1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/SemaDiagnostic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                              Statement Emission
32 //===----------------------------------------------------------------------===//
33 
34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35   if (CGDebugInfo *DI = getDebugInfo()) {
36     SourceLocation Loc;
37     Loc = S->getLocStart();
38     DI->EmitLocation(Builder, Loc);
39 
40     LastStopPoint = Loc;
41   }
42 }
43 
44 void CodeGenFunction::EmitStmt(const Stmt *S) {
45   assert(S && "Null statement?");
46   PGO.setCurrentStmt(S);
47 
48   // These statements have their own debug info handling.
49   if (EmitSimpleStmt(S))
50     return;
51 
52   // Check if we are generating unreachable code.
53   if (!HaveInsertPoint()) {
54     // If so, and the statement doesn't contain a label, then we do not need to
55     // generate actual code. This is safe because (1) the current point is
56     // unreachable, so we don't need to execute the code, and (2) we've already
57     // handled the statements which update internal data structures (like the
58     // local variable map) which could be used by subsequent statements.
59     if (!ContainsLabel(S)) {
60       // Verify that any decl statements were handled as simple, they may be in
61       // scope of subsequent reachable statements.
62       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
63       return;
64     }
65 
66     // Otherwise, make a new block to hold the code.
67     EnsureInsertPoint();
68   }
69 
70   // Generate a stoppoint if we are emitting debug info.
71   EmitStopPoint(S);
72 
73   switch (S->getStmtClass()) {
74   case Stmt::NoStmtClass:
75   case Stmt::CXXCatchStmtClass:
76   case Stmt::SEHExceptStmtClass:
77   case Stmt::SEHFinallyStmtClass:
78   case Stmt::MSDependentExistsStmtClass:
79   case Stmt::OMPSimdDirectiveClass:
80     llvm_unreachable("invalid statement class to emit generically");
81   case Stmt::NullStmtClass:
82   case Stmt::CompoundStmtClass:
83   case Stmt::DeclStmtClass:
84   case Stmt::LabelStmtClass:
85   case Stmt::AttributedStmtClass:
86   case Stmt::GotoStmtClass:
87   case Stmt::BreakStmtClass:
88   case Stmt::ContinueStmtClass:
89   case Stmt::DefaultStmtClass:
90   case Stmt::CaseStmtClass:
91     llvm_unreachable("should have emitted these statements as simple");
92 
93 #define STMT(Type, Base)
94 #define ABSTRACT_STMT(Op)
95 #define EXPR(Type, Base) \
96   case Stmt::Type##Class:
97 #include "clang/AST/StmtNodes.inc"
98   {
99     // Remember the block we came in on.
100     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
101     assert(incoming && "expression emission must have an insertion point");
102 
103     EmitIgnoredExpr(cast<Expr>(S));
104 
105     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
106     assert(outgoing && "expression emission cleared block!");
107 
108     // The expression emitters assume (reasonably!) that the insertion
109     // point is always set.  To maintain that, the call-emission code
110     // for noreturn functions has to enter a new block with no
111     // predecessors.  We want to kill that block and mark the current
112     // insertion point unreachable in the common case of a call like
113     // "exit();".  Since expression emission doesn't otherwise create
114     // blocks with no predecessors, we can just test for that.
115     // However, we must be careful not to do this to our incoming
116     // block, because *statement* emission does sometimes create
117     // reachable blocks which will have no predecessors until later in
118     // the function.  This occurs with, e.g., labels that are not
119     // reachable by fallthrough.
120     if (incoming != outgoing && outgoing->use_empty()) {
121       outgoing->eraseFromParent();
122       Builder.ClearInsertionPoint();
123     }
124     break;
125   }
126 
127   case Stmt::IndirectGotoStmtClass:
128     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
129 
130   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
131   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
132   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
133   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
134 
135   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
136 
137   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
138   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
139   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
140   case Stmt::CapturedStmtClass: {
141     const CapturedStmt *CS = cast<CapturedStmt>(S);
142     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
143     }
144     break;
145   case Stmt::ObjCAtTryStmtClass:
146     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
147     break;
148   case Stmt::ObjCAtCatchStmtClass:
149     llvm_unreachable(
150                     "@catch statements should be handled by EmitObjCAtTryStmt");
151   case Stmt::ObjCAtFinallyStmtClass:
152     llvm_unreachable(
153                   "@finally statements should be handled by EmitObjCAtTryStmt");
154   case Stmt::ObjCAtThrowStmtClass:
155     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
156     break;
157   case Stmt::ObjCAtSynchronizedStmtClass:
158     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
159     break;
160   case Stmt::ObjCForCollectionStmtClass:
161     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
162     break;
163   case Stmt::ObjCAutoreleasePoolStmtClass:
164     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
165     break;
166 
167   case Stmt::CXXTryStmtClass:
168     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
169     break;
170   case Stmt::CXXForRangeStmtClass:
171     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
172     break;
173   case Stmt::SEHTryStmtClass:
174     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
175     break;
176   case Stmt::OMPParallelDirectiveClass:
177     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
178     break;
179   }
180 }
181 
182 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
183   switch (S->getStmtClass()) {
184   default: return false;
185   case Stmt::NullStmtClass: break;
186   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
187   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
188   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
189   case Stmt::AttributedStmtClass:
190                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
191   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
192   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
193   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
194   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
195   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
196   }
197 
198   return true;
199 }
200 
201 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
202 /// this captures the expression result of the last sub-statement and returns it
203 /// (for use by the statement expression extension).
204 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
205                                                AggValueSlot AggSlot) {
206   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
207                              "LLVM IR generation of compound statement ('{}')");
208 
209   // Keep track of the current cleanup stack depth, including debug scopes.
210   LexicalScope Scope(*this, S.getSourceRange());
211 
212   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
213 }
214 
215 llvm::Value*
216 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
217                                               bool GetLast,
218                                               AggValueSlot AggSlot) {
219 
220   for (CompoundStmt::const_body_iterator I = S.body_begin(),
221        E = S.body_end()-GetLast; I != E; ++I)
222     EmitStmt(*I);
223 
224   llvm::Value *RetAlloca = 0;
225   if (GetLast) {
226     // We have to special case labels here.  They are statements, but when put
227     // at the end of a statement expression, they yield the value of their
228     // subexpression.  Handle this by walking through all labels we encounter,
229     // emitting them before we evaluate the subexpr.
230     const Stmt *LastStmt = S.body_back();
231     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
232       EmitLabel(LS->getDecl());
233       LastStmt = LS->getSubStmt();
234     }
235 
236     EnsureInsertPoint();
237 
238     QualType ExprTy = cast<Expr>(LastStmt)->getType();
239     if (hasAggregateEvaluationKind(ExprTy)) {
240       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
241     } else {
242       // We can't return an RValue here because there might be cleanups at
243       // the end of the StmtExpr.  Because of that, we have to emit the result
244       // here into a temporary alloca.
245       RetAlloca = CreateMemTemp(ExprTy);
246       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
247                        /*IsInit*/false);
248     }
249 
250   }
251 
252   return RetAlloca;
253 }
254 
255 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
256   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
257 
258   // If there is a cleanup stack, then we it isn't worth trying to
259   // simplify this block (we would need to remove it from the scope map
260   // and cleanup entry).
261   if (!EHStack.empty())
262     return;
263 
264   // Can only simplify direct branches.
265   if (!BI || !BI->isUnconditional())
266     return;
267 
268   // Can only simplify empty blocks.
269   if (BI != BB->begin())
270     return;
271 
272   BB->replaceAllUsesWith(BI->getSuccessor(0));
273   BI->eraseFromParent();
274   BB->eraseFromParent();
275 }
276 
277 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
278   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
279 
280   // Fall out of the current block (if necessary).
281   EmitBranch(BB);
282 
283   if (IsFinished && BB->use_empty()) {
284     delete BB;
285     return;
286   }
287 
288   // Place the block after the current block, if possible, or else at
289   // the end of the function.
290   if (CurBB && CurBB->getParent())
291     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
292   else
293     CurFn->getBasicBlockList().push_back(BB);
294   Builder.SetInsertPoint(BB);
295 }
296 
297 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
298   // Emit a branch from the current block to the target one if this
299   // was a real block.  If this was just a fall-through block after a
300   // terminator, don't emit it.
301   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
302 
303   if (!CurBB || CurBB->getTerminator()) {
304     // If there is no insert point or the previous block is already
305     // terminated, don't touch it.
306   } else {
307     // Otherwise, create a fall-through branch.
308     Builder.CreateBr(Target);
309   }
310 
311   Builder.ClearInsertionPoint();
312 }
313 
314 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
315   bool inserted = false;
316   for (llvm::User *u : block->users()) {
317     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
318       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
319       inserted = true;
320       break;
321     }
322   }
323 
324   if (!inserted)
325     CurFn->getBasicBlockList().push_back(block);
326 
327   Builder.SetInsertPoint(block);
328 }
329 
330 CodeGenFunction::JumpDest
331 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
332   JumpDest &Dest = LabelMap[D];
333   if (Dest.isValid()) return Dest;
334 
335   // Create, but don't insert, the new block.
336   Dest = JumpDest(createBasicBlock(D->getName()),
337                   EHScopeStack::stable_iterator::invalid(),
338                   NextCleanupDestIndex++);
339   return Dest;
340 }
341 
342 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
343   // Add this label to the current lexical scope if we're within any
344   // normal cleanups.  Jumps "in" to this label --- when permitted by
345   // the language --- may need to be routed around such cleanups.
346   if (EHStack.hasNormalCleanups() && CurLexicalScope)
347     CurLexicalScope->addLabel(D);
348 
349   JumpDest &Dest = LabelMap[D];
350 
351   // If we didn't need a forward reference to this label, just go
352   // ahead and create a destination at the current scope.
353   if (!Dest.isValid()) {
354     Dest = getJumpDestInCurrentScope(D->getName());
355 
356   // Otherwise, we need to give this label a target depth and remove
357   // it from the branch-fixups list.
358   } else {
359     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
360     Dest.setScopeDepth(EHStack.stable_begin());
361     ResolveBranchFixups(Dest.getBlock());
362   }
363 
364   RegionCounter Cnt = getPGORegionCounter(D->getStmt());
365   EmitBlock(Dest.getBlock());
366   Cnt.beginRegion(Builder);
367 }
368 
369 /// Change the cleanup scope of the labels in this lexical scope to
370 /// match the scope of the enclosing context.
371 void CodeGenFunction::LexicalScope::rescopeLabels() {
372   assert(!Labels.empty());
373   EHScopeStack::stable_iterator innermostScope
374     = CGF.EHStack.getInnermostNormalCleanup();
375 
376   // Change the scope depth of all the labels.
377   for (SmallVectorImpl<const LabelDecl*>::const_iterator
378          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
379     assert(CGF.LabelMap.count(*i));
380     JumpDest &dest = CGF.LabelMap.find(*i)->second;
381     assert(dest.getScopeDepth().isValid());
382     assert(innermostScope.encloses(dest.getScopeDepth()));
383     dest.setScopeDepth(innermostScope);
384   }
385 
386   // Reparent the labels if the new scope also has cleanups.
387   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
388     ParentScope->Labels.append(Labels.begin(), Labels.end());
389   }
390 }
391 
392 
393 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
394   EmitLabel(S.getDecl());
395   EmitStmt(S.getSubStmt());
396 }
397 
398 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
399   EmitStmt(S.getSubStmt());
400 }
401 
402 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
403   // If this code is reachable then emit a stop point (if generating
404   // debug info). We have to do this ourselves because we are on the
405   // "simple" statement path.
406   if (HaveInsertPoint())
407     EmitStopPoint(&S);
408 
409   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
410 }
411 
412 
413 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
414   if (const LabelDecl *Target = S.getConstantTarget()) {
415     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
416     return;
417   }
418 
419   // Ensure that we have an i8* for our PHI node.
420   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
421                                          Int8PtrTy, "addr");
422   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
423 
424   // Get the basic block for the indirect goto.
425   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
426 
427   // The first instruction in the block has to be the PHI for the switch dest,
428   // add an entry for this branch.
429   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
430 
431   EmitBranch(IndGotoBB);
432 }
433 
434 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
435   // C99 6.8.4.1: The first substatement is executed if the expression compares
436   // unequal to 0.  The condition must be a scalar type.
437   LexicalScope ConditionScope(*this, S.getSourceRange());
438   RegionCounter Cnt = getPGORegionCounter(&S);
439 
440   if (S.getConditionVariable())
441     EmitAutoVarDecl(*S.getConditionVariable());
442 
443   // If the condition constant folds and can be elided, try to avoid emitting
444   // the condition and the dead arm of the if/else.
445   bool CondConstant;
446   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
447     // Figure out which block (then or else) is executed.
448     const Stmt *Executed = S.getThen();
449     const Stmt *Skipped  = S.getElse();
450     if (!CondConstant)  // Condition false?
451       std::swap(Executed, Skipped);
452 
453     // If the skipped block has no labels in it, just emit the executed block.
454     // This avoids emitting dead code and simplifies the CFG substantially.
455     if (!ContainsLabel(Skipped)) {
456       if (CondConstant)
457         Cnt.beginRegion(Builder);
458       if (Executed) {
459         RunCleanupsScope ExecutedScope(*this);
460         EmitStmt(Executed);
461       }
462       return;
463     }
464   }
465 
466   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
467   // the conditional branch.
468   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
469   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
470   llvm::BasicBlock *ElseBlock = ContBlock;
471   if (S.getElse())
472     ElseBlock = createBasicBlock("if.else");
473 
474   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
475 
476   // Emit the 'then' code.
477   EmitBlock(ThenBlock);
478   Cnt.beginRegion(Builder);
479   {
480     RunCleanupsScope ThenScope(*this);
481     EmitStmt(S.getThen());
482   }
483   EmitBranch(ContBlock);
484 
485   // Emit the 'else' code if present.
486   if (const Stmt *Else = S.getElse()) {
487     // There is no need to emit line number for unconditional branch.
488     if (getDebugInfo())
489       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
490     EmitBlock(ElseBlock);
491     {
492       RunCleanupsScope ElseScope(*this);
493       EmitStmt(Else);
494     }
495     // There is no need to emit line number for unconditional branch.
496     if (getDebugInfo())
497       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
498     EmitBranch(ContBlock);
499   }
500 
501   // Emit the continuation block for code after the if.
502   EmitBlock(ContBlock, true);
503 }
504 
505 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
506   RegionCounter Cnt = getPGORegionCounter(&S);
507 
508   // Emit the header for the loop, which will also become
509   // the continue target.
510   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
511   EmitBlock(LoopHeader.getBlock());
512 
513   // Create an exit block for when the condition fails, which will
514   // also become the break target.
515   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
516 
517   // Store the blocks to use for break and continue.
518   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
519 
520   // C++ [stmt.while]p2:
521   //   When the condition of a while statement is a declaration, the
522   //   scope of the variable that is declared extends from its point
523   //   of declaration (3.3.2) to the end of the while statement.
524   //   [...]
525   //   The object created in a condition is destroyed and created
526   //   with each iteration of the loop.
527   RunCleanupsScope ConditionScope(*this);
528 
529   if (S.getConditionVariable())
530     EmitAutoVarDecl(*S.getConditionVariable());
531 
532   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
533   // evaluation of the controlling expression takes place before each
534   // execution of the loop body.
535   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
536 
537   // while(1) is common, avoid extra exit blocks.  Be sure
538   // to correctly handle break/continue though.
539   bool EmitBoolCondBranch = true;
540   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
541     if (C->isOne())
542       EmitBoolCondBranch = false;
543 
544   // As long as the condition is true, go to the loop body.
545   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
546   if (EmitBoolCondBranch) {
547     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
548     if (ConditionScope.requiresCleanups())
549       ExitBlock = createBasicBlock("while.exit");
550     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
551                          PGO.createLoopWeights(S.getCond(), Cnt));
552 
553     if (ExitBlock != LoopExit.getBlock()) {
554       EmitBlock(ExitBlock);
555       EmitBranchThroughCleanup(LoopExit);
556     }
557   }
558 
559   // Emit the loop body.  We have to emit this in a cleanup scope
560   // because it might be a singleton DeclStmt.
561   {
562     RunCleanupsScope BodyScope(*this);
563     EmitBlock(LoopBody);
564     Cnt.beginRegion(Builder);
565     EmitStmt(S.getBody());
566   }
567 
568   BreakContinueStack.pop_back();
569 
570   // Immediately force cleanup.
571   ConditionScope.ForceCleanup();
572 
573   // Branch to the loop header again.
574   EmitBranch(LoopHeader.getBlock());
575 
576   // Emit the exit block.
577   EmitBlock(LoopExit.getBlock(), true);
578 
579   // The LoopHeader typically is just a branch if we skipped emitting
580   // a branch, try to erase it.
581   if (!EmitBoolCondBranch)
582     SimplifyForwardingBlocks(LoopHeader.getBlock());
583 }
584 
585 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
586   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
587   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
588 
589   RegionCounter Cnt = getPGORegionCounter(&S);
590 
591   // Store the blocks to use for break and continue.
592   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
593 
594   // Emit the body of the loop.
595   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
596   EmitBlockWithFallThrough(LoopBody, Cnt);
597   {
598     RunCleanupsScope BodyScope(*this);
599     EmitStmt(S.getBody());
600   }
601 
602   EmitBlock(LoopCond.getBlock());
603 
604   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
605   // after each execution of the loop body."
606 
607   // Evaluate the conditional in the while header.
608   // C99 6.8.5p2/p4: The first substatement is executed if the expression
609   // compares unequal to 0.  The condition must be a scalar type.
610   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
611 
612   BreakContinueStack.pop_back();
613 
614   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
615   // to correctly handle break/continue though.
616   bool EmitBoolCondBranch = true;
617   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
618     if (C->isZero())
619       EmitBoolCondBranch = false;
620 
621   // As long as the condition is true, iterate the loop.
622   if (EmitBoolCondBranch)
623     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
624                          PGO.createLoopWeights(S.getCond(), Cnt));
625 
626   // Emit the exit block.
627   EmitBlock(LoopExit.getBlock());
628 
629   // The DoCond block typically is just a branch if we skipped
630   // emitting a branch, try to erase it.
631   if (!EmitBoolCondBranch)
632     SimplifyForwardingBlocks(LoopCond.getBlock());
633 }
634 
635 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
636   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
637 
638   RunCleanupsScope ForScope(*this);
639 
640   CGDebugInfo *DI = getDebugInfo();
641   if (DI)
642     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
643 
644   // Evaluate the first part before the loop.
645   if (S.getInit())
646     EmitStmt(S.getInit());
647 
648   RegionCounter Cnt = getPGORegionCounter(&S);
649 
650   // Start the loop with a block that tests the condition.
651   // If there's an increment, the continue scope will be overwritten
652   // later.
653   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
654   llvm::BasicBlock *CondBlock = Continue.getBlock();
655   EmitBlock(CondBlock);
656 
657   // If the for loop doesn't have an increment we can just use the
658   // condition as the continue block.  Otherwise we'll need to create
659   // a block for it (in the current scope, i.e. in the scope of the
660   // condition), and that we will become our continue block.
661   if (S.getInc())
662     Continue = getJumpDestInCurrentScope("for.inc");
663 
664   // Store the blocks to use for break and continue.
665   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
666 
667   // Create a cleanup scope for the condition variable cleanups.
668   RunCleanupsScope ConditionScope(*this);
669 
670   if (S.getCond()) {
671     // If the for statement has a condition scope, emit the local variable
672     // declaration.
673     if (S.getConditionVariable()) {
674       EmitAutoVarDecl(*S.getConditionVariable());
675     }
676 
677     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
678     // If there are any cleanups between here and the loop-exit scope,
679     // create a block to stage a loop exit along.
680     if (ForScope.requiresCleanups())
681       ExitBlock = createBasicBlock("for.cond.cleanup");
682 
683     // As long as the condition is true, iterate the loop.
684     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
685 
686     // C99 6.8.5p2/p4: The first substatement is executed if the expression
687     // compares unequal to 0.  The condition must be a scalar type.
688     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
689     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
690                          PGO.createLoopWeights(S.getCond(), Cnt));
691 
692     if (ExitBlock != LoopExit.getBlock()) {
693       EmitBlock(ExitBlock);
694       EmitBranchThroughCleanup(LoopExit);
695     }
696 
697     EmitBlock(ForBody);
698   } else {
699     // Treat it as a non-zero constant.  Don't even create a new block for the
700     // body, just fall into it.
701   }
702   Cnt.beginRegion(Builder);
703 
704   {
705     // Create a separate cleanup scope for the body, in case it is not
706     // a compound statement.
707     RunCleanupsScope BodyScope(*this);
708     EmitStmt(S.getBody());
709   }
710 
711   // If there is an increment, emit it next.
712   if (S.getInc()) {
713     EmitBlock(Continue.getBlock());
714     EmitStmt(S.getInc());
715   }
716 
717   BreakContinueStack.pop_back();
718 
719   ConditionScope.ForceCleanup();
720   EmitBranch(CondBlock);
721 
722   ForScope.ForceCleanup();
723 
724   if (DI)
725     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
726 
727   // Emit the fall-through block.
728   EmitBlock(LoopExit.getBlock(), true);
729 }
730 
731 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
732   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
733 
734   RunCleanupsScope ForScope(*this);
735 
736   CGDebugInfo *DI = getDebugInfo();
737   if (DI)
738     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
739 
740   // Evaluate the first pieces before the loop.
741   EmitStmt(S.getRangeStmt());
742   EmitStmt(S.getBeginEndStmt());
743 
744   RegionCounter Cnt = getPGORegionCounter(&S);
745 
746   // Start the loop with a block that tests the condition.
747   // If there's an increment, the continue scope will be overwritten
748   // later.
749   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
750   EmitBlock(CondBlock);
751 
752   // If there are any cleanups between here and the loop-exit scope,
753   // create a block to stage a loop exit along.
754   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
755   if (ForScope.requiresCleanups())
756     ExitBlock = createBasicBlock("for.cond.cleanup");
757 
758   // The loop body, consisting of the specified body and the loop variable.
759   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
760 
761   // The body is executed if the expression, contextually converted
762   // to bool, is true.
763   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
764   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
765                        PGO.createLoopWeights(S.getCond(), Cnt));
766 
767   if (ExitBlock != LoopExit.getBlock()) {
768     EmitBlock(ExitBlock);
769     EmitBranchThroughCleanup(LoopExit);
770   }
771 
772   EmitBlock(ForBody);
773   Cnt.beginRegion(Builder);
774 
775   // Create a block for the increment. In case of a 'continue', we jump there.
776   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
777 
778   // Store the blocks to use for break and continue.
779   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
780 
781   {
782     // Create a separate cleanup scope for the loop variable and body.
783     RunCleanupsScope BodyScope(*this);
784     EmitStmt(S.getLoopVarStmt());
785     EmitStmt(S.getBody());
786   }
787 
788   // If there is an increment, emit it next.
789   EmitBlock(Continue.getBlock());
790   EmitStmt(S.getInc());
791 
792   BreakContinueStack.pop_back();
793 
794   EmitBranch(CondBlock);
795 
796   ForScope.ForceCleanup();
797 
798   if (DI)
799     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
800 
801   // Emit the fall-through block.
802   EmitBlock(LoopExit.getBlock(), true);
803 }
804 
805 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
806   if (RV.isScalar()) {
807     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
808   } else if (RV.isAggregate()) {
809     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
810   } else {
811     EmitStoreOfComplex(RV.getComplexVal(),
812                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
813                        /*init*/ true);
814   }
815   EmitBranchThroughCleanup(ReturnBlock);
816 }
817 
818 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
819 /// if the function returns void, or may be missing one if the function returns
820 /// non-void.  Fun stuff :).
821 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
822   // Emit the result value, even if unused, to evalute the side effects.
823   const Expr *RV = S.getRetValue();
824 
825   // Treat block literals in a return expression as if they appeared
826   // in their own scope.  This permits a small, easily-implemented
827   // exception to our over-conservative rules about not jumping to
828   // statements following block literals with non-trivial cleanups.
829   RunCleanupsScope cleanupScope(*this);
830   if (const ExprWithCleanups *cleanups =
831         dyn_cast_or_null<ExprWithCleanups>(RV)) {
832     enterFullExpression(cleanups);
833     RV = cleanups->getSubExpr();
834   }
835 
836   // FIXME: Clean this up by using an LValue for ReturnTemp,
837   // EmitStoreThroughLValue, and EmitAnyExpr.
838   if (getLangOpts().ElideConstructors &&
839       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
840     // Apply the named return value optimization for this return statement,
841     // which means doing nothing: the appropriate result has already been
842     // constructed into the NRVO variable.
843 
844     // If there is an NRVO flag for this variable, set it to 1 into indicate
845     // that the cleanup code should not destroy the variable.
846     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
847       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
848   } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
849     // Make sure not to return anything, but evaluate the expression
850     // for side effects.
851     if (RV)
852       EmitAnyExpr(RV);
853   } else if (RV == 0) {
854     // Do nothing (return value is left uninitialized)
855   } else if (FnRetTy->isReferenceType()) {
856     // If this function returns a reference, take the address of the expression
857     // rather than the value.
858     RValue Result = EmitReferenceBindingToExpr(RV);
859     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
860   } else {
861     switch (getEvaluationKind(RV->getType())) {
862     case TEK_Scalar:
863       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
864       break;
865     case TEK_Complex:
866       EmitComplexExprIntoLValue(RV,
867                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
868                                 /*isInit*/ true);
869       break;
870     case TEK_Aggregate: {
871       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
872       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
873                                             Qualifiers(),
874                                             AggValueSlot::IsDestructed,
875                                             AggValueSlot::DoesNotNeedGCBarriers,
876                                             AggValueSlot::IsNotAliased));
877       break;
878     }
879     }
880   }
881 
882   ++NumReturnExprs;
883   if (RV == 0 || RV->isEvaluatable(getContext()))
884     ++NumSimpleReturnExprs;
885 
886   cleanupScope.ForceCleanup();
887   EmitBranchThroughCleanup(ReturnBlock);
888 }
889 
890 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
891   // As long as debug info is modeled with instructions, we have to ensure we
892   // have a place to insert here and write the stop point here.
893   if (HaveInsertPoint())
894     EmitStopPoint(&S);
895 
896   for (const auto *I : S.decls())
897     EmitDecl(*I);
898 }
899 
900 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
901   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
902 
903   // If this code is reachable then emit a stop point (if generating
904   // debug info). We have to do this ourselves because we are on the
905   // "simple" statement path.
906   if (HaveInsertPoint())
907     EmitStopPoint(&S);
908 
909   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
910 }
911 
912 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
913   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
914 
915   // If this code is reachable then emit a stop point (if generating
916   // debug info). We have to do this ourselves because we are on the
917   // "simple" statement path.
918   if (HaveInsertPoint())
919     EmitStopPoint(&S);
920 
921   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
922 }
923 
924 /// EmitCaseStmtRange - If case statement range is not too big then
925 /// add multiple cases to switch instruction, one for each value within
926 /// the range. If range is too big then emit "if" condition check.
927 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
928   assert(S.getRHS() && "Expected RHS value in CaseStmt");
929 
930   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
931   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
932 
933   RegionCounter CaseCnt = getPGORegionCounter(&S);
934 
935   // Emit the code for this case. We do this first to make sure it is
936   // properly chained from our predecessor before generating the
937   // switch machinery to enter this block.
938   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
939   EmitBlockWithFallThrough(CaseDest, CaseCnt);
940   EmitStmt(S.getSubStmt());
941 
942   // If range is empty, do nothing.
943   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
944     return;
945 
946   llvm::APInt Range = RHS - LHS;
947   // FIXME: parameters such as this should not be hardcoded.
948   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
949     // Range is small enough to add multiple switch instruction cases.
950     uint64_t Total = CaseCnt.getCount();
951     unsigned NCases = Range.getZExtValue() + 1;
952     // We only have one region counter for the entire set of cases here, so we
953     // need to divide the weights evenly between the generated cases, ensuring
954     // that the total weight is preserved. E.g., a weight of 5 over three cases
955     // will be distributed as weights of 2, 2, and 1.
956     uint64_t Weight = Total / NCases, Rem = Total % NCases;
957     for (unsigned I = 0; I != NCases; ++I) {
958       if (SwitchWeights)
959         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
960       if (Rem)
961         Rem--;
962       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
963       LHS++;
964     }
965     return;
966   }
967 
968   // The range is too big. Emit "if" condition into a new block,
969   // making sure to save and restore the current insertion point.
970   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
971 
972   // Push this test onto the chain of range checks (which terminates
973   // in the default basic block). The switch's default will be changed
974   // to the top of this chain after switch emission is complete.
975   llvm::BasicBlock *FalseDest = CaseRangeBlock;
976   CaseRangeBlock = createBasicBlock("sw.caserange");
977 
978   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
979   Builder.SetInsertPoint(CaseRangeBlock);
980 
981   // Emit range check.
982   llvm::Value *Diff =
983     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
984   llvm::Value *Cond =
985     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
986 
987   llvm::MDNode *Weights = 0;
988   if (SwitchWeights) {
989     uint64_t ThisCount = CaseCnt.getCount();
990     uint64_t DefaultCount = (*SwitchWeights)[0];
991     Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
992 
993     // Since we're chaining the switch default through each large case range, we
994     // need to update the weight for the default, ie, the first case, to include
995     // this case.
996     (*SwitchWeights)[0] += ThisCount;
997   }
998   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
999 
1000   // Restore the appropriate insertion point.
1001   if (RestoreBB)
1002     Builder.SetInsertPoint(RestoreBB);
1003   else
1004     Builder.ClearInsertionPoint();
1005 }
1006 
1007 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1008   // If there is no enclosing switch instance that we're aware of, then this
1009   // case statement and its block can be elided.  This situation only happens
1010   // when we've constant-folded the switch, are emitting the constant case,
1011   // and part of the constant case includes another case statement.  For
1012   // instance: switch (4) { case 4: do { case 5: } while (1); }
1013   if (!SwitchInsn) {
1014     EmitStmt(S.getSubStmt());
1015     return;
1016   }
1017 
1018   // Handle case ranges.
1019   if (S.getRHS()) {
1020     EmitCaseStmtRange(S);
1021     return;
1022   }
1023 
1024   RegionCounter CaseCnt = getPGORegionCounter(&S);
1025   llvm::ConstantInt *CaseVal =
1026     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1027 
1028   // If the body of the case is just a 'break', try to not emit an empty block.
1029   // If we're profiling or we're not optimizing, leave the block in for better
1030   // debug and coverage analysis.
1031   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1032       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1033       isa<BreakStmt>(S.getSubStmt())) {
1034     JumpDest Block = BreakContinueStack.back().BreakBlock;
1035 
1036     // Only do this optimization if there are no cleanups that need emitting.
1037     if (isObviouslyBranchWithoutCleanups(Block)) {
1038       if (SwitchWeights)
1039         SwitchWeights->push_back(CaseCnt.getCount());
1040       SwitchInsn->addCase(CaseVal, Block.getBlock());
1041 
1042       // If there was a fallthrough into this case, make sure to redirect it to
1043       // the end of the switch as well.
1044       if (Builder.GetInsertBlock()) {
1045         Builder.CreateBr(Block.getBlock());
1046         Builder.ClearInsertionPoint();
1047       }
1048       return;
1049     }
1050   }
1051 
1052   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1053   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1054   if (SwitchWeights)
1055     SwitchWeights->push_back(CaseCnt.getCount());
1056   SwitchInsn->addCase(CaseVal, CaseDest);
1057 
1058   // Recursively emitting the statement is acceptable, but is not wonderful for
1059   // code where we have many case statements nested together, i.e.:
1060   //  case 1:
1061   //    case 2:
1062   //      case 3: etc.
1063   // Handling this recursively will create a new block for each case statement
1064   // that falls through to the next case which is IR intensive.  It also causes
1065   // deep recursion which can run into stack depth limitations.  Handle
1066   // sequential non-range case statements specially.
1067   const CaseStmt *CurCase = &S;
1068   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1069 
1070   // Otherwise, iteratively add consecutive cases to this switch stmt.
1071   while (NextCase && NextCase->getRHS() == 0) {
1072     CurCase = NextCase;
1073     llvm::ConstantInt *CaseVal =
1074       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1075 
1076     CaseCnt = getPGORegionCounter(NextCase);
1077     if (SwitchWeights)
1078       SwitchWeights->push_back(CaseCnt.getCount());
1079     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1080       CaseDest = createBasicBlock("sw.bb");
1081       EmitBlockWithFallThrough(CaseDest, CaseCnt);
1082     }
1083 
1084     SwitchInsn->addCase(CaseVal, CaseDest);
1085     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1086   }
1087 
1088   // Normal default recursion for non-cases.
1089   EmitStmt(CurCase->getSubStmt());
1090 }
1091 
1092 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1093   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1094   assert(DefaultBlock->empty() &&
1095          "EmitDefaultStmt: Default block already defined?");
1096 
1097   RegionCounter Cnt = getPGORegionCounter(&S);
1098   EmitBlockWithFallThrough(DefaultBlock, Cnt);
1099 
1100   EmitStmt(S.getSubStmt());
1101 }
1102 
1103 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1104 /// constant value that is being switched on, see if we can dead code eliminate
1105 /// the body of the switch to a simple series of statements to emit.  Basically,
1106 /// on a switch (5) we want to find these statements:
1107 ///    case 5:
1108 ///      printf(...);    <--
1109 ///      ++i;            <--
1110 ///      break;
1111 ///
1112 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1113 /// transformation (for example, one of the elided statements contains a label
1114 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1115 /// should include statements after it (e.g. the printf() line is a substmt of
1116 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1117 /// statement, then return CSFC_Success.
1118 ///
1119 /// If Case is non-null, then we are looking for the specified case, checking
1120 /// that nothing we jump over contains labels.  If Case is null, then we found
1121 /// the case and are looking for the break.
1122 ///
1123 /// If the recursive walk actually finds our Case, then we set FoundCase to
1124 /// true.
1125 ///
1126 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1127 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1128                                             const SwitchCase *Case,
1129                                             bool &FoundCase,
1130                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1131   // If this is a null statement, just succeed.
1132   if (S == 0)
1133     return Case ? CSFC_Success : CSFC_FallThrough;
1134 
1135   // If this is the switchcase (case 4: or default) that we're looking for, then
1136   // we're in business.  Just add the substatement.
1137   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1138     if (S == Case) {
1139       FoundCase = true;
1140       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
1141                                       ResultStmts);
1142     }
1143 
1144     // Otherwise, this is some other case or default statement, just ignore it.
1145     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1146                                     ResultStmts);
1147   }
1148 
1149   // If we are in the live part of the code and we found our break statement,
1150   // return a success!
1151   if (Case == 0 && isa<BreakStmt>(S))
1152     return CSFC_Success;
1153 
1154   // If this is a switch statement, then it might contain the SwitchCase, the
1155   // break, or neither.
1156   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1157     // Handle this as two cases: we might be looking for the SwitchCase (if so
1158     // the skipped statements must be skippable) or we might already have it.
1159     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1160     if (Case) {
1161       // Keep track of whether we see a skipped declaration.  The code could be
1162       // using the declaration even if it is skipped, so we can't optimize out
1163       // the decl if the kept statements might refer to it.
1164       bool HadSkippedDecl = false;
1165 
1166       // If we're looking for the case, just see if we can skip each of the
1167       // substatements.
1168       for (; Case && I != E; ++I) {
1169         HadSkippedDecl |= isa<DeclStmt>(*I);
1170 
1171         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1172         case CSFC_Failure: return CSFC_Failure;
1173         case CSFC_Success:
1174           // A successful result means that either 1) that the statement doesn't
1175           // have the case and is skippable, or 2) does contain the case value
1176           // and also contains the break to exit the switch.  In the later case,
1177           // we just verify the rest of the statements are elidable.
1178           if (FoundCase) {
1179             // If we found the case and skipped declarations, we can't do the
1180             // optimization.
1181             if (HadSkippedDecl)
1182               return CSFC_Failure;
1183 
1184             for (++I; I != E; ++I)
1185               if (CodeGenFunction::ContainsLabel(*I, true))
1186                 return CSFC_Failure;
1187             return CSFC_Success;
1188           }
1189           break;
1190         case CSFC_FallThrough:
1191           // If we have a fallthrough condition, then we must have found the
1192           // case started to include statements.  Consider the rest of the
1193           // statements in the compound statement as candidates for inclusion.
1194           assert(FoundCase && "Didn't find case but returned fallthrough?");
1195           // We recursively found Case, so we're not looking for it anymore.
1196           Case = 0;
1197 
1198           // If we found the case and skipped declarations, we can't do the
1199           // optimization.
1200           if (HadSkippedDecl)
1201             return CSFC_Failure;
1202           break;
1203         }
1204       }
1205     }
1206 
1207     // If we have statements in our range, then we know that the statements are
1208     // live and need to be added to the set of statements we're tracking.
1209     for (; I != E; ++I) {
1210       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1211       case CSFC_Failure: return CSFC_Failure;
1212       case CSFC_FallThrough:
1213         // A fallthrough result means that the statement was simple and just
1214         // included in ResultStmt, keep adding them afterwards.
1215         break;
1216       case CSFC_Success:
1217         // A successful result means that we found the break statement and
1218         // stopped statement inclusion.  We just ensure that any leftover stmts
1219         // are skippable and return success ourselves.
1220         for (++I; I != E; ++I)
1221           if (CodeGenFunction::ContainsLabel(*I, true))
1222             return CSFC_Failure;
1223         return CSFC_Success;
1224       }
1225     }
1226 
1227     return Case ? CSFC_Success : CSFC_FallThrough;
1228   }
1229 
1230   // Okay, this is some other statement that we don't handle explicitly, like a
1231   // for statement or increment etc.  If we are skipping over this statement,
1232   // just verify it doesn't have labels, which would make it invalid to elide.
1233   if (Case) {
1234     if (CodeGenFunction::ContainsLabel(S, true))
1235       return CSFC_Failure;
1236     return CSFC_Success;
1237   }
1238 
1239   // Otherwise, we want to include this statement.  Everything is cool with that
1240   // so long as it doesn't contain a break out of the switch we're in.
1241   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1242 
1243   // Otherwise, everything is great.  Include the statement and tell the caller
1244   // that we fall through and include the next statement as well.
1245   ResultStmts.push_back(S);
1246   return CSFC_FallThrough;
1247 }
1248 
1249 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1250 /// then invoke CollectStatementsForCase to find the list of statements to emit
1251 /// for a switch on constant.  See the comment above CollectStatementsForCase
1252 /// for more details.
1253 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1254                                        const llvm::APSInt &ConstantCondValue,
1255                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1256                                        ASTContext &C,
1257                                        const SwitchCase *&ResultCase) {
1258   // First step, find the switch case that is being branched to.  We can do this
1259   // efficiently by scanning the SwitchCase list.
1260   const SwitchCase *Case = S.getSwitchCaseList();
1261   const DefaultStmt *DefaultCase = 0;
1262 
1263   for (; Case; Case = Case->getNextSwitchCase()) {
1264     // It's either a default or case.  Just remember the default statement in
1265     // case we're not jumping to any numbered cases.
1266     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1267       DefaultCase = DS;
1268       continue;
1269     }
1270 
1271     // Check to see if this case is the one we're looking for.
1272     const CaseStmt *CS = cast<CaseStmt>(Case);
1273     // Don't handle case ranges yet.
1274     if (CS->getRHS()) return false;
1275 
1276     // If we found our case, remember it as 'case'.
1277     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1278       break;
1279   }
1280 
1281   // If we didn't find a matching case, we use a default if it exists, or we
1282   // elide the whole switch body!
1283   if (Case == 0) {
1284     // It is safe to elide the body of the switch if it doesn't contain labels
1285     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1286     if (DefaultCase == 0)
1287       return !CodeGenFunction::ContainsLabel(&S);
1288     Case = DefaultCase;
1289   }
1290 
1291   // Ok, we know which case is being jumped to, try to collect all the
1292   // statements that follow it.  This can fail for a variety of reasons.  Also,
1293   // check to see that the recursive walk actually found our case statement.
1294   // Insane cases like this can fail to find it in the recursive walk since we
1295   // don't handle every stmt kind:
1296   // switch (4) {
1297   //   while (1) {
1298   //     case 4: ...
1299   bool FoundCase = false;
1300   ResultCase = Case;
1301   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1302                                   ResultStmts) != CSFC_Failure &&
1303          FoundCase;
1304 }
1305 
1306 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1307   // Handle nested switch statements.
1308   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1309   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1310   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1311 
1312   // See if we can constant fold the condition of the switch and therefore only
1313   // emit the live case statement (if any) of the switch.
1314   llvm::APSInt ConstantCondValue;
1315   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1316     SmallVector<const Stmt*, 4> CaseStmts;
1317     const SwitchCase *Case = 0;
1318     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1319                                    getContext(), Case)) {
1320       if (Case) {
1321         RegionCounter CaseCnt = getPGORegionCounter(Case);
1322         CaseCnt.beginRegion(Builder);
1323       }
1324       RunCleanupsScope ExecutedScope(*this);
1325 
1326       // Emit the condition variable if needed inside the entire cleanup scope
1327       // used by this special case for constant folded switches.
1328       if (S.getConditionVariable())
1329         EmitAutoVarDecl(*S.getConditionVariable());
1330 
1331       // At this point, we are no longer "within" a switch instance, so
1332       // we can temporarily enforce this to ensure that any embedded case
1333       // statements are not emitted.
1334       SwitchInsn = 0;
1335 
1336       // Okay, we can dead code eliminate everything except this case.  Emit the
1337       // specified series of statements and we're good.
1338       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1339         EmitStmt(CaseStmts[i]);
1340       RegionCounter ExitCnt = getPGORegionCounter(&S);
1341       ExitCnt.beginRegion(Builder);
1342 
1343       // Now we want to restore the saved switch instance so that nested
1344       // switches continue to function properly
1345       SwitchInsn = SavedSwitchInsn;
1346 
1347       return;
1348     }
1349   }
1350 
1351   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1352 
1353   RunCleanupsScope ConditionScope(*this);
1354   if (S.getConditionVariable())
1355     EmitAutoVarDecl(*S.getConditionVariable());
1356   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1357 
1358   // Create basic block to hold stuff that comes after switch
1359   // statement. We also need to create a default block now so that
1360   // explicit case ranges tests can have a place to jump to on
1361   // failure.
1362   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1363   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1364   if (PGO.haveRegionCounts()) {
1365     // Walk the SwitchCase list to find how many there are.
1366     uint64_t DefaultCount = 0;
1367     unsigned NumCases = 0;
1368     for (const SwitchCase *Case = S.getSwitchCaseList();
1369          Case;
1370          Case = Case->getNextSwitchCase()) {
1371       if (isa<DefaultStmt>(Case))
1372         DefaultCount = getPGORegionCounter(Case).getCount();
1373       NumCases += 1;
1374     }
1375     SwitchWeights = new SmallVector<uint64_t, 16>();
1376     SwitchWeights->reserve(NumCases);
1377     // The default needs to be first. We store the edge count, so we already
1378     // know the right weight.
1379     SwitchWeights->push_back(DefaultCount);
1380   }
1381   CaseRangeBlock = DefaultBlock;
1382 
1383   // Clear the insertion point to indicate we are in unreachable code.
1384   Builder.ClearInsertionPoint();
1385 
1386   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1387   // then reuse last ContinueBlock.
1388   JumpDest OuterContinue;
1389   if (!BreakContinueStack.empty())
1390     OuterContinue = BreakContinueStack.back().ContinueBlock;
1391 
1392   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1393 
1394   // Emit switch body.
1395   EmitStmt(S.getBody());
1396 
1397   BreakContinueStack.pop_back();
1398 
1399   // Update the default block in case explicit case range tests have
1400   // been chained on top.
1401   SwitchInsn->setDefaultDest(CaseRangeBlock);
1402 
1403   // If a default was never emitted:
1404   if (!DefaultBlock->getParent()) {
1405     // If we have cleanups, emit the default block so that there's a
1406     // place to jump through the cleanups from.
1407     if (ConditionScope.requiresCleanups()) {
1408       EmitBlock(DefaultBlock);
1409 
1410     // Otherwise, just forward the default block to the switch end.
1411     } else {
1412       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1413       delete DefaultBlock;
1414     }
1415   }
1416 
1417   ConditionScope.ForceCleanup();
1418 
1419   // Emit continuation.
1420   EmitBlock(SwitchExit.getBlock(), true);
1421   RegionCounter ExitCnt = getPGORegionCounter(&S);
1422   ExitCnt.beginRegion(Builder);
1423 
1424   if (SwitchWeights) {
1425     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1426            "switch weights do not match switch cases");
1427     // If there's only one jump destination there's no sense weighting it.
1428     if (SwitchWeights->size() > 1)
1429       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1430                               PGO.createBranchWeights(*SwitchWeights));
1431     delete SwitchWeights;
1432   }
1433   SwitchInsn = SavedSwitchInsn;
1434   SwitchWeights = SavedSwitchWeights;
1435   CaseRangeBlock = SavedCRBlock;
1436 }
1437 
1438 static std::string
1439 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1440                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1441   std::string Result;
1442 
1443   while (*Constraint) {
1444     switch (*Constraint) {
1445     default:
1446       Result += Target.convertConstraint(Constraint);
1447       break;
1448     // Ignore these
1449     case '*':
1450     case '?':
1451     case '!':
1452     case '=': // Will see this and the following in mult-alt constraints.
1453     case '+':
1454       break;
1455     case '#': // Ignore the rest of the constraint alternative.
1456       while (Constraint[1] && Constraint[1] != ',')
1457         Constraint++;
1458       break;
1459     case ',':
1460       Result += "|";
1461       break;
1462     case 'g':
1463       Result += "imr";
1464       break;
1465     case '[': {
1466       assert(OutCons &&
1467              "Must pass output names to constraints with a symbolic name");
1468       unsigned Index;
1469       bool result = Target.resolveSymbolicName(Constraint,
1470                                                &(*OutCons)[0],
1471                                                OutCons->size(), Index);
1472       assert(result && "Could not resolve symbolic name"); (void)result;
1473       Result += llvm::utostr(Index);
1474       break;
1475     }
1476     }
1477 
1478     Constraint++;
1479   }
1480 
1481   return Result;
1482 }
1483 
1484 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1485 /// as using a particular register add that as a constraint that will be used
1486 /// in this asm stmt.
1487 static std::string
1488 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1489                        const TargetInfo &Target, CodeGenModule &CGM,
1490                        const AsmStmt &Stmt) {
1491   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1492   if (!AsmDeclRef)
1493     return Constraint;
1494   const ValueDecl &Value = *AsmDeclRef->getDecl();
1495   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1496   if (!Variable)
1497     return Constraint;
1498   if (Variable->getStorageClass() != SC_Register)
1499     return Constraint;
1500   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1501   if (!Attr)
1502     return Constraint;
1503   StringRef Register = Attr->getLabel();
1504   assert(Target.isValidGCCRegisterName(Register));
1505   // We're using validateOutputConstraint here because we only care if
1506   // this is a register constraint.
1507   TargetInfo::ConstraintInfo Info(Constraint, "");
1508   if (Target.validateOutputConstraint(Info) &&
1509       !Info.allowsRegister()) {
1510     CGM.ErrorUnsupported(&Stmt, "__asm__");
1511     return Constraint;
1512   }
1513   // Canonicalize the register here before returning it.
1514   Register = Target.getNormalizedGCCRegisterName(Register);
1515   return "{" + Register.str() + "}";
1516 }
1517 
1518 llvm::Value*
1519 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1520                                     LValue InputValue, QualType InputType,
1521                                     std::string &ConstraintStr,
1522                                     SourceLocation Loc) {
1523   llvm::Value *Arg;
1524   if (Info.allowsRegister() || !Info.allowsMemory()) {
1525     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1526       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1527     } else {
1528       llvm::Type *Ty = ConvertType(InputType);
1529       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1530       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1531         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1532         Ty = llvm::PointerType::getUnqual(Ty);
1533 
1534         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1535                                                        Ty));
1536       } else {
1537         Arg = InputValue.getAddress();
1538         ConstraintStr += '*';
1539       }
1540     }
1541   } else {
1542     Arg = InputValue.getAddress();
1543     ConstraintStr += '*';
1544   }
1545 
1546   return Arg;
1547 }
1548 
1549 llvm::Value* CodeGenFunction::EmitAsmInput(
1550                                          const TargetInfo::ConstraintInfo &Info,
1551                                            const Expr *InputExpr,
1552                                            std::string &ConstraintStr) {
1553   if (Info.allowsRegister() || !Info.allowsMemory())
1554     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1555       return EmitScalarExpr(InputExpr);
1556 
1557   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1558   LValue Dest = EmitLValue(InputExpr);
1559   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1560                             InputExpr->getExprLoc());
1561 }
1562 
1563 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1564 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1565 /// integers which are the source locations of the start of each line in the
1566 /// asm.
1567 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1568                                       CodeGenFunction &CGF) {
1569   SmallVector<llvm::Value *, 8> Locs;
1570   // Add the location of the first line to the MDNode.
1571   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1572                                         Str->getLocStart().getRawEncoding()));
1573   StringRef StrVal = Str->getString();
1574   if (!StrVal.empty()) {
1575     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1576     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1577 
1578     // Add the location of the start of each subsequent line of the asm to the
1579     // MDNode.
1580     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1581       if (StrVal[i] != '\n') continue;
1582       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1583                                                       CGF.getTarget());
1584       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1585                                             LineLoc.getRawEncoding()));
1586     }
1587   }
1588 
1589   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1590 }
1591 
1592 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1593   // Assemble the final asm string.
1594   std::string AsmString = S.generateAsmString(getContext());
1595 
1596   // Get all the output and input constraints together.
1597   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1598   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1599 
1600   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1601     StringRef Name;
1602     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1603       Name = GAS->getOutputName(i);
1604     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1605     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1606     assert(IsValid && "Failed to parse output constraint");
1607     OutputConstraintInfos.push_back(Info);
1608   }
1609 
1610   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1611     StringRef Name;
1612     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1613       Name = GAS->getInputName(i);
1614     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1615     bool IsValid =
1616       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1617                                           S.getNumOutputs(), Info);
1618     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1619     InputConstraintInfos.push_back(Info);
1620   }
1621 
1622   std::string Constraints;
1623 
1624   std::vector<LValue> ResultRegDests;
1625   std::vector<QualType> ResultRegQualTys;
1626   std::vector<llvm::Type *> ResultRegTypes;
1627   std::vector<llvm::Type *> ResultTruncRegTypes;
1628   std::vector<llvm::Type *> ArgTypes;
1629   std::vector<llvm::Value*> Args;
1630 
1631   // Keep track of inout constraints.
1632   std::string InOutConstraints;
1633   std::vector<llvm::Value*> InOutArgs;
1634   std::vector<llvm::Type*> InOutArgTypes;
1635 
1636   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1637     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1638 
1639     // Simplify the output constraint.
1640     std::string OutputConstraint(S.getOutputConstraint(i));
1641     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1642                                           getTarget());
1643 
1644     const Expr *OutExpr = S.getOutputExpr(i);
1645     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1646 
1647     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1648                                               getTarget(), CGM, S);
1649 
1650     LValue Dest = EmitLValue(OutExpr);
1651     if (!Constraints.empty())
1652       Constraints += ',';
1653 
1654     // If this is a register output, then make the inline asm return it
1655     // by-value.  If this is a memory result, return the value by-reference.
1656     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1657       Constraints += "=" + OutputConstraint;
1658       ResultRegQualTys.push_back(OutExpr->getType());
1659       ResultRegDests.push_back(Dest);
1660       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1661       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1662 
1663       // If this output is tied to an input, and if the input is larger, then
1664       // we need to set the actual result type of the inline asm node to be the
1665       // same as the input type.
1666       if (Info.hasMatchingInput()) {
1667         unsigned InputNo;
1668         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1669           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1670           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1671             break;
1672         }
1673         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1674 
1675         QualType InputTy = S.getInputExpr(InputNo)->getType();
1676         QualType OutputType = OutExpr->getType();
1677 
1678         uint64_t InputSize = getContext().getTypeSize(InputTy);
1679         if (getContext().getTypeSize(OutputType) < InputSize) {
1680           // Form the asm to return the value as a larger integer or fp type.
1681           ResultRegTypes.back() = ConvertType(InputTy);
1682         }
1683       }
1684       if (llvm::Type* AdjTy =
1685             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1686                                                  ResultRegTypes.back()))
1687         ResultRegTypes.back() = AdjTy;
1688       else {
1689         CGM.getDiags().Report(S.getAsmLoc(),
1690                               diag::err_asm_invalid_type_in_input)
1691             << OutExpr->getType() << OutputConstraint;
1692       }
1693     } else {
1694       ArgTypes.push_back(Dest.getAddress()->getType());
1695       Args.push_back(Dest.getAddress());
1696       Constraints += "=*";
1697       Constraints += OutputConstraint;
1698     }
1699 
1700     if (Info.isReadWrite()) {
1701       InOutConstraints += ',';
1702 
1703       const Expr *InputExpr = S.getOutputExpr(i);
1704       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1705                                             InOutConstraints,
1706                                             InputExpr->getExprLoc());
1707 
1708       if (llvm::Type* AdjTy =
1709           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1710                                                Arg->getType()))
1711         Arg = Builder.CreateBitCast(Arg, AdjTy);
1712 
1713       if (Info.allowsRegister())
1714         InOutConstraints += llvm::utostr(i);
1715       else
1716         InOutConstraints += OutputConstraint;
1717 
1718       InOutArgTypes.push_back(Arg->getType());
1719       InOutArgs.push_back(Arg);
1720     }
1721   }
1722 
1723   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1724 
1725   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1726     const Expr *InputExpr = S.getInputExpr(i);
1727 
1728     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1729 
1730     if (!Constraints.empty())
1731       Constraints += ',';
1732 
1733     // Simplify the input constraint.
1734     std::string InputConstraint(S.getInputConstraint(i));
1735     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1736                                          &OutputConstraintInfos);
1737 
1738     InputConstraint =
1739       AddVariableConstraints(InputConstraint,
1740                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1741                             getTarget(), CGM, S);
1742 
1743     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1744 
1745     // If this input argument is tied to a larger output result, extend the
1746     // input to be the same size as the output.  The LLVM backend wants to see
1747     // the input and output of a matching constraint be the same size.  Note
1748     // that GCC does not define what the top bits are here.  We use zext because
1749     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1750     if (Info.hasTiedOperand()) {
1751       unsigned Output = Info.getTiedOperand();
1752       QualType OutputType = S.getOutputExpr(Output)->getType();
1753       QualType InputTy = InputExpr->getType();
1754 
1755       if (getContext().getTypeSize(OutputType) >
1756           getContext().getTypeSize(InputTy)) {
1757         // Use ptrtoint as appropriate so that we can do our extension.
1758         if (isa<llvm::PointerType>(Arg->getType()))
1759           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1760         llvm::Type *OutputTy = ConvertType(OutputType);
1761         if (isa<llvm::IntegerType>(OutputTy))
1762           Arg = Builder.CreateZExt(Arg, OutputTy);
1763         else if (isa<llvm::PointerType>(OutputTy))
1764           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1765         else {
1766           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1767           Arg = Builder.CreateFPExt(Arg, OutputTy);
1768         }
1769       }
1770     }
1771     if (llvm::Type* AdjTy =
1772               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1773                                                    Arg->getType()))
1774       Arg = Builder.CreateBitCast(Arg, AdjTy);
1775     else
1776       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1777           << InputExpr->getType() << InputConstraint;
1778 
1779     ArgTypes.push_back(Arg->getType());
1780     Args.push_back(Arg);
1781     Constraints += InputConstraint;
1782   }
1783 
1784   // Append the "input" part of inout constraints last.
1785   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1786     ArgTypes.push_back(InOutArgTypes[i]);
1787     Args.push_back(InOutArgs[i]);
1788   }
1789   Constraints += InOutConstraints;
1790 
1791   // Clobbers
1792   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1793     StringRef Clobber = S.getClobber(i);
1794 
1795     if (Clobber != "memory" && Clobber != "cc")
1796     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1797 
1798     if (i != 0 || NumConstraints != 0)
1799       Constraints += ',';
1800 
1801     Constraints += "~{";
1802     Constraints += Clobber;
1803     Constraints += '}';
1804   }
1805 
1806   // Add machine specific clobbers
1807   std::string MachineClobbers = getTarget().getClobbers();
1808   if (!MachineClobbers.empty()) {
1809     if (!Constraints.empty())
1810       Constraints += ',';
1811     Constraints += MachineClobbers;
1812   }
1813 
1814   llvm::Type *ResultType;
1815   if (ResultRegTypes.empty())
1816     ResultType = VoidTy;
1817   else if (ResultRegTypes.size() == 1)
1818     ResultType = ResultRegTypes[0];
1819   else
1820     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1821 
1822   llvm::FunctionType *FTy =
1823     llvm::FunctionType::get(ResultType, ArgTypes, false);
1824 
1825   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1826   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1827     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1828   llvm::InlineAsm *IA =
1829     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1830                          /* IsAlignStack */ false, AsmDialect);
1831   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1832   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1833                        llvm::Attribute::NoUnwind);
1834 
1835   // Slap the source location of the inline asm into a !srcloc metadata on the
1836   // call.  FIXME: Handle metadata for MS-style inline asms.
1837   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1838     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1839                                                    *this));
1840 
1841   // Extract all of the register value results from the asm.
1842   std::vector<llvm::Value*> RegResults;
1843   if (ResultRegTypes.size() == 1) {
1844     RegResults.push_back(Result);
1845   } else {
1846     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1847       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1848       RegResults.push_back(Tmp);
1849     }
1850   }
1851 
1852   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1853     llvm::Value *Tmp = RegResults[i];
1854 
1855     // If the result type of the LLVM IR asm doesn't match the result type of
1856     // the expression, do the conversion.
1857     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1858       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1859 
1860       // Truncate the integer result to the right size, note that TruncTy can be
1861       // a pointer.
1862       if (TruncTy->isFloatingPointTy())
1863         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1864       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1865         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1866         Tmp = Builder.CreateTrunc(Tmp,
1867                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1868         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1869       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1870         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1871         Tmp = Builder.CreatePtrToInt(Tmp,
1872                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1873         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1874       } else if (TruncTy->isIntegerTy()) {
1875         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1876       } else if (TruncTy->isVectorTy()) {
1877         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1878       }
1879     }
1880 
1881     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1882   }
1883 }
1884 
1885 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
1886   const RecordDecl *RD = S.getCapturedRecordDecl();
1887   QualType RecordTy = CGF.getContext().getRecordType(RD);
1888 
1889   // Initialize the captured struct.
1890   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
1891                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
1892 
1893   RecordDecl::field_iterator CurField = RD->field_begin();
1894   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
1895                                            E = S.capture_init_end();
1896        I != E; ++I, ++CurField) {
1897     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1898     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
1899   }
1900 
1901   return SlotLV;
1902 }
1903 
1904 /// Generate an outlined function for the body of a CapturedStmt, store any
1905 /// captured variables into the captured struct, and call the outlined function.
1906 llvm::Function *
1907 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
1908   const CapturedDecl *CD = S.getCapturedDecl();
1909   const RecordDecl *RD = S.getCapturedRecordDecl();
1910   assert(CD->hasBody() && "missing CapturedDecl body");
1911 
1912   LValue CapStruct = InitCapturedStruct(*this, S);
1913 
1914   // Emit the CapturedDecl
1915   CodeGenFunction CGF(CGM, true);
1916   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
1917   llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart());
1918   delete CGF.CapturedStmtInfo;
1919 
1920   // Emit call to the helper function.
1921   EmitCallOrInvoke(F, CapStruct.getAddress());
1922 
1923   return F;
1924 }
1925 
1926 llvm::Value *
1927 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
1928   LValue CapStruct = InitCapturedStruct(*this, S);
1929   return CapStruct.getAddress();
1930 }
1931 
1932 /// Creates the outlined function for a CapturedStmt.
1933 llvm::Function *
1934 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
1935                                               const RecordDecl *RD,
1936                                               SourceLocation Loc) {
1937   assert(CapturedStmtInfo &&
1938     "CapturedStmtInfo should be set when generating the captured function");
1939 
1940   // Build the argument list.
1941   ASTContext &Ctx = CGM.getContext();
1942   FunctionArgList Args;
1943   Args.append(CD->param_begin(), CD->param_end());
1944 
1945   // Create the function declaration.
1946   FunctionType::ExtInfo ExtInfo;
1947   const CGFunctionInfo &FuncInfo =
1948       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
1949                                                     /*IsVariadic=*/false);
1950   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
1951 
1952   llvm::Function *F =
1953     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
1954                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
1955   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
1956 
1957   // Generate the function.
1958   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
1959                 CD->getLocation(),
1960                 CD->getBody()->getLocStart());
1961 
1962   // Set the context parameter in CapturedStmtInfo.
1963   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
1964   assert(DeclPtr && "missing context parameter for CapturedStmt");
1965   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
1966 
1967   // If 'this' is captured, load it into CXXThisValue.
1968   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
1969     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
1970     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
1971                                            Ctx.getTagDeclType(RD));
1972     LValue ThisLValue = EmitLValueForField(LV, FD);
1973     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
1974   }
1975 
1976   PGO.assignRegionCounters(CD, F);
1977   CapturedStmtInfo->EmitBody(*this, CD->getBody());
1978   FinishFunction(CD->getBodyRBrace());
1979   PGO.emitInstrumentationData();
1980   PGO.destroyRegionCounters();
1981 
1982   return F;
1983 }
1984