256   // Suppress driver output and emit preprocessor output to temp file.
1257   Mode = CPPMode;
1258   CCGenDiagnostics = true;
1259 
1260   // Save the original job command(s).
1261   Command Cmd = FailingCommand;
1262 
1263   // Keep track of whether we produce any errors while trying to produce
1264   // preprocessed sources.
1265   DiagnosticErrorTrap Trap(Diags);
1266 
1267   // Suppress tool output.
1268   C.initCompilationForDiagnostics();
1269 
1270   // Construct the list of inputs.
1271   InputList Inputs;
1272   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1273 
1274   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1275     bool IgnoreInput = false;
1276 
1277     // Ignore input from stdin or any inputs that cannot be preprocessed.
1278     // Check type first as not all linker inputs have a value.
1279     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1280       IgnoreInput = true;
1281     } else if (!strcmp(it->second->getValue(), "-")) {
1282       Diag(clang::diag::note_drv_command_failed_diag_msg)
1283           << "Error generating preprocessed source(s) - "
1284              "ignoring input from stdin.";
1285       IgnoreInput = true;
1286     }
1287 
1288     if (IgnoreInput) {
1289       it = Inputs.erase(it);
1290       ie = Inputs.end();
1291     } else {
1292       ++it;
1293     }
1294   }
1295 
1296   if (Inputs.empty()) {
1297     Diag(clang::diag::note_drv_command_failed_diag_msg)
1298         << "Error generating preprocessed source(s) - "
1299            "no preprocessable inputs.";
1300     return;
1301   }
1302 
1303   // Don't attempt to generate preprocessed files if multiple -arch options are
1304   // used, unless they're all duplicates.
1305   llvm::StringSet<> ArchNames;
1306   for (const Arg *A : C.getArgs()) {
1307     if (A->getOption().matches(options::OPT_arch)) {
1308       StringRef ArchName = A->getValue();
1309       ArchNames.insert(ArchName);
1310     }
1311   }
1312   if (ArchNames.size() > 1) {
1313     Diag(clang::diag::note_drv_command_failed_diag_msg)
1314         << "Error generating preprocessed source(s) - cannot generate "
1315            "preprocessed source with multiple -arch options.";
1316     return;
1317   }
1318 
1319   // Construct the list of abstract actions to perform for this compilation. On
1320   // Darwin OSes this uses the driver-driver and builds universal actions.
1321   const ToolChain &TC = C.getDefaultToolChain();
1322   if (TC.getTriple().isOSBinFormatMachO())
1323     BuildUniversalActions(C, TC, Inputs);
1324   else
1325     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1326 
1327   BuildJobs(C);
1328 
1329   // If there were errors building the compilation, quit now.
1330   if (Trap.hasErrorOccurred()) {
1331     Diag(clang::diag::note_drv_command_failed_diag_msg)
1332         << "Error generating preprocessed source(s).";
1333     return;
1334   }
1335 
1336   // Generate preprocessed output.
1337   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1338   C.ExecuteJobs(C.getJobs(), FailingCommands);
1339 
1340   // If any of the preprocessing commands failed, clean up and exit.
1341   if (!FailingCommands.empty()) {
1342     Diag(clang::diag::note_drv_command_failed_diag_msg)
1343         << "Error generating preprocessed source(s).";
1344     return;
1345   }
1346 
1347   const ArgStringList &TempFiles = C.getTempFiles();
1348   if (TempFiles.empty()) {
1349     Diag(clang::diag::note_drv_command_failed_diag_msg)
1350         << "Error generating preprocessed source(s).";
1351     return;
1352   }
1353 
1354   Diag(clang::diag::note_drv_command_failed_diag_msg)
1355       << "\n********************\n\n"
1356          "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1357          "Preprocessed source(s) and associated run script(s) are located at:";
1358 
1359   SmallString<128> VFS;
1360   SmallString<128> ReproCrashFilename;
1361   for (const char *TempFile : TempFiles) {
1362     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1363     if (Report)
1364       Report->TemporaryFiles.push_back(TempFile);
1365     if (ReproCrashFilename.empty()) {
1366       ReproCrashFilename = TempFile;
1367       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1368     }
1369     if (StringRef(TempFile).endswith(".cache")) {
1370       // In some cases (modules) we'll dump extra data to help with reproducing
1371       // the crash into a directory next to the output.
1372       VFS = llvm::sys::path::filename(TempFile);
1373       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1374     }
1375   }
1376 
1377   // Assume associated files are based off of the first temporary file.
1378   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1379 
1380   llvm::SmallString<128> Script(CrashInfo.Filename);
1381   llvm::sys::path::replace_extension(Script, "sh");
1382   std::error_code EC;
1383   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1384   if (EC) {
1385     Diag(clang::diag::note_drv_command_failed_diag_msg)
1386         << "Error generating run script: " << Script << " " << EC.message();
1387   } else {
1388     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1389              << "# Driver args: ";
1390     printArgList(ScriptOS, C.getInputArgs());
1391     ScriptOS << "# Original command: ";
1392     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1393     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1394     if (!AdditionalInformation.empty())
1395       ScriptOS << "\n# Additional information: " << AdditionalInformation
1396                << "\n";
1397     if (Report)
1398       Report->TemporaryFiles.push_back(Script.str());
1399     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1400   }
1401 
1402   // On darwin, provide information about the .crash diagnostic report.
1403   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1404     SmallString<128> CrashDiagDir;
1405     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1406       Diag(clang::diag::note_drv_command_failed_diag_msg)
1407           << ReproCrashFilename.str();
1408     } else { // Suggest a directory for the user to look for .crash files.
1409       llvm::sys::path::append(CrashDiagDir, Name);
1410       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1411       Diag(clang::diag::note_drv_command_failed_diag_msg)
1412           << "Crash backtrace is located in";
1413       Diag(clang::diag::note_drv_command_failed_diag_msg)
1414           << CrashDiagDir.str();
1415       Diag(clang::diag::note_drv_command_failed_diag_msg)
1416           << "(choose the .crash file that corresponds to your crash)";
1417     }
1418   }
1419 
1420   for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1421                                             options::OPT_frewrite_map_file_EQ))
1422     Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1423 
1424   Diag(clang::diag::note_drv_command_failed_diag_msg)
1425       << "\n\n********************";
1426 }
1427 
1428 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1429   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1430   // capacity if the tool does not support response files, there is a chance/
1431   // that things will just work without a response file, so we silently just
1432   // skip it.
1433   if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None ||
1434       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1435                                                    Cmd.getArguments()))
1436     return;
1437 
1438   std::string TmpName = GetTemporaryPath("response", "txt");
1439   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1440 }
1441 
1442 int Driver::ExecuteCompilation(
1443     Compilation &C,
1444     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1445   // Just print if -### was present.
1446   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1447     C.getJobs().Print(llvm::errs(), "\n", true);
1448     return 0;
1449   }
1450 
1451   // If there were errors building the compilation, quit now.
1452   if (Diags.hasErrorOccurred())
1453     return 1;
1454 
1455   // Set up response file names for each command, if necessary
1456   for (auto &Job : C.getJobs())
1457     setUpResponseFiles(C, Job);
1458 
1459   C.ExecuteJobs(C.getJobs(), FailingCommands);
1460 
1461   // If the command succeeded, we are done.
1462   if (FailingCommands.empty())
1463     return 0;
1464 
1465   // Otherwise, remove result files and print extra information about abnormal
1466   // failures.
1467   int Res = 0;
1468   for (const auto &CmdPair : FailingCommands) {
1469     int CommandRes = CmdPair.first;
1470     const Command *FailingCommand = CmdPair.second;
1471 
1472     // Remove result files if we're not saving temps.
1473     if (!isSaveTempsEnabled()) {
1474       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1475       C.CleanupFileMap(C.getResultFiles(), JA, true);
1476 
1477       // Failure result files are valid unless we crashed.
1478       if (CommandRes < 0)
1479         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1480     }
1481 
1482 #if LLVM_ON_UNIX
1483     // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1484     // for SIGPIPE. Do not print diagnostics for this case.
1485     if (CommandRes == EX_IOERR) {
1486       Res = CommandRes;
1487       continue;
1488     }
1489 #endif
1490 
1491     // Print extra information about abnormal failures, if possible.
1492     //
1493     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1494     // status was 1, assume the command failed normally. In particular, if it
1495     // was the compiler then assume it gave a reasonable error code. Failures
1496     // in other tools are less common, and they generally have worse
1497     // diagnostics, so always print the diagnostic there.
1498     const Tool &FailingTool = FailingCommand->getCreator();
1499 
1500     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1501       // FIXME: See FIXME above regarding result code interpretation.
1502       if (CommandRes < 0)
1503         Diag(clang::diag::err_drv_command_signalled)
1504             << FailingTool.getShortName();
1505       else
1506         Diag(clang::diag::err_drv_command_failed)
1507             << FailingTool.getShortName() << CommandRes;
1508     }
1509   }
1510   return Res;
1511 }
1512 
1513 void Driver::PrintHelp(bool ShowHidden) const {
1514   unsigned IncludedFlagsBitmask;
1515   unsigned ExcludedFlagsBitmask;
1516   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1517       getIncludeExcludeOptionFlagMasks(IsCLMode());
1518 
1519   ExcludedFlagsBitmask |= options::NoDriverOption;
1520   if (!ShowHidden)
1521     ExcludedFlagsBitmask |= HelpHidden;
1522 
1523   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1524   getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1525                       IncludedFlagsBitmask, ExcludedFlagsBitmask,
1526                       /*ShowAllAliases=*/false);
1527 }
1528 
1529 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1530   // FIXME: The following handlers should use a callback mechanism, we don't
1531   // know what the client would like to do.
1532   OS << getClangFullVersion() << '\n';
1533   const ToolChain &TC = C.getDefaultToolChain();
1534   OS << "Target: " << TC.getTripleString() << '\n';
1535 
1536   // Print the threading model.
1537   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1538     // Don't print if the ToolChain would have barfed on it already
1539     if (TC.isThreadModelSupported(A->getValue()))
1540       OS << "Thread model: " << A->getValue();
1541   } else
1542     OS << "Thread model: " << TC.getThreadModel();
1543   OS << '\n';
1544 
1545   // Print out the install directory.
1546   OS << "InstalledDir: " << InstalledDir << '\n';
1547 
1548   // If configuration file was used, print its path.
1549   if (!ConfigFile.empty())
1550     OS << "Configuration file: " << ConfigFile << '\n';
1551 }
1552 
1553 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1554 /// option.
1555 static void PrintDiagnosticCategories(raw_ostream &OS) {
1556   // Skip the empty category.
1557   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1558        ++i)
1559     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1560 }
1561 
1562 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1563   if (PassedFlags == "")
1564     return;
1565   // Print out all options that start with a given argument. This is used for
1566   // shell autocompletion.
1567   std::vector<std::string> SuggestedCompletions;
1568   std::vector<std::string> Flags;
1569 
1570   unsigned short DisableFlags =
1571       options::NoDriverOption | options::Unsupported | options::Ignored;
1572 
1573   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1574   // because the latter indicates that the user put space before pushing tab
1575   // which should end up in a file completion.
1576   const bool HasSpace = PassedFlags.endswith(",");
1577 
1578   // Parse PassedFlags by "," as all the command-line flags are passed to this
1579   // function separated by ","
1580   StringRef TargetFlags = PassedFlags;
1581   while (TargetFlags != "") {
1582     StringRef CurFlag;
1583     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1584     Flags.push_back(std::string(CurFlag));
1585   }
1586 
1587   // We want to show cc1-only options only when clang is invoked with -cc1 or
1588   // -Xclang.
1589   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1590     DisableFlags &= ~options::NoDriverOption;
1591 
1592   StringRef Cur;
1593   Cur = Flags.at(Flags.size() - 1);
1594   StringRef Prev;
1595   if (Flags.size() >= 2) {
1596     Prev = Flags.at(Flags.size() - 2);
1597     SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1598   }
1599 
1600   if (SuggestedCompletions.empty())
1601     SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1602 
1603   // If Flags were empty, it means the user typed `clang [tab]` where we should
1604   // list all possible flags. If there was no value completion and the user
1605   // pressed tab after a space, we should fall back to a file completion.
1606   // We're printing a newline to be consistent with what we print at the end of
1607   // this function.
1608   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1609     llvm::outs() << '\n';
1610     return;
1611   }
1612 
1613   // When flag ends with '=' and there was no value completion, return empty
1614   // string and fall back to the file autocompletion.
1615   if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1616     // If the flag is in the form of "--autocomplete=-foo",
1617     // we were requested to print out all option names that start with "-foo".
1618     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1619     SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1620 
1621     // We have to query the -W flags manually as they're not in the OptTable.
1622     // TODO: Find a good way to add them to OptTable instead and them remove
1623     // this code.
1624     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1625       if (S.startswith(Cur))
1626         SuggestedCompletions.push_back(S);
1627   }
1628 
1629   // Sort the autocomplete candidates so that shells print them out in a
1630   // deterministic order. We could sort in any way, but we chose
1631   // case-insensitive sorting for consistency with the -help option
1632   // which prints out options in the case-insensitive alphabetical order.
1633   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1634     if (int X = A.compare_lower(B))
1635       return X < 0;
1636     return A.compare(B) > 0;
1637   });
1638 
1639   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1640 }
1641 
1642 bool Driver::HandleImmediateArgs(const Compilation &C) {
1643   // The order these options are handled in gcc is all over the place, but we
1644   // don't expect inconsistencies w.r.t. that to matter in practice.
1645 
1646   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1647     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1648     return false;
1649   }
1650 
1651   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1652     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1653     // return an answer which matches our definition of __VERSION__.
1654     llvm::outs() << CLANG_VERSION_STRING << "\n";
1655     return false;
1656   }
1657 
1658   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1659     PrintDiagnosticCategories(llvm::outs());
1660     return false;
1661   }
1662 
1663   if (C.getArgs().hasArg(options::OPT_help) ||
1664       C.getArgs().hasArg(options::OPT__help_hidden)) {
1665     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1666     return false;
1667   }
1668 
1669   if (C.getArgs().hasArg(options::OPT__version)) {
1670     // Follow gcc behavior and use stdout for --version and stderr for -v.
1671     PrintVersion(C, llvm::outs());
1672     return false;
1673   }
1674 
1675   if (C.getArgs().hasArg(options::OPT_v) ||
1676       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1677       C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1678     PrintVersion(C, llvm::errs());
1679     SuppressMissingInputWarning = true;
1680   }
1681 
1682   if (C.getArgs().hasArg(options::OPT_v)) {
1683     if (!SystemConfigDir.empty())
1684       llvm::errs() << "System configuration file directory: "
1685                    << SystemConfigDir << "\n";
1686     if (!UserConfigDir.empty())
1687       llvm::errs() << "User configuration file directory: "
1688                    << UserConfigDir << "\n";
1689   }
1690 
1691   const ToolChain &TC = C.getDefaultToolChain();
1692 
1693   if (C.getArgs().hasArg(options::OPT_v))
1694     TC.printVerboseInfo(llvm::errs());
1695 
1696   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1697     llvm::outs() << ResourceDir << '\n';
1698     return false;
1699   }
1700 
1701   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1702     llvm::outs() << "programs: =";
1703     bool separator = false;
1704     for (const std::string &Path : TC.getProgramPaths()) {
1705       if (separator)
1706         llvm::outs() << llvm::sys::EnvPathSeparator;
1707       llvm::outs() << Path;
1708       separator = true;
1709     }
1710     llvm::outs() << "\n";
1711     llvm::outs() << "libraries: =" << ResourceDir;
1712 
1713     StringRef sysroot = C.getSysRoot();
1714 
1715     for (const std::string &Path : TC.getFilePaths()) {
1716       // Always print a separator. ResourceDir was the first item shown.
1717       llvm::outs() << llvm::sys::EnvPathSeparator;
1718       // Interpretation of leading '=' is needed only for NetBSD.
1719       if (Path[0] == '=')
1720         llvm::outs() << sysroot << Path.substr(1);
1721       else
1722         llvm::outs() << Path;
1723     }
1724     llvm::outs() << "\n";
1725     return false;
1726   }
1727 
1728   // FIXME: The following handlers should use a callback mechanism, we don't
1729   // know what the client would like to do.
1730   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1731     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1732     return false;
1733   }
1734 
1735   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1736     StringRef ProgName = A->getValue();
1737 
1738     // Null program name cannot have a path.
1739     if (! ProgName.empty())
1740       llvm::outs() << GetProgramPath(ProgName, TC);
1741 
1742     llvm::outs() << "\n";
1743     return false;
1744   }
1745 
1746   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1747     StringRef PassedFlags = A->getValue();
1748     HandleAutocompletions(PassedFlags);
1749     return false;
1750   }
1751 
1752   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1753     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1754     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1755     RegisterEffectiveTriple TripleRAII(TC, Triple);
1756     switch (RLT) {
1757     case ToolChain::RLT_CompilerRT:
1758       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1759       break;
1760     case ToolChain::RLT_Libgcc:
1761       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1762       break;
1763     }
1764     return false;
1765   }
1766 
1767   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1768     for (const Multilib &Multilib : TC.getMultilibs())
1769       llvm::outs() << Multilib << "\n";
1770     return false;
1771   }
1772 
1773   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1774     const Multilib &Multilib = TC.getMultilib();
1775     if (Multilib.gccSuffix().empty())
1776       llvm::outs() << ".\n";
1777     else {
1778       StringRef Suffix(Multilib.gccSuffix());
1779       assert(Suffix.front() == '/');
1780       llvm::outs() << Suffix.substr(1) << "\n";
1781     }
1782     return false;
1783   }
1784 
1785   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1786     llvm::outs() << TC.getTripleString() << "\n";
1787     return false;
1788   }
1789 
1790   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1791     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1792     llvm::outs() << Triple.getTriple() << "\n";
1793     return false;
1794   }
1795 
1796   return true;
1797 }
1798 
1799 // Display an action graph human-readably.  Action A is the "sink" node
1800 // and latest-occuring action. Traversal is in pre-order, visiting the
1801 // inputs to each action before printing the action itself.
1802 static unsigned PrintActions1(const Compilation &C, Action *A,
1803                               std::map<Action *, unsigned> &Ids) {
1804   if (Ids.count(A)) // A was already visited.
1805     return Ids[A];
1806 
1807   std::string str;
1808   llvm::raw_string_ostream os(str);
1809 
1810   os << Action::getClassName(A->getKind()) << ", ";
1811   if (InputAction *IA = dyn_cast<InputAction>(A)) {
1812     os << "\"" << IA->getInputArg().getValue() << "\"";
1813   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1814     os << '"' << BIA->getArchName() << '"' << ", {"
1815        << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1816   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1817     bool IsFirst = true;
1818     OA->doOnEachDependence(
1819         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1820           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1821           // sm_35 this will generate:
1822           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1823           // (nvptx64-nvidia-cuda:sm_35) {#ID}
1824           if (!IsFirst)
1825             os << ", ";
1826           os << '"';
1827           if (TC)
1828             os << A->getOffloadingKindPrefix();
1829           else
1830             os << "host";
1831           os << " (";
1832           os << TC->getTriple().normalize();
1833 
1834           if (BoundArch)
1835             os << ":" << BoundArch;
1836           os << ")";
1837           os << '"';
1838           os << " {" << PrintActions1(C, A, Ids) << "}";
1839           IsFirst = false;
1840         });
1841   } else {
1842     const ActionList *AL = &A->getInputs();
1843 
1844     if (AL->size()) {
1845       const char *Prefix = "{";
1846       for (Action *PreRequisite : *AL) {
1847         os << Prefix << PrintActions1(C, PreRequisite, Ids);
1848         Prefix = ", ";
1849       }
1850       os << "}";
1851     } else
1852       os << "{}";
1853   }
1854 
1855   // Append offload info for all options other than the offloading action
1856   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1857   std::string offload_str;
1858   llvm::raw_string_ostream offload_os(offload_str);
1859   if (!isa<OffloadAction>(A)) {
1860     auto S = A->getOffloadingKindPrefix();
1861     if (!S.empty()) {
1862       offload_os << ", (" << S;
1863       if (A->getOffloadingArch())
1864         offload_os << ", " << A->getOffloadingArch();
1865       offload_os << ")";
1866     }
1867   }
1868 
1869   unsigned Id = Ids.size();
1870   Ids[A] = Id;
1871   llvm::errs() << Id << ": " << os.str() << ", "
1872                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1873 
1874   return Id;
1875 }
1876 
1877 // Print the action graphs in a compilation C.
1878 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1879 void Driver::PrintActions(const Compilation &C) const {
1880   std::map<Action *, unsigned> Ids;
1881   for (Action *A : C.getActions())
1882     PrintActions1(C, A, Ids);
1883 }
1884 
1885 /// Check whether the given input tree contains any compilation or
1886 /// assembly actions.
1887 static bool ContainsCompileOrAssembleAction(const Action *A) {
1888   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1889       isa<AssembleJobAction>(A))
1890     return true;
1891 
1892   for (const Action *Input : A->inputs())
1893     if (ContainsCompileOrAssembleAction(Input))
1894       return true;
1895 
1896   return false;
1897 }
1898 
1899 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
1900                                    const InputList &BAInputs) const {
1901   DerivedArgList &Args = C.getArgs();
1902   ActionList &Actions = C.getActions();
1903   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1904   // Collect the list of architectures. Duplicates are allowed, but should only
1905   // be handled once (in the order seen).
1906   llvm::StringSet<> ArchNames;
1907   SmallVector<const char *, 4> Archs;
1908   for (Arg *A : Args) {
1909     if (A->getOption().matches(options::OPT_arch)) {
1910       // Validate the option here; we don't save the type here because its
1911       // particular spelling may participate in other driver choices.
1912       llvm::Triple::ArchType Arch =
1913           tools::darwin::getArchTypeForMachOArchName(A->getValue());
1914       if (Arch == llvm::Triple::UnknownArch) {
1915         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1916         continue;
1917       }
1918 
1919       A->claim();
1920       if (ArchNames.insert(A->getValue()).second)
1921         Archs.push_back(A->getValue());
1922     }
1923   }
1924 
1925   // When there is no explicit arch for this platform, make sure we still bind
1926   // the architecture (to the default) so that -Xarch_ is handled correctly.
1927   if (!Archs.size())
1928     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1929 
1930   ActionList SingleActions;
1931   BuildActions(C, Args, BAInputs, SingleActions);
1932 
1933   // Add in arch bindings for every top level action, as well as lipo and
1934   // dsymutil steps if needed.
1935   for (Action* Act : SingleActions) {
1936     // Make sure we can lipo this kind of output. If not (and it is an actual
1937     // output) then we disallow, since we can't create an output file with the
1938     // right name without overwriting it. We could remove this oddity by just
1939     // changing the output names to include the arch, which would also fix
1940     // -save-temps. Compatibility wins for now.
1941 
1942     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1943       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1944           << types::getTypeName(Act->getType());
1945 
1946     ActionList Inputs;
1947     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1948       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1949 
1950     // Lipo if necessary, we do it this way because we need to set the arch flag
1951     // so that -Xarch_ gets overwritten.
1952     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1953       Actions.append(Inputs.begin(), Inputs.end());
1954     else
1955       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1956 
1957     // Handle debug info queries.
1958     Arg *A = Args.getLastArg(options::OPT_g_Group);
1959     if (A && !A->getOption().matches(options::OPT_g0) &&
1960         !A->getOption().matches(options::OPT_gstabs) &&
1961         ContainsCompileOrAssembleAction(Actions.back())) {
1962 
1963       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1964       // have a compile input. We need to run 'dsymutil' ourselves in such cases
1965       // because the debug info will refer to a temporary object file which
1966       // will be removed at the end of the compilation process.
1967       if (Act->getType() == types::TY_Image) {
1968         ActionList Inputs;
1969         Inputs.push_back(Actions.back());
1970         Actions.pop_back();
1971         Actions.push_back(
1972             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1973       }
1974 
1975       // Verify the debug info output.
1976       if (Args.hasArg(options::OPT_verify_debug_info)) {
1977         Action* LastAction = Actions.back();
1978         Actions.pop_back();
1979         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1980             LastAction, types::TY_Nothing));
1981       }
1982     }
1983   }
1984 }
1985 
1986 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
1987                                     types::ID Ty, bool TypoCorrect) const {
1988   if (!getCheckInputsExist())
1989     return true;
1990 
1991   // stdin always exists.
1992   if (Value == "-")
1993     return true;
1994 
1995   if (getVFS().exists(Value))
1996     return true;
1997 
1998   if (IsCLMode()) {
1999     if (!llvm::sys::path::is_absolute(Twine(Value)) &&
2000         llvm::sys::Process::FindInEnvPath("LIB", Value))
2001       return true;
2002 
2003     if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2004       // Arguments to the /link flag might cause the linker to search for object
2005       // and library files in paths we don't know about. Don't error in such
2006       // cases.
2007       return true;
2008     }
2009   }
2010 
2011   if (TypoCorrect) {
2012     // Check if the filename is a typo for an option flag. OptTable thinks
2013     // that all args that are not known options and that start with / are
2014     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2015     // the option `/diagnostics:caret` than a reference to a file in the root
2016     // directory.
2017     unsigned IncludedFlagsBitmask;
2018     unsigned ExcludedFlagsBitmask;
2019     std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2020         getIncludeExcludeOptionFlagMasks(IsCLMode());
2021     std::string Nearest;
2022     if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2023                               ExcludedFlagsBitmask) <= 1) {
2024       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2025           << Value << Nearest;
2026       return false;
2027     }
2028   }
2029 
2030   Diag(clang::diag::err_drv_no_such_file) << Value;
2031   return false;
2032 }
2033 
2034 // Construct a the list of inputs and their types.
2035 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2036                          InputList &Inputs) const {
2037   // Track the current user specified (-x) input. We also explicitly track the
2038   // argument used to set the type; we only want to claim the type when we
2039   // actually use it, so we warn about unused -x arguments.
2040   types::ID InputType = types::TY_Nothing;
2041   Arg *InputTypeArg = nullptr;
2042 
2043   // The last /TC or /TP option sets the input type to C or C++ globally.
2044   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2045                                          options::OPT__SLASH_TP)) {
2046     InputTypeArg = TCTP;
2047     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2048                     ? types::TY_C
2049                     : types::TY_CXX;
2050 
2051     Arg *Previous = nullptr;
2052     bool ShowNote = false;
2053     for (Arg *A :
2054          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2055       if (Previous) {
2056         Diag(clang::diag::warn_drv_overriding_flag_option)
2057           << Previous->getSpelling() << A->getSpelling();
2058         ShowNote = true;
2059       }
2060       Previous = A;
2061     }
2062     if (ShowNote)
2063       Diag(clang::diag::note_drv_t_option_is_global);
2064 
2065     // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2066     assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2067   }
2068 
2069   for (Arg *A : Args) {
2070     if (A->getOption().getKind() == Option::InputClass) {
2071       const char *Value = A->getValue();
2072       types::ID Ty = types::TY_INVALID;
2073 
2074       // Infer the input type if necessary.
2075       if (InputType == types::TY_Nothing) {
2076         // If there was an explicit arg for this, claim it.
2077         if (InputTypeArg)
2078           InputTypeArg->claim();
2079 
2080         // stdin must be handled specially.
2081         if (memcmp(Value, "-", 2) == 0) {
2082           // If running with -E, treat as a C input (this changes the builtin
2083           // macros, for example). This may be overridden by -ObjC below.
2084           //
2085           // Otherwise emit an error but still use a valid type to avoid
2086           // spurious errors (e.g., no inputs).
2087           if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2088             Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2089                             : clang::diag::err_drv_unknown_stdin_type);
2090           Ty = types::TY_C;
2091         } else {
2092           // Otherwise lookup by extension.
2093           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2094           // clang-cl /E, or Object otherwise.
2095           // We use a host hook here because Darwin at least has its own
2096           // idea of what .s is.
2097           if (const char *Ext = strrchr(Value, '.'))
2098             Ty = TC.LookupTypeForExtension(Ext + 1);
2099 
2100           if (Ty == types::TY_INVALID) {
2101             if (CCCIsCPP())
2102               Ty = types::TY_C;
2103             else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2104               Ty = types::TY_CXX;
2105             else
2106               Ty = types::TY_Object;
2107           }
2108 
2109           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2110           // should autodetect some input files as C++ for g++ compatibility.
2111           if (CCCIsCXX()) {
2112             types::ID OldTy = Ty;
2113             Ty = types::lookupCXXTypeForCType(Ty);
2114 
2115             if (Ty != OldTy)
2116               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2117                   << getTypeName(OldTy) << getTypeName(Ty);
2118           }
2119         }
2120 
2121         // -ObjC and -ObjC++ override the default language, but only for "source
2122         // files". We just treat everything that isn't a linker input as a
2123         // source file.
2124         //
2125         // FIXME: Clean this up if we move the phase sequence into the type.
2126         if (Ty != types::TY_Object) {
2127           if (Args.hasArg(options::OPT_ObjC))
2128             Ty = types::TY_ObjC;
2129           else if (Args.hasArg(options::OPT_ObjCXX))
2130             Ty = types::TY_ObjCXX;
2131         }
2132       } else {
2133         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2134         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2135           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2136           // object files.
2137           const char *Ext = strrchr(Value, '.');
2138           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2139             Ty = types::TY_Object;
2140         }
2141         if (Ty == types::TY_INVALID) {
2142           Ty = InputType;
2143           InputTypeArg->claim();
2144         }
2145       }
2146 
2147       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2148         Inputs.push_back(std::make_pair(Ty, A));
2149 
2150     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2151       StringRef Value = A->getValue();
2152       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2153                                  /*TypoCorrect=*/false)) {
2154         Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2155         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2156       }
2157       A->claim();
2158     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2159       StringRef Value = A->getValue();
2160       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2161                                  /*TypoCorrect=*/false)) {
2162         Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2163         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2164       }
2165       A->claim();
2166     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2167       // Just treat as object type, we could make a special type for this if
2168       // necessary.
2169       Inputs.push_back(std::make_pair(types::TY_Object, A));
2170 
2171     } else if (A->getOption().matches(options::OPT_x)) {
2172       InputTypeArg = A;
2173       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2174       A->claim();
2175 
2176       // Follow gcc behavior and treat as linker input for invalid -x
2177       // options. Its not clear why we shouldn't just revert to unknown; but
2178       // this isn't very important, we might as well be bug compatible.
2179       if (!InputType) {
2180         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2181         InputType = types::TY_Object;
2182       }
2183     } else if (A->getOption().getID() == options::OPT__SLASH_U) {
2184       assert(A->getNumValues() == 1 && "The /U option has one value.");
2185       StringRef Val = A->getValue(0);
2186       if (Val.find_first_of("/\\") != StringRef::npos) {
2187         // Warn about e.g. "/Users/me/myfile.c".
2188         Diag(diag::warn_slash_u_filename) << Val;
2189         Diag(diag::note_use_dashdash);
2190       }
2191     }
2192   }
2193   if (CCCIsCPP() && Inputs.empty()) {
2194     // If called as standalone preprocessor, stdin is processed
2195     // if no other input is present.
2196     Arg *A = MakeInputArg(Args, *Opts, "-");
2197     Inputs.push_back(std::make_pair(types::TY_C, A));
2198   }
2199 }
2200 
2201 namespace {
2202 /// Provides a convenient interface for different programming models to generate
2203 /// the required device actions.
2204 class OffloadingActionBuilder final {
2205   /// Flag used to trace errors in the builder.
2206   bool IsValid = false;
2207 
2208   /// The compilation that is using this builder.
2209   Compilation &C;
2210 
2211   /// Map between an input argument and the offload kinds used to process it.
2212   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2213 
2214   /// Builder interface. It doesn't build anything or keep any state.
2215   class DeviceActionBuilder {
2216   public:
2217     typedef llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhasesTy;
2218 
2219     enum ActionBuilderReturnCode {
2220       // The builder acted successfully on the current action.
2221       ABRT_Success,
2222       // The builder didn't have to act on the current action.
2223       ABRT_Inactive,
2224       // The builder was successful and requested the host action to not be
2225       // generated.
2226       ABRT_Ignore_Host,
2227     };
2228 
2229   protected:
2230     /// Compilation associated with this builder.
2231     Compilation &C;
2232 
2233     /// Tool chains associated with this builder. The same programming
2234     /// model may have associated one or more tool chains.
2235     SmallVector<const ToolChain *, 2> ToolChains;
2236 
2237     /// The derived arguments associated with this builder.
2238     DerivedArgList &Args;
2239 
2240     /// The inputs associated with this builder.
2241     const Driver::InputList &Inputs;
2242 
2243     /// The associated offload kind.
2244     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2245 
2246   public:
2247     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2248                         const Driver::InputList &Inputs,
2249                         Action::OffloadKind AssociatedOffloadKind)
2250         : C(C), Args(Args), Inputs(Inputs),
2251           AssociatedOffloadKind(AssociatedOffloadKind) {}
2252     virtual ~DeviceActionBuilder() {}
2253 
2254     /// Fill up the array \a DA with all the device dependences that should be
2255     /// added to the provided host action \a HostAction. By default it is
2256     /// inactive.
2257     virtual ActionBuilderReturnCode
2258     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2259                          phases::ID CurPhase, phases::ID FinalPhase,
2260                          PhasesTy &Phases) {
2261       return ABRT_Inactive;
2262     }
2263 
2264     /// Update the state to include the provided host action \a HostAction as a
2265     /// dependency of the current device action. By default it is inactive.
2266     virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2267       return ABRT_Inactive;
2268     }
2269 
2270     /// Append top level actions generated by the builder. Return true if errors
2271     /// were found.
2272     virtual void appendTopLevelActions(ActionList &AL) {}
2273 
2274     /// Append linker actions generated by the builder. Return true if errors
2275     /// were found.
2276     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2277 
2278     /// Initialize the builder. Return true if any initialization errors are
2279     /// found.
2280     virtual bool initialize() { return false; }
2281 
2282     /// Return true if the builder can use bundling/unbundling.
2283     virtual bool canUseBundlerUnbundler() const { return false; }
2284 
2285     /// Return true if this builder is valid. We have a valid builder if we have
2286     /// associated device tool chains.
2287     bool isValid() { return !ToolChains.empty(); }
2288 
2289     /// Return the associated offload kind.
2290     Action::OffloadKind getAssociatedOffloadKind() {
2291       return AssociatedOffloadKind;
2292     }
2293   };
2294 
2295   /// Base class for CUDA/HIP action builder. It injects device code in
2296   /// the host backend action.
2297   class CudaActionBuilderBase : public DeviceActionBuilder {
2298   protected:
2299     /// Flags to signal if the user requested host-only or device-only
2300     /// compilation.
2301     bool CompileHostOnly = false;
2302     bool CompileDeviceOnly = false;
2303 
2304     /// List of GPU architectures to use in this compilation.
2305     SmallVector<CudaArch, 4> GpuArchList;
2306 
2307     /// The CUDA actions for the current input.
2308     ActionList CudaDeviceActions;
2309 
2310     /// The CUDA fat binary if it was generated for the current input.
2311     Action *CudaFatBinary = nullptr;
2312 
2313     /// Flag that is set to true if this builder acted on the current input.
2314     bool IsActive = false;
2315 
2316     /// Flag for -fgpu-rdc.
2317     bool Relocatable = false;
2318   public:
2319     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2320                           const Driver::InputList &Inputs,
2321                           Action::OffloadKind OFKind)
2322         : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2323 
2324     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2325       // While generating code for CUDA, we only depend on the host input action
2326       // to trigger the creation of all the CUDA device actions.
2327 
2328       // If we are dealing with an input action, replicate it for each GPU
2329       // architecture. If we are in host-only mode we return 'success' so that
2330       // the host uses the CUDA offload kind.
2331       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2332         assert(!GpuArchList.empty() &&
2333                "We should have at least one GPU architecture.");
2334 
2335         // If the host input is not CUDA or HIP, we don't need to bother about
2336         // this input.
2337         if (IA->getType() != types::TY_CUDA &&
2338             IA->getType() != types::TY_HIP) {
2339           // The builder will ignore this input.
2340           IsActive = false;
2341           return ABRT_Inactive;
2342         }
2343 
2344         // Set the flag to true, so that the builder acts on the current input.
2345         IsActive = true;
2346 
2347         if (CompileHostOnly)
2348           return ABRT_Success;
2349 
2350         // Replicate inputs for each GPU architecture.
2351         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2352                                                  : types::TY_CUDA_DEVICE;
2353         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2354           CudaDeviceActions.push_back(
2355               C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2356         }
2357 
2358         return ABRT_Success;
2359       }
2360 
2361       // If this is an unbundling action use it as is for each CUDA toolchain.
2362       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2363 
2364         // If -fgpu-rdc is disabled, should not unbundle since there is no
2365         // device code to link.
2366         if (!Relocatable)
2367           return ABRT_Inactive;
2368 
2369         CudaDeviceActions.clear();
2370         auto *IA = cast<InputAction>(UA->getInputs().back());
2371         std::string FileName = IA->getInputArg().getAsString(Args);
2372         // Check if the type of the file is the same as the action. Do not
2373         // unbundle it if it is not. Do not unbundle .so files, for example,
2374         // which are not object files.
2375         if (IA->getType() == types::TY_Object &&
2376             (!llvm::sys::path::has_extension(FileName) ||
2377              types::lookupTypeForExtension(
2378                  llvm::sys::path::extension(FileName).drop_front()) !=
2379                  types::TY_Object))
2380           return ABRT_Inactive;
2381 
2382         for (auto Arch : GpuArchList) {
2383           CudaDeviceActions.push_back(UA);
2384           UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2385                                           AssociatedOffloadKind);
2386         }
2387         return ABRT_Success;
2388       }
2389 
2390       return IsActive ? ABRT_Success : ABRT_Inactive;
2391     }
2392 
2393     void appendTopLevelActions(ActionList &AL) override {
2394       // Utility to append actions to the top level list.
2395       auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2396         OffloadAction::DeviceDependences Dep;
2397         Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2398                 AssociatedOffloadKind);
2399         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2400       };
2401 
2402       // If we have a fat binary, add it to the list.
2403       if (CudaFatBinary) {
2404         AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2405         CudaDeviceActions.clear();
2406         CudaFatBinary = nullptr;
2407         return;
2408       }
2409 
2410       if (CudaDeviceActions.empty())
2411         return;
2412 
2413       // If we have CUDA actions at this point, that's because we have a have
2414       // partial compilation, so we should have an action for each GPU
2415       // architecture.
2416       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2417              "Expecting one action per GPU architecture.");
2418       assert(ToolChains.size() == 1 &&
2419              "Expecting to have a sing CUDA toolchain.");
2420       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2421         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2422 
2423       CudaDeviceActions.clear();
2424     }
2425 
2426     bool initialize() override {
2427       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2428              AssociatedOffloadKind == Action::OFK_HIP);
2429 
2430       // We don't need to support CUDA.
2431       if (AssociatedOffloadKind == Action::OFK_Cuda &&
2432           !C.hasOffloadToolChain<Action::OFK_Cuda>())
2433         return false;
2434 
2435       // We don't need to support HIP.
2436       if (AssociatedOffloadKind == Action::OFK_HIP &&
2437           !C.hasOffloadToolChain<Action::OFK_HIP>())
2438         return false;
2439 
2440       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2441           options::OPT_fno_gpu_rdc, /*Default=*/false);
2442 
2443       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2444       assert(HostTC && "No toolchain for host compilation.");
2445       if (HostTC->getTriple().isNVPTX() ||
2446           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2447         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2448         // an error and abort pipeline construction early so we don't trip
2449         // asserts that assume device-side compilation.
2450         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2451             << HostTC->getTriple().getArchName();
2452         return true;
2453       }
2454 
2455       ToolChains.push_back(
2456           AssociatedOffloadKind == Action::OFK_Cuda
2457               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2458               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2459 
2460       Arg *PartialCompilationArg = Args.getLastArg(
2461           options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2462           options::OPT_cuda_compile_host_device);
2463       CompileHostOnly = PartialCompilationArg &&
2464                         PartialCompilationArg->getOption().matches(
2465                             options::OPT_cuda_host_only);
2466       CompileDeviceOnly = PartialCompilationArg &&
2467                           PartialCompilationArg->getOption().matches(
2468                               options::OPT_cuda_device_only);
2469 
2470       // Collect all cuda_gpu_arch parameters, removing duplicates.
2471       std::set<CudaArch> GpuArchs;
2472       bool Error = false;
2473       for (Arg *A : Args) {
2474         if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2475               A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2476           continue;
2477         A->claim();
2478 
2479         const StringRef ArchStr = A->getValue();
2480         if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2481             ArchStr == "all") {
2482           GpuArchs.clear();
2483           continue;
2484         }
2485         CudaArch Arch = StringToCudaArch(ArchStr);
2486         if (Arch == CudaArch::UNKNOWN) {
2487           C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2488           Error = true;
2489         } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2490           GpuArchs.insert(Arch);
2491         else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2492           GpuArchs.erase(Arch);
2493         else
2494           llvm_unreachable("Unexpected option.");
2495       }
2496 
2497       // Collect list of GPUs remaining in the set.
2498       for (CudaArch Arch : GpuArchs)
2499         GpuArchList.push_back(Arch);
2500 
2501       // Default to sm_20 which is the lowest common denominator for
2502       // supported GPUs.  sm_20 code should work correctly, if
2503       // suboptimally, on all newer GPUs.
2504       if (GpuArchList.empty())
2505         GpuArchList.push_back(CudaArch::SM_20);
2506 
2507       return Error;
2508     }
2509   };
2510 
2511   /// \brief CUDA action builder. It injects device code in the host backend
2512   /// action.
2513   class CudaActionBuilder final : public CudaActionBuilderBase {
2514   public:
2515     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2516                       const Driver::InputList &Inputs)
2517         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2518 
2519     ActionBuilderReturnCode
2520     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2521                          phases::ID CurPhase, phases::ID FinalPhase,
2522                          PhasesTy &Phases) override {
2523       if (!IsActive)
2524         return ABRT_Inactive;
2525 
2526       // If we don't have more CUDA actions, we don't have any dependences to
2527       // create for the host.
2528       if (CudaDeviceActions.empty())
2529         return ABRT_Success;
2530 
2531       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2532              "Expecting one action per GPU architecture.");
2533       assert(!CompileHostOnly &&
2534              "Not expecting CUDA actions in host-only compilation.");
2535 
2536       // If we are generating code for the device or we are in a backend phase,
2537       // we attempt to generate the fat binary. We compile each arch to ptx and
2538       // assemble to cubin, then feed the cubin *and* the ptx into a device
2539       // "link" action, which uses fatbinary to combine these cubins into one
2540       // fatbin.  The fatbin is then an input to the host action if not in
2541       // device-only mode.
2542       if (CompileDeviceOnly || CurPhase == phases::Backend) {
2543         ActionList DeviceActions;
2544         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2545           // Produce the device action from the current phase up to the assemble
2546           // phase.
2547           for (auto Ph : Phases) {
2548             // Skip the phases that were already dealt with.
2549             if (Ph < CurPhase)
2550               continue;
2551             // We have to be consistent with the host final phase.
2552             if (Ph > FinalPhase)
2553               break;
2554 
2555             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2556                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2557 
2558             if (Ph == phases::Assemble)
2559               break;
2560           }
2561 
2562           // If we didn't reach the assemble phase, we can't generate the fat
2563           // binary. We don't need to generate the fat binary if we are not in
2564           // device-only mode.
2565           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2566               CompileDeviceOnly)
2567             continue;
2568 
2569           Action *AssembleAction = CudaDeviceActions[I];
2570           assert(AssembleAction->getType() == types::TY_Object);
2571           assert(AssembleAction->getInputs().size() == 1);
2572 
2573           Action *BackendAction = AssembleAction->getInputs()[0];
2574           assert(BackendAction->getType() == types::TY_PP_Asm);
2575 
2576           for (auto &A : {AssembleAction, BackendAction}) {
2577             OffloadAction::DeviceDependences DDep;
2578             DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2579                      Action::OFK_Cuda);
2580             DeviceActions.push_back(
2581                 C.MakeAction<OffloadAction>(DDep, A->getType()));
2582           }
2583         }
2584 
2585         // We generate the fat binary if we have device input actions.
2586         if (!DeviceActions.empty()) {
2587           CudaFatBinary =
2588               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2589 
2590           if (!CompileDeviceOnly) {
2591             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2592                    Action::OFK_Cuda);
2593             // Clear the fat binary, it is already a dependence to an host
2594             // action.
2595             CudaFatBinary = nullptr;
2596           }
2597 
2598           // Remove the CUDA actions as they are already connected to an host
2599           // action or fat binary.
2600           CudaDeviceActions.clear();
2601         }
2602 
2603         // We avoid creating host action in device-only mode.
2604         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2605       } else if (CurPhase > phases::Backend) {
2606         // If we are past the backend phase and still have a device action, we
2607         // don't have to do anything as this action is already a device
2608         // top-level action.
2609         return ABRT_Success;
2610       }
2611 
2612       assert(CurPhase < phases::Backend && "Generating single CUDA "
2613                                            "instructions should only occur "
2614                                            "before the backend phase!");
2615 
2616       // By default, we produce an action for each device arch.
2617       for (Action *&A : CudaDeviceActions)
2618         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2619 
2620       return ABRT_Success;
2621     }
2622   };
2623   /// \brief HIP action builder. It injects device code in the host backend
2624   /// action.
2625   class HIPActionBuilder final : public CudaActionBuilderBase {
2626     /// The linker inputs obtained for each device arch.
2627     SmallVector<ActionList, 8> DeviceLinkerInputs;
2628 
2629   public:
2630     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2631                      const Driver::InputList &Inputs)
2632         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2633 
2634     bool canUseBundlerUnbundler() const override { return true; }
2635 
2636     ActionBuilderReturnCode
2637     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2638                          phases::ID CurPhase, phases::ID FinalPhase,
2639                          PhasesTy &Phases) override {
2640       // amdgcn does not support linking of object files, therefore we skip
2641       // backend and assemble phases to output LLVM IR. Except for generating
2642       // non-relocatable device coee, where we generate fat binary for device
2643       // code and pass to host in Backend phase.
2644       if (CudaDeviceActions.empty() ||
2645           (CurPhase == phases::Backend && Relocatable) ||
2646           CurPhase == phases::Assemble)
2647         return ABRT_Success;
2648 
2649       assert(((CurPhase == phases::Link && Relocatable) ||
2650               CudaDeviceActions.size() == GpuArchList.size()) &&
2651              "Expecting one action per GPU architecture.");
2652       assert(!CompileHostOnly &&
2653              "Not expecting CUDA actions in host-only compilation.");
2654 
2655       if (!Relocatable && CurPhase == phases::Backend) {
2656         // If we are in backend phase, we attempt to generate the fat binary.
2657         // We compile each arch to IR and use a link action to generate code
2658         // object containing ISA. Then we use a special "link" action to create
2659         // a fat binary containing all the code objects for different GPU's.
2660         // The fat binary is then an input to the host action.
2661         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2662           // Create a link action to link device IR with device library
2663           // and generate ISA.
2664           ActionList AL;
2665           AL.push_back(CudaDeviceActions[I]);
2666           CudaDeviceActions[I] =
2667               C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2668 
2669           // OffloadingActionBuilder propagates device arch until an offload
2670           // action. Since the next action for creating fatbin does
2671           // not have device arch, whereas the above link action and its input
2672           // have device arch, an offload action is needed to stop the null
2673           // device arch of the next action being propagated to the above link
2674           // action.
2675           OffloadAction::DeviceDependences DDep;
2676           DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2677                    CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2678           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2679               DDep, CudaDeviceActions[I]->getType());
2680         }
2681         // Create HIP fat binary with a special "link" action.
2682         CudaFatBinary =
2683             C.MakeAction<LinkJobAction>(CudaDeviceActions,
2684                 types::TY_HIP_FATBIN);
2685 
2686         if (!CompileDeviceOnly) {
2687           DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2688                  AssociatedOffloadKind);
2689           // Clear the fat binary, it is already a dependence to an host
2690           // action.
2691           CudaFatBinary = nullptr;
2692         }
2693 
2694         // Remove the CUDA actions as they are already connected to an host
2695         // action or fat binary.
2696         CudaDeviceActions.clear();
2697 
2698         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2699       } else if (CurPhase == phases::Link) {
2700         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2701         // This happens to each device action originated from each input file.
2702         // Later on, device actions in DeviceLinkerInputs are used to create
2703         // device link actions in appendLinkDependences and the created device
2704         // link actions are passed to the offload action as device dependence.
2705         DeviceLinkerInputs.resize(CudaDeviceActions.size());
2706         auto LI = DeviceLinkerInputs.begin();
2707         for (auto *A : CudaDeviceActions) {
2708           LI->push_back(A);
2709           ++LI;
2710         }
2711 
2712         // We will pass the device action as a host dependence, so we don't
2713         // need to do anything else with them.
2714         CudaDeviceActions.clear();
2715         return ABRT_Success;
2716       }
2717 
2718       // By default, we produce an action for each device arch.
2719       for (Action *&A : CudaDeviceActions)
2720         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2721                                                AssociatedOffloadKind);
2722 
2723       return ABRT_Success;
2724     }
2725 
2726     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2727       // Append a new link action for each device.
2728       unsigned I = 0;
2729       for (auto &LI : DeviceLinkerInputs) {
2730         auto *DeviceLinkAction =
2731             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2732         DA.add(*DeviceLinkAction, *ToolChains[0],
2733                CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2734         ++I;
2735       }
2736     }
2737   };
2738 
2739   /// OpenMP action builder. The host bitcode is passed to the device frontend
2740   /// and all the device linked images are passed to the host link phase.
2741   class OpenMPActionBuilder final : public DeviceActionBuilder {
2742     /// The OpenMP actions for the current input.
2743     ActionList OpenMPDeviceActions;
2744 
2745     /// The linker inputs obtained for each toolchain.
2746     SmallVector<ActionList, 8> DeviceLinkerInputs;
2747 
2748   public:
2749     OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2750                         const Driver::InputList &Inputs)
2751         : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2752 
2753     ActionBuilderReturnCode
2754     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2755                          phases::ID CurPhase, phases::ID FinalPhase,
2756                          PhasesTy &Phases) override {
2757       if (OpenMPDeviceActions.empty())
2758         return ABRT_Inactive;
2759 
2760       // We should always have an action for each input.
2761       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2762              "Number of OpenMP actions and toolchains do not match.");
2763 
2764       // The host only depends on device action in the linking phase, when all
2765       // the device images have to be embedded in the host image.
2766       if (CurPhase == phases::Link) {
2767         assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2768                "Toolchains and linker inputs sizes do not match.");
2769         auto LI = DeviceLinkerInputs.begin();
2770         for (auto *A : OpenMPDeviceActions) {
2771           LI->push_back(A);
2772           ++LI;
2773         }
2774 
2775         // We passed the device action as a host dependence, so we don't need to
2776         // do anything else with them.
2777         OpenMPDeviceActions.clear();
2778         return ABRT_Success;
2779       }
2780 
2781       // By default, we produce an action for each device arch.
2782       for (Action *&A : OpenMPDeviceActions)
2783         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2784 
2785       return ABRT_Success;
2786     }
2787 
2788     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2789 
2790       // If this is an input action replicate it for each OpenMP toolchain.
2791       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2792         OpenMPDeviceActions.clear();
2793         for (unsigned I = 0; I < ToolChains.size(); ++I)
2794           OpenMPDeviceActions.push_back(
2795               C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2796         return ABRT_Success;
2797       }
2798 
2799       // If this is an unbundling action use it as is for each OpenMP toolchain.
2800       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2801         OpenMPDeviceActions.clear();
2802         auto *IA = cast<InputAction>(UA->getInputs().back());
2803         std::string FileName = IA->getInputArg().getAsString(Args);
2804         // Check if the type of the file is the same as the action. Do not
2805         // unbundle it if it is not. Do not unbundle .so files, for example,
2806         // which are not object files.
2807         if (IA->getType() == types::TY_Object &&
2808             (!llvm::sys::path::has_extension(FileName) ||
2809              types::lookupTypeForExtension(
2810                  llvm::sys::path::extension(FileName).drop_front()) !=
2811                  types::TY_Object))
2812           return ABRT_Inactive;
2813         for (unsigned I = 0; I < ToolChains.size(); ++I) {
2814           OpenMPDeviceActions.push_back(UA);
2815           UA->registerDependentActionInfo(
2816               ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2817         }
2818         return ABRT_Success;
2819       }
2820 
2821       // When generating code for OpenMP we use the host compile phase result as
2822       // a dependence to the device compile phase so that it can learn what
2823       // declarations should be emitted. However, this is not the only use for
2824       // the host action, so we prevent it from being collapsed.
2825       if (isa<CompileJobAction>(HostAction)) {
2826         HostAction->setCannotBeCollapsedWithNextDependentAction();
2827         assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2828                "Toolchains and device action sizes do not match.");
2829         OffloadAction::HostDependence HDep(
2830             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2831             /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2832         auto TC = ToolChains.begin();
2833         for (Action *&A : OpenMPDeviceActions) {
2834           assert(isa<CompileJobAction>(A));
2835           OffloadAction::DeviceDependences DDep;
2836           DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2837           A = C.MakeAction<OffloadAction>(HDep, DDep);
2838           ++TC;
2839         }
2840       }
2841       return ABRT_Success;
2842     }
2843 
2844     void appendTopLevelActions(ActionList &AL) override {
2845       if (OpenMPDeviceActions.empty())
2846         return;
2847 
2848       // We should always have an action for each input.
2849       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2850              "Number of OpenMP actions and toolchains do not match.");
2851 
2852       // Append all device actions followed by the proper offload action.
2853       auto TI = ToolChains.begin();
2854       for (auto *A : OpenMPDeviceActions) {
2855         OffloadAction::DeviceDependences Dep;
2856         Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2857         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2858         ++TI;
2859       }
2860       // We no longer need the action stored in this builder.
2861       OpenMPDeviceActions.clear();
2862     }
2863 
2864     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2865       assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2866              "Toolchains and linker inputs sizes do not match.");
2867 
2868       // Append a new link action for each device.
2869       auto TC = ToolChains.begin();
2870       for (auto &LI : DeviceLinkerInputs) {
2871         auto *DeviceLinkAction =
2872             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2873         DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2874                Action::OFK_OpenMP);
2875         ++TC;
2876       }
2877     }
2878 
2879     bool initialize() override {
2880       // Get the OpenMP toolchains. If we don't get any, the action builder will
2881       // know there is nothing to do related to OpenMP offloading.
2882       auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2883       for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2884            ++TI)
2885         ToolChains.push_back(TI->second);
2886 
2887       DeviceLinkerInputs.resize(ToolChains.size());
2888       return false;
2889     }
2890 
2891     bool canUseBundlerUnbundler() const override {
2892       // OpenMP should use bundled files whenever possible.
2893       return true;
2894     }
2895   };
2896 
2897   ///
2898   /// TODO: Add the implementation for other specialized builders here.
2899   ///
2900 
2901   /// Specialized builders being used by this offloading action builder.
2902   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2903 
2904   /// Flag set to true if all valid builders allow file bundling/unbundling.
2905   bool CanUseBundler;
2906 
2907 public:
2908   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2909                           const Driver::InputList &Inputs)
2910       : C(C) {
2911     // Create a specialized builder for each device toolchain.
2912 
2913     IsValid = true;
2914 
2915     // Create a specialized builder for CUDA.
2916     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2917 
2918     // Create a specialized builder for HIP.
2919     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2920 
2921     // Create a specialized builder for OpenMP.
2922     SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2923 
2924     //
2925     // TODO: Build other specialized builders here.
2926     //
2927 
2928     // Initialize all the builders, keeping track of errors. If all valid
2929     // builders agree that we can use bundling, set the flag to true.
2930     unsigned ValidBuilders = 0u;
2931     unsigned ValidBuildersSupportingBundling = 0u;
2932     for (auto *SB : SpecializedBuilders) {
2933       IsValid = IsValid && !SB->initialize();
2934 
2935       // Update the counters if the builder is valid.
2936       if (SB->isValid()) {
2937         ++ValidBuilders;
2938         if (SB->canUseBundlerUnbundler())
2939           ++ValidBuildersSupportingBundling;
2940       }
2941     }
2942     CanUseBundler =
2943         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2944   }
2945 
2946   ~OffloadingActionBuilder() {
2947     for (auto *SB : SpecializedBuilders)
2948       delete SB;
2949   }
2950 
2951   /// Generate an action that adds device dependences (if any) to a host action.
2952   /// If no device dependence actions exist, just return the host action \a
2953   /// HostAction. If an error is found or if no builder requires the host action
2954   /// to be generated, return nullptr.
2955   Action *
2956   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2957                                    phases::ID CurPhase, phases::ID FinalPhase,
2958                                    DeviceActionBuilder::PhasesTy &Phases) {
2959     if (!IsValid)
2960       return nullptr;
2961 
2962     if (SpecializedBuilders.empty())
2963       return HostAction;
2964 
2965     assert(HostAction && "Invalid host action!");
2966 
2967     OffloadAction::DeviceDependences DDeps;
2968     // Check if all the programming models agree we should not emit the host
2969     // action. Also, keep track of the offloading kinds employed.
2970     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2971     unsigned InactiveBuilders = 0u;
2972     unsigned IgnoringBuilders = 0u;
2973     for (auto *SB : SpecializedBuilders) {
2974       if (!SB->isValid()) {
2975         ++InactiveBuilders;
2976         continue;
2977       }
2978 
2979       auto RetCode =
2980           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2981 
2982       // If the builder explicitly says the host action should be ignored,
2983       // we need to increment the variable that tracks the builders that request
2984       // the host object to be ignored.
2985       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2986         ++IgnoringBuilders;
2987 
2988       // Unless the builder was inactive for this action, we have to record the
2989       // offload kind because the host will have to use it.
2990       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2991         OffloadKind |= SB->getAssociatedOffloadKind();
2992     }
2993 
2994     // If all builders agree that the host object should be ignored, just return
2995     // nullptr.
2996     if (IgnoringBuilders &&
2997         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
2998       return nullptr;
2999 
3000     if (DDeps.getActions().empty())
3001       return HostAction;
3002 
3003     // We have dependences we need to bundle together. We use an offload action
3004     // for that.
3005     OffloadAction::HostDependence HDep(
3006         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3007         /*BoundArch=*/nullptr, DDeps);
3008     return C.MakeAction<OffloadAction>(HDep, DDeps);
3009   }
3010 
3011   /// Generate an action that adds a host dependence to a device action. The
3012   /// results will be kept in this action builder. Return true if an error was
3013   /// found.
3014   bool addHostDependenceToDeviceActions(Action *&HostAction,
3015                                         const Arg *InputArg) {
3016     if (!IsValid)
3017       return true;
3018 
3019     // If we are supporting bundling/unbundling and the current action is an
3020     // input action of non-source file, we replace the host action by the
3021     // unbundling action. The bundler tool has the logic to detect if an input
3022     // is a bundle or not and if the input is not a bundle it assumes it is a
3023     // host file. Therefore it is safe to create an unbundling action even if
3024     // the input is not a bundle.
3025     if (CanUseBundler && isa<InputAction>(HostAction) &&
3026         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3027         !types::isSrcFile(HostAction->getType())) {
3028       auto UnbundlingHostAction =
3029           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3030       UnbundlingHostAction->registerDependentActionInfo(
3031           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3032           /*BoundArch=*/StringRef(), Action::OFK_Host);
3033       HostAction = UnbundlingHostAction;
3034     }
3035 
3036     assert(HostAction && "Invalid host action!");
3037 
3038     // Register the offload kinds that are used.
3039     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3040     for (auto *SB : SpecializedBuilders) {
3041       if (!SB->isValid())
3042         continue;
3043 
3044       auto RetCode = SB->addDeviceDepences(HostAction);
3045 
3046       // Host dependences for device actions are not compatible with that same
3047       // action being ignored.
3048       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3049              "Host dependence not expected to be ignored.!");
3050 
3051       // Unless the builder was inactive for this action, we have to record the
3052       // offload kind because the host will have to use it.
3053       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3054         OffloadKind |= SB->getAssociatedOffloadKind();
3055     }
3056 
3057     // Do not use unbundler if the Host does not depend on device action.
3058     if (OffloadKind == Action::OFK_None && CanUseBundler)
3059       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3060         HostAction = UA->getInputs().back();
3061 
3062     return false;
3063   }
3064 
3065   /// Add the offloading top level actions to the provided action list. This
3066   /// function can replace the host action by a bundling action if the
3067   /// programming models allow it.
3068   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3069                              const Arg *InputArg) {
3070     // Get the device actions to be appended.
3071     ActionList OffloadAL;
3072     for (auto *SB : SpecializedBuilders) {
3073       if (!SB->isValid())
3074         continue;
3075       SB->appendTopLevelActions(OffloadAL);
3076     }
3077 
3078     // If we can use the bundler, replace the host action by the bundling one in
3079     // the resulting list. Otherwise, just append the device actions. For
3080     // device only compilation, HostAction is a null pointer, therefore only do
3081     // this when HostAction is not a null pointer.
3082     if (CanUseBundler && HostAction && !OffloadAL.empty()) {
3083       // Add the host action to the list in order to create the bundling action.
3084       OffloadAL.push_back(HostAction);
3085 
3086       // We expect that the host action was just appended to the action list
3087       // before this method was called.
3088       assert(HostAction == AL.back() && "Host action not in the list??");
3089       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3090       AL.back() = HostAction;
3091     } else
3092       AL.append(OffloadAL.begin(), OffloadAL.end());
3093 
3094     // Propagate to the current host action (if any) the offload information
3095     // associated with the current input.
3096     if (HostAction)
3097       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3098                                            /*BoundArch=*/nullptr);
3099     return false;
3100   }
3101 
3102   /// Processes the host linker action. This currently consists of replacing it
3103   /// with an offload action if there are device link objects and propagate to
3104   /// the host action all the offload kinds used in the current compilation. The
3105   /// resulting action is returned.
3106   Action *processHostLinkAction(Action *HostAction) {
3107     // Add all the dependences from the device linking actions.
3108     OffloadAction::DeviceDependences DDeps;
3109     for (auto *SB : SpecializedBuilders) {
3110       if (!SB->isValid())
3111         continue;
3112 
3113       SB->appendLinkDependences(DDeps);
3114     }
3115 
3116     // Calculate all the offload kinds used in the current compilation.
3117     unsigned ActiveOffloadKinds = 0u;
3118     for (auto &I : InputArgToOffloadKindMap)
3119       ActiveOffloadKinds |= I.second;
3120 
3121     // If we don't have device dependencies, we don't have to create an offload
3122     // action.
3123     if (DDeps.getActions().empty()) {
3124       // Propagate all the active kinds to host action. Given that it is a link
3125       // action it is assumed to depend on all actions generated so far.
3126       HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3127                                            /*BoundArch=*/nullptr);
3128       return HostAction;
3129     }
3130 
3131     // Create the offload action with all dependences. When an offload action
3132     // is created the kinds are propagated to the host action, so we don't have
3133     // to do that explicitly here.
3134     OffloadAction::HostDependence HDep(
3135         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3136         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3137     return C.MakeAction<OffloadAction>(HDep, DDeps);
3138   }
3139 };
3140 } // anonymous namespace.
3141 
3142 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3143                           const InputList &Inputs, ActionList &Actions) const {
3144   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3145 
3146   if (!SuppressMissingInputWarning && Inputs.empty()) {
3147     Diag(clang::diag::err_drv_no_input_files);
3148     return;
3149   }
3150 
3151   Arg *FinalPhaseArg;
3152   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3153 
3154   if (FinalPhase == phases::Link) {
3155     if (Args.hasArg(options::OPT_emit_llvm))
3156       Diag(clang::diag::err_drv_emit_llvm_link);
3157     if (IsCLMode() && LTOMode != LTOK_None &&
3158         !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3159       Diag(clang::diag::err_drv_lto_without_lld);
3160   }
3161 
3162   // Reject -Z* at the top level, these options should never have been exposed
3163   // by gcc.
3164   if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3165     Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3166 
3167   // Diagnose misuse of /Fo.
3168   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3169     StringRef V = A->getValue();
3170     if (Inputs.size() > 1 && !V.empty() &&
3171         !llvm::sys::path::is_separator(V.back())) {
3172       // Check whether /Fo tries to name an output file for multiple inputs.
3173       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3174           << A->getSpelling() << V;
3175       Args.eraseArg(options::OPT__SLASH_Fo);
3176     }
3177   }
3178 
3179   // Diagnose misuse of /Fa.
3180   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3181     StringRef V = A->getValue();
3182     if (Inputs.size() > 1 && !V.empty() &&
3183         !llvm::sys::path::is_separator(V.back())) {
3184       // Check whether /Fa tries to name an asm file for multiple inputs.
3185       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3186           << A->getSpelling() << V;
3187       Args.eraseArg(options::OPT__SLASH_Fa);
3188     }
3189   }
3190 
3191   // Diagnose misuse of /o.
3192   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3193     if (A->getValue()[0] == '\0') {
3194       // It has to have a value.
3195       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3196       Args.eraseArg(options::OPT__SLASH_o);
3197     }
3198   }
3199 
3200   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3201   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3202   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3203   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3204     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3205     Args.eraseArg(options::OPT__SLASH_Yc);
3206     Args.eraseArg(options::OPT__SLASH_Yu);
3207     YcArg = YuArg = nullptr;
3208   }
3209   if (YcArg && Inputs.size() > 1) {
3210     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3211     Args.eraseArg(options::OPT__SLASH_Yc);
3212     YcArg = nullptr;
3213   }
3214   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3215     // If only preprocessing or /Y- is used, all pch handling is disabled.
3216     // Rather than check for it everywhere, just remove clang-cl pch-related
3217     // flags here.
3218     Args.eraseArg(options::OPT__SLASH_Fp);
3219     Args.eraseArg(options::OPT__SLASH_Yc);
3220     Args.eraseArg(options::OPT__SLASH_Yu);
3221     YcArg = YuArg = nullptr;
3222   }
3223 
3224   // Builder to be used to build offloading actions.
3225   OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3226 
3227   // Construct the actions to perform.
3228   HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3229   ActionList LinkerInputs;
3230 
3231   llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
3232   for (auto &I : Inputs) {
3233     types::ID InputType = I.first;
3234     const Arg *InputArg = I.second;
3235 
3236     PL.clear();
3237     types::getCompilationPhases(InputType, PL);
3238 
3239     // If the first step comes after the final phase we are doing as part of
3240     // this compilation, warn the user about it.
3241     phases::ID InitialPhase = PL[0];
3242     if (InitialPhase > FinalPhase) {
3243       if (InputArg->isClaimed())
3244         continue;
3245 
3246       // Claim here to avoid the more general unused warning.
3247       InputArg->claim();
3248 
3249       // Suppress all unused style warnings with -Qunused-arguments
3250       if (Args.hasArg(options::OPT_Qunused_arguments))
3251         continue;
3252 
3253       // Special case when final phase determined by binary name, rather than
3254       // by a command-line argument with a corresponding Arg.
3255       if (CCCIsCPP())
3256         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3257             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3258       // Special case '-E' warning on a previously preprocessed file to make
3259       // more sense.
3260       else if (InitialPhase == phases::Compile &&
3261                FinalPhase == phases::Preprocess &&
3262                getPreprocessedType(InputType) == types::TY_INVALID)
3263         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3264             << InputArg->getAsString(Args) << !!FinalPhaseArg
3265             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3266       else
3267         Diag(clang::diag::warn_drv_input_file_unused)
3268             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3269             << !!FinalPhaseArg
3270             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3271       continue;
3272     }
3273 
3274     if (YcArg) {
3275       // Add a separate precompile phase for the compile phase.
3276       if (FinalPhase >= phases::Compile) {
3277         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3278         llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL;
3279         types::getCompilationPhases(HeaderType, PCHPL);
3280         // Build the pipeline for the pch file.
3281         Action *ClangClPch =
3282             C.MakeAction<InputAction>(*InputArg, HeaderType);
3283         for (phases::ID Phase : PCHPL)
3284           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3285         assert(ClangClPch);
3286         Actions.push_back(ClangClPch);
3287         // The driver currently exits after the first failed command.  This
3288         // relies on that behavior, to make sure if the pch generation fails,
3289         // the main compilation won't run.
3290         // FIXME: If the main compilation fails, the PCH generation should
3291         // probably not be considered successful either.
3292       }
3293     }
3294 
3295     // Build the pipeline for this file.
3296     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3297 
3298     // Use the current host action in any of the offloading actions, if
3299     // required.
3300     if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3301       break;
3302 
3303     for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3304          i != e; ++i) {
3305       phases::ID Phase = *i;
3306 
3307       // We are done if this step is past what the user requested.
3308       if (Phase > FinalPhase)
3309         break;
3310 
3311       // Add any offload action the host action depends on.
3312       Current = OffloadBuilder.addDeviceDependencesToHostAction(
3313           Current, InputArg, Phase, FinalPhase, PL);
3314       if (!Current)
3315         break;
3316 
3317       // Queue linker inputs.
3318       if (Phase == phases::Link) {
3319         assert((i + 1) == e && "linking must be final compilation step.");
3320         LinkerInputs.push_back(Current);
3321         Current = nullptr;
3322         break;
3323       }
3324 
3325       // Each precompiled header file after a module file action is a module
3326       // header of that same module file, rather than being compiled to a
3327       // separate PCH.
3328       if (Phase == phases::Precompile && HeaderModuleAction &&
3329           getPrecompiledType(InputType) == types::TY_PCH) {
3330         HeaderModuleAction->addModuleHeaderInput(Current);
3331         Current = nullptr;
3332         break;
3333       }
3334 
3335       // FIXME: Should we include any prior module file outputs as inputs of
3336       // later actions in the same command line?
3337 
3338       // Otherwise construct the appropriate action.
3339       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3340 
3341       // We didn't create a new action, so we will just move to the next phase.
3342       if (NewCurrent == Current)
3343         continue;
3344 
3345       if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3346         HeaderModuleAction = HMA;
3347 
3348       Current = NewCurrent;
3349 
3350       // Use the current host action in any of the offloading actions, if
3351       // required.
3352       if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3353         break;
3354 
3355       if (Current->getType() == types::TY_Nothing)
3356         break;
3357     }
3358 
3359     // If we ended with something, add to the output list.
3360     if (Current)
3361       Actions.push_back(Current);
3362 
3363     // Add any top level actions generated for offloading.
3364     OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3365   }
3366 
3367   // Add a link action if necessary.
3368   if (!LinkerInputs.empty()) {
3369     Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3370     LA = OffloadBuilder.processHostLinkAction(LA);
3371     Actions.push_back(LA);
3372   }
3373 
3374   // If we are linking, claim any options which are obviously only used for
3375   // compilation.
3376   if (FinalPhase == phases::Link && PL.size() == 1) {
3377     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3378     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3379   }
3380 
3381   // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3382   // Compile phase that prints out supported cpu models and quits.
3383   if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3384     // Use the -mcpu=? flag as the dummy input to cc1.
3385     Actions.clear();
3386     Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3387     Actions.push_back(
3388         C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3389     for (auto &I : Inputs)
3390       I.second->claim();
3391   }
3392 
3393   // Claim ignored clang-cl options.
3394   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3395 
3396   // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3397   // to non-CUDA compilations and should not trigger warnings there.
3398   Args.ClaimAllArgs(options::OPT_cuda_host_only);
3399   Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3400 }
3401 
3402 Action *Driver::ConstructPhaseAction(
3403     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3404     Action::OffloadKind TargetDeviceOffloadKind) const {
3405   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3406 
3407   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3408   // encode this in the steps because the intermediate type depends on
3409   // arguments. Just special case here.
3410   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3411     return Input;
3412 
3413   // Build the appropriate action.
3414   switch (Phase) {
3415   case phases::Link:
3416     llvm_unreachable("link action invalid here.");
3417   case phases::Preprocess: {
3418     types::ID OutputTy;
3419     // -{M, MM} alter the output type.
3420     if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3421       OutputTy = types::TY_Dependencies;
3422     } else {
3423       OutputTy = Input->getType();
3424       if (!Args.hasFlag(options::OPT_frewrite_includes,
3425                         options::OPT_fno_rewrite_includes, false) &&
3426           !Args.hasFlag(options::OPT_frewrite_imports,
3427                         options::OPT_fno_rewrite_imports, false) &&
3428           !CCGenDiagnostics)
3429         OutputTy = types::getPreprocessedType(OutputTy);
3430       assert(OutputTy != types::TY_INVALID &&
3431              "Cannot preprocess this input type!");
3432     }
3433     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3434   }
3435   case phases::Precompile: {
3436     types::ID OutputTy = getPrecompiledType(Input->getType());
3437     assert(OutputTy != types::TY_INVALID &&
3438            "Cannot precompile this input type!");
3439 
3440     // If we're given a module name, precompile header file inputs as a
3441     // module, not as a precompiled header.
3442     const char *ModName = nullptr;
3443     if (OutputTy == types::TY_PCH) {
3444       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3445         ModName = A->getValue();
3446       if (ModName)
3447         OutputTy = types::TY_ModuleFile;
3448     }
3449 
3450     if (Args.hasArg(options::OPT_fsyntax_only)) {
3451       // Syntax checks should not emit a PCH file
3452       OutputTy = types::TY_Nothing;
3453     }
3454 
3455     if (ModName)
3456       return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3457                                                            ModName);
3458     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3459   }
3460   case phases::Compile: {
3461     if (Args.hasArg(options::OPT_fsyntax_only))
3462       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3463     if (Args.hasArg(options::OPT_rewrite_objc))
3464       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3465     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3466       return C.MakeAction<CompileJobAction>(Input,
3467                                             types::TY_RewrittenLegacyObjC);
3468     if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3469       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3470     if (Args.hasArg(options::OPT__migrate))
3471       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3472     if (Args.hasArg(options::OPT_emit_ast))
3473       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3474     if (Args.hasArg(options::OPT_module_file_info))
3475       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3476     if (Args.hasArg(options::OPT_verify_pch))
3477       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3478     if (Args.hasArg(options::OPT_emit_iterface_stubs))
3479       return C.MakeAction<CompileJobAction>(Input, types::TY_IFS);
3480     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3481   }
3482   case phases::Backend: {
3483     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3484       types::ID Output =
3485           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3486       return C.MakeAction<BackendJobAction>(Input, Output);
3487     }
3488     if (Args.hasArg(options::OPT_emit_llvm)) {
3489       types::ID Output =
3490           Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3491       return C.MakeAction<BackendJobAction>(Input, Output);
3492     }
3493     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3494   }
3495   case phases::Assemble:
3496     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3497   }
3498 
3499   llvm_unreachable("invalid phase in ConstructPhaseAction");
3500 }
3501 
3502 void Driver::BuildJobs(Compilation &C) const {
3503   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3504 
3505   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3506 
3507   // It is an error to provide a -o option if we are making multiple output
3508   // files.
3509   if (FinalOutput) {
3510     unsigned NumOutputs = 0;
3511     for (const Action *A : C.getActions())
3512       if (A->getType() != types::TY_Nothing)
3513         ++NumOutputs;
3514 
3515     if (NumOutputs > 1) {
3516       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3517       FinalOutput = nullptr;
3518     }
3519   }
3520 
3521   // Collect the list of architectures.
3522   llvm::StringSet<> ArchNames;
3523   if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3524     for (const Arg *A : C.getArgs())
3525       if (A->getOption().matches(options::OPT_arch))
3526         ArchNames.insert(A->getValue());
3527 
3528   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3529   std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3530   for (Action *A : C.getActions()) {
3531     // If we are linking an image for multiple archs then the linker wants
3532     // -arch_multiple and -final_output <final image name>. Unfortunately, this
3533     // doesn't fit in cleanly because we have to pass this information down.
3534     //
3535     // FIXME: This is a hack; find a cleaner way to integrate this into the
3536     // process.
3537     const char *LinkingOutput = nullptr;
3538     if (isa<LipoJobAction>(A)) {
3539       if (FinalOutput)
3540         LinkingOutput = FinalOutput->getValue();
3541       else
3542         LinkingOutput = getDefaultImageName();
3543     }
3544 
3545     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
3546                        /*BoundArch*/ StringRef(),
3547                        /*AtTopLevel*/ true,
3548                        /*MultipleArchs*/ ArchNames.size() > 1,
3549                        /*LinkingOutput*/ LinkingOutput, CachedResults,
3550                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
3551   }
3552 
3553   // If the user passed -Qunused-arguments or there were errors, don't warn
3554   // about any unused arguments.
3555   if (Diags.hasErrorOccurred() ||
3556       C.getArgs().hasArg(options::OPT_Qunused_arguments))
3557     return;
3558 
3559   // Claim -### here.
3560   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3561 
3562   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3563   (void)C.getArgs().hasArg(options::OPT_driver_mode);
3564   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3565 
3566   for (Arg *A : C.getArgs()) {
3567     // FIXME: It would be nice to be able to send the argument to the
3568     // DiagnosticsEngine, so that extra values, position, and so on could be
3569     // printed.
3570     if (!A->isClaimed()) {
3571       if (A->getOption().hasFlag(options::NoArgumentUnused))
3572         continue;
3573 
3574       // Suppress the warning automatically if this is just a flag, and it is an
3575       // instance of an argument we already claimed.
3576       const Option &Opt = A->getOption();
3577       if (Opt.getKind() == Option::FlagClass) {
3578         bool DuplicateClaimed = false;
3579 
3580         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3581           if (AA->isClaimed()) {
3582             DuplicateClaimed = true;
3583             break;
3584           }
3585         }
3586 
3587         if (DuplicateClaimed)
3588           continue;
3589       }
3590 
3591       // In clang-cl, don't mention unknown arguments here since they have
3592       // already been warned about.
3593       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3594         Diag(clang::diag::warn_drv_unused_argument)
3595             << A->getAsString(C.getArgs());
3596     }
3597   }
3598 }
3599 
3600 namespace {
3601 /// Utility class to control the collapse of dependent actions and select the
3602 /// tools accordingly.
3603 class ToolSelector final {
3604   /// The tool chain this selector refers to.
3605   const ToolChain &TC;
3606 
3607   /// The compilation this selector refers to.
3608   const Compilation &C;
3609 
3610   /// The base action this selector refers to.
3611   const JobAction *BaseAction;
3612 
3613   /// Set to true if the current toolchain refers to host actions.
3614   bool IsHostSelector;
3615 
3616   /// Set to true if save-temps and embed-bitcode functionalities are active.
3617   bool SaveTemps;
3618   bool EmbedBitcode;
3619 
3620   /// Get previous dependent action or null if that does not exist. If
3621   /// \a CanBeCollapsed is false, that action must be legal to collapse or
3622   /// null will be returned.
3623   const JobAction *getPrevDependentAction(const ActionList &Inputs,
3624                                           ActionList &SavedOffloadAction,
3625                                           bool CanBeCollapsed = true) {
3626     // An option can be collapsed only if it has a single input.
3627     if (Inputs.size() != 1)
3628       return nullptr;
3629 
3630     Action *CurAction = *Inputs.begin();
3631     if (CanBeCollapsed &&
3632         !CurAction->isCollapsingWithNextDependentActionLegal())
3633       return nullptr;
3634 
3635     // If the input action is an offload action. Look through it and save any
3636     // offload action that can be dropped in the event of a collapse.
3637     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3638       // If the dependent action is a device action, we will attempt to collapse
3639       // only with other device actions. Otherwise, we would do the same but
3640       // with host actions only.
3641       if (!IsHostSelector) {
3642         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3643           CurAction =
3644               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3645           if (CanBeCollapsed &&
3646               !CurAction->isCollapsingWithNextDependentActionLegal())
3647             return nullptr;
3648           SavedOffloadAction.push_back(OA);
3649           return dyn_cast<JobAction>(CurAction);
3650         }
3651       } else if (OA->hasHostDependence()) {
3652         CurAction = OA->getHostDependence();
3653         if (CanBeCollapsed &&
3654             !CurAction->isCollapsingWithNextDependentActionLegal())
3655           return nullptr;
3656         SavedOffloadAction.push_back(OA);
3657         return dyn_cast<JobAction>(CurAction);
3658       }
3659       return nullptr;
3660     }
3661 
3662     return dyn_cast<JobAction>(CurAction);
3663   }
3664 
3665   /// Return true if an assemble action can be collapsed.
3666   bool canCollapseAssembleAction() const {
3667     return TC.useIntegratedAs() && !SaveTemps &&
3668            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3669            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3670            !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3671   }
3672 
3673   /// Return true if a preprocessor action can be collapsed.
3674   bool canCollapsePreprocessorAction() const {
3675     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3676            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3677            !C.getArgs().hasArg(options::OPT_rewrite_objc);
3678   }
3679 
3680   /// Struct that relates an action with the offload actions that would be
3681   /// collapsed with it.
3682   struct JobActionInfo final {
3683     /// The action this info refers to.
3684     const JobAction *JA = nullptr;
3685     /// The offload actions we need to take care off if this action is
3686     /// collapsed.
3687     ActionList SavedOffloadAction;
3688   };
3689 
3690   /// Append collapsed offload actions from the give nnumber of elements in the
3691   /// action info array.
3692   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3693                                            ArrayRef<JobActionInfo> &ActionInfo,
3694                                            unsigned ElementNum) {
3695     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3696     for (unsigned I = 0; I < ElementNum; ++I)
3697       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3698                                     ActionInfo[I].SavedOffloadAction.end());
3699   }
3700 
3701   /// Functions that attempt to perform the combining. They detect if that is
3702   /// legal, and if so they update the inputs \a Inputs and the offload action
3703   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3704   /// the combined action is returned. If the combining is not legal or if the
3705   /// tool does not exist, null is returned.
3706   /// Currently three kinds of collapsing are supported:
3707   ///  - Assemble + Backend + Compile;
3708   ///  - Assemble + Backend ;
3709   ///  - Backend + Compile.
3710   const Tool *
3711   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3712                                 ActionList &Inputs,
3713                                 ActionList &CollapsedOffloadAction) {
3714     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3715       return nullptr;
3716     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3717     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3718     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3719     if (!AJ || !BJ || !CJ)
3720       return nullptr;
3721 
3722     // Get compiler tool.
3723     const Tool *T = TC.SelectTool(*CJ);
3724     if (!T)
3725       return nullptr;
3726 
3727     // When using -fembed-bitcode, it is required to have the same tool (clang)
3728     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3729     if (EmbedBitcode) {
3730       const Tool *BT = TC.SelectTool(*BJ);
3731       if (BT == T)
3732         return nullptr;
3733     }
3734 
3735     if (!T->hasIntegratedAssembler())
3736       return nullptr;
3737 
3738     Inputs = CJ->getInputs();
3739     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3740                                  /*NumElements=*/3);
3741     return T;
3742   }
3743   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3744                                      ActionList &Inputs,
3745                                      ActionList &CollapsedOffloadAction) {
3746     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3747       return nullptr;
3748     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3749     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3750     if (!AJ || !BJ)
3751       return nullptr;
3752 
3753     // Retrieve the compile job, backend action must always be preceded by one.
3754     ActionList CompileJobOffloadActions;
3755     auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3756                                       /*CanBeCollapsed=*/false);
3757     if (!AJ || !BJ || !CJ)
3758       return nullptr;
3759 
3760     assert(isa<CompileJobAction>(CJ) &&
3761            "Expecting compile job preceding backend job.");
3762 
3763     // Get compiler tool.
3764     const Tool *T = TC.SelectTool(*CJ);
3765     if (!T)
3766       return nullptr;
3767 
3768     if (!T->hasIntegratedAssembler())
3769       return nullptr;
3770 
3771     Inputs = BJ->getInputs();
3772     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3773                                  /*NumElements=*/2);
3774     return T;
3775   }
3776   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3777                                     ActionList &Inputs,
3778                                     ActionList &CollapsedOffloadAction) {
3779     if (ActionInfo.size() < 2)
3780       return nullptr;
3781     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3782     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3783     if (!BJ || !CJ)
3784       return nullptr;
3785 
3786     // Check if the initial input (to the compile job or its predessor if one
3787     // exists) is LLVM bitcode. In that case, no preprocessor step is required
3788     // and we can still collapse the compile and backend jobs when we have
3789     // -save-temps. I.e. there is no need for a separate compile job just to
3790     // emit unoptimized bitcode.
3791     bool InputIsBitcode = true;
3792     for (size_t i = 1; i < ActionInfo.size(); i++)
3793       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3794           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3795         InputIsBitcode = false;
3796         break;
3797       }
3798     if (!InputIsBitcode && !canCollapsePreprocessorAction())
3799       return nullptr;
3800 
3801     // Get compiler tool.
3802     const Tool *T = TC.SelectTool(*CJ);
3803     if (!T)
3804       return nullptr;
3805 
3806     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3807       return nullptr;
3808 
3809     Inputs = CJ->getInputs();
3810     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3811                                  /*NumElements=*/2);
3812     return T;
3813   }
3814 
3815   /// Updates the inputs if the obtained tool supports combining with
3816   /// preprocessor action, and the current input is indeed a preprocessor
3817   /// action. If combining results in the collapse of offloading actions, those
3818   /// are appended to \a CollapsedOffloadAction.
3819   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3820                                ActionList &CollapsedOffloadAction) {
3821     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3822       return;
3823 
3824     // Attempt to get a preprocessor action dependence.
3825     ActionList PreprocessJobOffloadActions;
3826     ActionList NewInputs;
3827     for (Action *A : Inputs) {
3828       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3829       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3830         NewInputs.push_back(A);
3831         continue;
3832       }
3833 
3834       // This is legal to combine. Append any offload action we found and add the
3835       // current input to preprocessor inputs.
3836       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3837                                     PreprocessJobOffloadActions.end());
3838       NewInputs.append(PJ->input_begin(), PJ->input_end());
3839     }
3840     Inputs = NewInputs;
3841   }
3842 
3843 public:
3844   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3845                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3846       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3847         EmbedBitcode(EmbedBitcode) {
3848     assert(BaseAction && "Invalid base action.");
3849     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3850   }
3851 
3852   /// Check if a chain of actions can be combined and return the tool that can
3853   /// handle the combination of actions. The pointer to the current inputs \a
3854   /// Inputs and the list of offload actions \a CollapsedOffloadActions
3855   /// connected to collapsed actions are updated accordingly. The latter enables
3856   /// the caller of the selector to process them afterwards instead of just
3857   /// dropping them. If no suitable tool is found, null will be returned.
3858   const Tool *getTool(ActionList &Inputs,
3859                       ActionList &CollapsedOffloadAction) {
3860     //
3861     // Get the largest chain of actions that we could combine.
3862     //
3863 
3864     SmallVector<JobActionInfo, 5> ActionChain(1);
3865     ActionChain.back().JA = BaseAction;
3866     while (ActionChain.back().JA) {
3867       const Action *CurAction = ActionChain.back().JA;
3868 
3869       // Grow the chain by one element.
3870       ActionChain.resize(ActionChain.size() + 1);
3871       JobActionInfo &AI = ActionChain.back();
3872 
3873       // Attempt to fill it with the
3874       AI.JA =
3875           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3876     }
3877 
3878     // Pop the last action info as it could not be filled.
3879     ActionChain.pop_back();
3880 
3881     //
3882     // Attempt to combine actions. If all combining attempts failed, just return
3883     // the tool of the provided action. At the end we attempt to combine the
3884     // action with any preprocessor action it may depend on.
3885     //
3886 
3887     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3888                                                   CollapsedOffloadAction);
3889     if (!T)
3890       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3891     if (!T)
3892       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3893     if (!T) {
3894       Inputs = BaseAction->getInputs();
3895       T = TC.SelectTool(*BaseAction);
3896     }
3897 
3898     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3899     return T;
3900   }
3901 };
3902 }
3903 
3904 /// Return a string that uniquely identifies the result of a job. The bound arch
3905 /// is not necessarily represented in the toolchain's triple -- for example,
3906 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3907 /// Also, we need to add the offloading device kind, as the same tool chain can
3908 /// be used for host and device for some programming models, e.g. OpenMP.
3909 static std::string GetTriplePlusArchString(const ToolChain *TC,
3910                                            StringRef BoundArch,
3911                                            Action::OffloadKind OffloadKind) {
3912   std::string TriplePlusArch = TC->getTriple().normalize();
3913   if (!BoundArch.empty()) {
3914     TriplePlusArch += "-";
3915     TriplePlusArch += BoundArch;
3916   }
3917   TriplePlusArch += "-";
3918   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3919   return TriplePlusArch;
3920 }
3921 
3922 InputInfo Driver::BuildJobsForAction(
3923     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3924     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3925     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3926     Action::OffloadKind TargetDeviceOffloadKind) const {
3927   std::pair<const Action *, std::string> ActionTC = {
3928       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3929   auto CachedResult = CachedResults.find(ActionTC);
3930   if (CachedResult != CachedResults.end()) {
3931     return CachedResult->second;
3932   }
3933   InputInfo Result = BuildJobsForActionNoCache(
3934       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3935       CachedResults, TargetDeviceOffloadKind);
3936   CachedResults[ActionTC] = Result;
3937   return Result;
3938 }
3939 
3940 InputInfo Driver::BuildJobsForActionNoCache(
3941     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3942     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3943     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3944     Action::OffloadKind TargetDeviceOffloadKind) const {
3945   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3946 
3947   InputInfoList OffloadDependencesInputInfo;
3948   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3949   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3950     // The 'Darwin' toolchain is initialized only when its arguments are
3951     // computed. Get the default arguments for OFK_None to ensure that
3952     // initialization is performed before processing the offload action.
3953     // FIXME: Remove when darwin's toolchain is initialized during construction.
3954     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3955 
3956     // The offload action is expected to be used in four different situations.
3957     //
3958     // a) Set a toolchain/architecture/kind for a host action:
3959     //    Host Action 1 -> OffloadAction -> Host Action 2
3960     //
3961     // b) Set a toolchain/architecture/kind for a device action;
3962     //    Device Action 1 -> OffloadAction -> Device Action 2
3963     //
3964     // c) Specify a device dependence to a host action;
3965     //    Device Action 1  _
3966     //                      \
3967     //      Host Action 1  ---> OffloadAction -> Host Action 2
3968     //
3969     // d) Specify a host dependence to a device action.
3970     //      Host Action 1  _
3971     //                      \
3972     //    Device Action 1  ---> OffloadAction -> Device Action 2
3973     //
3974     // For a) and b), we just return the job generated for the dependence. For
3975     // c) and d) we override the current action with the host/device dependence
3976     // if the current toolchain is host/device and set the offload dependences
3977     // info with the jobs obtained from the device/host dependence(s).
3978 
3979     // If there is a single device option, just generate the job for it.
3980     if (OA->hasSingleDeviceDependence()) {
3981       InputInfo DevA;
3982       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3983                                        const char *DepBoundArch) {
3984         DevA =
3985             BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3986                                /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
3987                                CachedResults, DepA->getOffloadingDeviceKind());
3988       });
3989       return DevA;
3990     }
3991 
3992     // If 'Action 2' is host, we generate jobs for the device dependences and
3993     // override the current action with the host dependence. Otherwise, we
3994     // generate the host dependences and override the action with the device
3995     // dependence. The dependences can't therefore be a top-level action.
3996     OA->doOnEachDependence(
3997         /*IsHostDependence=*/BuildingForOffloadDevice,
3998         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3999           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4000               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4001               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4002               DepA->getOffloadingDeviceKind()));
4003         });
4004 
4005     A = BuildingForOffloadDevice
4006             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4007             : OA->getHostDependence();
4008   }
4009 
4010   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4011     // FIXME: It would be nice to not claim this here; maybe the old scheme of
4012     // just using Args was better?
4013     const Arg &Input = IA->getInputArg();
4014     Input.claim();
4015     if (Input.getOption().matches(options::OPT_INPUT)) {
4016       const char *Name = Input.getValue();
4017       return InputInfo(A, Name, /* BaseInput = */ Name);
4018     }
4019     return InputInfo(A, &Input, /* BaseInput = */ "");
4020   }
4021 
4022   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4023     const ToolChain *TC;
4024     StringRef ArchName = BAA->getArchName();
4025 
4026     if (!ArchName.empty())
4027       TC = &getToolChain(C.getArgs(),
4028                          computeTargetTriple(*this, TargetTriple,
4029                                              C.getArgs(), ArchName));
4030     else
4031       TC = &C.getDefaultToolChain();
4032 
4033     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4034                               MultipleArchs, LinkingOutput, CachedResults,
4035                               TargetDeviceOffloadKind);
4036   }
4037 
4038 
4039   ActionList Inputs = A->getInputs();
4040 
4041   const JobAction *JA = cast<JobAction>(A);
4042   ActionList CollapsedOffloadActions;
4043 
4044   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4045                   embedBitcodeInObject() && !isUsingLTO());
4046   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4047 
4048   if (!T)
4049     return InputInfo();
4050 
4051   // If we've collapsed action list that contained OffloadAction we
4052   // need to build jobs for host/device-side inputs it may have held.
4053   for (const auto *OA : CollapsedOffloadActions)
4054     cast<OffloadAction>(OA)->doOnEachDependence(
4055         /*IsHostDependence=*/BuildingForOffloadDevice,
4056         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4057           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4058               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4059               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4060               DepA->getOffloadingDeviceKind()));
4061         });
4062 
4063   // Only use pipes when there is exactly one input.
4064   InputInfoList InputInfos;
4065   for (const Action *Input : Inputs) {
4066     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4067     // shouldn't get temporary output names.
4068     // FIXME: Clean this up.
4069     bool SubJobAtTopLevel =
4070         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4071     InputInfos.push_back(BuildJobsForAction(
4072         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4073         CachedResults, A->getOffloadingDeviceKind()));
4074   }
4075 
4076   // Always use the first input as the base input.
4077   const char *BaseInput = InputInfos[0].getBaseInput();
4078 
4079   // ... except dsymutil actions, which use their actual input as the base
4080   // input.
4081   if (JA->getType() == types::TY_dSYM)
4082     BaseInput = InputInfos[0].getFilename();
4083 
4084   // ... and in header module compilations, which use the module name.
4085   if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4086     BaseInput = ModuleJA->getModuleName();
4087 
4088   // Append outputs of offload device jobs to the input list
4089   if (!OffloadDependencesInputInfo.empty())
4090     InputInfos.append(OffloadDependencesInputInfo.begin(),
4091                       OffloadDependencesInputInfo.end());
4092 
4093   // Set the effective triple of the toolchain for the duration of this job.
4094   llvm::Triple EffectiveTriple;
4095   const ToolChain &ToolTC = T->getToolChain();
4096   const ArgList &Args =
4097       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4098   if (InputInfos.size() != 1) {
4099     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4100   } else {
4101     // Pass along the input type if it can be unambiguously determined.
4102     EffectiveTriple = llvm::Triple(
4103         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4104   }
4105   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4106 
4107   // Determine the place to write output to, if any.
4108   InputInfo Result;
4109   InputInfoList UnbundlingResults;
4110   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4111     // If we have an unbundling job, we need to create results for all the
4112     // outputs. We also update the results cache so that other actions using
4113     // this unbundling action can get the right results.
4114     for (auto &UI : UA->getDependentActionsInfo()) {
4115       assert(UI.DependentOffloadKind != Action::OFK_None &&
4116              "Unbundling with no offloading??");
4117 
4118       // Unbundling actions are never at the top level. When we generate the
4119       // offloading prefix, we also do that for the host file because the
4120       // unbundling action does not change the type of the output which can
4121       // cause a overwrite.
4122       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4123           UI.DependentOffloadKind,
4124           UI.DependentToolChain->getTriple().normalize(),
4125           /*CreatePrefixForHost=*/true);
4126       auto CurI = InputInfo(
4127           UA,
4128           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4129                              /*AtTopLevel=*/false,
4130                              MultipleArchs ||
4131                                  UI.DependentOffloadKind == Action::OFK_HIP,
4132                              OffloadingPrefix),
4133           BaseInput);
4134       // Save the unbundling result.
4135       UnbundlingResults.push_back(CurI);
4136 
4137       // Get the unique string identifier for this dependence and cache the
4138       // result.
4139       StringRef Arch;
4140       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4141         if (UI.DependentOffloadKind == Action::OFK_Host)
4142           Arch = StringRef();
4143         else
4144           Arch = UI.DependentBoundArch;
4145       } else
4146         Arch = BoundArch;
4147 
4148       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4149                                                 UI.DependentOffloadKind)}] =
4150           CurI;
4151     }
4152 
4153     // Now that we have all the results generated, select the one that should be
4154     // returned for the current depending action.
4155     std::pair<const Action *, std::string> ActionTC = {
4156         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4157     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4158            "Result does not exist??");
4159     Result = CachedResults[ActionTC];
4160   } else if (JA->getType() == types::TY_Nothing)
4161     Result = InputInfo(A, BaseInput);
4162   else {
4163     // We only have to generate a prefix for the host if this is not a top-level
4164     // action.
4165     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4166         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4167         /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4168             !AtTopLevel);
4169     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4170                                              AtTopLevel, MultipleArchs,
4171                                              OffloadingPrefix),
4172                        BaseInput);
4173   }
4174 
4175   if (CCCPrintBindings && !CCGenDiagnostics) {
4176     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4177                  << " - \"" << T->getName() << "\", inputs: [";
4178     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4179       llvm::errs() << InputInfos[i].getAsString();
4180       if (i + 1 != e)
4181         llvm::errs() << ", ";
4182     }
4183     if (UnbundlingResults.empty())
4184       llvm::errs() << "], output: " << Result.getAsString() << "\n";
4185     else {
4186       llvm::errs() << "], outputs: [";
4187       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4188         llvm::errs() << UnbundlingResults[i].getAsString();
4189         if (i + 1 != e)
4190           llvm::errs() << ", ";
4191       }
4192       llvm::errs() << "] \n";
4193     }
4194   } else {
4195     if (UnbundlingResults.empty())
4196       T->ConstructJob(
4197           C, *JA, Result, InputInfos,
4198           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4199           LinkingOutput);
4200     else
4201       T->ConstructJobMultipleOutputs(
4202           C, *JA, UnbundlingResults, InputInfos,
4203           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4204           LinkingOutput);
4205   }
4206   return Result;
4207 }
4208 
4209 const char *Driver::getDefaultImageName() const {
4210   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4211   return Target.isOSWindows() ? "a.exe" : "a.out";
4212 }
4213 
4214 /// Create output filename based on ArgValue, which could either be a
4215 /// full filename, filename without extension, or a directory. If ArgValue
4216 /// does not provide a filename, then use BaseName, and use the extension
4217 /// suitable for FileType.
4218 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4219                                         StringRef BaseName,
4220                                         types::ID FileType) {
4221   SmallString<128> Filename = ArgValue;
4222 
4223   if (ArgValue.empty()) {
4224     // If the argument is empty, output to BaseName in the current dir.
4225     Filename = BaseName;
4226   } else if (llvm::sys::path::is_separator(Filename.back())) {
4227     // If the argument is a directory, output to BaseName in that dir.
4228     llvm::sys::path::append(Filename, BaseName);
4229   }
4230 
4231   if (!llvm::sys::path::has_extension(ArgValue)) {
4232     // If the argument didn't provide an extension, then set it.
4233     const char *Extension = types::getTypeTempSuffix(FileType, true);
4234 
4235     if (FileType == types::TY_Image &&
4236         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4237       // The output file is a dll.
4238       Extension = "dll";
4239     }
4240 
4241     llvm::sys::path::replace_extension(Filename, Extension);
4242   }
4243 
4244   return Args.MakeArgString(Filename.c_str());
4245 }
4246 
4247 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4248                                        const char *BaseInput,
4249                                        StringRef BoundArch, bool AtTopLevel,
4250                                        bool MultipleArchs,
4251                                        StringRef OffloadingPrefix) const {
4252   llvm::PrettyStackTraceString CrashInfo("Computing output path");
4253   // Output to a user requested destination?
4254   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4255     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4256       return C.addResultFile(FinalOutput->getValue(), &JA);
4257   }
4258 
4259   // For /P, preprocess to file named after BaseInput.
4260   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4261     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4262     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4263     StringRef NameArg;
4264     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4265       NameArg = A->getValue();
4266     return C.addResultFile(
4267         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4268         &JA);
4269   }
4270 
4271   // Default to writing to stdout?
4272   if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4273     return "-";
4274 
4275   // Is this the assembly listing for /FA?
4276   if (JA.getType() == types::TY_PP_Asm &&
4277       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4278        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4279     // Use /Fa and the input filename to determine the asm file name.
4280     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4281     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4282     return C.addResultFile(
4283         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4284         &JA);
4285   }
4286 
4287   // Output to a temporary file?
4288   if ((!AtTopLevel && !isSaveTempsEnabled() &&
4289        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4290       CCGenDiagnostics) {
4291     StringRef Name = llvm::sys::path::filename(BaseInput);
4292     std::pair<StringRef, StringRef> Split = Name.split('.');
4293     SmallString<128> TmpName;
4294     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4295     Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4296     if (CCGenDiagnostics && A) {
4297       SmallString<128> CrashDirectory(A->getValue());
4298       if (!getVFS().exists(CrashDirectory))
4299         llvm::sys::fs::create_directories(CrashDirectory);
4300       llvm::sys::path::append(CrashDirectory, Split.first);
4301       const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4302       std::error_code EC = llvm::sys::fs::createUniqueFile(
4303           CrashDirectory + Middle + Suffix, TmpName);
4304       if (EC) {
4305         Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4306         return "";
4307       }
4308     } else {
4309       TmpName = GetTemporaryPath(Split.first, Suffix);
4310     }
4311     return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4312   }
4313 
4314   SmallString<128> BasePath(BaseInput);
4315   StringRef BaseName;
4316 
4317   // Dsymutil actions should use the full path.
4318   if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4319     BaseName = BasePath;
4320   else
4321     BaseName = llvm::sys::path::filename(BasePath);
4322 
4323   // Determine what the derived output name should be.
4324   const char *NamedOutput;
4325 
4326   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4327       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4328     // The /Fo or /o flag decides the object filename.
4329     StringRef Val =
4330         C.getArgs()
4331             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4332             ->getValue();
4333     NamedOutput =
4334         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4335   } else if (JA.getType() == types::TY_Image &&
4336              C.getArgs().hasArg(options::OPT__SLASH_Fe,
4337                                 options::OPT__SLASH_o)) {
4338     // The /Fe or /o flag names the linked file.
4339     StringRef Val =
4340         C.getArgs()
4341             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4342             ->getValue();
4343     NamedOutput =
4344         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4345   } else if (JA.getType() == types::TY_Image) {
4346     if (IsCLMode()) {
4347       // clang-cl uses BaseName for the executable name.
4348       NamedOutput =
4349           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4350     } else {
4351       SmallString<128> Output(getDefaultImageName());
4352       Output += OffloadingPrefix;
4353       if (MultipleArchs && !BoundArch.empty()) {
4354         Output += "-";
4355         Output.append(BoundArch);
4356       }
4357       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4358     }
4359   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4360     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4361   } else {
4362     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4363     assert(Suffix && "All types used for output should have a suffix.");
4364 
4365     std::string::size_type End = std::string::npos;
4366     if (!types::appendSuffixForType(JA.getType()))
4367       End = BaseName.rfind('.');
4368     SmallString<128> Suffixed(BaseName.substr(0, End));
4369     Suffixed += OffloadingPrefix;
4370     if (MultipleArchs && !BoundArch.empty()) {
4371       Suffixed += "-";
4372       Suffixed.append(BoundArch);
4373     }
4374     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4375     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4376     // optimized bitcode output.
4377     if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4378         JA.getType() == types::TY_LLVM_BC)
4379       Suffixed += ".tmp";
4380     Suffixed += '.';
4381     Suffixed += Suffix;
4382     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4383   }
4384 
4385   // Prepend object file path if -save-temps=obj
4386   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4387       JA.getType() != types::TY_PCH) {
4388     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4389     SmallString<128> TempPath(FinalOutput->getValue());
4390     llvm::sys::path::remove_filename(TempPath);
4391     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4392     llvm::sys::path::append(TempPath, OutputFileName);
4393     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4394   }
4395 
4396   // If we're saving temps and the temp file conflicts with the input file,
4397   // then avoid overwriting input file.
4398   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4399     bool SameFile = false;
4400     SmallString<256> Result;
4401     llvm::sys::fs::current_path(Result);
4402     llvm::sys::path::append(Result, BaseName);
4403     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4404     // Must share the same path to conflict.
4405     if (SameFile) {
4406       StringRef Name = llvm::sys::path::filename(BaseInput);
4407       std::pair<StringRef, StringRef> Split = Name.split('.');
4408       std::string TmpName = GetTemporaryPath(
4409           Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4410       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4411     }
4412   }
4413 
4414   // As an annoying special case, PCH generation doesn't strip the pathname.
4415   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4416     llvm::sys::path::remove_filename(BasePath);
4417     if (BasePath.empty())
4418       BasePath = NamedOutput;
4419     else
4420       llvm::sys::path::append(BasePath, NamedOutput);
4421     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4422   } else {
4423     return C.addResultFile(NamedOutput, &JA);
4424   }
4425 }
4426 
4427 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4428   // Search for Name in a list of paths.
4429   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4430       -> llvm::Optional<std::string> {
4431     // Respect a limited subset of the '-Bprefix' functionality in GCC by
4432     // attempting to use this prefix when looking for file paths.
4433     for (const auto &Dir : P) {
4434       if (Dir.empty())
4435         continue;
4436       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4437       llvm::sys::path::append(P, Name);
4438       if (llvm::sys::fs::exists(Twine(P)))
4439         return P.str().str();
4440     }
4441     return None;
4442   };
4443 
4444   if (auto P = SearchPaths(PrefixDirs))
4445     return *P;
4446 
4447   SmallString<128> R(ResourceDir);
4448   llvm::sys::path::append(R, Name);
4449   if (llvm::sys::fs::exists(Twine(R)))
4450     return R.str();
4451 
4452   SmallString<128> P(TC.getCompilerRTPath());
4453   llvm::sys::path::append(P, Name);
4454   if (llvm::sys::fs::exists(Twine(P)))
4455     return P.str();
4456 
4457   SmallString<128> D(Dir);
4458   llvm::sys::path::append(D, "..", Name);
4459   if (llvm::sys::fs::exists(Twine(D)))
4460     return D.str();
4461 
4462   if (auto P = SearchPaths(TC.getLibraryPaths()))
4463     return *P;
4464 
4465   if (auto P = SearchPaths(TC.getFilePaths()))
4466     return *P;
4467 
4468   return Name;
4469 }
4470 
4471 void Driver::generatePrefixedToolNames(
4472     StringRef Tool, const ToolChain &TC,
4473     SmallVectorImpl<std::string> &Names) const {
4474   // FIXME: Needs a better variable than TargetTriple
4475   Names.emplace_back((TargetTriple + "-" + Tool).str());
4476   Names.emplace_back(Tool);
4477 
4478   // Allow the discovery of tools prefixed with LLVM's default target triple.
4479   std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4480   if (DefaultTargetTriple != TargetTriple)
4481     Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4482 }
4483 
4484 static bool ScanDirForExecutable(SmallString<128> &Dir,
4485                                  ArrayRef<std::string> Names) {
4486   for (const auto &Name : Names) {
4487     llvm::sys::path::append(Dir, Name);
4488     if (llvm::sys::fs::can_execute(Twine(Dir)))
4489       return true;
4490     llvm::sys::path::remove_filename(Dir);
4491   }
4492   return false;
4493 }
4494 
4495 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4496   SmallVector<std::string, 2> TargetSpecificExecutables;
4497   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4498 
4499   // Respect a limited subset of the '-Bprefix' functionality in GCC by
4500   // attempting to use this prefix when looking for program paths.
4501   for (const auto &PrefixDir : PrefixDirs) {
4502     if (llvm::sys::fs::is_directory(PrefixDir)) {
4503       SmallString<128> P(PrefixDir);
4504       if (ScanDirForExecutable(P, TargetSpecificExecutables))
4505         return P.str();
4506     } else {
4507       SmallString<128> P((PrefixDir + Name).str());
4508       if (llvm::sys::fs::can_execute(Twine(P)))
4509         return P.str();
4510     }
4511   }
4512 
4513   const ToolChain::path_list &List = TC.getProgramPaths();
4514   for (const auto &Path : List) {
4515     SmallString<128> P(Path);
4516     if (ScanDirForExecutable(P, TargetSpecificExecutables))
4517       return P.str();
4518   }
4519 
4520   // If all else failed, search the path.
4521   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4522     if (llvm::ErrorOr<std::string> P =
4523             llvm::sys::findProgramByName(TargetSpecificExecutable))
4524       return *P;
4525 
4526   return Name;
4527 }
4528 
4529 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4530   SmallString<128> Path;
4531   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4532   if (EC) {
4533     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4534     return "";
4535   }
4536 
4537   return Path.str();
4538 }
4539 
4540 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4541   SmallString<128> Path;
4542   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4543   if (EC) {
4544     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4545     return "";
4546   }
4547 
4548   return Path.str();
4549 }
4550 
4551 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4552   SmallString<128> Output;
4553   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4554     // FIXME: If anybody needs it, implement this obscure rule:
4555     // "If you specify a directory without a file name, the default file name
4556     // is VCx0.pch., where x is the major version of Visual C++ in use."
4557     Output = FpArg->getValue();
4558 
4559     // "If you do not specify an extension as part of the path name, an
4560     // extension of .pch is assumed. "
4561     if (!llvm::sys::path::has_extension(Output))
4562       Output += ".pch";
4563   } else {
4564     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4565       Output = YcArg->getValue();
4566     if (Output.empty())
4567       Output = BaseName;
4568     llvm::sys::path::replace_extension(Output, ".pch");
4569   }
4570   return Output.str();
4571 }
4572 
4573 const ToolChain &Driver::getToolChain(const ArgList &Args,
4574                                       const llvm::Triple &Target) const {
4575 
4576   auto &TC = ToolChains[Target.str()];
4577   if (!TC) {
4578     switch (Target.getOS()) {
4579     case llvm::Triple::Haiku:
4580       TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4581       break;
4582     case llvm::Triple::Ananas:
4583       TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4584       break;
4585     case llvm::Triple::CloudABI:
4586       TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4587       break;
4588     case llvm::Triple::Darwin:
4589     case llvm::Triple::MacOSX:
4590     case llvm::Triple::IOS:
4591     case llvm::Triple::TvOS:
4592     case llvm::Triple::WatchOS:
4593       TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4594       break;
4595     case llvm::Triple::DragonFly:
4596       TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4597       break;
4598     case llvm::Triple::OpenBSD:
4599       TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4600       break;
4601     case llvm::Triple::NetBSD:
4602       TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4603       break;
4604     case llvm::Triple::FreeBSD:
4605       TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4606       break;
4607     case llvm::Triple::Minix:
4608       TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4609       break;
4610     case llvm::Triple::Linux:
4611     case llvm::Triple::ELFIAMCU:
4612       if (Target.getArch() == llvm::Triple::hexagon)
4613         TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4614                                                              Args);
4615       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4616                !Target.hasEnvironment())
4617         TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4618                                                               Args);
4619       else if (Target.getArch() == llvm::Triple::ppc ||
4620                Target.getArch() == llvm::Triple::ppc64 ||
4621                Target.getArch() == llvm::Triple::ppc64le)
4622         TC = llvm::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4623                                                               Args);
4624       else
4625         TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4626       break;
4627     case llvm::Triple::NaCl:
4628       TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4629       break;
4630     case llvm::Triple::Fuchsia:
4631       TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4632       break;
4633     case llvm::Triple::Solaris:
4634       TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4635       break;
4636     case llvm::Triple::AMDHSA:
4637     case llvm::Triple::AMDPAL:
4638     case llvm::Triple::Mesa3D:
4639       TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4640       break;
4641     case llvm::Triple::Win32:
4642       switch (Target.getEnvironment()) {
4643       default:
4644         if (Target.isOSBinFormatELF())
4645           TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4646         else if (Target.isOSBinFormatMachO())
4647           TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4648         else
4649           TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4650         break;
4651       case llvm::Triple::GNU:
4652         TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4653         break;
4654       case llvm::Triple::Itanium:
4655         TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4656                                                                   Args);
4657         break;
4658       case llvm::Triple::MSVC:
4659       case llvm::Triple::UnknownEnvironment:
4660         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4661                 .startswith_lower("bfd"))
4662           TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4663               *this, Target, Args);
4664         else
4665           TC =
4666               llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4667         break;
4668       }
4669       break;
4670     case llvm::Triple::PS4:
4671       TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4672       break;
4673     case llvm::Triple::Contiki:
4674       TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4675       break;
4676     case llvm::Triple::Hurd:
4677       TC = llvm::make_unique<toolchains::Hurd>(*this, Target, Args);
4678       break;
4679     default:
4680       // Of these targets, Hexagon is the only one that might have
4681       // an OS of Linux, in which case it got handled above already.
4682       switch (Target.getArch()) {
4683       case llvm::Triple::tce:
4684         TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4685         break;
4686       case llvm::Triple::tcele:
4687         TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4688         break;
4689       case llvm::Triple::hexagon:
4690         TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4691                                                              Args);
4692         break;
4693       case llvm::Triple::lanai:
4694         TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4695         break;
4696       case llvm::Triple::xcore:
4697         TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4698         break;
4699       case llvm::Triple::wasm32:
4700       case llvm::Triple::wasm64:
4701         TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4702         break;
4703       case llvm::Triple::avr:
4704         TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4705         break;
4706       case llvm::Triple::msp430:
4707         TC =
4708             llvm::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4709         break;
4710       case llvm::Triple::riscv32:
4711       case llvm::Triple::riscv64:
4712         TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4713         break;
4714       default:
4715         if (Target.getVendor() == llvm::Triple::Myriad)
4716           TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4717                                                               Args);
4718         else if (toolchains::BareMetal::handlesTarget(Target))
4719           TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4720         else if (Target.isOSBinFormatELF())
4721           TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4722         else if (Target.isOSBinFormatMachO())
4723           TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4724         else
4725           TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4726       }
4727     }
4728   }
4729 
4730   // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
4731   // compiles always need two toolchains, the CUDA toolchain and the host
4732   // toolchain.  So the only valid way to create a CUDA toolchain is via
4733   // CreateOffloadingDeviceToolChains.
4734 
4735   return *TC;
4736 }
4737 
4738 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
4739   // Say "no" if there is not exactly one input of a type clang understands.
4740   if (JA.size() != 1 ||
4741       !types::isAcceptedByClang((*JA.input_begin())->getType()))
4742     return false;
4743 
4744   // And say "no" if this is not a kind of action clang understands.
4745   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4746       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4747     return false;
4748 
4749   return true;
4750 }
4751 
4752 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4753 /// grouped values as integers. Numbers which are not provided are set to 0.
4754 ///
4755 /// \return True if the entire string was parsed (9.2), or all groups were
4756 /// parsed (10.3.5extrastuff).
4757 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4758                                unsigned &Micro, bool &HadExtra) {
4759   HadExtra = false;
4760 
4761   Major = Minor = Micro = 0;
4762   if (Str.empty())
4763     return false;
4764 
4765   if (Str.consumeInteger(10, Major))
4766     return false;
4767   if (Str.empty())
4768     return true;
4769   if (Str[0] != '.')
4770     return false;
4771 
4772   Str = Str.drop_front(1);
4773 
4774   if (Str.consumeInteger(10, Minor))
4775     return false;
4776   if (Str.empty())
4777     return true;
4778   if (Str[0] != '.')
4779     return false;
4780   Str = Str.drop_front(1);
4781 
4782   if (Str.consumeInteger(10, Micro))
4783     return false;
4784   if (!Str.empty())
4785     HadExtra = true;
4786   return true;
4787 }
4788 
4789 /// Parse digits from a string \p Str and fulfill \p Digits with
4790 /// the parsed numbers. This method assumes that the max number of
4791 /// digits to look for is equal to Digits.size().
4792 ///
4793 /// \return True if the entire string was parsed and there are
4794 /// no extra characters remaining at the end.
4795 bool Driver::GetReleaseVersion(StringRef Str,
4796                                MutableArrayRef<unsigned> Digits) {
4797   if (Str.empty())
4798     return false;
4799 
4800   unsigned CurDigit = 0;
4801   while (CurDigit < Digits.size()) {
4802     unsigned Digit;
4803     if (Str.consumeInteger(10, Digit))
4804       return false;
4805     Digits[CurDigit] = Digit;
4806     if (Str.empty())
4807       return true;
4808     if (Str[0] != '.')
4809       return false;
4810     Str = Str.drop_front(1);
4811     CurDigit++;
4812   }
4813 
4814   // More digits than requested, bail out...
4815   return false;
4816 }
4817 
4818 std::pair<unsigned, unsigned>
4819 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
4820   unsigned IncludedFlagsBitmask = 0;
4821   unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4822 
4823   if (IsClCompatMode) {
4824     // Include CL and Core options.
4825     IncludedFlagsBitmask |= options::CLOption;
4826     IncludedFlagsBitmask |= options::CoreOption;
4827   } else {
4828     ExcludedFlagsBitmask |= options::CLOption;
4829   }
4830 
4831   return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4832 }
4833 
4834 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4835   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4836 }
4837