1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "InputInfo.h" 11 #include "ToolChains/AIX.h" 12 #include "ToolChains/AMDGPU.h" 13 #include "ToolChains/AVR.h" 14 #include "ToolChains/Ananas.h" 15 #include "ToolChains/BareMetal.h" 16 #include "ToolChains/Clang.h" 17 #include "ToolChains/CloudABI.h" 18 #include "ToolChains/Contiki.h" 19 #include "ToolChains/CrossWindows.h" 20 #include "ToolChains/Cuda.h" 21 #include "ToolChains/Darwin.h" 22 #include "ToolChains/DragonFly.h" 23 #include "ToolChains/FreeBSD.h" 24 #include "ToolChains/Fuchsia.h" 25 #include "ToolChains/Gnu.h" 26 #include "ToolChains/HIP.h" 27 #include "ToolChains/Haiku.h" 28 #include "ToolChains/Hexagon.h" 29 #include "ToolChains/Hurd.h" 30 #include "ToolChains/Lanai.h" 31 #include "ToolChains/Linux.h" 32 #include "ToolChains/MSP430.h" 33 #include "ToolChains/MSVC.h" 34 #include "ToolChains/MinGW.h" 35 #include "ToolChains/Minix.h" 36 #include "ToolChains/MipsLinux.h" 37 #include "ToolChains/Myriad.h" 38 #include "ToolChains/NaCl.h" 39 #include "ToolChains/NetBSD.h" 40 #include "ToolChains/OpenBSD.h" 41 #include "ToolChains/PS4CPU.h" 42 #include "ToolChains/PPCLinux.h" 43 #include "ToolChains/RISCVToolchain.h" 44 #include "ToolChains/Solaris.h" 45 #include "ToolChains/TCE.h" 46 #include "ToolChains/WebAssembly.h" 47 #include "ToolChains/XCore.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/Config/config.h" 50 #include "clang/Driver/Action.h" 51 #include "clang/Driver/Compilation.h" 52 #include "clang/Driver/DriverDiagnostic.h" 53 #include "clang/Driver/Job.h" 54 #include "clang/Driver/Options.h" 55 #include "clang/Driver/SanitizerArgs.h" 56 #include "clang/Driver/Tool.h" 57 #include "clang/Driver/ToolChain.h" 58 #include "llvm/ADT/ArrayRef.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SmallSet.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/ADT/StringSet.h" 63 #include "llvm/ADT/StringSwitch.h" 64 #include "llvm/Config/llvm-config.h" 65 #include "llvm/Option/Arg.h" 66 #include "llvm/Option/ArgList.h" 67 #include "llvm/Option/OptSpecifier.h" 68 #include "llvm/Option/OptTable.h" 69 #include "llvm/Option/Option.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/FileSystem.h" 73 #include "llvm/Support/FormatVariadic.h" 74 #include "llvm/Support/Path.h" 75 #include "llvm/Support/PrettyStackTrace.h" 76 #include "llvm/Support/Process.h" 77 #include "llvm/Support/Program.h" 78 #include "llvm/Support/StringSaver.h" 79 #include "llvm/Support/TargetRegistry.h" 80 #include "llvm/Support/VirtualFileSystem.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include <map> 83 #include <memory> 84 #include <utility> 85 #if LLVM_ON_UNIX 86 #include <unistd.h> // getpid 87 #include <sysexits.h> // EX_IOERR 88 #endif 89 90 using namespace clang::driver; 91 using namespace clang; 92 using namespace llvm::opt; 93 94 // static 95 std::string Driver::GetResourcesPath(StringRef BinaryPath, 96 StringRef CustomResourceDir) { 97 // Since the resource directory is embedded in the module hash, it's important 98 // that all places that need it call this function, so that they get the 99 // exact same string ("a/../b/" and "b/" get different hashes, for example). 100 101 // Dir is bin/ or lib/, depending on where BinaryPath is. 102 std::string Dir = llvm::sys::path::parent_path(BinaryPath); 103 104 SmallString<128> P(Dir); 105 if (CustomResourceDir != "") { 106 llvm::sys::path::append(P, CustomResourceDir); 107 } else { 108 // On Windows, libclang.dll is in bin/. 109 // On non-Windows, libclang.so/.dylib is in lib/. 110 // With a static-library build of libclang, LibClangPath will contain the 111 // path of the embedding binary, which for LLVM binaries will be in bin/. 112 // ../lib gets us to lib/ in both cases. 113 P = llvm::sys::path::parent_path(Dir); 114 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", 115 CLANG_VERSION_STRING); 116 } 117 118 return P.str(); 119 } 120 121 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 122 DiagnosticsEngine &Diags, 123 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 124 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), 125 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None), 126 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), 127 DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr), 128 CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr), 129 CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false), 130 CCLogDiagnostics(false), CCGenDiagnostics(false), 131 TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc), 132 CheckInputsExist(true), GenReproducer(false), 133 SuppressMissingInputWarning(false) { 134 135 // Provide a sane fallback if no VFS is specified. 136 if (!this->VFS) 137 this->VFS = llvm::vfs::getRealFileSystem(); 138 139 Name = llvm::sys::path::filename(ClangExecutable); 140 Dir = llvm::sys::path::parent_path(ClangExecutable); 141 InstalledDir = Dir; // Provide a sensible default installed dir. 142 143 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 144 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 145 #endif 146 #if defined(CLANG_CONFIG_FILE_USER_DIR) 147 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 148 #endif 149 150 // Compute the path to the resource directory. 151 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); 152 } 153 154 void Driver::ParseDriverMode(StringRef ProgramName, 155 ArrayRef<const char *> Args) { 156 if (ClangNameParts.isEmpty()) 157 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 158 setDriverModeFromOption(ClangNameParts.DriverMode); 159 160 for (const char *ArgPtr : Args) { 161 // Ignore nullptrs, they are the response file's EOL markers. 162 if (ArgPtr == nullptr) 163 continue; 164 const StringRef Arg = ArgPtr; 165 setDriverModeFromOption(Arg); 166 } 167 } 168 169 void Driver::setDriverModeFromOption(StringRef Opt) { 170 const std::string OptName = 171 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 172 if (!Opt.startswith(OptName)) 173 return; 174 StringRef Value = Opt.drop_front(OptName.size()); 175 176 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 177 .Case("gcc", GCCMode) 178 .Case("g++", GXXMode) 179 .Case("cpp", CPPMode) 180 .Case("cl", CLMode) 181 .Case("flang", FlangMode) 182 .Default(None)) 183 Mode = *M; 184 else 185 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 186 } 187 188 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 189 bool IsClCompatMode, 190 bool &ContainsError) { 191 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 192 ContainsError = false; 193 194 unsigned IncludedFlagsBitmask; 195 unsigned ExcludedFlagsBitmask; 196 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 197 getIncludeExcludeOptionFlagMasks(IsClCompatMode); 198 199 unsigned MissingArgIndex, MissingArgCount; 200 InputArgList Args = 201 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 202 IncludedFlagsBitmask, ExcludedFlagsBitmask); 203 204 // Check for missing argument error. 205 if (MissingArgCount) { 206 Diag(diag::err_drv_missing_argument) 207 << Args.getArgString(MissingArgIndex) << MissingArgCount; 208 ContainsError |= 209 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 210 SourceLocation()) > DiagnosticsEngine::Warning; 211 } 212 213 // Check for unsupported options. 214 for (const Arg *A : Args) { 215 if (A->getOption().hasFlag(options::Unsupported)) { 216 unsigned DiagID; 217 auto ArgString = A->getAsString(Args); 218 std::string Nearest; 219 if (getOpts().findNearest( 220 ArgString, Nearest, IncludedFlagsBitmask, 221 ExcludedFlagsBitmask | options::Unsupported) > 1) { 222 DiagID = diag::err_drv_unsupported_opt; 223 Diag(DiagID) << ArgString; 224 } else { 225 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 226 Diag(DiagID) << ArgString << Nearest; 227 } 228 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 229 DiagnosticsEngine::Warning; 230 continue; 231 } 232 233 // Warn about -mcpu= without an argument. 234 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 235 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 236 ContainsError |= Diags.getDiagnosticLevel( 237 diag::warn_drv_empty_joined_argument, 238 SourceLocation()) > DiagnosticsEngine::Warning; 239 } 240 } 241 242 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 243 unsigned DiagID; 244 auto ArgString = A->getAsString(Args); 245 std::string Nearest; 246 if (getOpts().findNearest( 247 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 248 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 249 : diag::err_drv_unknown_argument; 250 Diags.Report(DiagID) << ArgString; 251 } else { 252 DiagID = IsCLMode() 253 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 254 : diag::err_drv_unknown_argument_with_suggestion; 255 Diags.Report(DiagID) << ArgString << Nearest; 256 } 257 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 258 DiagnosticsEngine::Warning; 259 } 260 261 return Args; 262 } 263 264 // Determine which compilation mode we are in. We look for options which 265 // affect the phase, starting with the earliest phases, and record which 266 // option we used to determine the final phase. 267 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 268 Arg **FinalPhaseArg) const { 269 Arg *PhaseArg = nullptr; 270 phases::ID FinalPhase; 271 272 // -{E,EP,P,M,MM} only run the preprocessor. 273 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 274 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 275 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 276 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 277 FinalPhase = phases::Preprocess; 278 279 // --precompile only runs up to precompilation. 280 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 281 FinalPhase = phases::Precompile; 282 283 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 284 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 285 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 286 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 287 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 288 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 289 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 290 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 291 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || 292 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 293 FinalPhase = phases::Compile; 294 295 // clang interface stubs 296 } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) { 297 FinalPhase = phases::IfsMerge; 298 299 // -S only runs up to the backend. 300 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 301 FinalPhase = phases::Backend; 302 303 // -c compilation only runs up to the assembler. 304 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 305 FinalPhase = phases::Assemble; 306 307 // Otherwise do everything. 308 } else 309 FinalPhase = phases::Link; 310 311 if (FinalPhaseArg) 312 *FinalPhaseArg = PhaseArg; 313 314 return FinalPhase; 315 } 316 317 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, 318 StringRef Value, bool Claim = true) { 319 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 320 Args.getBaseArgs().MakeIndex(Value), Value.data()); 321 Args.AddSynthesizedArg(A); 322 if (Claim) 323 A->claim(); 324 return A; 325 } 326 327 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 328 const llvm::opt::OptTable &Opts = getOpts(); 329 DerivedArgList *DAL = new DerivedArgList(Args); 330 331 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 332 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 333 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 334 for (Arg *A : Args) { 335 // Unfortunately, we have to parse some forwarding options (-Xassembler, 336 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 337 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 338 339 // Rewrite linker options, to replace --no-demangle with a custom internal 340 // option. 341 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 342 A->getOption().matches(options::OPT_Xlinker)) && 343 A->containsValue("--no-demangle")) { 344 // Add the rewritten no-demangle argument. 345 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); 346 347 // Add the remaining values as Xlinker arguments. 348 for (StringRef Val : A->getValues()) 349 if (Val != "--no-demangle") 350 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); 351 352 continue; 353 } 354 355 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 356 // some build systems. We don't try to be complete here because we don't 357 // care to encourage this usage model. 358 if (A->getOption().matches(options::OPT_Wp_COMMA) && 359 (A->getValue(0) == StringRef("-MD") || 360 A->getValue(0) == StringRef("-MMD"))) { 361 // Rewrite to -MD/-MMD along with -MF. 362 if (A->getValue(0) == StringRef("-MD")) 363 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); 364 else 365 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); 366 if (A->getNumValues() == 2) 367 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); 368 continue; 369 } 370 371 // Rewrite reserved library names. 372 if (A->getOption().matches(options::OPT_l)) { 373 StringRef Value = A->getValue(); 374 375 // Rewrite unless -nostdlib is present. 376 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 377 Value == "stdc++") { 378 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); 379 continue; 380 } 381 382 // Rewrite unconditionally. 383 if (Value == "cc_kext") { 384 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); 385 continue; 386 } 387 } 388 389 // Pick up inputs via the -- option. 390 if (A->getOption().matches(options::OPT__DASH_DASH)) { 391 A->claim(); 392 for (StringRef Val : A->getValues()) 393 DAL->append(MakeInputArg(*DAL, Opts, Val, false)); 394 continue; 395 } 396 397 DAL->append(A); 398 } 399 400 // Enforce -static if -miamcu is present. 401 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 402 DAL->AddFlagArg(0, Opts.getOption(options::OPT_static)); 403 404 // Add a default value of -mlinker-version=, if one was given and the user 405 // didn't specify one. 406 #if defined(HOST_LINK_VERSION) 407 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 408 strlen(HOST_LINK_VERSION) > 0) { 409 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), 410 HOST_LINK_VERSION); 411 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 412 } 413 #endif 414 415 return DAL; 416 } 417 418 /// Compute target triple from args. 419 /// 420 /// This routine provides the logic to compute a target triple from various 421 /// args passed to the driver and the default triple string. 422 static llvm::Triple computeTargetTriple(const Driver &D, 423 StringRef TargetTriple, 424 const ArgList &Args, 425 StringRef DarwinArchName = "") { 426 // FIXME: Already done in Compilation *Driver::BuildCompilation 427 if (const Arg *A = Args.getLastArg(options::OPT_target)) 428 TargetTriple = A->getValue(); 429 430 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 431 432 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 433 // -gnu* only, and we can not change this, so we have to detect that case as 434 // being the Hurd OS. 435 if (TargetTriple.find("-unknown-gnu") != StringRef::npos || 436 TargetTriple.find("-pc-gnu") != StringRef::npos) 437 Target.setOSName("hurd"); 438 439 // Handle Apple-specific options available here. 440 if (Target.isOSBinFormatMachO()) { 441 // If an explicit Darwin arch name is given, that trumps all. 442 if (!DarwinArchName.empty()) { 443 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 444 return Target; 445 } 446 447 // Handle the Darwin '-arch' flag. 448 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 449 StringRef ArchName = A->getValue(); 450 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 451 } 452 } 453 454 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 455 // '-mbig-endian'/'-EB'. 456 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 457 options::OPT_mbig_endian)) { 458 if (A->getOption().matches(options::OPT_mlittle_endian)) { 459 llvm::Triple LE = Target.getLittleEndianArchVariant(); 460 if (LE.getArch() != llvm::Triple::UnknownArch) 461 Target = std::move(LE); 462 } else { 463 llvm::Triple BE = Target.getBigEndianArchVariant(); 464 if (BE.getArch() != llvm::Triple::UnknownArch) 465 Target = std::move(BE); 466 } 467 } 468 469 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 470 if (Target.getArch() == llvm::Triple::tce || 471 Target.getOS() == llvm::Triple::Minix) 472 return Target; 473 474 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 475 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 476 options::OPT_m32, options::OPT_m16); 477 if (A) { 478 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 479 480 if (A->getOption().matches(options::OPT_m64)) { 481 AT = Target.get64BitArchVariant().getArch(); 482 if (Target.getEnvironment() == llvm::Triple::GNUX32) 483 Target.setEnvironment(llvm::Triple::GNU); 484 } else if (A->getOption().matches(options::OPT_mx32) && 485 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 486 AT = llvm::Triple::x86_64; 487 Target.setEnvironment(llvm::Triple::GNUX32); 488 } else if (A->getOption().matches(options::OPT_m32)) { 489 AT = Target.get32BitArchVariant().getArch(); 490 if (Target.getEnvironment() == llvm::Triple::GNUX32) 491 Target.setEnvironment(llvm::Triple::GNU); 492 } else if (A->getOption().matches(options::OPT_m16) && 493 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 494 AT = llvm::Triple::x86; 495 Target.setEnvironment(llvm::Triple::CODE16); 496 } 497 498 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 499 Target.setArch(AT); 500 } 501 502 // Handle -miamcu flag. 503 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 504 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 505 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 506 << Target.str(); 507 508 if (A && !A->getOption().matches(options::OPT_m32)) 509 D.Diag(diag::err_drv_argument_not_allowed_with) 510 << "-miamcu" << A->getBaseArg().getAsString(Args); 511 512 Target.setArch(llvm::Triple::x86); 513 Target.setArchName("i586"); 514 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 515 Target.setEnvironmentName(""); 516 Target.setOS(llvm::Triple::ELFIAMCU); 517 Target.setVendor(llvm::Triple::UnknownVendor); 518 Target.setVendorName("intel"); 519 } 520 521 // If target is MIPS adjust the target triple 522 // accordingly to provided ABI name. 523 A = Args.getLastArg(options::OPT_mabi_EQ); 524 if (A && Target.isMIPS()) { 525 StringRef ABIName = A->getValue(); 526 if (ABIName == "32") { 527 Target = Target.get32BitArchVariant(); 528 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 529 Target.getEnvironment() == llvm::Triple::GNUABIN32) 530 Target.setEnvironment(llvm::Triple::GNU); 531 } else if (ABIName == "n32") { 532 Target = Target.get64BitArchVariant(); 533 if (Target.getEnvironment() == llvm::Triple::GNU || 534 Target.getEnvironment() == llvm::Triple::GNUABI64) 535 Target.setEnvironment(llvm::Triple::GNUABIN32); 536 } else if (ABIName == "64") { 537 Target = Target.get64BitArchVariant(); 538 if (Target.getEnvironment() == llvm::Triple::GNU || 539 Target.getEnvironment() == llvm::Triple::GNUABIN32) 540 Target.setEnvironment(llvm::Triple::GNUABI64); 541 } 542 } 543 544 return Target; 545 } 546 547 // Parse the LTO options and record the type of LTO compilation 548 // based on which -f(no-)?lto(=.*)? option occurs last. 549 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 550 LTOMode = LTOK_None; 551 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 552 options::OPT_fno_lto, false)) 553 return; 554 555 StringRef LTOName("full"); 556 557 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 558 if (A) 559 LTOName = A->getValue(); 560 561 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 562 .Case("full", LTOK_Full) 563 .Case("thin", LTOK_Thin) 564 .Default(LTOK_Unknown); 565 566 if (LTOMode == LTOK_Unknown) { 567 assert(A); 568 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 569 << A->getValue(); 570 } 571 } 572 573 /// Compute the desired OpenMP runtime from the flags provided. 574 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 575 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 576 577 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 578 if (A) 579 RuntimeName = A->getValue(); 580 581 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 582 .Case("libomp", OMPRT_OMP) 583 .Case("libgomp", OMPRT_GOMP) 584 .Case("libiomp5", OMPRT_IOMP5) 585 .Default(OMPRT_Unknown); 586 587 if (RT == OMPRT_Unknown) { 588 if (A) 589 Diag(diag::err_drv_unsupported_option_argument) 590 << A->getOption().getName() << A->getValue(); 591 else 592 // FIXME: We could use a nicer diagnostic here. 593 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 594 } 595 596 return RT; 597 } 598 599 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 600 InputList &Inputs) { 601 602 // 603 // CUDA/HIP 604 // 605 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 606 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 607 bool IsCuda = 608 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 609 return types::isCuda(I.first); 610 }); 611 bool IsHIP = 612 llvm::any_of(Inputs, 613 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 614 return types::isHIP(I.first); 615 }) || 616 C.getInputArgs().hasArg(options::OPT_hip_link); 617 if (IsCuda && IsHIP) { 618 Diag(clang::diag::err_drv_mix_cuda_hip); 619 return; 620 } 621 if (IsCuda) { 622 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 623 const llvm::Triple &HostTriple = HostTC->getTriple(); 624 StringRef DeviceTripleStr; 625 auto OFK = Action::OFK_Cuda; 626 DeviceTripleStr = 627 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; 628 llvm::Triple CudaTriple(DeviceTripleStr); 629 // Use the CUDA and host triples as the key into the ToolChains map, 630 // because the device toolchain we create depends on both. 631 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 632 if (!CudaTC) { 633 CudaTC = std::make_unique<toolchains::CudaToolChain>( 634 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); 635 } 636 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 637 } else if (IsHIP) { 638 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 639 const llvm::Triple &HostTriple = HostTC->getTriple(); 640 StringRef DeviceTripleStr; 641 auto OFK = Action::OFK_HIP; 642 DeviceTripleStr = "amdgcn-amd-amdhsa"; 643 llvm::Triple HIPTriple(DeviceTripleStr); 644 // Use the HIP and host triples as the key into the ToolChains map, 645 // because the device toolchain we create depends on both. 646 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; 647 if (!HIPTC) { 648 HIPTC = std::make_unique<toolchains::HIPToolChain>( 649 *this, HIPTriple, *HostTC, C.getInputArgs()); 650 } 651 C.addOffloadDeviceToolChain(HIPTC.get(), OFK); 652 } 653 654 // 655 // OpenMP 656 // 657 // We need to generate an OpenMP toolchain if the user specified targets with 658 // the -fopenmp-targets option. 659 if (Arg *OpenMPTargets = 660 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 661 if (OpenMPTargets->getNumValues()) { 662 // We expect that -fopenmp-targets is always used in conjunction with the 663 // option -fopenmp specifying a valid runtime with offloading support, 664 // i.e. libomp or libiomp. 665 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 666 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 667 options::OPT_fno_openmp, false); 668 if (HasValidOpenMPRuntime) { 669 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 670 HasValidOpenMPRuntime = 671 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 672 } 673 674 if (HasValidOpenMPRuntime) { 675 llvm::StringMap<const char *> FoundNormalizedTriples; 676 for (const char *Val : OpenMPTargets->getValues()) { 677 llvm::Triple TT(Val); 678 std::string NormalizedName = TT.normalize(); 679 680 // Make sure we don't have a duplicate triple. 681 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 682 if (Duplicate != FoundNormalizedTriples.end()) { 683 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 684 << Val << Duplicate->second; 685 continue; 686 } 687 688 // Store the current triple so that we can check for duplicates in the 689 // following iterations. 690 FoundNormalizedTriples[NormalizedName] = Val; 691 692 // If the specified target is invalid, emit a diagnostic. 693 if (TT.getArch() == llvm::Triple::UnknownArch) 694 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 695 else { 696 const ToolChain *TC; 697 // CUDA toolchains have to be selected differently. They pair host 698 // and device in their implementation. 699 if (TT.isNVPTX()) { 700 const ToolChain *HostTC = 701 C.getSingleOffloadToolChain<Action::OFK_Host>(); 702 assert(HostTC && "Host toolchain should be always defined."); 703 auto &CudaTC = 704 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 705 if (!CudaTC) 706 CudaTC = std::make_unique<toolchains::CudaToolChain>( 707 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 708 TC = CudaTC.get(); 709 } else 710 TC = &getToolChain(C.getInputArgs(), TT); 711 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 712 } 713 } 714 } else 715 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 716 } else 717 Diag(clang::diag::warn_drv_empty_joined_argument) 718 << OpenMPTargets->getAsString(C.getInputArgs()); 719 } 720 721 // 722 // TODO: Add support for other offloading programming models here. 723 // 724 } 725 726 /// Looks the given directories for the specified file. 727 /// 728 /// \param[out] FilePath File path, if the file was found. 729 /// \param[in] Dirs Directories used for the search. 730 /// \param[in] FileName Name of the file to search for. 731 /// \return True if file was found. 732 /// 733 /// Looks for file specified by FileName sequentially in directories specified 734 /// by Dirs. 735 /// 736 static bool searchForFile(SmallVectorImpl<char> &FilePath, 737 ArrayRef<std::string> Dirs, 738 StringRef FileName) { 739 SmallString<128> WPath; 740 for (const StringRef &Dir : Dirs) { 741 if (Dir.empty()) 742 continue; 743 WPath.clear(); 744 llvm::sys::path::append(WPath, Dir, FileName); 745 llvm::sys::path::native(WPath); 746 if (llvm::sys::fs::is_regular_file(WPath)) { 747 FilePath = std::move(WPath); 748 return true; 749 } 750 } 751 return false; 752 } 753 754 bool Driver::readConfigFile(StringRef FileName) { 755 // Try reading the given file. 756 SmallVector<const char *, 32> NewCfgArgs; 757 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 758 Diag(diag::err_drv_cannot_read_config_file) << FileName; 759 return true; 760 } 761 762 // Read options from config file. 763 llvm::SmallString<128> CfgFileName(FileName); 764 llvm::sys::path::native(CfgFileName); 765 ConfigFile = CfgFileName.str(); 766 bool ContainErrors; 767 CfgOptions = std::make_unique<InputArgList>( 768 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); 769 if (ContainErrors) { 770 CfgOptions.reset(); 771 return true; 772 } 773 774 if (CfgOptions->hasArg(options::OPT_config)) { 775 CfgOptions.reset(); 776 Diag(diag::err_drv_nested_config_file); 777 return true; 778 } 779 780 // Claim all arguments that come from a configuration file so that the driver 781 // does not warn on any that is unused. 782 for (Arg *A : *CfgOptions) 783 A->claim(); 784 return false; 785 } 786 787 bool Driver::loadConfigFile() { 788 std::string CfgFileName; 789 bool FileSpecifiedExplicitly = false; 790 791 // Process options that change search path for config files. 792 if (CLOptions) { 793 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 794 SmallString<128> CfgDir; 795 CfgDir.append( 796 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 797 if (!CfgDir.empty()) { 798 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 799 SystemConfigDir.clear(); 800 else 801 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 802 } 803 } 804 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 805 SmallString<128> CfgDir; 806 CfgDir.append( 807 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 808 if (!CfgDir.empty()) { 809 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 810 UserConfigDir.clear(); 811 else 812 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 813 } 814 } 815 } 816 817 // First try to find config file specified in command line. 818 if (CLOptions) { 819 std::vector<std::string> ConfigFiles = 820 CLOptions->getAllArgValues(options::OPT_config); 821 if (ConfigFiles.size() > 1) { 822 Diag(diag::err_drv_duplicate_config); 823 return true; 824 } 825 826 if (!ConfigFiles.empty()) { 827 CfgFileName = ConfigFiles.front(); 828 assert(!CfgFileName.empty()); 829 830 // If argument contains directory separator, treat it as a path to 831 // configuration file. 832 if (llvm::sys::path::has_parent_path(CfgFileName)) { 833 SmallString<128> CfgFilePath; 834 if (llvm::sys::path::is_relative(CfgFileName)) 835 llvm::sys::fs::current_path(CfgFilePath); 836 llvm::sys::path::append(CfgFilePath, CfgFileName); 837 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 838 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 839 return true; 840 } 841 return readConfigFile(CfgFilePath); 842 } 843 844 FileSpecifiedExplicitly = true; 845 } 846 } 847 848 // If config file is not specified explicitly, try to deduce configuration 849 // from executable name. For instance, an executable 'armv7l-clang' will 850 // search for config file 'armv7l-clang.cfg'. 851 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 852 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 853 854 if (CfgFileName.empty()) 855 return false; 856 857 // Determine architecture part of the file name, if it is present. 858 StringRef CfgFileArch = CfgFileName; 859 size_t ArchPrefixLen = CfgFileArch.find('-'); 860 if (ArchPrefixLen == StringRef::npos) 861 ArchPrefixLen = CfgFileArch.size(); 862 llvm::Triple CfgTriple; 863 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 864 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 865 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 866 ArchPrefixLen = 0; 867 868 if (!StringRef(CfgFileName).endswith(".cfg")) 869 CfgFileName += ".cfg"; 870 871 // If config file starts with architecture name and command line options 872 // redefine architecture (with options like -m32 -LE etc), try finding new 873 // config file with that architecture. 874 SmallString<128> FixedConfigFile; 875 size_t FixedArchPrefixLen = 0; 876 if (ArchPrefixLen) { 877 // Get architecture name from config file name like 'i386.cfg' or 878 // 'armv7l-clang.cfg'. 879 // Check if command line options changes effective triple. 880 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 881 CfgTriple.getTriple(), *CLOptions); 882 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 883 FixedConfigFile = EffectiveTriple.getArchName(); 884 FixedArchPrefixLen = FixedConfigFile.size(); 885 // Append the rest of original file name so that file name transforms 886 // like: i386-clang.cfg -> x86_64-clang.cfg. 887 if (ArchPrefixLen < CfgFileName.size()) 888 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 889 } 890 } 891 892 // Prepare list of directories where config file is searched for. 893 SmallVector<std::string, 3> CfgFileSearchDirs; 894 CfgFileSearchDirs.push_back(UserConfigDir); 895 CfgFileSearchDirs.push_back(SystemConfigDir); 896 CfgFileSearchDirs.push_back(Dir); 897 898 // Try to find config file. First try file with corrected architecture. 899 llvm::SmallString<128> CfgFilePath; 900 if (!FixedConfigFile.empty()) { 901 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 902 return readConfigFile(CfgFilePath); 903 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 904 FixedConfigFile.resize(FixedArchPrefixLen); 905 FixedConfigFile.append(".cfg"); 906 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 907 return readConfigFile(CfgFilePath); 908 } 909 910 // Then try original file name. 911 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 912 return readConfigFile(CfgFilePath); 913 914 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 915 if (!ClangNameParts.ModeSuffix.empty() && 916 !ClangNameParts.TargetPrefix.empty()) { 917 CfgFileName.assign(ClangNameParts.TargetPrefix); 918 CfgFileName.append(".cfg"); 919 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 920 return readConfigFile(CfgFilePath); 921 } 922 923 // Report error but only if config file was specified explicitly, by option 924 // --config. If it was deduced from executable name, it is not an error. 925 if (FileSpecifiedExplicitly) { 926 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 927 for (const std::string &SearchDir : CfgFileSearchDirs) 928 if (!SearchDir.empty()) 929 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 930 return true; 931 } 932 933 return false; 934 } 935 936 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 937 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 938 939 // FIXME: Handle environment options which affect driver behavior, somewhere 940 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 941 942 if (Optional<std::string> CompilerPathValue = 943 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 944 StringRef CompilerPath = *CompilerPathValue; 945 while (!CompilerPath.empty()) { 946 std::pair<StringRef, StringRef> Split = 947 CompilerPath.split(llvm::sys::EnvPathSeparator); 948 PrefixDirs.push_back(Split.first); 949 CompilerPath = Split.second; 950 } 951 } 952 953 // We look for the driver mode option early, because the mode can affect 954 // how other options are parsed. 955 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 956 957 // FIXME: What are we going to do with -V and -b? 958 959 // Arguments specified in command line. 960 bool ContainsError; 961 CLOptions = std::make_unique<InputArgList>( 962 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); 963 964 // Try parsing configuration file. 965 if (!ContainsError) 966 ContainsError = loadConfigFile(); 967 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 968 969 // All arguments, from both config file and command line. 970 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 971 : std::move(*CLOptions)); 972 973 // The args for config files or /clang: flags belong to different InputArgList 974 // objects than Args. This copies an Arg from one of those other InputArgLists 975 // to the ownership of Args. 976 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { 977 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 978 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), 979 Index, BaseArg); 980 Copy->getValues() = Opt->getValues(); 981 if (Opt->isClaimed()) 982 Copy->claim(); 983 Args.append(Copy); 984 }; 985 986 if (HasConfigFile) 987 for (auto *Opt : *CLOptions) { 988 if (Opt->getOption().matches(options::OPT_config)) 989 continue; 990 const Arg *BaseArg = &Opt->getBaseArg(); 991 if (BaseArg == Opt) 992 BaseArg = nullptr; 993 appendOneArg(Opt, BaseArg); 994 } 995 996 // In CL mode, look for any pass-through arguments 997 if (IsCLMode() && !ContainsError) { 998 SmallVector<const char *, 16> CLModePassThroughArgList; 999 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 1000 A->claim(); 1001 CLModePassThroughArgList.push_back(A->getValue()); 1002 } 1003 1004 if (!CLModePassThroughArgList.empty()) { 1005 // Parse any pass through args using default clang processing rather 1006 // than clang-cl processing. 1007 auto CLModePassThroughOptions = std::make_unique<InputArgList>( 1008 ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); 1009 1010 if (!ContainsError) 1011 for (auto *Opt : *CLModePassThroughOptions) { 1012 appendOneArg(Opt, nullptr); 1013 } 1014 } 1015 } 1016 1017 // Check for working directory option before accessing any files 1018 if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) 1019 if (VFS->setCurrentWorkingDirectory(WD->getValue())) 1020 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); 1021 1022 // FIXME: This stuff needs to go into the Compilation, not the driver. 1023 bool CCCPrintPhases; 1024 1025 // Silence driver warnings if requested 1026 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 1027 1028 // -no-canonical-prefixes is used very early in main. 1029 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1030 1031 // Ignore -pipe. 1032 Args.ClaimAllArgs(options::OPT_pipe); 1033 1034 // Extract -ccc args. 1035 // 1036 // FIXME: We need to figure out where this behavior should live. Most of it 1037 // should be outside in the client; the parts that aren't should have proper 1038 // options, either by introducing new ones or by overloading gcc ones like -V 1039 // or -b. 1040 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1041 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1042 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1043 CCCGenericGCCName = A->getValue(); 1044 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 1045 options::OPT_fno_crash_diagnostics, 1046 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 1047 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1048 // and getToolChain is const. 1049 if (IsCLMode()) { 1050 // clang-cl targets MSVC-style Win32. 1051 llvm::Triple T(TargetTriple); 1052 T.setOS(llvm::Triple::Win32); 1053 T.setVendor(llvm::Triple::PC); 1054 T.setEnvironment(llvm::Triple::MSVC); 1055 T.setObjectFormat(llvm::Triple::COFF); 1056 TargetTriple = T.str(); 1057 } 1058 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1059 TargetTriple = A->getValue(); 1060 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1061 Dir = InstalledDir = A->getValue(); 1062 for (const Arg *A : Args.filtered(options::OPT_B)) { 1063 A->claim(); 1064 PrefixDirs.push_back(A->getValue(0)); 1065 } 1066 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1067 SysRoot = A->getValue(); 1068 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1069 DyldPrefix = A->getValue(); 1070 1071 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1072 ResourceDir = A->getValue(); 1073 1074 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1075 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1076 .Case("cwd", SaveTempsCwd) 1077 .Case("obj", SaveTempsObj) 1078 .Default(SaveTempsCwd); 1079 } 1080 1081 setLTOMode(Args); 1082 1083 // Process -fembed-bitcode= flags. 1084 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1085 StringRef Name = A->getValue(); 1086 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1087 .Case("off", EmbedNone) 1088 .Case("all", EmbedBitcode) 1089 .Case("bitcode", EmbedBitcode) 1090 .Case("marker", EmbedMarker) 1091 .Default(~0U); 1092 if (Model == ~0U) { 1093 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1094 << Name; 1095 } else 1096 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1097 } 1098 1099 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1100 std::make_unique<InputArgList>(std::move(Args)); 1101 1102 // Perform the default argument translations. 1103 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1104 1105 // Owned by the host. 1106 const ToolChain &TC = getToolChain( 1107 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1108 1109 // The compilation takes ownership of Args. 1110 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1111 ContainsError); 1112 1113 if (!HandleImmediateArgs(*C)) 1114 return C; 1115 1116 // Construct the list of inputs. 1117 InputList Inputs; 1118 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1119 1120 // Populate the tool chains for the offloading devices, if any. 1121 CreateOffloadingDeviceToolChains(*C, Inputs); 1122 1123 // Construct the list of abstract actions to perform for this compilation. On 1124 // MachO targets this uses the driver-driver and universal actions. 1125 if (TC.getTriple().isOSBinFormatMachO()) 1126 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1127 else 1128 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1129 1130 if (CCCPrintPhases) { 1131 PrintActions(*C); 1132 return C; 1133 } 1134 1135 BuildJobs(*C); 1136 1137 return C; 1138 } 1139 1140 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1141 llvm::opt::ArgStringList ASL; 1142 for (const auto *A : Args) 1143 A->render(Args, ASL); 1144 1145 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1146 if (I != ASL.begin()) 1147 OS << ' '; 1148 Command::printArg(OS, *I, true); 1149 } 1150 OS << '\n'; 1151 } 1152 1153 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1154 SmallString<128> &CrashDiagDir) { 1155 using namespace llvm::sys; 1156 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1157 "Only knows about .crash files on Darwin"); 1158 1159 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1160 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1161 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1162 path::home_directory(CrashDiagDir); 1163 if (CrashDiagDir.startswith("/var/root")) 1164 CrashDiagDir = "/"; 1165 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1166 int PID = 1167 #if LLVM_ON_UNIX 1168 getpid(); 1169 #else 1170 0; 1171 #endif 1172 std::error_code EC; 1173 fs::file_status FileStatus; 1174 TimePoint<> LastAccessTime; 1175 SmallString<128> CrashFilePath; 1176 // Lookup the .crash files and get the one generated by a subprocess spawned 1177 // by this driver invocation. 1178 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1179 File != FileEnd && !EC; File.increment(EC)) { 1180 StringRef FileName = path::filename(File->path()); 1181 if (!FileName.startswith(Name)) 1182 continue; 1183 if (fs::status(File->path(), FileStatus)) 1184 continue; 1185 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1186 llvm::MemoryBuffer::getFile(File->path()); 1187 if (!CrashFile) 1188 continue; 1189 // The first line should start with "Process:", otherwise this isn't a real 1190 // .crash file. 1191 StringRef Data = CrashFile.get()->getBuffer(); 1192 if (!Data.startswith("Process:")) 1193 continue; 1194 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1195 size_t ParentProcPos = Data.find("Parent Process:"); 1196 if (ParentProcPos == StringRef::npos) 1197 continue; 1198 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1199 if (LineEnd == StringRef::npos) 1200 continue; 1201 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1202 int OpenBracket = -1, CloseBracket = -1; 1203 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1204 if (ParentProcess[i] == '[') 1205 OpenBracket = i; 1206 if (ParentProcess[i] == ']') 1207 CloseBracket = i; 1208 } 1209 // Extract the parent process PID from the .crash file and check whether 1210 // it matches this driver invocation pid. 1211 int CrashPID; 1212 if (OpenBracket < 0 || CloseBracket < 0 || 1213 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1214 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1215 continue; 1216 } 1217 1218 // Found a .crash file matching the driver pid. To avoid getting an older 1219 // and misleading crash file, continue looking for the most recent. 1220 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1221 // multiple crashes poiting to the same parent process. Since the driver 1222 // does not collect pid information for the dispatched invocation there's 1223 // currently no way to distinguish among them. 1224 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1225 if (FileAccessTime > LastAccessTime) { 1226 CrashFilePath.assign(File->path()); 1227 LastAccessTime = FileAccessTime; 1228 } 1229 } 1230 1231 // If found, copy it over to the location of other reproducer files. 1232 if (!CrashFilePath.empty()) { 1233 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1234 if (EC) 1235 return false; 1236 return true; 1237 } 1238 1239 return false; 1240 } 1241 1242 // When clang crashes, produce diagnostic information including the fully 1243 // preprocessed source file(s). Request that the developer attach the 1244 // diagnostic information to a bug report. 1245 void Driver::generateCompilationDiagnostics( 1246 Compilation &C, const Command &FailingCommand, 1247 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1248 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1249 return; 1250 1251 // Don't try to generate diagnostics for link or dsymutil jobs. 1252 if (FailingCommand.getCreator().isLinkJob() || 1253 FailingCommand.getCreator().isDsymutilJob()) 1254 return; 1255 1256 // Print the version of the compiler. 1257 PrintVersion(C, llvm::errs()); 1258 1259 Diag(clang::diag::note_drv_command_failed_diag_msg) 1260 << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " 1261 "crash backtrace, preprocessed source, and associated run script."; 1262 1263 // Suppress driver output and emit preprocessor output to temp file. 1264 Mode = CPPMode; 1265 CCGenDiagnostics = true; 1266 1267 // Save the original job command(s). 1268 Command Cmd = FailingCommand; 1269 1270 // Keep track of whether we produce any errors while trying to produce 1271 // preprocessed sources. 1272 DiagnosticErrorTrap Trap(Diags); 1273 1274 // Suppress tool output. 1275 C.initCompilationForDiagnostics(); 1276 1277 // Construct the list of inputs. 1278 InputList Inputs; 1279 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1280 1281 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1282 bool IgnoreInput = false; 1283 1284 // Ignore input from stdin or any inputs that cannot be preprocessed. 1285 // Check type first as not all linker inputs have a value. 1286 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1287 IgnoreInput = true; 1288 } else if (!strcmp(it->second->getValue(), "-")) { 1289 Diag(clang::diag::note_drv_command_failed_diag_msg) 1290 << "Error generating preprocessed source(s) - " 1291 "ignoring input from stdin."; 1292 IgnoreInput = true; 1293 } 1294 1295 if (IgnoreInput) { 1296 it = Inputs.erase(it); 1297 ie = Inputs.end(); 1298 } else { 1299 ++it; 1300 } 1301 } 1302 1303 if (Inputs.empty()) { 1304 Diag(clang::diag::note_drv_command_failed_diag_msg) 1305 << "Error generating preprocessed source(s) - " 1306 "no preprocessable inputs."; 1307 return; 1308 } 1309 1310 // Don't attempt to generate preprocessed files if multiple -arch options are 1311 // used, unless they're all duplicates. 1312 llvm::StringSet<> ArchNames; 1313 for (const Arg *A : C.getArgs()) { 1314 if (A->getOption().matches(options::OPT_arch)) { 1315 StringRef ArchName = A->getValue(); 1316 ArchNames.insert(ArchName); 1317 } 1318 } 1319 if (ArchNames.size() > 1) { 1320 Diag(clang::diag::note_drv_command_failed_diag_msg) 1321 << "Error generating preprocessed source(s) - cannot generate " 1322 "preprocessed source with multiple -arch options."; 1323 return; 1324 } 1325 1326 // Construct the list of abstract actions to perform for this compilation. On 1327 // Darwin OSes this uses the driver-driver and builds universal actions. 1328 const ToolChain &TC = C.getDefaultToolChain(); 1329 if (TC.getTriple().isOSBinFormatMachO()) 1330 BuildUniversalActions(C, TC, Inputs); 1331 else 1332 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1333 1334 BuildJobs(C); 1335 1336 // If there were errors building the compilation, quit now. 1337 if (Trap.hasErrorOccurred()) { 1338 Diag(clang::diag::note_drv_command_failed_diag_msg) 1339 << "Error generating preprocessed source(s)."; 1340 return; 1341 } 1342 1343 // Generate preprocessed output. 1344 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1345 C.ExecuteJobs(C.getJobs(), FailingCommands); 1346 1347 // If any of the preprocessing commands failed, clean up and exit. 1348 if (!FailingCommands.empty()) { 1349 Diag(clang::diag::note_drv_command_failed_diag_msg) 1350 << "Error generating preprocessed source(s)."; 1351 return; 1352 } 1353 1354 const ArgStringList &TempFiles = C.getTempFiles(); 1355 if (TempFiles.empty()) { 1356 Diag(clang::diag::note_drv_command_failed_diag_msg) 1357 << "Error generating preprocessed source(s)."; 1358 return; 1359 } 1360 1361 Diag(clang::diag::note_drv_command_failed_diag_msg) 1362 << "\n********************\n\n" 1363 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1364 "Preprocessed source(s) and associated run script(s) are located at:"; 1365 1366 SmallString<128> VFS; 1367 SmallString<128> ReproCrashFilename; 1368 for (const char *TempFile : TempFiles) { 1369 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1370 if (Report) 1371 Report->TemporaryFiles.push_back(TempFile); 1372 if (ReproCrashFilename.empty()) { 1373 ReproCrashFilename = TempFile; 1374 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1375 } 1376 if (StringRef(TempFile).endswith(".cache")) { 1377 // In some cases (modules) we'll dump extra data to help with reproducing 1378 // the crash into a directory next to the output. 1379 VFS = llvm::sys::path::filename(TempFile); 1380 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1381 } 1382 } 1383 1384 // Assume associated files are based off of the first temporary file. 1385 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1386 1387 llvm::SmallString<128> Script(CrashInfo.Filename); 1388 llvm::sys::path::replace_extension(Script, "sh"); 1389 std::error_code EC; 1390 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); 1391 if (EC) { 1392 Diag(clang::diag::note_drv_command_failed_diag_msg) 1393 << "Error generating run script: " << Script << " " << EC.message(); 1394 } else { 1395 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1396 << "# Driver args: "; 1397 printArgList(ScriptOS, C.getInputArgs()); 1398 ScriptOS << "# Original command: "; 1399 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1400 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1401 if (!AdditionalInformation.empty()) 1402 ScriptOS << "\n# Additional information: " << AdditionalInformation 1403 << "\n"; 1404 if (Report) 1405 Report->TemporaryFiles.push_back(Script.str()); 1406 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1407 } 1408 1409 // On darwin, provide information about the .crash diagnostic report. 1410 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1411 SmallString<128> CrashDiagDir; 1412 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1413 Diag(clang::diag::note_drv_command_failed_diag_msg) 1414 << ReproCrashFilename.str(); 1415 } else { // Suggest a directory for the user to look for .crash files. 1416 llvm::sys::path::append(CrashDiagDir, Name); 1417 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1418 Diag(clang::diag::note_drv_command_failed_diag_msg) 1419 << "Crash backtrace is located in"; 1420 Diag(clang::diag::note_drv_command_failed_diag_msg) 1421 << CrashDiagDir.str(); 1422 Diag(clang::diag::note_drv_command_failed_diag_msg) 1423 << "(choose the .crash file that corresponds to your crash)"; 1424 } 1425 } 1426 1427 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1428 options::OPT_frewrite_map_file_EQ)) 1429 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1430 1431 Diag(clang::diag::note_drv_command_failed_diag_msg) 1432 << "\n\n********************"; 1433 } 1434 1435 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1436 // Since commandLineFitsWithinSystemLimits() may underestimate system's 1437 // capacity if the tool does not support response files, there is a chance/ 1438 // that things will just work without a response file, so we silently just 1439 // skip it. 1440 if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || 1441 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 1442 Cmd.getArguments())) 1443 return; 1444 1445 std::string TmpName = GetTemporaryPath("response", "txt"); 1446 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1447 } 1448 1449 int Driver::ExecuteCompilation( 1450 Compilation &C, 1451 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1452 // Just print if -### was present. 1453 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1454 C.getJobs().Print(llvm::errs(), "\n", true); 1455 return 0; 1456 } 1457 1458 // If there were errors building the compilation, quit now. 1459 if (Diags.hasErrorOccurred()) 1460 return 1; 1461 1462 // Set up response file names for each command, if necessary 1463 for (auto &Job : C.getJobs()) 1464 setUpResponseFiles(C, Job); 1465 1466 C.ExecuteJobs(C.getJobs(), FailingCommands); 1467 1468 // If the command succeeded, we are done. 1469 if (FailingCommands.empty()) 1470 return 0; 1471 1472 // Otherwise, remove result files and print extra information about abnormal 1473 // failures. 1474 int Res = 0; 1475 for (const auto &CmdPair : FailingCommands) { 1476 int CommandRes = CmdPair.first; 1477 const Command *FailingCommand = CmdPair.second; 1478 1479 // Remove result files if we're not saving temps. 1480 if (!isSaveTempsEnabled()) { 1481 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1482 C.CleanupFileMap(C.getResultFiles(), JA, true); 1483 1484 // Failure result files are valid unless we crashed. 1485 if (CommandRes < 0) 1486 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1487 } 1488 1489 #if LLVM_ON_UNIX 1490 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code 1491 // for SIGPIPE. Do not print diagnostics for this case. 1492 if (CommandRes == EX_IOERR) { 1493 Res = CommandRes; 1494 continue; 1495 } 1496 #endif 1497 1498 // Print extra information about abnormal failures, if possible. 1499 // 1500 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1501 // status was 1, assume the command failed normally. In particular, if it 1502 // was the compiler then assume it gave a reasonable error code. Failures 1503 // in other tools are less common, and they generally have worse 1504 // diagnostics, so always print the diagnostic there. 1505 const Tool &FailingTool = FailingCommand->getCreator(); 1506 1507 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 1508 // FIXME: See FIXME above regarding result code interpretation. 1509 if (CommandRes < 0) 1510 Diag(clang::diag::err_drv_command_signalled) 1511 << FailingTool.getShortName(); 1512 else 1513 Diag(clang::diag::err_drv_command_failed) 1514 << FailingTool.getShortName() << CommandRes; 1515 } 1516 } 1517 return Res; 1518 } 1519 1520 void Driver::PrintHelp(bool ShowHidden) const { 1521 unsigned IncludedFlagsBitmask; 1522 unsigned ExcludedFlagsBitmask; 1523 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1524 getIncludeExcludeOptionFlagMasks(IsCLMode()); 1525 1526 ExcludedFlagsBitmask |= options::NoDriverOption; 1527 if (!ShowHidden) 1528 ExcludedFlagsBitmask |= HelpHidden; 1529 1530 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 1531 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 1532 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1533 /*ShowAllAliases=*/false); 1534 } 1535 1536 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1537 // FIXME: The following handlers should use a callback mechanism, we don't 1538 // know what the client would like to do. 1539 OS << getClangFullVersion() << '\n'; 1540 const ToolChain &TC = C.getDefaultToolChain(); 1541 OS << "Target: " << TC.getTripleString() << '\n'; 1542 1543 // Print the threading model. 1544 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1545 // Don't print if the ToolChain would have barfed on it already 1546 if (TC.isThreadModelSupported(A->getValue())) 1547 OS << "Thread model: " << A->getValue(); 1548 } else 1549 OS << "Thread model: " << TC.getThreadModel(); 1550 OS << '\n'; 1551 1552 // Print out the install directory. 1553 OS << "InstalledDir: " << InstalledDir << '\n'; 1554 1555 // If configuration file was used, print its path. 1556 if (!ConfigFile.empty()) 1557 OS << "Configuration file: " << ConfigFile << '\n'; 1558 } 1559 1560 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1561 /// option. 1562 static void PrintDiagnosticCategories(raw_ostream &OS) { 1563 // Skip the empty category. 1564 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1565 ++i) 1566 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1567 } 1568 1569 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1570 if (PassedFlags == "") 1571 return; 1572 // Print out all options that start with a given argument. This is used for 1573 // shell autocompletion. 1574 std::vector<std::string> SuggestedCompletions; 1575 std::vector<std::string> Flags; 1576 1577 unsigned short DisableFlags = 1578 options::NoDriverOption | options::Unsupported | options::Ignored; 1579 1580 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 1581 // because the latter indicates that the user put space before pushing tab 1582 // which should end up in a file completion. 1583 const bool HasSpace = PassedFlags.endswith(","); 1584 1585 // Parse PassedFlags by "," as all the command-line flags are passed to this 1586 // function separated by "," 1587 StringRef TargetFlags = PassedFlags; 1588 while (TargetFlags != "") { 1589 StringRef CurFlag; 1590 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1591 Flags.push_back(std::string(CurFlag)); 1592 } 1593 1594 // We want to show cc1-only options only when clang is invoked with -cc1 or 1595 // -Xclang. 1596 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 1597 DisableFlags &= ~options::NoDriverOption; 1598 1599 const llvm::opt::OptTable &Opts = getOpts(); 1600 StringRef Cur; 1601 Cur = Flags.at(Flags.size() - 1); 1602 StringRef Prev; 1603 if (Flags.size() >= 2) { 1604 Prev = Flags.at(Flags.size() - 2); 1605 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); 1606 } 1607 1608 if (SuggestedCompletions.empty()) 1609 SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); 1610 1611 // If Flags were empty, it means the user typed `clang [tab]` where we should 1612 // list all possible flags. If there was no value completion and the user 1613 // pressed tab after a space, we should fall back to a file completion. 1614 // We're printing a newline to be consistent with what we print at the end of 1615 // this function. 1616 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 1617 llvm::outs() << '\n'; 1618 return; 1619 } 1620 1621 // When flag ends with '=' and there was no value completion, return empty 1622 // string and fall back to the file autocompletion. 1623 if (SuggestedCompletions.empty() && !Cur.endswith("=")) { 1624 // If the flag is in the form of "--autocomplete=-foo", 1625 // we were requested to print out all option names that start with "-foo". 1626 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1627 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); 1628 1629 // We have to query the -W flags manually as they're not in the OptTable. 1630 // TODO: Find a good way to add them to OptTable instead and them remove 1631 // this code. 1632 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1633 if (S.startswith(Cur)) 1634 SuggestedCompletions.push_back(S); 1635 } 1636 1637 // Sort the autocomplete candidates so that shells print them out in a 1638 // deterministic order. We could sort in any way, but we chose 1639 // case-insensitive sorting for consistency with the -help option 1640 // which prints out options in the case-insensitive alphabetical order. 1641 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 1642 if (int X = A.compare_lower(B)) 1643 return X < 0; 1644 return A.compare(B) > 0; 1645 }); 1646 1647 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1648 } 1649 1650 bool Driver::HandleImmediateArgs(const Compilation &C) { 1651 // The order these options are handled in gcc is all over the place, but we 1652 // don't expect inconsistencies w.r.t. that to matter in practice. 1653 1654 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1655 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1656 return false; 1657 } 1658 1659 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1660 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1661 // return an answer which matches our definition of __VERSION__. 1662 llvm::outs() << CLANG_VERSION_STRING << "\n"; 1663 return false; 1664 } 1665 1666 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1667 PrintDiagnosticCategories(llvm::outs()); 1668 return false; 1669 } 1670 1671 if (C.getArgs().hasArg(options::OPT_help) || 1672 C.getArgs().hasArg(options::OPT__help_hidden)) { 1673 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1674 return false; 1675 } 1676 1677 if (C.getArgs().hasArg(options::OPT__version)) { 1678 // Follow gcc behavior and use stdout for --version and stderr for -v. 1679 PrintVersion(C, llvm::outs()); 1680 return false; 1681 } 1682 1683 if (C.getArgs().hasArg(options::OPT_v) || 1684 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 1685 C.getArgs().hasArg(options::OPT_print_supported_cpus)) { 1686 PrintVersion(C, llvm::errs()); 1687 SuppressMissingInputWarning = true; 1688 } 1689 1690 if (C.getArgs().hasArg(options::OPT_v)) { 1691 if (!SystemConfigDir.empty()) 1692 llvm::errs() << "System configuration file directory: " 1693 << SystemConfigDir << "\n"; 1694 if (!UserConfigDir.empty()) 1695 llvm::errs() << "User configuration file directory: " 1696 << UserConfigDir << "\n"; 1697 } 1698 1699 const ToolChain &TC = C.getDefaultToolChain(); 1700 1701 if (C.getArgs().hasArg(options::OPT_v)) 1702 TC.printVerboseInfo(llvm::errs()); 1703 1704 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1705 llvm::outs() << ResourceDir << '\n'; 1706 return false; 1707 } 1708 1709 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1710 llvm::outs() << "programs: ="; 1711 bool separator = false; 1712 for (const std::string &Path : TC.getProgramPaths()) { 1713 if (separator) 1714 llvm::outs() << llvm::sys::EnvPathSeparator; 1715 llvm::outs() << Path; 1716 separator = true; 1717 } 1718 llvm::outs() << "\n"; 1719 llvm::outs() << "libraries: =" << ResourceDir; 1720 1721 StringRef sysroot = C.getSysRoot(); 1722 1723 for (const std::string &Path : TC.getFilePaths()) { 1724 // Always print a separator. ResourceDir was the first item shown. 1725 llvm::outs() << llvm::sys::EnvPathSeparator; 1726 // Interpretation of leading '=' is needed only for NetBSD. 1727 if (Path[0] == '=') 1728 llvm::outs() << sysroot << Path.substr(1); 1729 else 1730 llvm::outs() << Path; 1731 } 1732 llvm::outs() << "\n"; 1733 return false; 1734 } 1735 1736 // FIXME: The following handlers should use a callback mechanism, we don't 1737 // know what the client would like to do. 1738 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1739 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1740 return false; 1741 } 1742 1743 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1744 StringRef ProgName = A->getValue(); 1745 1746 // Null program name cannot have a path. 1747 if (! ProgName.empty()) 1748 llvm::outs() << GetProgramPath(ProgName, TC); 1749 1750 llvm::outs() << "\n"; 1751 return false; 1752 } 1753 1754 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1755 StringRef PassedFlags = A->getValue(); 1756 HandleAutocompletions(PassedFlags); 1757 return false; 1758 } 1759 1760 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1761 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1762 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1763 RegisterEffectiveTriple TripleRAII(TC, Triple); 1764 switch (RLT) { 1765 case ToolChain::RLT_CompilerRT: 1766 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1767 break; 1768 case ToolChain::RLT_Libgcc: 1769 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1770 break; 1771 } 1772 return false; 1773 } 1774 1775 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1776 for (const Multilib &Multilib : TC.getMultilibs()) 1777 llvm::outs() << Multilib << "\n"; 1778 return false; 1779 } 1780 1781 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1782 const Multilib &Multilib = TC.getMultilib(); 1783 if (Multilib.gccSuffix().empty()) 1784 llvm::outs() << ".\n"; 1785 else { 1786 StringRef Suffix(Multilib.gccSuffix()); 1787 assert(Suffix.front() == '/'); 1788 llvm::outs() << Suffix.substr(1) << "\n"; 1789 } 1790 return false; 1791 } 1792 1793 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 1794 llvm::outs() << TC.getTripleString() << "\n"; 1795 return false; 1796 } 1797 1798 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 1799 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1800 llvm::outs() << Triple.getTriple() << "\n"; 1801 return false; 1802 } 1803 1804 return true; 1805 } 1806 1807 enum { 1808 TopLevelAction = 0, 1809 HeadSibAction = 1, 1810 OtherSibAction = 2, 1811 }; 1812 1813 // Display an action graph human-readably. Action A is the "sink" node 1814 // and latest-occuring action. Traversal is in pre-order, visiting the 1815 // inputs to each action before printing the action itself. 1816 static unsigned PrintActions1(const Compilation &C, Action *A, 1817 std::map<Action *, unsigned> &Ids, 1818 Twine Indent = {}, int Kind = TopLevelAction) { 1819 if (Ids.count(A)) // A was already visited. 1820 return Ids[A]; 1821 1822 std::string str; 1823 llvm::raw_string_ostream os(str); 1824 1825 auto getSibIndent = [](int K) -> Twine { 1826 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; 1827 }; 1828 1829 Twine SibIndent = Indent + getSibIndent(Kind); 1830 int SibKind = HeadSibAction; 1831 os << Action::getClassName(A->getKind()) << ", "; 1832 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1833 os << "\"" << IA->getInputArg().getValue() << "\""; 1834 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1835 os << '"' << BIA->getArchName() << '"' << ", {" 1836 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; 1837 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1838 bool IsFirst = true; 1839 OA->doOnEachDependence( 1840 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1841 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1842 // sm_35 this will generate: 1843 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1844 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1845 if (!IsFirst) 1846 os << ", "; 1847 os << '"'; 1848 if (TC) 1849 os << A->getOffloadingKindPrefix(); 1850 else 1851 os << "host"; 1852 os << " ("; 1853 os << TC->getTriple().normalize(); 1854 1855 if (BoundArch) 1856 os << ":" << BoundArch; 1857 os << ")"; 1858 os << '"'; 1859 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; 1860 IsFirst = false; 1861 SibKind = OtherSibAction; 1862 }); 1863 } else { 1864 const ActionList *AL = &A->getInputs(); 1865 1866 if (AL->size()) { 1867 const char *Prefix = "{"; 1868 for (Action *PreRequisite : *AL) { 1869 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); 1870 Prefix = ", "; 1871 SibKind = OtherSibAction; 1872 } 1873 os << "}"; 1874 } else 1875 os << "{}"; 1876 } 1877 1878 // Append offload info for all options other than the offloading action 1879 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1880 std::string offload_str; 1881 llvm::raw_string_ostream offload_os(offload_str); 1882 if (!isa<OffloadAction>(A)) { 1883 auto S = A->getOffloadingKindPrefix(); 1884 if (!S.empty()) { 1885 offload_os << ", (" << S; 1886 if (A->getOffloadingArch()) 1887 offload_os << ", " << A->getOffloadingArch(); 1888 offload_os << ")"; 1889 } 1890 } 1891 1892 auto getSelfIndent = [](int K) -> Twine { 1893 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; 1894 }; 1895 1896 unsigned Id = Ids.size(); 1897 Ids[A] = Id; 1898 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " 1899 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1900 1901 return Id; 1902 } 1903 1904 // Print the action graphs in a compilation C. 1905 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1906 void Driver::PrintActions(const Compilation &C) const { 1907 std::map<Action *, unsigned> Ids; 1908 for (Action *A : C.getActions()) 1909 PrintActions1(C, A, Ids); 1910 } 1911 1912 /// Check whether the given input tree contains any compilation or 1913 /// assembly actions. 1914 static bool ContainsCompileOrAssembleAction(const Action *A) { 1915 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1916 isa<AssembleJobAction>(A)) 1917 return true; 1918 1919 for (const Action *Input : A->inputs()) 1920 if (ContainsCompileOrAssembleAction(Input)) 1921 return true; 1922 1923 return false; 1924 } 1925 1926 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1927 const InputList &BAInputs) const { 1928 DerivedArgList &Args = C.getArgs(); 1929 ActionList &Actions = C.getActions(); 1930 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 1931 // Collect the list of architectures. Duplicates are allowed, but should only 1932 // be handled once (in the order seen). 1933 llvm::StringSet<> ArchNames; 1934 SmallVector<const char *, 4> Archs; 1935 for (Arg *A : Args) { 1936 if (A->getOption().matches(options::OPT_arch)) { 1937 // Validate the option here; we don't save the type here because its 1938 // particular spelling may participate in other driver choices. 1939 llvm::Triple::ArchType Arch = 1940 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 1941 if (Arch == llvm::Triple::UnknownArch) { 1942 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 1943 continue; 1944 } 1945 1946 A->claim(); 1947 if (ArchNames.insert(A->getValue()).second) 1948 Archs.push_back(A->getValue()); 1949 } 1950 } 1951 1952 // When there is no explicit arch for this platform, make sure we still bind 1953 // the architecture (to the default) so that -Xarch_ is handled correctly. 1954 if (!Archs.size()) 1955 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 1956 1957 ActionList SingleActions; 1958 BuildActions(C, Args, BAInputs, SingleActions); 1959 1960 // Add in arch bindings for every top level action, as well as lipo and 1961 // dsymutil steps if needed. 1962 for (Action* Act : SingleActions) { 1963 // Make sure we can lipo this kind of output. If not (and it is an actual 1964 // output) then we disallow, since we can't create an output file with the 1965 // right name without overwriting it. We could remove this oddity by just 1966 // changing the output names to include the arch, which would also fix 1967 // -save-temps. Compatibility wins for now. 1968 1969 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 1970 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 1971 << types::getTypeName(Act->getType()); 1972 1973 ActionList Inputs; 1974 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 1975 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 1976 1977 // Lipo if necessary, we do it this way because we need to set the arch flag 1978 // so that -Xarch_ gets overwritten. 1979 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 1980 Actions.append(Inputs.begin(), Inputs.end()); 1981 else 1982 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 1983 1984 // Handle debug info queries. 1985 Arg *A = Args.getLastArg(options::OPT_g_Group); 1986 if (A && !A->getOption().matches(options::OPT_g0) && 1987 !A->getOption().matches(options::OPT_gstabs) && 1988 ContainsCompileOrAssembleAction(Actions.back())) { 1989 1990 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 1991 // have a compile input. We need to run 'dsymutil' ourselves in such cases 1992 // because the debug info will refer to a temporary object file which 1993 // will be removed at the end of the compilation process. 1994 if (Act->getType() == types::TY_Image) { 1995 ActionList Inputs; 1996 Inputs.push_back(Actions.back()); 1997 Actions.pop_back(); 1998 Actions.push_back( 1999 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 2000 } 2001 2002 // Verify the debug info output. 2003 if (Args.hasArg(options::OPT_verify_debug_info)) { 2004 Action* LastAction = Actions.back(); 2005 Actions.pop_back(); 2006 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 2007 LastAction, types::TY_Nothing)); 2008 } 2009 } 2010 } 2011 } 2012 2013 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 2014 types::ID Ty, bool TypoCorrect) const { 2015 if (!getCheckInputsExist()) 2016 return true; 2017 2018 // stdin always exists. 2019 if (Value == "-") 2020 return true; 2021 2022 if (getVFS().exists(Value)) 2023 return true; 2024 2025 if (IsCLMode()) { 2026 if (!llvm::sys::path::is_absolute(Twine(Value)) && 2027 llvm::sys::Process::FindInEnvPath("LIB", Value)) 2028 return true; 2029 2030 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 2031 // Arguments to the /link flag might cause the linker to search for object 2032 // and library files in paths we don't know about. Don't error in such 2033 // cases. 2034 return true; 2035 } 2036 } 2037 2038 if (TypoCorrect) { 2039 // Check if the filename is a typo for an option flag. OptTable thinks 2040 // that all args that are not known options and that start with / are 2041 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2042 // the option `/diagnostics:caret` than a reference to a file in the root 2043 // directory. 2044 unsigned IncludedFlagsBitmask; 2045 unsigned ExcludedFlagsBitmask; 2046 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 2047 getIncludeExcludeOptionFlagMasks(IsCLMode()); 2048 std::string Nearest; 2049 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, 2050 ExcludedFlagsBitmask) <= 1) { 2051 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2052 << Value << Nearest; 2053 return false; 2054 } 2055 } 2056 2057 Diag(clang::diag::err_drv_no_such_file) << Value; 2058 return false; 2059 } 2060 2061 // Construct a the list of inputs and their types. 2062 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2063 InputList &Inputs) const { 2064 const llvm::opt::OptTable &Opts = getOpts(); 2065 // Track the current user specified (-x) input. We also explicitly track the 2066 // argument used to set the type; we only want to claim the type when we 2067 // actually use it, so we warn about unused -x arguments. 2068 types::ID InputType = types::TY_Nothing; 2069 Arg *InputTypeArg = nullptr; 2070 2071 // The last /TC or /TP option sets the input type to C or C++ globally. 2072 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2073 options::OPT__SLASH_TP)) { 2074 InputTypeArg = TCTP; 2075 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2076 ? types::TY_C 2077 : types::TY_CXX; 2078 2079 Arg *Previous = nullptr; 2080 bool ShowNote = false; 2081 for (Arg *A : 2082 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2083 if (Previous) { 2084 Diag(clang::diag::warn_drv_overriding_flag_option) 2085 << Previous->getSpelling() << A->getSpelling(); 2086 ShowNote = true; 2087 } 2088 Previous = A; 2089 } 2090 if (ShowNote) 2091 Diag(clang::diag::note_drv_t_option_is_global); 2092 2093 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 2094 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 2095 } 2096 2097 for (Arg *A : Args) { 2098 if (A->getOption().getKind() == Option::InputClass) { 2099 const char *Value = A->getValue(); 2100 types::ID Ty = types::TY_INVALID; 2101 2102 // Infer the input type if necessary. 2103 if (InputType == types::TY_Nothing) { 2104 // If there was an explicit arg for this, claim it. 2105 if (InputTypeArg) 2106 InputTypeArg->claim(); 2107 2108 // stdin must be handled specially. 2109 if (memcmp(Value, "-", 2) == 0) { 2110 // If running with -E, treat as a C input (this changes the builtin 2111 // macros, for example). This may be overridden by -ObjC below. 2112 // 2113 // Otherwise emit an error but still use a valid type to avoid 2114 // spurious errors (e.g., no inputs). 2115 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2116 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2117 : clang::diag::err_drv_unknown_stdin_type); 2118 Ty = types::TY_C; 2119 } else { 2120 // Otherwise lookup by extension. 2121 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2122 // clang-cl /E, or Object otherwise. 2123 // We use a host hook here because Darwin at least has its own 2124 // idea of what .s is. 2125 if (const char *Ext = strrchr(Value, '.')) 2126 Ty = TC.LookupTypeForExtension(Ext + 1); 2127 2128 if (Ty == types::TY_INVALID) { 2129 if (CCCIsCPP()) 2130 Ty = types::TY_C; 2131 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) 2132 Ty = types::TY_CXX; 2133 else 2134 Ty = types::TY_Object; 2135 } 2136 2137 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2138 // should autodetect some input files as C++ for g++ compatibility. 2139 if (CCCIsCXX()) { 2140 types::ID OldTy = Ty; 2141 Ty = types::lookupCXXTypeForCType(Ty); 2142 2143 if (Ty != OldTy) 2144 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2145 << getTypeName(OldTy) << getTypeName(Ty); 2146 } 2147 2148 // If running with -fthinlto-index=, extensions that normally identify 2149 // native object files actually identify LLVM bitcode files. 2150 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && 2151 Ty == types::TY_Object) 2152 Ty = types::TY_LLVM_BC; 2153 } 2154 2155 // -ObjC and -ObjC++ override the default language, but only for "source 2156 // files". We just treat everything that isn't a linker input as a 2157 // source file. 2158 // 2159 // FIXME: Clean this up if we move the phase sequence into the type. 2160 if (Ty != types::TY_Object) { 2161 if (Args.hasArg(options::OPT_ObjC)) 2162 Ty = types::TY_ObjC; 2163 else if (Args.hasArg(options::OPT_ObjCXX)) 2164 Ty = types::TY_ObjCXX; 2165 } 2166 } else { 2167 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 2168 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 2169 // If emulating cl.exe, make sure that /TC and /TP don't affect input 2170 // object files. 2171 const char *Ext = strrchr(Value, '.'); 2172 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 2173 Ty = types::TY_Object; 2174 } 2175 if (Ty == types::TY_INVALID) { 2176 Ty = InputType; 2177 InputTypeArg->claim(); 2178 } 2179 } 2180 2181 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 2182 Inputs.push_back(std::make_pair(Ty, A)); 2183 2184 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 2185 StringRef Value = A->getValue(); 2186 if (DiagnoseInputExistence(Args, Value, types::TY_C, 2187 /*TypoCorrect=*/false)) { 2188 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2189 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 2190 } 2191 A->claim(); 2192 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 2193 StringRef Value = A->getValue(); 2194 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 2195 /*TypoCorrect=*/false)) { 2196 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2197 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 2198 } 2199 A->claim(); 2200 } else if (A->getOption().hasFlag(options::LinkerInput)) { 2201 // Just treat as object type, we could make a special type for this if 2202 // necessary. 2203 Inputs.push_back(std::make_pair(types::TY_Object, A)); 2204 2205 } else if (A->getOption().matches(options::OPT_x)) { 2206 InputTypeArg = A; 2207 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 2208 A->claim(); 2209 2210 // Follow gcc behavior and treat as linker input for invalid -x 2211 // options. Its not clear why we shouldn't just revert to unknown; but 2212 // this isn't very important, we might as well be bug compatible. 2213 if (!InputType) { 2214 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2215 InputType = types::TY_Object; 2216 } 2217 } else if (A->getOption().getID() == options::OPT_U) { 2218 assert(A->getNumValues() == 1 && "The /U option has one value."); 2219 StringRef Val = A->getValue(0); 2220 if (Val.find_first_of("/\\") != StringRef::npos) { 2221 // Warn about e.g. "/Users/me/myfile.c". 2222 Diag(diag::warn_slash_u_filename) << Val; 2223 Diag(diag::note_use_dashdash); 2224 } 2225 } 2226 } 2227 if (CCCIsCPP() && Inputs.empty()) { 2228 // If called as standalone preprocessor, stdin is processed 2229 // if no other input is present. 2230 Arg *A = MakeInputArg(Args, Opts, "-"); 2231 Inputs.push_back(std::make_pair(types::TY_C, A)); 2232 } 2233 } 2234 2235 namespace { 2236 /// Provides a convenient interface for different programming models to generate 2237 /// the required device actions. 2238 class OffloadingActionBuilder final { 2239 /// Flag used to trace errors in the builder. 2240 bool IsValid = false; 2241 2242 /// The compilation that is using this builder. 2243 Compilation &C; 2244 2245 /// Map between an input argument and the offload kinds used to process it. 2246 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2247 2248 /// Builder interface. It doesn't build anything or keep any state. 2249 class DeviceActionBuilder { 2250 public: 2251 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; 2252 2253 enum ActionBuilderReturnCode { 2254 // The builder acted successfully on the current action. 2255 ABRT_Success, 2256 // The builder didn't have to act on the current action. 2257 ABRT_Inactive, 2258 // The builder was successful and requested the host action to not be 2259 // generated. 2260 ABRT_Ignore_Host, 2261 }; 2262 2263 protected: 2264 /// Compilation associated with this builder. 2265 Compilation &C; 2266 2267 /// Tool chains associated with this builder. The same programming 2268 /// model may have associated one or more tool chains. 2269 SmallVector<const ToolChain *, 2> ToolChains; 2270 2271 /// The derived arguments associated with this builder. 2272 DerivedArgList &Args; 2273 2274 /// The inputs associated with this builder. 2275 const Driver::InputList &Inputs; 2276 2277 /// The associated offload kind. 2278 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2279 2280 public: 2281 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2282 const Driver::InputList &Inputs, 2283 Action::OffloadKind AssociatedOffloadKind) 2284 : C(C), Args(Args), Inputs(Inputs), 2285 AssociatedOffloadKind(AssociatedOffloadKind) {} 2286 virtual ~DeviceActionBuilder() {} 2287 2288 /// Fill up the array \a DA with all the device dependences that should be 2289 /// added to the provided host action \a HostAction. By default it is 2290 /// inactive. 2291 virtual ActionBuilderReturnCode 2292 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2293 phases::ID CurPhase, phases::ID FinalPhase, 2294 PhasesTy &Phases) { 2295 return ABRT_Inactive; 2296 } 2297 2298 /// Update the state to include the provided host action \a HostAction as a 2299 /// dependency of the current device action. By default it is inactive. 2300 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2301 return ABRT_Inactive; 2302 } 2303 2304 /// Append top level actions generated by the builder. 2305 virtual void appendTopLevelActions(ActionList &AL) {} 2306 2307 /// Append linker actions generated by the builder. 2308 virtual void appendLinkActions(ActionList &AL) {} 2309 2310 /// Append linker actions generated by the builder. 2311 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2312 2313 /// Initialize the builder. Return true if any initialization errors are 2314 /// found. 2315 virtual bool initialize() { return false; } 2316 2317 /// Return true if the builder can use bundling/unbundling. 2318 virtual bool canUseBundlerUnbundler() const { return false; } 2319 2320 /// Return true if this builder is valid. We have a valid builder if we have 2321 /// associated device tool chains. 2322 bool isValid() { return !ToolChains.empty(); } 2323 2324 /// Return the associated offload kind. 2325 Action::OffloadKind getAssociatedOffloadKind() { 2326 return AssociatedOffloadKind; 2327 } 2328 }; 2329 2330 /// Base class for CUDA/HIP action builder. It injects device code in 2331 /// the host backend action. 2332 class CudaActionBuilderBase : public DeviceActionBuilder { 2333 protected: 2334 /// Flags to signal if the user requested host-only or device-only 2335 /// compilation. 2336 bool CompileHostOnly = false; 2337 bool CompileDeviceOnly = false; 2338 bool EmitLLVM = false; 2339 bool EmitAsm = false; 2340 2341 /// List of GPU architectures to use in this compilation. 2342 SmallVector<CudaArch, 4> GpuArchList; 2343 2344 /// The CUDA actions for the current input. 2345 ActionList CudaDeviceActions; 2346 2347 /// The CUDA fat binary if it was generated for the current input. 2348 Action *CudaFatBinary = nullptr; 2349 2350 /// Flag that is set to true if this builder acted on the current input. 2351 bool IsActive = false; 2352 2353 /// Flag for -fgpu-rdc. 2354 bool Relocatable = false; 2355 2356 /// Default GPU architecture if there's no one specified. 2357 CudaArch DefaultCudaArch = CudaArch::UNKNOWN; 2358 2359 public: 2360 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 2361 const Driver::InputList &Inputs, 2362 Action::OffloadKind OFKind) 2363 : DeviceActionBuilder(C, Args, Inputs, OFKind) {} 2364 2365 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2366 // While generating code for CUDA, we only depend on the host input action 2367 // to trigger the creation of all the CUDA device actions. 2368 2369 // If we are dealing with an input action, replicate it for each GPU 2370 // architecture. If we are in host-only mode we return 'success' so that 2371 // the host uses the CUDA offload kind. 2372 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2373 assert(!GpuArchList.empty() && 2374 "We should have at least one GPU architecture."); 2375 2376 // If the host input is not CUDA or HIP, we don't need to bother about 2377 // this input. 2378 if (IA->getType() != types::TY_CUDA && 2379 IA->getType() != types::TY_HIP) { 2380 // The builder will ignore this input. 2381 IsActive = false; 2382 return ABRT_Inactive; 2383 } 2384 2385 // Set the flag to true, so that the builder acts on the current input. 2386 IsActive = true; 2387 2388 if (CompileHostOnly) 2389 return ABRT_Success; 2390 2391 // Replicate inputs for each GPU architecture. 2392 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 2393 : types::TY_CUDA_DEVICE; 2394 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2395 CudaDeviceActions.push_back( 2396 C.MakeAction<InputAction>(IA->getInputArg(), Ty)); 2397 } 2398 2399 return ABRT_Success; 2400 } 2401 2402 // If this is an unbundling action use it as is for each CUDA toolchain. 2403 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2404 2405 // If -fgpu-rdc is disabled, should not unbundle since there is no 2406 // device code to link. 2407 if (!Relocatable) 2408 return ABRT_Inactive; 2409 2410 CudaDeviceActions.clear(); 2411 auto *IA = cast<InputAction>(UA->getInputs().back()); 2412 std::string FileName = IA->getInputArg().getAsString(Args); 2413 // Check if the type of the file is the same as the action. Do not 2414 // unbundle it if it is not. Do not unbundle .so files, for example, 2415 // which are not object files. 2416 if (IA->getType() == types::TY_Object && 2417 (!llvm::sys::path::has_extension(FileName) || 2418 types::lookupTypeForExtension( 2419 llvm::sys::path::extension(FileName).drop_front()) != 2420 types::TY_Object)) 2421 return ABRT_Inactive; 2422 2423 for (auto Arch : GpuArchList) { 2424 CudaDeviceActions.push_back(UA); 2425 UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch), 2426 AssociatedOffloadKind); 2427 } 2428 return ABRT_Success; 2429 } 2430 2431 return IsActive ? ABRT_Success : ABRT_Inactive; 2432 } 2433 2434 void appendTopLevelActions(ActionList &AL) override { 2435 // Utility to append actions to the top level list. 2436 auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { 2437 OffloadAction::DeviceDependences Dep; 2438 Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), 2439 AssociatedOffloadKind); 2440 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2441 }; 2442 2443 // If we have a fat binary, add it to the list. 2444 if (CudaFatBinary) { 2445 AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); 2446 CudaDeviceActions.clear(); 2447 CudaFatBinary = nullptr; 2448 return; 2449 } 2450 2451 if (CudaDeviceActions.empty()) 2452 return; 2453 2454 // If we have CUDA actions at this point, that's because we have a have 2455 // partial compilation, so we should have an action for each GPU 2456 // architecture. 2457 assert(CudaDeviceActions.size() == GpuArchList.size() && 2458 "Expecting one action per GPU architecture."); 2459 assert(ToolChains.size() == 1 && 2460 "Expecting to have a sing CUDA toolchain."); 2461 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2462 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2463 2464 CudaDeviceActions.clear(); 2465 } 2466 2467 bool initialize() override { 2468 assert(AssociatedOffloadKind == Action::OFK_Cuda || 2469 AssociatedOffloadKind == Action::OFK_HIP); 2470 2471 // We don't need to support CUDA. 2472 if (AssociatedOffloadKind == Action::OFK_Cuda && 2473 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 2474 return false; 2475 2476 // We don't need to support HIP. 2477 if (AssociatedOffloadKind == Action::OFK_HIP && 2478 !C.hasOffloadToolChain<Action::OFK_HIP>()) 2479 return false; 2480 2481 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 2482 options::OPT_fno_gpu_rdc, /*Default=*/false); 2483 2484 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2485 assert(HostTC && "No toolchain for host compilation."); 2486 if (HostTC->getTriple().isNVPTX() || 2487 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 2488 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 2489 // an error and abort pipeline construction early so we don't trip 2490 // asserts that assume device-side compilation. 2491 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 2492 << HostTC->getTriple().getArchName(); 2493 return true; 2494 } 2495 2496 ToolChains.push_back( 2497 AssociatedOffloadKind == Action::OFK_Cuda 2498 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 2499 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 2500 2501 Arg *PartialCompilationArg = Args.getLastArg( 2502 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2503 options::OPT_cuda_compile_host_device); 2504 CompileHostOnly = PartialCompilationArg && 2505 PartialCompilationArg->getOption().matches( 2506 options::OPT_cuda_host_only); 2507 CompileDeviceOnly = PartialCompilationArg && 2508 PartialCompilationArg->getOption().matches( 2509 options::OPT_cuda_device_only); 2510 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); 2511 EmitAsm = Args.getLastArg(options::OPT_S); 2512 2513 // Collect all cuda_gpu_arch parameters, removing duplicates. 2514 std::set<CudaArch> GpuArchs; 2515 bool Error = false; 2516 for (Arg *A : Args) { 2517 if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || 2518 A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) 2519 continue; 2520 A->claim(); 2521 2522 const StringRef ArchStr = A->getValue(); 2523 if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && 2524 ArchStr == "all") { 2525 GpuArchs.clear(); 2526 continue; 2527 } 2528 CudaArch Arch = StringToCudaArch(ArchStr); 2529 if (Arch == CudaArch::UNKNOWN) { 2530 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2531 Error = true; 2532 } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) 2533 GpuArchs.insert(Arch); 2534 else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) 2535 GpuArchs.erase(Arch); 2536 else 2537 llvm_unreachable("Unexpected option."); 2538 } 2539 2540 // Collect list of GPUs remaining in the set. 2541 for (CudaArch Arch : GpuArchs) 2542 GpuArchList.push_back(Arch); 2543 2544 // Default to sm_20 which is the lowest common denominator for 2545 // supported GPUs. sm_20 code should work correctly, if 2546 // suboptimally, on all newer GPUs. 2547 if (GpuArchList.empty()) 2548 GpuArchList.push_back(DefaultCudaArch); 2549 2550 return Error; 2551 } 2552 }; 2553 2554 /// \brief CUDA action builder. It injects device code in the host backend 2555 /// action. 2556 class CudaActionBuilder final : public CudaActionBuilderBase { 2557 public: 2558 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2559 const Driver::InputList &Inputs) 2560 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { 2561 DefaultCudaArch = CudaArch::SM_20; 2562 } 2563 2564 ActionBuilderReturnCode 2565 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2566 phases::ID CurPhase, phases::ID FinalPhase, 2567 PhasesTy &Phases) override { 2568 if (!IsActive) 2569 return ABRT_Inactive; 2570 2571 // If we don't have more CUDA actions, we don't have any dependences to 2572 // create for the host. 2573 if (CudaDeviceActions.empty()) 2574 return ABRT_Success; 2575 2576 assert(CudaDeviceActions.size() == GpuArchList.size() && 2577 "Expecting one action per GPU architecture."); 2578 assert(!CompileHostOnly && 2579 "Not expecting CUDA actions in host-only compilation."); 2580 2581 // If we are generating code for the device or we are in a backend phase, 2582 // we attempt to generate the fat binary. We compile each arch to ptx and 2583 // assemble to cubin, then feed the cubin *and* the ptx into a device 2584 // "link" action, which uses fatbinary to combine these cubins into one 2585 // fatbin. The fatbin is then an input to the host action if not in 2586 // device-only mode. 2587 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2588 ActionList DeviceActions; 2589 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2590 // Produce the device action from the current phase up to the assemble 2591 // phase. 2592 for (auto Ph : Phases) { 2593 // Skip the phases that were already dealt with. 2594 if (Ph < CurPhase) 2595 continue; 2596 // We have to be consistent with the host final phase. 2597 if (Ph > FinalPhase) 2598 break; 2599 2600 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2601 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2602 2603 if (Ph == phases::Assemble) 2604 break; 2605 } 2606 2607 // If we didn't reach the assemble phase, we can't generate the fat 2608 // binary. We don't need to generate the fat binary if we are not in 2609 // device-only mode. 2610 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2611 CompileDeviceOnly) 2612 continue; 2613 2614 Action *AssembleAction = CudaDeviceActions[I]; 2615 assert(AssembleAction->getType() == types::TY_Object); 2616 assert(AssembleAction->getInputs().size() == 1); 2617 2618 Action *BackendAction = AssembleAction->getInputs()[0]; 2619 assert(BackendAction->getType() == types::TY_PP_Asm); 2620 2621 for (auto &A : {AssembleAction, BackendAction}) { 2622 OffloadAction::DeviceDependences DDep; 2623 DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), 2624 Action::OFK_Cuda); 2625 DeviceActions.push_back( 2626 C.MakeAction<OffloadAction>(DDep, A->getType())); 2627 } 2628 } 2629 2630 // We generate the fat binary if we have device input actions. 2631 if (!DeviceActions.empty()) { 2632 CudaFatBinary = 2633 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2634 2635 if (!CompileDeviceOnly) { 2636 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2637 Action::OFK_Cuda); 2638 // Clear the fat binary, it is already a dependence to an host 2639 // action. 2640 CudaFatBinary = nullptr; 2641 } 2642 2643 // Remove the CUDA actions as they are already connected to an host 2644 // action or fat binary. 2645 CudaDeviceActions.clear(); 2646 } 2647 2648 // We avoid creating host action in device-only mode. 2649 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2650 } else if (CurPhase > phases::Backend) { 2651 // If we are past the backend phase and still have a device action, we 2652 // don't have to do anything as this action is already a device 2653 // top-level action. 2654 return ABRT_Success; 2655 } 2656 2657 assert(CurPhase < phases::Backend && "Generating single CUDA " 2658 "instructions should only occur " 2659 "before the backend phase!"); 2660 2661 // By default, we produce an action for each device arch. 2662 for (Action *&A : CudaDeviceActions) 2663 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2664 2665 return ABRT_Success; 2666 } 2667 }; 2668 /// \brief HIP action builder. It injects device code in the host backend 2669 /// action. 2670 class HIPActionBuilder final : public CudaActionBuilderBase { 2671 /// The linker inputs obtained for each device arch. 2672 SmallVector<ActionList, 8> DeviceLinkerInputs; 2673 2674 public: 2675 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 2676 const Driver::InputList &Inputs) 2677 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) { 2678 DefaultCudaArch = CudaArch::GFX803; 2679 } 2680 2681 bool canUseBundlerUnbundler() const override { return true; } 2682 2683 ActionBuilderReturnCode 2684 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2685 phases::ID CurPhase, phases::ID FinalPhase, 2686 PhasesTy &Phases) override { 2687 // amdgcn does not support linking of object files, therefore we skip 2688 // backend and assemble phases to output LLVM IR. Except for generating 2689 // non-relocatable device coee, where we generate fat binary for device 2690 // code and pass to host in Backend phase. 2691 if (CudaDeviceActions.empty() || 2692 (CurPhase == phases::Backend && Relocatable) || 2693 CurPhase == phases::Assemble) 2694 return ABRT_Success; 2695 2696 assert(((CurPhase == phases::Link && Relocatable) || 2697 CudaDeviceActions.size() == GpuArchList.size()) && 2698 "Expecting one action per GPU architecture."); 2699 assert(!CompileHostOnly && 2700 "Not expecting CUDA actions in host-only compilation."); 2701 2702 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM && 2703 !EmitAsm) { 2704 // If we are in backend phase, we attempt to generate the fat binary. 2705 // We compile each arch to IR and use a link action to generate code 2706 // object containing ISA. Then we use a special "link" action to create 2707 // a fat binary containing all the code objects for different GPU's. 2708 // The fat binary is then an input to the host action. 2709 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2710 // Create a link action to link device IR with device library 2711 // and generate ISA. 2712 ActionList AL; 2713 AL.push_back(CudaDeviceActions[I]); 2714 CudaDeviceActions[I] = 2715 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 2716 2717 // OffloadingActionBuilder propagates device arch until an offload 2718 // action. Since the next action for creating fatbin does 2719 // not have device arch, whereas the above link action and its input 2720 // have device arch, an offload action is needed to stop the null 2721 // device arch of the next action being propagated to the above link 2722 // action. 2723 OffloadAction::DeviceDependences DDep; 2724 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), 2725 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2726 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 2727 DDep, CudaDeviceActions[I]->getType()); 2728 } 2729 // Create HIP fat binary with a special "link" action. 2730 CudaFatBinary = 2731 C.MakeAction<LinkJobAction>(CudaDeviceActions, 2732 types::TY_HIP_FATBIN); 2733 2734 if (!CompileDeviceOnly) { 2735 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2736 AssociatedOffloadKind); 2737 // Clear the fat binary, it is already a dependence to an host 2738 // action. 2739 CudaFatBinary = nullptr; 2740 } 2741 2742 // Remove the CUDA actions as they are already connected to an host 2743 // action or fat binary. 2744 CudaDeviceActions.clear(); 2745 2746 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2747 } else if (CurPhase == phases::Link) { 2748 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 2749 // This happens to each device action originated from each input file. 2750 // Later on, device actions in DeviceLinkerInputs are used to create 2751 // device link actions in appendLinkDependences and the created device 2752 // link actions are passed to the offload action as device dependence. 2753 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 2754 auto LI = DeviceLinkerInputs.begin(); 2755 for (auto *A : CudaDeviceActions) { 2756 LI->push_back(A); 2757 ++LI; 2758 } 2759 2760 // We will pass the device action as a host dependence, so we don't 2761 // need to do anything else with them. 2762 CudaDeviceActions.clear(); 2763 return ABRT_Success; 2764 } 2765 2766 // By default, we produce an action for each device arch. 2767 for (Action *&A : CudaDeviceActions) 2768 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 2769 AssociatedOffloadKind); 2770 2771 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host 2772 : ABRT_Success; 2773 } 2774 2775 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2776 // Append a new link action for each device. 2777 unsigned I = 0; 2778 for (auto &LI : DeviceLinkerInputs) { 2779 auto *DeviceLinkAction = 2780 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2781 DA.add(*DeviceLinkAction, *ToolChains[0], 2782 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2783 ++I; 2784 } 2785 } 2786 }; 2787 2788 /// OpenMP action builder. The host bitcode is passed to the device frontend 2789 /// and all the device linked images are passed to the host link phase. 2790 class OpenMPActionBuilder final : public DeviceActionBuilder { 2791 /// The OpenMP actions for the current input. 2792 ActionList OpenMPDeviceActions; 2793 2794 /// The linker inputs obtained for each toolchain. 2795 SmallVector<ActionList, 8> DeviceLinkerInputs; 2796 2797 public: 2798 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2799 const Driver::InputList &Inputs) 2800 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2801 2802 ActionBuilderReturnCode 2803 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2804 phases::ID CurPhase, phases::ID FinalPhase, 2805 PhasesTy &Phases) override { 2806 if (OpenMPDeviceActions.empty()) 2807 return ABRT_Inactive; 2808 2809 // We should always have an action for each input. 2810 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2811 "Number of OpenMP actions and toolchains do not match."); 2812 2813 // The host only depends on device action in the linking phase, when all 2814 // the device images have to be embedded in the host image. 2815 if (CurPhase == phases::Link) { 2816 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2817 "Toolchains and linker inputs sizes do not match."); 2818 auto LI = DeviceLinkerInputs.begin(); 2819 for (auto *A : OpenMPDeviceActions) { 2820 LI->push_back(A); 2821 ++LI; 2822 } 2823 2824 // We passed the device action as a host dependence, so we don't need to 2825 // do anything else with them. 2826 OpenMPDeviceActions.clear(); 2827 return ABRT_Success; 2828 } 2829 2830 // By default, we produce an action for each device arch. 2831 for (Action *&A : OpenMPDeviceActions) 2832 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2833 2834 return ABRT_Success; 2835 } 2836 2837 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2838 2839 // If this is an input action replicate it for each OpenMP toolchain. 2840 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2841 OpenMPDeviceActions.clear(); 2842 for (unsigned I = 0; I < ToolChains.size(); ++I) 2843 OpenMPDeviceActions.push_back( 2844 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 2845 return ABRT_Success; 2846 } 2847 2848 // If this is an unbundling action use it as is for each OpenMP toolchain. 2849 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2850 OpenMPDeviceActions.clear(); 2851 auto *IA = cast<InputAction>(UA->getInputs().back()); 2852 std::string FileName = IA->getInputArg().getAsString(Args); 2853 // Check if the type of the file is the same as the action. Do not 2854 // unbundle it if it is not. Do not unbundle .so files, for example, 2855 // which are not object files. 2856 if (IA->getType() == types::TY_Object && 2857 (!llvm::sys::path::has_extension(FileName) || 2858 types::lookupTypeForExtension( 2859 llvm::sys::path::extension(FileName).drop_front()) != 2860 types::TY_Object)) 2861 return ABRT_Inactive; 2862 for (unsigned I = 0; I < ToolChains.size(); ++I) { 2863 OpenMPDeviceActions.push_back(UA); 2864 UA->registerDependentActionInfo( 2865 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 2866 } 2867 return ABRT_Success; 2868 } 2869 2870 // When generating code for OpenMP we use the host compile phase result as 2871 // a dependence to the device compile phase so that it can learn what 2872 // declarations should be emitted. However, this is not the only use for 2873 // the host action, so we prevent it from being collapsed. 2874 if (isa<CompileJobAction>(HostAction)) { 2875 HostAction->setCannotBeCollapsedWithNextDependentAction(); 2876 assert(ToolChains.size() == OpenMPDeviceActions.size() && 2877 "Toolchains and device action sizes do not match."); 2878 OffloadAction::HostDependence HDep( 2879 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2880 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2881 auto TC = ToolChains.begin(); 2882 for (Action *&A : OpenMPDeviceActions) { 2883 assert(isa<CompileJobAction>(A)); 2884 OffloadAction::DeviceDependences DDep; 2885 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2886 A = C.MakeAction<OffloadAction>(HDep, DDep); 2887 ++TC; 2888 } 2889 } 2890 return ABRT_Success; 2891 } 2892 2893 void appendTopLevelActions(ActionList &AL) override { 2894 if (OpenMPDeviceActions.empty()) 2895 return; 2896 2897 // We should always have an action for each input. 2898 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2899 "Number of OpenMP actions and toolchains do not match."); 2900 2901 // Append all device actions followed by the proper offload action. 2902 auto TI = ToolChains.begin(); 2903 for (auto *A : OpenMPDeviceActions) { 2904 OffloadAction::DeviceDependences Dep; 2905 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2906 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2907 ++TI; 2908 } 2909 // We no longer need the action stored in this builder. 2910 OpenMPDeviceActions.clear(); 2911 } 2912 2913 void appendLinkActions(ActionList &AL) override { 2914 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2915 "Toolchains and linker inputs sizes do not match."); 2916 2917 // Append a new link action for each device. 2918 auto TC = ToolChains.begin(); 2919 for (auto &LI : DeviceLinkerInputs) { 2920 auto *DeviceLinkAction = 2921 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2922 OffloadAction::DeviceDependences DeviceLinkDeps; 2923 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 2924 Action::OFK_OpenMP); 2925 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps, 2926 DeviceLinkAction->getType())); 2927 ++TC; 2928 } 2929 DeviceLinkerInputs.clear(); 2930 } 2931 2932 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} 2933 2934 bool initialize() override { 2935 // Get the OpenMP toolchains. If we don't get any, the action builder will 2936 // know there is nothing to do related to OpenMP offloading. 2937 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 2938 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 2939 ++TI) 2940 ToolChains.push_back(TI->second); 2941 2942 DeviceLinkerInputs.resize(ToolChains.size()); 2943 return false; 2944 } 2945 2946 bool canUseBundlerUnbundler() const override { 2947 // OpenMP should use bundled files whenever possible. 2948 return true; 2949 } 2950 }; 2951 2952 /// 2953 /// TODO: Add the implementation for other specialized builders here. 2954 /// 2955 2956 /// Specialized builders being used by this offloading action builder. 2957 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 2958 2959 /// Flag set to true if all valid builders allow file bundling/unbundling. 2960 bool CanUseBundler; 2961 2962 public: 2963 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 2964 const Driver::InputList &Inputs) 2965 : C(C) { 2966 // Create a specialized builder for each device toolchain. 2967 2968 IsValid = true; 2969 2970 // Create a specialized builder for CUDA. 2971 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 2972 2973 // Create a specialized builder for HIP. 2974 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 2975 2976 // Create a specialized builder for OpenMP. 2977 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 2978 2979 // 2980 // TODO: Build other specialized builders here. 2981 // 2982 2983 // Initialize all the builders, keeping track of errors. If all valid 2984 // builders agree that we can use bundling, set the flag to true. 2985 unsigned ValidBuilders = 0u; 2986 unsigned ValidBuildersSupportingBundling = 0u; 2987 for (auto *SB : SpecializedBuilders) { 2988 IsValid = IsValid && !SB->initialize(); 2989 2990 // Update the counters if the builder is valid. 2991 if (SB->isValid()) { 2992 ++ValidBuilders; 2993 if (SB->canUseBundlerUnbundler()) 2994 ++ValidBuildersSupportingBundling; 2995 } 2996 } 2997 CanUseBundler = 2998 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 2999 } 3000 3001 ~OffloadingActionBuilder() { 3002 for (auto *SB : SpecializedBuilders) 3003 delete SB; 3004 } 3005 3006 /// Generate an action that adds device dependences (if any) to a host action. 3007 /// If no device dependence actions exist, just return the host action \a 3008 /// HostAction. If an error is found or if no builder requires the host action 3009 /// to be generated, return nullptr. 3010 Action * 3011 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 3012 phases::ID CurPhase, phases::ID FinalPhase, 3013 DeviceActionBuilder::PhasesTy &Phases) { 3014 if (!IsValid) 3015 return nullptr; 3016 3017 if (SpecializedBuilders.empty()) 3018 return HostAction; 3019 3020 assert(HostAction && "Invalid host action!"); 3021 3022 OffloadAction::DeviceDependences DDeps; 3023 // Check if all the programming models agree we should not emit the host 3024 // action. Also, keep track of the offloading kinds employed. 3025 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3026 unsigned InactiveBuilders = 0u; 3027 unsigned IgnoringBuilders = 0u; 3028 for (auto *SB : SpecializedBuilders) { 3029 if (!SB->isValid()) { 3030 ++InactiveBuilders; 3031 continue; 3032 } 3033 3034 auto RetCode = 3035 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 3036 3037 // If the builder explicitly says the host action should be ignored, 3038 // we need to increment the variable that tracks the builders that request 3039 // the host object to be ignored. 3040 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 3041 ++IgnoringBuilders; 3042 3043 // Unless the builder was inactive for this action, we have to record the 3044 // offload kind because the host will have to use it. 3045 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3046 OffloadKind |= SB->getAssociatedOffloadKind(); 3047 } 3048 3049 // If all builders agree that the host object should be ignored, just return 3050 // nullptr. 3051 if (IgnoringBuilders && 3052 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 3053 return nullptr; 3054 3055 if (DDeps.getActions().empty()) 3056 return HostAction; 3057 3058 // We have dependences we need to bundle together. We use an offload action 3059 // for that. 3060 OffloadAction::HostDependence HDep( 3061 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3062 /*BoundArch=*/nullptr, DDeps); 3063 return C.MakeAction<OffloadAction>(HDep, DDeps); 3064 } 3065 3066 /// Generate an action that adds a host dependence to a device action. The 3067 /// results will be kept in this action builder. Return true if an error was 3068 /// found. 3069 bool addHostDependenceToDeviceActions(Action *&HostAction, 3070 const Arg *InputArg) { 3071 if (!IsValid) 3072 return true; 3073 3074 // If we are supporting bundling/unbundling and the current action is an 3075 // input action of non-source file, we replace the host action by the 3076 // unbundling action. The bundler tool has the logic to detect if an input 3077 // is a bundle or not and if the input is not a bundle it assumes it is a 3078 // host file. Therefore it is safe to create an unbundling action even if 3079 // the input is not a bundle. 3080 if (CanUseBundler && isa<InputAction>(HostAction) && 3081 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 3082 !types::isSrcFile(HostAction->getType())) { 3083 auto UnbundlingHostAction = 3084 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 3085 UnbundlingHostAction->registerDependentActionInfo( 3086 C.getSingleOffloadToolChain<Action::OFK_Host>(), 3087 /*BoundArch=*/StringRef(), Action::OFK_Host); 3088 HostAction = UnbundlingHostAction; 3089 } 3090 3091 assert(HostAction && "Invalid host action!"); 3092 3093 // Register the offload kinds that are used. 3094 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3095 for (auto *SB : SpecializedBuilders) { 3096 if (!SB->isValid()) 3097 continue; 3098 3099 auto RetCode = SB->addDeviceDepences(HostAction); 3100 3101 // Host dependences for device actions are not compatible with that same 3102 // action being ignored. 3103 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 3104 "Host dependence not expected to be ignored.!"); 3105 3106 // Unless the builder was inactive for this action, we have to record the 3107 // offload kind because the host will have to use it. 3108 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3109 OffloadKind |= SB->getAssociatedOffloadKind(); 3110 } 3111 3112 // Do not use unbundler if the Host does not depend on device action. 3113 if (OffloadKind == Action::OFK_None && CanUseBundler) 3114 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 3115 HostAction = UA->getInputs().back(); 3116 3117 return false; 3118 } 3119 3120 /// Add the offloading top level actions to the provided action list. This 3121 /// function can replace the host action by a bundling action if the 3122 /// programming models allow it. 3123 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 3124 const Arg *InputArg) { 3125 // Get the device actions to be appended. 3126 ActionList OffloadAL; 3127 for (auto *SB : SpecializedBuilders) { 3128 if (!SB->isValid()) 3129 continue; 3130 SB->appendTopLevelActions(OffloadAL); 3131 } 3132 3133 // If we can use the bundler, replace the host action by the bundling one in 3134 // the resulting list. Otherwise, just append the device actions. For 3135 // device only compilation, HostAction is a null pointer, therefore only do 3136 // this when HostAction is not a null pointer. 3137 if (CanUseBundler && HostAction && 3138 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) { 3139 // Add the host action to the list in order to create the bundling action. 3140 OffloadAL.push_back(HostAction); 3141 3142 // We expect that the host action was just appended to the action list 3143 // before this method was called. 3144 assert(HostAction == AL.back() && "Host action not in the list??"); 3145 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 3146 AL.back() = HostAction; 3147 } else 3148 AL.append(OffloadAL.begin(), OffloadAL.end()); 3149 3150 // Propagate to the current host action (if any) the offload information 3151 // associated with the current input. 3152 if (HostAction) 3153 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 3154 /*BoundArch=*/nullptr); 3155 return false; 3156 } 3157 3158 Action* makeHostLinkAction() { 3159 // Build a list of device linking actions. 3160 ActionList DeviceAL; 3161 for (DeviceActionBuilder *SB : SpecializedBuilders) { 3162 if (!SB->isValid()) 3163 continue; 3164 SB->appendLinkActions(DeviceAL); 3165 } 3166 3167 if (DeviceAL.empty()) 3168 return nullptr; 3169 3170 // Create wrapper bitcode from the result of device link actions and compile 3171 // it to an object which will be added to the host link command. 3172 auto *BC = C.MakeAction<OffloadWrapperJobAction>(DeviceAL, types::TY_LLVM_BC); 3173 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm); 3174 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object); 3175 } 3176 3177 /// Processes the host linker action. This currently consists of replacing it 3178 /// with an offload action if there are device link objects and propagate to 3179 /// the host action all the offload kinds used in the current compilation. The 3180 /// resulting action is returned. 3181 Action *processHostLinkAction(Action *HostAction) { 3182 // Add all the dependences from the device linking actions. 3183 OffloadAction::DeviceDependences DDeps; 3184 for (auto *SB : SpecializedBuilders) { 3185 if (!SB->isValid()) 3186 continue; 3187 3188 SB->appendLinkDependences(DDeps); 3189 } 3190 3191 // Calculate all the offload kinds used in the current compilation. 3192 unsigned ActiveOffloadKinds = 0u; 3193 for (auto &I : InputArgToOffloadKindMap) 3194 ActiveOffloadKinds |= I.second; 3195 3196 // If we don't have device dependencies, we don't have to create an offload 3197 // action. 3198 if (DDeps.getActions().empty()) { 3199 // Propagate all the active kinds to host action. Given that it is a link 3200 // action it is assumed to depend on all actions generated so far. 3201 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 3202 /*BoundArch=*/nullptr); 3203 return HostAction; 3204 } 3205 3206 // Create the offload action with all dependences. When an offload action 3207 // is created the kinds are propagated to the host action, so we don't have 3208 // to do that explicitly here. 3209 OffloadAction::HostDependence HDep( 3210 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3211 /*BoundArch*/ nullptr, ActiveOffloadKinds); 3212 return C.MakeAction<OffloadAction>(HDep, DDeps); 3213 } 3214 }; 3215 } // anonymous namespace. 3216 3217 void Driver::handleArguments(Compilation &C, DerivedArgList &Args, 3218 const InputList &Inputs, 3219 ActionList &Actions) const { 3220 3221 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 3222 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 3223 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 3224 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 3225 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 3226 Args.eraseArg(options::OPT__SLASH_Yc); 3227 Args.eraseArg(options::OPT__SLASH_Yu); 3228 YcArg = YuArg = nullptr; 3229 } 3230 if (YcArg && Inputs.size() > 1) { 3231 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 3232 Args.eraseArg(options::OPT__SLASH_Yc); 3233 YcArg = nullptr; 3234 } 3235 3236 Arg *FinalPhaseArg; 3237 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 3238 3239 if (FinalPhase == phases::Link) { 3240 if (Args.hasArg(options::OPT_emit_llvm)) 3241 Diag(clang::diag::err_drv_emit_llvm_link); 3242 if (IsCLMode() && LTOMode != LTOK_None && 3243 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 3244 Diag(clang::diag::err_drv_lto_without_lld); 3245 } 3246 3247 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 3248 // If only preprocessing or /Y- is used, all pch handling is disabled. 3249 // Rather than check for it everywhere, just remove clang-cl pch-related 3250 // flags here. 3251 Args.eraseArg(options::OPT__SLASH_Fp); 3252 Args.eraseArg(options::OPT__SLASH_Yc); 3253 Args.eraseArg(options::OPT__SLASH_Yu); 3254 YcArg = YuArg = nullptr; 3255 } 3256 3257 unsigned LastPLSize = 0; 3258 for (auto &I : Inputs) { 3259 types::ID InputType = I.first; 3260 const Arg *InputArg = I.second; 3261 3262 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3263 types::getCompilationPhases(InputType, PL); 3264 LastPLSize = PL.size(); 3265 3266 // If the first step comes after the final phase we are doing as part of 3267 // this compilation, warn the user about it. 3268 phases::ID InitialPhase = PL[0]; 3269 if (InitialPhase > FinalPhase) { 3270 if (InputArg->isClaimed()) 3271 continue; 3272 3273 // Claim here to avoid the more general unused warning. 3274 InputArg->claim(); 3275 3276 // Suppress all unused style warnings with -Qunused-arguments 3277 if (Args.hasArg(options::OPT_Qunused_arguments)) 3278 continue; 3279 3280 // Special case when final phase determined by binary name, rather than 3281 // by a command-line argument with a corresponding Arg. 3282 if (CCCIsCPP()) 3283 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 3284 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 3285 // Special case '-E' warning on a previously preprocessed file to make 3286 // more sense. 3287 else if (InitialPhase == phases::Compile && 3288 (Args.getLastArg(options::OPT__SLASH_EP, 3289 options::OPT__SLASH_P) || 3290 Args.getLastArg(options::OPT_E) || 3291 Args.getLastArg(options::OPT_M, options::OPT_MM)) && 3292 getPreprocessedType(InputType) == types::TY_INVALID) 3293 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 3294 << InputArg->getAsString(Args) << !!FinalPhaseArg 3295 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3296 else 3297 Diag(clang::diag::warn_drv_input_file_unused) 3298 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 3299 << !!FinalPhaseArg 3300 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3301 continue; 3302 } 3303 3304 if (YcArg) { 3305 // Add a separate precompile phase for the compile phase. 3306 if (FinalPhase >= phases::Compile) { 3307 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 3308 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL; 3309 types::getCompilationPhases(HeaderType, PCHPL); 3310 // Build the pipeline for the pch file. 3311 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType); 3312 for (phases::ID Phase : PCHPL) 3313 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 3314 assert(ClangClPch); 3315 Actions.push_back(ClangClPch); 3316 // The driver currently exits after the first failed command. This 3317 // relies on that behavior, to make sure if the pch generation fails, 3318 // the main compilation won't run. 3319 // FIXME: If the main compilation fails, the PCH generation should 3320 // probably not be considered successful either. 3321 } 3322 } 3323 } 3324 3325 // If we are linking, claim any options which are obviously only used for 3326 // compilation. 3327 // FIXME: Understand why the last Phase List length is used here. 3328 if (FinalPhase == phases::Link && LastPLSize == 1) { 3329 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3330 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3331 } 3332 } 3333 3334 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 3335 const InputList &Inputs, ActionList &Actions) const { 3336 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 3337 3338 if (!SuppressMissingInputWarning && Inputs.empty()) { 3339 Diag(clang::diag::err_drv_no_input_files); 3340 return; 3341 } 3342 3343 // Reject -Z* at the top level, these options should never have been exposed 3344 // by gcc. 3345 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 3346 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 3347 3348 // Diagnose misuse of /Fo. 3349 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 3350 StringRef V = A->getValue(); 3351 if (Inputs.size() > 1 && !V.empty() && 3352 !llvm::sys::path::is_separator(V.back())) { 3353 // Check whether /Fo tries to name an output file for multiple inputs. 3354 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3355 << A->getSpelling() << V; 3356 Args.eraseArg(options::OPT__SLASH_Fo); 3357 } 3358 } 3359 3360 // Diagnose misuse of /Fa. 3361 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 3362 StringRef V = A->getValue(); 3363 if (Inputs.size() > 1 && !V.empty() && 3364 !llvm::sys::path::is_separator(V.back())) { 3365 // Check whether /Fa tries to name an asm file for multiple inputs. 3366 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3367 << A->getSpelling() << V; 3368 Args.eraseArg(options::OPT__SLASH_Fa); 3369 } 3370 } 3371 3372 // Diagnose misuse of /o. 3373 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 3374 if (A->getValue()[0] == '\0') { 3375 // It has to have a value. 3376 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 3377 Args.eraseArg(options::OPT__SLASH_o); 3378 } 3379 } 3380 3381 handleArguments(C, Args, Inputs, Actions); 3382 3383 // Builder to be used to build offloading actions. 3384 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 3385 3386 // Construct the actions to perform. 3387 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; 3388 ActionList LinkerInputs; 3389 ActionList MergerInputs; 3390 3391 for (auto &I : Inputs) { 3392 types::ID InputType = I.first; 3393 const Arg *InputArg = I.second; 3394 3395 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3396 types::getCompilationPhases(*this, Args, InputType, PL); 3397 if (PL.empty()) 3398 continue; 3399 3400 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> FullPL; 3401 types::getCompilationPhases(InputType, FullPL); 3402 3403 // Build the pipeline for this file. 3404 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3405 3406 // Use the current host action in any of the offloading actions, if 3407 // required. 3408 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3409 break; 3410 3411 for (phases::ID Phase : PL) { 3412 3413 // Add any offload action the host action depends on. 3414 Current = OffloadBuilder.addDeviceDependencesToHostAction( 3415 Current, InputArg, Phase, PL.back(), FullPL); 3416 if (!Current) 3417 break; 3418 3419 // Queue linker inputs. 3420 if (Phase == phases::Link) { 3421 assert(Phase == PL.back() && "linking must be final compilation step."); 3422 LinkerInputs.push_back(Current); 3423 Current = nullptr; 3424 break; 3425 } 3426 3427 // TODO: Consider removing this because the merged may not end up being 3428 // the final Phase in the pipeline. Perhaps the merged could just merge 3429 // and then pass an artifact of some sort to the Link Phase. 3430 // Queue merger inputs. 3431 if (Phase == phases::IfsMerge) { 3432 assert(Phase == PL.back() && "merging must be final compilation step."); 3433 MergerInputs.push_back(Current); 3434 Current = nullptr; 3435 break; 3436 } 3437 3438 // Each precompiled header file after a module file action is a module 3439 // header of that same module file, rather than being compiled to a 3440 // separate PCH. 3441 if (Phase == phases::Precompile && HeaderModuleAction && 3442 getPrecompiledType(InputType) == types::TY_PCH) { 3443 HeaderModuleAction->addModuleHeaderInput(Current); 3444 Current = nullptr; 3445 break; 3446 } 3447 3448 // FIXME: Should we include any prior module file outputs as inputs of 3449 // later actions in the same command line? 3450 3451 // Otherwise construct the appropriate action. 3452 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 3453 3454 // We didn't create a new action, so we will just move to the next phase. 3455 if (NewCurrent == Current) 3456 continue; 3457 3458 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent)) 3459 HeaderModuleAction = HMA; 3460 3461 Current = NewCurrent; 3462 3463 // Use the current host action in any of the offloading actions, if 3464 // required. 3465 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3466 break; 3467 3468 if (Current->getType() == types::TY_Nothing) 3469 break; 3470 } 3471 3472 // If we ended with something, add to the output list. 3473 if (Current) 3474 Actions.push_back(Current); 3475 3476 // Add any top level actions generated for offloading. 3477 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 3478 } 3479 3480 // Add a link action if necessary. 3481 if (!LinkerInputs.empty()) { 3482 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction()) 3483 LinkerInputs.push_back(Wrapper); 3484 Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3485 LA = OffloadBuilder.processHostLinkAction(LA); 3486 Actions.push_back(LA); 3487 } 3488 3489 // Add an interface stubs merge action if necessary. 3490 if (!MergerInputs.empty()) 3491 Actions.push_back( 3492 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 3493 3494 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom 3495 // Compile phase that prints out supported cpu models and quits. 3496 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { 3497 // Use the -mcpu=? flag as the dummy input to cc1. 3498 Actions.clear(); 3499 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); 3500 Actions.push_back( 3501 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 3502 for (auto &I : Inputs) 3503 I.second->claim(); 3504 } 3505 3506 // Claim ignored clang-cl options. 3507 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3508 3509 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3510 // to non-CUDA compilations and should not trigger warnings there. 3511 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3512 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3513 } 3514 3515 Action *Driver::ConstructPhaseAction( 3516 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3517 Action::OffloadKind TargetDeviceOffloadKind) const { 3518 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3519 3520 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3521 // encode this in the steps because the intermediate type depends on 3522 // arguments. Just special case here. 3523 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3524 return Input; 3525 3526 // Build the appropriate action. 3527 switch (Phase) { 3528 case phases::Link: 3529 llvm_unreachable("link action invalid here."); 3530 case phases::IfsMerge: 3531 llvm_unreachable("ifsmerge action invalid here."); 3532 case phases::Preprocess: { 3533 types::ID OutputTy; 3534 // -M and -MM specify the dependency file name by altering the output type, 3535 // -if -MD and -MMD are not specified. 3536 if (Args.hasArg(options::OPT_M, options::OPT_MM) && 3537 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { 3538 OutputTy = types::TY_Dependencies; 3539 } else { 3540 OutputTy = Input->getType(); 3541 if (!Args.hasFlag(options::OPT_frewrite_includes, 3542 options::OPT_fno_rewrite_includes, false) && 3543 !Args.hasFlag(options::OPT_frewrite_imports, 3544 options::OPT_fno_rewrite_imports, false) && 3545 !CCGenDiagnostics) 3546 OutputTy = types::getPreprocessedType(OutputTy); 3547 assert(OutputTy != types::TY_INVALID && 3548 "Cannot preprocess this input type!"); 3549 } 3550 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3551 } 3552 case phases::Precompile: { 3553 types::ID OutputTy = getPrecompiledType(Input->getType()); 3554 assert(OutputTy != types::TY_INVALID && 3555 "Cannot precompile this input type!"); 3556 3557 // If we're given a module name, precompile header file inputs as a 3558 // module, not as a precompiled header. 3559 const char *ModName = nullptr; 3560 if (OutputTy == types::TY_PCH) { 3561 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 3562 ModName = A->getValue(); 3563 if (ModName) 3564 OutputTy = types::TY_ModuleFile; 3565 } 3566 3567 if (Args.hasArg(options::OPT_fsyntax_only)) { 3568 // Syntax checks should not emit a PCH file 3569 OutputTy = types::TY_Nothing; 3570 } 3571 3572 if (ModName) 3573 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy, 3574 ModName); 3575 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3576 } 3577 case phases::Compile: { 3578 if (Args.hasArg(options::OPT_fsyntax_only)) 3579 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3580 if (Args.hasArg(options::OPT_rewrite_objc)) 3581 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3582 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3583 return C.MakeAction<CompileJobAction>(Input, 3584 types::TY_RewrittenLegacyObjC); 3585 if (Args.hasArg(options::OPT__analyze)) 3586 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3587 if (Args.hasArg(options::OPT__migrate)) 3588 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3589 if (Args.hasArg(options::OPT_emit_ast)) 3590 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3591 if (Args.hasArg(options::OPT_module_file_info)) 3592 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3593 if (Args.hasArg(options::OPT_verify_pch)) 3594 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3595 if (Args.hasArg(options::OPT_emit_interface_stubs)) 3596 return C.MakeAction<CompileJobAction>(Input, types::TY_IFS_CPP); 3597 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3598 } 3599 case phases::Backend: { 3600 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3601 types::ID Output = 3602 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3603 return C.MakeAction<BackendJobAction>(Input, Output); 3604 } 3605 if (Args.hasArg(options::OPT_emit_llvm)) { 3606 types::ID Output = 3607 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3608 return C.MakeAction<BackendJobAction>(Input, Output); 3609 } 3610 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3611 } 3612 case phases::Assemble: 3613 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3614 } 3615 3616 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3617 } 3618 3619 void Driver::BuildJobs(Compilation &C) const { 3620 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3621 3622 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3623 3624 // It is an error to provide a -o option if we are making multiple output 3625 // files. 3626 if (FinalOutput) { 3627 unsigned NumOutputs = 0; 3628 for (const Action *A : C.getActions()) 3629 if (A->getType() != types::TY_Nothing) 3630 ++NumOutputs; 3631 3632 if (NumOutputs > 1) { 3633 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3634 FinalOutput = nullptr; 3635 } 3636 } 3637 3638 // Collect the list of architectures. 3639 llvm::StringSet<> ArchNames; 3640 if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO()) 3641 for (const Arg *A : C.getArgs()) 3642 if (A->getOption().matches(options::OPT_arch)) 3643 ArchNames.insert(A->getValue()); 3644 3645 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3646 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3647 for (Action *A : C.getActions()) { 3648 // If we are linking an image for multiple archs then the linker wants 3649 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3650 // doesn't fit in cleanly because we have to pass this information down. 3651 // 3652 // FIXME: This is a hack; find a cleaner way to integrate this into the 3653 // process. 3654 const char *LinkingOutput = nullptr; 3655 if (isa<LipoJobAction>(A)) { 3656 if (FinalOutput) 3657 LinkingOutput = FinalOutput->getValue(); 3658 else 3659 LinkingOutput = getDefaultImageName(); 3660 } 3661 3662 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3663 /*BoundArch*/ StringRef(), 3664 /*AtTopLevel*/ true, 3665 /*MultipleArchs*/ ArchNames.size() > 1, 3666 /*LinkingOutput*/ LinkingOutput, CachedResults, 3667 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3668 } 3669 3670 // If the user passed -Qunused-arguments or there were errors, don't warn 3671 // about any unused arguments. 3672 if (Diags.hasErrorOccurred() || 3673 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3674 return; 3675 3676 // Claim -### here. 3677 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 3678 3679 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 3680 (void)C.getArgs().hasArg(options::OPT_driver_mode); 3681 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 3682 3683 for (Arg *A : C.getArgs()) { 3684 // FIXME: It would be nice to be able to send the argument to the 3685 // DiagnosticsEngine, so that extra values, position, and so on could be 3686 // printed. 3687 if (!A->isClaimed()) { 3688 if (A->getOption().hasFlag(options::NoArgumentUnused)) 3689 continue; 3690 3691 // Suppress the warning automatically if this is just a flag, and it is an 3692 // instance of an argument we already claimed. 3693 const Option &Opt = A->getOption(); 3694 if (Opt.getKind() == Option::FlagClass) { 3695 bool DuplicateClaimed = false; 3696 3697 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 3698 if (AA->isClaimed()) { 3699 DuplicateClaimed = true; 3700 break; 3701 } 3702 } 3703 3704 if (DuplicateClaimed) 3705 continue; 3706 } 3707 3708 // In clang-cl, don't mention unknown arguments here since they have 3709 // already been warned about. 3710 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 3711 Diag(clang::diag::warn_drv_unused_argument) 3712 << A->getAsString(C.getArgs()); 3713 } 3714 } 3715 } 3716 3717 namespace { 3718 /// Utility class to control the collapse of dependent actions and select the 3719 /// tools accordingly. 3720 class ToolSelector final { 3721 /// The tool chain this selector refers to. 3722 const ToolChain &TC; 3723 3724 /// The compilation this selector refers to. 3725 const Compilation &C; 3726 3727 /// The base action this selector refers to. 3728 const JobAction *BaseAction; 3729 3730 /// Set to true if the current toolchain refers to host actions. 3731 bool IsHostSelector; 3732 3733 /// Set to true if save-temps and embed-bitcode functionalities are active. 3734 bool SaveTemps; 3735 bool EmbedBitcode; 3736 3737 /// Get previous dependent action or null if that does not exist. If 3738 /// \a CanBeCollapsed is false, that action must be legal to collapse or 3739 /// null will be returned. 3740 const JobAction *getPrevDependentAction(const ActionList &Inputs, 3741 ActionList &SavedOffloadAction, 3742 bool CanBeCollapsed = true) { 3743 // An option can be collapsed only if it has a single input. 3744 if (Inputs.size() != 1) 3745 return nullptr; 3746 3747 Action *CurAction = *Inputs.begin(); 3748 if (CanBeCollapsed && 3749 !CurAction->isCollapsingWithNextDependentActionLegal()) 3750 return nullptr; 3751 3752 // If the input action is an offload action. Look through it and save any 3753 // offload action that can be dropped in the event of a collapse. 3754 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 3755 // If the dependent action is a device action, we will attempt to collapse 3756 // only with other device actions. Otherwise, we would do the same but 3757 // with host actions only. 3758 if (!IsHostSelector) { 3759 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 3760 CurAction = 3761 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 3762 if (CanBeCollapsed && 3763 !CurAction->isCollapsingWithNextDependentActionLegal()) 3764 return nullptr; 3765 SavedOffloadAction.push_back(OA); 3766 return dyn_cast<JobAction>(CurAction); 3767 } 3768 } else if (OA->hasHostDependence()) { 3769 CurAction = OA->getHostDependence(); 3770 if (CanBeCollapsed && 3771 !CurAction->isCollapsingWithNextDependentActionLegal()) 3772 return nullptr; 3773 SavedOffloadAction.push_back(OA); 3774 return dyn_cast<JobAction>(CurAction); 3775 } 3776 return nullptr; 3777 } 3778 3779 return dyn_cast<JobAction>(CurAction); 3780 } 3781 3782 /// Return true if an assemble action can be collapsed. 3783 bool canCollapseAssembleAction() const { 3784 return TC.useIntegratedAs() && !SaveTemps && 3785 !C.getArgs().hasArg(options::OPT_via_file_asm) && 3786 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 3787 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 3788 } 3789 3790 /// Return true if a preprocessor action can be collapsed. 3791 bool canCollapsePreprocessorAction() const { 3792 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 3793 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 3794 !C.getArgs().hasArg(options::OPT_rewrite_objc); 3795 } 3796 3797 /// Struct that relates an action with the offload actions that would be 3798 /// collapsed with it. 3799 struct JobActionInfo final { 3800 /// The action this info refers to. 3801 const JobAction *JA = nullptr; 3802 /// The offload actions we need to take care off if this action is 3803 /// collapsed. 3804 ActionList SavedOffloadAction; 3805 }; 3806 3807 /// Append collapsed offload actions from the give nnumber of elements in the 3808 /// action info array. 3809 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 3810 ArrayRef<JobActionInfo> &ActionInfo, 3811 unsigned ElementNum) { 3812 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 3813 for (unsigned I = 0; I < ElementNum; ++I) 3814 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 3815 ActionInfo[I].SavedOffloadAction.end()); 3816 } 3817 3818 /// Functions that attempt to perform the combining. They detect if that is 3819 /// legal, and if so they update the inputs \a Inputs and the offload action 3820 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 3821 /// the combined action is returned. If the combining is not legal or if the 3822 /// tool does not exist, null is returned. 3823 /// Currently three kinds of collapsing are supported: 3824 /// - Assemble + Backend + Compile; 3825 /// - Assemble + Backend ; 3826 /// - Backend + Compile. 3827 const Tool * 3828 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3829 ActionList &Inputs, 3830 ActionList &CollapsedOffloadAction) { 3831 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 3832 return nullptr; 3833 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3834 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3835 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 3836 if (!AJ || !BJ || !CJ) 3837 return nullptr; 3838 3839 // Get compiler tool. 3840 const Tool *T = TC.SelectTool(*CJ); 3841 if (!T) 3842 return nullptr; 3843 3844 // When using -fembed-bitcode, it is required to have the same tool (clang) 3845 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 3846 if (EmbedBitcode) { 3847 const Tool *BT = TC.SelectTool(*BJ); 3848 if (BT == T) 3849 return nullptr; 3850 } 3851 3852 if (!T->hasIntegratedAssembler()) 3853 return nullptr; 3854 3855 Inputs = CJ->getInputs(); 3856 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3857 /*NumElements=*/3); 3858 return T; 3859 } 3860 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 3861 ActionList &Inputs, 3862 ActionList &CollapsedOffloadAction) { 3863 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 3864 return nullptr; 3865 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3866 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3867 if (!AJ || !BJ) 3868 return nullptr; 3869 3870 // Get backend tool. 3871 const Tool *T = TC.SelectTool(*BJ); 3872 if (!T) 3873 return nullptr; 3874 3875 if (!T->hasIntegratedAssembler()) 3876 return nullptr; 3877 3878 Inputs = BJ->getInputs(); 3879 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3880 /*NumElements=*/2); 3881 return T; 3882 } 3883 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3884 ActionList &Inputs, 3885 ActionList &CollapsedOffloadAction) { 3886 if (ActionInfo.size() < 2) 3887 return nullptr; 3888 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 3889 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 3890 if (!BJ || !CJ) 3891 return nullptr; 3892 3893 // Check if the initial input (to the compile job or its predessor if one 3894 // exists) is LLVM bitcode. In that case, no preprocessor step is required 3895 // and we can still collapse the compile and backend jobs when we have 3896 // -save-temps. I.e. there is no need for a separate compile job just to 3897 // emit unoptimized bitcode. 3898 bool InputIsBitcode = true; 3899 for (size_t i = 1; i < ActionInfo.size(); i++) 3900 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 3901 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 3902 InputIsBitcode = false; 3903 break; 3904 } 3905 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 3906 return nullptr; 3907 3908 // Get compiler tool. 3909 const Tool *T = TC.SelectTool(*CJ); 3910 if (!T) 3911 return nullptr; 3912 3913 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 3914 return nullptr; 3915 3916 Inputs = CJ->getInputs(); 3917 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3918 /*NumElements=*/2); 3919 return T; 3920 } 3921 3922 /// Updates the inputs if the obtained tool supports combining with 3923 /// preprocessor action, and the current input is indeed a preprocessor 3924 /// action. If combining results in the collapse of offloading actions, those 3925 /// are appended to \a CollapsedOffloadAction. 3926 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 3927 ActionList &CollapsedOffloadAction) { 3928 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 3929 return; 3930 3931 // Attempt to get a preprocessor action dependence. 3932 ActionList PreprocessJobOffloadActions; 3933 ActionList NewInputs; 3934 for (Action *A : Inputs) { 3935 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 3936 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 3937 NewInputs.push_back(A); 3938 continue; 3939 } 3940 3941 // This is legal to combine. Append any offload action we found and add the 3942 // current input to preprocessor inputs. 3943 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 3944 PreprocessJobOffloadActions.end()); 3945 NewInputs.append(PJ->input_begin(), PJ->input_end()); 3946 } 3947 Inputs = NewInputs; 3948 } 3949 3950 public: 3951 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 3952 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 3953 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 3954 EmbedBitcode(EmbedBitcode) { 3955 assert(BaseAction && "Invalid base action."); 3956 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 3957 } 3958 3959 /// Check if a chain of actions can be combined and return the tool that can 3960 /// handle the combination of actions. The pointer to the current inputs \a 3961 /// Inputs and the list of offload actions \a CollapsedOffloadActions 3962 /// connected to collapsed actions are updated accordingly. The latter enables 3963 /// the caller of the selector to process them afterwards instead of just 3964 /// dropping them. If no suitable tool is found, null will be returned. 3965 const Tool *getTool(ActionList &Inputs, 3966 ActionList &CollapsedOffloadAction) { 3967 // 3968 // Get the largest chain of actions that we could combine. 3969 // 3970 3971 SmallVector<JobActionInfo, 5> ActionChain(1); 3972 ActionChain.back().JA = BaseAction; 3973 while (ActionChain.back().JA) { 3974 const Action *CurAction = ActionChain.back().JA; 3975 3976 // Grow the chain by one element. 3977 ActionChain.resize(ActionChain.size() + 1); 3978 JobActionInfo &AI = ActionChain.back(); 3979 3980 // Attempt to fill it with the 3981 AI.JA = 3982 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 3983 } 3984 3985 // Pop the last action info as it could not be filled. 3986 ActionChain.pop_back(); 3987 3988 // 3989 // Attempt to combine actions. If all combining attempts failed, just return 3990 // the tool of the provided action. At the end we attempt to combine the 3991 // action with any preprocessor action it may depend on. 3992 // 3993 3994 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 3995 CollapsedOffloadAction); 3996 if (!T) 3997 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 3998 if (!T) 3999 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 4000 if (!T) { 4001 Inputs = BaseAction->getInputs(); 4002 T = TC.SelectTool(*BaseAction); 4003 } 4004 4005 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 4006 return T; 4007 } 4008 }; 4009 } 4010 4011 /// Return a string that uniquely identifies the result of a job. The bound arch 4012 /// is not necessarily represented in the toolchain's triple -- for example, 4013 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 4014 /// Also, we need to add the offloading device kind, as the same tool chain can 4015 /// be used for host and device for some programming models, e.g. OpenMP. 4016 static std::string GetTriplePlusArchString(const ToolChain *TC, 4017 StringRef BoundArch, 4018 Action::OffloadKind OffloadKind) { 4019 std::string TriplePlusArch = TC->getTriple().normalize(); 4020 if (!BoundArch.empty()) { 4021 TriplePlusArch += "-"; 4022 TriplePlusArch += BoundArch; 4023 } 4024 TriplePlusArch += "-"; 4025 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 4026 return TriplePlusArch; 4027 } 4028 4029 InputInfo Driver::BuildJobsForAction( 4030 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4031 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4032 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4033 Action::OffloadKind TargetDeviceOffloadKind) const { 4034 std::pair<const Action *, std::string> ActionTC = { 4035 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4036 auto CachedResult = CachedResults.find(ActionTC); 4037 if (CachedResult != CachedResults.end()) { 4038 return CachedResult->second; 4039 } 4040 InputInfo Result = BuildJobsForActionNoCache( 4041 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 4042 CachedResults, TargetDeviceOffloadKind); 4043 CachedResults[ActionTC] = Result; 4044 return Result; 4045 } 4046 4047 InputInfo Driver::BuildJobsForActionNoCache( 4048 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4049 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4050 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4051 Action::OffloadKind TargetDeviceOffloadKind) const { 4052 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 4053 4054 InputInfoList OffloadDependencesInputInfo; 4055 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 4056 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 4057 // The 'Darwin' toolchain is initialized only when its arguments are 4058 // computed. Get the default arguments for OFK_None to ensure that 4059 // initialization is performed before processing the offload action. 4060 // FIXME: Remove when darwin's toolchain is initialized during construction. 4061 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 4062 4063 // The offload action is expected to be used in four different situations. 4064 // 4065 // a) Set a toolchain/architecture/kind for a host action: 4066 // Host Action 1 -> OffloadAction -> Host Action 2 4067 // 4068 // b) Set a toolchain/architecture/kind for a device action; 4069 // Device Action 1 -> OffloadAction -> Device Action 2 4070 // 4071 // c) Specify a device dependence to a host action; 4072 // Device Action 1 _ 4073 // \ 4074 // Host Action 1 ---> OffloadAction -> Host Action 2 4075 // 4076 // d) Specify a host dependence to a device action. 4077 // Host Action 1 _ 4078 // \ 4079 // Device Action 1 ---> OffloadAction -> Device Action 2 4080 // 4081 // For a) and b), we just return the job generated for the dependence. For 4082 // c) and d) we override the current action with the host/device dependence 4083 // if the current toolchain is host/device and set the offload dependences 4084 // info with the jobs obtained from the device/host dependence(s). 4085 4086 // If there is a single device option, just generate the job for it. 4087 if (OA->hasSingleDeviceDependence()) { 4088 InputInfo DevA; 4089 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 4090 const char *DepBoundArch) { 4091 DevA = 4092 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 4093 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 4094 CachedResults, DepA->getOffloadingDeviceKind()); 4095 }); 4096 return DevA; 4097 } 4098 4099 // If 'Action 2' is host, we generate jobs for the device dependences and 4100 // override the current action with the host dependence. Otherwise, we 4101 // generate the host dependences and override the action with the device 4102 // dependence. The dependences can't therefore be a top-level action. 4103 OA->doOnEachDependence( 4104 /*IsHostDependence=*/BuildingForOffloadDevice, 4105 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4106 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4107 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 4108 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 4109 DepA->getOffloadingDeviceKind())); 4110 }); 4111 4112 A = BuildingForOffloadDevice 4113 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 4114 : OA->getHostDependence(); 4115 } 4116 4117 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 4118 // FIXME: It would be nice to not claim this here; maybe the old scheme of 4119 // just using Args was better? 4120 const Arg &Input = IA->getInputArg(); 4121 Input.claim(); 4122 if (Input.getOption().matches(options::OPT_INPUT)) { 4123 const char *Name = Input.getValue(); 4124 return InputInfo(A, Name, /* _BaseInput = */ Name); 4125 } 4126 return InputInfo(A, &Input, /* _BaseInput = */ ""); 4127 } 4128 4129 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 4130 const ToolChain *TC; 4131 StringRef ArchName = BAA->getArchName(); 4132 4133 if (!ArchName.empty()) 4134 TC = &getToolChain(C.getArgs(), 4135 computeTargetTriple(*this, TargetTriple, 4136 C.getArgs(), ArchName)); 4137 else 4138 TC = &C.getDefaultToolChain(); 4139 4140 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 4141 MultipleArchs, LinkingOutput, CachedResults, 4142 TargetDeviceOffloadKind); 4143 } 4144 4145 4146 ActionList Inputs = A->getInputs(); 4147 4148 const JobAction *JA = cast<JobAction>(A); 4149 ActionList CollapsedOffloadActions; 4150 4151 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 4152 embedBitcodeInObject() && !isUsingLTO()); 4153 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 4154 4155 if (!T) 4156 return InputInfo(); 4157 4158 // If we've collapsed action list that contained OffloadAction we 4159 // need to build jobs for host/device-side inputs it may have held. 4160 for (const auto *OA : CollapsedOffloadActions) 4161 cast<OffloadAction>(OA)->doOnEachDependence( 4162 /*IsHostDependence=*/BuildingForOffloadDevice, 4163 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4164 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4165 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 4166 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 4167 DepA->getOffloadingDeviceKind())); 4168 }); 4169 4170 // Only use pipes when there is exactly one input. 4171 InputInfoList InputInfos; 4172 for (const Action *Input : Inputs) { 4173 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 4174 // shouldn't get temporary output names. 4175 // FIXME: Clean this up. 4176 bool SubJobAtTopLevel = 4177 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 4178 InputInfos.push_back(BuildJobsForAction( 4179 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 4180 CachedResults, A->getOffloadingDeviceKind())); 4181 } 4182 4183 // Always use the first input as the base input. 4184 const char *BaseInput = InputInfos[0].getBaseInput(); 4185 4186 // ... except dsymutil actions, which use their actual input as the base 4187 // input. 4188 if (JA->getType() == types::TY_dSYM) 4189 BaseInput = InputInfos[0].getFilename(); 4190 4191 // ... and in header module compilations, which use the module name. 4192 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA)) 4193 BaseInput = ModuleJA->getModuleName(); 4194 4195 // Append outputs of offload device jobs to the input list 4196 if (!OffloadDependencesInputInfo.empty()) 4197 InputInfos.append(OffloadDependencesInputInfo.begin(), 4198 OffloadDependencesInputInfo.end()); 4199 4200 // Set the effective triple of the toolchain for the duration of this job. 4201 llvm::Triple EffectiveTriple; 4202 const ToolChain &ToolTC = T->getToolChain(); 4203 const ArgList &Args = 4204 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 4205 if (InputInfos.size() != 1) { 4206 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 4207 } else { 4208 // Pass along the input type if it can be unambiguously determined. 4209 EffectiveTriple = llvm::Triple( 4210 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 4211 } 4212 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 4213 4214 // Determine the place to write output to, if any. 4215 InputInfo Result; 4216 InputInfoList UnbundlingResults; 4217 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 4218 // If we have an unbundling job, we need to create results for all the 4219 // outputs. We also update the results cache so that other actions using 4220 // this unbundling action can get the right results. 4221 for (auto &UI : UA->getDependentActionsInfo()) { 4222 assert(UI.DependentOffloadKind != Action::OFK_None && 4223 "Unbundling with no offloading??"); 4224 4225 // Unbundling actions are never at the top level. When we generate the 4226 // offloading prefix, we also do that for the host file because the 4227 // unbundling action does not change the type of the output which can 4228 // cause a overwrite. 4229 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4230 UI.DependentOffloadKind, 4231 UI.DependentToolChain->getTriple().normalize(), 4232 /*CreatePrefixForHost=*/true); 4233 auto CurI = InputInfo( 4234 UA, 4235 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 4236 /*AtTopLevel=*/false, 4237 MultipleArchs || 4238 UI.DependentOffloadKind == Action::OFK_HIP, 4239 OffloadingPrefix), 4240 BaseInput); 4241 // Save the unbundling result. 4242 UnbundlingResults.push_back(CurI); 4243 4244 // Get the unique string identifier for this dependence and cache the 4245 // result. 4246 StringRef Arch; 4247 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 4248 if (UI.DependentOffloadKind == Action::OFK_Host) 4249 Arch = StringRef(); 4250 else 4251 Arch = UI.DependentBoundArch; 4252 } else 4253 Arch = BoundArch; 4254 4255 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 4256 UI.DependentOffloadKind)}] = 4257 CurI; 4258 } 4259 4260 // Now that we have all the results generated, select the one that should be 4261 // returned for the current depending action. 4262 std::pair<const Action *, std::string> ActionTC = { 4263 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4264 assert(CachedResults.find(ActionTC) != CachedResults.end() && 4265 "Result does not exist??"); 4266 Result = CachedResults[ActionTC]; 4267 } else if (JA->getType() == types::TY_Nothing) 4268 Result = InputInfo(A, BaseInput); 4269 else { 4270 // We only have to generate a prefix for the host if this is not a top-level 4271 // action. 4272 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4273 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 4274 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 4275 !AtTopLevel); 4276 if (isa<OffloadWrapperJobAction>(JA)) { 4277 OffloadingPrefix += "-wrapper"; 4278 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4279 BaseInput = FinalOutput->getValue(); 4280 else 4281 BaseInput = getDefaultImageName(); 4282 } 4283 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 4284 AtTopLevel, MultipleArchs, 4285 OffloadingPrefix), 4286 BaseInput); 4287 } 4288 4289 if (CCCPrintBindings && !CCGenDiagnostics) { 4290 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 4291 << " - \"" << T->getName() << "\", inputs: ["; 4292 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 4293 llvm::errs() << InputInfos[i].getAsString(); 4294 if (i + 1 != e) 4295 llvm::errs() << ", "; 4296 } 4297 if (UnbundlingResults.empty()) 4298 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 4299 else { 4300 llvm::errs() << "], outputs: ["; 4301 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 4302 llvm::errs() << UnbundlingResults[i].getAsString(); 4303 if (i + 1 != e) 4304 llvm::errs() << ", "; 4305 } 4306 llvm::errs() << "] \n"; 4307 } 4308 } else { 4309 if (UnbundlingResults.empty()) 4310 T->ConstructJob( 4311 C, *JA, Result, InputInfos, 4312 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4313 LinkingOutput); 4314 else 4315 T->ConstructJobMultipleOutputs( 4316 C, *JA, UnbundlingResults, InputInfos, 4317 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4318 LinkingOutput); 4319 } 4320 return Result; 4321 } 4322 4323 const char *Driver::getDefaultImageName() const { 4324 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 4325 return Target.isOSWindows() ? "a.exe" : "a.out"; 4326 } 4327 4328 /// Create output filename based on ArgValue, which could either be a 4329 /// full filename, filename without extension, or a directory. If ArgValue 4330 /// does not provide a filename, then use BaseName, and use the extension 4331 /// suitable for FileType. 4332 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 4333 StringRef BaseName, 4334 types::ID FileType) { 4335 SmallString<128> Filename = ArgValue; 4336 4337 if (ArgValue.empty()) { 4338 // If the argument is empty, output to BaseName in the current dir. 4339 Filename = BaseName; 4340 } else if (llvm::sys::path::is_separator(Filename.back())) { 4341 // If the argument is a directory, output to BaseName in that dir. 4342 llvm::sys::path::append(Filename, BaseName); 4343 } 4344 4345 if (!llvm::sys::path::has_extension(ArgValue)) { 4346 // If the argument didn't provide an extension, then set it. 4347 const char *Extension = types::getTypeTempSuffix(FileType, true); 4348 4349 if (FileType == types::TY_Image && 4350 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 4351 // The output file is a dll. 4352 Extension = "dll"; 4353 } 4354 4355 llvm::sys::path::replace_extension(Filename, Extension); 4356 } 4357 4358 return Args.MakeArgString(Filename.c_str()); 4359 } 4360 4361 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 4362 const char *BaseInput, 4363 StringRef BoundArch, bool AtTopLevel, 4364 bool MultipleArchs, 4365 StringRef OffloadingPrefix) const { 4366 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 4367 // Output to a user requested destination? 4368 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 4369 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4370 return C.addResultFile(FinalOutput->getValue(), &JA); 4371 } 4372 4373 // For /P, preprocess to file named after BaseInput. 4374 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 4375 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 4376 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4377 StringRef NameArg; 4378 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 4379 NameArg = A->getValue(); 4380 return C.addResultFile( 4381 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 4382 &JA); 4383 } 4384 4385 // Default to writing to stdout? 4386 if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA)) 4387 return "-"; 4388 4389 // Is this the assembly listing for /FA? 4390 if (JA.getType() == types::TY_PP_Asm && 4391 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 4392 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 4393 // Use /Fa and the input filename to determine the asm file name. 4394 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4395 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 4396 return C.addResultFile( 4397 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 4398 &JA); 4399 } 4400 4401 // Output to a temporary file? 4402 if ((!AtTopLevel && !isSaveTempsEnabled() && 4403 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 4404 CCGenDiagnostics) { 4405 StringRef Name = llvm::sys::path::filename(BaseInput); 4406 std::pair<StringRef, StringRef> Split = Name.split('.'); 4407 SmallString<128> TmpName; 4408 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4409 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 4410 if (CCGenDiagnostics && A) { 4411 SmallString<128> CrashDirectory(A->getValue()); 4412 if (!getVFS().exists(CrashDirectory)) 4413 llvm::sys::fs::create_directories(CrashDirectory); 4414 llvm::sys::path::append(CrashDirectory, Split.first); 4415 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; 4416 std::error_code EC = llvm::sys::fs::createUniqueFile( 4417 CrashDirectory + Middle + Suffix, TmpName); 4418 if (EC) { 4419 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4420 return ""; 4421 } 4422 } else { 4423 TmpName = GetTemporaryPath(Split.first, Suffix); 4424 } 4425 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4426 } 4427 4428 SmallString<128> BasePath(BaseInput); 4429 StringRef BaseName; 4430 4431 // Dsymutil actions should use the full path. 4432 if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 4433 BaseName = BasePath; 4434 else 4435 BaseName = llvm::sys::path::filename(BasePath); 4436 4437 // Determine what the derived output name should be. 4438 const char *NamedOutput; 4439 4440 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 4441 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 4442 // The /Fo or /o flag decides the object filename. 4443 StringRef Val = 4444 C.getArgs() 4445 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 4446 ->getValue(); 4447 NamedOutput = 4448 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 4449 } else if (JA.getType() == types::TY_Image && 4450 C.getArgs().hasArg(options::OPT__SLASH_Fe, 4451 options::OPT__SLASH_o)) { 4452 // The /Fe or /o flag names the linked file. 4453 StringRef Val = 4454 C.getArgs() 4455 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 4456 ->getValue(); 4457 NamedOutput = 4458 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 4459 } else if (JA.getType() == types::TY_Image) { 4460 if (IsCLMode()) { 4461 // clang-cl uses BaseName for the executable name. 4462 NamedOutput = 4463 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 4464 } else { 4465 SmallString<128> Output(getDefaultImageName()); 4466 // HIP image for device compilation with -fno-gpu-rdc is per compilation 4467 // unit. 4468 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP && 4469 !C.getArgs().hasFlag(options::OPT_fgpu_rdc, 4470 options::OPT_fno_gpu_rdc, false); 4471 if (IsHIPNoRDC) { 4472 Output = BaseName; 4473 llvm::sys::path::replace_extension(Output, ""); 4474 } 4475 Output += OffloadingPrefix; 4476 if (MultipleArchs && !BoundArch.empty()) { 4477 Output += "-"; 4478 Output.append(BoundArch); 4479 } 4480 if (IsHIPNoRDC) 4481 Output += ".out"; 4482 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 4483 } 4484 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 4485 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 4486 } else { 4487 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4488 assert(Suffix && "All types used for output should have a suffix."); 4489 4490 std::string::size_type End = std::string::npos; 4491 if (!types::appendSuffixForType(JA.getType())) 4492 End = BaseName.rfind('.'); 4493 SmallString<128> Suffixed(BaseName.substr(0, End)); 4494 Suffixed += OffloadingPrefix; 4495 if (MultipleArchs && !BoundArch.empty()) { 4496 Suffixed += "-"; 4497 Suffixed.append(BoundArch); 4498 } 4499 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 4500 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 4501 // optimized bitcode output. 4502 if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) && 4503 JA.getType() == types::TY_LLVM_BC) 4504 Suffixed += ".tmp"; 4505 Suffixed += '.'; 4506 Suffixed += Suffix; 4507 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 4508 } 4509 4510 // Prepend object file path if -save-temps=obj 4511 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 4512 JA.getType() != types::TY_PCH) { 4513 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 4514 SmallString<128> TempPath(FinalOutput->getValue()); 4515 llvm::sys::path::remove_filename(TempPath); 4516 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 4517 llvm::sys::path::append(TempPath, OutputFileName); 4518 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 4519 } 4520 4521 // If we're saving temps and the temp file conflicts with the input file, 4522 // then avoid overwriting input file. 4523 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 4524 bool SameFile = false; 4525 SmallString<256> Result; 4526 llvm::sys::fs::current_path(Result); 4527 llvm::sys::path::append(Result, BaseName); 4528 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 4529 // Must share the same path to conflict. 4530 if (SameFile) { 4531 StringRef Name = llvm::sys::path::filename(BaseInput); 4532 std::pair<StringRef, StringRef> Split = Name.split('.'); 4533 std::string TmpName = GetTemporaryPath( 4534 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 4535 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4536 } 4537 } 4538 4539 // As an annoying special case, PCH generation doesn't strip the pathname. 4540 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 4541 llvm::sys::path::remove_filename(BasePath); 4542 if (BasePath.empty()) 4543 BasePath = NamedOutput; 4544 else 4545 llvm::sys::path::append(BasePath, NamedOutput); 4546 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 4547 } else { 4548 return C.addResultFile(NamedOutput, &JA); 4549 } 4550 } 4551 4552 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 4553 // Search for Name in a list of paths. 4554 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 4555 -> llvm::Optional<std::string> { 4556 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4557 // attempting to use this prefix when looking for file paths. 4558 for (const auto &Dir : P) { 4559 if (Dir.empty()) 4560 continue; 4561 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4562 llvm::sys::path::append(P, Name); 4563 if (llvm::sys::fs::exists(Twine(P))) 4564 return P.str().str(); 4565 } 4566 return None; 4567 }; 4568 4569 if (auto P = SearchPaths(PrefixDirs)) 4570 return *P; 4571 4572 SmallString<128> R(ResourceDir); 4573 llvm::sys::path::append(R, Name); 4574 if (llvm::sys::fs::exists(Twine(R))) 4575 return R.str(); 4576 4577 SmallString<128> P(TC.getCompilerRTPath()); 4578 llvm::sys::path::append(P, Name); 4579 if (llvm::sys::fs::exists(Twine(P))) 4580 return P.str(); 4581 4582 SmallString<128> D(Dir); 4583 llvm::sys::path::append(D, "..", Name); 4584 if (llvm::sys::fs::exists(Twine(D))) 4585 return D.str(); 4586 4587 if (auto P = SearchPaths(TC.getLibraryPaths())) 4588 return *P; 4589 4590 if (auto P = SearchPaths(TC.getFilePaths())) 4591 return *P; 4592 4593 return Name; 4594 } 4595 4596 void Driver::generatePrefixedToolNames( 4597 StringRef Tool, const ToolChain &TC, 4598 SmallVectorImpl<std::string> &Names) const { 4599 // FIXME: Needs a better variable than TargetTriple 4600 Names.emplace_back((TargetTriple + "-" + Tool).str()); 4601 Names.emplace_back(Tool); 4602 4603 // Allow the discovery of tools prefixed with LLVM's default target triple. 4604 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4605 if (DefaultTargetTriple != TargetTriple) 4606 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4607 } 4608 4609 static bool ScanDirForExecutable(SmallString<128> &Dir, 4610 ArrayRef<std::string> Names) { 4611 for (const auto &Name : Names) { 4612 llvm::sys::path::append(Dir, Name); 4613 if (llvm::sys::fs::can_execute(Twine(Dir))) 4614 return true; 4615 llvm::sys::path::remove_filename(Dir); 4616 } 4617 return false; 4618 } 4619 4620 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4621 SmallVector<std::string, 2> TargetSpecificExecutables; 4622 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4623 4624 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4625 // attempting to use this prefix when looking for program paths. 4626 for (const auto &PrefixDir : PrefixDirs) { 4627 if (llvm::sys::fs::is_directory(PrefixDir)) { 4628 SmallString<128> P(PrefixDir); 4629 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4630 return P.str(); 4631 } else { 4632 SmallString<128> P((PrefixDir + Name).str()); 4633 if (llvm::sys::fs::can_execute(Twine(P))) 4634 return P.str(); 4635 } 4636 } 4637 4638 const ToolChain::path_list &List = TC.getProgramPaths(); 4639 for (const auto &Path : List) { 4640 SmallString<128> P(Path); 4641 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4642 return P.str(); 4643 } 4644 4645 // If all else failed, search the path. 4646 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) 4647 if (llvm::ErrorOr<std::string> P = 4648 llvm::sys::findProgramByName(TargetSpecificExecutable)) 4649 return *P; 4650 4651 return Name; 4652 } 4653 4654 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 4655 SmallString<128> Path; 4656 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 4657 if (EC) { 4658 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4659 return ""; 4660 } 4661 4662 return Path.str(); 4663 } 4664 4665 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 4666 SmallString<128> Path; 4667 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 4668 if (EC) { 4669 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4670 return ""; 4671 } 4672 4673 return Path.str(); 4674 } 4675 4676 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 4677 SmallString<128> Output; 4678 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 4679 // FIXME: If anybody needs it, implement this obscure rule: 4680 // "If you specify a directory without a file name, the default file name 4681 // is VCx0.pch., where x is the major version of Visual C++ in use." 4682 Output = FpArg->getValue(); 4683 4684 // "If you do not specify an extension as part of the path name, an 4685 // extension of .pch is assumed. " 4686 if (!llvm::sys::path::has_extension(Output)) 4687 Output += ".pch"; 4688 } else { 4689 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 4690 Output = YcArg->getValue(); 4691 if (Output.empty()) 4692 Output = BaseName; 4693 llvm::sys::path::replace_extension(Output, ".pch"); 4694 } 4695 return Output.str(); 4696 } 4697 4698 const ToolChain &Driver::getToolChain(const ArgList &Args, 4699 const llvm::Triple &Target) const { 4700 4701 auto &TC = ToolChains[Target.str()]; 4702 if (!TC) { 4703 switch (Target.getOS()) { 4704 case llvm::Triple::AIX: 4705 TC = std::make_unique<toolchains::AIX>(*this, Target, Args); 4706 break; 4707 case llvm::Triple::Haiku: 4708 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args); 4709 break; 4710 case llvm::Triple::Ananas: 4711 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args); 4712 break; 4713 case llvm::Triple::CloudABI: 4714 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args); 4715 break; 4716 case llvm::Triple::Darwin: 4717 case llvm::Triple::MacOSX: 4718 case llvm::Triple::IOS: 4719 case llvm::Triple::TvOS: 4720 case llvm::Triple::WatchOS: 4721 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args); 4722 break; 4723 case llvm::Triple::DragonFly: 4724 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args); 4725 break; 4726 case llvm::Triple::OpenBSD: 4727 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args); 4728 break; 4729 case llvm::Triple::NetBSD: 4730 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args); 4731 break; 4732 case llvm::Triple::FreeBSD: 4733 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args); 4734 break; 4735 case llvm::Triple::Minix: 4736 TC = std::make_unique<toolchains::Minix>(*this, Target, Args); 4737 break; 4738 case llvm::Triple::Linux: 4739 case llvm::Triple::ELFIAMCU: 4740 if (Target.getArch() == llvm::Triple::hexagon) 4741 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 4742 Args); 4743 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 4744 !Target.hasEnvironment()) 4745 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 4746 Args); 4747 else if (Target.getArch() == llvm::Triple::ppc || 4748 Target.getArch() == llvm::Triple::ppc64 || 4749 Target.getArch() == llvm::Triple::ppc64le) 4750 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 4751 Args); 4752 else 4753 TC = std::make_unique<toolchains::Linux>(*this, Target, Args); 4754 break; 4755 case llvm::Triple::NaCl: 4756 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 4757 break; 4758 case llvm::Triple::Fuchsia: 4759 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args); 4760 break; 4761 case llvm::Triple::Solaris: 4762 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args); 4763 break; 4764 case llvm::Triple::AMDHSA: 4765 case llvm::Triple::AMDPAL: 4766 case llvm::Triple::Mesa3D: 4767 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 4768 break; 4769 case llvm::Triple::Win32: 4770 switch (Target.getEnvironment()) { 4771 default: 4772 if (Target.isOSBinFormatELF()) 4773 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4774 else if (Target.isOSBinFormatMachO()) 4775 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 4776 else 4777 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4778 break; 4779 case llvm::Triple::GNU: 4780 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args); 4781 break; 4782 case llvm::Triple::Itanium: 4783 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 4784 Args); 4785 break; 4786 case llvm::Triple::MSVC: 4787 case llvm::Triple::UnknownEnvironment: 4788 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 4789 .startswith_lower("bfd")) 4790 TC = std::make_unique<toolchains::CrossWindowsToolChain>( 4791 *this, Target, Args); 4792 else 4793 TC = 4794 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 4795 break; 4796 } 4797 break; 4798 case llvm::Triple::PS4: 4799 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args); 4800 break; 4801 case llvm::Triple::Contiki: 4802 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args); 4803 break; 4804 case llvm::Triple::Hurd: 4805 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args); 4806 break; 4807 default: 4808 // Of these targets, Hexagon is the only one that might have 4809 // an OS of Linux, in which case it got handled above already. 4810 switch (Target.getArch()) { 4811 case llvm::Triple::tce: 4812 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 4813 break; 4814 case llvm::Triple::tcele: 4815 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 4816 break; 4817 case llvm::Triple::hexagon: 4818 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 4819 Args); 4820 break; 4821 case llvm::Triple::lanai: 4822 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 4823 break; 4824 case llvm::Triple::xcore: 4825 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 4826 break; 4827 case llvm::Triple::wasm32: 4828 case llvm::Triple::wasm64: 4829 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args); 4830 break; 4831 case llvm::Triple::avr: 4832 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 4833 break; 4834 case llvm::Triple::msp430: 4835 TC = 4836 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 4837 break; 4838 case llvm::Triple::riscv32: 4839 case llvm::Triple::riscv64: 4840 TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 4841 break; 4842 default: 4843 if (Target.getVendor() == llvm::Triple::Myriad) 4844 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target, 4845 Args); 4846 else if (toolchains::BareMetal::handlesTarget(Target)) 4847 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 4848 else if (Target.isOSBinFormatELF()) 4849 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4850 else if (Target.isOSBinFormatMachO()) 4851 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 4852 else 4853 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4854 } 4855 } 4856 } 4857 4858 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 4859 // compiles always need two toolchains, the CUDA toolchain and the host 4860 // toolchain. So the only valid way to create a CUDA toolchain is via 4861 // CreateOffloadingDeviceToolChains. 4862 4863 return *TC; 4864 } 4865 4866 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 4867 // Say "no" if there is not exactly one input of a type clang understands. 4868 if (JA.size() != 1 || 4869 !types::isAcceptedByClang((*JA.input_begin())->getType())) 4870 return false; 4871 4872 // And say "no" if this is not a kind of action clang understands. 4873 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 4874 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4875 return false; 4876 4877 return true; 4878 } 4879 4880 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const { 4881 // Say "no" if there is not exactly one input of a type flang understands. 4882 if (JA.size() != 1 || 4883 !types::isFortran((*JA.input_begin())->getType())) 4884 return false; 4885 4886 // And say "no" if this is not a kind of action flang understands. 4887 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4888 return false; 4889 4890 return true; 4891 } 4892 4893 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 4894 /// grouped values as integers. Numbers which are not provided are set to 0. 4895 /// 4896 /// \return True if the entire string was parsed (9.2), or all groups were 4897 /// parsed (10.3.5extrastuff). 4898 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 4899 unsigned &Micro, bool &HadExtra) { 4900 HadExtra = false; 4901 4902 Major = Minor = Micro = 0; 4903 if (Str.empty()) 4904 return false; 4905 4906 if (Str.consumeInteger(10, Major)) 4907 return false; 4908 if (Str.empty()) 4909 return true; 4910 if (Str[0] != '.') 4911 return false; 4912 4913 Str = Str.drop_front(1); 4914 4915 if (Str.consumeInteger(10, Minor)) 4916 return false; 4917 if (Str.empty()) 4918 return true; 4919 if (Str[0] != '.') 4920 return false; 4921 Str = Str.drop_front(1); 4922 4923 if (Str.consumeInteger(10, Micro)) 4924 return false; 4925 if (!Str.empty()) 4926 HadExtra = true; 4927 return true; 4928 } 4929 4930 /// Parse digits from a string \p Str and fulfill \p Digits with 4931 /// the parsed numbers. This method assumes that the max number of 4932 /// digits to look for is equal to Digits.size(). 4933 /// 4934 /// \return True if the entire string was parsed and there are 4935 /// no extra characters remaining at the end. 4936 bool Driver::GetReleaseVersion(StringRef Str, 4937 MutableArrayRef<unsigned> Digits) { 4938 if (Str.empty()) 4939 return false; 4940 4941 unsigned CurDigit = 0; 4942 while (CurDigit < Digits.size()) { 4943 unsigned Digit; 4944 if (Str.consumeInteger(10, Digit)) 4945 return false; 4946 Digits[CurDigit] = Digit; 4947 if (Str.empty()) 4948 return true; 4949 if (Str[0] != '.') 4950 return false; 4951 Str = Str.drop_front(1); 4952 CurDigit++; 4953 } 4954 4955 // More digits than requested, bail out... 4956 return false; 4957 } 4958 4959 std::pair<unsigned, unsigned> 4960 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { 4961 unsigned IncludedFlagsBitmask = 0; 4962 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 4963 4964 if (IsClCompatMode) { 4965 // Include CL and Core options. 4966 IncludedFlagsBitmask |= options::CLOption; 4967 IncludedFlagsBitmask |= options::CoreOption; 4968 } else { 4969 ExcludedFlagsBitmask |= options::CLOption; 4970 } 4971 4972 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 4973 } 4974 4975 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 4976 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 4977 } 4978