1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Assumptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/SaveAndRestore.h"
35
36 using namespace clang;
37 using namespace CodeGen;
38
39 //===----------------------------------------------------------------------===//
40 // Statement Emission
41 //===----------------------------------------------------------------------===//
42
EmitStopPoint(const Stmt * S)43 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
44 if (CGDebugInfo *DI = getDebugInfo()) {
45 SourceLocation Loc;
46 Loc = S->getBeginLoc();
47 DI->EmitLocation(Builder, Loc);
48
49 LastStopPoint = Loc;
50 }
51 }
52
EmitStmt(const Stmt * S,ArrayRef<const Attr * > Attrs)53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
54 assert(S && "Null statement?");
55 PGO.setCurrentStmt(S);
56
57 // These statements have their own debug info handling.
58 if (EmitSimpleStmt(S, Attrs))
59 return;
60
61 // Check if we are generating unreachable code.
62 if (!HaveInsertPoint()) {
63 // If so, and the statement doesn't contain a label, then we do not need to
64 // generate actual code. This is safe because (1) the current point is
65 // unreachable, so we don't need to execute the code, and (2) we've already
66 // handled the statements which update internal data structures (like the
67 // local variable map) which could be used by subsequent statements.
68 if (!ContainsLabel(S)) {
69 // Verify that any decl statements were handled as simple, they may be in
70 // scope of subsequent reachable statements.
71 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
72 return;
73 }
74
75 // Otherwise, make a new block to hold the code.
76 EnsureInsertPoint();
77 }
78
79 // Generate a stoppoint if we are emitting debug info.
80 EmitStopPoint(S);
81
82 // Ignore all OpenMP directives except for simd if OpenMP with Simd is
83 // enabled.
84 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
85 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
86 EmitSimpleOMPExecutableDirective(*D);
87 return;
88 }
89 }
90
91 switch (S->getStmtClass()) {
92 case Stmt::NoStmtClass:
93 case Stmt::CXXCatchStmtClass:
94 case Stmt::SEHExceptStmtClass:
95 case Stmt::SEHFinallyStmtClass:
96 case Stmt::MSDependentExistsStmtClass:
97 llvm_unreachable("invalid statement class to emit generically");
98 case Stmt::NullStmtClass:
99 case Stmt::CompoundStmtClass:
100 case Stmt::DeclStmtClass:
101 case Stmt::LabelStmtClass:
102 case Stmt::AttributedStmtClass:
103 case Stmt::GotoStmtClass:
104 case Stmt::BreakStmtClass:
105 case Stmt::ContinueStmtClass:
106 case Stmt::DefaultStmtClass:
107 case Stmt::CaseStmtClass:
108 case Stmt::SEHLeaveStmtClass:
109 llvm_unreachable("should have emitted these statements as simple");
110
111 #define STMT(Type, Base)
112 #define ABSTRACT_STMT(Op)
113 #define EXPR(Type, Base) \
114 case Stmt::Type##Class:
115 #include "clang/AST/StmtNodes.inc"
116 {
117 // Remember the block we came in on.
118 llvm::BasicBlock *incoming = Builder.GetInsertBlock();
119 assert(incoming && "expression emission must have an insertion point");
120
121 EmitIgnoredExpr(cast<Expr>(S));
122
123 llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
124 assert(outgoing && "expression emission cleared block!");
125
126 // The expression emitters assume (reasonably!) that the insertion
127 // point is always set. To maintain that, the call-emission code
128 // for noreturn functions has to enter a new block with no
129 // predecessors. We want to kill that block and mark the current
130 // insertion point unreachable in the common case of a call like
131 // "exit();". Since expression emission doesn't otherwise create
132 // blocks with no predecessors, we can just test for that.
133 // However, we must be careful not to do this to our incoming
134 // block, because *statement* emission does sometimes create
135 // reachable blocks which will have no predecessors until later in
136 // the function. This occurs with, e.g., labels that are not
137 // reachable by fallthrough.
138 if (incoming != outgoing && outgoing->use_empty()) {
139 outgoing->eraseFromParent();
140 Builder.ClearInsertionPoint();
141 }
142 break;
143 }
144
145 case Stmt::IndirectGotoStmtClass:
146 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
147
148 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
149 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
150 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break;
151 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break;
152
153 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
154
155 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
156 case Stmt::GCCAsmStmtClass: // Intentional fall-through.
157 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
158 case Stmt::CoroutineBodyStmtClass:
159 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
160 break;
161 case Stmt::CoreturnStmtClass:
162 EmitCoreturnStmt(cast<CoreturnStmt>(*S));
163 break;
164 case Stmt::CapturedStmtClass: {
165 const CapturedStmt *CS = cast<CapturedStmt>(S);
166 EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
167 }
168 break;
169 case Stmt::ObjCAtTryStmtClass:
170 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
171 break;
172 case Stmt::ObjCAtCatchStmtClass:
173 llvm_unreachable(
174 "@catch statements should be handled by EmitObjCAtTryStmt");
175 case Stmt::ObjCAtFinallyStmtClass:
176 llvm_unreachable(
177 "@finally statements should be handled by EmitObjCAtTryStmt");
178 case Stmt::ObjCAtThrowStmtClass:
179 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
180 break;
181 case Stmt::ObjCAtSynchronizedStmtClass:
182 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
183 break;
184 case Stmt::ObjCForCollectionStmtClass:
185 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
186 break;
187 case Stmt::ObjCAutoreleasePoolStmtClass:
188 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
189 break;
190
191 case Stmt::CXXTryStmtClass:
192 EmitCXXTryStmt(cast<CXXTryStmt>(*S));
193 break;
194 case Stmt::CXXForRangeStmtClass:
195 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
196 break;
197 case Stmt::SEHTryStmtClass:
198 EmitSEHTryStmt(cast<SEHTryStmt>(*S));
199 break;
200 case Stmt::OMPMetaDirectiveClass:
201 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
202 break;
203 case Stmt::OMPCanonicalLoopClass:
204 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
205 break;
206 case Stmt::OMPParallelDirectiveClass:
207 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
208 break;
209 case Stmt::OMPSimdDirectiveClass:
210 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
211 break;
212 case Stmt::OMPTileDirectiveClass:
213 EmitOMPTileDirective(cast<OMPTileDirective>(*S));
214 break;
215 case Stmt::OMPUnrollDirectiveClass:
216 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
217 break;
218 case Stmt::OMPForDirectiveClass:
219 EmitOMPForDirective(cast<OMPForDirective>(*S));
220 break;
221 case Stmt::OMPForSimdDirectiveClass:
222 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
223 break;
224 case Stmt::OMPSectionsDirectiveClass:
225 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
226 break;
227 case Stmt::OMPSectionDirectiveClass:
228 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
229 break;
230 case Stmt::OMPSingleDirectiveClass:
231 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
232 break;
233 case Stmt::OMPMasterDirectiveClass:
234 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
235 break;
236 case Stmt::OMPCriticalDirectiveClass:
237 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
238 break;
239 case Stmt::OMPParallelForDirectiveClass:
240 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
241 break;
242 case Stmt::OMPParallelForSimdDirectiveClass:
243 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
244 break;
245 case Stmt::OMPParallelMasterDirectiveClass:
246 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
247 break;
248 case Stmt::OMPParallelSectionsDirectiveClass:
249 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
250 break;
251 case Stmt::OMPTaskDirectiveClass:
252 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
253 break;
254 case Stmt::OMPTaskyieldDirectiveClass:
255 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
256 break;
257 case Stmt::OMPBarrierDirectiveClass:
258 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
259 break;
260 case Stmt::OMPTaskwaitDirectiveClass:
261 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
262 break;
263 case Stmt::OMPTaskgroupDirectiveClass:
264 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
265 break;
266 case Stmt::OMPFlushDirectiveClass:
267 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
268 break;
269 case Stmt::OMPDepobjDirectiveClass:
270 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
271 break;
272 case Stmt::OMPScanDirectiveClass:
273 EmitOMPScanDirective(cast<OMPScanDirective>(*S));
274 break;
275 case Stmt::OMPOrderedDirectiveClass:
276 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
277 break;
278 case Stmt::OMPAtomicDirectiveClass:
279 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
280 break;
281 case Stmt::OMPTargetDirectiveClass:
282 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
283 break;
284 case Stmt::OMPTeamsDirectiveClass:
285 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
286 break;
287 case Stmt::OMPCancellationPointDirectiveClass:
288 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
289 break;
290 case Stmt::OMPCancelDirectiveClass:
291 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
292 break;
293 case Stmt::OMPTargetDataDirectiveClass:
294 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
295 break;
296 case Stmt::OMPTargetEnterDataDirectiveClass:
297 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
298 break;
299 case Stmt::OMPTargetExitDataDirectiveClass:
300 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
301 break;
302 case Stmt::OMPTargetParallelDirectiveClass:
303 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
304 break;
305 case Stmt::OMPTargetParallelForDirectiveClass:
306 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
307 break;
308 case Stmt::OMPTaskLoopDirectiveClass:
309 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
310 break;
311 case Stmt::OMPTaskLoopSimdDirectiveClass:
312 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
313 break;
314 case Stmt::OMPMasterTaskLoopDirectiveClass:
315 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
316 break;
317 case Stmt::OMPMaskedTaskLoopDirectiveClass:
318 llvm_unreachable("masked taskloop directive not supported yet.");
319 break;
320 case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
321 EmitOMPMasterTaskLoopSimdDirective(
322 cast<OMPMasterTaskLoopSimdDirective>(*S));
323 break;
324 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
325 llvm_unreachable("masked taskloop simd directive not supported yet.");
326 break;
327 case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
328 EmitOMPParallelMasterTaskLoopDirective(
329 cast<OMPParallelMasterTaskLoopDirective>(*S));
330 break;
331 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
332 llvm_unreachable("parallel masked taskloop directive not supported yet.");
333 break;
334 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
335 EmitOMPParallelMasterTaskLoopSimdDirective(
336 cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
337 break;
338 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
339 llvm_unreachable(
340 "parallel masked taskloop simd directive not supported yet.");
341 break;
342 case Stmt::OMPDistributeDirectiveClass:
343 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
344 break;
345 case Stmt::OMPTargetUpdateDirectiveClass:
346 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
347 break;
348 case Stmt::OMPDistributeParallelForDirectiveClass:
349 EmitOMPDistributeParallelForDirective(
350 cast<OMPDistributeParallelForDirective>(*S));
351 break;
352 case Stmt::OMPDistributeParallelForSimdDirectiveClass:
353 EmitOMPDistributeParallelForSimdDirective(
354 cast<OMPDistributeParallelForSimdDirective>(*S));
355 break;
356 case Stmt::OMPDistributeSimdDirectiveClass:
357 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
358 break;
359 case Stmt::OMPTargetParallelForSimdDirectiveClass:
360 EmitOMPTargetParallelForSimdDirective(
361 cast<OMPTargetParallelForSimdDirective>(*S));
362 break;
363 case Stmt::OMPTargetSimdDirectiveClass:
364 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
365 break;
366 case Stmt::OMPTeamsDistributeDirectiveClass:
367 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
368 break;
369 case Stmt::OMPTeamsDistributeSimdDirectiveClass:
370 EmitOMPTeamsDistributeSimdDirective(
371 cast<OMPTeamsDistributeSimdDirective>(*S));
372 break;
373 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
374 EmitOMPTeamsDistributeParallelForSimdDirective(
375 cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
376 break;
377 case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
378 EmitOMPTeamsDistributeParallelForDirective(
379 cast<OMPTeamsDistributeParallelForDirective>(*S));
380 break;
381 case Stmt::OMPTargetTeamsDirectiveClass:
382 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
383 break;
384 case Stmt::OMPTargetTeamsDistributeDirectiveClass:
385 EmitOMPTargetTeamsDistributeDirective(
386 cast<OMPTargetTeamsDistributeDirective>(*S));
387 break;
388 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
389 EmitOMPTargetTeamsDistributeParallelForDirective(
390 cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
391 break;
392 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
393 EmitOMPTargetTeamsDistributeParallelForSimdDirective(
394 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
395 break;
396 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
397 EmitOMPTargetTeamsDistributeSimdDirective(
398 cast<OMPTargetTeamsDistributeSimdDirective>(*S));
399 break;
400 case Stmt::OMPInteropDirectiveClass:
401 EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
402 break;
403 case Stmt::OMPDispatchDirectiveClass:
404 llvm_unreachable("Dispatch directive not supported yet.");
405 break;
406 case Stmt::OMPMaskedDirectiveClass:
407 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
408 break;
409 case Stmt::OMPGenericLoopDirectiveClass:
410 EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
411 break;
412 case Stmt::OMPTeamsGenericLoopDirectiveClass:
413 llvm_unreachable("teams loop directive not supported yet.");
414 break;
415 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
416 llvm_unreachable("target teams loop directive not supported yet.");
417 break;
418 case Stmt::OMPParallelGenericLoopDirectiveClass:
419 llvm_unreachable("parallel loop directive not supported yet.");
420 break;
421 case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
422 llvm_unreachable("target parallel loop directive not supported yet.");
423 break;
424 case Stmt::OMPParallelMaskedDirectiveClass:
425 llvm_unreachable("parallel masked directive not supported yet.");
426 break;
427 }
428 }
429
EmitSimpleStmt(const Stmt * S,ArrayRef<const Attr * > Attrs)430 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
431 ArrayRef<const Attr *> Attrs) {
432 switch (S->getStmtClass()) {
433 default:
434 return false;
435 case Stmt::NullStmtClass:
436 break;
437 case Stmt::CompoundStmtClass:
438 EmitCompoundStmt(cast<CompoundStmt>(*S));
439 break;
440 case Stmt::DeclStmtClass:
441 EmitDeclStmt(cast<DeclStmt>(*S));
442 break;
443 case Stmt::LabelStmtClass:
444 EmitLabelStmt(cast<LabelStmt>(*S));
445 break;
446 case Stmt::AttributedStmtClass:
447 EmitAttributedStmt(cast<AttributedStmt>(*S));
448 break;
449 case Stmt::GotoStmtClass:
450 EmitGotoStmt(cast<GotoStmt>(*S));
451 break;
452 case Stmt::BreakStmtClass:
453 EmitBreakStmt(cast<BreakStmt>(*S));
454 break;
455 case Stmt::ContinueStmtClass:
456 EmitContinueStmt(cast<ContinueStmt>(*S));
457 break;
458 case Stmt::DefaultStmtClass:
459 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
460 break;
461 case Stmt::CaseStmtClass:
462 EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
463 break;
464 case Stmt::SEHLeaveStmtClass:
465 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
466 break;
467 }
468 return true;
469 }
470
471 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
472 /// this captures the expression result of the last sub-statement and returns it
473 /// (for use by the statement expression extension).
EmitCompoundStmt(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)474 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
475 AggValueSlot AggSlot) {
476 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
477 "LLVM IR generation of compound statement ('{}')");
478
479 // Keep track of the current cleanup stack depth, including debug scopes.
480 LexicalScope Scope(*this, S.getSourceRange());
481
482 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
483 }
484
485 Address
EmitCompoundStmtWithoutScope(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)486 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
487 bool GetLast,
488 AggValueSlot AggSlot) {
489
490 const Stmt *ExprResult = S.getStmtExprResult();
491 assert((!GetLast || (GetLast && ExprResult)) &&
492 "If GetLast is true then the CompoundStmt must have a StmtExprResult");
493
494 Address RetAlloca = Address::invalid();
495
496 for (auto *CurStmt : S.body()) {
497 if (GetLast && ExprResult == CurStmt) {
498 // We have to special case labels here. They are statements, but when put
499 // at the end of a statement expression, they yield the value of their
500 // subexpression. Handle this by walking through all labels we encounter,
501 // emitting them before we evaluate the subexpr.
502 // Similar issues arise for attributed statements.
503 while (!isa<Expr>(ExprResult)) {
504 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
505 EmitLabel(LS->getDecl());
506 ExprResult = LS->getSubStmt();
507 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
508 // FIXME: Update this if we ever have attributes that affect the
509 // semantics of an expression.
510 ExprResult = AS->getSubStmt();
511 } else {
512 llvm_unreachable("unknown value statement");
513 }
514 }
515
516 EnsureInsertPoint();
517
518 const Expr *E = cast<Expr>(ExprResult);
519 QualType ExprTy = E->getType();
520 if (hasAggregateEvaluationKind(ExprTy)) {
521 EmitAggExpr(E, AggSlot);
522 } else {
523 // We can't return an RValue here because there might be cleanups at
524 // the end of the StmtExpr. Because of that, we have to emit the result
525 // here into a temporary alloca.
526 RetAlloca = CreateMemTemp(ExprTy);
527 EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
528 /*IsInit*/ false);
529 }
530 } else {
531 EmitStmt(CurStmt);
532 }
533 }
534
535 return RetAlloca;
536 }
537
SimplifyForwardingBlocks(llvm::BasicBlock * BB)538 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
539 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
540
541 // If there is a cleanup stack, then we it isn't worth trying to
542 // simplify this block (we would need to remove it from the scope map
543 // and cleanup entry).
544 if (!EHStack.empty())
545 return;
546
547 // Can only simplify direct branches.
548 if (!BI || !BI->isUnconditional())
549 return;
550
551 // Can only simplify empty blocks.
552 if (BI->getIterator() != BB->begin())
553 return;
554
555 BB->replaceAllUsesWith(BI->getSuccessor(0));
556 BI->eraseFromParent();
557 BB->eraseFromParent();
558 }
559
EmitBlock(llvm::BasicBlock * BB,bool IsFinished)560 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
561 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
562
563 // Fall out of the current block (if necessary).
564 EmitBranch(BB);
565
566 if (IsFinished && BB->use_empty()) {
567 delete BB;
568 return;
569 }
570
571 // Place the block after the current block, if possible, or else at
572 // the end of the function.
573 if (CurBB && CurBB->getParent())
574 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
575 else
576 CurFn->getBasicBlockList().push_back(BB);
577 Builder.SetInsertPoint(BB);
578 }
579
EmitBranch(llvm::BasicBlock * Target)580 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
581 // Emit a branch from the current block to the target one if this
582 // was a real block. If this was just a fall-through block after a
583 // terminator, don't emit it.
584 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
585
586 if (!CurBB || CurBB->getTerminator()) {
587 // If there is no insert point or the previous block is already
588 // terminated, don't touch it.
589 } else {
590 // Otherwise, create a fall-through branch.
591 Builder.CreateBr(Target);
592 }
593
594 Builder.ClearInsertionPoint();
595 }
596
EmitBlockAfterUses(llvm::BasicBlock * block)597 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
598 bool inserted = false;
599 for (llvm::User *u : block->users()) {
600 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
601 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
602 block);
603 inserted = true;
604 break;
605 }
606 }
607
608 if (!inserted)
609 CurFn->getBasicBlockList().push_back(block);
610
611 Builder.SetInsertPoint(block);
612 }
613
614 CodeGenFunction::JumpDest
getJumpDestForLabel(const LabelDecl * D)615 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
616 JumpDest &Dest = LabelMap[D];
617 if (Dest.isValid()) return Dest;
618
619 // Create, but don't insert, the new block.
620 Dest = JumpDest(createBasicBlock(D->getName()),
621 EHScopeStack::stable_iterator::invalid(),
622 NextCleanupDestIndex++);
623 return Dest;
624 }
625
EmitLabel(const LabelDecl * D)626 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
627 // Add this label to the current lexical scope if we're within any
628 // normal cleanups. Jumps "in" to this label --- when permitted by
629 // the language --- may need to be routed around such cleanups.
630 if (EHStack.hasNormalCleanups() && CurLexicalScope)
631 CurLexicalScope->addLabel(D);
632
633 JumpDest &Dest = LabelMap[D];
634
635 // If we didn't need a forward reference to this label, just go
636 // ahead and create a destination at the current scope.
637 if (!Dest.isValid()) {
638 Dest = getJumpDestInCurrentScope(D->getName());
639
640 // Otherwise, we need to give this label a target depth and remove
641 // it from the branch-fixups list.
642 } else {
643 assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
644 Dest.setScopeDepth(EHStack.stable_begin());
645 ResolveBranchFixups(Dest.getBlock());
646 }
647
648 EmitBlock(Dest.getBlock());
649
650 // Emit debug info for labels.
651 if (CGDebugInfo *DI = getDebugInfo()) {
652 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
653 DI->setLocation(D->getLocation());
654 DI->EmitLabel(D, Builder);
655 }
656 }
657
658 incrementProfileCounter(D->getStmt());
659 }
660
661 /// Change the cleanup scope of the labels in this lexical scope to
662 /// match the scope of the enclosing context.
rescopeLabels()663 void CodeGenFunction::LexicalScope::rescopeLabels() {
664 assert(!Labels.empty());
665 EHScopeStack::stable_iterator innermostScope
666 = CGF.EHStack.getInnermostNormalCleanup();
667
668 // Change the scope depth of all the labels.
669 for (SmallVectorImpl<const LabelDecl*>::const_iterator
670 i = Labels.begin(), e = Labels.end(); i != e; ++i) {
671 assert(CGF.LabelMap.count(*i));
672 JumpDest &dest = CGF.LabelMap.find(*i)->second;
673 assert(dest.getScopeDepth().isValid());
674 assert(innermostScope.encloses(dest.getScopeDepth()));
675 dest.setScopeDepth(innermostScope);
676 }
677
678 // Reparent the labels if the new scope also has cleanups.
679 if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
680 ParentScope->Labels.append(Labels.begin(), Labels.end());
681 }
682 }
683
684
EmitLabelStmt(const LabelStmt & S)685 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
686 EmitLabel(S.getDecl());
687
688 // IsEHa - emit eha.scope.begin if it's a side entry of a scope
689 if (getLangOpts().EHAsynch && S.isSideEntry())
690 EmitSehCppScopeBegin();
691
692 EmitStmt(S.getSubStmt());
693 }
694
EmitAttributedStmt(const AttributedStmt & S)695 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
696 bool nomerge = false;
697 bool noinline = false;
698 bool alwaysinline = false;
699 const CallExpr *musttail = nullptr;
700
701 for (const auto *A : S.getAttrs()) {
702 switch (A->getKind()) {
703 default:
704 break;
705 case attr::NoMerge:
706 nomerge = true;
707 break;
708 case attr::NoInline:
709 noinline = true;
710 break;
711 case attr::AlwaysInline:
712 alwaysinline = true;
713 break;
714 case attr::MustTail:
715 const Stmt *Sub = S.getSubStmt();
716 const ReturnStmt *R = cast<ReturnStmt>(Sub);
717 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
718 break;
719 }
720 }
721 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
722 SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline);
723 SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt,
724 alwaysinline);
725 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
726 EmitStmt(S.getSubStmt(), S.getAttrs());
727 }
728
EmitGotoStmt(const GotoStmt & S)729 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
730 // If this code is reachable then emit a stop point (if generating
731 // debug info). We have to do this ourselves because we are on the
732 // "simple" statement path.
733 if (HaveInsertPoint())
734 EmitStopPoint(&S);
735
736 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
737 }
738
739
EmitIndirectGotoStmt(const IndirectGotoStmt & S)740 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
741 if (const LabelDecl *Target = S.getConstantTarget()) {
742 EmitBranchThroughCleanup(getJumpDestForLabel(Target));
743 return;
744 }
745
746 // Ensure that we have an i8* for our PHI node.
747 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
748 Int8PtrTy, "addr");
749 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
750
751 // Get the basic block for the indirect goto.
752 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
753
754 // The first instruction in the block has to be the PHI for the switch dest,
755 // add an entry for this branch.
756 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
757
758 EmitBranch(IndGotoBB);
759 }
760
EmitIfStmt(const IfStmt & S)761 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
762 // The else branch of a consteval if statement is always the only branch that
763 // can be runtime evaluated.
764 if (S.isConsteval()) {
765 const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
766 if (Executed) {
767 RunCleanupsScope ExecutedScope(*this);
768 EmitStmt(Executed);
769 }
770 return;
771 }
772
773 // C99 6.8.4.1: The first substatement is executed if the expression compares
774 // unequal to 0. The condition must be a scalar type.
775 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
776
777 if (S.getInit())
778 EmitStmt(S.getInit());
779
780 if (S.getConditionVariable())
781 EmitDecl(*S.getConditionVariable());
782
783 // If the condition constant folds and can be elided, try to avoid emitting
784 // the condition and the dead arm of the if/else.
785 bool CondConstant;
786 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
787 S.isConstexpr())) {
788 // Figure out which block (then or else) is executed.
789 const Stmt *Executed = S.getThen();
790 const Stmt *Skipped = S.getElse();
791 if (!CondConstant) // Condition false?
792 std::swap(Executed, Skipped);
793
794 // If the skipped block has no labels in it, just emit the executed block.
795 // This avoids emitting dead code and simplifies the CFG substantially.
796 if (S.isConstexpr() || !ContainsLabel(Skipped)) {
797 if (CondConstant)
798 incrementProfileCounter(&S);
799 if (Executed) {
800 RunCleanupsScope ExecutedScope(*this);
801 EmitStmt(Executed);
802 }
803 return;
804 }
805 }
806
807 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
808 // the conditional branch.
809 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
810 llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
811 llvm::BasicBlock *ElseBlock = ContBlock;
812 if (S.getElse())
813 ElseBlock = createBasicBlock("if.else");
814
815 // Prefer the PGO based weights over the likelihood attribute.
816 // When the build isn't optimized the metadata isn't used, so don't generate
817 // it.
818 Stmt::Likelihood LH = Stmt::LH_None;
819 uint64_t Count = getProfileCount(S.getThen());
820 if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
821 LH = Stmt::getLikelihood(S.getThen(), S.getElse());
822 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
823
824 // Emit the 'then' code.
825 EmitBlock(ThenBlock);
826 incrementProfileCounter(&S);
827 {
828 RunCleanupsScope ThenScope(*this);
829 EmitStmt(S.getThen());
830 }
831 EmitBranch(ContBlock);
832
833 // Emit the 'else' code if present.
834 if (const Stmt *Else = S.getElse()) {
835 {
836 // There is no need to emit line number for an unconditional branch.
837 auto NL = ApplyDebugLocation::CreateEmpty(*this);
838 EmitBlock(ElseBlock);
839 }
840 {
841 RunCleanupsScope ElseScope(*this);
842 EmitStmt(Else);
843 }
844 {
845 // There is no need to emit line number for an unconditional branch.
846 auto NL = ApplyDebugLocation::CreateEmpty(*this);
847 EmitBranch(ContBlock);
848 }
849 }
850
851 // Emit the continuation block for code after the if.
852 EmitBlock(ContBlock, true);
853 }
854
EmitWhileStmt(const WhileStmt & S,ArrayRef<const Attr * > WhileAttrs)855 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
856 ArrayRef<const Attr *> WhileAttrs) {
857 // Emit the header for the loop, which will also become
858 // the continue target.
859 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
860 EmitBlock(LoopHeader.getBlock());
861
862 // Create an exit block for when the condition fails, which will
863 // also become the break target.
864 JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
865
866 // Store the blocks to use for break and continue.
867 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
868
869 // C++ [stmt.while]p2:
870 // When the condition of a while statement is a declaration, the
871 // scope of the variable that is declared extends from its point
872 // of declaration (3.3.2) to the end of the while statement.
873 // [...]
874 // The object created in a condition is destroyed and created
875 // with each iteration of the loop.
876 RunCleanupsScope ConditionScope(*this);
877
878 if (S.getConditionVariable())
879 EmitDecl(*S.getConditionVariable());
880
881 // Evaluate the conditional in the while header. C99 6.8.5.1: The
882 // evaluation of the controlling expression takes place before each
883 // execution of the loop body.
884 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
885
886 // while(1) is common, avoid extra exit blocks. Be sure
887 // to correctly handle break/continue though.
888 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
889 bool CondIsConstInt = C != nullptr;
890 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
891 const SourceRange &R = S.getSourceRange();
892 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
893 WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
894 SourceLocToDebugLoc(R.getEnd()),
895 checkIfLoopMustProgress(CondIsConstInt));
896
897 // As long as the condition is true, go to the loop body.
898 llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
899 if (EmitBoolCondBranch) {
900 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
901 if (ConditionScope.requiresCleanups())
902 ExitBlock = createBasicBlock("while.exit");
903 llvm::MDNode *Weights =
904 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
905 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
906 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
907 BoolCondVal, Stmt::getLikelihood(S.getBody()));
908 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
909
910 if (ExitBlock != LoopExit.getBlock()) {
911 EmitBlock(ExitBlock);
912 EmitBranchThroughCleanup(LoopExit);
913 }
914 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
915 CGM.getDiags().Report(A->getLocation(),
916 diag::warn_attribute_has_no_effect_on_infinite_loop)
917 << A << A->getRange();
918 CGM.getDiags().Report(
919 S.getWhileLoc(),
920 diag::note_attribute_has_no_effect_on_infinite_loop_here)
921 << SourceRange(S.getWhileLoc(), S.getRParenLoc());
922 }
923
924 // Emit the loop body. We have to emit this in a cleanup scope
925 // because it might be a singleton DeclStmt.
926 {
927 RunCleanupsScope BodyScope(*this);
928 EmitBlock(LoopBody);
929 incrementProfileCounter(&S);
930 EmitStmt(S.getBody());
931 }
932
933 BreakContinueStack.pop_back();
934
935 // Immediately force cleanup.
936 ConditionScope.ForceCleanup();
937
938 EmitStopPoint(&S);
939 // Branch to the loop header again.
940 EmitBranch(LoopHeader.getBlock());
941
942 LoopStack.pop();
943
944 // Emit the exit block.
945 EmitBlock(LoopExit.getBlock(), true);
946
947 // The LoopHeader typically is just a branch if we skipped emitting
948 // a branch, try to erase it.
949 if (!EmitBoolCondBranch)
950 SimplifyForwardingBlocks(LoopHeader.getBlock());
951 }
952
EmitDoStmt(const DoStmt & S,ArrayRef<const Attr * > DoAttrs)953 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
954 ArrayRef<const Attr *> DoAttrs) {
955 JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
956 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
957
958 uint64_t ParentCount = getCurrentProfileCount();
959
960 // Store the blocks to use for break and continue.
961 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
962
963 // Emit the body of the loop.
964 llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
965
966 EmitBlockWithFallThrough(LoopBody, &S);
967 {
968 RunCleanupsScope BodyScope(*this);
969 EmitStmt(S.getBody());
970 }
971
972 EmitBlock(LoopCond.getBlock());
973
974 // C99 6.8.5.2: "The evaluation of the controlling expression takes place
975 // after each execution of the loop body."
976
977 // Evaluate the conditional in the while header.
978 // C99 6.8.5p2/p4: The first substatement is executed if the expression
979 // compares unequal to 0. The condition must be a scalar type.
980 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
981
982 BreakContinueStack.pop_back();
983
984 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
985 // to correctly handle break/continue though.
986 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
987 bool CondIsConstInt = C;
988 bool EmitBoolCondBranch = !C || !C->isZero();
989
990 const SourceRange &R = S.getSourceRange();
991 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
992 SourceLocToDebugLoc(R.getBegin()),
993 SourceLocToDebugLoc(R.getEnd()),
994 checkIfLoopMustProgress(CondIsConstInt));
995
996 // As long as the condition is true, iterate the loop.
997 if (EmitBoolCondBranch) {
998 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
999 Builder.CreateCondBr(
1000 BoolCondVal, LoopBody, LoopExit.getBlock(),
1001 createProfileWeightsForLoop(S.getCond(), BackedgeCount));
1002 }
1003
1004 LoopStack.pop();
1005
1006 // Emit the exit block.
1007 EmitBlock(LoopExit.getBlock());
1008
1009 // The DoCond block typically is just a branch if we skipped
1010 // emitting a branch, try to erase it.
1011 if (!EmitBoolCondBranch)
1012 SimplifyForwardingBlocks(LoopCond.getBlock());
1013 }
1014
EmitForStmt(const ForStmt & S,ArrayRef<const Attr * > ForAttrs)1015 void CodeGenFunction::EmitForStmt(const ForStmt &S,
1016 ArrayRef<const Attr *> ForAttrs) {
1017 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1018
1019 LexicalScope ForScope(*this, S.getSourceRange());
1020
1021 // Evaluate the first part before the loop.
1022 if (S.getInit())
1023 EmitStmt(S.getInit());
1024
1025 // Start the loop with a block that tests the condition.
1026 // If there's an increment, the continue scope will be overwritten
1027 // later.
1028 JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
1029 llvm::BasicBlock *CondBlock = CondDest.getBlock();
1030 EmitBlock(CondBlock);
1031
1032 Expr::EvalResult Result;
1033 bool CondIsConstInt =
1034 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
1035
1036 const SourceRange &R = S.getSourceRange();
1037 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1038 SourceLocToDebugLoc(R.getBegin()),
1039 SourceLocToDebugLoc(R.getEnd()),
1040 checkIfLoopMustProgress(CondIsConstInt));
1041
1042 // Create a cleanup scope for the condition variable cleanups.
1043 LexicalScope ConditionScope(*this, S.getSourceRange());
1044
1045 // If the for loop doesn't have an increment we can just use the condition as
1046 // the continue block. Otherwise, if there is no condition variable, we can
1047 // form the continue block now. If there is a condition variable, we can't
1048 // form the continue block until after we've emitted the condition, because
1049 // the condition is in scope in the increment, but Sema's jump diagnostics
1050 // ensure that there are no continues from the condition variable that jump
1051 // to the loop increment.
1052 JumpDest Continue;
1053 if (!S.getInc())
1054 Continue = CondDest;
1055 else if (!S.getConditionVariable())
1056 Continue = getJumpDestInCurrentScope("for.inc");
1057 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1058
1059 if (S.getCond()) {
1060 // If the for statement has a condition scope, emit the local variable
1061 // declaration.
1062 if (S.getConditionVariable()) {
1063 EmitDecl(*S.getConditionVariable());
1064
1065 // We have entered the condition variable's scope, so we're now able to
1066 // jump to the continue block.
1067 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1068 BreakContinueStack.back().ContinueBlock = Continue;
1069 }
1070
1071 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1072 // If there are any cleanups between here and the loop-exit scope,
1073 // create a block to stage a loop exit along.
1074 if (ForScope.requiresCleanups())
1075 ExitBlock = createBasicBlock("for.cond.cleanup");
1076
1077 // As long as the condition is true, iterate the loop.
1078 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1079
1080 // C99 6.8.5p2/p4: The first substatement is executed if the expression
1081 // compares unequal to 0. The condition must be a scalar type.
1082 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1083 llvm::MDNode *Weights =
1084 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1085 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1086 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1087 BoolCondVal, Stmt::getLikelihood(S.getBody()));
1088
1089 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1090
1091 if (ExitBlock != LoopExit.getBlock()) {
1092 EmitBlock(ExitBlock);
1093 EmitBranchThroughCleanup(LoopExit);
1094 }
1095
1096 EmitBlock(ForBody);
1097 } else {
1098 // Treat it as a non-zero constant. Don't even create a new block for the
1099 // body, just fall into it.
1100 }
1101 incrementProfileCounter(&S);
1102
1103 {
1104 // Create a separate cleanup scope for the body, in case it is not
1105 // a compound statement.
1106 RunCleanupsScope BodyScope(*this);
1107 EmitStmt(S.getBody());
1108 }
1109
1110 // If there is an increment, emit it next.
1111 if (S.getInc()) {
1112 EmitBlock(Continue.getBlock());
1113 EmitStmt(S.getInc());
1114 }
1115
1116 BreakContinueStack.pop_back();
1117
1118 ConditionScope.ForceCleanup();
1119
1120 EmitStopPoint(&S);
1121 EmitBranch(CondBlock);
1122
1123 ForScope.ForceCleanup();
1124
1125 LoopStack.pop();
1126
1127 // Emit the fall-through block.
1128 EmitBlock(LoopExit.getBlock(), true);
1129 }
1130
1131 void
EmitCXXForRangeStmt(const CXXForRangeStmt & S,ArrayRef<const Attr * > ForAttrs)1132 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1133 ArrayRef<const Attr *> ForAttrs) {
1134 JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1135
1136 LexicalScope ForScope(*this, S.getSourceRange());
1137
1138 // Evaluate the first pieces before the loop.
1139 if (S.getInit())
1140 EmitStmt(S.getInit());
1141 EmitStmt(S.getRangeStmt());
1142 EmitStmt(S.getBeginStmt());
1143 EmitStmt(S.getEndStmt());
1144
1145 // Start the loop with a block that tests the condition.
1146 // If there's an increment, the continue scope will be overwritten
1147 // later.
1148 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1149 EmitBlock(CondBlock);
1150
1151 const SourceRange &R = S.getSourceRange();
1152 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1153 SourceLocToDebugLoc(R.getBegin()),
1154 SourceLocToDebugLoc(R.getEnd()));
1155
1156 // If there are any cleanups between here and the loop-exit scope,
1157 // create a block to stage a loop exit along.
1158 llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1159 if (ForScope.requiresCleanups())
1160 ExitBlock = createBasicBlock("for.cond.cleanup");
1161
1162 // The loop body, consisting of the specified body and the loop variable.
1163 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1164
1165 // The body is executed if the expression, contextually converted
1166 // to bool, is true.
1167 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1168 llvm::MDNode *Weights =
1169 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1170 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1171 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1172 BoolCondVal, Stmt::getLikelihood(S.getBody()));
1173 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1174
1175 if (ExitBlock != LoopExit.getBlock()) {
1176 EmitBlock(ExitBlock);
1177 EmitBranchThroughCleanup(LoopExit);
1178 }
1179
1180 EmitBlock(ForBody);
1181 incrementProfileCounter(&S);
1182
1183 // Create a block for the increment. In case of a 'continue', we jump there.
1184 JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1185
1186 // Store the blocks to use for break and continue.
1187 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1188
1189 {
1190 // Create a separate cleanup scope for the loop variable and body.
1191 LexicalScope BodyScope(*this, S.getSourceRange());
1192 EmitStmt(S.getLoopVarStmt());
1193 EmitStmt(S.getBody());
1194 }
1195
1196 EmitStopPoint(&S);
1197 // If there is an increment, emit it next.
1198 EmitBlock(Continue.getBlock());
1199 EmitStmt(S.getInc());
1200
1201 BreakContinueStack.pop_back();
1202
1203 EmitBranch(CondBlock);
1204
1205 ForScope.ForceCleanup();
1206
1207 LoopStack.pop();
1208
1209 // Emit the fall-through block.
1210 EmitBlock(LoopExit.getBlock(), true);
1211 }
1212
EmitReturnOfRValue(RValue RV,QualType Ty)1213 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1214 if (RV.isScalar()) {
1215 Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1216 } else if (RV.isAggregate()) {
1217 LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1218 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1219 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1220 } else {
1221 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1222 /*init*/ true);
1223 }
1224 EmitBranchThroughCleanup(ReturnBlock);
1225 }
1226
1227 namespace {
1228 // RAII struct used to save and restore a return statment's result expression.
1229 struct SaveRetExprRAII {
SaveRetExprRAII__anonc80556a00111::SaveRetExprRAII1230 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1231 : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1232 CGF.RetExpr = RetExpr;
1233 }
~SaveRetExprRAII__anonc80556a00111::SaveRetExprRAII1234 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1235 const Expr *OldRetExpr;
1236 CodeGenFunction &CGF;
1237 };
1238 } // namespace
1239
1240 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1241 /// codegen it as 'tail call ...; ret void;'.
makeTailCallIfSwiftAsync(const CallExpr * CE,CGBuilderTy & Builder,const CGFunctionInfo * CurFnInfo)1242 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1243 const CGFunctionInfo *CurFnInfo) {
1244 auto calleeQualType = CE->getCallee()->getType();
1245 const FunctionType *calleeType = nullptr;
1246 if (calleeQualType->isFunctionPointerType() ||
1247 calleeQualType->isFunctionReferenceType() ||
1248 calleeQualType->isBlockPointerType() ||
1249 calleeQualType->isMemberFunctionPointerType()) {
1250 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1251 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1252 calleeType = ty;
1253 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1254 if (auto methodDecl = CMCE->getMethodDecl()) {
1255 // getMethodDecl() doesn't handle member pointers at the moment.
1256 calleeType = methodDecl->getType()->castAs<FunctionType>();
1257 } else {
1258 return;
1259 }
1260 } else {
1261 return;
1262 }
1263 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1264 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1265 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1266 CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1267 Builder.CreateRetVoid();
1268 Builder.ClearInsertionPoint();
1269 }
1270 }
1271
1272 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1273 /// if the function returns void, or may be missing one if the function returns
1274 /// non-void. Fun stuff :).
EmitReturnStmt(const ReturnStmt & S)1275 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1276 if (requiresReturnValueCheck()) {
1277 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1278 auto *SLocPtr =
1279 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1280 llvm::GlobalVariable::PrivateLinkage, SLoc);
1281 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1282 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1283 assert(ReturnLocation.isValid() && "No valid return location");
1284 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1285 ReturnLocation);
1286 }
1287
1288 // Returning from an outlined SEH helper is UB, and we already warn on it.
1289 if (IsOutlinedSEHHelper) {
1290 Builder.CreateUnreachable();
1291 Builder.ClearInsertionPoint();
1292 }
1293
1294 // Emit the result value, even if unused, to evaluate the side effects.
1295 const Expr *RV = S.getRetValue();
1296
1297 // Record the result expression of the return statement. The recorded
1298 // expression is used to determine whether a block capture's lifetime should
1299 // end at the end of the full expression as opposed to the end of the scope
1300 // enclosing the block expression.
1301 //
1302 // This permits a small, easily-implemented exception to our over-conservative
1303 // rules about not jumping to statements following block literals with
1304 // non-trivial cleanups.
1305 SaveRetExprRAII SaveRetExpr(RV, *this);
1306
1307 RunCleanupsScope cleanupScope(*this);
1308 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1309 RV = EWC->getSubExpr();
1310 // FIXME: Clean this up by using an LValue for ReturnTemp,
1311 // EmitStoreThroughLValue, and EmitAnyExpr.
1312 // Check if the NRVO candidate was not globalized in OpenMP mode.
1313 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1314 S.getNRVOCandidate()->isNRVOVariable() &&
1315 (!getLangOpts().OpenMP ||
1316 !CGM.getOpenMPRuntime()
1317 .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1318 .isValid())) {
1319 // Apply the named return value optimization for this return statement,
1320 // which means doing nothing: the appropriate result has already been
1321 // constructed into the NRVO variable.
1322
1323 // If there is an NRVO flag for this variable, set it to 1 into indicate
1324 // that the cleanup code should not destroy the variable.
1325 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1326 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1327 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1328 // Make sure not to return anything, but evaluate the expression
1329 // for side effects.
1330 if (RV) {
1331 EmitAnyExpr(RV);
1332 if (auto *CE = dyn_cast<CallExpr>(RV))
1333 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1334 }
1335 } else if (!RV) {
1336 // Do nothing (return value is left uninitialized)
1337 } else if (FnRetTy->isReferenceType()) {
1338 // If this function returns a reference, take the address of the expression
1339 // rather than the value.
1340 RValue Result = EmitReferenceBindingToExpr(RV);
1341 Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1342 } else {
1343 switch (getEvaluationKind(RV->getType())) {
1344 case TEK_Scalar:
1345 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1346 break;
1347 case TEK_Complex:
1348 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1349 /*isInit*/ true);
1350 break;
1351 case TEK_Aggregate:
1352 EmitAggExpr(RV, AggValueSlot::forAddr(
1353 ReturnValue, Qualifiers(),
1354 AggValueSlot::IsDestructed,
1355 AggValueSlot::DoesNotNeedGCBarriers,
1356 AggValueSlot::IsNotAliased,
1357 getOverlapForReturnValue()));
1358 break;
1359 }
1360 }
1361
1362 ++NumReturnExprs;
1363 if (!RV || RV->isEvaluatable(getContext()))
1364 ++NumSimpleReturnExprs;
1365
1366 cleanupScope.ForceCleanup();
1367 EmitBranchThroughCleanup(ReturnBlock);
1368 }
1369
EmitDeclStmt(const DeclStmt & S)1370 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1371 // As long as debug info is modeled with instructions, we have to ensure we
1372 // have a place to insert here and write the stop point here.
1373 if (HaveInsertPoint())
1374 EmitStopPoint(&S);
1375
1376 for (const auto *I : S.decls())
1377 EmitDecl(*I);
1378 }
1379
EmitBreakStmt(const BreakStmt & S)1380 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1381 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1382
1383 // If this code is reachable then emit a stop point (if generating
1384 // debug info). We have to do this ourselves because we are on the
1385 // "simple" statement path.
1386 if (HaveInsertPoint())
1387 EmitStopPoint(&S);
1388
1389 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1390 }
1391
EmitContinueStmt(const ContinueStmt & S)1392 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1393 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1394
1395 // If this code is reachable then emit a stop point (if generating
1396 // debug info). We have to do this ourselves because we are on the
1397 // "simple" statement path.
1398 if (HaveInsertPoint())
1399 EmitStopPoint(&S);
1400
1401 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1402 }
1403
1404 /// EmitCaseStmtRange - If case statement range is not too big then
1405 /// add multiple cases to switch instruction, one for each value within
1406 /// the range. If range is too big then emit "if" condition check.
EmitCaseStmtRange(const CaseStmt & S,ArrayRef<const Attr * > Attrs)1407 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1408 ArrayRef<const Attr *> Attrs) {
1409 assert(S.getRHS() && "Expected RHS value in CaseStmt");
1410
1411 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1412 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1413
1414 // Emit the code for this case. We do this first to make sure it is
1415 // properly chained from our predecessor before generating the
1416 // switch machinery to enter this block.
1417 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1418 EmitBlockWithFallThrough(CaseDest, &S);
1419 EmitStmt(S.getSubStmt());
1420
1421 // If range is empty, do nothing.
1422 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1423 return;
1424
1425 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1426 llvm::APInt Range = RHS - LHS;
1427 // FIXME: parameters such as this should not be hardcoded.
1428 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1429 // Range is small enough to add multiple switch instruction cases.
1430 uint64_t Total = getProfileCount(&S);
1431 unsigned NCases = Range.getZExtValue() + 1;
1432 // We only have one region counter for the entire set of cases here, so we
1433 // need to divide the weights evenly between the generated cases, ensuring
1434 // that the total weight is preserved. E.g., a weight of 5 over three cases
1435 // will be distributed as weights of 2, 2, and 1.
1436 uint64_t Weight = Total / NCases, Rem = Total % NCases;
1437 for (unsigned I = 0; I != NCases; ++I) {
1438 if (SwitchWeights)
1439 SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1440 else if (SwitchLikelihood)
1441 SwitchLikelihood->push_back(LH);
1442
1443 if (Rem)
1444 Rem--;
1445 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1446 ++LHS;
1447 }
1448 return;
1449 }
1450
1451 // The range is too big. Emit "if" condition into a new block,
1452 // making sure to save and restore the current insertion point.
1453 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1454
1455 // Push this test onto the chain of range checks (which terminates
1456 // in the default basic block). The switch's default will be changed
1457 // to the top of this chain after switch emission is complete.
1458 llvm::BasicBlock *FalseDest = CaseRangeBlock;
1459 CaseRangeBlock = createBasicBlock("sw.caserange");
1460
1461 CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1462 Builder.SetInsertPoint(CaseRangeBlock);
1463
1464 // Emit range check.
1465 llvm::Value *Diff =
1466 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1467 llvm::Value *Cond =
1468 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1469
1470 llvm::MDNode *Weights = nullptr;
1471 if (SwitchWeights) {
1472 uint64_t ThisCount = getProfileCount(&S);
1473 uint64_t DefaultCount = (*SwitchWeights)[0];
1474 Weights = createProfileWeights(ThisCount, DefaultCount);
1475
1476 // Since we're chaining the switch default through each large case range, we
1477 // need to update the weight for the default, ie, the first case, to include
1478 // this case.
1479 (*SwitchWeights)[0] += ThisCount;
1480 } else if (SwitchLikelihood)
1481 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1482
1483 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1484
1485 // Restore the appropriate insertion point.
1486 if (RestoreBB)
1487 Builder.SetInsertPoint(RestoreBB);
1488 else
1489 Builder.ClearInsertionPoint();
1490 }
1491
EmitCaseStmt(const CaseStmt & S,ArrayRef<const Attr * > Attrs)1492 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1493 ArrayRef<const Attr *> Attrs) {
1494 // If there is no enclosing switch instance that we're aware of, then this
1495 // case statement and its block can be elided. This situation only happens
1496 // when we've constant-folded the switch, are emitting the constant case,
1497 // and part of the constant case includes another case statement. For
1498 // instance: switch (4) { case 4: do { case 5: } while (1); }
1499 if (!SwitchInsn) {
1500 EmitStmt(S.getSubStmt());
1501 return;
1502 }
1503
1504 // Handle case ranges.
1505 if (S.getRHS()) {
1506 EmitCaseStmtRange(S, Attrs);
1507 return;
1508 }
1509
1510 llvm::ConstantInt *CaseVal =
1511 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1512
1513 // Emit debuginfo for the case value if it is an enum value.
1514 const ConstantExpr *CE;
1515 if (auto ICE = dyn_cast<ImplicitCastExpr>(S.getLHS()))
1516 CE = dyn_cast<ConstantExpr>(ICE->getSubExpr());
1517 else
1518 CE = dyn_cast<ConstantExpr>(S.getLHS());
1519 if (CE) {
1520 if (auto DE = dyn_cast<DeclRefExpr>(CE->getSubExpr()))
1521 if (CGDebugInfo *Dbg = getDebugInfo())
1522 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
1523 Dbg->EmitGlobalVariable(DE->getDecl(),
1524 APValue(llvm::APSInt(CaseVal->getValue())));
1525 }
1526
1527 if (SwitchLikelihood)
1528 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1529
1530 // If the body of the case is just a 'break', try to not emit an empty block.
1531 // If we're profiling or we're not optimizing, leave the block in for better
1532 // debug and coverage analysis.
1533 if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1534 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1535 isa<BreakStmt>(S.getSubStmt())) {
1536 JumpDest Block = BreakContinueStack.back().BreakBlock;
1537
1538 // Only do this optimization if there are no cleanups that need emitting.
1539 if (isObviouslyBranchWithoutCleanups(Block)) {
1540 if (SwitchWeights)
1541 SwitchWeights->push_back(getProfileCount(&S));
1542 SwitchInsn->addCase(CaseVal, Block.getBlock());
1543
1544 // If there was a fallthrough into this case, make sure to redirect it to
1545 // the end of the switch as well.
1546 if (Builder.GetInsertBlock()) {
1547 Builder.CreateBr(Block.getBlock());
1548 Builder.ClearInsertionPoint();
1549 }
1550 return;
1551 }
1552 }
1553
1554 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1555 EmitBlockWithFallThrough(CaseDest, &S);
1556 if (SwitchWeights)
1557 SwitchWeights->push_back(getProfileCount(&S));
1558 SwitchInsn->addCase(CaseVal, CaseDest);
1559
1560 // Recursively emitting the statement is acceptable, but is not wonderful for
1561 // code where we have many case statements nested together, i.e.:
1562 // case 1:
1563 // case 2:
1564 // case 3: etc.
1565 // Handling this recursively will create a new block for each case statement
1566 // that falls through to the next case which is IR intensive. It also causes
1567 // deep recursion which can run into stack depth limitations. Handle
1568 // sequential non-range case statements specially.
1569 //
1570 // TODO When the next case has a likelihood attribute the code returns to the
1571 // recursive algorithm. Maybe improve this case if it becomes common practice
1572 // to use a lot of attributes.
1573 const CaseStmt *CurCase = &S;
1574 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1575
1576 // Otherwise, iteratively add consecutive cases to this switch stmt.
1577 while (NextCase && NextCase->getRHS() == nullptr) {
1578 CurCase = NextCase;
1579 llvm::ConstantInt *CaseVal =
1580 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1581
1582 if (SwitchWeights)
1583 SwitchWeights->push_back(getProfileCount(NextCase));
1584 if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1585 CaseDest = createBasicBlock("sw.bb");
1586 EmitBlockWithFallThrough(CaseDest, CurCase);
1587 }
1588 // Since this loop is only executed when the CaseStmt has no attributes
1589 // use a hard-coded value.
1590 if (SwitchLikelihood)
1591 SwitchLikelihood->push_back(Stmt::LH_None);
1592
1593 SwitchInsn->addCase(CaseVal, CaseDest);
1594 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1595 }
1596
1597 // Generate a stop point for debug info if the case statement is
1598 // followed by a default statement. A fallthrough case before a
1599 // default case gets its own branch target.
1600 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1601 EmitStopPoint(CurCase);
1602
1603 // Normal default recursion for non-cases.
1604 EmitStmt(CurCase->getSubStmt());
1605 }
1606
EmitDefaultStmt(const DefaultStmt & S,ArrayRef<const Attr * > Attrs)1607 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1608 ArrayRef<const Attr *> Attrs) {
1609 // If there is no enclosing switch instance that we're aware of, then this
1610 // default statement can be elided. This situation only happens when we've
1611 // constant-folded the switch.
1612 if (!SwitchInsn) {
1613 EmitStmt(S.getSubStmt());
1614 return;
1615 }
1616
1617 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1618 assert(DefaultBlock->empty() &&
1619 "EmitDefaultStmt: Default block already defined?");
1620
1621 if (SwitchLikelihood)
1622 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1623
1624 EmitBlockWithFallThrough(DefaultBlock, &S);
1625
1626 EmitStmt(S.getSubStmt());
1627 }
1628
1629 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1630 /// constant value that is being switched on, see if we can dead code eliminate
1631 /// the body of the switch to a simple series of statements to emit. Basically,
1632 /// on a switch (5) we want to find these statements:
1633 /// case 5:
1634 /// printf(...); <--
1635 /// ++i; <--
1636 /// break;
1637 ///
1638 /// and add them to the ResultStmts vector. If it is unsafe to do this
1639 /// transformation (for example, one of the elided statements contains a label
1640 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
1641 /// should include statements after it (e.g. the printf() line is a substmt of
1642 /// the case) then return CSFC_FallThrough. If we handled it and found a break
1643 /// statement, then return CSFC_Success.
1644 ///
1645 /// If Case is non-null, then we are looking for the specified case, checking
1646 /// that nothing we jump over contains labels. If Case is null, then we found
1647 /// the case and are looking for the break.
1648 ///
1649 /// If the recursive walk actually finds our Case, then we set FoundCase to
1650 /// true.
1651 ///
1652 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
CollectStatementsForCase(const Stmt * S,const SwitchCase * Case,bool & FoundCase,SmallVectorImpl<const Stmt * > & ResultStmts)1653 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1654 const SwitchCase *Case,
1655 bool &FoundCase,
1656 SmallVectorImpl<const Stmt*> &ResultStmts) {
1657 // If this is a null statement, just succeed.
1658 if (!S)
1659 return Case ? CSFC_Success : CSFC_FallThrough;
1660
1661 // If this is the switchcase (case 4: or default) that we're looking for, then
1662 // we're in business. Just add the substatement.
1663 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1664 if (S == Case) {
1665 FoundCase = true;
1666 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1667 ResultStmts);
1668 }
1669
1670 // Otherwise, this is some other case or default statement, just ignore it.
1671 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1672 ResultStmts);
1673 }
1674
1675 // If we are in the live part of the code and we found our break statement,
1676 // return a success!
1677 if (!Case && isa<BreakStmt>(S))
1678 return CSFC_Success;
1679
1680 // If this is a switch statement, then it might contain the SwitchCase, the
1681 // break, or neither.
1682 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1683 // Handle this as two cases: we might be looking for the SwitchCase (if so
1684 // the skipped statements must be skippable) or we might already have it.
1685 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1686 bool StartedInLiveCode = FoundCase;
1687 unsigned StartSize = ResultStmts.size();
1688
1689 // If we've not found the case yet, scan through looking for it.
1690 if (Case) {
1691 // Keep track of whether we see a skipped declaration. The code could be
1692 // using the declaration even if it is skipped, so we can't optimize out
1693 // the decl if the kept statements might refer to it.
1694 bool HadSkippedDecl = false;
1695
1696 // If we're looking for the case, just see if we can skip each of the
1697 // substatements.
1698 for (; Case && I != E; ++I) {
1699 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1700
1701 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1702 case CSFC_Failure: return CSFC_Failure;
1703 case CSFC_Success:
1704 // A successful result means that either 1) that the statement doesn't
1705 // have the case and is skippable, or 2) does contain the case value
1706 // and also contains the break to exit the switch. In the later case,
1707 // we just verify the rest of the statements are elidable.
1708 if (FoundCase) {
1709 // If we found the case and skipped declarations, we can't do the
1710 // optimization.
1711 if (HadSkippedDecl)
1712 return CSFC_Failure;
1713
1714 for (++I; I != E; ++I)
1715 if (CodeGenFunction::ContainsLabel(*I, true))
1716 return CSFC_Failure;
1717 return CSFC_Success;
1718 }
1719 break;
1720 case CSFC_FallThrough:
1721 // If we have a fallthrough condition, then we must have found the
1722 // case started to include statements. Consider the rest of the
1723 // statements in the compound statement as candidates for inclusion.
1724 assert(FoundCase && "Didn't find case but returned fallthrough?");
1725 // We recursively found Case, so we're not looking for it anymore.
1726 Case = nullptr;
1727
1728 // If we found the case and skipped declarations, we can't do the
1729 // optimization.
1730 if (HadSkippedDecl)
1731 return CSFC_Failure;
1732 break;
1733 }
1734 }
1735
1736 if (!FoundCase)
1737 return CSFC_Success;
1738
1739 assert(!HadSkippedDecl && "fallthrough after skipping decl");
1740 }
1741
1742 // If we have statements in our range, then we know that the statements are
1743 // live and need to be added to the set of statements we're tracking.
1744 bool AnyDecls = false;
1745 for (; I != E; ++I) {
1746 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1747
1748 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1749 case CSFC_Failure: return CSFC_Failure;
1750 case CSFC_FallThrough:
1751 // A fallthrough result means that the statement was simple and just
1752 // included in ResultStmt, keep adding them afterwards.
1753 break;
1754 case CSFC_Success:
1755 // A successful result means that we found the break statement and
1756 // stopped statement inclusion. We just ensure that any leftover stmts
1757 // are skippable and return success ourselves.
1758 for (++I; I != E; ++I)
1759 if (CodeGenFunction::ContainsLabel(*I, true))
1760 return CSFC_Failure;
1761 return CSFC_Success;
1762 }
1763 }
1764
1765 // If we're about to fall out of a scope without hitting a 'break;', we
1766 // can't perform the optimization if there were any decls in that scope
1767 // (we'd lose their end-of-lifetime).
1768 if (AnyDecls) {
1769 // If the entire compound statement was live, there's one more thing we
1770 // can try before giving up: emit the whole thing as a single statement.
1771 // We can do that unless the statement contains a 'break;'.
1772 // FIXME: Such a break must be at the end of a construct within this one.
1773 // We could emit this by just ignoring the BreakStmts entirely.
1774 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1775 ResultStmts.resize(StartSize);
1776 ResultStmts.push_back(S);
1777 } else {
1778 return CSFC_Failure;
1779 }
1780 }
1781
1782 return CSFC_FallThrough;
1783 }
1784
1785 // Okay, this is some other statement that we don't handle explicitly, like a
1786 // for statement or increment etc. If we are skipping over this statement,
1787 // just verify it doesn't have labels, which would make it invalid to elide.
1788 if (Case) {
1789 if (CodeGenFunction::ContainsLabel(S, true))
1790 return CSFC_Failure;
1791 return CSFC_Success;
1792 }
1793
1794 // Otherwise, we want to include this statement. Everything is cool with that
1795 // so long as it doesn't contain a break out of the switch we're in.
1796 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1797
1798 // Otherwise, everything is great. Include the statement and tell the caller
1799 // that we fall through and include the next statement as well.
1800 ResultStmts.push_back(S);
1801 return CSFC_FallThrough;
1802 }
1803
1804 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1805 /// then invoke CollectStatementsForCase to find the list of statements to emit
1806 /// for a switch on constant. See the comment above CollectStatementsForCase
1807 /// for more details.
FindCaseStatementsForValue(const SwitchStmt & S,const llvm::APSInt & ConstantCondValue,SmallVectorImpl<const Stmt * > & ResultStmts,ASTContext & C,const SwitchCase * & ResultCase)1808 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1809 const llvm::APSInt &ConstantCondValue,
1810 SmallVectorImpl<const Stmt*> &ResultStmts,
1811 ASTContext &C,
1812 const SwitchCase *&ResultCase) {
1813 // First step, find the switch case that is being branched to. We can do this
1814 // efficiently by scanning the SwitchCase list.
1815 const SwitchCase *Case = S.getSwitchCaseList();
1816 const DefaultStmt *DefaultCase = nullptr;
1817
1818 for (; Case; Case = Case->getNextSwitchCase()) {
1819 // It's either a default or case. Just remember the default statement in
1820 // case we're not jumping to any numbered cases.
1821 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1822 DefaultCase = DS;
1823 continue;
1824 }
1825
1826 // Check to see if this case is the one we're looking for.
1827 const CaseStmt *CS = cast<CaseStmt>(Case);
1828 // Don't handle case ranges yet.
1829 if (CS->getRHS()) return false;
1830
1831 // If we found our case, remember it as 'case'.
1832 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1833 break;
1834 }
1835
1836 // If we didn't find a matching case, we use a default if it exists, or we
1837 // elide the whole switch body!
1838 if (!Case) {
1839 // It is safe to elide the body of the switch if it doesn't contain labels
1840 // etc. If it is safe, return successfully with an empty ResultStmts list.
1841 if (!DefaultCase)
1842 return !CodeGenFunction::ContainsLabel(&S);
1843 Case = DefaultCase;
1844 }
1845
1846 // Ok, we know which case is being jumped to, try to collect all the
1847 // statements that follow it. This can fail for a variety of reasons. Also,
1848 // check to see that the recursive walk actually found our case statement.
1849 // Insane cases like this can fail to find it in the recursive walk since we
1850 // don't handle every stmt kind:
1851 // switch (4) {
1852 // while (1) {
1853 // case 4: ...
1854 bool FoundCase = false;
1855 ResultCase = Case;
1856 return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1857 ResultStmts) != CSFC_Failure &&
1858 FoundCase;
1859 }
1860
1861 static Optional<SmallVector<uint64_t, 16>>
getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods)1862 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1863 // Are there enough branches to weight them?
1864 if (Likelihoods.size() <= 1)
1865 return None;
1866
1867 uint64_t NumUnlikely = 0;
1868 uint64_t NumNone = 0;
1869 uint64_t NumLikely = 0;
1870 for (const auto LH : Likelihoods) {
1871 switch (LH) {
1872 case Stmt::LH_Unlikely:
1873 ++NumUnlikely;
1874 break;
1875 case Stmt::LH_None:
1876 ++NumNone;
1877 break;
1878 case Stmt::LH_Likely:
1879 ++NumLikely;
1880 break;
1881 }
1882 }
1883
1884 // Is there a likelihood attribute used?
1885 if (NumUnlikely == 0 && NumLikely == 0)
1886 return None;
1887
1888 // When multiple cases share the same code they can be combined during
1889 // optimization. In that case the weights of the branch will be the sum of
1890 // the individual weights. Make sure the combined sum of all neutral cases
1891 // doesn't exceed the value of a single likely attribute.
1892 // The additions both avoid divisions by 0 and make sure the weights of None
1893 // don't exceed the weight of Likely.
1894 const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1895 const uint64_t None = Likely / (NumNone + 1);
1896 const uint64_t Unlikely = 0;
1897
1898 SmallVector<uint64_t, 16> Result;
1899 Result.reserve(Likelihoods.size());
1900 for (const auto LH : Likelihoods) {
1901 switch (LH) {
1902 case Stmt::LH_Unlikely:
1903 Result.push_back(Unlikely);
1904 break;
1905 case Stmt::LH_None:
1906 Result.push_back(None);
1907 break;
1908 case Stmt::LH_Likely:
1909 Result.push_back(Likely);
1910 break;
1911 }
1912 }
1913
1914 return Result;
1915 }
1916
EmitSwitchStmt(const SwitchStmt & S)1917 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1918 // Handle nested switch statements.
1919 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1920 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1921 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1922 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1923
1924 // See if we can constant fold the condition of the switch and therefore only
1925 // emit the live case statement (if any) of the switch.
1926 llvm::APSInt ConstantCondValue;
1927 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1928 SmallVector<const Stmt*, 4> CaseStmts;
1929 const SwitchCase *Case = nullptr;
1930 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1931 getContext(), Case)) {
1932 if (Case)
1933 incrementProfileCounter(Case);
1934 RunCleanupsScope ExecutedScope(*this);
1935
1936 if (S.getInit())
1937 EmitStmt(S.getInit());
1938
1939 // Emit the condition variable if needed inside the entire cleanup scope
1940 // used by this special case for constant folded switches.
1941 if (S.getConditionVariable())
1942 EmitDecl(*S.getConditionVariable());
1943
1944 // At this point, we are no longer "within" a switch instance, so
1945 // we can temporarily enforce this to ensure that any embedded case
1946 // statements are not emitted.
1947 SwitchInsn = nullptr;
1948
1949 // Okay, we can dead code eliminate everything except this case. Emit the
1950 // specified series of statements and we're good.
1951 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1952 EmitStmt(CaseStmts[i]);
1953 incrementProfileCounter(&S);
1954
1955 // Now we want to restore the saved switch instance so that nested
1956 // switches continue to function properly
1957 SwitchInsn = SavedSwitchInsn;
1958
1959 return;
1960 }
1961 }
1962
1963 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1964
1965 RunCleanupsScope ConditionScope(*this);
1966
1967 if (S.getInit())
1968 EmitStmt(S.getInit());
1969
1970 if (S.getConditionVariable())
1971 EmitDecl(*S.getConditionVariable());
1972 llvm::Value *CondV = EmitScalarExpr(S.getCond());
1973
1974 // Create basic block to hold stuff that comes after switch
1975 // statement. We also need to create a default block now so that
1976 // explicit case ranges tests can have a place to jump to on
1977 // failure.
1978 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1979 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1980 if (PGO.haveRegionCounts()) {
1981 // Walk the SwitchCase list to find how many there are.
1982 uint64_t DefaultCount = 0;
1983 unsigned NumCases = 0;
1984 for (const SwitchCase *Case = S.getSwitchCaseList();
1985 Case;
1986 Case = Case->getNextSwitchCase()) {
1987 if (isa<DefaultStmt>(Case))
1988 DefaultCount = getProfileCount(Case);
1989 NumCases += 1;
1990 }
1991 SwitchWeights = new SmallVector<uint64_t, 16>();
1992 SwitchWeights->reserve(NumCases);
1993 // The default needs to be first. We store the edge count, so we already
1994 // know the right weight.
1995 SwitchWeights->push_back(DefaultCount);
1996 } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1997 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1998 // Initialize the default case.
1999 SwitchLikelihood->push_back(Stmt::LH_None);
2000 }
2001
2002 CaseRangeBlock = DefaultBlock;
2003
2004 // Clear the insertion point to indicate we are in unreachable code.
2005 Builder.ClearInsertionPoint();
2006
2007 // All break statements jump to NextBlock. If BreakContinueStack is non-empty
2008 // then reuse last ContinueBlock.
2009 JumpDest OuterContinue;
2010 if (!BreakContinueStack.empty())
2011 OuterContinue = BreakContinueStack.back().ContinueBlock;
2012
2013 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
2014
2015 // Emit switch body.
2016 EmitStmt(S.getBody());
2017
2018 BreakContinueStack.pop_back();
2019
2020 // Update the default block in case explicit case range tests have
2021 // been chained on top.
2022 SwitchInsn->setDefaultDest(CaseRangeBlock);
2023
2024 // If a default was never emitted:
2025 if (!DefaultBlock->getParent()) {
2026 // If we have cleanups, emit the default block so that there's a
2027 // place to jump through the cleanups from.
2028 if (ConditionScope.requiresCleanups()) {
2029 EmitBlock(DefaultBlock);
2030
2031 // Otherwise, just forward the default block to the switch end.
2032 } else {
2033 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
2034 delete DefaultBlock;
2035 }
2036 }
2037
2038 ConditionScope.ForceCleanup();
2039
2040 // Emit continuation.
2041 EmitBlock(SwitchExit.getBlock(), true);
2042 incrementProfileCounter(&S);
2043
2044 // If the switch has a condition wrapped by __builtin_unpredictable,
2045 // create metadata that specifies that the switch is unpredictable.
2046 // Don't bother if not optimizing because that metadata would not be used.
2047 auto *Call = dyn_cast<CallExpr>(S.getCond());
2048 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2049 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2050 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2051 llvm::MDBuilder MDHelper(getLLVMContext());
2052 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2053 MDHelper.createUnpredictable());
2054 }
2055 }
2056
2057 if (SwitchWeights) {
2058 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2059 "switch weights do not match switch cases");
2060 // If there's only one jump destination there's no sense weighting it.
2061 if (SwitchWeights->size() > 1)
2062 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2063 createProfileWeights(*SwitchWeights));
2064 delete SwitchWeights;
2065 } else if (SwitchLikelihood) {
2066 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2067 "switch likelihoods do not match switch cases");
2068 Optional<SmallVector<uint64_t, 16>> LHW =
2069 getLikelihoodWeights(*SwitchLikelihood);
2070 if (LHW) {
2071 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2072 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2073 createProfileWeights(*LHW));
2074 }
2075 delete SwitchLikelihood;
2076 }
2077 SwitchInsn = SavedSwitchInsn;
2078 SwitchWeights = SavedSwitchWeights;
2079 SwitchLikelihood = SavedSwitchLikelihood;
2080 CaseRangeBlock = SavedCRBlock;
2081 }
2082
2083 static std::string
SimplifyConstraint(const char * Constraint,const TargetInfo & Target,SmallVectorImpl<TargetInfo::ConstraintInfo> * OutCons=nullptr)2084 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2085 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2086 std::string Result;
2087
2088 while (*Constraint) {
2089 switch (*Constraint) {
2090 default:
2091 Result += Target.convertConstraint(Constraint);
2092 break;
2093 // Ignore these
2094 case '*':
2095 case '?':
2096 case '!':
2097 case '=': // Will see this and the following in mult-alt constraints.
2098 case '+':
2099 break;
2100 case '#': // Ignore the rest of the constraint alternative.
2101 while (Constraint[1] && Constraint[1] != ',')
2102 Constraint++;
2103 break;
2104 case '&':
2105 case '%':
2106 Result += *Constraint;
2107 while (Constraint[1] && Constraint[1] == *Constraint)
2108 Constraint++;
2109 break;
2110 case ',':
2111 Result += "|";
2112 break;
2113 case 'g':
2114 Result += "imr";
2115 break;
2116 case '[': {
2117 assert(OutCons &&
2118 "Must pass output names to constraints with a symbolic name");
2119 unsigned Index;
2120 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2121 assert(result && "Could not resolve symbolic name"); (void)result;
2122 Result += llvm::utostr(Index);
2123 break;
2124 }
2125 }
2126
2127 Constraint++;
2128 }
2129
2130 return Result;
2131 }
2132
2133 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2134 /// as using a particular register add that as a constraint that will be used
2135 /// in this asm stmt.
2136 static std::string
AddVariableConstraints(const std::string & Constraint,const Expr & AsmExpr,const TargetInfo & Target,CodeGenModule & CGM,const AsmStmt & Stmt,const bool EarlyClobber,std::string * GCCReg=nullptr)2137 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2138 const TargetInfo &Target, CodeGenModule &CGM,
2139 const AsmStmt &Stmt, const bool EarlyClobber,
2140 std::string *GCCReg = nullptr) {
2141 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2142 if (!AsmDeclRef)
2143 return Constraint;
2144 const ValueDecl &Value = *AsmDeclRef->getDecl();
2145 const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2146 if (!Variable)
2147 return Constraint;
2148 if (Variable->getStorageClass() != SC_Register)
2149 return Constraint;
2150 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2151 if (!Attr)
2152 return Constraint;
2153 StringRef Register = Attr->getLabel();
2154 assert(Target.isValidGCCRegisterName(Register));
2155 // We're using validateOutputConstraint here because we only care if
2156 // this is a register constraint.
2157 TargetInfo::ConstraintInfo Info(Constraint, "");
2158 if (Target.validateOutputConstraint(Info) &&
2159 !Info.allowsRegister()) {
2160 CGM.ErrorUnsupported(&Stmt, "__asm__");
2161 return Constraint;
2162 }
2163 // Canonicalize the register here before returning it.
2164 Register = Target.getNormalizedGCCRegisterName(Register);
2165 if (GCCReg != nullptr)
2166 *GCCReg = Register.str();
2167 return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2168 }
2169
EmitAsmInputLValue(const TargetInfo::ConstraintInfo & Info,LValue InputValue,QualType InputType,std::string & ConstraintStr,SourceLocation Loc)2170 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2171 const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2172 QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2173 if (Info.allowsRegister() || !Info.allowsMemory()) {
2174 if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2175 return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2176
2177 llvm::Type *Ty = ConvertType(InputType);
2178 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2179 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2180 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2181 Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2182
2183 return {Builder.CreateLoad(Builder.CreateElementBitCast(
2184 InputValue.getAddress(*this), Ty)),
2185 nullptr};
2186 }
2187 }
2188
2189 Address Addr = InputValue.getAddress(*this);
2190 ConstraintStr += '*';
2191 return {Addr.getPointer(), Addr.getElementType()};
2192 }
2193
2194 std::pair<llvm::Value *, llvm::Type *>
EmitAsmInput(const TargetInfo::ConstraintInfo & Info,const Expr * InputExpr,std::string & ConstraintStr)2195 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2196 const Expr *InputExpr,
2197 std::string &ConstraintStr) {
2198 // If this can't be a register or memory, i.e., has to be a constant
2199 // (immediate or symbolic), try to emit it as such.
2200 if (!Info.allowsRegister() && !Info.allowsMemory()) {
2201 if (Info.requiresImmediateConstant()) {
2202 Expr::EvalResult EVResult;
2203 InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2204
2205 llvm::APSInt IntResult;
2206 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2207 getContext()))
2208 return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2209 }
2210
2211 Expr::EvalResult Result;
2212 if (InputExpr->EvaluateAsInt(Result, getContext()))
2213 return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2214 nullptr};
2215 }
2216
2217 if (Info.allowsRegister() || !Info.allowsMemory())
2218 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2219 return {EmitScalarExpr(InputExpr), nullptr};
2220 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2221 return {EmitScalarExpr(InputExpr), nullptr};
2222 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2223 LValue Dest = EmitLValue(InputExpr);
2224 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2225 InputExpr->getExprLoc());
2226 }
2227
2228 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2229 /// asm call instruction. The !srcloc MDNode contains a list of constant
2230 /// integers which are the source locations of the start of each line in the
2231 /// asm.
getAsmSrcLocInfo(const StringLiteral * Str,CodeGenFunction & CGF)2232 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2233 CodeGenFunction &CGF) {
2234 SmallVector<llvm::Metadata *, 8> Locs;
2235 // Add the location of the first line to the MDNode.
2236 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2237 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2238 StringRef StrVal = Str->getString();
2239 if (!StrVal.empty()) {
2240 const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2241 const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2242 unsigned StartToken = 0;
2243 unsigned ByteOffset = 0;
2244
2245 // Add the location of the start of each subsequent line of the asm to the
2246 // MDNode.
2247 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2248 if (StrVal[i] != '\n') continue;
2249 SourceLocation LineLoc = Str->getLocationOfByte(
2250 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2251 Locs.push_back(llvm::ConstantAsMetadata::get(
2252 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2253 }
2254 }
2255
2256 return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2257 }
2258
UpdateAsmCallInst(llvm::CallBase & Result,bool HasSideEffect,bool HasUnwindClobber,bool ReadOnly,bool ReadNone,bool NoMerge,const AsmStmt & S,const std::vector<llvm::Type * > & ResultRegTypes,const std::vector<llvm::Type * > & ArgElemTypes,CodeGenFunction & CGF,std::vector<llvm::Value * > & RegResults)2259 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2260 bool HasUnwindClobber, bool ReadOnly,
2261 bool ReadNone, bool NoMerge, const AsmStmt &S,
2262 const std::vector<llvm::Type *> &ResultRegTypes,
2263 const std::vector<llvm::Type *> &ArgElemTypes,
2264 CodeGenFunction &CGF,
2265 std::vector<llvm::Value *> &RegResults) {
2266 if (!HasUnwindClobber)
2267 Result.addFnAttr(llvm::Attribute::NoUnwind);
2268
2269 if (NoMerge)
2270 Result.addFnAttr(llvm::Attribute::NoMerge);
2271 // Attach readnone and readonly attributes.
2272 if (!HasSideEffect) {
2273 if (ReadNone)
2274 Result.addFnAttr(llvm::Attribute::ReadNone);
2275 else if (ReadOnly)
2276 Result.addFnAttr(llvm::Attribute::ReadOnly);
2277 }
2278
2279 // Add elementtype attribute for indirect constraints.
2280 for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2281 if (Pair.value()) {
2282 auto Attr = llvm::Attribute::get(
2283 CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2284 Result.addParamAttr(Pair.index(), Attr);
2285 }
2286 }
2287
2288 // Slap the source location of the inline asm into a !srcloc metadata on the
2289 // call.
2290 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2291 Result.setMetadata("srcloc",
2292 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2293 else {
2294 // At least put the line number on MS inline asm blobs.
2295 llvm::Constant *Loc =
2296 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2297 Result.setMetadata("srcloc",
2298 llvm::MDNode::get(CGF.getLLVMContext(),
2299 llvm::ConstantAsMetadata::get(Loc)));
2300 }
2301
2302 if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2303 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2304 // convergent (meaning, they may call an intrinsically convergent op, such
2305 // as bar.sync, and so can't have certain optimizations applied around
2306 // them).
2307 Result.addFnAttr(llvm::Attribute::Convergent);
2308 // Extract all of the register value results from the asm.
2309 if (ResultRegTypes.size() == 1) {
2310 RegResults.push_back(&Result);
2311 } else {
2312 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2313 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2314 RegResults.push_back(Tmp);
2315 }
2316 }
2317 }
2318
EmitAsmStmt(const AsmStmt & S)2319 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2320 // Pop all cleanup blocks at the end of the asm statement.
2321 CodeGenFunction::RunCleanupsScope Cleanups(*this);
2322
2323 // Assemble the final asm string.
2324 std::string AsmString = S.generateAsmString(getContext());
2325
2326 // Get all the output and input constraints together.
2327 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2328 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2329
2330 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2331 StringRef Name;
2332 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2333 Name = GAS->getOutputName(i);
2334 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2335 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2336 assert(IsValid && "Failed to parse output constraint");
2337 OutputConstraintInfos.push_back(Info);
2338 }
2339
2340 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2341 StringRef Name;
2342 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2343 Name = GAS->getInputName(i);
2344 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2345 bool IsValid =
2346 getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2347 assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2348 InputConstraintInfos.push_back(Info);
2349 }
2350
2351 std::string Constraints;
2352
2353 std::vector<LValue> ResultRegDests;
2354 std::vector<QualType> ResultRegQualTys;
2355 std::vector<llvm::Type *> ResultRegTypes;
2356 std::vector<llvm::Type *> ResultTruncRegTypes;
2357 std::vector<llvm::Type *> ArgTypes;
2358 std::vector<llvm::Type *> ArgElemTypes;
2359 std::vector<llvm::Value*> Args;
2360 llvm::BitVector ResultTypeRequiresCast;
2361 llvm::BitVector ResultRegIsFlagReg;
2362
2363 // Keep track of inout constraints.
2364 std::string InOutConstraints;
2365 std::vector<llvm::Value*> InOutArgs;
2366 std::vector<llvm::Type*> InOutArgTypes;
2367 std::vector<llvm::Type*> InOutArgElemTypes;
2368
2369 // Keep track of out constraints for tied input operand.
2370 std::vector<std::string> OutputConstraints;
2371
2372 // Keep track of defined physregs.
2373 llvm::SmallSet<std::string, 8> PhysRegOutputs;
2374
2375 // An inline asm can be marked readonly if it meets the following conditions:
2376 // - it doesn't have any sideeffects
2377 // - it doesn't clobber memory
2378 // - it doesn't return a value by-reference
2379 // It can be marked readnone if it doesn't have any input memory constraints
2380 // in addition to meeting the conditions listed above.
2381 bool ReadOnly = true, ReadNone = true;
2382
2383 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2384 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2385
2386 // Simplify the output constraint.
2387 std::string OutputConstraint(S.getOutputConstraint(i));
2388 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2389 getTarget(), &OutputConstraintInfos);
2390
2391 const Expr *OutExpr = S.getOutputExpr(i);
2392 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2393
2394 std::string GCCReg;
2395 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2396 getTarget(), CGM, S,
2397 Info.earlyClobber(),
2398 &GCCReg);
2399 // Give an error on multiple outputs to same physreg.
2400 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2401 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2402
2403 OutputConstraints.push_back(OutputConstraint);
2404 LValue Dest = EmitLValue(OutExpr);
2405 if (!Constraints.empty())
2406 Constraints += ',';
2407
2408 // If this is a register output, then make the inline asm return it
2409 // by-value. If this is a memory result, return the value by-reference.
2410 QualType QTy = OutExpr->getType();
2411 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2412 hasAggregateEvaluationKind(QTy);
2413 if (!Info.allowsMemory() && IsScalarOrAggregate) {
2414
2415 Constraints += "=" + OutputConstraint;
2416 ResultRegQualTys.push_back(QTy);
2417 ResultRegDests.push_back(Dest);
2418
2419 bool IsFlagReg = llvm::StringRef(OutputConstraint).startswith("{@cc");
2420 ResultRegIsFlagReg.push_back(IsFlagReg);
2421
2422 llvm::Type *Ty = ConvertTypeForMem(QTy);
2423 const bool RequiresCast = Info.allowsRegister() &&
2424 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2425 Ty->isAggregateType());
2426
2427 ResultTruncRegTypes.push_back(Ty);
2428 ResultTypeRequiresCast.push_back(RequiresCast);
2429
2430 if (RequiresCast) {
2431 unsigned Size = getContext().getTypeSize(QTy);
2432 Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2433 }
2434 ResultRegTypes.push_back(Ty);
2435 // If this output is tied to an input, and if the input is larger, then
2436 // we need to set the actual result type of the inline asm node to be the
2437 // same as the input type.
2438 if (Info.hasMatchingInput()) {
2439 unsigned InputNo;
2440 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2441 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2442 if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2443 break;
2444 }
2445 assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2446
2447 QualType InputTy = S.getInputExpr(InputNo)->getType();
2448 QualType OutputType = OutExpr->getType();
2449
2450 uint64_t InputSize = getContext().getTypeSize(InputTy);
2451 if (getContext().getTypeSize(OutputType) < InputSize) {
2452 // Form the asm to return the value as a larger integer or fp type.
2453 ResultRegTypes.back() = ConvertType(InputTy);
2454 }
2455 }
2456 if (llvm::Type* AdjTy =
2457 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2458 ResultRegTypes.back()))
2459 ResultRegTypes.back() = AdjTy;
2460 else {
2461 CGM.getDiags().Report(S.getAsmLoc(),
2462 diag::err_asm_invalid_type_in_input)
2463 << OutExpr->getType() << OutputConstraint;
2464 }
2465
2466 // Update largest vector width for any vector types.
2467 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2468 LargestVectorWidth =
2469 std::max((uint64_t)LargestVectorWidth,
2470 VT->getPrimitiveSizeInBits().getKnownMinSize());
2471 } else {
2472 Address DestAddr = Dest.getAddress(*this);
2473 // Matrix types in memory are represented by arrays, but accessed through
2474 // vector pointers, with the alignment specified on the access operation.
2475 // For inline assembly, update pointer arguments to use vector pointers.
2476 // Otherwise there will be a mis-match if the matrix is also an
2477 // input-argument which is represented as vector.
2478 if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2479 DestAddr = Builder.CreateElementBitCast(
2480 DestAddr, ConvertType(OutExpr->getType()));
2481
2482 ArgTypes.push_back(DestAddr.getType());
2483 ArgElemTypes.push_back(DestAddr.getElementType());
2484 Args.push_back(DestAddr.getPointer());
2485 Constraints += "=*";
2486 Constraints += OutputConstraint;
2487 ReadOnly = ReadNone = false;
2488 }
2489
2490 if (Info.isReadWrite()) {
2491 InOutConstraints += ',';
2492
2493 const Expr *InputExpr = S.getOutputExpr(i);
2494 llvm::Value *Arg;
2495 llvm::Type *ArgElemType;
2496 std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2497 Info, Dest, InputExpr->getType(), InOutConstraints,
2498 InputExpr->getExprLoc());
2499
2500 if (llvm::Type* AdjTy =
2501 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2502 Arg->getType()))
2503 Arg = Builder.CreateBitCast(Arg, AdjTy);
2504
2505 // Update largest vector width for any vector types.
2506 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2507 LargestVectorWidth =
2508 std::max((uint64_t)LargestVectorWidth,
2509 VT->getPrimitiveSizeInBits().getKnownMinSize());
2510 // Only tie earlyclobber physregs.
2511 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2512 InOutConstraints += llvm::utostr(i);
2513 else
2514 InOutConstraints += OutputConstraint;
2515
2516 InOutArgTypes.push_back(Arg->getType());
2517 InOutArgElemTypes.push_back(ArgElemType);
2518 InOutArgs.push_back(Arg);
2519 }
2520 }
2521
2522 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2523 // to the return value slot. Only do this when returning in registers.
2524 if (isa<MSAsmStmt>(&S)) {
2525 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2526 if (RetAI.isDirect() || RetAI.isExtend()) {
2527 // Make a fake lvalue for the return value slot.
2528 LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2529 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2530 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2531 ResultRegDests, AsmString, S.getNumOutputs());
2532 SawAsmBlock = true;
2533 }
2534 }
2535
2536 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2537 const Expr *InputExpr = S.getInputExpr(i);
2538
2539 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2540
2541 if (Info.allowsMemory())
2542 ReadNone = false;
2543
2544 if (!Constraints.empty())
2545 Constraints += ',';
2546
2547 // Simplify the input constraint.
2548 std::string InputConstraint(S.getInputConstraint(i));
2549 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2550 &OutputConstraintInfos);
2551
2552 InputConstraint = AddVariableConstraints(
2553 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2554 getTarget(), CGM, S, false /* No EarlyClobber */);
2555
2556 std::string ReplaceConstraint (InputConstraint);
2557 llvm::Value *Arg;
2558 llvm::Type *ArgElemType;
2559 std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2560
2561 // If this input argument is tied to a larger output result, extend the
2562 // input to be the same size as the output. The LLVM backend wants to see
2563 // the input and output of a matching constraint be the same size. Note
2564 // that GCC does not define what the top bits are here. We use zext because
2565 // that is usually cheaper, but LLVM IR should really get an anyext someday.
2566 if (Info.hasTiedOperand()) {
2567 unsigned Output = Info.getTiedOperand();
2568 QualType OutputType = S.getOutputExpr(Output)->getType();
2569 QualType InputTy = InputExpr->getType();
2570
2571 if (getContext().getTypeSize(OutputType) >
2572 getContext().getTypeSize(InputTy)) {
2573 // Use ptrtoint as appropriate so that we can do our extension.
2574 if (isa<llvm::PointerType>(Arg->getType()))
2575 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2576 llvm::Type *OutputTy = ConvertType(OutputType);
2577 if (isa<llvm::IntegerType>(OutputTy))
2578 Arg = Builder.CreateZExt(Arg, OutputTy);
2579 else if (isa<llvm::PointerType>(OutputTy))
2580 Arg = Builder.CreateZExt(Arg, IntPtrTy);
2581 else if (OutputTy->isFloatingPointTy())
2582 Arg = Builder.CreateFPExt(Arg, OutputTy);
2583 }
2584 // Deal with the tied operands' constraint code in adjustInlineAsmType.
2585 ReplaceConstraint = OutputConstraints[Output];
2586 }
2587 if (llvm::Type* AdjTy =
2588 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2589 Arg->getType()))
2590 Arg = Builder.CreateBitCast(Arg, AdjTy);
2591 else
2592 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2593 << InputExpr->getType() << InputConstraint;
2594
2595 // Update largest vector width for any vector types.
2596 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2597 LargestVectorWidth =
2598 std::max((uint64_t)LargestVectorWidth,
2599 VT->getPrimitiveSizeInBits().getKnownMinSize());
2600
2601 ArgTypes.push_back(Arg->getType());
2602 ArgElemTypes.push_back(ArgElemType);
2603 Args.push_back(Arg);
2604 Constraints += InputConstraint;
2605 }
2606
2607 // Append the "input" part of inout constraints.
2608 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2609 ArgTypes.push_back(InOutArgTypes[i]);
2610 ArgElemTypes.push_back(InOutArgElemTypes[i]);
2611 Args.push_back(InOutArgs[i]);
2612 }
2613 Constraints += InOutConstraints;
2614
2615 // Labels
2616 SmallVector<llvm::BasicBlock *, 16> Transfer;
2617 llvm::BasicBlock *Fallthrough = nullptr;
2618 bool IsGCCAsmGoto = false;
2619 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) {
2620 IsGCCAsmGoto = GS->isAsmGoto();
2621 if (IsGCCAsmGoto) {
2622 for (const auto *E : GS->labels()) {
2623 JumpDest Dest = getJumpDestForLabel(E->getLabel());
2624 Transfer.push_back(Dest.getBlock());
2625 if (!Constraints.empty())
2626 Constraints += ',';
2627 Constraints += "!i";
2628 }
2629 Fallthrough = createBasicBlock("asm.fallthrough");
2630 }
2631 }
2632
2633 bool HasUnwindClobber = false;
2634
2635 // Clobbers
2636 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2637 StringRef Clobber = S.getClobber(i);
2638
2639 if (Clobber == "memory")
2640 ReadOnly = ReadNone = false;
2641 else if (Clobber == "unwind") {
2642 HasUnwindClobber = true;
2643 continue;
2644 } else if (Clobber != "cc") {
2645 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2646 if (CGM.getCodeGenOpts().StackClashProtector &&
2647 getTarget().isSPRegName(Clobber)) {
2648 CGM.getDiags().Report(S.getAsmLoc(),
2649 diag::warn_stack_clash_protection_inline_asm);
2650 }
2651 }
2652
2653 if (isa<MSAsmStmt>(&S)) {
2654 if (Clobber == "eax" || Clobber == "edx") {
2655 if (Constraints.find("=&A") != std::string::npos)
2656 continue;
2657 std::string::size_type position1 =
2658 Constraints.find("={" + Clobber.str() + "}");
2659 if (position1 != std::string::npos) {
2660 Constraints.insert(position1 + 1, "&");
2661 continue;
2662 }
2663 std::string::size_type position2 = Constraints.find("=A");
2664 if (position2 != std::string::npos) {
2665 Constraints.insert(position2 + 1, "&");
2666 continue;
2667 }
2668 }
2669 }
2670 if (!Constraints.empty())
2671 Constraints += ',';
2672
2673 Constraints += "~{";
2674 Constraints += Clobber;
2675 Constraints += '}';
2676 }
2677
2678 assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2679 "unwind clobber can't be used with asm goto");
2680
2681 // Add machine specific clobbers
2682 std::string MachineClobbers = getTarget().getClobbers();
2683 if (!MachineClobbers.empty()) {
2684 if (!Constraints.empty())
2685 Constraints += ',';
2686 Constraints += MachineClobbers;
2687 }
2688
2689 llvm::Type *ResultType;
2690 if (ResultRegTypes.empty())
2691 ResultType = VoidTy;
2692 else if (ResultRegTypes.size() == 1)
2693 ResultType = ResultRegTypes[0];
2694 else
2695 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2696
2697 llvm::FunctionType *FTy =
2698 llvm::FunctionType::get(ResultType, ArgTypes, false);
2699
2700 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2701
2702 llvm::InlineAsm::AsmDialect GnuAsmDialect =
2703 CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
2704 ? llvm::InlineAsm::AD_ATT
2705 : llvm::InlineAsm::AD_Intel;
2706 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2707 llvm::InlineAsm::AD_Intel : GnuAsmDialect;
2708
2709 llvm::InlineAsm *IA = llvm::InlineAsm::get(
2710 FTy, AsmString, Constraints, HasSideEffect,
2711 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2712 std::vector<llvm::Value*> RegResults;
2713 if (IsGCCAsmGoto) {
2714 llvm::CallBrInst *Result =
2715 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2716 EmitBlock(Fallthrough);
2717 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2718 ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2719 ResultRegTypes, ArgElemTypes, *this, RegResults);
2720 } else if (HasUnwindClobber) {
2721 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2722 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2723 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2724 *this, RegResults);
2725 } else {
2726 llvm::CallInst *Result =
2727 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2728 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2729 ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2730 ResultRegTypes, ArgElemTypes, *this, RegResults);
2731 }
2732
2733 assert(RegResults.size() == ResultRegTypes.size());
2734 assert(RegResults.size() == ResultTruncRegTypes.size());
2735 assert(RegResults.size() == ResultRegDests.size());
2736 // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2737 // in which case its size may grow.
2738 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2739 assert(ResultRegIsFlagReg.size() <= ResultRegDests.size());
2740 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2741 llvm::Value *Tmp = RegResults[i];
2742 llvm::Type *TruncTy = ResultTruncRegTypes[i];
2743
2744 if ((i < ResultRegIsFlagReg.size()) && ResultRegIsFlagReg[i]) {
2745 // Target must guarantee the Value `Tmp` here is lowered to a boolean
2746 // value.
2747 llvm::Constant *Two = llvm::ConstantInt::get(Tmp->getType(), 2);
2748 llvm::Value *IsBooleanValue =
2749 Builder.CreateCmp(llvm::CmpInst::ICMP_ULT, Tmp, Two);
2750 llvm::Function *FnAssume = CGM.getIntrinsic(llvm::Intrinsic::assume);
2751 Builder.CreateCall(FnAssume, IsBooleanValue);
2752 }
2753
2754 // If the result type of the LLVM IR asm doesn't match the result type of
2755 // the expression, do the conversion.
2756 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2757
2758 // Truncate the integer result to the right size, note that TruncTy can be
2759 // a pointer.
2760 if (TruncTy->isFloatingPointTy())
2761 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2762 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2763 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2764 Tmp = Builder.CreateTrunc(Tmp,
2765 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2766 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2767 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2768 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2769 Tmp = Builder.CreatePtrToInt(Tmp,
2770 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2771 Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2772 } else if (TruncTy->isIntegerTy()) {
2773 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2774 } else if (TruncTy->isVectorTy()) {
2775 Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2776 }
2777 }
2778
2779 LValue Dest = ResultRegDests[i];
2780 // ResultTypeRequiresCast elements correspond to the first
2781 // ResultTypeRequiresCast.size() elements of RegResults.
2782 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2783 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2784 Address A = Builder.CreateElementBitCast(Dest.getAddress(*this),
2785 ResultRegTypes[i]);
2786 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) {
2787 Builder.CreateStore(Tmp, A);
2788 continue;
2789 }
2790
2791 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2792 if (Ty.isNull()) {
2793 const Expr *OutExpr = S.getOutputExpr(i);
2794 CGM.getDiags().Report(OutExpr->getExprLoc(),
2795 diag::err_store_value_to_reg);
2796 return;
2797 }
2798 Dest = MakeAddrLValue(A, Ty);
2799 }
2800 EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2801 }
2802 }
2803
InitCapturedStruct(const CapturedStmt & S)2804 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2805 const RecordDecl *RD = S.getCapturedRecordDecl();
2806 QualType RecordTy = getContext().getRecordType(RD);
2807
2808 // Initialize the captured struct.
2809 LValue SlotLV =
2810 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2811
2812 RecordDecl::field_iterator CurField = RD->field_begin();
2813 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2814 E = S.capture_init_end();
2815 I != E; ++I, ++CurField) {
2816 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2817 if (CurField->hasCapturedVLAType()) {
2818 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2819 } else {
2820 EmitInitializerForField(*CurField, LV, *I);
2821 }
2822 }
2823
2824 return SlotLV;
2825 }
2826
2827 /// Generate an outlined function for the body of a CapturedStmt, store any
2828 /// captured variables into the captured struct, and call the outlined function.
2829 llvm::Function *
EmitCapturedStmt(const CapturedStmt & S,CapturedRegionKind K)2830 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2831 LValue CapStruct = InitCapturedStruct(S);
2832
2833 // Emit the CapturedDecl
2834 CodeGenFunction CGF(CGM, true);
2835 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2836 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2837 delete CGF.CapturedStmtInfo;
2838
2839 // Emit call to the helper function.
2840 EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2841
2842 return F;
2843 }
2844
GenerateCapturedStmtArgument(const CapturedStmt & S)2845 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2846 LValue CapStruct = InitCapturedStruct(S);
2847 return CapStruct.getAddress(*this);
2848 }
2849
2850 /// Creates the outlined function for a CapturedStmt.
2851 llvm::Function *
GenerateCapturedStmtFunction(const CapturedStmt & S)2852 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2853 assert(CapturedStmtInfo &&
2854 "CapturedStmtInfo should be set when generating the captured function");
2855 const CapturedDecl *CD = S.getCapturedDecl();
2856 const RecordDecl *RD = S.getCapturedRecordDecl();
2857 SourceLocation Loc = S.getBeginLoc();
2858 assert(CD->hasBody() && "missing CapturedDecl body");
2859
2860 // Build the argument list.
2861 ASTContext &Ctx = CGM.getContext();
2862 FunctionArgList Args;
2863 Args.append(CD->param_begin(), CD->param_end());
2864
2865 // Create the function declaration.
2866 const CGFunctionInfo &FuncInfo =
2867 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2868 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2869
2870 llvm::Function *F =
2871 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2872 CapturedStmtInfo->getHelperName(), &CGM.getModule());
2873 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2874 if (CD->isNothrow())
2875 F->addFnAttr(llvm::Attribute::NoUnwind);
2876
2877 // Generate the function.
2878 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2879 CD->getBody()->getBeginLoc());
2880 // Set the context parameter in CapturedStmtInfo.
2881 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2882 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2883
2884 // Initialize variable-length arrays.
2885 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2886 Ctx.getTagDeclType(RD));
2887 for (auto *FD : RD->fields()) {
2888 if (FD->hasCapturedVLAType()) {
2889 auto *ExprArg =
2890 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2891 .getScalarVal();
2892 auto VAT = FD->getCapturedVLAType();
2893 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2894 }
2895 }
2896
2897 // If 'this' is captured, load it into CXXThisValue.
2898 if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2899 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2900 LValue ThisLValue = EmitLValueForField(Base, FD);
2901 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2902 }
2903
2904 PGO.assignRegionCounters(GlobalDecl(CD), F);
2905 CapturedStmtInfo->EmitBody(*this, CD->getBody());
2906 FinishFunction(CD->getBodyRBrace());
2907
2908 return F;
2909 }
2910