1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the abstract lowering for the Swift calling convention. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/CodeGen/SwiftCallingConv.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 19 using namespace clang; 20 using namespace CodeGen; 21 using namespace swiftcall; 22 23 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) { 24 return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo()); 25 } 26 27 static bool isPowerOf2(unsigned n) { 28 return n == (n & -n); 29 } 30 31 /// Given two types with the same size, try to find a common type. 32 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) { 33 assert(first != second); 34 35 // Allow pointers to merge with integers, but prefer the integer type. 36 if (first->isIntegerTy()) { 37 if (second->isPointerTy()) return first; 38 } else if (first->isPointerTy()) { 39 if (second->isIntegerTy()) return second; 40 if (second->isPointerTy()) return first; 41 42 // Allow two vectors to be merged (given that they have the same size). 43 // This assumes that we never have two different vector register sets. 44 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) { 45 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) { 46 if (auto commonTy = getCommonType(firstVecTy->getElementType(), 47 secondVecTy->getElementType())) { 48 return (commonTy == firstVecTy->getElementType() ? first : second); 49 } 50 } 51 } 52 53 return nullptr; 54 } 55 56 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) { 57 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type)); 58 } 59 60 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) { 61 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type)); 62 } 63 64 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) { 65 // Deal with various aggregate types as special cases: 66 67 // Record types. 68 if (auto recType = type->getAs<RecordType>()) { 69 addTypedData(recType->getDecl(), begin); 70 71 // Array types. 72 } else if (type->isArrayType()) { 73 // Incomplete array types (flexible array members?) don't provide 74 // data to lay out, and the other cases shouldn't be possible. 75 auto arrayType = CGM.getContext().getAsConstantArrayType(type); 76 if (!arrayType) return; 77 78 QualType eltType = arrayType->getElementType(); 79 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); 80 for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) { 81 addTypedData(eltType, begin + i * eltSize); 82 } 83 84 // Complex types. 85 } else if (auto complexType = type->getAs<ComplexType>()) { 86 auto eltType = complexType->getElementType(); 87 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); 88 auto eltLLVMType = CGM.getTypes().ConvertType(eltType); 89 addTypedData(eltLLVMType, begin, begin + eltSize); 90 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize); 91 92 // Member pointer types. 93 } else if (type->getAs<MemberPointerType>()) { 94 // Just add it all as opaque. 95 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type)); 96 97 // Everything else is scalar and should not convert as an LLVM aggregate. 98 } else { 99 // We intentionally convert as !ForMem because we want to preserve 100 // that a type was an i1. 101 auto llvmType = CGM.getTypes().ConvertType(type); 102 addTypedData(llvmType, begin); 103 } 104 } 105 106 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) { 107 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record)); 108 } 109 110 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin, 111 const ASTRecordLayout &layout) { 112 // Unions are a special case. 113 if (record->isUnion()) { 114 for (auto field : record->fields()) { 115 if (field->isBitField()) { 116 addBitFieldData(field, begin, 0); 117 } else { 118 addTypedData(field->getType(), begin); 119 } 120 } 121 return; 122 } 123 124 // Note that correctness does not rely on us adding things in 125 // their actual order of layout; it's just somewhat more efficient 126 // for the builder. 127 128 // With that in mind, add "early" C++ data. 129 auto cxxRecord = dyn_cast<CXXRecordDecl>(record); 130 if (cxxRecord) { 131 // - a v-table pointer, if the class adds its own 132 if (layout.hasOwnVFPtr()) { 133 addTypedData(CGM.Int8PtrTy, begin); 134 } 135 136 // - non-virtual bases 137 for (auto &baseSpecifier : cxxRecord->bases()) { 138 if (baseSpecifier.isVirtual()) continue; 139 140 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl(); 141 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord)); 142 } 143 144 // - a vbptr if the class adds its own 145 if (layout.hasOwnVBPtr()) { 146 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset()); 147 } 148 } 149 150 // Add fields. 151 for (auto field : record->fields()) { 152 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex()); 153 if (field->isBitField()) { 154 addBitFieldData(field, begin, fieldOffsetInBits); 155 } else { 156 addTypedData(field->getType(), 157 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits)); 158 } 159 } 160 161 // Add "late" C++ data: 162 if (cxxRecord) { 163 // - virtual bases 164 for (auto &vbaseSpecifier : cxxRecord->vbases()) { 165 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl(); 166 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord)); 167 } 168 } 169 } 170 171 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield, 172 CharUnits recordBegin, 173 uint64_t bitfieldBitBegin) { 174 assert(bitfield->isBitField()); 175 auto &ctx = CGM.getContext(); 176 auto width = bitfield->getBitWidthValue(ctx); 177 178 // We can ignore zero-width bit-fields. 179 if (width == 0) return; 180 181 // toCharUnitsFromBits rounds down. 182 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin); 183 184 // Find the offset of the last byte that is partially occupied by the 185 // bit-field; since we otherwise expect exclusive ends, the end is the 186 // next byte. 187 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1; 188 CharUnits bitfieldByteEnd = 189 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One(); 190 addOpaqueData(recordBegin + bitfieldByteBegin, 191 recordBegin + bitfieldByteEnd); 192 } 193 194 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) { 195 assert(type && "didn't provide type for typed data"); 196 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type)); 197 } 198 199 void SwiftAggLowering::addTypedData(llvm::Type *type, 200 CharUnits begin, CharUnits end) { 201 assert(type && "didn't provide type for typed data"); 202 assert(getTypeStoreSize(CGM, type) == end - begin); 203 204 // Legalize vector types. 205 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { 206 SmallVector<llvm::Type*, 4> componentTys; 207 legalizeVectorType(CGM, end - begin, vecTy, componentTys); 208 assert(componentTys.size() >= 1); 209 210 // Walk the initial components. 211 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) { 212 llvm::Type *componentTy = componentTys[i]; 213 auto componentSize = getTypeStoreSize(CGM, componentTy); 214 assert(componentSize < end - begin); 215 addLegalTypedData(componentTy, begin, begin + componentSize); 216 begin += componentSize; 217 } 218 219 return addLegalTypedData(componentTys.back(), begin, end); 220 } 221 222 // Legalize integer types. 223 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 224 if (!isLegalIntegerType(CGM, intTy)) 225 return addOpaqueData(begin, end); 226 } 227 228 // All other types should be legal. 229 return addLegalTypedData(type, begin, end); 230 } 231 232 void SwiftAggLowering::addLegalTypedData(llvm::Type *type, 233 CharUnits begin, CharUnits end) { 234 // Require the type to be naturally aligned. 235 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) { 236 237 // Try splitting vector types. 238 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { 239 auto split = splitLegalVectorType(CGM, end - begin, vecTy); 240 auto eltTy = split.first; 241 auto numElts = split.second; 242 243 auto eltSize = (end - begin) / numElts; 244 assert(eltSize == getTypeStoreSize(CGM, eltTy)); 245 for (size_t i = 0, e = numElts; i != e; ++i) { 246 addLegalTypedData(eltTy, begin, begin + eltSize); 247 begin += eltSize; 248 } 249 assert(begin == end); 250 return; 251 } 252 253 return addOpaqueData(begin, end); 254 } 255 256 addEntry(type, begin, end); 257 } 258 259 void SwiftAggLowering::addEntry(llvm::Type *type, 260 CharUnits begin, CharUnits end) { 261 assert((!type || 262 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) && 263 "cannot add aggregate-typed data"); 264 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type))); 265 266 // Fast path: we can just add entries to the end. 267 if (Entries.empty() || Entries.back().End <= begin) { 268 Entries.push_back({begin, end, type}); 269 return; 270 } 271 272 // Find the first existing entry that ends after the start of the new data. 273 // TODO: do a binary search if Entries is big enough for it to matter. 274 size_t index = Entries.size() - 1; 275 while (index != 0) { 276 if (Entries[index - 1].End <= begin) break; 277 --index; 278 } 279 280 // The entry ends after the start of the new data. 281 // If the entry starts after the end of the new data, there's no conflict. 282 if (Entries[index].Begin >= end) { 283 // This insertion is potentially O(n), but the way we generally build 284 // these layouts makes that unlikely to matter: we'd need a union of 285 // several very large types. 286 Entries.insert(Entries.begin() + index, {begin, end, type}); 287 return; 288 } 289 290 // Otherwise, the ranges overlap. The new range might also overlap 291 // with later ranges. 292 restartAfterSplit: 293 294 // Simplest case: an exact overlap. 295 if (Entries[index].Begin == begin && Entries[index].End == end) { 296 // If the types match exactly, great. 297 if (Entries[index].Type == type) return; 298 299 // If either type is opaque, make the entry opaque and return. 300 if (Entries[index].Type == nullptr) { 301 return; 302 } else if (type == nullptr) { 303 Entries[index].Type = nullptr; 304 return; 305 } 306 307 // If they disagree in an ABI-agnostic way, just resolve the conflict 308 // arbitrarily. 309 if (auto entryType = getCommonType(Entries[index].Type, type)) { 310 Entries[index].Type = entryType; 311 return; 312 } 313 314 // Otherwise, make the entry opaque. 315 Entries[index].Type = nullptr; 316 return; 317 } 318 319 // Okay, we have an overlapping conflict of some sort. 320 321 // If we have a vector type, split it. 322 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) { 323 auto eltTy = vecTy->getElementType(); 324 CharUnits eltSize = (end - begin) / vecTy->getNumElements(); 325 assert(eltSize == getTypeStoreSize(CGM, eltTy)); 326 for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) { 327 addEntry(eltTy, begin, begin + eltSize); 328 begin += eltSize; 329 } 330 assert(begin == end); 331 return; 332 } 333 334 // If the entry is a vector type, split it and try again. 335 if (Entries[index].Type && Entries[index].Type->isVectorTy()) { 336 splitVectorEntry(index); 337 goto restartAfterSplit; 338 } 339 340 // Okay, we have no choice but to make the existing entry opaque. 341 342 Entries[index].Type = nullptr; 343 344 // Stretch the start of the entry to the beginning of the range. 345 if (begin < Entries[index].Begin) { 346 Entries[index].Begin = begin; 347 assert(index == 0 || begin >= Entries[index - 1].End); 348 } 349 350 // Stretch the end of the entry to the end of the range; but if we run 351 // into the start of the next entry, just leave the range there and repeat. 352 while (end > Entries[index].End) { 353 assert(Entries[index].Type == nullptr); 354 355 // If the range doesn't overlap the next entry, we're done. 356 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) { 357 Entries[index].End = end; 358 break; 359 } 360 361 // Otherwise, stretch to the start of the next entry. 362 Entries[index].End = Entries[index + 1].Begin; 363 364 // Continue with the next entry. 365 index++; 366 367 // This entry needs to be made opaque if it is not already. 368 if (Entries[index].Type == nullptr) 369 continue; 370 371 // Split vector entries unless we completely subsume them. 372 if (Entries[index].Type->isVectorTy() && 373 end < Entries[index].End) { 374 splitVectorEntry(index); 375 } 376 377 // Make the entry opaque. 378 Entries[index].Type = nullptr; 379 } 380 } 381 382 /// Replace the entry of vector type at offset 'index' with a sequence 383 /// of its component vectors. 384 void SwiftAggLowering::splitVectorEntry(unsigned index) { 385 auto vecTy = cast<llvm::VectorType>(Entries[index].Type); 386 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy); 387 388 auto eltTy = split.first; 389 CharUnits eltSize = getTypeStoreSize(CGM, eltTy); 390 auto numElts = split.second; 391 Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry()); 392 393 CharUnits begin = Entries[index].Begin; 394 for (unsigned i = 0; i != numElts; ++i) { 395 Entries[index].Type = eltTy; 396 Entries[index].Begin = begin; 397 Entries[index].End = begin + eltSize; 398 begin += eltSize; 399 } 400 } 401 402 /// Given a power-of-two unit size, return the offset of the aligned unit 403 /// of that size which contains the given offset. 404 /// 405 /// In other words, round down to the nearest multiple of the unit size. 406 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) { 407 assert(isPowerOf2(unitSize.getQuantity())); 408 auto unitMask = ~(unitSize.getQuantity() - 1); 409 return CharUnits::fromQuantity(offset.getQuantity() & unitMask); 410 } 411 412 static bool areBytesInSameUnit(CharUnits first, CharUnits second, 413 CharUnits chunkSize) { 414 return getOffsetAtStartOfUnit(first, chunkSize) 415 == getOffsetAtStartOfUnit(second, chunkSize); 416 } 417 418 static bool isMergeableEntryType(llvm::Type *type) { 419 // Opaquely-typed memory is always mergeable. 420 if (type == nullptr) return true; 421 422 // Pointers and integers are always mergeable. In theory we should not 423 // merge pointers, but (1) it doesn't currently matter in practice because 424 // the chunk size is never greater than the size of a pointer and (2) 425 // Swift IRGen uses integer types for a lot of things that are "really" 426 // just storing pointers (like Optional<SomePointer>). If we ever have a 427 // target that would otherwise combine pointers, we should put some effort 428 // into fixing those cases in Swift IRGen and then call out pointer types 429 // here. 430 431 // Floating-point and vector types should never be merged. 432 // Most such types are too large and highly-aligned to ever trigger merging 433 // in practice, but it's important for the rule to cover at least 'half' 434 // and 'float', as well as things like small vectors of 'i1' or 'i8'. 435 return (!type->isFloatingPointTy() && !type->isVectorTy()); 436 } 437 438 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first, 439 const StorageEntry &second, 440 CharUnits chunkSize) { 441 // Only merge entries that overlap the same chunk. We test this first 442 // despite being a bit more expensive because this is the condition that 443 // tends to prevent merging. 444 if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin, 445 chunkSize)) 446 return false; 447 448 return (isMergeableEntryType(first.Type) && 449 isMergeableEntryType(second.Type)); 450 } 451 452 void SwiftAggLowering::finish() { 453 if (Entries.empty()) { 454 Finished = true; 455 return; 456 } 457 458 // We logically split the layout down into a series of chunks of this size, 459 // which is generally the size of a pointer. 460 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM); 461 462 // First pass: if two entries should be merged, make them both opaque 463 // and stretch one to meet the next. 464 // Also, remember if there are any opaque entries. 465 bool hasOpaqueEntries = (Entries[0].Type == nullptr); 466 for (size_t i = 1, e = Entries.size(); i != e; ++i) { 467 if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) { 468 Entries[i - 1].Type = nullptr; 469 Entries[i].Type = nullptr; 470 Entries[i - 1].End = Entries[i].Begin; 471 hasOpaqueEntries = true; 472 473 } else if (Entries[i].Type == nullptr) { 474 hasOpaqueEntries = true; 475 } 476 } 477 478 // The rest of the algorithm leaves non-opaque entries alone, so if we 479 // have no opaque entries, we're done. 480 if (!hasOpaqueEntries) { 481 Finished = true; 482 return; 483 } 484 485 // Okay, move the entries to a temporary and rebuild Entries. 486 auto orig = std::move(Entries); 487 assert(Entries.empty()); 488 489 for (size_t i = 0, e = orig.size(); i != e; ++i) { 490 // Just copy over non-opaque entries. 491 if (orig[i].Type != nullptr) { 492 Entries.push_back(orig[i]); 493 continue; 494 } 495 496 // Scan forward to determine the full extent of the next opaque range. 497 // We know from the first pass that only contiguous ranges will overlap 498 // the same aligned chunk. 499 auto begin = orig[i].Begin; 500 auto end = orig[i].End; 501 while (i + 1 != e && 502 orig[i + 1].Type == nullptr && 503 end == orig[i + 1].Begin) { 504 end = orig[i + 1].End; 505 i++; 506 } 507 508 // Add an entry per intersected chunk. 509 do { 510 // Find the smallest aligned storage unit in the maximal aligned 511 // storage unit containing 'begin' that contains all the bytes in 512 // the intersection between the range and this chunk. 513 CharUnits localBegin = begin; 514 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize); 515 CharUnits chunkEnd = chunkBegin + chunkSize; 516 CharUnits localEnd = std::min(end, chunkEnd); 517 518 // Just do a simple loop over ever-increasing unit sizes. 519 CharUnits unitSize = CharUnits::One(); 520 CharUnits unitBegin, unitEnd; 521 for (; ; unitSize *= 2) { 522 assert(unitSize <= chunkSize); 523 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize); 524 unitEnd = unitBegin + unitSize; 525 if (unitEnd >= localEnd) break; 526 } 527 528 // Add an entry for this unit. 529 auto entryTy = 530 llvm::IntegerType::get(CGM.getLLVMContext(), 531 CGM.getContext().toBits(unitSize)); 532 Entries.push_back({unitBegin, unitEnd, entryTy}); 533 534 // The next chunk starts where this chunk left off. 535 begin = localEnd; 536 } while (begin != end); 537 } 538 539 // Okay, finally finished. 540 Finished = true; 541 } 542 543 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const { 544 assert(Finished && "haven't yet finished lowering"); 545 546 for (auto &entry : Entries) { 547 callback(entry.Begin, entry.End, entry.Type); 548 } 549 } 550 551 std::pair<llvm::StructType*, llvm::Type*> 552 SwiftAggLowering::getCoerceAndExpandTypes() const { 553 assert(Finished && "haven't yet finished lowering"); 554 555 auto &ctx = CGM.getLLVMContext(); 556 557 if (Entries.empty()) { 558 auto type = llvm::StructType::get(ctx); 559 return { type, type }; 560 } 561 562 SmallVector<llvm::Type*, 8> elts; 563 CharUnits lastEnd = CharUnits::Zero(); 564 bool hasPadding = false; 565 bool packed = false; 566 for (auto &entry : Entries) { 567 if (entry.Begin != lastEnd) { 568 auto paddingSize = entry.Begin - lastEnd; 569 assert(!paddingSize.isNegative()); 570 571 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), 572 paddingSize.getQuantity()); 573 elts.push_back(padding); 574 hasPadding = true; 575 } 576 577 if (!packed && !entry.Begin.isMultipleOf( 578 CharUnits::fromQuantity( 579 CGM.getDataLayout().getABITypeAlignment(entry.Type)))) 580 packed = true; 581 582 elts.push_back(entry.Type); 583 584 lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type); 585 assert(entry.End <= lastEnd); 586 } 587 588 // We don't need to adjust 'packed' to deal with possible tail padding 589 // because we never do that kind of access through the coercion type. 590 auto coercionType = llvm::StructType::get(ctx, elts, packed); 591 592 llvm::Type *unpaddedType = coercionType; 593 if (hasPadding) { 594 elts.clear(); 595 for (auto &entry : Entries) { 596 elts.push_back(entry.Type); 597 } 598 if (elts.size() == 1) { 599 unpaddedType = elts[0]; 600 } else { 601 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false); 602 } 603 } else if (Entries.size() == 1) { 604 unpaddedType = Entries[0].Type; 605 } 606 607 return { coercionType, unpaddedType }; 608 } 609 610 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const { 611 assert(Finished && "haven't yet finished lowering"); 612 613 // Empty types don't need to be passed indirectly. 614 if (Entries.empty()) return false; 615 616 // Avoid copying the array of types when there's just a single element. 617 if (Entries.size() == 1) { 618 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift( 619 Entries.back().Type, 620 asReturnValue); 621 } 622 623 SmallVector<llvm::Type*, 8> componentTys; 624 componentTys.reserve(Entries.size()); 625 for (auto &entry : Entries) { 626 componentTys.push_back(entry.Type); 627 } 628 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys, 629 asReturnValue); 630 } 631 632 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM, 633 ArrayRef<llvm::Type*> componentTys, 634 bool asReturnValue) { 635 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys, 636 asReturnValue); 637 } 638 639 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) { 640 // Currently always the size of an ordinary pointer. 641 return CGM.getContext().toCharUnitsFromBits( 642 CGM.getContext().getTargetInfo().getPointerWidth(0)); 643 } 644 645 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) { 646 // For Swift's purposes, this is always just the store size of the type 647 // rounded up to a power of 2. 648 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity(); 649 if (!isPowerOf2(size)) { 650 size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1); 651 } 652 assert(size >= CGM.getDataLayout().getABITypeAlignment(type)); 653 return CharUnits::fromQuantity(size); 654 } 655 656 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM, 657 llvm::IntegerType *intTy) { 658 auto size = intTy->getBitWidth(); 659 switch (size) { 660 case 1: 661 case 8: 662 case 16: 663 case 32: 664 case 64: 665 // Just assume that the above are always legal. 666 return true; 667 668 case 128: 669 return CGM.getContext().getTargetInfo().hasInt128Type(); 670 671 default: 672 return false; 673 } 674 } 675 676 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 677 llvm::VectorType *vectorTy) { 678 return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(), 679 vectorTy->getNumElements()); 680 } 681 682 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 683 llvm::Type *eltTy, unsigned numElts) { 684 assert(numElts > 1 && "illegal vector length"); 685 return getSwiftABIInfo(CGM) 686 .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts); 687 } 688 689 std::pair<llvm::Type*, unsigned> 690 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 691 llvm::VectorType *vectorTy) { 692 auto numElts = vectorTy->getNumElements(); 693 auto eltTy = vectorTy->getElementType(); 694 695 // Try to split the vector type in half. 696 if (numElts >= 4 && isPowerOf2(numElts)) { 697 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2)) 698 return {llvm::VectorType::get(eltTy, numElts / 2), 2}; 699 } 700 701 return {eltTy, numElts}; 702 } 703 704 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize, 705 llvm::VectorType *origVectorTy, 706 llvm::SmallVectorImpl<llvm::Type*> &components) { 707 // If it's already a legal vector type, use it. 708 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) { 709 components.push_back(origVectorTy); 710 return; 711 } 712 713 // Try to split the vector into legal subvectors. 714 auto numElts = origVectorTy->getNumElements(); 715 auto eltTy = origVectorTy->getElementType(); 716 assert(numElts != 1); 717 718 // The largest size that we're still considering making subvectors of. 719 // Always a power of 2. 720 unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined); 721 unsigned candidateNumElts = 1U << logCandidateNumElts; 722 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts); 723 724 // Minor optimization: don't check the legality of this exact size twice. 725 if (candidateNumElts == numElts) { 726 logCandidateNumElts--; 727 candidateNumElts >>= 1; 728 } 729 730 CharUnits eltSize = (origVectorSize / numElts); 731 CharUnits candidateSize = eltSize * candidateNumElts; 732 733 // The sensibility of this algorithm relies on the fact that we never 734 // have a legal non-power-of-2 vector size without having the power of 2 735 // also be legal. 736 while (logCandidateNumElts > 0) { 737 assert(candidateNumElts == 1U << logCandidateNumElts); 738 assert(candidateNumElts <= numElts); 739 assert(candidateSize == eltSize * candidateNumElts); 740 741 // Skip illegal vector sizes. 742 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) { 743 logCandidateNumElts--; 744 candidateNumElts /= 2; 745 candidateSize /= 2; 746 continue; 747 } 748 749 // Add the right number of vectors of this size. 750 auto numVecs = numElts >> logCandidateNumElts; 751 components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts)); 752 numElts -= (numVecs << logCandidateNumElts); 753 754 if (numElts == 0) return; 755 756 // It's possible that the number of elements remaining will be legal. 757 // This can happen with e.g. <7 x float> when <3 x float> is legal. 758 // This only needs to be separately checked if it's not a power of 2. 759 if (numElts > 2 && !isPowerOf2(numElts) && 760 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) { 761 components.push_back(llvm::VectorType::get(eltTy, numElts)); 762 return; 763 } 764 765 // Bring vecSize down to something no larger than numElts. 766 do { 767 logCandidateNumElts--; 768 candidateNumElts /= 2; 769 candidateSize /= 2; 770 } while (candidateNumElts > numElts); 771 } 772 773 // Otherwise, just append a bunch of individual elements. 774 components.append(numElts, eltTy); 775 } 776 777 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM, 778 const RecordDecl *record) { 779 // FIXME: should we not rely on the standard computation in Sema, just in 780 // case we want to diverge from the platform ABI (e.g. on targets where 781 // that uses the MSVC rule)? 782 return !record->canPassInRegisters(); 783 } 784 785 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, 786 bool forReturn, 787 CharUnits alignmentForIndirect) { 788 if (lowering.empty()) { 789 return ABIArgInfo::getIgnore(); 790 } else if (lowering.shouldPassIndirectly(forReturn)) { 791 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false); 792 } else { 793 auto types = lowering.getCoerceAndExpandTypes(); 794 return ABIArgInfo::getCoerceAndExpand(types.first, types.second); 795 } 796 } 797 798 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, 799 bool forReturn) { 800 if (auto recordType = dyn_cast<RecordType>(type)) { 801 auto record = recordType->getDecl(); 802 auto &layout = CGM.getContext().getASTRecordLayout(record); 803 804 if (mustPassRecordIndirectly(CGM, record)) 805 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false); 806 807 SwiftAggLowering lowering(CGM); 808 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout); 809 lowering.finish(); 810 811 return classifyExpandedType(lowering, forReturn, layout.getAlignment()); 812 } 813 814 // Just assume that all of our target ABIs can support returning at least 815 // two integer or floating-point values. 816 if (isa<ComplexType>(type)) { 817 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand()); 818 } 819 820 // Vector types may need to be legalized. 821 if (isa<VectorType>(type)) { 822 SwiftAggLowering lowering(CGM); 823 lowering.addTypedData(type, CharUnits::Zero()); 824 lowering.finish(); 825 826 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type); 827 return classifyExpandedType(lowering, forReturn, alignment); 828 } 829 830 // Member pointer types need to be expanded, but it's a simple form of 831 // expansion that 'Direct' can handle. Note that CanBeFlattened should be 832 // true for this to work. 833 834 // 'void' needs to be ignored. 835 if (type->isVoidType()) { 836 return ABIArgInfo::getIgnore(); 837 } 838 839 // Everything else can be passed directly. 840 return ABIArgInfo::getDirect(); 841 } 842 843 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) { 844 return classifyType(CGM, type, /*forReturn*/ true); 845 } 846 847 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM, 848 CanQualType type) { 849 return classifyType(CGM, type, /*forReturn*/ false); 850 } 851 852 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 853 auto &retInfo = FI.getReturnInfo(); 854 retInfo = classifyReturnType(CGM, FI.getReturnType()); 855 856 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) { 857 auto &argInfo = FI.arg_begin()[i]; 858 argInfo.info = classifyArgumentType(CGM, argInfo.type); 859 } 860 } 861 862 // Is swifterror lowered to a register by the target ABI. 863 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) { 864 return getSwiftABIInfo(CGM).isSwiftErrorInRegister(); 865 } 866