1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/SemaDiagnostic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/IR/Intrinsics.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Statement Emission 32 //===----------------------------------------------------------------------===// 33 34 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 35 if (CGDebugInfo *DI = getDebugInfo()) { 36 SourceLocation Loc; 37 Loc = S->getLocStart(); 38 DI->EmitLocation(Builder, Loc); 39 40 LastStopPoint = Loc; 41 } 42 } 43 44 void CodeGenFunction::EmitStmt(const Stmt *S) { 45 assert(S && "Null statement?"); 46 PGO.setCurrentStmt(S); 47 48 // These statements have their own debug info handling. 49 if (EmitSimpleStmt(S)) 50 return; 51 52 // Check if we are generating unreachable code. 53 if (!HaveInsertPoint()) { 54 // If so, and the statement doesn't contain a label, then we do not need to 55 // generate actual code. This is safe because (1) the current point is 56 // unreachable, so we don't need to execute the code, and (2) we've already 57 // handled the statements which update internal data structures (like the 58 // local variable map) which could be used by subsequent statements. 59 if (!ContainsLabel(S)) { 60 // Verify that any decl statements were handled as simple, they may be in 61 // scope of subsequent reachable statements. 62 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 63 return; 64 } 65 66 // Otherwise, make a new block to hold the code. 67 EnsureInsertPoint(); 68 } 69 70 // Generate a stoppoint if we are emitting debug info. 71 EmitStopPoint(S); 72 73 switch (S->getStmtClass()) { 74 case Stmt::NoStmtClass: 75 case Stmt::CXXCatchStmtClass: 76 case Stmt::SEHExceptStmtClass: 77 case Stmt::SEHFinallyStmtClass: 78 case Stmt::MSDependentExistsStmtClass: 79 case Stmt::OMPSimdDirectiveClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::OMPParallelDirectiveClass: 177 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 178 break; 179 } 180 } 181 182 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 183 switch (S->getStmtClass()) { 184 default: return false; 185 case Stmt::NullStmtClass: break; 186 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 187 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 188 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 189 case Stmt::AttributedStmtClass: 190 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 191 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 192 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 193 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 194 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 195 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 196 } 197 198 return true; 199 } 200 201 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 202 /// this captures the expression result of the last sub-statement and returns it 203 /// (for use by the statement expression extension). 204 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 205 AggValueSlot AggSlot) { 206 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 207 "LLVM IR generation of compound statement ('{}')"); 208 209 // Keep track of the current cleanup stack depth, including debug scopes. 210 LexicalScope Scope(*this, S.getSourceRange()); 211 212 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 213 } 214 215 llvm::Value* 216 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 217 bool GetLast, 218 AggValueSlot AggSlot) { 219 220 for (CompoundStmt::const_body_iterator I = S.body_begin(), 221 E = S.body_end()-GetLast; I != E; ++I) 222 EmitStmt(*I); 223 224 llvm::Value *RetAlloca = 0; 225 if (GetLast) { 226 // We have to special case labels here. They are statements, but when put 227 // at the end of a statement expression, they yield the value of their 228 // subexpression. Handle this by walking through all labels we encounter, 229 // emitting them before we evaluate the subexpr. 230 const Stmt *LastStmt = S.body_back(); 231 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 232 EmitLabel(LS->getDecl()); 233 LastStmt = LS->getSubStmt(); 234 } 235 236 EnsureInsertPoint(); 237 238 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 239 if (hasAggregateEvaluationKind(ExprTy)) { 240 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 241 } else { 242 // We can't return an RValue here because there might be cleanups at 243 // the end of the StmtExpr. Because of that, we have to emit the result 244 // here into a temporary alloca. 245 RetAlloca = CreateMemTemp(ExprTy); 246 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 247 /*IsInit*/false); 248 } 249 250 } 251 252 return RetAlloca; 253 } 254 255 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 256 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 257 258 // If there is a cleanup stack, then we it isn't worth trying to 259 // simplify this block (we would need to remove it from the scope map 260 // and cleanup entry). 261 if (!EHStack.empty()) 262 return; 263 264 // Can only simplify direct branches. 265 if (!BI || !BI->isUnconditional()) 266 return; 267 268 // Can only simplify empty blocks. 269 if (BI != BB->begin()) 270 return; 271 272 BB->replaceAllUsesWith(BI->getSuccessor(0)); 273 BI->eraseFromParent(); 274 BB->eraseFromParent(); 275 } 276 277 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 278 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 279 280 // Fall out of the current block (if necessary). 281 EmitBranch(BB); 282 283 if (IsFinished && BB->use_empty()) { 284 delete BB; 285 return; 286 } 287 288 // Place the block after the current block, if possible, or else at 289 // the end of the function. 290 if (CurBB && CurBB->getParent()) 291 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 292 else 293 CurFn->getBasicBlockList().push_back(BB); 294 Builder.SetInsertPoint(BB); 295 } 296 297 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 298 // Emit a branch from the current block to the target one if this 299 // was a real block. If this was just a fall-through block after a 300 // terminator, don't emit it. 301 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 302 303 if (!CurBB || CurBB->getTerminator()) { 304 // If there is no insert point or the previous block is already 305 // terminated, don't touch it. 306 } else { 307 // Otherwise, create a fall-through branch. 308 Builder.CreateBr(Target); 309 } 310 311 Builder.ClearInsertionPoint(); 312 } 313 314 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 315 bool inserted = false; 316 for (llvm::User *u : block->users()) { 317 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 318 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 319 inserted = true; 320 break; 321 } 322 } 323 324 if (!inserted) 325 CurFn->getBasicBlockList().push_back(block); 326 327 Builder.SetInsertPoint(block); 328 } 329 330 CodeGenFunction::JumpDest 331 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 332 JumpDest &Dest = LabelMap[D]; 333 if (Dest.isValid()) return Dest; 334 335 // Create, but don't insert, the new block. 336 Dest = JumpDest(createBasicBlock(D->getName()), 337 EHScopeStack::stable_iterator::invalid(), 338 NextCleanupDestIndex++); 339 return Dest; 340 } 341 342 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 343 // Add this label to the current lexical scope if we're within any 344 // normal cleanups. Jumps "in" to this label --- when permitted by 345 // the language --- may need to be routed around such cleanups. 346 if (EHStack.hasNormalCleanups() && CurLexicalScope) 347 CurLexicalScope->addLabel(D); 348 349 JumpDest &Dest = LabelMap[D]; 350 351 // If we didn't need a forward reference to this label, just go 352 // ahead and create a destination at the current scope. 353 if (!Dest.isValid()) { 354 Dest = getJumpDestInCurrentScope(D->getName()); 355 356 // Otherwise, we need to give this label a target depth and remove 357 // it from the branch-fixups list. 358 } else { 359 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 360 Dest.setScopeDepth(EHStack.stable_begin()); 361 ResolveBranchFixups(Dest.getBlock()); 362 } 363 364 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 365 EmitBlock(Dest.getBlock()); 366 Cnt.beginRegion(Builder); 367 } 368 369 /// Change the cleanup scope of the labels in this lexical scope to 370 /// match the scope of the enclosing context. 371 void CodeGenFunction::LexicalScope::rescopeLabels() { 372 assert(!Labels.empty()); 373 EHScopeStack::stable_iterator innermostScope 374 = CGF.EHStack.getInnermostNormalCleanup(); 375 376 // Change the scope depth of all the labels. 377 for (SmallVectorImpl<const LabelDecl*>::const_iterator 378 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 379 assert(CGF.LabelMap.count(*i)); 380 JumpDest &dest = CGF.LabelMap.find(*i)->second; 381 assert(dest.getScopeDepth().isValid()); 382 assert(innermostScope.encloses(dest.getScopeDepth())); 383 dest.setScopeDepth(innermostScope); 384 } 385 386 // Reparent the labels if the new scope also has cleanups. 387 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 388 ParentScope->Labels.append(Labels.begin(), Labels.end()); 389 } 390 } 391 392 393 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 394 EmitLabel(S.getDecl()); 395 EmitStmt(S.getSubStmt()); 396 } 397 398 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 399 EmitStmt(S.getSubStmt()); 400 } 401 402 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 403 // If this code is reachable then emit a stop point (if generating 404 // debug info). We have to do this ourselves because we are on the 405 // "simple" statement path. 406 if (HaveInsertPoint()) 407 EmitStopPoint(&S); 408 409 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 410 } 411 412 413 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 414 if (const LabelDecl *Target = S.getConstantTarget()) { 415 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 416 return; 417 } 418 419 // Ensure that we have an i8* for our PHI node. 420 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 421 Int8PtrTy, "addr"); 422 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 423 424 // Get the basic block for the indirect goto. 425 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 426 427 // The first instruction in the block has to be the PHI for the switch dest, 428 // add an entry for this branch. 429 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 430 431 EmitBranch(IndGotoBB); 432 } 433 434 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 435 // C99 6.8.4.1: The first substatement is executed if the expression compares 436 // unequal to 0. The condition must be a scalar type. 437 LexicalScope ConditionScope(*this, S.getSourceRange()); 438 RegionCounter Cnt = getPGORegionCounter(&S); 439 440 if (S.getConditionVariable()) 441 EmitAutoVarDecl(*S.getConditionVariable()); 442 443 // If the condition constant folds and can be elided, try to avoid emitting 444 // the condition and the dead arm of the if/else. 445 bool CondConstant; 446 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 447 // Figure out which block (then or else) is executed. 448 const Stmt *Executed = S.getThen(); 449 const Stmt *Skipped = S.getElse(); 450 if (!CondConstant) // Condition false? 451 std::swap(Executed, Skipped); 452 453 // If the skipped block has no labels in it, just emit the executed block. 454 // This avoids emitting dead code and simplifies the CFG substantially. 455 if (!ContainsLabel(Skipped)) { 456 if (CondConstant) 457 Cnt.beginRegion(Builder); 458 if (Executed) { 459 RunCleanupsScope ExecutedScope(*this); 460 EmitStmt(Executed); 461 } 462 return; 463 } 464 } 465 466 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 467 // the conditional branch. 468 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 469 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 470 llvm::BasicBlock *ElseBlock = ContBlock; 471 if (S.getElse()) 472 ElseBlock = createBasicBlock("if.else"); 473 474 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 475 476 // Emit the 'then' code. 477 EmitBlock(ThenBlock); 478 Cnt.beginRegion(Builder); 479 { 480 RunCleanupsScope ThenScope(*this); 481 EmitStmt(S.getThen()); 482 } 483 EmitBranch(ContBlock); 484 485 // Emit the 'else' code if present. 486 if (const Stmt *Else = S.getElse()) { 487 // There is no need to emit line number for unconditional branch. 488 if (getDebugInfo()) 489 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 490 EmitBlock(ElseBlock); 491 { 492 RunCleanupsScope ElseScope(*this); 493 EmitStmt(Else); 494 } 495 // There is no need to emit line number for unconditional branch. 496 if (getDebugInfo()) 497 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 498 EmitBranch(ContBlock); 499 } 500 501 // Emit the continuation block for code after the if. 502 EmitBlock(ContBlock, true); 503 } 504 505 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 506 RegionCounter Cnt = getPGORegionCounter(&S); 507 508 // Emit the header for the loop, which will also become 509 // the continue target. 510 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 511 EmitBlock(LoopHeader.getBlock()); 512 513 // Create an exit block for when the condition fails, which will 514 // also become the break target. 515 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 516 517 // Store the blocks to use for break and continue. 518 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 519 520 // C++ [stmt.while]p2: 521 // When the condition of a while statement is a declaration, the 522 // scope of the variable that is declared extends from its point 523 // of declaration (3.3.2) to the end of the while statement. 524 // [...] 525 // The object created in a condition is destroyed and created 526 // with each iteration of the loop. 527 RunCleanupsScope ConditionScope(*this); 528 529 if (S.getConditionVariable()) 530 EmitAutoVarDecl(*S.getConditionVariable()); 531 532 // Evaluate the conditional in the while header. C99 6.8.5.1: The 533 // evaluation of the controlling expression takes place before each 534 // execution of the loop body. 535 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 536 537 // while(1) is common, avoid extra exit blocks. Be sure 538 // to correctly handle break/continue though. 539 bool EmitBoolCondBranch = true; 540 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 541 if (C->isOne()) 542 EmitBoolCondBranch = false; 543 544 // As long as the condition is true, go to the loop body. 545 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 546 if (EmitBoolCondBranch) { 547 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 548 if (ConditionScope.requiresCleanups()) 549 ExitBlock = createBasicBlock("while.exit"); 550 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 551 PGO.createLoopWeights(S.getCond(), Cnt)); 552 553 if (ExitBlock != LoopExit.getBlock()) { 554 EmitBlock(ExitBlock); 555 EmitBranchThroughCleanup(LoopExit); 556 } 557 } 558 559 // Emit the loop body. We have to emit this in a cleanup scope 560 // because it might be a singleton DeclStmt. 561 { 562 RunCleanupsScope BodyScope(*this); 563 EmitBlock(LoopBody); 564 Cnt.beginRegion(Builder); 565 EmitStmt(S.getBody()); 566 } 567 568 BreakContinueStack.pop_back(); 569 570 // Immediately force cleanup. 571 ConditionScope.ForceCleanup(); 572 573 // Branch to the loop header again. 574 EmitBranch(LoopHeader.getBlock()); 575 576 // Emit the exit block. 577 EmitBlock(LoopExit.getBlock(), true); 578 579 // The LoopHeader typically is just a branch if we skipped emitting 580 // a branch, try to erase it. 581 if (!EmitBoolCondBranch) 582 SimplifyForwardingBlocks(LoopHeader.getBlock()); 583 } 584 585 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 586 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 587 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 588 589 RegionCounter Cnt = getPGORegionCounter(&S); 590 591 // Store the blocks to use for break and continue. 592 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 593 594 // Emit the body of the loop. 595 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 596 EmitBlockWithFallThrough(LoopBody, Cnt); 597 { 598 RunCleanupsScope BodyScope(*this); 599 EmitStmt(S.getBody()); 600 } 601 602 EmitBlock(LoopCond.getBlock()); 603 604 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 605 // after each execution of the loop body." 606 607 // Evaluate the conditional in the while header. 608 // C99 6.8.5p2/p4: The first substatement is executed if the expression 609 // compares unequal to 0. The condition must be a scalar type. 610 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 611 612 BreakContinueStack.pop_back(); 613 614 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 615 // to correctly handle break/continue though. 616 bool EmitBoolCondBranch = true; 617 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 618 if (C->isZero()) 619 EmitBoolCondBranch = false; 620 621 // As long as the condition is true, iterate the loop. 622 if (EmitBoolCondBranch) 623 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 624 PGO.createLoopWeights(S.getCond(), Cnt)); 625 626 // Emit the exit block. 627 EmitBlock(LoopExit.getBlock()); 628 629 // The DoCond block typically is just a branch if we skipped 630 // emitting a branch, try to erase it. 631 if (!EmitBoolCondBranch) 632 SimplifyForwardingBlocks(LoopCond.getBlock()); 633 } 634 635 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 636 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 637 638 RunCleanupsScope ForScope(*this); 639 640 CGDebugInfo *DI = getDebugInfo(); 641 if (DI) 642 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 643 644 // Evaluate the first part before the loop. 645 if (S.getInit()) 646 EmitStmt(S.getInit()); 647 648 RegionCounter Cnt = getPGORegionCounter(&S); 649 650 // Start the loop with a block that tests the condition. 651 // If there's an increment, the continue scope will be overwritten 652 // later. 653 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 654 llvm::BasicBlock *CondBlock = Continue.getBlock(); 655 EmitBlock(CondBlock); 656 657 // If the for loop doesn't have an increment we can just use the 658 // condition as the continue block. Otherwise we'll need to create 659 // a block for it (in the current scope, i.e. in the scope of the 660 // condition), and that we will become our continue block. 661 if (S.getInc()) 662 Continue = getJumpDestInCurrentScope("for.inc"); 663 664 // Store the blocks to use for break and continue. 665 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 666 667 // Create a cleanup scope for the condition variable cleanups. 668 RunCleanupsScope ConditionScope(*this); 669 670 if (S.getCond()) { 671 // If the for statement has a condition scope, emit the local variable 672 // declaration. 673 if (S.getConditionVariable()) { 674 EmitAutoVarDecl(*S.getConditionVariable()); 675 } 676 677 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 678 // If there are any cleanups between here and the loop-exit scope, 679 // create a block to stage a loop exit along. 680 if (ForScope.requiresCleanups()) 681 ExitBlock = createBasicBlock("for.cond.cleanup"); 682 683 // As long as the condition is true, iterate the loop. 684 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 685 686 // C99 6.8.5p2/p4: The first substatement is executed if the expression 687 // compares unequal to 0. The condition must be a scalar type. 688 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 689 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 690 PGO.createLoopWeights(S.getCond(), Cnt)); 691 692 if (ExitBlock != LoopExit.getBlock()) { 693 EmitBlock(ExitBlock); 694 EmitBranchThroughCleanup(LoopExit); 695 } 696 697 EmitBlock(ForBody); 698 } else { 699 // Treat it as a non-zero constant. Don't even create a new block for the 700 // body, just fall into it. 701 } 702 Cnt.beginRegion(Builder); 703 704 { 705 // Create a separate cleanup scope for the body, in case it is not 706 // a compound statement. 707 RunCleanupsScope BodyScope(*this); 708 EmitStmt(S.getBody()); 709 } 710 711 // If there is an increment, emit it next. 712 if (S.getInc()) { 713 EmitBlock(Continue.getBlock()); 714 EmitStmt(S.getInc()); 715 } 716 717 BreakContinueStack.pop_back(); 718 719 ConditionScope.ForceCleanup(); 720 EmitBranch(CondBlock); 721 722 ForScope.ForceCleanup(); 723 724 if (DI) 725 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 726 727 // Emit the fall-through block. 728 EmitBlock(LoopExit.getBlock(), true); 729 } 730 731 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 732 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 733 734 RunCleanupsScope ForScope(*this); 735 736 CGDebugInfo *DI = getDebugInfo(); 737 if (DI) 738 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 739 740 // Evaluate the first pieces before the loop. 741 EmitStmt(S.getRangeStmt()); 742 EmitStmt(S.getBeginEndStmt()); 743 744 RegionCounter Cnt = getPGORegionCounter(&S); 745 746 // Start the loop with a block that tests the condition. 747 // If there's an increment, the continue scope will be overwritten 748 // later. 749 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 750 EmitBlock(CondBlock); 751 752 // If there are any cleanups between here and the loop-exit scope, 753 // create a block to stage a loop exit along. 754 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 755 if (ForScope.requiresCleanups()) 756 ExitBlock = createBasicBlock("for.cond.cleanup"); 757 758 // The loop body, consisting of the specified body and the loop variable. 759 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 760 761 // The body is executed if the expression, contextually converted 762 // to bool, is true. 763 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 764 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 765 PGO.createLoopWeights(S.getCond(), Cnt)); 766 767 if (ExitBlock != LoopExit.getBlock()) { 768 EmitBlock(ExitBlock); 769 EmitBranchThroughCleanup(LoopExit); 770 } 771 772 EmitBlock(ForBody); 773 Cnt.beginRegion(Builder); 774 775 // Create a block for the increment. In case of a 'continue', we jump there. 776 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 777 778 // Store the blocks to use for break and continue. 779 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 780 781 { 782 // Create a separate cleanup scope for the loop variable and body. 783 RunCleanupsScope BodyScope(*this); 784 EmitStmt(S.getLoopVarStmt()); 785 EmitStmt(S.getBody()); 786 } 787 788 // If there is an increment, emit it next. 789 EmitBlock(Continue.getBlock()); 790 EmitStmt(S.getInc()); 791 792 BreakContinueStack.pop_back(); 793 794 EmitBranch(CondBlock); 795 796 ForScope.ForceCleanup(); 797 798 if (DI) 799 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 800 801 // Emit the fall-through block. 802 EmitBlock(LoopExit.getBlock(), true); 803 } 804 805 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 806 if (RV.isScalar()) { 807 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 808 } else if (RV.isAggregate()) { 809 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 810 } else { 811 EmitStoreOfComplex(RV.getComplexVal(), 812 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 813 /*init*/ true); 814 } 815 EmitBranchThroughCleanup(ReturnBlock); 816 } 817 818 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 819 /// if the function returns void, or may be missing one if the function returns 820 /// non-void. Fun stuff :). 821 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 822 // Emit the result value, even if unused, to evalute the side effects. 823 const Expr *RV = S.getRetValue(); 824 825 // Treat block literals in a return expression as if they appeared 826 // in their own scope. This permits a small, easily-implemented 827 // exception to our over-conservative rules about not jumping to 828 // statements following block literals with non-trivial cleanups. 829 RunCleanupsScope cleanupScope(*this); 830 if (const ExprWithCleanups *cleanups = 831 dyn_cast_or_null<ExprWithCleanups>(RV)) { 832 enterFullExpression(cleanups); 833 RV = cleanups->getSubExpr(); 834 } 835 836 // FIXME: Clean this up by using an LValue for ReturnTemp, 837 // EmitStoreThroughLValue, and EmitAnyExpr. 838 if (getLangOpts().ElideConstructors && 839 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 840 // Apply the named return value optimization for this return statement, 841 // which means doing nothing: the appropriate result has already been 842 // constructed into the NRVO variable. 843 844 // If there is an NRVO flag for this variable, set it to 1 into indicate 845 // that the cleanup code should not destroy the variable. 846 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 847 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 848 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 849 // Make sure not to return anything, but evaluate the expression 850 // for side effects. 851 if (RV) 852 EmitAnyExpr(RV); 853 } else if (RV == 0) { 854 // Do nothing (return value is left uninitialized) 855 } else if (FnRetTy->isReferenceType()) { 856 // If this function returns a reference, take the address of the expression 857 // rather than the value. 858 RValue Result = EmitReferenceBindingToExpr(RV); 859 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 860 } else { 861 switch (getEvaluationKind(RV->getType())) { 862 case TEK_Scalar: 863 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 864 break; 865 case TEK_Complex: 866 EmitComplexExprIntoLValue(RV, 867 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 868 /*isInit*/ true); 869 break; 870 case TEK_Aggregate: { 871 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 872 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 873 Qualifiers(), 874 AggValueSlot::IsDestructed, 875 AggValueSlot::DoesNotNeedGCBarriers, 876 AggValueSlot::IsNotAliased)); 877 break; 878 } 879 } 880 } 881 882 ++NumReturnExprs; 883 if (RV == 0 || RV->isEvaluatable(getContext())) 884 ++NumSimpleReturnExprs; 885 886 cleanupScope.ForceCleanup(); 887 EmitBranchThroughCleanup(ReturnBlock); 888 } 889 890 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 891 // As long as debug info is modeled with instructions, we have to ensure we 892 // have a place to insert here and write the stop point here. 893 if (HaveInsertPoint()) 894 EmitStopPoint(&S); 895 896 for (const auto *I : S.decls()) 897 EmitDecl(*I); 898 } 899 900 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 901 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 902 903 // If this code is reachable then emit a stop point (if generating 904 // debug info). We have to do this ourselves because we are on the 905 // "simple" statement path. 906 if (HaveInsertPoint()) 907 EmitStopPoint(&S); 908 909 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 910 } 911 912 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 913 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 914 915 // If this code is reachable then emit a stop point (if generating 916 // debug info). We have to do this ourselves because we are on the 917 // "simple" statement path. 918 if (HaveInsertPoint()) 919 EmitStopPoint(&S); 920 921 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 922 } 923 924 /// EmitCaseStmtRange - If case statement range is not too big then 925 /// add multiple cases to switch instruction, one for each value within 926 /// the range. If range is too big then emit "if" condition check. 927 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 928 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 929 930 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 931 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 932 933 RegionCounter CaseCnt = getPGORegionCounter(&S); 934 935 // Emit the code for this case. We do this first to make sure it is 936 // properly chained from our predecessor before generating the 937 // switch machinery to enter this block. 938 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 939 EmitBlockWithFallThrough(CaseDest, CaseCnt); 940 EmitStmt(S.getSubStmt()); 941 942 // If range is empty, do nothing. 943 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 944 return; 945 946 llvm::APInt Range = RHS - LHS; 947 // FIXME: parameters such as this should not be hardcoded. 948 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 949 // Range is small enough to add multiple switch instruction cases. 950 uint64_t Total = CaseCnt.getCount(); 951 unsigned NCases = Range.getZExtValue() + 1; 952 // We only have one region counter for the entire set of cases here, so we 953 // need to divide the weights evenly between the generated cases, ensuring 954 // that the total weight is preserved. E.g., a weight of 5 over three cases 955 // will be distributed as weights of 2, 2, and 1. 956 uint64_t Weight = Total / NCases, Rem = Total % NCases; 957 for (unsigned I = 0; I != NCases; ++I) { 958 if (SwitchWeights) 959 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 960 if (Rem) 961 Rem--; 962 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 963 LHS++; 964 } 965 return; 966 } 967 968 // The range is too big. Emit "if" condition into a new block, 969 // making sure to save and restore the current insertion point. 970 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 971 972 // Push this test onto the chain of range checks (which terminates 973 // in the default basic block). The switch's default will be changed 974 // to the top of this chain after switch emission is complete. 975 llvm::BasicBlock *FalseDest = CaseRangeBlock; 976 CaseRangeBlock = createBasicBlock("sw.caserange"); 977 978 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 979 Builder.SetInsertPoint(CaseRangeBlock); 980 981 // Emit range check. 982 llvm::Value *Diff = 983 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 984 llvm::Value *Cond = 985 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 986 987 llvm::MDNode *Weights = 0; 988 if (SwitchWeights) { 989 uint64_t ThisCount = CaseCnt.getCount(); 990 uint64_t DefaultCount = (*SwitchWeights)[0]; 991 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 992 993 // Since we're chaining the switch default through each large case range, we 994 // need to update the weight for the default, ie, the first case, to include 995 // this case. 996 (*SwitchWeights)[0] += ThisCount; 997 } 998 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 999 1000 // Restore the appropriate insertion point. 1001 if (RestoreBB) 1002 Builder.SetInsertPoint(RestoreBB); 1003 else 1004 Builder.ClearInsertionPoint(); 1005 } 1006 1007 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1008 // If there is no enclosing switch instance that we're aware of, then this 1009 // case statement and its block can be elided. This situation only happens 1010 // when we've constant-folded the switch, are emitting the constant case, 1011 // and part of the constant case includes another case statement. For 1012 // instance: switch (4) { case 4: do { case 5: } while (1); } 1013 if (!SwitchInsn) { 1014 EmitStmt(S.getSubStmt()); 1015 return; 1016 } 1017 1018 // Handle case ranges. 1019 if (S.getRHS()) { 1020 EmitCaseStmtRange(S); 1021 return; 1022 } 1023 1024 RegionCounter CaseCnt = getPGORegionCounter(&S); 1025 llvm::ConstantInt *CaseVal = 1026 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1027 1028 // If the body of the case is just a 'break', try to not emit an empty block. 1029 // If we're profiling or we're not optimizing, leave the block in for better 1030 // debug and coverage analysis. 1031 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1032 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1033 isa<BreakStmt>(S.getSubStmt())) { 1034 JumpDest Block = BreakContinueStack.back().BreakBlock; 1035 1036 // Only do this optimization if there are no cleanups that need emitting. 1037 if (isObviouslyBranchWithoutCleanups(Block)) { 1038 if (SwitchWeights) 1039 SwitchWeights->push_back(CaseCnt.getCount()); 1040 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1041 1042 // If there was a fallthrough into this case, make sure to redirect it to 1043 // the end of the switch as well. 1044 if (Builder.GetInsertBlock()) { 1045 Builder.CreateBr(Block.getBlock()); 1046 Builder.ClearInsertionPoint(); 1047 } 1048 return; 1049 } 1050 } 1051 1052 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1053 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1054 if (SwitchWeights) 1055 SwitchWeights->push_back(CaseCnt.getCount()); 1056 SwitchInsn->addCase(CaseVal, CaseDest); 1057 1058 // Recursively emitting the statement is acceptable, but is not wonderful for 1059 // code where we have many case statements nested together, i.e.: 1060 // case 1: 1061 // case 2: 1062 // case 3: etc. 1063 // Handling this recursively will create a new block for each case statement 1064 // that falls through to the next case which is IR intensive. It also causes 1065 // deep recursion which can run into stack depth limitations. Handle 1066 // sequential non-range case statements specially. 1067 const CaseStmt *CurCase = &S; 1068 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1069 1070 // Otherwise, iteratively add consecutive cases to this switch stmt. 1071 while (NextCase && NextCase->getRHS() == 0) { 1072 CurCase = NextCase; 1073 llvm::ConstantInt *CaseVal = 1074 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1075 1076 CaseCnt = getPGORegionCounter(NextCase); 1077 if (SwitchWeights) 1078 SwitchWeights->push_back(CaseCnt.getCount()); 1079 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1080 CaseDest = createBasicBlock("sw.bb"); 1081 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1082 } 1083 1084 SwitchInsn->addCase(CaseVal, CaseDest); 1085 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1086 } 1087 1088 // Normal default recursion for non-cases. 1089 EmitStmt(CurCase->getSubStmt()); 1090 } 1091 1092 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1093 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1094 assert(DefaultBlock->empty() && 1095 "EmitDefaultStmt: Default block already defined?"); 1096 1097 RegionCounter Cnt = getPGORegionCounter(&S); 1098 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1099 1100 EmitStmt(S.getSubStmt()); 1101 } 1102 1103 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1104 /// constant value that is being switched on, see if we can dead code eliminate 1105 /// the body of the switch to a simple series of statements to emit. Basically, 1106 /// on a switch (5) we want to find these statements: 1107 /// case 5: 1108 /// printf(...); <-- 1109 /// ++i; <-- 1110 /// break; 1111 /// 1112 /// and add them to the ResultStmts vector. If it is unsafe to do this 1113 /// transformation (for example, one of the elided statements contains a label 1114 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1115 /// should include statements after it (e.g. the printf() line is a substmt of 1116 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1117 /// statement, then return CSFC_Success. 1118 /// 1119 /// If Case is non-null, then we are looking for the specified case, checking 1120 /// that nothing we jump over contains labels. If Case is null, then we found 1121 /// the case and are looking for the break. 1122 /// 1123 /// If the recursive walk actually finds our Case, then we set FoundCase to 1124 /// true. 1125 /// 1126 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1127 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1128 const SwitchCase *Case, 1129 bool &FoundCase, 1130 SmallVectorImpl<const Stmt*> &ResultStmts) { 1131 // If this is a null statement, just succeed. 1132 if (S == 0) 1133 return Case ? CSFC_Success : CSFC_FallThrough; 1134 1135 // If this is the switchcase (case 4: or default) that we're looking for, then 1136 // we're in business. Just add the substatement. 1137 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1138 if (S == Case) { 1139 FoundCase = true; 1140 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 1141 ResultStmts); 1142 } 1143 1144 // Otherwise, this is some other case or default statement, just ignore it. 1145 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1146 ResultStmts); 1147 } 1148 1149 // If we are in the live part of the code and we found our break statement, 1150 // return a success! 1151 if (Case == 0 && isa<BreakStmt>(S)) 1152 return CSFC_Success; 1153 1154 // If this is a switch statement, then it might contain the SwitchCase, the 1155 // break, or neither. 1156 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1157 // Handle this as two cases: we might be looking for the SwitchCase (if so 1158 // the skipped statements must be skippable) or we might already have it. 1159 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1160 if (Case) { 1161 // Keep track of whether we see a skipped declaration. The code could be 1162 // using the declaration even if it is skipped, so we can't optimize out 1163 // the decl if the kept statements might refer to it. 1164 bool HadSkippedDecl = false; 1165 1166 // If we're looking for the case, just see if we can skip each of the 1167 // substatements. 1168 for (; Case && I != E; ++I) { 1169 HadSkippedDecl |= isa<DeclStmt>(*I); 1170 1171 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1172 case CSFC_Failure: return CSFC_Failure; 1173 case CSFC_Success: 1174 // A successful result means that either 1) that the statement doesn't 1175 // have the case and is skippable, or 2) does contain the case value 1176 // and also contains the break to exit the switch. In the later case, 1177 // we just verify the rest of the statements are elidable. 1178 if (FoundCase) { 1179 // If we found the case and skipped declarations, we can't do the 1180 // optimization. 1181 if (HadSkippedDecl) 1182 return CSFC_Failure; 1183 1184 for (++I; I != E; ++I) 1185 if (CodeGenFunction::ContainsLabel(*I, true)) 1186 return CSFC_Failure; 1187 return CSFC_Success; 1188 } 1189 break; 1190 case CSFC_FallThrough: 1191 // If we have a fallthrough condition, then we must have found the 1192 // case started to include statements. Consider the rest of the 1193 // statements in the compound statement as candidates for inclusion. 1194 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1195 // We recursively found Case, so we're not looking for it anymore. 1196 Case = 0; 1197 1198 // If we found the case and skipped declarations, we can't do the 1199 // optimization. 1200 if (HadSkippedDecl) 1201 return CSFC_Failure; 1202 break; 1203 } 1204 } 1205 } 1206 1207 // If we have statements in our range, then we know that the statements are 1208 // live and need to be added to the set of statements we're tracking. 1209 for (; I != E; ++I) { 1210 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1211 case CSFC_Failure: return CSFC_Failure; 1212 case CSFC_FallThrough: 1213 // A fallthrough result means that the statement was simple and just 1214 // included in ResultStmt, keep adding them afterwards. 1215 break; 1216 case CSFC_Success: 1217 // A successful result means that we found the break statement and 1218 // stopped statement inclusion. We just ensure that any leftover stmts 1219 // are skippable and return success ourselves. 1220 for (++I; I != E; ++I) 1221 if (CodeGenFunction::ContainsLabel(*I, true)) 1222 return CSFC_Failure; 1223 return CSFC_Success; 1224 } 1225 } 1226 1227 return Case ? CSFC_Success : CSFC_FallThrough; 1228 } 1229 1230 // Okay, this is some other statement that we don't handle explicitly, like a 1231 // for statement or increment etc. If we are skipping over this statement, 1232 // just verify it doesn't have labels, which would make it invalid to elide. 1233 if (Case) { 1234 if (CodeGenFunction::ContainsLabel(S, true)) 1235 return CSFC_Failure; 1236 return CSFC_Success; 1237 } 1238 1239 // Otherwise, we want to include this statement. Everything is cool with that 1240 // so long as it doesn't contain a break out of the switch we're in. 1241 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1242 1243 // Otherwise, everything is great. Include the statement and tell the caller 1244 // that we fall through and include the next statement as well. 1245 ResultStmts.push_back(S); 1246 return CSFC_FallThrough; 1247 } 1248 1249 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1250 /// then invoke CollectStatementsForCase to find the list of statements to emit 1251 /// for a switch on constant. See the comment above CollectStatementsForCase 1252 /// for more details. 1253 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1254 const llvm::APSInt &ConstantCondValue, 1255 SmallVectorImpl<const Stmt*> &ResultStmts, 1256 ASTContext &C, 1257 const SwitchCase *&ResultCase) { 1258 // First step, find the switch case that is being branched to. We can do this 1259 // efficiently by scanning the SwitchCase list. 1260 const SwitchCase *Case = S.getSwitchCaseList(); 1261 const DefaultStmt *DefaultCase = 0; 1262 1263 for (; Case; Case = Case->getNextSwitchCase()) { 1264 // It's either a default or case. Just remember the default statement in 1265 // case we're not jumping to any numbered cases. 1266 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1267 DefaultCase = DS; 1268 continue; 1269 } 1270 1271 // Check to see if this case is the one we're looking for. 1272 const CaseStmt *CS = cast<CaseStmt>(Case); 1273 // Don't handle case ranges yet. 1274 if (CS->getRHS()) return false; 1275 1276 // If we found our case, remember it as 'case'. 1277 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1278 break; 1279 } 1280 1281 // If we didn't find a matching case, we use a default if it exists, or we 1282 // elide the whole switch body! 1283 if (Case == 0) { 1284 // It is safe to elide the body of the switch if it doesn't contain labels 1285 // etc. If it is safe, return successfully with an empty ResultStmts list. 1286 if (DefaultCase == 0) 1287 return !CodeGenFunction::ContainsLabel(&S); 1288 Case = DefaultCase; 1289 } 1290 1291 // Ok, we know which case is being jumped to, try to collect all the 1292 // statements that follow it. This can fail for a variety of reasons. Also, 1293 // check to see that the recursive walk actually found our case statement. 1294 // Insane cases like this can fail to find it in the recursive walk since we 1295 // don't handle every stmt kind: 1296 // switch (4) { 1297 // while (1) { 1298 // case 4: ... 1299 bool FoundCase = false; 1300 ResultCase = Case; 1301 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1302 ResultStmts) != CSFC_Failure && 1303 FoundCase; 1304 } 1305 1306 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1307 // Handle nested switch statements. 1308 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1309 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1310 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1311 1312 // See if we can constant fold the condition of the switch and therefore only 1313 // emit the live case statement (if any) of the switch. 1314 llvm::APSInt ConstantCondValue; 1315 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1316 SmallVector<const Stmt*, 4> CaseStmts; 1317 const SwitchCase *Case = 0; 1318 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1319 getContext(), Case)) { 1320 if (Case) { 1321 RegionCounter CaseCnt = getPGORegionCounter(Case); 1322 CaseCnt.beginRegion(Builder); 1323 } 1324 RunCleanupsScope ExecutedScope(*this); 1325 1326 // Emit the condition variable if needed inside the entire cleanup scope 1327 // used by this special case for constant folded switches. 1328 if (S.getConditionVariable()) 1329 EmitAutoVarDecl(*S.getConditionVariable()); 1330 1331 // At this point, we are no longer "within" a switch instance, so 1332 // we can temporarily enforce this to ensure that any embedded case 1333 // statements are not emitted. 1334 SwitchInsn = 0; 1335 1336 // Okay, we can dead code eliminate everything except this case. Emit the 1337 // specified series of statements and we're good. 1338 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1339 EmitStmt(CaseStmts[i]); 1340 RegionCounter ExitCnt = getPGORegionCounter(&S); 1341 ExitCnt.beginRegion(Builder); 1342 1343 // Now we want to restore the saved switch instance so that nested 1344 // switches continue to function properly 1345 SwitchInsn = SavedSwitchInsn; 1346 1347 return; 1348 } 1349 } 1350 1351 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1352 1353 RunCleanupsScope ConditionScope(*this); 1354 if (S.getConditionVariable()) 1355 EmitAutoVarDecl(*S.getConditionVariable()); 1356 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1357 1358 // Create basic block to hold stuff that comes after switch 1359 // statement. We also need to create a default block now so that 1360 // explicit case ranges tests can have a place to jump to on 1361 // failure. 1362 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1363 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1364 if (PGO.haveRegionCounts()) { 1365 // Walk the SwitchCase list to find how many there are. 1366 uint64_t DefaultCount = 0; 1367 unsigned NumCases = 0; 1368 for (const SwitchCase *Case = S.getSwitchCaseList(); 1369 Case; 1370 Case = Case->getNextSwitchCase()) { 1371 if (isa<DefaultStmt>(Case)) 1372 DefaultCount = getPGORegionCounter(Case).getCount(); 1373 NumCases += 1; 1374 } 1375 SwitchWeights = new SmallVector<uint64_t, 16>(); 1376 SwitchWeights->reserve(NumCases); 1377 // The default needs to be first. We store the edge count, so we already 1378 // know the right weight. 1379 SwitchWeights->push_back(DefaultCount); 1380 } 1381 CaseRangeBlock = DefaultBlock; 1382 1383 // Clear the insertion point to indicate we are in unreachable code. 1384 Builder.ClearInsertionPoint(); 1385 1386 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1387 // then reuse last ContinueBlock. 1388 JumpDest OuterContinue; 1389 if (!BreakContinueStack.empty()) 1390 OuterContinue = BreakContinueStack.back().ContinueBlock; 1391 1392 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1393 1394 // Emit switch body. 1395 EmitStmt(S.getBody()); 1396 1397 BreakContinueStack.pop_back(); 1398 1399 // Update the default block in case explicit case range tests have 1400 // been chained on top. 1401 SwitchInsn->setDefaultDest(CaseRangeBlock); 1402 1403 // If a default was never emitted: 1404 if (!DefaultBlock->getParent()) { 1405 // If we have cleanups, emit the default block so that there's a 1406 // place to jump through the cleanups from. 1407 if (ConditionScope.requiresCleanups()) { 1408 EmitBlock(DefaultBlock); 1409 1410 // Otherwise, just forward the default block to the switch end. 1411 } else { 1412 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1413 delete DefaultBlock; 1414 } 1415 } 1416 1417 ConditionScope.ForceCleanup(); 1418 1419 // Emit continuation. 1420 EmitBlock(SwitchExit.getBlock(), true); 1421 RegionCounter ExitCnt = getPGORegionCounter(&S); 1422 ExitCnt.beginRegion(Builder); 1423 1424 if (SwitchWeights) { 1425 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1426 "switch weights do not match switch cases"); 1427 // If there's only one jump destination there's no sense weighting it. 1428 if (SwitchWeights->size() > 1) 1429 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1430 PGO.createBranchWeights(*SwitchWeights)); 1431 delete SwitchWeights; 1432 } 1433 SwitchInsn = SavedSwitchInsn; 1434 SwitchWeights = SavedSwitchWeights; 1435 CaseRangeBlock = SavedCRBlock; 1436 } 1437 1438 static std::string 1439 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1440 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1441 std::string Result; 1442 1443 while (*Constraint) { 1444 switch (*Constraint) { 1445 default: 1446 Result += Target.convertConstraint(Constraint); 1447 break; 1448 // Ignore these 1449 case '*': 1450 case '?': 1451 case '!': 1452 case '=': // Will see this and the following in mult-alt constraints. 1453 case '+': 1454 break; 1455 case '#': // Ignore the rest of the constraint alternative. 1456 while (Constraint[1] && Constraint[1] != ',') 1457 Constraint++; 1458 break; 1459 case ',': 1460 Result += "|"; 1461 break; 1462 case 'g': 1463 Result += "imr"; 1464 break; 1465 case '[': { 1466 assert(OutCons && 1467 "Must pass output names to constraints with a symbolic name"); 1468 unsigned Index; 1469 bool result = Target.resolveSymbolicName(Constraint, 1470 &(*OutCons)[0], 1471 OutCons->size(), Index); 1472 assert(result && "Could not resolve symbolic name"); (void)result; 1473 Result += llvm::utostr(Index); 1474 break; 1475 } 1476 } 1477 1478 Constraint++; 1479 } 1480 1481 return Result; 1482 } 1483 1484 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1485 /// as using a particular register add that as a constraint that will be used 1486 /// in this asm stmt. 1487 static std::string 1488 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1489 const TargetInfo &Target, CodeGenModule &CGM, 1490 const AsmStmt &Stmt) { 1491 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1492 if (!AsmDeclRef) 1493 return Constraint; 1494 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1495 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1496 if (!Variable) 1497 return Constraint; 1498 if (Variable->getStorageClass() != SC_Register) 1499 return Constraint; 1500 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1501 if (!Attr) 1502 return Constraint; 1503 StringRef Register = Attr->getLabel(); 1504 assert(Target.isValidGCCRegisterName(Register)); 1505 // We're using validateOutputConstraint here because we only care if 1506 // this is a register constraint. 1507 TargetInfo::ConstraintInfo Info(Constraint, ""); 1508 if (Target.validateOutputConstraint(Info) && 1509 !Info.allowsRegister()) { 1510 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1511 return Constraint; 1512 } 1513 // Canonicalize the register here before returning it. 1514 Register = Target.getNormalizedGCCRegisterName(Register); 1515 return "{" + Register.str() + "}"; 1516 } 1517 1518 llvm::Value* 1519 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1520 LValue InputValue, QualType InputType, 1521 std::string &ConstraintStr, 1522 SourceLocation Loc) { 1523 llvm::Value *Arg; 1524 if (Info.allowsRegister() || !Info.allowsMemory()) { 1525 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1526 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1527 } else { 1528 llvm::Type *Ty = ConvertType(InputType); 1529 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1530 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1531 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1532 Ty = llvm::PointerType::getUnqual(Ty); 1533 1534 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1535 Ty)); 1536 } else { 1537 Arg = InputValue.getAddress(); 1538 ConstraintStr += '*'; 1539 } 1540 } 1541 } else { 1542 Arg = InputValue.getAddress(); 1543 ConstraintStr += '*'; 1544 } 1545 1546 return Arg; 1547 } 1548 1549 llvm::Value* CodeGenFunction::EmitAsmInput( 1550 const TargetInfo::ConstraintInfo &Info, 1551 const Expr *InputExpr, 1552 std::string &ConstraintStr) { 1553 if (Info.allowsRegister() || !Info.allowsMemory()) 1554 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1555 return EmitScalarExpr(InputExpr); 1556 1557 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1558 LValue Dest = EmitLValue(InputExpr); 1559 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1560 InputExpr->getExprLoc()); 1561 } 1562 1563 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1564 /// asm call instruction. The !srcloc MDNode contains a list of constant 1565 /// integers which are the source locations of the start of each line in the 1566 /// asm. 1567 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1568 CodeGenFunction &CGF) { 1569 SmallVector<llvm::Value *, 8> Locs; 1570 // Add the location of the first line to the MDNode. 1571 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1572 Str->getLocStart().getRawEncoding())); 1573 StringRef StrVal = Str->getString(); 1574 if (!StrVal.empty()) { 1575 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1576 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1577 1578 // Add the location of the start of each subsequent line of the asm to the 1579 // MDNode. 1580 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1581 if (StrVal[i] != '\n') continue; 1582 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1583 CGF.getTarget()); 1584 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1585 LineLoc.getRawEncoding())); 1586 } 1587 } 1588 1589 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1590 } 1591 1592 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1593 // Assemble the final asm string. 1594 std::string AsmString = S.generateAsmString(getContext()); 1595 1596 // Get all the output and input constraints together. 1597 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1598 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1599 1600 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1601 StringRef Name; 1602 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1603 Name = GAS->getOutputName(i); 1604 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1605 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1606 assert(IsValid && "Failed to parse output constraint"); 1607 OutputConstraintInfos.push_back(Info); 1608 } 1609 1610 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1611 StringRef Name; 1612 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1613 Name = GAS->getInputName(i); 1614 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1615 bool IsValid = 1616 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1617 S.getNumOutputs(), Info); 1618 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1619 InputConstraintInfos.push_back(Info); 1620 } 1621 1622 std::string Constraints; 1623 1624 std::vector<LValue> ResultRegDests; 1625 std::vector<QualType> ResultRegQualTys; 1626 std::vector<llvm::Type *> ResultRegTypes; 1627 std::vector<llvm::Type *> ResultTruncRegTypes; 1628 std::vector<llvm::Type *> ArgTypes; 1629 std::vector<llvm::Value*> Args; 1630 1631 // Keep track of inout constraints. 1632 std::string InOutConstraints; 1633 std::vector<llvm::Value*> InOutArgs; 1634 std::vector<llvm::Type*> InOutArgTypes; 1635 1636 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1637 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1638 1639 // Simplify the output constraint. 1640 std::string OutputConstraint(S.getOutputConstraint(i)); 1641 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1642 getTarget()); 1643 1644 const Expr *OutExpr = S.getOutputExpr(i); 1645 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1646 1647 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1648 getTarget(), CGM, S); 1649 1650 LValue Dest = EmitLValue(OutExpr); 1651 if (!Constraints.empty()) 1652 Constraints += ','; 1653 1654 // If this is a register output, then make the inline asm return it 1655 // by-value. If this is a memory result, return the value by-reference. 1656 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1657 Constraints += "=" + OutputConstraint; 1658 ResultRegQualTys.push_back(OutExpr->getType()); 1659 ResultRegDests.push_back(Dest); 1660 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1661 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1662 1663 // If this output is tied to an input, and if the input is larger, then 1664 // we need to set the actual result type of the inline asm node to be the 1665 // same as the input type. 1666 if (Info.hasMatchingInput()) { 1667 unsigned InputNo; 1668 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1669 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1670 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1671 break; 1672 } 1673 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1674 1675 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1676 QualType OutputType = OutExpr->getType(); 1677 1678 uint64_t InputSize = getContext().getTypeSize(InputTy); 1679 if (getContext().getTypeSize(OutputType) < InputSize) { 1680 // Form the asm to return the value as a larger integer or fp type. 1681 ResultRegTypes.back() = ConvertType(InputTy); 1682 } 1683 } 1684 if (llvm::Type* AdjTy = 1685 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1686 ResultRegTypes.back())) 1687 ResultRegTypes.back() = AdjTy; 1688 else { 1689 CGM.getDiags().Report(S.getAsmLoc(), 1690 diag::err_asm_invalid_type_in_input) 1691 << OutExpr->getType() << OutputConstraint; 1692 } 1693 } else { 1694 ArgTypes.push_back(Dest.getAddress()->getType()); 1695 Args.push_back(Dest.getAddress()); 1696 Constraints += "=*"; 1697 Constraints += OutputConstraint; 1698 } 1699 1700 if (Info.isReadWrite()) { 1701 InOutConstraints += ','; 1702 1703 const Expr *InputExpr = S.getOutputExpr(i); 1704 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1705 InOutConstraints, 1706 InputExpr->getExprLoc()); 1707 1708 if (llvm::Type* AdjTy = 1709 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1710 Arg->getType())) 1711 Arg = Builder.CreateBitCast(Arg, AdjTy); 1712 1713 if (Info.allowsRegister()) 1714 InOutConstraints += llvm::utostr(i); 1715 else 1716 InOutConstraints += OutputConstraint; 1717 1718 InOutArgTypes.push_back(Arg->getType()); 1719 InOutArgs.push_back(Arg); 1720 } 1721 } 1722 1723 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1724 1725 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1726 const Expr *InputExpr = S.getInputExpr(i); 1727 1728 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1729 1730 if (!Constraints.empty()) 1731 Constraints += ','; 1732 1733 // Simplify the input constraint. 1734 std::string InputConstraint(S.getInputConstraint(i)); 1735 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1736 &OutputConstraintInfos); 1737 1738 InputConstraint = 1739 AddVariableConstraints(InputConstraint, 1740 *InputExpr->IgnoreParenNoopCasts(getContext()), 1741 getTarget(), CGM, S); 1742 1743 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1744 1745 // If this input argument is tied to a larger output result, extend the 1746 // input to be the same size as the output. The LLVM backend wants to see 1747 // the input and output of a matching constraint be the same size. Note 1748 // that GCC does not define what the top bits are here. We use zext because 1749 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1750 if (Info.hasTiedOperand()) { 1751 unsigned Output = Info.getTiedOperand(); 1752 QualType OutputType = S.getOutputExpr(Output)->getType(); 1753 QualType InputTy = InputExpr->getType(); 1754 1755 if (getContext().getTypeSize(OutputType) > 1756 getContext().getTypeSize(InputTy)) { 1757 // Use ptrtoint as appropriate so that we can do our extension. 1758 if (isa<llvm::PointerType>(Arg->getType())) 1759 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1760 llvm::Type *OutputTy = ConvertType(OutputType); 1761 if (isa<llvm::IntegerType>(OutputTy)) 1762 Arg = Builder.CreateZExt(Arg, OutputTy); 1763 else if (isa<llvm::PointerType>(OutputTy)) 1764 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1765 else { 1766 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1767 Arg = Builder.CreateFPExt(Arg, OutputTy); 1768 } 1769 } 1770 } 1771 if (llvm::Type* AdjTy = 1772 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1773 Arg->getType())) 1774 Arg = Builder.CreateBitCast(Arg, AdjTy); 1775 else 1776 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1777 << InputExpr->getType() << InputConstraint; 1778 1779 ArgTypes.push_back(Arg->getType()); 1780 Args.push_back(Arg); 1781 Constraints += InputConstraint; 1782 } 1783 1784 // Append the "input" part of inout constraints last. 1785 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1786 ArgTypes.push_back(InOutArgTypes[i]); 1787 Args.push_back(InOutArgs[i]); 1788 } 1789 Constraints += InOutConstraints; 1790 1791 // Clobbers 1792 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1793 StringRef Clobber = S.getClobber(i); 1794 1795 if (Clobber != "memory" && Clobber != "cc") 1796 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1797 1798 if (i != 0 || NumConstraints != 0) 1799 Constraints += ','; 1800 1801 Constraints += "~{"; 1802 Constraints += Clobber; 1803 Constraints += '}'; 1804 } 1805 1806 // Add machine specific clobbers 1807 std::string MachineClobbers = getTarget().getClobbers(); 1808 if (!MachineClobbers.empty()) { 1809 if (!Constraints.empty()) 1810 Constraints += ','; 1811 Constraints += MachineClobbers; 1812 } 1813 1814 llvm::Type *ResultType; 1815 if (ResultRegTypes.empty()) 1816 ResultType = VoidTy; 1817 else if (ResultRegTypes.size() == 1) 1818 ResultType = ResultRegTypes[0]; 1819 else 1820 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1821 1822 llvm::FunctionType *FTy = 1823 llvm::FunctionType::get(ResultType, ArgTypes, false); 1824 1825 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1826 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1827 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1828 llvm::InlineAsm *IA = 1829 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1830 /* IsAlignStack */ false, AsmDialect); 1831 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1832 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1833 llvm::Attribute::NoUnwind); 1834 1835 // Slap the source location of the inline asm into a !srcloc metadata on the 1836 // call. FIXME: Handle metadata for MS-style inline asms. 1837 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1838 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 1839 *this)); 1840 1841 // Extract all of the register value results from the asm. 1842 std::vector<llvm::Value*> RegResults; 1843 if (ResultRegTypes.size() == 1) { 1844 RegResults.push_back(Result); 1845 } else { 1846 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1847 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1848 RegResults.push_back(Tmp); 1849 } 1850 } 1851 1852 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1853 llvm::Value *Tmp = RegResults[i]; 1854 1855 // If the result type of the LLVM IR asm doesn't match the result type of 1856 // the expression, do the conversion. 1857 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1858 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1859 1860 // Truncate the integer result to the right size, note that TruncTy can be 1861 // a pointer. 1862 if (TruncTy->isFloatingPointTy()) 1863 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1864 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1865 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 1866 Tmp = Builder.CreateTrunc(Tmp, 1867 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1868 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1869 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1870 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 1871 Tmp = Builder.CreatePtrToInt(Tmp, 1872 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1873 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1874 } else if (TruncTy->isIntegerTy()) { 1875 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1876 } else if (TruncTy->isVectorTy()) { 1877 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1878 } 1879 } 1880 1881 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1882 } 1883 } 1884 1885 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 1886 const RecordDecl *RD = S.getCapturedRecordDecl(); 1887 QualType RecordTy = CGF.getContext().getRecordType(RD); 1888 1889 // Initialize the captured struct. 1890 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 1891 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 1892 1893 RecordDecl::field_iterator CurField = RD->field_begin(); 1894 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 1895 E = S.capture_init_end(); 1896 I != E; ++I, ++CurField) { 1897 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1898 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 1899 } 1900 1901 return SlotLV; 1902 } 1903 1904 /// Generate an outlined function for the body of a CapturedStmt, store any 1905 /// captured variables into the captured struct, and call the outlined function. 1906 llvm::Function * 1907 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 1908 const CapturedDecl *CD = S.getCapturedDecl(); 1909 const RecordDecl *RD = S.getCapturedRecordDecl(); 1910 assert(CD->hasBody() && "missing CapturedDecl body"); 1911 1912 LValue CapStruct = InitCapturedStruct(*this, S); 1913 1914 // Emit the CapturedDecl 1915 CodeGenFunction CGF(CGM, true); 1916 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 1917 llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart()); 1918 delete CGF.CapturedStmtInfo; 1919 1920 // Emit call to the helper function. 1921 EmitCallOrInvoke(F, CapStruct.getAddress()); 1922 1923 return F; 1924 } 1925 1926 llvm::Value * 1927 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 1928 LValue CapStruct = InitCapturedStruct(*this, S); 1929 return CapStruct.getAddress(); 1930 } 1931 1932 /// Creates the outlined function for a CapturedStmt. 1933 llvm::Function * 1934 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD, 1935 const RecordDecl *RD, 1936 SourceLocation Loc) { 1937 assert(CapturedStmtInfo && 1938 "CapturedStmtInfo should be set when generating the captured function"); 1939 1940 // Build the argument list. 1941 ASTContext &Ctx = CGM.getContext(); 1942 FunctionArgList Args; 1943 Args.append(CD->param_begin(), CD->param_end()); 1944 1945 // Create the function declaration. 1946 FunctionType::ExtInfo ExtInfo; 1947 const CGFunctionInfo &FuncInfo = 1948 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 1949 /*IsVariadic=*/false); 1950 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 1951 1952 llvm::Function *F = 1953 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 1954 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 1955 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 1956 1957 // Generate the function. 1958 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 1959 CD->getLocation(), 1960 CD->getBody()->getLocStart()); 1961 1962 // Set the context parameter in CapturedStmtInfo. 1963 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 1964 assert(DeclPtr && "missing context parameter for CapturedStmt"); 1965 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 1966 1967 // If 'this' is captured, load it into CXXThisValue. 1968 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 1969 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 1970 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 1971 Ctx.getTagDeclType(RD)); 1972 LValue ThisLValue = EmitLValueForField(LV, FD); 1973 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 1974 } 1975 1976 PGO.assignRegionCounters(CD, F); 1977 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 1978 FinishFunction(CD->getBodyRBrace()); 1979 PGO.emitInstrumentationData(); 1980 PGO.destroyRegionCounters(); 1981 1982 return F; 1983 } 1984