1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
10 // The class in this file generates structures that follow the Microsoft
11 // Visual C++ ABI, which is actually not very well documented at all outside
12 // of Microsoft.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGVTables.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenTypes.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/VTableBuilder.h"
28 #include "clang/CodeGen/ConstantInitBuilder.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringSet.h"
31 #include "llvm/IR/Intrinsics.h"
32
33 using namespace clang;
34 using namespace CodeGen;
35
36 namespace {
37
38 /// Holds all the vbtable globals for a given class.
39 struct VBTableGlobals {
40 const VPtrInfoVector *VBTables;
41 SmallVector<llvm::GlobalVariable *, 2> Globals;
42 };
43
44 class MicrosoftCXXABI : public CGCXXABI {
45 public:
MicrosoftCXXABI(CodeGenModule & CGM)46 MicrosoftCXXABI(CodeGenModule &CGM)
47 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
48 ClassHierarchyDescriptorType(nullptr),
49 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
50 ThrowInfoType(nullptr) {
51 assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() ||
52 CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) &&
53 "visibility export mapping option unimplemented in this ABI");
54 }
55
56 bool HasThisReturn(GlobalDecl GD) const override;
57 bool hasMostDerivedReturn(GlobalDecl GD) const override;
58
59 bool classifyReturnType(CGFunctionInfo &FI) const override;
60
61 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
62
isSRetParameterAfterThis() const63 bool isSRetParameterAfterThis() const override { return true; }
64
isThisCompleteObject(GlobalDecl GD) const65 bool isThisCompleteObject(GlobalDecl GD) const override {
66 // The Microsoft ABI doesn't use separate complete-object vs.
67 // base-object variants of constructors, but it does of destructors.
68 if (isa<CXXDestructorDecl>(GD.getDecl())) {
69 switch (GD.getDtorType()) {
70 case Dtor_Complete:
71 case Dtor_Deleting:
72 return true;
73
74 case Dtor_Base:
75 return false;
76
77 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
78 }
79 llvm_unreachable("bad dtor kind");
80 }
81
82 // No other kinds.
83 return false;
84 }
85
getSrcArgforCopyCtor(const CXXConstructorDecl * CD,FunctionArgList & Args) const86 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
87 FunctionArgList &Args) const override {
88 assert(Args.size() >= 2 &&
89 "expected the arglist to have at least two args!");
90 // The 'most_derived' parameter goes second if the ctor is variadic and
91 // has v-bases.
92 if (CD->getParent()->getNumVBases() > 0 &&
93 CD->getType()->castAs<FunctionProtoType>()->isVariadic())
94 return 2;
95 return 1;
96 }
97
getVBPtrOffsets(const CXXRecordDecl * RD)98 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
99 std::vector<CharUnits> VBPtrOffsets;
100 const ASTContext &Context = getContext();
101 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
102
103 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
104 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
105 const ASTRecordLayout &SubobjectLayout =
106 Context.getASTRecordLayout(VBT->IntroducingObject);
107 CharUnits Offs = VBT->NonVirtualOffset;
108 Offs += SubobjectLayout.getVBPtrOffset();
109 if (VBT->getVBaseWithVPtr())
110 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
111 VBPtrOffsets.push_back(Offs);
112 }
113 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
114 return VBPtrOffsets;
115 }
116
GetPureVirtualCallName()117 StringRef GetPureVirtualCallName() override { return "_purecall"; }
GetDeletedVirtualCallName()118 StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
119
120 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
121 Address Ptr, QualType ElementType,
122 const CXXDestructorDecl *Dtor) override;
123
124 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
125 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
126
127 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
128
129 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
130 const VPtrInfo &Info);
131
132 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
133 CatchTypeInfo
134 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
135
136 /// MSVC needs an extra flag to indicate a catchall.
getCatchAllTypeInfo()137 CatchTypeInfo getCatchAllTypeInfo() override {
138 // For -EHa catch(...) must handle HW exception
139 // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions
140 if (getContext().getLangOpts().EHAsynch)
141 return CatchTypeInfo{nullptr, 0};
142 else
143 return CatchTypeInfo{nullptr, 0x40};
144 }
145
146 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
147 void EmitBadTypeidCall(CodeGenFunction &CGF) override;
148 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
149 Address ThisPtr,
150 llvm::Type *StdTypeInfoPtrTy) override;
151
152 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
153 QualType SrcRecordTy) override;
154
155 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
156 QualType SrcRecordTy, QualType DestTy,
157 QualType DestRecordTy,
158 llvm::BasicBlock *CastEnd) override;
159
160 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
161 QualType SrcRecordTy,
162 QualType DestTy) override;
163
164 bool EmitBadCastCall(CodeGenFunction &CGF) override;
canSpeculativelyEmitVTable(const CXXRecordDecl * RD) const165 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
166 return false;
167 }
168
169 llvm::Value *
170 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
171 const CXXRecordDecl *ClassDecl,
172 const CXXRecordDecl *BaseClassDecl) override;
173
174 llvm::BasicBlock *
175 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
176 const CXXRecordDecl *RD) override;
177
178 llvm::BasicBlock *
179 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);
180
181 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
182 const CXXRecordDecl *RD) override;
183
184 void EmitCXXConstructors(const CXXConstructorDecl *D) override;
185
186 // Background on MSVC destructors
187 // ==============================
188 //
189 // Both Itanium and MSVC ABIs have destructor variants. The variant names
190 // roughly correspond in the following way:
191 // Itanium Microsoft
192 // Base -> no name, just ~Class
193 // Complete -> vbase destructor
194 // Deleting -> scalar deleting destructor
195 // vector deleting destructor
196 //
197 // The base and complete destructors are the same as in Itanium, although the
198 // complete destructor does not accept a VTT parameter when there are virtual
199 // bases. A separate mechanism involving vtordisps is used to ensure that
200 // virtual methods of destroyed subobjects are not called.
201 //
202 // The deleting destructors accept an i32 bitfield as a second parameter. Bit
203 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this
204 // pointer points to an array. The scalar deleting destructor assumes that
205 // bit 2 is zero, and therefore does not contain a loop.
206 //
207 // For virtual destructors, only one entry is reserved in the vftable, and it
208 // always points to the vector deleting destructor. The vector deleting
209 // destructor is the most general, so it can be used to destroy objects in
210 // place, delete single heap objects, or delete arrays.
211 //
212 // A TU defining a non-inline destructor is only guaranteed to emit a base
213 // destructor, and all of the other variants are emitted on an as-needed basis
214 // in COMDATs. Because a non-base destructor can be emitted in a TU that
215 // lacks a definition for the destructor, non-base destructors must always
216 // delegate to or alias the base destructor.
217
218 AddedStructorArgCounts
219 buildStructorSignature(GlobalDecl GD,
220 SmallVectorImpl<CanQualType> &ArgTys) override;
221
222 /// Non-base dtors should be emitted as delegating thunks in this ABI.
useThunkForDtorVariant(const CXXDestructorDecl * Dtor,CXXDtorType DT) const223 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
224 CXXDtorType DT) const override {
225 return DT != Dtor_Base;
226 }
227
228 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
229 const CXXDestructorDecl *Dtor,
230 CXXDtorType DT) const override;
231
232 llvm::GlobalValue::LinkageTypes
233 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
234 CXXDtorType DT) const override;
235
236 void EmitCXXDestructors(const CXXDestructorDecl *D) override;
237
238 const CXXRecordDecl *
getThisArgumentTypeForMethod(const CXXMethodDecl * MD)239 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
240 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
241 MethodVFTableLocation ML =
242 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
243 // The vbases might be ordered differently in the final overrider object
244 // and the complete object, so the "this" argument may sometimes point to
245 // memory that has no particular type (e.g. past the complete object).
246 // In this case, we just use a generic pointer type.
247 // FIXME: might want to have a more precise type in the non-virtual
248 // multiple inheritance case.
249 if (ML.VBase || !ML.VFPtrOffset.isZero())
250 return nullptr;
251 }
252 return MD->getParent();
253 }
254
255 Address
256 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
257 Address This,
258 bool VirtualCall) override;
259
260 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
261 FunctionArgList &Params) override;
262
263 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
264
265 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF,
266 const CXXConstructorDecl *D,
267 CXXCtorType Type,
268 bool ForVirtualBase,
269 bool Delegating) override;
270
271 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF,
272 const CXXDestructorDecl *DD,
273 CXXDtorType Type,
274 bool ForVirtualBase,
275 bool Delegating) override;
276
277 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
278 CXXDtorType Type, bool ForVirtualBase,
279 bool Delegating, Address This,
280 QualType ThisTy) override;
281
282 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
283 llvm::GlobalVariable *VTable);
284
285 void emitVTableDefinitions(CodeGenVTables &CGVT,
286 const CXXRecordDecl *RD) override;
287
288 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
289 CodeGenFunction::VPtr Vptr) override;
290
291 /// Don't initialize vptrs if dynamic class
292 /// is marked with with the 'novtable' attribute.
doStructorsInitializeVPtrs(const CXXRecordDecl * VTableClass)293 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
294 return !VTableClass->hasAttr<MSNoVTableAttr>();
295 }
296
297 llvm::Constant *
298 getVTableAddressPoint(BaseSubobject Base,
299 const CXXRecordDecl *VTableClass) override;
300
301 llvm::Value *getVTableAddressPointInStructor(
302 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
303 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
304
305 llvm::Constant *
306 getVTableAddressPointForConstExpr(BaseSubobject Base,
307 const CXXRecordDecl *VTableClass) override;
308
309 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
310 CharUnits VPtrOffset) override;
311
312 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
313 Address This, llvm::Type *Ty,
314 SourceLocation Loc) override;
315
316 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
317 const CXXDestructorDecl *Dtor,
318 CXXDtorType DtorType, Address This,
319 DeleteOrMemberCallExpr E) override;
320
adjustCallArgsForDestructorThunk(CodeGenFunction & CGF,GlobalDecl GD,CallArgList & CallArgs)321 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
322 CallArgList &CallArgs) override {
323 assert(GD.getDtorType() == Dtor_Deleting &&
324 "Only deleting destructor thunks are available in this ABI");
325 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
326 getContext().IntTy);
327 }
328
329 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
330
331 llvm::GlobalVariable *
332 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
333 llvm::GlobalVariable::LinkageTypes Linkage);
334
335 llvm::GlobalVariable *
getAddrOfVirtualDisplacementMap(const CXXRecordDecl * SrcRD,const CXXRecordDecl * DstRD)336 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
337 const CXXRecordDecl *DstRD) {
338 SmallString<256> OutName;
339 llvm::raw_svector_ostream Out(OutName);
340 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
341 StringRef MangledName = OutName.str();
342
343 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
344 return VDispMap;
345
346 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
347 unsigned NumEntries = 1 + SrcRD->getNumVBases();
348 SmallVector<llvm::Constant *, 4> Map(NumEntries,
349 llvm::UndefValue::get(CGM.IntTy));
350 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
351 bool AnyDifferent = false;
352 for (const auto &I : SrcRD->vbases()) {
353 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
354 if (!DstRD->isVirtuallyDerivedFrom(VBase))
355 continue;
356
357 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
358 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
359 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
360 AnyDifferent |= SrcVBIndex != DstVBIndex;
361 }
362 // This map would be useless, don't use it.
363 if (!AnyDifferent)
364 return nullptr;
365
366 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
367 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
368 llvm::GlobalValue::LinkageTypes Linkage =
369 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
370 ? llvm::GlobalValue::LinkOnceODRLinkage
371 : llvm::GlobalValue::InternalLinkage;
372 auto *VDispMap = new llvm::GlobalVariable(
373 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
374 /*Initializer=*/Init, MangledName);
375 return VDispMap;
376 }
377
378 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
379 llvm::GlobalVariable *GV) const;
380
setThunkLinkage(llvm::Function * Thunk,bool ForVTable,GlobalDecl GD,bool ReturnAdjustment)381 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
382 GlobalDecl GD, bool ReturnAdjustment) override {
383 GVALinkage Linkage =
384 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
385
386 if (Linkage == GVA_Internal)
387 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
388 else if (ReturnAdjustment)
389 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
390 else
391 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
392 }
393
exportThunk()394 bool exportThunk() override { return false; }
395
396 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
397 const ThisAdjustment &TA) override;
398
399 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
400 const ReturnAdjustment &RA) override;
401
402 void EmitThreadLocalInitFuncs(
403 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
404 ArrayRef<llvm::Function *> CXXThreadLocalInits,
405 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
406
usesThreadWrapperFunction(const VarDecl * VD) const407 bool usesThreadWrapperFunction(const VarDecl *VD) const override {
408 return getContext().getLangOpts().isCompatibleWithMSVC(
409 LangOptions::MSVC2019_5) &&
410 (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD));
411 }
412 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
413 QualType LValType) override;
414
415 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
416 llvm::GlobalVariable *DeclPtr,
417 bool PerformInit) override;
418 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
419 llvm::FunctionCallee Dtor,
420 llvm::Constant *Addr) override;
421
422 // ==== Notes on array cookies =========
423 //
424 // MSVC seems to only use cookies when the class has a destructor; a
425 // two-argument usual array deallocation function isn't sufficient.
426 //
427 // For example, this code prints "100" and "1":
428 // struct A {
429 // char x;
430 // void *operator new[](size_t sz) {
431 // printf("%u\n", sz);
432 // return malloc(sz);
433 // }
434 // void operator delete[](void *p, size_t sz) {
435 // printf("%u\n", sz);
436 // free(p);
437 // }
438 // };
439 // int main() {
440 // A *p = new A[100];
441 // delete[] p;
442 // }
443 // Whereas it prints "104" and "104" if you give A a destructor.
444
445 bool requiresArrayCookie(const CXXDeleteExpr *expr,
446 QualType elementType) override;
447 bool requiresArrayCookie(const CXXNewExpr *expr) override;
448 CharUnits getArrayCookieSizeImpl(QualType type) override;
449 Address InitializeArrayCookie(CodeGenFunction &CGF,
450 Address NewPtr,
451 llvm::Value *NumElements,
452 const CXXNewExpr *expr,
453 QualType ElementType) override;
454 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
455 Address allocPtr,
456 CharUnits cookieSize) override;
457
458 friend struct MSRTTIBuilder;
459
isImageRelative() const460 bool isImageRelative() const {
461 return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64;
462 }
463
464 // 5 routines for constructing the llvm types for MS RTTI structs.
getTypeDescriptorType(StringRef TypeInfoString)465 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
466 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
467 TDTypeName += llvm::utostr(TypeInfoString.size());
468 llvm::StructType *&TypeDescriptorType =
469 TypeDescriptorTypeMap[TypeInfoString.size()];
470 if (TypeDescriptorType)
471 return TypeDescriptorType;
472 llvm::Type *FieldTypes[] = {
473 CGM.Int8PtrPtrTy,
474 CGM.Int8PtrTy,
475 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
476 TypeDescriptorType =
477 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
478 return TypeDescriptorType;
479 }
480
getImageRelativeType(llvm::Type * PtrType)481 llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
482 if (!isImageRelative())
483 return PtrType;
484 return CGM.IntTy;
485 }
486
getBaseClassDescriptorType()487 llvm::StructType *getBaseClassDescriptorType() {
488 if (BaseClassDescriptorType)
489 return BaseClassDescriptorType;
490 llvm::Type *FieldTypes[] = {
491 getImageRelativeType(CGM.Int8PtrTy),
492 CGM.IntTy,
493 CGM.IntTy,
494 CGM.IntTy,
495 CGM.IntTy,
496 CGM.IntTy,
497 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
498 };
499 BaseClassDescriptorType = llvm::StructType::create(
500 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
501 return BaseClassDescriptorType;
502 }
503
getClassHierarchyDescriptorType()504 llvm::StructType *getClassHierarchyDescriptorType() {
505 if (ClassHierarchyDescriptorType)
506 return ClassHierarchyDescriptorType;
507 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
508 ClassHierarchyDescriptorType = llvm::StructType::create(
509 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
510 llvm::Type *FieldTypes[] = {
511 CGM.IntTy,
512 CGM.IntTy,
513 CGM.IntTy,
514 getImageRelativeType(
515 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
516 };
517 ClassHierarchyDescriptorType->setBody(FieldTypes);
518 return ClassHierarchyDescriptorType;
519 }
520
getCompleteObjectLocatorType()521 llvm::StructType *getCompleteObjectLocatorType() {
522 if (CompleteObjectLocatorType)
523 return CompleteObjectLocatorType;
524 CompleteObjectLocatorType = llvm::StructType::create(
525 CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
526 llvm::Type *FieldTypes[] = {
527 CGM.IntTy,
528 CGM.IntTy,
529 CGM.IntTy,
530 getImageRelativeType(CGM.Int8PtrTy),
531 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
532 getImageRelativeType(CompleteObjectLocatorType),
533 };
534 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
535 if (!isImageRelative())
536 FieldTypesRef = FieldTypesRef.drop_back();
537 CompleteObjectLocatorType->setBody(FieldTypesRef);
538 return CompleteObjectLocatorType;
539 }
540
getImageBase()541 llvm::GlobalVariable *getImageBase() {
542 StringRef Name = "__ImageBase";
543 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
544 return GV;
545
546 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
547 /*isConstant=*/true,
548 llvm::GlobalValue::ExternalLinkage,
549 /*Initializer=*/nullptr, Name);
550 CGM.setDSOLocal(GV);
551 return GV;
552 }
553
getImageRelativeConstant(llvm::Constant * PtrVal)554 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
555 if (!isImageRelative())
556 return PtrVal;
557
558 if (PtrVal->isNullValue())
559 return llvm::Constant::getNullValue(CGM.IntTy);
560
561 llvm::Constant *ImageBaseAsInt =
562 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
563 llvm::Constant *PtrValAsInt =
564 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
565 llvm::Constant *Diff =
566 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
567 /*HasNUW=*/true, /*HasNSW=*/true);
568 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
569 }
570
571 private:
getMangleContext()572 MicrosoftMangleContext &getMangleContext() {
573 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
574 }
575
getZeroInt()576 llvm::Constant *getZeroInt() {
577 return llvm::ConstantInt::get(CGM.IntTy, 0);
578 }
579
getAllOnesInt()580 llvm::Constant *getAllOnesInt() {
581 return llvm::Constant::getAllOnesValue(CGM.IntTy);
582 }
583
584 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
585
586 void
587 GetNullMemberPointerFields(const MemberPointerType *MPT,
588 llvm::SmallVectorImpl<llvm::Constant *> &fields);
589
590 /// Shared code for virtual base adjustment. Returns the offset from
591 /// the vbptr to the virtual base. Optionally returns the address of the
592 /// vbptr itself.
593 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
594 Address Base,
595 llvm::Value *VBPtrOffset,
596 llvm::Value *VBTableOffset,
597 llvm::Value **VBPtr = nullptr);
598
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,Address Base,int32_t VBPtrOffset,int32_t VBTableOffset,llvm::Value ** VBPtr=nullptr)599 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
600 Address Base,
601 int32_t VBPtrOffset,
602 int32_t VBTableOffset,
603 llvm::Value **VBPtr = nullptr) {
604 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
605 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
606 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
607 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
608 }
609
610 std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
611 performBaseAdjustment(CodeGenFunction &CGF, Address Value,
612 QualType SrcRecordTy);
613
614 /// Performs a full virtual base adjustment. Used to dereference
615 /// pointers to members of virtual bases.
616 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
617 const CXXRecordDecl *RD, Address Base,
618 llvm::Value *VirtualBaseAdjustmentOffset,
619 llvm::Value *VBPtrOffset /* optional */);
620
621 /// Emits a full member pointer with the fields common to data and
622 /// function member pointers.
623 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
624 bool IsMemberFunction,
625 const CXXRecordDecl *RD,
626 CharUnits NonVirtualBaseAdjustment,
627 unsigned VBTableIndex);
628
629 bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
630 llvm::Constant *MP);
631
632 /// - Initialize all vbptrs of 'this' with RD as the complete type.
633 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
634
635 /// Caching wrapper around VBTableBuilder::enumerateVBTables().
636 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
637
638 /// Generate a thunk for calling a virtual member function MD.
639 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
640 const MethodVFTableLocation &ML);
641
642 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD,
643 CharUnits offset);
644
645 public:
646 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
647
648 bool isZeroInitializable(const MemberPointerType *MPT) override;
649
isMemberPointerConvertible(const MemberPointerType * MPT) const650 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
651 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
652 return RD->hasAttr<MSInheritanceAttr>();
653 }
654
655 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
656
657 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
658 CharUnits offset) override;
659 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
660 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
661
662 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
663 llvm::Value *L,
664 llvm::Value *R,
665 const MemberPointerType *MPT,
666 bool Inequality) override;
667
668 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
669 llvm::Value *MemPtr,
670 const MemberPointerType *MPT) override;
671
672 llvm::Value *
673 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
674 Address Base, llvm::Value *MemPtr,
675 const MemberPointerType *MPT) override;
676
677 llvm::Value *EmitNonNullMemberPointerConversion(
678 const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
679 CastKind CK, CastExpr::path_const_iterator PathBegin,
680 CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
681 CGBuilderTy &Builder);
682
683 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
684 const CastExpr *E,
685 llvm::Value *Src) override;
686
687 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
688 llvm::Constant *Src) override;
689
690 llvm::Constant *EmitMemberPointerConversion(
691 const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
692 CastKind CK, CastExpr::path_const_iterator PathBegin,
693 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
694
695 CGCallee
696 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
697 Address This, llvm::Value *&ThisPtrForCall,
698 llvm::Value *MemPtr,
699 const MemberPointerType *MPT) override;
700
701 void emitCXXStructor(GlobalDecl GD) override;
702
getCatchableTypeType()703 llvm::StructType *getCatchableTypeType() {
704 if (CatchableTypeType)
705 return CatchableTypeType;
706 llvm::Type *FieldTypes[] = {
707 CGM.IntTy, // Flags
708 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
709 CGM.IntTy, // NonVirtualAdjustment
710 CGM.IntTy, // OffsetToVBPtr
711 CGM.IntTy, // VBTableIndex
712 CGM.IntTy, // Size
713 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor
714 };
715 CatchableTypeType = llvm::StructType::create(
716 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
717 return CatchableTypeType;
718 }
719
getCatchableTypeArrayType(uint32_t NumEntries)720 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
721 llvm::StructType *&CatchableTypeArrayType =
722 CatchableTypeArrayTypeMap[NumEntries];
723 if (CatchableTypeArrayType)
724 return CatchableTypeArrayType;
725
726 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
727 CTATypeName += llvm::utostr(NumEntries);
728 llvm::Type *CTType =
729 getImageRelativeType(getCatchableTypeType()->getPointerTo());
730 llvm::Type *FieldTypes[] = {
731 CGM.IntTy, // NumEntries
732 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
733 };
734 CatchableTypeArrayType =
735 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
736 return CatchableTypeArrayType;
737 }
738
getThrowInfoType()739 llvm::StructType *getThrowInfoType() {
740 if (ThrowInfoType)
741 return ThrowInfoType;
742 llvm::Type *FieldTypes[] = {
743 CGM.IntTy, // Flags
744 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
745 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
746 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray
747 };
748 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
749 "eh.ThrowInfo");
750 return ThrowInfoType;
751 }
752
getThrowFn()753 llvm::FunctionCallee getThrowFn() {
754 // _CxxThrowException is passed an exception object and a ThrowInfo object
755 // which describes the exception.
756 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
757 llvm::FunctionType *FTy =
758 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
759 llvm::FunctionCallee Throw =
760 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
761 // _CxxThrowException is stdcall on 32-bit x86 platforms.
762 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
763 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
764 Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
765 }
766 return Throw;
767 }
768
769 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
770 CXXCtorType CT);
771
772 llvm::Constant *getCatchableType(QualType T,
773 uint32_t NVOffset = 0,
774 int32_t VBPtrOffset = -1,
775 uint32_t VBIndex = 0);
776
777 llvm::GlobalVariable *getCatchableTypeArray(QualType T);
778
779 llvm::GlobalVariable *getThrowInfo(QualType T) override;
780
781 std::pair<llvm::Value *, const CXXRecordDecl *>
782 LoadVTablePtr(CodeGenFunction &CGF, Address This,
783 const CXXRecordDecl *RD) override;
784
785 bool
786 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override;
787
788 private:
789 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
790 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
791 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
792 /// All the vftables that have been referenced.
793 VFTablesMapTy VFTablesMap;
794 VTablesMapTy VTablesMap;
795
796 /// This set holds the record decls we've deferred vtable emission for.
797 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
798
799
800 /// All the vbtables which have been referenced.
801 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
802
803 /// Info on the global variable used to guard initialization of static locals.
804 /// The BitIndex field is only used for externally invisible declarations.
805 struct GuardInfo {
GuardInfo__anondeb872430111::MicrosoftCXXABI::GuardInfo806 GuardInfo() : Guard(nullptr), BitIndex(0) {}
807 llvm::GlobalVariable *Guard;
808 unsigned BitIndex;
809 };
810
811 /// Map from DeclContext to the current guard variable. We assume that the
812 /// AST is visited in source code order.
813 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
814 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
815 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
816
817 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
818 llvm::StructType *BaseClassDescriptorType;
819 llvm::StructType *ClassHierarchyDescriptorType;
820 llvm::StructType *CompleteObjectLocatorType;
821
822 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
823
824 llvm::StructType *CatchableTypeType;
825 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
826 llvm::StructType *ThrowInfoType;
827 };
828
829 }
830
831 CGCXXABI::RecordArgABI
getRecordArgABI(const CXXRecordDecl * RD) const832 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
833 // Use the default C calling convention rules for things that can be passed in
834 // registers, i.e. non-trivially copyable records or records marked with
835 // [[trivial_abi]].
836 if (RD->canPassInRegisters())
837 return RAA_Default;
838
839 switch (CGM.getTarget().getTriple().getArch()) {
840 default:
841 // FIXME: Implement for other architectures.
842 return RAA_Indirect;
843
844 case llvm::Triple::thumb:
845 // Pass things indirectly for now because it is simple.
846 // FIXME: This is incompatible with MSVC for arguments with a dtor and no
847 // copy ctor.
848 return RAA_Indirect;
849
850 case llvm::Triple::x86: {
851 // If the argument has *required* alignment greater than four bytes, pass
852 // it indirectly. Prior to MSVC version 19.14, passing overaligned
853 // arguments was not supported and resulted in a compiler error. In 19.14
854 // and later versions, such arguments are now passed indirectly.
855 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl());
856 if (Info.isAlignRequired() && Info.Align > 4)
857 return RAA_Indirect;
858
859 // If C++ prohibits us from making a copy, construct the arguments directly
860 // into argument memory.
861 return RAA_DirectInMemory;
862 }
863
864 case llvm::Triple::x86_64:
865 case llvm::Triple::aarch64:
866 return RAA_Indirect;
867 }
868
869 llvm_unreachable("invalid enum");
870 }
871
emitVirtualObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,Address Ptr,QualType ElementType,const CXXDestructorDecl * Dtor)872 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
873 const CXXDeleteExpr *DE,
874 Address Ptr,
875 QualType ElementType,
876 const CXXDestructorDecl *Dtor) {
877 // FIXME: Provide a source location here even though there's no
878 // CXXMemberCallExpr for dtor call.
879 bool UseGlobalDelete = DE->isGlobalDelete();
880 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
881 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
882 if (UseGlobalDelete)
883 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
884 }
885
emitRethrow(CodeGenFunction & CGF,bool isNoReturn)886 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
887 llvm::Value *Args[] = {
888 llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
889 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
890 llvm::FunctionCallee Fn = getThrowFn();
891 if (isNoReturn)
892 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
893 else
894 CGF.EmitRuntimeCallOrInvoke(Fn, Args);
895 }
896
emitBeginCatch(CodeGenFunction & CGF,const CXXCatchStmt * S)897 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
898 const CXXCatchStmt *S) {
899 // In the MS ABI, the runtime handles the copy, and the catch handler is
900 // responsible for destruction.
901 VarDecl *CatchParam = S->getExceptionDecl();
902 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
903 llvm::CatchPadInst *CPI =
904 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
905 CGF.CurrentFuncletPad = CPI;
906
907 // If this is a catch-all or the catch parameter is unnamed, we don't need to
908 // emit an alloca to the object.
909 if (!CatchParam || !CatchParam->getDeclName()) {
910 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
911 return;
912 }
913
914 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
915 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
916 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
917 CGF.EmitAutoVarCleanups(var);
918 }
919
920 /// We need to perform a generic polymorphic operation (like a typeid
921 /// or a cast), which requires an object with a vfptr. Adjust the
922 /// address to point to an object with a vfptr.
923 std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
performBaseAdjustment(CodeGenFunction & CGF,Address Value,QualType SrcRecordTy)924 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
925 QualType SrcRecordTy) {
926 Value = CGF.Builder.CreateElementBitCast(Value, CGF.Int8Ty);
927 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
928 const ASTContext &Context = getContext();
929
930 // If the class itself has a vfptr, great. This check implicitly
931 // covers non-virtual base subobjects: a class with its own virtual
932 // functions would be a candidate to be a primary base.
933 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
934 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
935 SrcDecl);
936
937 // Okay, one of the vbases must have a vfptr, or else this isn't
938 // actually a polymorphic class.
939 const CXXRecordDecl *PolymorphicBase = nullptr;
940 for (auto &Base : SrcDecl->vbases()) {
941 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
942 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
943 PolymorphicBase = BaseDecl;
944 break;
945 }
946 }
947 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
948
949 llvm::Value *Offset =
950 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
951 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
952 Value.getElementType(), Value.getPointer(), Offset);
953 CharUnits VBaseAlign =
954 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
955 return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset,
956 PolymorphicBase);
957 }
958
shouldTypeidBeNullChecked(bool IsDeref,QualType SrcRecordTy)959 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
960 QualType SrcRecordTy) {
961 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
962 return IsDeref &&
963 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
964 }
965
emitRTtypeidCall(CodeGenFunction & CGF,llvm::Value * Argument)966 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
967 llvm::Value *Argument) {
968 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
969 llvm::FunctionType *FTy =
970 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
971 llvm::Value *Args[] = {Argument};
972 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
973 return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
974 }
975
EmitBadTypeidCall(CodeGenFunction & CGF)976 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
977 llvm::CallBase *Call =
978 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
979 Call->setDoesNotReturn();
980 CGF.Builder.CreateUnreachable();
981 }
982
EmitTypeid(CodeGenFunction & CGF,QualType SrcRecordTy,Address ThisPtr,llvm::Type * StdTypeInfoPtrTy)983 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
984 QualType SrcRecordTy,
985 Address ThisPtr,
986 llvm::Type *StdTypeInfoPtrTy) {
987 std::tie(ThisPtr, std::ignore, std::ignore) =
988 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
989 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer());
990 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
991 }
992
shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,QualType SrcRecordTy)993 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
994 QualType SrcRecordTy) {
995 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
996 return SrcIsPtr &&
997 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
998 }
999
EmitDynamicCastCall(CodeGenFunction & CGF,Address This,QualType SrcRecordTy,QualType DestTy,QualType DestRecordTy,llvm::BasicBlock * CastEnd)1000 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
1001 CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
1002 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
1003 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1004
1005 llvm::Value *SrcRTTI =
1006 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1007 llvm::Value *DestRTTI =
1008 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1009
1010 llvm::Value *Offset;
1011 std::tie(This, Offset, std::ignore) =
1012 performBaseAdjustment(CGF, This, SrcRecordTy);
1013 llvm::Value *ThisPtr = This.getPointer();
1014 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
1015
1016 // PVOID __RTDynamicCast(
1017 // PVOID inptr,
1018 // LONG VfDelta,
1019 // PVOID SrcType,
1020 // PVOID TargetType,
1021 // BOOL isReference)
1022 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
1023 CGF.Int8PtrTy, CGF.Int32Ty};
1024 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1025 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1026 "__RTDynamicCast");
1027 llvm::Value *Args[] = {
1028 ThisPtr, Offset, SrcRTTI, DestRTTI,
1029 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
1030 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args);
1031 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
1032 }
1033
1034 llvm::Value *
EmitDynamicCastToVoid(CodeGenFunction & CGF,Address Value,QualType SrcRecordTy,QualType DestTy)1035 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
1036 QualType SrcRecordTy,
1037 QualType DestTy) {
1038 std::tie(Value, std::ignore, std::ignore) =
1039 performBaseAdjustment(CGF, Value, SrcRecordTy);
1040
1041 // PVOID __RTCastToVoid(
1042 // PVOID inptr)
1043 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1044 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1045 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1046 "__RTCastToVoid");
1047 llvm::Value *Args[] = {Value.getPointer()};
1048 return CGF.EmitRuntimeCall(Function, Args);
1049 }
1050
EmitBadCastCall(CodeGenFunction & CGF)1051 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1052 return false;
1053 }
1054
GetVirtualBaseClassOffset(CodeGenFunction & CGF,Address This,const CXXRecordDecl * ClassDecl,const CXXRecordDecl * BaseClassDecl)1055 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1056 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1057 const CXXRecordDecl *BaseClassDecl) {
1058 const ASTContext &Context = getContext();
1059 int64_t VBPtrChars =
1060 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1061 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1062 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1063 CharUnits VBTableChars =
1064 IntSize *
1065 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1066 llvm::Value *VBTableOffset =
1067 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1068
1069 llvm::Value *VBPtrToNewBase =
1070 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1071 VBPtrToNewBase =
1072 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1073 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1074 }
1075
HasThisReturn(GlobalDecl GD) const1076 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1077 return isa<CXXConstructorDecl>(GD.getDecl());
1078 }
1079
isDeletingDtor(GlobalDecl GD)1080 static bool isDeletingDtor(GlobalDecl GD) {
1081 return isa<CXXDestructorDecl>(GD.getDecl()) &&
1082 GD.getDtorType() == Dtor_Deleting;
1083 }
1084
hasMostDerivedReturn(GlobalDecl GD) const1085 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1086 return isDeletingDtor(GD);
1087 }
1088
isTrivialForAArch64MSVC(const CXXRecordDecl * RD)1089 static bool isTrivialForAArch64MSVC(const CXXRecordDecl *RD) {
1090 // For AArch64, we use the C++14 definition of an aggregate, so we also
1091 // check for:
1092 // No private or protected non static data members.
1093 // No base classes
1094 // No virtual functions
1095 // Additionally, we need to ensure that there is a trivial copy assignment
1096 // operator, a trivial destructor and no user-provided constructors.
1097 if (RD->hasProtectedFields() || RD->hasPrivateFields())
1098 return false;
1099 if (RD->getNumBases() > 0)
1100 return false;
1101 if (RD->isPolymorphic())
1102 return false;
1103 if (RD->hasNonTrivialCopyAssignment())
1104 return false;
1105 for (const CXXConstructorDecl *Ctor : RD->ctors())
1106 if (Ctor->isUserProvided())
1107 return false;
1108 if (RD->hasNonTrivialDestructor())
1109 return false;
1110 return true;
1111 }
1112
classifyReturnType(CGFunctionInfo & FI) const1113 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1114 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1115 if (!RD)
1116 return false;
1117
1118 // Normally, the C++ concept of "is trivially copyable" is used to determine
1119 // if a struct can be returned directly. However, as MSVC and the language
1120 // have evolved, the definition of "trivially copyable" has changed, while the
1121 // ABI must remain stable. AArch64 uses the C++14 concept of an "aggregate",
1122 // while other ISAs use the older concept of "plain old data".
1123 bool isTrivialForABI = RD->isPOD();
1124 bool isAArch64 = CGM.getTarget().getTriple().isAArch64();
1125 if (isAArch64)
1126 isTrivialForABI = RD->canPassInRegisters() && isTrivialForAArch64MSVC(RD);
1127
1128 // MSVC always returns structs indirectly from C++ instance methods.
1129 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod();
1130
1131 if (isIndirectReturn) {
1132 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1133 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1134
1135 // MSVC always passes `this` before the `sret` parameter.
1136 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
1137
1138 // On AArch64, use the `inreg` attribute if the object is considered to not
1139 // be trivially copyable, or if this is an instance method struct return.
1140 FI.getReturnInfo().setInReg(isAArch64);
1141
1142 return true;
1143 }
1144
1145 // Otherwise, use the C ABI rules.
1146 return false;
1147 }
1148
1149 llvm::BasicBlock *
EmitCtorCompleteObjectHandler(CodeGenFunction & CGF,const CXXRecordDecl * RD)1150 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1151 const CXXRecordDecl *RD) {
1152 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1153 assert(IsMostDerivedClass &&
1154 "ctor for a class with virtual bases must have an implicit parameter");
1155 llvm::Value *IsCompleteObject =
1156 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1157
1158 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1159 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1160 CGF.Builder.CreateCondBr(IsCompleteObject,
1161 CallVbaseCtorsBB, SkipVbaseCtorsBB);
1162
1163 CGF.EmitBlock(CallVbaseCtorsBB);
1164
1165 // Fill in the vbtable pointers here.
1166 EmitVBPtrStores(CGF, RD);
1167
1168 // CGF will put the base ctor calls in this basic block for us later.
1169
1170 return SkipVbaseCtorsBB;
1171 }
1172
1173 llvm::BasicBlock *
EmitDtorCompleteObjectHandler(CodeGenFunction & CGF)1174 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
1175 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1176 assert(IsMostDerivedClass &&
1177 "ctor for a class with virtual bases must have an implicit parameter");
1178 llvm::Value *IsCompleteObject =
1179 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1180
1181 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
1182 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
1183 CGF.Builder.CreateCondBr(IsCompleteObject,
1184 CallVbaseDtorsBB, SkipVbaseDtorsBB);
1185
1186 CGF.EmitBlock(CallVbaseDtorsBB);
1187 // CGF will put the base dtor calls in this basic block for us later.
1188
1189 return SkipVbaseDtorsBB;
1190 }
1191
initializeHiddenVirtualInheritanceMembers(CodeGenFunction & CGF,const CXXRecordDecl * RD)1192 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1193 CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1194 // In most cases, an override for a vbase virtual method can adjust
1195 // the "this" parameter by applying a constant offset.
1196 // However, this is not enough while a constructor or a destructor of some
1197 // class X is being executed if all the following conditions are met:
1198 // - X has virtual bases, (1)
1199 // - X overrides a virtual method M of a vbase Y, (2)
1200 // - X itself is a vbase of the most derived class.
1201 //
1202 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1203 // which holds the extra amount of "this" adjustment we must do when we use
1204 // the X vftables (i.e. during X ctor or dtor).
1205 // Outside the ctors and dtors, the values of vtorDisps are zero.
1206
1207 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1208 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1209 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1210 CGBuilderTy &Builder = CGF.Builder;
1211
1212 unsigned AS = getThisAddress(CGF).getAddressSpace();
1213 llvm::Value *Int8This = nullptr; // Initialize lazily.
1214
1215 for (const CXXBaseSpecifier &S : RD->vbases()) {
1216 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
1217 auto I = VBaseMap.find(VBase);
1218 assert(I != VBaseMap.end());
1219 if (!I->second.hasVtorDisp())
1220 continue;
1221
1222 llvm::Value *VBaseOffset =
1223 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
1224 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();
1225
1226 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1227 llvm::Value *VtorDispValue = Builder.CreateSub(
1228 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1229 "vtordisp.value");
1230 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1231
1232 if (!Int8This)
1233 Int8This = Builder.CreateBitCast(getThisValue(CGF),
1234 CGF.Int8Ty->getPointerTo(AS));
1235 llvm::Value *VtorDispPtr =
1236 Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset);
1237 // vtorDisp is always the 32-bits before the vbase in the class layout.
1238 VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4);
1239 VtorDispPtr = Builder.CreateBitCast(
1240 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
1241
1242 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1243 CharUnits::fromQuantity(4));
1244 }
1245 }
1246
hasDefaultCXXMethodCC(ASTContext & Context,const CXXMethodDecl * MD)1247 static bool hasDefaultCXXMethodCC(ASTContext &Context,
1248 const CXXMethodDecl *MD) {
1249 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1250 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1251 CallingConv ActualCallingConv =
1252 MD->getType()->castAs<FunctionProtoType>()->getCallConv();
1253 return ExpectedCallingConv == ActualCallingConv;
1254 }
1255
EmitCXXConstructors(const CXXConstructorDecl * D)1256 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1257 // There's only one constructor type in this ABI.
1258 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1259
1260 // Exported default constructors either have a simple call-site where they use
1261 // the typical calling convention and have a single 'this' pointer for an
1262 // argument -or- they get a wrapper function which appropriately thunks to the
1263 // real default constructor. This thunk is the default constructor closure.
1264 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() &&
1265 D->isDefined()) {
1266 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1267 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1268 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1269 CGM.setGVProperties(Fn, D);
1270 }
1271 }
1272 }
1273
EmitVBPtrStores(CodeGenFunction & CGF,const CXXRecordDecl * RD)1274 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1275 const CXXRecordDecl *RD) {
1276 Address This = getThisAddress(CGF);
1277 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
1278 const ASTContext &Context = getContext();
1279 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1280
1281 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1282 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1283 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
1284 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1285 const ASTRecordLayout &SubobjectLayout =
1286 Context.getASTRecordLayout(VBT->IntroducingObject);
1287 CharUnits Offs = VBT->NonVirtualOffset;
1288 Offs += SubobjectLayout.getVBPtrOffset();
1289 if (VBT->getVBaseWithVPtr())
1290 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1291 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1292 llvm::Value *GVPtr =
1293 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1294 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
1295 "vbptr." + VBT->ObjectWithVPtr->getName());
1296 CGF.Builder.CreateStore(GVPtr, VBPtr);
1297 }
1298 }
1299
1300 CGCXXABI::AddedStructorArgCounts
buildStructorSignature(GlobalDecl GD,SmallVectorImpl<CanQualType> & ArgTys)1301 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
1302 SmallVectorImpl<CanQualType> &ArgTys) {
1303 AddedStructorArgCounts Added;
1304 // TODO: 'for base' flag
1305 if (isa<CXXDestructorDecl>(GD.getDecl()) &&
1306 GD.getDtorType() == Dtor_Deleting) {
1307 // The scalar deleting destructor takes an implicit int parameter.
1308 ArgTys.push_back(getContext().IntTy);
1309 ++Added.Suffix;
1310 }
1311 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
1312 if (!CD)
1313 return Added;
1314
1315 // All parameters are already in place except is_most_derived, which goes
1316 // after 'this' if it's variadic and last if it's not.
1317
1318 const CXXRecordDecl *Class = CD->getParent();
1319 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1320 if (Class->getNumVBases()) {
1321 if (FPT->isVariadic()) {
1322 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1323 ++Added.Prefix;
1324 } else {
1325 ArgTys.push_back(getContext().IntTy);
1326 ++Added.Suffix;
1327 }
1328 }
1329
1330 return Added;
1331 }
1332
setCXXDestructorDLLStorage(llvm::GlobalValue * GV,const CXXDestructorDecl * Dtor,CXXDtorType DT) const1333 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
1334 const CXXDestructorDecl *Dtor,
1335 CXXDtorType DT) const {
1336 // Deleting destructor variants are never imported or exported. Give them the
1337 // default storage class.
1338 if (DT == Dtor_Deleting) {
1339 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1340 } else {
1341 const NamedDecl *ND = Dtor;
1342 CGM.setDLLImportDLLExport(GV, ND);
1343 }
1344 }
1345
getCXXDestructorLinkage(GVALinkage Linkage,const CXXDestructorDecl * Dtor,CXXDtorType DT) const1346 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
1347 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
1348 // Internal things are always internal, regardless of attributes. After this,
1349 // we know the thunk is externally visible.
1350 if (Linkage == GVA_Internal)
1351 return llvm::GlobalValue::InternalLinkage;
1352
1353 switch (DT) {
1354 case Dtor_Base:
1355 // The base destructor most closely tracks the user-declared constructor, so
1356 // we delegate back to the normal declarator case.
1357 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage,
1358 /*IsConstantVariable=*/false);
1359 case Dtor_Complete:
1360 // The complete destructor is like an inline function, but it may be
1361 // imported and therefore must be exported as well. This requires changing
1362 // the linkage if a DLL attribute is present.
1363 if (Dtor->hasAttr<DLLExportAttr>())
1364 return llvm::GlobalValue::WeakODRLinkage;
1365 if (Dtor->hasAttr<DLLImportAttr>())
1366 return llvm::GlobalValue::AvailableExternallyLinkage;
1367 return llvm::GlobalValue::LinkOnceODRLinkage;
1368 case Dtor_Deleting:
1369 // Deleting destructors are like inline functions. They have vague linkage
1370 // and are emitted everywhere they are used. They are internal if the class
1371 // is internal.
1372 return llvm::GlobalValue::LinkOnceODRLinkage;
1373 case Dtor_Comdat:
1374 llvm_unreachable("MS C++ ABI does not support comdat dtors");
1375 }
1376 llvm_unreachable("invalid dtor type");
1377 }
1378
EmitCXXDestructors(const CXXDestructorDecl * D)1379 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1380 // The TU defining a dtor is only guaranteed to emit a base destructor. All
1381 // other destructor variants are delegating thunks.
1382 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1383
1384 // If the class is dllexported, emit the complete (vbase) destructor wherever
1385 // the base dtor is emitted.
1386 // FIXME: To match MSVC, this should only be done when the class is exported
1387 // with -fdllexport-inlines enabled.
1388 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>())
1389 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
1390 }
1391
1392 CharUnits
getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD)1393 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1394 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1395
1396 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1397 // Complete destructors take a pointer to the complete object as a
1398 // parameter, thus don't need this adjustment.
1399 if (GD.getDtorType() == Dtor_Complete)
1400 return CharUnits();
1401
1402 // There's no Dtor_Base in vftable but it shares the this adjustment with
1403 // the deleting one, so look it up instead.
1404 GD = GlobalDecl(DD, Dtor_Deleting);
1405 }
1406
1407 MethodVFTableLocation ML =
1408 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1409 CharUnits Adjustment = ML.VFPtrOffset;
1410
1411 // Normal virtual instance methods need to adjust from the vfptr that first
1412 // defined the virtual method to the virtual base subobject, but destructors
1413 // do not. The vector deleting destructor thunk applies this adjustment for
1414 // us if necessary.
1415 if (isa<CXXDestructorDecl>(MD))
1416 Adjustment = CharUnits::Zero();
1417
1418 if (ML.VBase) {
1419 const ASTRecordLayout &DerivedLayout =
1420 getContext().getASTRecordLayout(MD->getParent());
1421 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1422 }
1423
1424 return Adjustment;
1425 }
1426
adjustThisArgumentForVirtualFunctionCall(CodeGenFunction & CGF,GlobalDecl GD,Address This,bool VirtualCall)1427 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1428 CodeGenFunction &CGF, GlobalDecl GD, Address This,
1429 bool VirtualCall) {
1430 if (!VirtualCall) {
1431 // If the call of a virtual function is not virtual, we just have to
1432 // compensate for the adjustment the virtual function does in its prologue.
1433 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1434 if (Adjustment.isZero())
1435 return This;
1436
1437 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
1438 assert(Adjustment.isPositive());
1439 return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1440 }
1441
1442 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1443
1444 GlobalDecl LookupGD = GD;
1445 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1446 // Complete dtors take a pointer to the complete object,
1447 // thus don't need adjustment.
1448 if (GD.getDtorType() == Dtor_Complete)
1449 return This;
1450
1451 // There's only Dtor_Deleting in vftable but it shares the this adjustment
1452 // with the base one, so look up the deleting one instead.
1453 LookupGD = GlobalDecl(DD, Dtor_Deleting);
1454 }
1455 MethodVFTableLocation ML =
1456 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1457
1458 CharUnits StaticOffset = ML.VFPtrOffset;
1459
1460 // Base destructors expect 'this' to point to the beginning of the base
1461 // subobject, not the first vfptr that happens to contain the virtual dtor.
1462 // However, we still need to apply the virtual base adjustment.
1463 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1464 StaticOffset = CharUnits::Zero();
1465
1466 Address Result = This;
1467 if (ML.VBase) {
1468 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1469
1470 const CXXRecordDecl *Derived = MD->getParent();
1471 const CXXRecordDecl *VBase = ML.VBase;
1472 llvm::Value *VBaseOffset =
1473 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1474 llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP(
1475 Result.getElementType(), Result.getPointer(), VBaseOffset);
1476 CharUnits VBaseAlign =
1477 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1478 Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign);
1479 }
1480 if (!StaticOffset.isZero()) {
1481 assert(StaticOffset.isPositive());
1482 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1483 if (ML.VBase) {
1484 // Non-virtual adjustment might result in a pointer outside the allocated
1485 // object, e.g. if the final overrider class is laid out after the virtual
1486 // base that declares a method in the most derived class.
1487 // FIXME: Update the code that emits this adjustment in thunks prologues.
1488 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1489 } else {
1490 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1491 }
1492 }
1493 return Result;
1494 }
1495
addImplicitStructorParams(CodeGenFunction & CGF,QualType & ResTy,FunctionArgList & Params)1496 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1497 QualType &ResTy,
1498 FunctionArgList &Params) {
1499 ASTContext &Context = getContext();
1500 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1501 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1502 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1503 auto *IsMostDerived = ImplicitParamDecl::Create(
1504 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1505 &Context.Idents.get("is_most_derived"), Context.IntTy,
1506 ImplicitParamDecl::Other);
1507 // The 'most_derived' parameter goes second if the ctor is variadic and last
1508 // if it's not. Dtors can't be variadic.
1509 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1510 if (FPT->isVariadic())
1511 Params.insert(Params.begin() + 1, IsMostDerived);
1512 else
1513 Params.push_back(IsMostDerived);
1514 getStructorImplicitParamDecl(CGF) = IsMostDerived;
1515 } else if (isDeletingDtor(CGF.CurGD)) {
1516 auto *ShouldDelete = ImplicitParamDecl::Create(
1517 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1518 &Context.Idents.get("should_call_delete"), Context.IntTy,
1519 ImplicitParamDecl::Other);
1520 Params.push_back(ShouldDelete);
1521 getStructorImplicitParamDecl(CGF) = ShouldDelete;
1522 }
1523 }
1524
EmitInstanceFunctionProlog(CodeGenFunction & CGF)1525 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1526 // Naked functions have no prolog.
1527 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
1528 return;
1529
1530 // Overridden virtual methods of non-primary bases need to adjust the incoming
1531 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
1532 // sizeof(void*) to adjust from B* to C*:
1533 // struct A { virtual void a(); };
1534 // struct B { virtual void b(); };
1535 // struct C : A, B { virtual void b(); };
1536 //
1537 // Leave the value stored in the 'this' alloca unadjusted, so that the
1538 // debugger sees the unadjusted value. Microsoft debuggers require this, and
1539 // will apply the ThisAdjustment in the method type information.
1540 // FIXME: Do something better for DWARF debuggers, which won't expect this,
1541 // without making our codegen depend on debug info settings.
1542 llvm::Value *This = loadIncomingCXXThis(CGF);
1543 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1544 if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
1545 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
1546 if (!Adjustment.isZero()) {
1547 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1548 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1549 *thisTy = This->getType();
1550 This = CGF.Builder.CreateBitCast(This, charPtrTy);
1551 assert(Adjustment.isPositive());
1552 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1553 -Adjustment.getQuantity());
1554 This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted");
1555 }
1556 }
1557 setCXXABIThisValue(CGF, This);
1558
1559 // If this is a function that the ABI specifies returns 'this', initialize
1560 // the return slot to 'this' at the start of the function.
1561 //
1562 // Unlike the setting of return types, this is done within the ABI
1563 // implementation instead of by clients of CGCXXABI because:
1564 // 1) getThisValue is currently protected
1565 // 2) in theory, an ABI could implement 'this' returns some other way;
1566 // HasThisReturn only specifies a contract, not the implementation
1567 if (HasThisReturn(CGF.CurGD))
1568 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1569 else if (hasMostDerivedReturn(CGF.CurGD))
1570 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1571 CGF.ReturnValue);
1572
1573 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1574 assert(getStructorImplicitParamDecl(CGF) &&
1575 "no implicit parameter for a constructor with virtual bases?");
1576 getStructorImplicitParamValue(CGF)
1577 = CGF.Builder.CreateLoad(
1578 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1579 "is_most_derived");
1580 }
1581
1582 if (isDeletingDtor(CGF.CurGD)) {
1583 assert(getStructorImplicitParamDecl(CGF) &&
1584 "no implicit parameter for a deleting destructor?");
1585 getStructorImplicitParamValue(CGF)
1586 = CGF.Builder.CreateLoad(
1587 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1588 "should_call_delete");
1589 }
1590 }
1591
getImplicitConstructorArgs(CodeGenFunction & CGF,const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating)1592 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs(
1593 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1594 bool ForVirtualBase, bool Delegating) {
1595 assert(Type == Ctor_Complete || Type == Ctor_Base);
1596
1597 // Check if we need a 'most_derived' parameter.
1598 if (!D->getParent()->getNumVBases())
1599 return AddedStructorArgs{};
1600
1601 // Add the 'most_derived' argument second if we are variadic or last if not.
1602 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1603 llvm::Value *MostDerivedArg;
1604 if (Delegating) {
1605 MostDerivedArg = getStructorImplicitParamValue(CGF);
1606 } else {
1607 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1608 }
1609 if (FPT->isVariadic()) {
1610 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}});
1611 }
1612 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}});
1613 }
1614
getCXXDestructorImplicitParam(CodeGenFunction & CGF,const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating)1615 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam(
1616 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type,
1617 bool ForVirtualBase, bool Delegating) {
1618 return nullptr;
1619 }
1620
EmitDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,Address This,QualType ThisTy)1621 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1622 const CXXDestructorDecl *DD,
1623 CXXDtorType Type, bool ForVirtualBase,
1624 bool Delegating, Address This,
1625 QualType ThisTy) {
1626 // Use the base destructor variant in place of the complete destructor variant
1627 // if the class has no virtual bases. This effectively implements some of the
1628 // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
1629 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
1630 Type = Dtor_Base;
1631
1632 GlobalDecl GD(DD, Type);
1633 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
1634
1635 if (DD->isVirtual()) {
1636 assert(Type != CXXDtorType::Dtor_Deleting &&
1637 "The deleting destructor should only be called via a virtual call");
1638 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1639 This, false);
1640 }
1641
1642 llvm::BasicBlock *BaseDtorEndBB = nullptr;
1643 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
1644 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
1645 }
1646
1647 llvm::Value *Implicit =
1648 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase,
1649 Delegating); // = nullptr
1650 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1651 /*ImplicitParam=*/Implicit,
1652 /*ImplicitParamTy=*/QualType(), nullptr);
1653 if (BaseDtorEndBB) {
1654 // Complete object handler should continue to be the remaining
1655 CGF.Builder.CreateBr(BaseDtorEndBB);
1656 CGF.EmitBlock(BaseDtorEndBB);
1657 }
1658 }
1659
emitVTableTypeMetadata(const VPtrInfo & Info,const CXXRecordDecl * RD,llvm::GlobalVariable * VTable)1660 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
1661 const CXXRecordDecl *RD,
1662 llvm::GlobalVariable *VTable) {
1663 if (!CGM.getCodeGenOpts().LTOUnit)
1664 return;
1665
1666 // TODO: Should VirtualFunctionElimination also be supported here?
1667 // See similar handling in CodeGenModule::EmitVTableTypeMetadata.
1668 if (CGM.getCodeGenOpts().WholeProgramVTables) {
1669 llvm::DenseSet<const CXXRecordDecl *> Visited;
1670 llvm::GlobalObject::VCallVisibility TypeVis =
1671 CGM.GetVCallVisibilityLevel(RD, Visited);
1672 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1673 VTable->setVCallVisibilityMetadata(TypeVis);
1674 }
1675
1676 // The location of the first virtual function pointer in the virtual table,
1677 // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1678 // disabled, or sizeof(void*) if RTTI is enabled.
1679 CharUnits AddressPoint =
1680 getContext().getLangOpts().RTTIData
1681 ? getContext().toCharUnitsFromBits(
1682 getContext().getTargetInfo().getPointerWidth(0))
1683 : CharUnits::Zero();
1684
1685 if (Info.PathToIntroducingObject.empty()) {
1686 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1687 return;
1688 }
1689
1690 // Add a bitset entry for the least derived base belonging to this vftable.
1691 CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1692 Info.PathToIntroducingObject.back());
1693
1694 // Add a bitset entry for each derived class that is laid out at the same
1695 // offset as the least derived base.
1696 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
1697 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
1698 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];
1699
1700 const ASTRecordLayout &Layout =
1701 getContext().getASTRecordLayout(DerivedRD);
1702 CharUnits Offset;
1703 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1704 if (VBI == Layout.getVBaseOffsetsMap().end())
1705 Offset = Layout.getBaseClassOffset(BaseRD);
1706 else
1707 Offset = VBI->second.VBaseOffset;
1708 if (!Offset.isZero())
1709 return;
1710 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1711 }
1712
1713 // Finally do the same for the most derived class.
1714 if (Info.FullOffsetInMDC.isZero())
1715 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1716 }
1717
emitVTableDefinitions(CodeGenVTables & CGVT,const CXXRecordDecl * RD)1718 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1719 const CXXRecordDecl *RD) {
1720 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1721 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1722
1723 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
1724 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1725 if (VTable->hasInitializer())
1726 continue;
1727
1728 const VTableLayout &VTLayout =
1729 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1730
1731 llvm::Constant *RTTI = nullptr;
1732 if (any_of(VTLayout.vtable_components(),
1733 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1734 RTTI = getMSCompleteObjectLocator(RD, *Info);
1735
1736 ConstantInitBuilder builder(CGM);
1737 auto components = builder.beginStruct();
1738 CGVT.createVTableInitializer(components, VTLayout, RTTI,
1739 VTable->hasLocalLinkage());
1740 components.finishAndSetAsInitializer(VTable);
1741
1742 emitVTableTypeMetadata(*Info, RD, VTable);
1743 }
1744 }
1745
isVirtualOffsetNeededForVTableField(CodeGenFunction & CGF,CodeGenFunction::VPtr Vptr)1746 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1747 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1748 return Vptr.NearestVBase != nullptr;
1749 }
1750
getVTableAddressPointInStructor(CodeGenFunction & CGF,const CXXRecordDecl * VTableClass,BaseSubobject Base,const CXXRecordDecl * NearestVBase)1751 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1752 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1753 const CXXRecordDecl *NearestVBase) {
1754 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1755 if (!VTableAddressPoint) {
1756 assert(Base.getBase()->getNumVBases() &&
1757 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1758 }
1759 return VTableAddressPoint;
1760 }
1761
mangleVFTableName(MicrosoftMangleContext & MangleContext,const CXXRecordDecl * RD,const VPtrInfo & VFPtr,SmallString<256> & Name)1762 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1763 const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
1764 SmallString<256> &Name) {
1765 llvm::raw_svector_ostream Out(Name);
1766 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
1767 }
1768
1769 llvm::Constant *
getVTableAddressPoint(BaseSubobject Base,const CXXRecordDecl * VTableClass)1770 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1771 const CXXRecordDecl *VTableClass) {
1772 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1773 VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1774 return VFTablesMap[ID];
1775 }
1776
getVTableAddressPointForConstExpr(BaseSubobject Base,const CXXRecordDecl * VTableClass)1777 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1778 BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1779 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1780 assert(VFTable && "Couldn't find a vftable for the given base?");
1781 return VFTable;
1782 }
1783
getAddrOfVTable(const CXXRecordDecl * RD,CharUnits VPtrOffset)1784 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1785 CharUnits VPtrOffset) {
1786 // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1787 // shouldn't be used in the given record type. We want to cache this result in
1788 // VFTablesMap, thus a simple zero check is not sufficient.
1789
1790 VFTableIdTy ID(RD, VPtrOffset);
1791 VTablesMapTy::iterator I;
1792 bool Inserted;
1793 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1794 if (!Inserted)
1795 return I->second;
1796
1797 llvm::GlobalVariable *&VTable = I->second;
1798
1799 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1800 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1801
1802 if (DeferredVFTables.insert(RD).second) {
1803 // We haven't processed this record type before.
1804 // Queue up this vtable for possible deferred emission.
1805 CGM.addDeferredVTable(RD);
1806
1807 #ifndef NDEBUG
1808 // Create all the vftables at once in order to make sure each vftable has
1809 // a unique mangled name.
1810 llvm::StringSet<> ObservedMangledNames;
1811 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1812 SmallString<256> Name;
1813 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
1814 if (!ObservedMangledNames.insert(Name.str()).second)
1815 llvm_unreachable("Already saw this mangling before?");
1816 }
1817 #endif
1818 }
1819
1820 const std::unique_ptr<VPtrInfo> *VFPtrI =
1821 llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) {
1822 return VPI->FullOffsetInMDC == VPtrOffset;
1823 });
1824 if (VFPtrI == VFPtrs.end()) {
1825 VFTablesMap[ID] = nullptr;
1826 return nullptr;
1827 }
1828 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;
1829
1830 SmallString<256> VFTableName;
1831 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);
1832
1833 // Classes marked __declspec(dllimport) need vftables generated on the
1834 // import-side in order to support features like constexpr. No other
1835 // translation unit relies on the emission of the local vftable, translation
1836 // units are expected to generate them as needed.
1837 //
1838 // Because of this unique behavior, we maintain this logic here instead of
1839 // getVTableLinkage.
1840 llvm::GlobalValue::LinkageTypes VFTableLinkage =
1841 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1842 : CGM.getVTableLinkage(RD);
1843 bool VFTableComesFromAnotherTU =
1844 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1845 llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1846 bool VTableAliasIsRequred =
1847 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1848
1849 if (llvm::GlobalValue *VFTable =
1850 CGM.getModule().getNamedGlobal(VFTableName)) {
1851 VFTablesMap[ID] = VFTable;
1852 VTable = VTableAliasIsRequred
1853 ? cast<llvm::GlobalVariable>(
1854 cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject())
1855 : cast<llvm::GlobalVariable>(VFTable);
1856 return VTable;
1857 }
1858
1859 const VTableLayout &VTLayout =
1860 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
1861 llvm::GlobalValue::LinkageTypes VTableLinkage =
1862 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1863
1864 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1865
1866 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
1867
1868 // Create a backing variable for the contents of VTable. The VTable may
1869 // or may not include space for a pointer to RTTI data.
1870 llvm::GlobalValue *VFTable;
1871 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1872 /*isConstant=*/true, VTableLinkage,
1873 /*Initializer=*/nullptr, VTableName);
1874 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1875
1876 llvm::Comdat *C = nullptr;
1877 if (!VFTableComesFromAnotherTU &&
1878 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1879 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1880 VTableAliasIsRequred)))
1881 C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1882
1883 // Only insert a pointer into the VFTable for RTTI data if we are not
1884 // importing it. We never reference the RTTI data directly so there is no
1885 // need to make room for it.
1886 if (VTableAliasIsRequred) {
1887 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
1888 llvm::ConstantInt::get(CGM.Int32Ty, 0),
1889 llvm::ConstantInt::get(CGM.Int32Ty, 1)};
1890 // Create a GEP which points just after the first entry in the VFTable,
1891 // this should be the location of the first virtual method.
1892 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1893 VTable->getValueType(), VTable, GEPIndices);
1894 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1895 VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1896 if (C)
1897 C->setSelectionKind(llvm::Comdat::Largest);
1898 }
1899 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1900 /*AddressSpace=*/0, VFTableLinkage,
1901 VFTableName.str(), VTableGEP,
1902 &CGM.getModule());
1903 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1904 } else {
1905 // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1906 // be referencing any RTTI data.
1907 // The GlobalVariable will end up being an appropriate definition of the
1908 // VFTable.
1909 VFTable = VTable;
1910 }
1911 if (C)
1912 VTable->setComdat(C);
1913
1914 if (RD->hasAttr<DLLExportAttr>())
1915 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1916
1917 VFTablesMap[ID] = VFTable;
1918 return VTable;
1919 }
1920
getVirtualFunctionPointer(CodeGenFunction & CGF,GlobalDecl GD,Address This,llvm::Type * Ty,SourceLocation Loc)1921 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1922 GlobalDecl GD,
1923 Address This,
1924 llvm::Type *Ty,
1925 SourceLocation Loc) {
1926 CGBuilderTy &Builder = CGF.Builder;
1927
1928 Ty = Ty->getPointerTo();
1929 Address VPtr =
1930 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1931
1932 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1933 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(),
1934 MethodDecl->getParent());
1935
1936 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1937 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);
1938
1939 // Compute the identity of the most derived class whose virtual table is
1940 // located at the MethodVFTableLocation ML.
1941 auto getObjectWithVPtr = [&] {
1942 return llvm::find_if(VFTContext.getVFPtrOffsets(
1943 ML.VBase ? ML.VBase : MethodDecl->getParent()),
1944 [&](const std::unique_ptr<VPtrInfo> &Info) {
1945 return Info->FullOffsetInMDC == ML.VFPtrOffset;
1946 })
1947 ->get()
1948 ->ObjectWithVPtr;
1949 };
1950
1951 llvm::Value *VFunc;
1952 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1953 VFunc = CGF.EmitVTableTypeCheckedLoad(
1954 getObjectWithVPtr(), VTable, Ty,
1955 ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8);
1956 } else {
1957 if (CGM.getCodeGenOpts().PrepareForLTO)
1958 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);
1959
1960 llvm::Value *VFuncPtr =
1961 Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn");
1962 VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign());
1963 }
1964
1965 CGCallee Callee(GD, VFunc);
1966 return Callee;
1967 }
1968
EmitVirtualDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor,CXXDtorType DtorType,Address This,DeleteOrMemberCallExpr E)1969 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1970 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1971 Address This, DeleteOrMemberCallExpr E) {
1972 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
1973 auto *D = E.dyn_cast<const CXXDeleteExpr *>();
1974 assert((CE != nullptr) ^ (D != nullptr));
1975 assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1976 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1977
1978 // We have only one destructor in the vftable but can get both behaviors
1979 // by passing an implicit int parameter.
1980 GlobalDecl GD(Dtor, Dtor_Deleting);
1981 const CGFunctionInfo *FInfo =
1982 &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
1983 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1984 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
1985
1986 ASTContext &Context = getContext();
1987 llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1988 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1989 DtorType == Dtor_Deleting);
1990
1991 QualType ThisTy;
1992 if (CE) {
1993 ThisTy = CE->getObjectType();
1994 } else {
1995 ThisTy = D->getDestroyedType();
1996 }
1997
1998 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1999 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
2000 ImplicitParam, Context.IntTy, CE);
2001 return RV.getScalarVal();
2002 }
2003
2004 const VBTableGlobals &
enumerateVBTables(const CXXRecordDecl * RD)2005 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
2006 // At this layer, we can key the cache off of a single class, which is much
2007 // easier than caching each vbtable individually.
2008 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
2009 bool Added;
2010 std::tie(Entry, Added) =
2011 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
2012 VBTableGlobals &VBGlobals = Entry->second;
2013 if (!Added)
2014 return VBGlobals;
2015
2016 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2017 VBGlobals.VBTables = &Context.enumerateVBTables(RD);
2018
2019 // Cache the globals for all vbtables so we don't have to recompute the
2020 // mangled names.
2021 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
2022 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
2023 E = VBGlobals.VBTables->end();
2024 I != E; ++I) {
2025 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
2026 }
2027
2028 return VBGlobals;
2029 }
2030
2031 llvm::Function *
EmitVirtualMemPtrThunk(const CXXMethodDecl * MD,const MethodVFTableLocation & ML)2032 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
2033 const MethodVFTableLocation &ML) {
2034 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
2035 "can't form pointers to ctors or virtual dtors");
2036
2037 // Calculate the mangled name.
2038 SmallString<256> ThunkName;
2039 llvm::raw_svector_ostream Out(ThunkName);
2040 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);
2041
2042 // If the thunk has been generated previously, just return it.
2043 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
2044 return cast<llvm::Function>(GV);
2045
2046 // Create the llvm::Function.
2047 const CGFunctionInfo &FnInfo =
2048 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
2049 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
2050 llvm::Function *ThunkFn =
2051 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
2052 ThunkName.str(), &CGM.getModule());
2053 assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
2054
2055 ThunkFn->setLinkage(MD->isExternallyVisible()
2056 ? llvm::GlobalValue::LinkOnceODRLinkage
2057 : llvm::GlobalValue::InternalLinkage);
2058 if (MD->isExternallyVisible())
2059 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
2060
2061 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
2062 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
2063
2064 // Add the "thunk" attribute so that LLVM knows that the return type is
2065 // meaningless. These thunks can be used to call functions with differing
2066 // return types, and the caller is required to cast the prototype
2067 // appropriately to extract the correct value.
2068 ThunkFn->addFnAttr("thunk");
2069
2070 // These thunks can be compared, so they are not unnamed.
2071 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
2072
2073 // Start codegen.
2074 CodeGenFunction CGF(CGM);
2075 CGF.CurGD = GlobalDecl(MD);
2076 CGF.CurFuncIsThunk = true;
2077
2078 // Build FunctionArgs, but only include the implicit 'this' parameter
2079 // declaration.
2080 FunctionArgList FunctionArgs;
2081 buildThisParam(CGF, FunctionArgs);
2082
2083 // Start defining the function.
2084 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
2085 FunctionArgs, MD->getLocation(), SourceLocation());
2086 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
2087
2088 // Load the vfptr and then callee from the vftable. The callee should have
2089 // adjusted 'this' so that the vfptr is at offset zero.
2090 llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo();
2091 llvm::Value *VTable = CGF.GetVTablePtr(
2092 getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent());
2093
2094 llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64(
2095 ThunkPtrTy, VTable, ML.Index, "vfn");
2096 llvm::Value *Callee =
2097 CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign());
2098
2099 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});
2100
2101 return ThunkFn;
2102 }
2103
emitVirtualInheritanceTables(const CXXRecordDecl * RD)2104 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
2105 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
2106 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
2107 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
2108 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
2109 if (GV->isDeclaration())
2110 emitVBTableDefinition(*VBT, RD, GV);
2111 }
2112 }
2113
2114 llvm::GlobalVariable *
getAddrOfVBTable(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable::LinkageTypes Linkage)2115 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
2116 llvm::GlobalVariable::LinkageTypes Linkage) {
2117 SmallString<256> OutName;
2118 llvm::raw_svector_ostream Out(OutName);
2119 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
2120 StringRef Name = OutName.str();
2121
2122 llvm::ArrayType *VBTableType =
2123 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());
2124
2125 assert(!CGM.getModule().getNamedGlobal(Name) &&
2126 "vbtable with this name already exists: mangling bug?");
2127 CharUnits Alignment =
2128 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
2129 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
2130 Name, VBTableType, Linkage, Alignment.getQuantity());
2131 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2132
2133 if (RD->hasAttr<DLLImportAttr>())
2134 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2135 else if (RD->hasAttr<DLLExportAttr>())
2136 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2137
2138 if (!GV->hasExternalLinkage())
2139 emitVBTableDefinition(VBT, RD, GV);
2140
2141 return GV;
2142 }
2143
emitVBTableDefinition(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable * GV) const2144 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
2145 const CXXRecordDecl *RD,
2146 llvm::GlobalVariable *GV) const {
2147 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;
2148
2149 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
2150 "should only emit vbtables for classes with vbtables");
2151
2152 const ASTRecordLayout &BaseLayout =
2153 getContext().getASTRecordLayout(VBT.IntroducingObject);
2154 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2155
2156 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
2157 nullptr);
2158
2159 // The offset from ObjectWithVPtr's vbptr to itself always leads.
2160 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2161 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2162
2163 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2164 for (const auto &I : ObjectWithVPtr->vbases()) {
2165 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2166 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2167 assert(!Offset.isNegative());
2168
2169 // Make it relative to the subobject vbptr.
2170 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2171 if (VBT.getVBaseWithVPtr())
2172 CompleteVBPtrOffset +=
2173 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2174 Offset -= CompleteVBPtrOffset;
2175
2176 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
2177 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2178 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2179 }
2180
2181 assert(Offsets.size() ==
2182 cast<llvm::ArrayType>(GV->getValueType())->getNumElements());
2183 llvm::ArrayType *VBTableType =
2184 llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2185 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2186 GV->setInitializer(Init);
2187
2188 if (RD->hasAttr<DLLImportAttr>())
2189 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2190 }
2191
performThisAdjustment(CodeGenFunction & CGF,Address This,const ThisAdjustment & TA)2192 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2193 Address This,
2194 const ThisAdjustment &TA) {
2195 if (TA.isEmpty())
2196 return This.getPointer();
2197
2198 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
2199
2200 llvm::Value *V;
2201 if (TA.Virtual.isEmpty()) {
2202 V = This.getPointer();
2203 } else {
2204 assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2205 // Adjust the this argument based on the vtordisp value.
2206 Address VtorDispPtr =
2207 CGF.Builder.CreateConstInBoundsByteGEP(This,
2208 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2209 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
2210 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2211 V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(),
2212 CGF.Builder.CreateNeg(VtorDisp));
2213
2214 // Unfortunately, having applied the vtordisp means that we no
2215 // longer really have a known alignment for the vbptr step.
2216 // We'll assume the vbptr is pointer-aligned.
2217
2218 if (TA.Virtual.Microsoft.VBPtrOffset) {
2219 // If the final overrider is defined in a virtual base other than the one
2220 // that holds the vfptr, we have to use a vtordispex thunk which looks up
2221 // the vbtable of the derived class.
2222 assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2223 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2224 llvm::Value *VBPtr;
2225 llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr(
2226 CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()),
2227 -TA.Virtual.Microsoft.VBPtrOffset,
2228 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2229 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset);
2230 }
2231 }
2232
2233 if (TA.NonVirtual) {
2234 // Non-virtual adjustment might result in a pointer outside the allocated
2235 // object, e.g. if the final overrider class is laid out after the virtual
2236 // base that declares a method in the most derived class.
2237 V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual);
2238 }
2239
2240 // Don't need to bitcast back, the call CodeGen will handle this.
2241 return V;
2242 }
2243
2244 llvm::Value *
performReturnAdjustment(CodeGenFunction & CGF,Address Ret,const ReturnAdjustment & RA)2245 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2246 const ReturnAdjustment &RA) {
2247 if (RA.isEmpty())
2248 return Ret.getPointer();
2249
2250 auto OrigTy = Ret.getType();
2251 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
2252
2253 llvm::Value *V = Ret.getPointer();
2254 if (RA.Virtual.Microsoft.VBIndex) {
2255 assert(RA.Virtual.Microsoft.VBIndex > 0);
2256 int32_t IntSize = CGF.getIntSize().getQuantity();
2257 llvm::Value *VBPtr;
2258 llvm::Value *VBaseOffset =
2259 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2260 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2261 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset);
2262 }
2263
2264 if (RA.NonVirtual)
2265 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2266
2267 // Cast back to the original type.
2268 return CGF.Builder.CreateBitCast(V, OrigTy);
2269 }
2270
requiresArrayCookie(const CXXDeleteExpr * expr,QualType elementType)2271 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2272 QualType elementType) {
2273 // Microsoft seems to completely ignore the possibility of a
2274 // two-argument usual deallocation function.
2275 return elementType.isDestructedType();
2276 }
2277
requiresArrayCookie(const CXXNewExpr * expr)2278 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2279 // Microsoft seems to completely ignore the possibility of a
2280 // two-argument usual deallocation function.
2281 return expr->getAllocatedType().isDestructedType();
2282 }
2283
getArrayCookieSizeImpl(QualType type)2284 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2285 // The array cookie is always a size_t; we then pad that out to the
2286 // alignment of the element type.
2287 ASTContext &Ctx = getContext();
2288 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2289 Ctx.getTypeAlignInChars(type));
2290 }
2291
readArrayCookieImpl(CodeGenFunction & CGF,Address allocPtr,CharUnits cookieSize)2292 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2293 Address allocPtr,
2294 CharUnits cookieSize) {
2295 Address numElementsPtr =
2296 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
2297 return CGF.Builder.CreateLoad(numElementsPtr);
2298 }
2299
InitializeArrayCookie(CodeGenFunction & CGF,Address newPtr,llvm::Value * numElements,const CXXNewExpr * expr,QualType elementType)2300 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2301 Address newPtr,
2302 llvm::Value *numElements,
2303 const CXXNewExpr *expr,
2304 QualType elementType) {
2305 assert(requiresArrayCookie(expr));
2306
2307 // The size of the cookie.
2308 CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2309
2310 // Compute an offset to the cookie.
2311 Address cookiePtr = newPtr;
2312
2313 // Write the number of elements into the appropriate slot.
2314 Address numElementsPtr
2315 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
2316 CGF.Builder.CreateStore(numElements, numElementsPtr);
2317
2318 // Finally, compute a pointer to the actual data buffer by skipping
2319 // over the cookie completely.
2320 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2321 }
2322
emitGlobalDtorWithTLRegDtor(CodeGenFunction & CGF,const VarDecl & VD,llvm::FunctionCallee Dtor,llvm::Constant * Addr)2323 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2324 llvm::FunctionCallee Dtor,
2325 llvm::Constant *Addr) {
2326 // Create a function which calls the destructor.
2327 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2328
2329 // extern "C" int __tlregdtor(void (*f)(void));
2330 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2331 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);
2332
2333 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
2334 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
2335 if (llvm::Function *TLRegDtorFn =
2336 dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
2337 TLRegDtorFn->setDoesNotThrow();
2338
2339 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2340 }
2341
registerGlobalDtor(CodeGenFunction & CGF,const VarDecl & D,llvm::FunctionCallee Dtor,llvm::Constant * Addr)2342 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2343 llvm::FunctionCallee Dtor,
2344 llvm::Constant *Addr) {
2345 if (D.isNoDestroy(CGM.getContext()))
2346 return;
2347
2348 if (D.getTLSKind())
2349 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2350
2351 // The default behavior is to use atexit.
2352 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2353 }
2354
EmitThreadLocalInitFuncs(CodeGenModule & CGM,ArrayRef<const VarDecl * > CXXThreadLocals,ArrayRef<llvm::Function * > CXXThreadLocalInits,ArrayRef<const VarDecl * > CXXThreadLocalInitVars)2355 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2356 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2357 ArrayRef<llvm::Function *> CXXThreadLocalInits,
2358 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2359 if (CXXThreadLocalInits.empty())
2360 return;
2361
2362 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
2363 llvm::Triple::x86
2364 ? "/include:___dyn_tls_init@12"
2365 : "/include:__dyn_tls_init");
2366
2367 // This will create a GV in the .CRT$XDU section. It will point to our
2368 // initialization function. The CRT will call all of these function
2369 // pointers at start-up time and, eventually, at thread-creation time.
2370 auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2371 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2372 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
2373 llvm::GlobalVariable::InternalLinkage, InitFunc,
2374 Twine(InitFunc->getName(), "$initializer$"));
2375 InitFuncPtr->setSection(".CRT$XDU");
2376 // This variable has discardable linkage, we have to add it to @llvm.used to
2377 // ensure it won't get discarded.
2378 CGM.addUsedGlobal(InitFuncPtr);
2379 return InitFuncPtr;
2380 };
2381
2382 std::vector<llvm::Function *> NonComdatInits;
2383 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2384 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2385 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2386 llvm::Function *F = CXXThreadLocalInits[I];
2387
2388 // If the GV is already in a comdat group, then we have to join it.
2389 if (llvm::Comdat *C = GV->getComdat())
2390 AddToXDU(F)->setComdat(C);
2391 else
2392 NonComdatInits.push_back(F);
2393 }
2394
2395 if (!NonComdatInits.empty()) {
2396 llvm::FunctionType *FTy =
2397 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2398 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction(
2399 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2400 SourceLocation(), /*TLS=*/true);
2401 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2402
2403 AddToXDU(InitFunc);
2404 }
2405 }
2406
getTlsGuardVar(CodeGenModule & CGM)2407 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) {
2408 // __tls_guard comes from the MSVC runtime and reflects
2409 // whether TLS has been initialized for a particular thread.
2410 // It is set from within __dyn_tls_init by the runtime.
2411 // Every library and executable has its own variable.
2412 llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext());
2413 llvm::Constant *TlsGuardConstant =
2414 CGM.CreateRuntimeVariable(VTy, "__tls_guard");
2415 llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant);
2416
2417 TlsGuard->setThreadLocal(true);
2418
2419 return TlsGuard;
2420 }
2421
getDynTlsOnDemandInitFn(CodeGenModule & CGM)2422 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) {
2423 // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers
2424 // dynamic TLS initialization by calling __dyn_tls_init internally.
2425 llvm::FunctionType *FTy =
2426 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {},
2427 /*isVarArg=*/false);
2428 return CGM.CreateRuntimeFunction(
2429 FTy, "__dyn_tls_on_demand_init",
2430 llvm::AttributeList::get(CGM.getLLVMContext(),
2431 llvm::AttributeList::FunctionIndex,
2432 llvm::Attribute::NoUnwind),
2433 /*Local=*/true);
2434 }
2435
emitTlsGuardCheck(CodeGenFunction & CGF,llvm::GlobalValue * TlsGuard,llvm::BasicBlock * DynInitBB,llvm::BasicBlock * ContinueBB)2436 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard,
2437 llvm::BasicBlock *DynInitBB,
2438 llvm::BasicBlock *ContinueBB) {
2439 llvm::LoadInst *TlsGuardValue =
2440 CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One()));
2441 llvm::Value *CmpResult =
2442 CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0));
2443 CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB);
2444 }
2445
emitDynamicTlsInitializationCall(CodeGenFunction & CGF,llvm::GlobalValue * TlsGuard,llvm::BasicBlock * ContinueBB)2446 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF,
2447 llvm::GlobalValue *TlsGuard,
2448 llvm::BasicBlock *ContinueBB) {
2449 llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM);
2450 llvm::Function *InitializerFunction =
2451 cast<llvm::Function>(Initializer.getCallee());
2452 llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction);
2453 CallVal->setCallingConv(InitializerFunction->getCallingConv());
2454
2455 CGF.Builder.CreateBr(ContinueBB);
2456 }
2457
emitDynamicTlsInitialization(CodeGenFunction & CGF)2458 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) {
2459 llvm::BasicBlock *DynInitBB =
2460 CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn);
2461 llvm::BasicBlock *ContinueBB =
2462 CGF.createBasicBlock("dyntls.continue", CGF.CurFn);
2463
2464 llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM);
2465
2466 emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB);
2467 CGF.Builder.SetInsertPoint(DynInitBB);
2468 emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB);
2469 CGF.Builder.SetInsertPoint(ContinueBB);
2470 }
2471
EmitThreadLocalVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType LValType)2472 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2473 const VarDecl *VD,
2474 QualType LValType) {
2475 // Dynamic TLS initialization works by checking the state of a
2476 // guard variable (__tls_guard) to see whether TLS initialization
2477 // for a thread has happend yet.
2478 // If not, the initialization is triggered on-demand
2479 // by calling __dyn_tls_on_demand_init.
2480 emitDynamicTlsInitialization(CGF);
2481
2482 // Emit the variable just like any regular global variable.
2483
2484 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2485 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2486
2487 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2488 V = CGF.Builder.CreateBitCast(V, RealVarTy->getPointerTo(AS));
2489
2490 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2491 Address Addr(V, RealVarTy, Alignment);
2492
2493 LValue LV = VD->getType()->isReferenceType()
2494 ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2495 AlignmentSource::Decl)
2496 : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl);
2497 return LV;
2498 }
2499
getInitThreadEpochPtr(CodeGenModule & CGM)2500 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2501 StringRef VarName("_Init_thread_epoch");
2502 CharUnits Align = CGM.getIntAlign();
2503 if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2504 return ConstantAddress(GV, GV->getValueType(), Align);
2505 auto *GV = new llvm::GlobalVariable(
2506 CGM.getModule(), CGM.IntTy,
2507 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
2508 /*Initializer=*/nullptr, VarName,
2509 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2510 GV->setAlignment(Align.getAsAlign());
2511 return ConstantAddress(GV, GV->getValueType(), Align);
2512 }
2513
getInitThreadHeaderFn(CodeGenModule & CGM)2514 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
2515 llvm::FunctionType *FTy =
2516 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2517 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2518 return CGM.CreateRuntimeFunction(
2519 FTy, "_Init_thread_header",
2520 llvm::AttributeList::get(CGM.getLLVMContext(),
2521 llvm::AttributeList::FunctionIndex,
2522 llvm::Attribute::NoUnwind),
2523 /*Local=*/true);
2524 }
2525
getInitThreadFooterFn(CodeGenModule & CGM)2526 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
2527 llvm::FunctionType *FTy =
2528 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2529 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2530 return CGM.CreateRuntimeFunction(
2531 FTy, "_Init_thread_footer",
2532 llvm::AttributeList::get(CGM.getLLVMContext(),
2533 llvm::AttributeList::FunctionIndex,
2534 llvm::Attribute::NoUnwind),
2535 /*Local=*/true);
2536 }
2537
getInitThreadAbortFn(CodeGenModule & CGM)2538 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
2539 llvm::FunctionType *FTy =
2540 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2541 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2542 return CGM.CreateRuntimeFunction(
2543 FTy, "_Init_thread_abort",
2544 llvm::AttributeList::get(CGM.getLLVMContext(),
2545 llvm::AttributeList::FunctionIndex,
2546 llvm::Attribute::NoUnwind),
2547 /*Local=*/true);
2548 }
2549
2550 namespace {
2551 struct ResetGuardBit final : EHScopeStack::Cleanup {
2552 Address Guard;
2553 unsigned GuardNum;
ResetGuardBit__anondeb872430711::ResetGuardBit2554 ResetGuardBit(Address Guard, unsigned GuardNum)
2555 : Guard(Guard), GuardNum(GuardNum) {}
2556
Emit__anondeb872430711::ResetGuardBit2557 void Emit(CodeGenFunction &CGF, Flags flags) override {
2558 // Reset the bit in the mask so that the static variable may be
2559 // reinitialized.
2560 CGBuilderTy &Builder = CGF.Builder;
2561 llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2562 llvm::ConstantInt *Mask =
2563 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2564 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2565 }
2566 };
2567
2568 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2569 llvm::Value *Guard;
CallInitThreadAbort__anondeb872430711::CallInitThreadAbort2570 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2571
Emit__anondeb872430711::CallInitThreadAbort2572 void Emit(CodeGenFunction &CGF, Flags flags) override {
2573 // Calling _Init_thread_abort will reset the guard's state.
2574 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2575 }
2576 };
2577 }
2578
EmitGuardedInit(CodeGenFunction & CGF,const VarDecl & D,llvm::GlobalVariable * GV,bool PerformInit)2579 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2580 llvm::GlobalVariable *GV,
2581 bool PerformInit) {
2582 // MSVC only uses guards for static locals.
2583 if (!D.isStaticLocal()) {
2584 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2585 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2586 llvm::Function *F = CGF.CurFn;
2587 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2588 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2589 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2590 return;
2591 }
2592
2593 bool ThreadlocalStatic = D.getTLSKind();
2594 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2595
2596 // Thread-safe static variables which aren't thread-specific have a
2597 // per-variable guard.
2598 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2599
2600 CGBuilderTy &Builder = CGF.Builder;
2601 llvm::IntegerType *GuardTy = CGF.Int32Ty;
2602 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2603 CharUnits GuardAlign = CharUnits::fromQuantity(4);
2604
2605 // Get the guard variable for this function if we have one already.
2606 GuardInfo *GI = nullptr;
2607 if (ThreadlocalStatic)
2608 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2609 else if (!ThreadsafeStatic)
2610 GI = &GuardVariableMap[D.getDeclContext()];
2611
2612 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2613 unsigned GuardNum;
2614 if (D.isExternallyVisible()) {
2615 // Externally visible variables have to be numbered in Sema to properly
2616 // handle unreachable VarDecls.
2617 GuardNum = getContext().getStaticLocalNumber(&D);
2618 assert(GuardNum > 0);
2619 GuardNum--;
2620 } else if (HasPerVariableGuard) {
2621 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2622 } else {
2623 // Non-externally visible variables are numbered here in CodeGen.
2624 GuardNum = GI->BitIndex++;
2625 }
2626
2627 if (!HasPerVariableGuard && GuardNum >= 32) {
2628 if (D.isExternallyVisible())
2629 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2630 GuardNum %= 32;
2631 GuardVar = nullptr;
2632 }
2633
2634 if (!GuardVar) {
2635 // Mangle the name for the guard.
2636 SmallString<256> GuardName;
2637 {
2638 llvm::raw_svector_ostream Out(GuardName);
2639 if (HasPerVariableGuard)
2640 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2641 Out);
2642 else
2643 getMangleContext().mangleStaticGuardVariable(&D, Out);
2644 }
2645
2646 // Create the guard variable with a zero-initializer. Just absorb linkage,
2647 // visibility and dll storage class from the guarded variable.
2648 GuardVar =
2649 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2650 GV->getLinkage(), Zero, GuardName.str());
2651 GuardVar->setVisibility(GV->getVisibility());
2652 GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2653 GuardVar->setAlignment(GuardAlign.getAsAlign());
2654 if (GuardVar->isWeakForLinker())
2655 GuardVar->setComdat(
2656 CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2657 if (D.getTLSKind())
2658 CGM.setTLSMode(GuardVar, D);
2659 if (GI && !HasPerVariableGuard)
2660 GI->Guard = GuardVar;
2661 }
2662
2663 ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign);
2664
2665 assert(GuardVar->getLinkage() == GV->getLinkage() &&
2666 "static local from the same function had different linkage");
2667
2668 if (!HasPerVariableGuard) {
2669 // Pseudo code for the test:
2670 // if (!(GuardVar & MyGuardBit)) {
2671 // GuardVar |= MyGuardBit;
2672 // ... initialize the object ...;
2673 // }
2674
2675 // Test our bit from the guard variable.
2676 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2677 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2678 llvm::Value *NeedsInit =
2679 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
2680 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2681 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2682 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
2683 CodeGenFunction::GuardKind::VariableGuard, &D);
2684
2685 // Set our bit in the guard variable and emit the initializer and add a global
2686 // destructor if appropriate.
2687 CGF.EmitBlock(InitBlock);
2688 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2689 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2690 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2691 CGF.PopCleanupBlock();
2692 Builder.CreateBr(EndBlock);
2693
2694 // Continue.
2695 CGF.EmitBlock(EndBlock);
2696 } else {
2697 // Pseudo code for the test:
2698 // if (TSS > _Init_thread_epoch) {
2699 // _Init_thread_header(&TSS);
2700 // if (TSS == -1) {
2701 // ... initialize the object ...;
2702 // _Init_thread_footer(&TSS);
2703 // }
2704 // }
2705 //
2706 // The algorithm is almost identical to what can be found in the appendix
2707 // found in N2325.
2708
2709 // This BasicBLock determines whether or not we have any work to do.
2710 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2711 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2712 llvm::LoadInst *InitThreadEpoch =
2713 Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2714 llvm::Value *IsUninitialized =
2715 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2716 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2717 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2718 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
2719 CodeGenFunction::GuardKind::VariableGuard, &D);
2720
2721 // This BasicBlock attempts to determine whether or not this thread is
2722 // responsible for doing the initialization.
2723 CGF.EmitBlock(AttemptInitBlock);
2724 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2725 GuardAddr.getPointer());
2726 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2727 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2728 llvm::Value *ShouldDoInit =
2729 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2730 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2731 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2732
2733 // Ok, we ended up getting selected as the initializing thread.
2734 CGF.EmitBlock(InitBlock);
2735 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2736 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2737 CGF.PopCleanupBlock();
2738 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2739 GuardAddr.getPointer());
2740 Builder.CreateBr(EndBlock);
2741
2742 CGF.EmitBlock(EndBlock);
2743 }
2744 }
2745
isZeroInitializable(const MemberPointerType * MPT)2746 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2747 // Null-ness for function memptrs only depends on the first field, which is
2748 // the function pointer. The rest don't matter, so we can zero initialize.
2749 if (MPT->isMemberFunctionPointer())
2750 return true;
2751
2752 // The virtual base adjustment field is always -1 for null, so if we have one
2753 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a
2754 // valid field offset.
2755 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2756 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2757 return (!inheritanceModelHasVBTableOffsetField(Inheritance) &&
2758 RD->nullFieldOffsetIsZero());
2759 }
2760
2761 llvm::Type *
ConvertMemberPointerType(const MemberPointerType * MPT)2762 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2763 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2764 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2765 llvm::SmallVector<llvm::Type *, 4> fields;
2766 if (MPT->isMemberFunctionPointer())
2767 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk
2768 else
2769 fields.push_back(CGM.IntTy); // FieldOffset
2770
2771 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2772 Inheritance))
2773 fields.push_back(CGM.IntTy);
2774 if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2775 fields.push_back(CGM.IntTy);
2776 if (inheritanceModelHasVBTableOffsetField(Inheritance))
2777 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset
2778
2779 if (fields.size() == 1)
2780 return fields[0];
2781 return llvm::StructType::get(CGM.getLLVMContext(), fields);
2782 }
2783
2784 void MicrosoftCXXABI::
GetNullMemberPointerFields(const MemberPointerType * MPT,llvm::SmallVectorImpl<llvm::Constant * > & fields)2785 GetNullMemberPointerFields(const MemberPointerType *MPT,
2786 llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2787 assert(fields.empty());
2788 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2789 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2790 if (MPT->isMemberFunctionPointer()) {
2791 // FunctionPointerOrVirtualThunk
2792 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2793 } else {
2794 if (RD->nullFieldOffsetIsZero())
2795 fields.push_back(getZeroInt()); // FieldOffset
2796 else
2797 fields.push_back(getAllOnesInt()); // FieldOffset
2798 }
2799
2800 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2801 Inheritance))
2802 fields.push_back(getZeroInt());
2803 if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2804 fields.push_back(getZeroInt());
2805 if (inheritanceModelHasVBTableOffsetField(Inheritance))
2806 fields.push_back(getAllOnesInt());
2807 }
2808
2809 llvm::Constant *
EmitNullMemberPointer(const MemberPointerType * MPT)2810 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2811 llvm::SmallVector<llvm::Constant *, 4> fields;
2812 GetNullMemberPointerFields(MPT, fields);
2813 if (fields.size() == 1)
2814 return fields[0];
2815 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2816 assert(Res->getType() == ConvertMemberPointerType(MPT));
2817 return Res;
2818 }
2819
2820 llvm::Constant *
EmitFullMemberPointer(llvm::Constant * FirstField,bool IsMemberFunction,const CXXRecordDecl * RD,CharUnits NonVirtualBaseAdjustment,unsigned VBTableIndex)2821 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2822 bool IsMemberFunction,
2823 const CXXRecordDecl *RD,
2824 CharUnits NonVirtualBaseAdjustment,
2825 unsigned VBTableIndex) {
2826 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2827
2828 // Single inheritance class member pointer are represented as scalars instead
2829 // of aggregates.
2830 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance))
2831 return FirstField;
2832
2833 llvm::SmallVector<llvm::Constant *, 4> fields;
2834 fields.push_back(FirstField);
2835
2836 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance))
2837 fields.push_back(llvm::ConstantInt::get(
2838 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2839
2840 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) {
2841 CharUnits Offs = CharUnits::Zero();
2842 if (VBTableIndex)
2843 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2844 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2845 }
2846
2847 // The rest of the fields are adjusted by conversions to a more derived class.
2848 if (inheritanceModelHasVBTableOffsetField(Inheritance))
2849 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2850
2851 return llvm::ConstantStruct::getAnon(fields);
2852 }
2853
2854 llvm::Constant *
EmitMemberDataPointer(const MemberPointerType * MPT,CharUnits offset)2855 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2856 CharUnits offset) {
2857 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset);
2858 }
2859
EmitMemberDataPointer(const CXXRecordDecl * RD,CharUnits offset)2860 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD,
2861 CharUnits offset) {
2862 if (RD->getMSInheritanceModel() ==
2863 MSInheritanceModel::Virtual)
2864 offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2865 llvm::Constant *FirstField =
2866 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2867 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2868 CharUnits::Zero(), /*VBTableIndex=*/0);
2869 }
2870
EmitMemberPointer(const APValue & MP,QualType MPType)2871 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2872 QualType MPType) {
2873 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2874 const ValueDecl *MPD = MP.getMemberPointerDecl();
2875 if (!MPD)
2876 return EmitNullMemberPointer(DstTy);
2877
2878 ASTContext &Ctx = getContext();
2879 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2880
2881 llvm::Constant *C;
2882 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2883 C = EmitMemberFunctionPointer(MD);
2884 } else {
2885 // For a pointer to data member, start off with the offset of the field in
2886 // the class in which it was declared, and convert from there if necessary.
2887 // For indirect field decls, get the outermost anonymous field and use the
2888 // parent class.
2889 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2890 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD);
2891 if (!FD)
2892 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin());
2893 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent());
2894 RD = RD->getMostRecentNonInjectedDecl();
2895 C = EmitMemberDataPointer(RD, FieldOffset);
2896 }
2897
2898 if (!MemberPointerPath.empty()) {
2899 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2900 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2901 const MemberPointerType *SrcTy =
2902 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2903 ->castAs<MemberPointerType>();
2904
2905 bool DerivedMember = MP.isMemberPointerToDerivedMember();
2906 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2907 const CXXRecordDecl *PrevRD = SrcRD;
2908 for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2909 const CXXRecordDecl *Base = nullptr;
2910 const CXXRecordDecl *Derived = nullptr;
2911 if (DerivedMember) {
2912 Base = PathElem;
2913 Derived = PrevRD;
2914 } else {
2915 Base = PrevRD;
2916 Derived = PathElem;
2917 }
2918 for (const CXXBaseSpecifier &BS : Derived->bases())
2919 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2920 Base->getCanonicalDecl())
2921 DerivedToBasePath.push_back(&BS);
2922 PrevRD = PathElem;
2923 }
2924 assert(DerivedToBasePath.size() == MemberPointerPath.size());
2925
2926 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2927 : CK_BaseToDerivedMemberPointer;
2928 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2929 DerivedToBasePath.end(), C);
2930 }
2931 return C;
2932 }
2933
2934 llvm::Constant *
EmitMemberFunctionPointer(const CXXMethodDecl * MD)2935 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2936 assert(MD->isInstance() && "Member function must not be static!");
2937
2938 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2939 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
2940 CodeGenTypes &Types = CGM.getTypes();
2941
2942 unsigned VBTableIndex = 0;
2943 llvm::Constant *FirstField;
2944 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2945 if (!MD->isVirtual()) {
2946 llvm::Type *Ty;
2947 // Check whether the function has a computable LLVM signature.
2948 if (Types.isFuncTypeConvertible(FPT)) {
2949 // The function has a computable LLVM signature; use the correct type.
2950 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2951 } else {
2952 // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2953 // function type is incomplete.
2954 Ty = CGM.PtrDiffTy;
2955 }
2956 FirstField = CGM.GetAddrOfFunction(MD, Ty);
2957 } else {
2958 auto &VTableContext = CGM.getMicrosoftVTableContext();
2959 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
2960 FirstField = EmitVirtualMemPtrThunk(MD, ML);
2961 // Include the vfptr adjustment if the method is in a non-primary vftable.
2962 NonVirtualBaseAdjustment += ML.VFPtrOffset;
2963 if (ML.VBase)
2964 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2965 }
2966
2967 if (VBTableIndex == 0 &&
2968 RD->getMSInheritanceModel() ==
2969 MSInheritanceModel::Virtual)
2970 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2971
2972 // The rest of the fields are common with data member pointers.
2973 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2974 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2975 NonVirtualBaseAdjustment, VBTableIndex);
2976 }
2977
2978 /// Member pointers are the same if they're either bitwise identical *or* both
2979 /// null. Null-ness for function members is determined by the first field,
2980 /// while for data member pointers we must compare all fields.
2981 llvm::Value *
EmitMemberPointerComparison(CodeGenFunction & CGF,llvm::Value * L,llvm::Value * R,const MemberPointerType * MPT,bool Inequality)2982 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2983 llvm::Value *L,
2984 llvm::Value *R,
2985 const MemberPointerType *MPT,
2986 bool Inequality) {
2987 CGBuilderTy &Builder = CGF.Builder;
2988
2989 // Handle != comparisons by switching the sense of all boolean operations.
2990 llvm::ICmpInst::Predicate Eq;
2991 llvm::Instruction::BinaryOps And, Or;
2992 if (Inequality) {
2993 Eq = llvm::ICmpInst::ICMP_NE;
2994 And = llvm::Instruction::Or;
2995 Or = llvm::Instruction::And;
2996 } else {
2997 Eq = llvm::ICmpInst::ICMP_EQ;
2998 And = llvm::Instruction::And;
2999 Or = llvm::Instruction::Or;
3000 }
3001
3002 // If this is a single field member pointer (single inheritance), this is a
3003 // single icmp.
3004 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3005 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3006 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(),
3007 Inheritance))
3008 return Builder.CreateICmp(Eq, L, R);
3009
3010 // Compare the first field.
3011 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
3012 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
3013 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
3014
3015 // Compare everything other than the first field.
3016 llvm::Value *Res = nullptr;
3017 llvm::StructType *LType = cast<llvm::StructType>(L->getType());
3018 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
3019 llvm::Value *LF = Builder.CreateExtractValue(L, I);
3020 llvm::Value *RF = Builder.CreateExtractValue(R, I);
3021 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
3022 if (Res)
3023 Res = Builder.CreateBinOp(And, Res, Cmp);
3024 else
3025 Res = Cmp;
3026 }
3027
3028 // Check if the first field is 0 if this is a function pointer.
3029 if (MPT->isMemberFunctionPointer()) {
3030 // (l1 == r1 && ...) || l0 == 0
3031 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
3032 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
3033 Res = Builder.CreateBinOp(Or, Res, IsZero);
3034 }
3035
3036 // Combine the comparison of the first field, which must always be true for
3037 // this comparison to succeeed.
3038 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
3039 }
3040
3041 llvm::Value *
EmitMemberPointerIsNotNull(CodeGenFunction & CGF,llvm::Value * MemPtr,const MemberPointerType * MPT)3042 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
3043 llvm::Value *MemPtr,
3044 const MemberPointerType *MPT) {
3045 CGBuilderTy &Builder = CGF.Builder;
3046 llvm::SmallVector<llvm::Constant *, 4> fields;
3047 // We only need one field for member functions.
3048 if (MPT->isMemberFunctionPointer())
3049 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
3050 else
3051 GetNullMemberPointerFields(MPT, fields);
3052 assert(!fields.empty());
3053 llvm::Value *FirstField = MemPtr;
3054 if (MemPtr->getType()->isStructTy())
3055 FirstField = Builder.CreateExtractValue(MemPtr, 0);
3056 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
3057
3058 // For function member pointers, we only need to test the function pointer
3059 // field. The other fields if any can be garbage.
3060 if (MPT->isMemberFunctionPointer())
3061 return Res;
3062
3063 // Otherwise, emit a series of compares and combine the results.
3064 for (int I = 1, E = fields.size(); I < E; ++I) {
3065 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
3066 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
3067 Res = Builder.CreateOr(Res, Next, "memptr.tobool");
3068 }
3069 return Res;
3070 }
3071
MemberPointerConstantIsNull(const MemberPointerType * MPT,llvm::Constant * Val)3072 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
3073 llvm::Constant *Val) {
3074 // Function pointers are null if the pointer in the first field is null.
3075 if (MPT->isMemberFunctionPointer()) {
3076 llvm::Constant *FirstField = Val->getType()->isStructTy() ?
3077 Val->getAggregateElement(0U) : Val;
3078 return FirstField->isNullValue();
3079 }
3080
3081 // If it's not a function pointer and it's zero initializable, we can easily
3082 // check zero.
3083 if (isZeroInitializable(MPT) && Val->isNullValue())
3084 return true;
3085
3086 // Otherwise, break down all the fields for comparison. Hopefully these
3087 // little Constants are reused, while a big null struct might not be.
3088 llvm::SmallVector<llvm::Constant *, 4> Fields;
3089 GetNullMemberPointerFields(MPT, Fields);
3090 if (Fields.size() == 1) {
3091 assert(Val->getType()->isIntegerTy());
3092 return Val == Fields[0];
3093 }
3094
3095 unsigned I, E;
3096 for (I = 0, E = Fields.size(); I != E; ++I) {
3097 if (Val->getAggregateElement(I) != Fields[I])
3098 break;
3099 }
3100 return I == E;
3101 }
3102
3103 llvm::Value *
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,Address This,llvm::Value * VBPtrOffset,llvm::Value * VBTableOffset,llvm::Value ** VBPtrOut)3104 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
3105 Address This,
3106 llvm::Value *VBPtrOffset,
3107 llvm::Value *VBTableOffset,
3108 llvm::Value **VBPtrOut) {
3109 CGBuilderTy &Builder = CGF.Builder;
3110 // Load the vbtable pointer from the vbptr in the instance.
3111 This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
3112 llvm::Value *VBPtr = Builder.CreateInBoundsGEP(
3113 This.getElementType(), This.getPointer(), VBPtrOffset, "vbptr");
3114 if (VBPtrOut) *VBPtrOut = VBPtr;
3115 VBPtr = Builder.CreateBitCast(VBPtr,
3116 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
3117
3118 CharUnits VBPtrAlign;
3119 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
3120 VBPtrAlign = This.getAlignment().alignmentAtOffset(
3121 CharUnits::fromQuantity(CI->getSExtValue()));
3122 } else {
3123 VBPtrAlign = CGF.getPointerAlign();
3124 }
3125
3126 llvm::Value *VBTable = Builder.CreateAlignedLoad(
3127 CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable");
3128
3129 // Translate from byte offset to table index. It improves analyzability.
3130 llvm::Value *VBTableIndex = Builder.CreateAShr(
3131 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
3132 "vbtindex", /*isExact=*/true);
3133
3134 // Load an i32 offset from the vb-table.
3135 llvm::Value *VBaseOffs =
3136 Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex);
3137 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
3138 return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs,
3139 CharUnits::fromQuantity(4), "vbase_offs");
3140 }
3141
3142 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
3143 // it.
AdjustVirtualBase(CodeGenFunction & CGF,const Expr * E,const CXXRecordDecl * RD,Address Base,llvm::Value * VBTableOffset,llvm::Value * VBPtrOffset)3144 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
3145 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
3146 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
3147 CGBuilderTy &Builder = CGF.Builder;
3148 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
3149 llvm::BasicBlock *OriginalBB = nullptr;
3150 llvm::BasicBlock *SkipAdjustBB = nullptr;
3151 llvm::BasicBlock *VBaseAdjustBB = nullptr;
3152
3153 // In the unspecified inheritance model, there might not be a vbtable at all,
3154 // in which case we need to skip the virtual base lookup. If there is a
3155 // vbtable, the first entry is a no-op entry that gives back the original
3156 // base, so look for a virtual base adjustment offset of zero.
3157 if (VBPtrOffset) {
3158 OriginalBB = Builder.GetInsertBlock();
3159 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
3160 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
3161 llvm::Value *IsVirtual =
3162 Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
3163 "memptr.is_vbase");
3164 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
3165 CGF.EmitBlock(VBaseAdjustBB);
3166 }
3167
3168 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
3169 // know the vbptr offset.
3170 if (!VBPtrOffset) {
3171 CharUnits offs = CharUnits::Zero();
3172 if (!RD->hasDefinition()) {
3173 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
3174 unsigned DiagID = Diags.getCustomDiagID(
3175 DiagnosticsEngine::Error,
3176 "member pointer representation requires a "
3177 "complete class type for %0 to perform this expression");
3178 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
3179 } else if (RD->getNumVBases())
3180 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
3181 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
3182 }
3183 llvm::Value *VBPtr = nullptr;
3184 llvm::Value *VBaseOffs =
3185 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
3186 llvm::Value *AdjustedBase =
3187 Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs);
3188
3189 // Merge control flow with the case where we didn't have to adjust.
3190 if (VBaseAdjustBB) {
3191 Builder.CreateBr(SkipAdjustBB);
3192 CGF.EmitBlock(SkipAdjustBB);
3193 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
3194 Phi->addIncoming(Base.getPointer(), OriginalBB);
3195 Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
3196 return Phi;
3197 }
3198 return AdjustedBase;
3199 }
3200
EmitMemberDataPointerAddress(CodeGenFunction & CGF,const Expr * E,Address Base,llvm::Value * MemPtr,const MemberPointerType * MPT)3201 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
3202 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
3203 const MemberPointerType *MPT) {
3204 assert(MPT->isMemberDataPointer());
3205 unsigned AS = Base.getAddressSpace();
3206 llvm::Type *PType =
3207 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
3208 CGBuilderTy &Builder = CGF.Builder;
3209 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3210 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3211
3212 // Extract the fields we need, regardless of model. We'll apply them if we
3213 // have them.
3214 llvm::Value *FieldOffset = MemPtr;
3215 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3216 llvm::Value *VBPtrOffset = nullptr;
3217 if (MemPtr->getType()->isStructTy()) {
3218 // We need to extract values.
3219 unsigned I = 0;
3220 FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
3221 if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3222 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3223 if (inheritanceModelHasVBTableOffsetField(Inheritance))
3224 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3225 }
3226
3227 llvm::Value *Addr;
3228 if (VirtualBaseAdjustmentOffset) {
3229 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
3230 VBPtrOffset);
3231 } else {
3232 Addr = Base.getPointer();
3233 }
3234
3235 // Cast to char*.
3236 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
3237
3238 // Apply the offset, which we assume is non-null.
3239 Addr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset,
3240 "memptr.offset");
3241
3242 // Cast the address to the appropriate pointer type, adopting the address
3243 // space of the base pointer.
3244 return Builder.CreateBitCast(Addr, PType);
3245 }
3246
3247 llvm::Value *
EmitMemberPointerConversion(CodeGenFunction & CGF,const CastExpr * E,llvm::Value * Src)3248 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
3249 const CastExpr *E,
3250 llvm::Value *Src) {
3251 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
3252 E->getCastKind() == CK_BaseToDerivedMemberPointer ||
3253 E->getCastKind() == CK_ReinterpretMemberPointer);
3254
3255 // Use constant emission if we can.
3256 if (isa<llvm::Constant>(Src))
3257 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
3258
3259 // We may be adding or dropping fields from the member pointer, so we need
3260 // both types and the inheritance models of both records.
3261 const MemberPointerType *SrcTy =
3262 E->getSubExpr()->getType()->castAs<MemberPointerType>();
3263 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3264 bool IsFunc = SrcTy->isMemberFunctionPointer();
3265
3266 // If the classes use the same null representation, reinterpret_cast is a nop.
3267 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3268 if (IsReinterpret && IsFunc)
3269 return Src;
3270
3271 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3272 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3273 if (IsReinterpret &&
3274 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3275 return Src;
3276
3277 CGBuilderTy &Builder = CGF.Builder;
3278
3279 // Branch past the conversion if Src is null.
3280 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3281 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3282
3283 // C++ 5.2.10p9: The null member pointer value is converted to the null member
3284 // pointer value of the destination type.
3285 if (IsReinterpret) {
3286 // For reinterpret casts, sema ensures that src and dst are both functions
3287 // or data and have the same size, which means the LLVM types should match.
3288 assert(Src->getType() == DstNull->getType());
3289 return Builder.CreateSelect(IsNotNull, Src, DstNull);
3290 }
3291
3292 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3293 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3294 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3295 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3296 CGF.EmitBlock(ConvertBB);
3297
3298 llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3299 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3300 Builder);
3301
3302 Builder.CreateBr(ContinueBB);
3303
3304 // In the continuation, choose between DstNull and Dst.
3305 CGF.EmitBlock(ContinueBB);
3306 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3307 Phi->addIncoming(DstNull, OriginalBB);
3308 Phi->addIncoming(Dst, ConvertBB);
3309 return Phi;
3310 }
3311
EmitNonNullMemberPointerConversion(const MemberPointerType * SrcTy,const MemberPointerType * DstTy,CastKind CK,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,llvm::Value * Src,CGBuilderTy & Builder)3312 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3313 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3314 CastExpr::path_const_iterator PathBegin,
3315 CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3316 CGBuilderTy &Builder) {
3317 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3318 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3319 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel();
3320 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel();
3321 bool IsFunc = SrcTy->isMemberFunctionPointer();
3322 bool IsConstant = isa<llvm::Constant>(Src);
3323
3324 // Decompose src.
3325 llvm::Value *FirstField = Src;
3326 llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3327 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3328 llvm::Value *VBPtrOffset = getZeroInt();
3329 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) {
3330 // We need to extract values.
3331 unsigned I = 0;
3332 FirstField = Builder.CreateExtractValue(Src, I++);
3333 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance))
3334 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3335 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance))
3336 VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3337 if (inheritanceModelHasVBTableOffsetField(SrcInheritance))
3338 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3339 }
3340
3341 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3342 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3343 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3344
3345 // For data pointers, we adjust the field offset directly. For functions, we
3346 // have a separate field.
3347 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3348
3349 // The virtual inheritance model has a quirk: the virtual base table is always
3350 // referenced when dereferencing a member pointer even if the member pointer
3351 // is non-virtual. This is accounted for by adjusting the non-virtual offset
3352 // to point backwards to the top of the MDC from the first VBase. Undo this
3353 // adjustment to normalize the member pointer.
3354 llvm::Value *SrcVBIndexEqZero =
3355 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3356 if (SrcInheritance == MSInheritanceModel::Virtual) {
3357 if (int64_t SrcOffsetToFirstVBase =
3358 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3359 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3360 SrcVBIndexEqZero,
3361 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3362 getZeroInt());
3363 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3364 }
3365 }
3366
3367 // A non-zero vbindex implies that we are dealing with a source member in a
3368 // floating virtual base in addition to some non-virtual offset. If the
3369 // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3370 // fixed, base. The difference between these two cases is that the vbindex +
3371 // nvoffset *always* point to the member regardless of what context they are
3372 // evaluated in so long as the vbindex is adjusted. A member inside a fixed
3373 // base requires explicit nv adjustment.
3374 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3375 CGM.IntTy,
3376 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3377 .getQuantity());
3378
3379 llvm::Value *NVDisp;
3380 if (IsDerivedToBase)
3381 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3382 else
3383 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3384
3385 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3386
3387 // Update the vbindex to an appropriate value in the destination because
3388 // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3389 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3390 if (inheritanceModelHasVBTableOffsetField(DstInheritance) &&
3391 inheritanceModelHasVBTableOffsetField(SrcInheritance)) {
3392 if (llvm::GlobalVariable *VDispMap =
3393 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3394 llvm::Value *VBIndex = Builder.CreateExactUDiv(
3395 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3396 if (IsConstant) {
3397 llvm::Constant *Mapping = VDispMap->getInitializer();
3398 VirtualBaseAdjustmentOffset =
3399 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3400 } else {
3401 llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3402 VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad(
3403 CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(),
3404 VDispMap, Idxs),
3405 CharUnits::fromQuantity(4));
3406 }
3407
3408 DstVBIndexEqZero =
3409 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3410 }
3411 }
3412
3413 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize
3414 // it to the offset of the vbptr.
3415 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) {
3416 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3417 CGM.IntTy,
3418 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3419 VBPtrOffset =
3420 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3421 }
3422
3423 // Likewise, apply a similar adjustment so that dereferencing the member
3424 // pointer correctly accounts for the distance between the start of the first
3425 // virtual base and the top of the MDC.
3426 if (DstInheritance == MSInheritanceModel::Virtual) {
3427 if (int64_t DstOffsetToFirstVBase =
3428 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3429 llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3430 DstVBIndexEqZero,
3431 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3432 getZeroInt());
3433 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3434 }
3435 }
3436
3437 // Recompose dst from the null struct and the adjusted fields from src.
3438 llvm::Value *Dst;
3439 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) {
3440 Dst = FirstField;
3441 } else {
3442 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3443 unsigned Idx = 0;
3444 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3445 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance))
3446 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3447 if (inheritanceModelHasVBPtrOffsetField(DstInheritance))
3448 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3449 if (inheritanceModelHasVBTableOffsetField(DstInheritance))
3450 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3451 }
3452 return Dst;
3453 }
3454
3455 llvm::Constant *
EmitMemberPointerConversion(const CastExpr * E,llvm::Constant * Src)3456 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3457 llvm::Constant *Src) {
3458 const MemberPointerType *SrcTy =
3459 E->getSubExpr()->getType()->castAs<MemberPointerType>();
3460 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3461
3462 CastKind CK = E->getCastKind();
3463
3464 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3465 E->path_end(), Src);
3466 }
3467
EmitMemberPointerConversion(const MemberPointerType * SrcTy,const MemberPointerType * DstTy,CastKind CK,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,llvm::Constant * Src)3468 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3469 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3470 CastExpr::path_const_iterator PathBegin,
3471 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3472 assert(CK == CK_DerivedToBaseMemberPointer ||
3473 CK == CK_BaseToDerivedMemberPointer ||
3474 CK == CK_ReinterpretMemberPointer);
3475 // If src is null, emit a new null for dst. We can't return src because dst
3476 // might have a new representation.
3477 if (MemberPointerConstantIsNull(SrcTy, Src))
3478 return EmitNullMemberPointer(DstTy);
3479
3480 // We don't need to do anything for reinterpret_casts of non-null member
3481 // pointers. We should only get here when the two type representations have
3482 // the same size.
3483 if (CK == CK_ReinterpretMemberPointer)
3484 return Src;
3485
3486 CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3487 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3488 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3489
3490 return Dst;
3491 }
3492
EmitLoadOfMemberFunctionPointer(CodeGenFunction & CGF,const Expr * E,Address This,llvm::Value * & ThisPtrForCall,llvm::Value * MemPtr,const MemberPointerType * MPT)3493 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3494 CodeGenFunction &CGF, const Expr *E, Address This,
3495 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3496 const MemberPointerType *MPT) {
3497 assert(MPT->isMemberFunctionPointer());
3498 const FunctionProtoType *FPT =
3499 MPT->getPointeeType()->castAs<FunctionProtoType>();
3500 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3501 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
3502 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
3503 CGBuilderTy &Builder = CGF.Builder;
3504
3505 MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3506
3507 // Extract the fields we need, regardless of model. We'll apply them if we
3508 // have them.
3509 llvm::Value *FunctionPointer = MemPtr;
3510 llvm::Value *NonVirtualBaseAdjustment = nullptr;
3511 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3512 llvm::Value *VBPtrOffset = nullptr;
3513 if (MemPtr->getType()->isStructTy()) {
3514 // We need to extract values.
3515 unsigned I = 0;
3516 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3517 if (inheritanceModelHasNVOffsetField(MPT, Inheritance))
3518 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3519 if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3520 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3521 if (inheritanceModelHasVBTableOffsetField(Inheritance))
3522 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3523 }
3524
3525 if (VirtualBaseAdjustmentOffset) {
3526 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3527 VirtualBaseAdjustmentOffset, VBPtrOffset);
3528 } else {
3529 ThisPtrForCall = This.getPointer();
3530 }
3531
3532 if (NonVirtualBaseAdjustment) {
3533 // Apply the adjustment and cast back to the original struct type.
3534 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
3535 Ptr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Ptr, NonVirtualBaseAdjustment);
3536 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
3537 "this.adjusted");
3538 }
3539
3540 FunctionPointer =
3541 Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
3542 CGCallee Callee(FPT, FunctionPointer);
3543 return Callee;
3544 }
3545
CreateMicrosoftCXXABI(CodeGenModule & CGM)3546 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3547 return new MicrosoftCXXABI(CGM);
3548 }
3549
3550 // MS RTTI Overview:
3551 // The run time type information emitted by cl.exe contains 5 distinct types of
3552 // structures. Many of them reference each other.
3553 //
3554 // TypeInfo: Static classes that are returned by typeid.
3555 //
3556 // CompleteObjectLocator: Referenced by vftables. They contain information
3557 // required for dynamic casting, including OffsetFromTop. They also contain
3558 // a reference to the TypeInfo for the type and a reference to the
3559 // CompleteHierarchyDescriptor for the type.
3560 //
3561 // ClassHierarchyDescriptor: Contains information about a class hierarchy.
3562 // Used during dynamic_cast to walk a class hierarchy. References a base
3563 // class array and the size of said array.
3564 //
3565 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is
3566 // somewhat of a misnomer because the most derived class is also in the list
3567 // as well as multiple copies of virtual bases (if they occur multiple times
3568 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for
3569 // every path in the hierarchy, in pre-order depth first order. Note, we do
3570 // not declare a specific llvm type for BaseClassArray, it's merely an array
3571 // of BaseClassDescriptor pointers.
3572 //
3573 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
3574 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3575 // BaseClassArray is. It contains information about a class within a
3576 // hierarchy such as: is this base is ambiguous and what is its offset in the
3577 // vbtable. The names of the BaseClassDescriptors have all of their fields
3578 // mangled into them so they can be aggressively deduplicated by the linker.
3579
getTypeInfoVTable(CodeGenModule & CGM)3580 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3581 StringRef MangledName("??_7type_info@@6B@");
3582 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3583 return VTable;
3584 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3585 /*isConstant=*/true,
3586 llvm::GlobalVariable::ExternalLinkage,
3587 /*Initializer=*/nullptr, MangledName);
3588 }
3589
3590 namespace {
3591
3592 /// A Helper struct that stores information about a class in a class
3593 /// hierarchy. The information stored in these structs struct is used during
3594 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3595 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3596 // implicit depth first pre-order tree connectivity. getFirstChild and
3597 // getNextSibling allow us to walk the tree efficiently.
3598 struct MSRTTIClass {
3599 enum {
3600 IsPrivateOnPath = 1 | 8,
3601 IsAmbiguous = 2,
3602 IsPrivate = 4,
3603 IsVirtual = 16,
3604 HasHierarchyDescriptor = 64
3605 };
MSRTTIClass__anondeb872430811::MSRTTIClass3606 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3607 uint32_t initialize(const MSRTTIClass *Parent,
3608 const CXXBaseSpecifier *Specifier);
3609
getFirstChild__anondeb872430811::MSRTTIClass3610 MSRTTIClass *getFirstChild() { return this + 1; }
getNextChild__anondeb872430811::MSRTTIClass3611 static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3612 return Child + 1 + Child->NumBases;
3613 }
3614
3615 const CXXRecordDecl *RD, *VirtualRoot;
3616 uint32_t Flags, NumBases, OffsetInVBase;
3617 };
3618
3619 /// Recursively initialize the base class array.
initialize(const MSRTTIClass * Parent,const CXXBaseSpecifier * Specifier)3620 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3621 const CXXBaseSpecifier *Specifier) {
3622 Flags = HasHierarchyDescriptor;
3623 if (!Parent) {
3624 VirtualRoot = nullptr;
3625 OffsetInVBase = 0;
3626 } else {
3627 if (Specifier->getAccessSpecifier() != AS_public)
3628 Flags |= IsPrivate | IsPrivateOnPath;
3629 if (Specifier->isVirtual()) {
3630 Flags |= IsVirtual;
3631 VirtualRoot = RD;
3632 OffsetInVBase = 0;
3633 } else {
3634 if (Parent->Flags & IsPrivateOnPath)
3635 Flags |= IsPrivateOnPath;
3636 VirtualRoot = Parent->VirtualRoot;
3637 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3638 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3639 }
3640 }
3641 NumBases = 0;
3642 MSRTTIClass *Child = getFirstChild();
3643 for (const CXXBaseSpecifier &Base : RD->bases()) {
3644 NumBases += Child->initialize(this, &Base) + 1;
3645 Child = getNextChild(Child);
3646 }
3647 return NumBases;
3648 }
3649
getLinkageForRTTI(QualType Ty)3650 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3651 switch (Ty->getLinkage()) {
3652 case NoLinkage:
3653 case InternalLinkage:
3654 case UniqueExternalLinkage:
3655 return llvm::GlobalValue::InternalLinkage;
3656
3657 case VisibleNoLinkage:
3658 case ModuleInternalLinkage:
3659 case ModuleLinkage:
3660 case ExternalLinkage:
3661 return llvm::GlobalValue::LinkOnceODRLinkage;
3662 }
3663 llvm_unreachable("Invalid linkage!");
3664 }
3665
3666 /// An ephemeral helper class for building MS RTTI types. It caches some
3667 /// calls to the module and information about the most derived class in a
3668 /// hierarchy.
3669 struct MSRTTIBuilder {
3670 enum {
3671 HasBranchingHierarchy = 1,
3672 HasVirtualBranchingHierarchy = 2,
3673 HasAmbiguousBases = 4
3674 };
3675
MSRTTIBuilder__anondeb872430811::MSRTTIBuilder3676 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3677 : CGM(ABI.CGM), Context(CGM.getContext()),
3678 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3679 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3680 ABI(ABI) {}
3681
3682 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3683 llvm::GlobalVariable *
3684 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3685 llvm::GlobalVariable *getClassHierarchyDescriptor();
3686 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);
3687
3688 CodeGenModule &CGM;
3689 ASTContext &Context;
3690 llvm::LLVMContext &VMContext;
3691 llvm::Module &Module;
3692 const CXXRecordDecl *RD;
3693 llvm::GlobalVariable::LinkageTypes Linkage;
3694 MicrosoftCXXABI &ABI;
3695 };
3696
3697 } // namespace
3698
3699 /// Recursively serializes a class hierarchy in pre-order depth first
3700 /// order.
serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> & Classes,const CXXRecordDecl * RD)3701 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3702 const CXXRecordDecl *RD) {
3703 Classes.push_back(MSRTTIClass(RD));
3704 for (const CXXBaseSpecifier &Base : RD->bases())
3705 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3706 }
3707
3708 /// Find ambiguity among base classes.
3709 static void
detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> & Classes)3710 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3711 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3712 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3713 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3714 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3715 if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3716 !VirtualBases.insert(Class->RD).second) {
3717 Class = MSRTTIClass::getNextChild(Class);
3718 continue;
3719 }
3720 if (!UniqueBases.insert(Class->RD).second)
3721 AmbiguousBases.insert(Class->RD);
3722 Class++;
3723 }
3724 if (AmbiguousBases.empty())
3725 return;
3726 for (MSRTTIClass &Class : Classes)
3727 if (AmbiguousBases.count(Class.RD))
3728 Class.Flags |= MSRTTIClass::IsAmbiguous;
3729 }
3730
getClassHierarchyDescriptor()3731 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3732 SmallString<256> MangledName;
3733 {
3734 llvm::raw_svector_ostream Out(MangledName);
3735 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3736 }
3737
3738 // Check to see if we've already declared this ClassHierarchyDescriptor.
3739 if (auto CHD = Module.getNamedGlobal(MangledName))
3740 return CHD;
3741
3742 // Serialize the class hierarchy and initialize the CHD Fields.
3743 SmallVector<MSRTTIClass, 8> Classes;
3744 serializeClassHierarchy(Classes, RD);
3745 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3746 detectAmbiguousBases(Classes);
3747 int Flags = 0;
3748 for (auto Class : Classes) {
3749 if (Class.RD->getNumBases() > 1)
3750 Flags |= HasBranchingHierarchy;
3751 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We
3752 // believe the field isn't actually used.
3753 if (Class.Flags & MSRTTIClass::IsAmbiguous)
3754 Flags |= HasAmbiguousBases;
3755 }
3756 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3757 Flags |= HasVirtualBranchingHierarchy;
3758 // These gep indices are used to get the address of the first element of the
3759 // base class array.
3760 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3761 llvm::ConstantInt::get(CGM.IntTy, 0)};
3762
3763 // Forward-declare the class hierarchy descriptor
3764 auto Type = ABI.getClassHierarchyDescriptorType();
3765 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3766 /*Initializer=*/nullptr,
3767 MangledName);
3768 if (CHD->isWeakForLinker())
3769 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3770
3771 auto *Bases = getBaseClassArray(Classes);
3772
3773 // Initialize the base class ClassHierarchyDescriptor.
3774 llvm::Constant *Fields[] = {
3775 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
3776 llvm::ConstantInt::get(CGM.IntTy, Flags),
3777 llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3778 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3779 Bases->getValueType(), Bases,
3780 llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3781 };
3782 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3783 return CHD;
3784 }
3785
3786 llvm::GlobalVariable *
getBaseClassArray(SmallVectorImpl<MSRTTIClass> & Classes)3787 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3788 SmallString<256> MangledName;
3789 {
3790 llvm::raw_svector_ostream Out(MangledName);
3791 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3792 }
3793
3794 // Forward-declare the base class array.
3795 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3796 // mode) bytes of padding. We provide a pointer sized amount of padding by
3797 // adding +1 to Classes.size(). The sections have pointer alignment and are
3798 // marked pick-any so it shouldn't matter.
3799 llvm::Type *PtrType = ABI.getImageRelativeType(
3800 ABI.getBaseClassDescriptorType()->getPointerTo());
3801 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3802 auto *BCA =
3803 new llvm::GlobalVariable(Module, ArrType,
3804 /*isConstant=*/true, Linkage,
3805 /*Initializer=*/nullptr, MangledName);
3806 if (BCA->isWeakForLinker())
3807 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3808
3809 // Initialize the BaseClassArray.
3810 SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3811 for (MSRTTIClass &Class : Classes)
3812 BaseClassArrayData.push_back(
3813 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3814 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3815 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3816 return BCA;
3817 }
3818
3819 llvm::GlobalVariable *
getBaseClassDescriptor(const MSRTTIClass & Class)3820 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3821 // Compute the fields for the BaseClassDescriptor. They are computed up front
3822 // because they are mangled into the name of the object.
3823 uint32_t OffsetInVBTable = 0;
3824 int32_t VBPtrOffset = -1;
3825 if (Class.VirtualRoot) {
3826 auto &VTableContext = CGM.getMicrosoftVTableContext();
3827 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3828 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3829 }
3830
3831 SmallString<256> MangledName;
3832 {
3833 llvm::raw_svector_ostream Out(MangledName);
3834 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3835 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3836 Class.Flags, Out);
3837 }
3838
3839 // Check to see if we've already declared this object.
3840 if (auto BCD = Module.getNamedGlobal(MangledName))
3841 return BCD;
3842
3843 // Forward-declare the base class descriptor.
3844 auto Type = ABI.getBaseClassDescriptorType();
3845 auto BCD =
3846 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3847 /*Initializer=*/nullptr, MangledName);
3848 if (BCD->isWeakForLinker())
3849 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3850
3851 // Initialize the BaseClassDescriptor.
3852 llvm::Constant *Fields[] = {
3853 ABI.getImageRelativeConstant(
3854 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3855 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3856 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3857 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3858 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3859 llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3860 ABI.getImageRelativeConstant(
3861 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3862 };
3863 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3864 return BCD;
3865 }
3866
3867 llvm::GlobalVariable *
getCompleteObjectLocator(const VPtrInfo & Info)3868 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
3869 SmallString<256> MangledName;
3870 {
3871 llvm::raw_svector_ostream Out(MangledName);
3872 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
3873 }
3874
3875 // Check to see if we've already computed this complete object locator.
3876 if (auto COL = Module.getNamedGlobal(MangledName))
3877 return COL;
3878
3879 // Compute the fields of the complete object locator.
3880 int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
3881 int VFPtrOffset = 0;
3882 // The offset includes the vtordisp if one exists.
3883 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
3884 if (Context.getASTRecordLayout(RD)
3885 .getVBaseOffsetsMap()
3886 .find(VBase)
3887 ->second.hasVtorDisp())
3888 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;
3889
3890 // Forward-declare the complete object locator.
3891 llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3892 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3893 /*Initializer=*/nullptr, MangledName);
3894
3895 // Initialize the CompleteObjectLocator.
3896 llvm::Constant *Fields[] = {
3897 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3898 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3899 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3900 ABI.getImageRelativeConstant(
3901 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3902 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3903 ABI.getImageRelativeConstant(COL),
3904 };
3905 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3906 if (!ABI.isImageRelative())
3907 FieldsRef = FieldsRef.drop_back();
3908 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3909 if (COL->isWeakForLinker())
3910 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3911 return COL;
3912 }
3913
decomposeTypeForEH(ASTContext & Context,QualType T,bool & IsConst,bool & IsVolatile,bool & IsUnaligned)3914 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3915 bool &IsConst, bool &IsVolatile,
3916 bool &IsUnaligned) {
3917 T = Context.getExceptionObjectType(T);
3918
3919 // C++14 [except.handle]p3:
3920 // A handler is a match for an exception object of type E if [...]
3921 // - the handler is of type cv T or const T& where T is a pointer type and
3922 // E is a pointer type that can be converted to T by [...]
3923 // - a qualification conversion
3924 IsConst = false;
3925 IsVolatile = false;
3926 IsUnaligned = false;
3927 QualType PointeeType = T->getPointeeType();
3928 if (!PointeeType.isNull()) {
3929 IsConst = PointeeType.isConstQualified();
3930 IsVolatile = PointeeType.isVolatileQualified();
3931 IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3932 }
3933
3934 // Member pointer types like "const int A::*" are represented by having RTTI
3935 // for "int A::*" and separately storing the const qualifier.
3936 if (const auto *MPTy = T->getAs<MemberPointerType>())
3937 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3938 MPTy->getClass());
3939
3940 // Pointer types like "const int * const *" are represented by having RTTI
3941 // for "const int **" and separately storing the const qualifier.
3942 if (T->isPointerType())
3943 T = Context.getPointerType(PointeeType.getUnqualifiedType());
3944
3945 return T;
3946 }
3947
3948 CatchTypeInfo
getAddrOfCXXCatchHandlerType(QualType Type,QualType CatchHandlerType)3949 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3950 QualType CatchHandlerType) {
3951 // TypeDescriptors for exceptions never have qualified pointer types,
3952 // qualifiers are stored separately in order to support qualification
3953 // conversions.
3954 bool IsConst, IsVolatile, IsUnaligned;
3955 Type =
3956 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3957
3958 bool IsReference = CatchHandlerType->isReferenceType();
3959
3960 uint32_t Flags = 0;
3961 if (IsConst)
3962 Flags |= 1;
3963 if (IsVolatile)
3964 Flags |= 2;
3965 if (IsUnaligned)
3966 Flags |= 4;
3967 if (IsReference)
3968 Flags |= 8;
3969
3970 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3971 Flags};
3972 }
3973
3974 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a
3975 /// llvm::GlobalVariable * because different type descriptors have different
3976 /// types, and need to be abstracted. They are abstracting by casting the
3977 /// address to an Int8PtrTy.
getAddrOfRTTIDescriptor(QualType Type)3978 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3979 SmallString<256> MangledName;
3980 {
3981 llvm::raw_svector_ostream Out(MangledName);
3982 getMangleContext().mangleCXXRTTI(Type, Out);
3983 }
3984
3985 // Check to see if we've already declared this TypeDescriptor.
3986 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3987 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3988
3989 // Note for the future: If we would ever like to do deferred emission of
3990 // RTTI, check if emitting vtables opportunistically need any adjustment.
3991
3992 // Compute the fields for the TypeDescriptor.
3993 SmallString<256> TypeInfoString;
3994 {
3995 llvm::raw_svector_ostream Out(TypeInfoString);
3996 getMangleContext().mangleCXXRTTIName(Type, Out);
3997 }
3998
3999 // Declare and initialize the TypeDescriptor.
4000 llvm::Constant *Fields[] = {
4001 getTypeInfoVTable(CGM), // VFPtr
4002 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
4003 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
4004 llvm::StructType *TypeDescriptorType =
4005 getTypeDescriptorType(TypeInfoString);
4006 auto *Var = new llvm::GlobalVariable(
4007 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
4008 getLinkageForRTTI(Type),
4009 llvm::ConstantStruct::get(TypeDescriptorType, Fields),
4010 MangledName);
4011 if (Var->isWeakForLinker())
4012 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
4013 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
4014 }
4015
4016 /// Gets or a creates a Microsoft CompleteObjectLocator.
4017 llvm::GlobalVariable *
getMSCompleteObjectLocator(const CXXRecordDecl * RD,const VPtrInfo & Info)4018 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
4019 const VPtrInfo &Info) {
4020 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
4021 }
4022
emitCXXStructor(GlobalDecl GD)4023 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
4024 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
4025 // There are no constructor variants, always emit the complete destructor.
4026 llvm::Function *Fn =
4027 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
4028 CGM.maybeSetTrivialComdat(*ctor, *Fn);
4029 return;
4030 }
4031
4032 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());
4033
4034 // Emit the base destructor if the base and complete (vbase) destructors are
4035 // equivalent. This effectively implements -mconstructor-aliases as part of
4036 // the ABI.
4037 if (GD.getDtorType() == Dtor_Complete &&
4038 dtor->getParent()->getNumVBases() == 0)
4039 GD = GD.getWithDtorType(Dtor_Base);
4040
4041 // The base destructor is equivalent to the base destructor of its
4042 // base class if there is exactly one non-virtual base class with a
4043 // non-trivial destructor, there are no fields with a non-trivial
4044 // destructor, and the body of the destructor is trivial.
4045 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
4046 return;
4047
4048 llvm::Function *Fn = CGM.codegenCXXStructor(GD);
4049 if (Fn->isWeakForLinker())
4050 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
4051 }
4052
4053 llvm::Function *
getAddrOfCXXCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)4054 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
4055 CXXCtorType CT) {
4056 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
4057
4058 // Calculate the mangled name.
4059 SmallString<256> ThunkName;
4060 llvm::raw_svector_ostream Out(ThunkName);
4061 getMangleContext().mangleName(GlobalDecl(CD, CT), Out);
4062
4063 // If the thunk has been generated previously, just return it.
4064 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
4065 return cast<llvm::Function>(GV);
4066
4067 // Create the llvm::Function.
4068 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
4069 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
4070 const CXXRecordDecl *RD = CD->getParent();
4071 QualType RecordTy = getContext().getRecordType(RD);
4072 llvm::Function *ThunkFn = llvm::Function::Create(
4073 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
4074 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
4075 FnInfo.getEffectiveCallingConvention()));
4076 if (ThunkFn->isWeakForLinker())
4077 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
4078 bool IsCopy = CT == Ctor_CopyingClosure;
4079
4080 // Start codegen.
4081 CodeGenFunction CGF(CGM);
4082 CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
4083
4084 // Build FunctionArgs.
4085 FunctionArgList FunctionArgs;
4086
4087 // A constructor always starts with a 'this' pointer as its first argument.
4088 buildThisParam(CGF, FunctionArgs);
4089
4090 // Following the 'this' pointer is a reference to the source object that we
4091 // are copying from.
4092 ImplicitParamDecl SrcParam(
4093 getContext(), /*DC=*/nullptr, SourceLocation(),
4094 &getContext().Idents.get("src"),
4095 getContext().getLValueReferenceType(RecordTy,
4096 /*SpelledAsLValue=*/true),
4097 ImplicitParamDecl::Other);
4098 if (IsCopy)
4099 FunctionArgs.push_back(&SrcParam);
4100
4101 // Constructors for classes which utilize virtual bases have an additional
4102 // parameter which indicates whether or not it is being delegated to by a more
4103 // derived constructor.
4104 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
4105 SourceLocation(),
4106 &getContext().Idents.get("is_most_derived"),
4107 getContext().IntTy, ImplicitParamDecl::Other);
4108 // Only add the parameter to the list if the class has virtual bases.
4109 if (RD->getNumVBases() > 0)
4110 FunctionArgs.push_back(&IsMostDerived);
4111
4112 // Start defining the function.
4113 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4114 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
4115 FunctionArgs, CD->getLocation(), SourceLocation());
4116 // Create a scope with an artificial location for the body of this function.
4117 auto AL = ApplyDebugLocation::CreateArtificial(CGF);
4118 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
4119 llvm::Value *This = getThisValue(CGF);
4120
4121 llvm::Value *SrcVal =
4122 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
4123 : nullptr;
4124
4125 CallArgList Args;
4126
4127 // Push the this ptr.
4128 Args.add(RValue::get(This), CD->getThisType());
4129
4130 // Push the src ptr.
4131 if (SrcVal)
4132 Args.add(RValue::get(SrcVal), SrcParam.getType());
4133
4134 // Add the rest of the default arguments.
4135 SmallVector<const Stmt *, 4> ArgVec;
4136 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
4137 for (const ParmVarDecl *PD : params) {
4138 assert(PD->hasDefaultArg() && "ctor closure lacks default args");
4139 ArgVec.push_back(PD->getDefaultArg());
4140 }
4141
4142 CodeGenFunction::RunCleanupsScope Cleanups(CGF);
4143
4144 const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
4145 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
4146
4147 // Insert any ABI-specific implicit constructor arguments.
4148 AddedStructorArgCounts ExtraArgs =
4149 addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
4150 /*ForVirtualBase=*/false,
4151 /*Delegating=*/false, Args);
4152 // Call the destructor with our arguments.
4153 llvm::Constant *CalleePtr =
4154 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4155 CGCallee Callee =
4156 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
4157 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
4158 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
4159 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);
4160
4161 Cleanups.ForceCleanup();
4162
4163 // Emit the ret instruction, remove any temporary instructions created for the
4164 // aid of CodeGen.
4165 CGF.FinishFunction(SourceLocation());
4166
4167 return ThunkFn;
4168 }
4169
getCatchableType(QualType T,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBIndex)4170 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
4171 uint32_t NVOffset,
4172 int32_t VBPtrOffset,
4173 uint32_t VBIndex) {
4174 assert(!T->isReferenceType());
4175
4176 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4177 const CXXConstructorDecl *CD =
4178 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
4179 CXXCtorType CT = Ctor_Complete;
4180 if (CD)
4181 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
4182 CT = Ctor_CopyingClosure;
4183
4184 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
4185 SmallString<256> MangledName;
4186 {
4187 llvm::raw_svector_ostream Out(MangledName);
4188 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
4189 VBPtrOffset, VBIndex, Out);
4190 }
4191 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4192 return getImageRelativeConstant(GV);
4193
4194 // The TypeDescriptor is used by the runtime to determine if a catch handler
4195 // is appropriate for the exception object.
4196 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
4197
4198 // The runtime is responsible for calling the copy constructor if the
4199 // exception is caught by value.
4200 llvm::Constant *CopyCtor;
4201 if (CD) {
4202 if (CT == Ctor_CopyingClosure)
4203 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
4204 else
4205 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4206
4207 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
4208 } else {
4209 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4210 }
4211 CopyCtor = getImageRelativeConstant(CopyCtor);
4212
4213 bool IsScalar = !RD;
4214 bool HasVirtualBases = false;
4215 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
4216 QualType PointeeType = T;
4217 if (T->isPointerType())
4218 PointeeType = T->getPointeeType();
4219 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
4220 HasVirtualBases = RD->getNumVBases() > 0;
4221 if (IdentifierInfo *II = RD->getIdentifier())
4222 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
4223 }
4224
4225 // Encode the relevant CatchableType properties into the Flags bitfield.
4226 // FIXME: Figure out how bits 2 or 8 can get set.
4227 uint32_t Flags = 0;
4228 if (IsScalar)
4229 Flags |= 1;
4230 if (HasVirtualBases)
4231 Flags |= 4;
4232 if (IsStdBadAlloc)
4233 Flags |= 16;
4234
4235 llvm::Constant *Fields[] = {
4236 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4237 TD, // TypeDescriptor
4238 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment
4239 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
4240 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex
4241 llvm::ConstantInt::get(CGM.IntTy, Size), // Size
4242 CopyCtor // CopyCtor
4243 };
4244 llvm::StructType *CTType = getCatchableTypeType();
4245 auto *GV = new llvm::GlobalVariable(
4246 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
4247 llvm::ConstantStruct::get(CTType, Fields), MangledName);
4248 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4249 GV->setSection(".xdata");
4250 if (GV->isWeakForLinker())
4251 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4252 return getImageRelativeConstant(GV);
4253 }
4254
getCatchableTypeArray(QualType T)4255 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
4256 assert(!T->isReferenceType());
4257
4258 // See if we've already generated a CatchableTypeArray for this type before.
4259 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
4260 if (CTA)
4261 return CTA;
4262
4263 // Ensure that we don't have duplicate entries in our CatchableTypeArray by
4264 // using a SmallSetVector. Duplicates may arise due to virtual bases
4265 // occurring more than once in the hierarchy.
4266 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
4267
4268 // C++14 [except.handle]p3:
4269 // A handler is a match for an exception object of type E if [...]
4270 // - the handler is of type cv T or cv T& and T is an unambiguous public
4271 // base class of E, or
4272 // - the handler is of type cv T or const T& where T is a pointer type and
4273 // E is a pointer type that can be converted to T by [...]
4274 // - a standard pointer conversion (4.10) not involving conversions to
4275 // pointers to private or protected or ambiguous classes
4276 const CXXRecordDecl *MostDerivedClass = nullptr;
4277 bool IsPointer = T->isPointerType();
4278 if (IsPointer)
4279 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4280 else
4281 MostDerivedClass = T->getAsCXXRecordDecl();
4282
4283 // Collect all the unambiguous public bases of the MostDerivedClass.
4284 if (MostDerivedClass) {
4285 const ASTContext &Context = getContext();
4286 const ASTRecordLayout &MostDerivedLayout =
4287 Context.getASTRecordLayout(MostDerivedClass);
4288 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4289 SmallVector<MSRTTIClass, 8> Classes;
4290 serializeClassHierarchy(Classes, MostDerivedClass);
4291 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4292 detectAmbiguousBases(Classes);
4293 for (const MSRTTIClass &Class : Classes) {
4294 // Skip any ambiguous or private bases.
4295 if (Class.Flags &
4296 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4297 continue;
4298 // Write down how to convert from a derived pointer to a base pointer.
4299 uint32_t OffsetInVBTable = 0;
4300 int32_t VBPtrOffset = -1;
4301 if (Class.VirtualRoot) {
4302 OffsetInVBTable =
4303 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4304 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4305 }
4306
4307 // Turn our record back into a pointer if the exception object is a
4308 // pointer.
4309 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4310 if (IsPointer)
4311 RTTITy = Context.getPointerType(RTTITy);
4312 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4313 VBPtrOffset, OffsetInVBTable));
4314 }
4315 }
4316
4317 // C++14 [except.handle]p3:
4318 // A handler is a match for an exception object of type E if
4319 // - The handler is of type cv T or cv T& and E and T are the same type
4320 // (ignoring the top-level cv-qualifiers)
4321 CatchableTypes.insert(getCatchableType(T));
4322
4323 // C++14 [except.handle]p3:
4324 // A handler is a match for an exception object of type E if
4325 // - the handler is of type cv T or const T& where T is a pointer type and
4326 // E is a pointer type that can be converted to T by [...]
4327 // - a standard pointer conversion (4.10) not involving conversions to
4328 // pointers to private or protected or ambiguous classes
4329 //
4330 // C++14 [conv.ptr]p2:
4331 // A prvalue of type "pointer to cv T," where T is an object type, can be
4332 // converted to a prvalue of type "pointer to cv void".
4333 if (IsPointer && T->getPointeeType()->isObjectType())
4334 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4335
4336 // C++14 [except.handle]p3:
4337 // A handler is a match for an exception object of type E if [...]
4338 // - the handler is of type cv T or const T& where T is a pointer or
4339 // pointer to member type and E is std::nullptr_t.
4340 //
4341 // We cannot possibly list all possible pointer types here, making this
4342 // implementation incompatible with the standard. However, MSVC includes an
4343 // entry for pointer-to-void in this case. Let's do the same.
4344 if (T->isNullPtrType())
4345 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4346
4347 uint32_t NumEntries = CatchableTypes.size();
4348 llvm::Type *CTType =
4349 getImageRelativeType(getCatchableTypeType()->getPointerTo());
4350 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4351 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4352 llvm::Constant *Fields[] = {
4353 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries
4354 llvm::ConstantArray::get(
4355 AT, llvm::makeArrayRef(CatchableTypes.begin(),
4356 CatchableTypes.end())) // CatchableTypes
4357 };
4358 SmallString<256> MangledName;
4359 {
4360 llvm::raw_svector_ostream Out(MangledName);
4361 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4362 }
4363 CTA = new llvm::GlobalVariable(
4364 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
4365 llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4366 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4367 CTA->setSection(".xdata");
4368 if (CTA->isWeakForLinker())
4369 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4370 return CTA;
4371 }
4372
getThrowInfo(QualType T)4373 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4374 bool IsConst, IsVolatile, IsUnaligned;
4375 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4376
4377 // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4378 // the exception object may be caught as.
4379 llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4380 // The first field in a CatchableTypeArray is the number of CatchableTypes.
4381 // This is used as a component of the mangled name which means that we need to
4382 // know what it is in order to see if we have previously generated the
4383 // ThrowInfo.
4384 uint32_t NumEntries =
4385 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4386 ->getLimitedValue();
4387
4388 SmallString<256> MangledName;
4389 {
4390 llvm::raw_svector_ostream Out(MangledName);
4391 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4392 NumEntries, Out);
4393 }
4394
4395 // Reuse a previously generated ThrowInfo if we have generated an appropriate
4396 // one before.
4397 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4398 return GV;
4399
4400 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4401 // be at least as CV qualified. Encode this requirement into the Flags
4402 // bitfield.
4403 uint32_t Flags = 0;
4404 if (IsConst)
4405 Flags |= 1;
4406 if (IsVolatile)
4407 Flags |= 2;
4408 if (IsUnaligned)
4409 Flags |= 4;
4410
4411 // The cleanup-function (a destructor) must be called when the exception
4412 // object's lifetime ends.
4413 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4414 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4415 if (CXXDestructorDecl *DtorD = RD->getDestructor())
4416 if (!DtorD->isTrivial())
4417 CleanupFn = llvm::ConstantExpr::getBitCast(
4418 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)),
4419 CGM.Int8PtrTy);
4420 // This is unused as far as we can tell, initialize it to null.
4421 llvm::Constant *ForwardCompat =
4422 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4423 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
4424 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
4425 llvm::StructType *TIType = getThrowInfoType();
4426 llvm::Constant *Fields[] = {
4427 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4428 getImageRelativeConstant(CleanupFn), // CleanupFn
4429 ForwardCompat, // ForwardCompat
4430 PointerToCatchableTypes // CatchableTypeArray
4431 };
4432 auto *GV = new llvm::GlobalVariable(
4433 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
4434 llvm::ConstantStruct::get(TIType, Fields), MangledName.str());
4435 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4436 GV->setSection(".xdata");
4437 if (GV->isWeakForLinker())
4438 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4439 return GV;
4440 }
4441
emitThrow(CodeGenFunction & CGF,const CXXThrowExpr * E)4442 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4443 const Expr *SubExpr = E->getSubExpr();
4444 assert(SubExpr && "SubExpr cannot be null");
4445 QualType ThrowType = SubExpr->getType();
4446 // The exception object lives on the stack and it's address is passed to the
4447 // runtime function.
4448 Address AI = CGF.CreateMemTemp(ThrowType);
4449 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4450 /*IsInit=*/true);
4451
4452 // The so-called ThrowInfo is used to describe how the exception object may be
4453 // caught.
4454 llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4455
4456 // Call into the runtime to throw the exception.
4457 llvm::Value *Args[] = {
4458 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
4459 TI
4460 };
4461 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4462 }
4463
4464 std::pair<llvm::Value *, const CXXRecordDecl *>
LoadVTablePtr(CodeGenFunction & CGF,Address This,const CXXRecordDecl * RD)4465 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
4466 const CXXRecordDecl *RD) {
4467 std::tie(This, std::ignore, RD) =
4468 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
4469 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
4470 }
4471
isPermittedToBeHomogeneousAggregate(const CXXRecordDecl * CXXRD) const4472 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate(
4473 const CXXRecordDecl *CXXRD) const {
4474 // MSVC Windows on Arm64 considers a type not HFA if it is not an
4475 // aggregate according to the C++14 spec. This is not consistent with the
4476 // AAPCS64, but is defacto spec on that platform.
4477 return !CGM.getTarget().getTriple().isAArch64() ||
4478 isTrivialForAArch64MSVC(CXXRD);
4479 }
4480