1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the abstract lowering for the Swift calling convention.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/CodeGen/SwiftCallingConv.h"
14 #include "ABIInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18
19 using namespace clang;
20 using namespace CodeGen;
21 using namespace swiftcall;
22
getSwiftABIInfo(CodeGenModule & CGM)23 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
24 return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
25 }
26
isPowerOf2(unsigned n)27 static bool isPowerOf2(unsigned n) {
28 return n == (n & -n);
29 }
30
31 /// Given two types with the same size, try to find a common type.
getCommonType(llvm::Type * first,llvm::Type * second)32 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
33 assert(first != second);
34
35 // Allow pointers to merge with integers, but prefer the integer type.
36 if (first->isIntegerTy()) {
37 if (second->isPointerTy()) return first;
38 } else if (first->isPointerTy()) {
39 if (second->isIntegerTy()) return second;
40 if (second->isPointerTy()) return first;
41
42 // Allow two vectors to be merged (given that they have the same size).
43 // This assumes that we never have two different vector register sets.
44 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
45 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
46 if (auto commonTy = getCommonType(firstVecTy->getElementType(),
47 secondVecTy->getElementType())) {
48 return (commonTy == firstVecTy->getElementType() ? first : second);
49 }
50 }
51 }
52
53 return nullptr;
54 }
55
getTypeStoreSize(CodeGenModule & CGM,llvm::Type * type)56 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
57 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
58 }
59
getTypeAllocSize(CodeGenModule & CGM,llvm::Type * type)60 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
61 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
62 }
63
addTypedData(QualType type,CharUnits begin)64 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
65 // Deal with various aggregate types as special cases:
66
67 // Record types.
68 if (auto recType = type->getAs<RecordType>()) {
69 addTypedData(recType->getDecl(), begin);
70
71 // Array types.
72 } else if (type->isArrayType()) {
73 // Incomplete array types (flexible array members?) don't provide
74 // data to lay out, and the other cases shouldn't be possible.
75 auto arrayType = CGM.getContext().getAsConstantArrayType(type);
76 if (!arrayType) return;
77
78 QualType eltType = arrayType->getElementType();
79 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
80 for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
81 addTypedData(eltType, begin + i * eltSize);
82 }
83
84 // Complex types.
85 } else if (auto complexType = type->getAs<ComplexType>()) {
86 auto eltType = complexType->getElementType();
87 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
88 auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
89 addTypedData(eltLLVMType, begin, begin + eltSize);
90 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
91
92 // Member pointer types.
93 } else if (type->getAs<MemberPointerType>()) {
94 // Just add it all as opaque.
95 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
96
97 // Atomic types.
98 } else if (const auto *atomicType = type->getAs<AtomicType>()) {
99 auto valueType = atomicType->getValueType();
100 auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
101 auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
102
103 addTypedData(atomicType->getValueType(), begin);
104
105 // Add atomic padding.
106 auto atomicPadding = atomicSize - valueSize;
107 if (atomicPadding > CharUnits::Zero())
108 addOpaqueData(begin + valueSize, begin + atomicSize);
109
110 // Everything else is scalar and should not convert as an LLVM aggregate.
111 } else {
112 // We intentionally convert as !ForMem because we want to preserve
113 // that a type was an i1.
114 auto *llvmType = CGM.getTypes().ConvertType(type);
115 addTypedData(llvmType, begin);
116 }
117 }
118
addTypedData(const RecordDecl * record,CharUnits begin)119 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
120 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
121 }
122
addTypedData(const RecordDecl * record,CharUnits begin,const ASTRecordLayout & layout)123 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
124 const ASTRecordLayout &layout) {
125 // Unions are a special case.
126 if (record->isUnion()) {
127 for (auto field : record->fields()) {
128 if (field->isBitField()) {
129 addBitFieldData(field, begin, 0);
130 } else {
131 addTypedData(field->getType(), begin);
132 }
133 }
134 return;
135 }
136
137 // Note that correctness does not rely on us adding things in
138 // their actual order of layout; it's just somewhat more efficient
139 // for the builder.
140
141 // With that in mind, add "early" C++ data.
142 auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
143 if (cxxRecord) {
144 // - a v-table pointer, if the class adds its own
145 if (layout.hasOwnVFPtr()) {
146 addTypedData(CGM.Int8PtrTy, begin);
147 }
148
149 // - non-virtual bases
150 for (auto &baseSpecifier : cxxRecord->bases()) {
151 if (baseSpecifier.isVirtual()) continue;
152
153 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
154 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
155 }
156
157 // - a vbptr if the class adds its own
158 if (layout.hasOwnVBPtr()) {
159 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
160 }
161 }
162
163 // Add fields.
164 for (auto field : record->fields()) {
165 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
166 if (field->isBitField()) {
167 addBitFieldData(field, begin, fieldOffsetInBits);
168 } else {
169 addTypedData(field->getType(),
170 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
171 }
172 }
173
174 // Add "late" C++ data:
175 if (cxxRecord) {
176 // - virtual bases
177 for (auto &vbaseSpecifier : cxxRecord->vbases()) {
178 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
179 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
180 }
181 }
182 }
183
addBitFieldData(const FieldDecl * bitfield,CharUnits recordBegin,uint64_t bitfieldBitBegin)184 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
185 CharUnits recordBegin,
186 uint64_t bitfieldBitBegin) {
187 assert(bitfield->isBitField());
188 auto &ctx = CGM.getContext();
189 auto width = bitfield->getBitWidthValue(ctx);
190
191 // We can ignore zero-width bit-fields.
192 if (width == 0) return;
193
194 // toCharUnitsFromBits rounds down.
195 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
196
197 // Find the offset of the last byte that is partially occupied by the
198 // bit-field; since we otherwise expect exclusive ends, the end is the
199 // next byte.
200 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
201 CharUnits bitfieldByteEnd =
202 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
203 addOpaqueData(recordBegin + bitfieldByteBegin,
204 recordBegin + bitfieldByteEnd);
205 }
206
addTypedData(llvm::Type * type,CharUnits begin)207 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
208 assert(type && "didn't provide type for typed data");
209 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
210 }
211
addTypedData(llvm::Type * type,CharUnits begin,CharUnits end)212 void SwiftAggLowering::addTypedData(llvm::Type *type,
213 CharUnits begin, CharUnits end) {
214 assert(type && "didn't provide type for typed data");
215 assert(getTypeStoreSize(CGM, type) == end - begin);
216
217 // Legalize vector types.
218 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
219 SmallVector<llvm::Type*, 4> componentTys;
220 legalizeVectorType(CGM, end - begin, vecTy, componentTys);
221 assert(componentTys.size() >= 1);
222
223 // Walk the initial components.
224 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
225 llvm::Type *componentTy = componentTys[i];
226 auto componentSize = getTypeStoreSize(CGM, componentTy);
227 assert(componentSize < end - begin);
228 addLegalTypedData(componentTy, begin, begin + componentSize);
229 begin += componentSize;
230 }
231
232 return addLegalTypedData(componentTys.back(), begin, end);
233 }
234
235 // Legalize integer types.
236 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
237 if (!isLegalIntegerType(CGM, intTy))
238 return addOpaqueData(begin, end);
239 }
240
241 // All other types should be legal.
242 return addLegalTypedData(type, begin, end);
243 }
244
addLegalTypedData(llvm::Type * type,CharUnits begin,CharUnits end)245 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
246 CharUnits begin, CharUnits end) {
247 // Require the type to be naturally aligned.
248 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
249
250 // Try splitting vector types.
251 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
252 auto split = splitLegalVectorType(CGM, end - begin, vecTy);
253 auto eltTy = split.first;
254 auto numElts = split.second;
255
256 auto eltSize = (end - begin) / numElts;
257 assert(eltSize == getTypeStoreSize(CGM, eltTy));
258 for (size_t i = 0, e = numElts; i != e; ++i) {
259 addLegalTypedData(eltTy, begin, begin + eltSize);
260 begin += eltSize;
261 }
262 assert(begin == end);
263 return;
264 }
265
266 return addOpaqueData(begin, end);
267 }
268
269 addEntry(type, begin, end);
270 }
271
addEntry(llvm::Type * type,CharUnits begin,CharUnits end)272 void SwiftAggLowering::addEntry(llvm::Type *type,
273 CharUnits begin, CharUnits end) {
274 assert((!type ||
275 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
276 "cannot add aggregate-typed data");
277 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
278
279 // Fast path: we can just add entries to the end.
280 if (Entries.empty() || Entries.back().End <= begin) {
281 Entries.push_back({begin, end, type});
282 return;
283 }
284
285 // Find the first existing entry that ends after the start of the new data.
286 // TODO: do a binary search if Entries is big enough for it to matter.
287 size_t index = Entries.size() - 1;
288 while (index != 0) {
289 if (Entries[index - 1].End <= begin) break;
290 --index;
291 }
292
293 // The entry ends after the start of the new data.
294 // If the entry starts after the end of the new data, there's no conflict.
295 if (Entries[index].Begin >= end) {
296 // This insertion is potentially O(n), but the way we generally build
297 // these layouts makes that unlikely to matter: we'd need a union of
298 // several very large types.
299 Entries.insert(Entries.begin() + index, {begin, end, type});
300 return;
301 }
302
303 // Otherwise, the ranges overlap. The new range might also overlap
304 // with later ranges.
305 restartAfterSplit:
306
307 // Simplest case: an exact overlap.
308 if (Entries[index].Begin == begin && Entries[index].End == end) {
309 // If the types match exactly, great.
310 if (Entries[index].Type == type) return;
311
312 // If either type is opaque, make the entry opaque and return.
313 if (Entries[index].Type == nullptr) {
314 return;
315 } else if (type == nullptr) {
316 Entries[index].Type = nullptr;
317 return;
318 }
319
320 // If they disagree in an ABI-agnostic way, just resolve the conflict
321 // arbitrarily.
322 if (auto entryType = getCommonType(Entries[index].Type, type)) {
323 Entries[index].Type = entryType;
324 return;
325 }
326
327 // Otherwise, make the entry opaque.
328 Entries[index].Type = nullptr;
329 return;
330 }
331
332 // Okay, we have an overlapping conflict of some sort.
333
334 // If we have a vector type, split it.
335 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
336 auto eltTy = vecTy->getElementType();
337 CharUnits eltSize =
338 (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
339 assert(eltSize == getTypeStoreSize(CGM, eltTy));
340 for (unsigned i = 0,
341 e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
342 i != e; ++i) {
343 addEntry(eltTy, begin, begin + eltSize);
344 begin += eltSize;
345 }
346 assert(begin == end);
347 return;
348 }
349
350 // If the entry is a vector type, split it and try again.
351 if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
352 splitVectorEntry(index);
353 goto restartAfterSplit;
354 }
355
356 // Okay, we have no choice but to make the existing entry opaque.
357
358 Entries[index].Type = nullptr;
359
360 // Stretch the start of the entry to the beginning of the range.
361 if (begin < Entries[index].Begin) {
362 Entries[index].Begin = begin;
363 assert(index == 0 || begin >= Entries[index - 1].End);
364 }
365
366 // Stretch the end of the entry to the end of the range; but if we run
367 // into the start of the next entry, just leave the range there and repeat.
368 while (end > Entries[index].End) {
369 assert(Entries[index].Type == nullptr);
370
371 // If the range doesn't overlap the next entry, we're done.
372 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
373 Entries[index].End = end;
374 break;
375 }
376
377 // Otherwise, stretch to the start of the next entry.
378 Entries[index].End = Entries[index + 1].Begin;
379
380 // Continue with the next entry.
381 index++;
382
383 // This entry needs to be made opaque if it is not already.
384 if (Entries[index].Type == nullptr)
385 continue;
386
387 // Split vector entries unless we completely subsume them.
388 if (Entries[index].Type->isVectorTy() &&
389 end < Entries[index].End) {
390 splitVectorEntry(index);
391 }
392
393 // Make the entry opaque.
394 Entries[index].Type = nullptr;
395 }
396 }
397
398 /// Replace the entry of vector type at offset 'index' with a sequence
399 /// of its component vectors.
splitVectorEntry(unsigned index)400 void SwiftAggLowering::splitVectorEntry(unsigned index) {
401 auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
402 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
403
404 auto eltTy = split.first;
405 CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
406 auto numElts = split.second;
407 Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
408
409 CharUnits begin = Entries[index].Begin;
410 for (unsigned i = 0; i != numElts; ++i) {
411 Entries[index].Type = eltTy;
412 Entries[index].Begin = begin;
413 Entries[index].End = begin + eltSize;
414 begin += eltSize;
415 }
416 }
417
418 /// Given a power-of-two unit size, return the offset of the aligned unit
419 /// of that size which contains the given offset.
420 ///
421 /// In other words, round down to the nearest multiple of the unit size.
getOffsetAtStartOfUnit(CharUnits offset,CharUnits unitSize)422 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
423 assert(isPowerOf2(unitSize.getQuantity()));
424 auto unitMask = ~(unitSize.getQuantity() - 1);
425 return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
426 }
427
areBytesInSameUnit(CharUnits first,CharUnits second,CharUnits chunkSize)428 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
429 CharUnits chunkSize) {
430 return getOffsetAtStartOfUnit(first, chunkSize)
431 == getOffsetAtStartOfUnit(second, chunkSize);
432 }
433
isMergeableEntryType(llvm::Type * type)434 static bool isMergeableEntryType(llvm::Type *type) {
435 // Opaquely-typed memory is always mergeable.
436 if (type == nullptr) return true;
437
438 // Pointers and integers are always mergeable. In theory we should not
439 // merge pointers, but (1) it doesn't currently matter in practice because
440 // the chunk size is never greater than the size of a pointer and (2)
441 // Swift IRGen uses integer types for a lot of things that are "really"
442 // just storing pointers (like Optional<SomePointer>). If we ever have a
443 // target that would otherwise combine pointers, we should put some effort
444 // into fixing those cases in Swift IRGen and then call out pointer types
445 // here.
446
447 // Floating-point and vector types should never be merged.
448 // Most such types are too large and highly-aligned to ever trigger merging
449 // in practice, but it's important for the rule to cover at least 'half'
450 // and 'float', as well as things like small vectors of 'i1' or 'i8'.
451 return (!type->isFloatingPointTy() && !type->isVectorTy());
452 }
453
shouldMergeEntries(const StorageEntry & first,const StorageEntry & second,CharUnits chunkSize)454 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
455 const StorageEntry &second,
456 CharUnits chunkSize) {
457 // Only merge entries that overlap the same chunk. We test this first
458 // despite being a bit more expensive because this is the condition that
459 // tends to prevent merging.
460 if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
461 chunkSize))
462 return false;
463
464 return (isMergeableEntryType(first.Type) &&
465 isMergeableEntryType(second.Type));
466 }
467
finish()468 void SwiftAggLowering::finish() {
469 if (Entries.empty()) {
470 Finished = true;
471 return;
472 }
473
474 // We logically split the layout down into a series of chunks of this size,
475 // which is generally the size of a pointer.
476 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
477
478 // First pass: if two entries should be merged, make them both opaque
479 // and stretch one to meet the next.
480 // Also, remember if there are any opaque entries.
481 bool hasOpaqueEntries = (Entries[0].Type == nullptr);
482 for (size_t i = 1, e = Entries.size(); i != e; ++i) {
483 if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
484 Entries[i - 1].Type = nullptr;
485 Entries[i].Type = nullptr;
486 Entries[i - 1].End = Entries[i].Begin;
487 hasOpaqueEntries = true;
488
489 } else if (Entries[i].Type == nullptr) {
490 hasOpaqueEntries = true;
491 }
492 }
493
494 // The rest of the algorithm leaves non-opaque entries alone, so if we
495 // have no opaque entries, we're done.
496 if (!hasOpaqueEntries) {
497 Finished = true;
498 return;
499 }
500
501 // Okay, move the entries to a temporary and rebuild Entries.
502 auto orig = std::move(Entries);
503 assert(Entries.empty());
504
505 for (size_t i = 0, e = orig.size(); i != e; ++i) {
506 // Just copy over non-opaque entries.
507 if (orig[i].Type != nullptr) {
508 Entries.push_back(orig[i]);
509 continue;
510 }
511
512 // Scan forward to determine the full extent of the next opaque range.
513 // We know from the first pass that only contiguous ranges will overlap
514 // the same aligned chunk.
515 auto begin = orig[i].Begin;
516 auto end = orig[i].End;
517 while (i + 1 != e &&
518 orig[i + 1].Type == nullptr &&
519 end == orig[i + 1].Begin) {
520 end = orig[i + 1].End;
521 i++;
522 }
523
524 // Add an entry per intersected chunk.
525 do {
526 // Find the smallest aligned storage unit in the maximal aligned
527 // storage unit containing 'begin' that contains all the bytes in
528 // the intersection between the range and this chunk.
529 CharUnits localBegin = begin;
530 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
531 CharUnits chunkEnd = chunkBegin + chunkSize;
532 CharUnits localEnd = std::min(end, chunkEnd);
533
534 // Just do a simple loop over ever-increasing unit sizes.
535 CharUnits unitSize = CharUnits::One();
536 CharUnits unitBegin, unitEnd;
537 for (; ; unitSize *= 2) {
538 assert(unitSize <= chunkSize);
539 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
540 unitEnd = unitBegin + unitSize;
541 if (unitEnd >= localEnd) break;
542 }
543
544 // Add an entry for this unit.
545 auto entryTy =
546 llvm::IntegerType::get(CGM.getLLVMContext(),
547 CGM.getContext().toBits(unitSize));
548 Entries.push_back({unitBegin, unitEnd, entryTy});
549
550 // The next chunk starts where this chunk left off.
551 begin = localEnd;
552 } while (begin != end);
553 }
554
555 // Okay, finally finished.
556 Finished = true;
557 }
558
enumerateComponents(EnumerationCallback callback) const559 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
560 assert(Finished && "haven't yet finished lowering");
561
562 for (auto &entry : Entries) {
563 callback(entry.Begin, entry.End, entry.Type);
564 }
565 }
566
567 std::pair<llvm::StructType*, llvm::Type*>
getCoerceAndExpandTypes() const568 SwiftAggLowering::getCoerceAndExpandTypes() const {
569 assert(Finished && "haven't yet finished lowering");
570
571 auto &ctx = CGM.getLLVMContext();
572
573 if (Entries.empty()) {
574 auto type = llvm::StructType::get(ctx);
575 return { type, type };
576 }
577
578 SmallVector<llvm::Type*, 8> elts;
579 CharUnits lastEnd = CharUnits::Zero();
580 bool hasPadding = false;
581 bool packed = false;
582 for (auto &entry : Entries) {
583 if (entry.Begin != lastEnd) {
584 auto paddingSize = entry.Begin - lastEnd;
585 assert(!paddingSize.isNegative());
586
587 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
588 paddingSize.getQuantity());
589 elts.push_back(padding);
590 hasPadding = true;
591 }
592
593 if (!packed && !entry.Begin.isMultipleOf(
594 CharUnits::fromQuantity(
595 CGM.getDataLayout().getABITypeAlignment(entry.Type))))
596 packed = true;
597
598 elts.push_back(entry.Type);
599
600 lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
601 assert(entry.End <= lastEnd);
602 }
603
604 // We don't need to adjust 'packed' to deal with possible tail padding
605 // because we never do that kind of access through the coercion type.
606 auto coercionType = llvm::StructType::get(ctx, elts, packed);
607
608 llvm::Type *unpaddedType = coercionType;
609 if (hasPadding) {
610 elts.clear();
611 for (auto &entry : Entries) {
612 elts.push_back(entry.Type);
613 }
614 if (elts.size() == 1) {
615 unpaddedType = elts[0];
616 } else {
617 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
618 }
619 } else if (Entries.size() == 1) {
620 unpaddedType = Entries[0].Type;
621 }
622
623 return { coercionType, unpaddedType };
624 }
625
shouldPassIndirectly(bool asReturnValue) const626 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
627 assert(Finished && "haven't yet finished lowering");
628
629 // Empty types don't need to be passed indirectly.
630 if (Entries.empty()) return false;
631
632 // Avoid copying the array of types when there's just a single element.
633 if (Entries.size() == 1) {
634 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
635 Entries.back().Type,
636 asReturnValue);
637 }
638
639 SmallVector<llvm::Type*, 8> componentTys;
640 componentTys.reserve(Entries.size());
641 for (auto &entry : Entries) {
642 componentTys.push_back(entry.Type);
643 }
644 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
645 asReturnValue);
646 }
647
shouldPassIndirectly(CodeGenModule & CGM,ArrayRef<llvm::Type * > componentTys,bool asReturnValue)648 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
649 ArrayRef<llvm::Type*> componentTys,
650 bool asReturnValue) {
651 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
652 asReturnValue);
653 }
654
getMaximumVoluntaryIntegerSize(CodeGenModule & CGM)655 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
656 // Currently always the size of an ordinary pointer.
657 return CGM.getContext().toCharUnitsFromBits(
658 CGM.getContext().getTargetInfo().getPointerWidth(0));
659 }
660
getNaturalAlignment(CodeGenModule & CGM,llvm::Type * type)661 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
662 // For Swift's purposes, this is always just the store size of the type
663 // rounded up to a power of 2.
664 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
665 if (!isPowerOf2(size)) {
666 size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
667 }
668 assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
669 return CharUnits::fromQuantity(size);
670 }
671
isLegalIntegerType(CodeGenModule & CGM,llvm::IntegerType * intTy)672 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
673 llvm::IntegerType *intTy) {
674 auto size = intTy->getBitWidth();
675 switch (size) {
676 case 1:
677 case 8:
678 case 16:
679 case 32:
680 case 64:
681 // Just assume that the above are always legal.
682 return true;
683
684 case 128:
685 return CGM.getContext().getTargetInfo().hasInt128Type();
686
687 default:
688 return false;
689 }
690 }
691
isLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::VectorType * vectorTy)692 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
693 llvm::VectorType *vectorTy) {
694 return isLegalVectorType(
695 CGM, vectorSize, vectorTy->getElementType(),
696 cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
697 }
698
isLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts)699 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
700 llvm::Type *eltTy, unsigned numElts) {
701 assert(numElts > 1 && "illegal vector length");
702 return getSwiftABIInfo(CGM)
703 .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
704 }
705
706 std::pair<llvm::Type*, unsigned>
splitLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::VectorType * vectorTy)707 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
708 llvm::VectorType *vectorTy) {
709 auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
710 auto eltTy = vectorTy->getElementType();
711
712 // Try to split the vector type in half.
713 if (numElts >= 4 && isPowerOf2(numElts)) {
714 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
715 return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
716 }
717
718 return {eltTy, numElts};
719 }
720
legalizeVectorType(CodeGenModule & CGM,CharUnits origVectorSize,llvm::VectorType * origVectorTy,llvm::SmallVectorImpl<llvm::Type * > & components)721 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
722 llvm::VectorType *origVectorTy,
723 llvm::SmallVectorImpl<llvm::Type*> &components) {
724 // If it's already a legal vector type, use it.
725 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
726 components.push_back(origVectorTy);
727 return;
728 }
729
730 // Try to split the vector into legal subvectors.
731 auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
732 auto eltTy = origVectorTy->getElementType();
733 assert(numElts != 1);
734
735 // The largest size that we're still considering making subvectors of.
736 // Always a power of 2.
737 unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
738 unsigned candidateNumElts = 1U << logCandidateNumElts;
739 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
740
741 // Minor optimization: don't check the legality of this exact size twice.
742 if (candidateNumElts == numElts) {
743 logCandidateNumElts--;
744 candidateNumElts >>= 1;
745 }
746
747 CharUnits eltSize = (origVectorSize / numElts);
748 CharUnits candidateSize = eltSize * candidateNumElts;
749
750 // The sensibility of this algorithm relies on the fact that we never
751 // have a legal non-power-of-2 vector size without having the power of 2
752 // also be legal.
753 while (logCandidateNumElts > 0) {
754 assert(candidateNumElts == 1U << logCandidateNumElts);
755 assert(candidateNumElts <= numElts);
756 assert(candidateSize == eltSize * candidateNumElts);
757
758 // Skip illegal vector sizes.
759 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
760 logCandidateNumElts--;
761 candidateNumElts /= 2;
762 candidateSize /= 2;
763 continue;
764 }
765
766 // Add the right number of vectors of this size.
767 auto numVecs = numElts >> logCandidateNumElts;
768 components.append(numVecs,
769 llvm::FixedVectorType::get(eltTy, candidateNumElts));
770 numElts -= (numVecs << logCandidateNumElts);
771
772 if (numElts == 0) return;
773
774 // It's possible that the number of elements remaining will be legal.
775 // This can happen with e.g. <7 x float> when <3 x float> is legal.
776 // This only needs to be separately checked if it's not a power of 2.
777 if (numElts > 2 && !isPowerOf2(numElts) &&
778 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
779 components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
780 return;
781 }
782
783 // Bring vecSize down to something no larger than numElts.
784 do {
785 logCandidateNumElts--;
786 candidateNumElts /= 2;
787 candidateSize /= 2;
788 } while (candidateNumElts > numElts);
789 }
790
791 // Otherwise, just append a bunch of individual elements.
792 components.append(numElts, eltTy);
793 }
794
mustPassRecordIndirectly(CodeGenModule & CGM,const RecordDecl * record)795 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
796 const RecordDecl *record) {
797 // FIXME: should we not rely on the standard computation in Sema, just in
798 // case we want to diverge from the platform ABI (e.g. on targets where
799 // that uses the MSVC rule)?
800 return !record->canPassInRegisters();
801 }
802
classifyExpandedType(SwiftAggLowering & lowering,bool forReturn,CharUnits alignmentForIndirect)803 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
804 bool forReturn,
805 CharUnits alignmentForIndirect) {
806 if (lowering.empty()) {
807 return ABIArgInfo::getIgnore();
808 } else if (lowering.shouldPassIndirectly(forReturn)) {
809 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
810 } else {
811 auto types = lowering.getCoerceAndExpandTypes();
812 return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
813 }
814 }
815
classifyType(CodeGenModule & CGM,CanQualType type,bool forReturn)816 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
817 bool forReturn) {
818 if (auto recordType = dyn_cast<RecordType>(type)) {
819 auto record = recordType->getDecl();
820 auto &layout = CGM.getContext().getASTRecordLayout(record);
821
822 if (mustPassRecordIndirectly(CGM, record))
823 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
824
825 SwiftAggLowering lowering(CGM);
826 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
827 lowering.finish();
828
829 return classifyExpandedType(lowering, forReturn, layout.getAlignment());
830 }
831
832 // Just assume that all of our target ABIs can support returning at least
833 // two integer or floating-point values.
834 if (isa<ComplexType>(type)) {
835 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
836 }
837
838 // Vector types may need to be legalized.
839 if (isa<VectorType>(type)) {
840 SwiftAggLowering lowering(CGM);
841 lowering.addTypedData(type, CharUnits::Zero());
842 lowering.finish();
843
844 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
845 return classifyExpandedType(lowering, forReturn, alignment);
846 }
847
848 // Member pointer types need to be expanded, but it's a simple form of
849 // expansion that 'Direct' can handle. Note that CanBeFlattened should be
850 // true for this to work.
851
852 // 'void' needs to be ignored.
853 if (type->isVoidType()) {
854 return ABIArgInfo::getIgnore();
855 }
856
857 // Everything else can be passed directly.
858 return ABIArgInfo::getDirect();
859 }
860
classifyReturnType(CodeGenModule & CGM,CanQualType type)861 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
862 return classifyType(CGM, type, /*forReturn*/ true);
863 }
864
classifyArgumentType(CodeGenModule & CGM,CanQualType type)865 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
866 CanQualType type) {
867 return classifyType(CGM, type, /*forReturn*/ false);
868 }
869
computeABIInfo(CodeGenModule & CGM,CGFunctionInfo & FI)870 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
871 auto &retInfo = FI.getReturnInfo();
872 retInfo = classifyReturnType(CGM, FI.getReturnType());
873
874 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
875 auto &argInfo = FI.arg_begin()[i];
876 argInfo.info = classifyArgumentType(CGM, argInfo.type);
877 }
878 }
879
880 // Is swifterror lowered to a register by the target ABI.
isSwiftErrorLoweredInRegister(CodeGenModule & CGM)881 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
882 return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
883 }
884