1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/DiagnosticSema.h"
22 #include "clang/Basic/PrettyStackTrace.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Statement Emission
38 //===----------------------------------------------------------------------===//
39 
40 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
41   if (CGDebugInfo *DI = getDebugInfo()) {
42     SourceLocation Loc;
43     Loc = S->getBeginLoc();
44     DI->EmitLocation(Builder, Loc);
45 
46     LastStopPoint = Loc;
47   }
48 }
49 
50 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
51   assert(S && "Null statement?");
52   PGO.setCurrentStmt(S);
53 
54   // These statements have their own debug info handling.
55   if (EmitSimpleStmt(S, Attrs))
56     return;
57 
58   // Check if we are generating unreachable code.
59   if (!HaveInsertPoint()) {
60     // If so, and the statement doesn't contain a label, then we do not need to
61     // generate actual code. This is safe because (1) the current point is
62     // unreachable, so we don't need to execute the code, and (2) we've already
63     // handled the statements which update internal data structures (like the
64     // local variable map) which could be used by subsequent statements.
65     if (!ContainsLabel(S)) {
66       // Verify that any decl statements were handled as simple, they may be in
67       // scope of subsequent reachable statements.
68       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
69       return;
70     }
71 
72     // Otherwise, make a new block to hold the code.
73     EnsureInsertPoint();
74   }
75 
76   // Generate a stoppoint if we are emitting debug info.
77   EmitStopPoint(S);
78 
79   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
80   // enabled.
81   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
82     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
83       EmitSimpleOMPExecutableDirective(*D);
84       return;
85     }
86   }
87 
88   switch (S->getStmtClass()) {
89   case Stmt::NoStmtClass:
90   case Stmt::CXXCatchStmtClass:
91   case Stmt::SEHExceptStmtClass:
92   case Stmt::SEHFinallyStmtClass:
93   case Stmt::MSDependentExistsStmtClass:
94     llvm_unreachable("invalid statement class to emit generically");
95   case Stmt::NullStmtClass:
96   case Stmt::CompoundStmtClass:
97   case Stmt::DeclStmtClass:
98   case Stmt::LabelStmtClass:
99   case Stmt::AttributedStmtClass:
100   case Stmt::GotoStmtClass:
101   case Stmt::BreakStmtClass:
102   case Stmt::ContinueStmtClass:
103   case Stmt::DefaultStmtClass:
104   case Stmt::CaseStmtClass:
105   case Stmt::SEHLeaveStmtClass:
106     llvm_unreachable("should have emitted these statements as simple");
107 
108 #define STMT(Type, Base)
109 #define ABSTRACT_STMT(Op)
110 #define EXPR(Type, Base) \
111   case Stmt::Type##Class:
112 #include "clang/AST/StmtNodes.inc"
113   {
114     // Remember the block we came in on.
115     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
116     assert(incoming && "expression emission must have an insertion point");
117 
118     EmitIgnoredExpr(cast<Expr>(S));
119 
120     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
121     assert(outgoing && "expression emission cleared block!");
122 
123     // The expression emitters assume (reasonably!) that the insertion
124     // point is always set.  To maintain that, the call-emission code
125     // for noreturn functions has to enter a new block with no
126     // predecessors.  We want to kill that block and mark the current
127     // insertion point unreachable in the common case of a call like
128     // "exit();".  Since expression emission doesn't otherwise create
129     // blocks with no predecessors, we can just test for that.
130     // However, we must be careful not to do this to our incoming
131     // block, because *statement* emission does sometimes create
132     // reachable blocks which will have no predecessors until later in
133     // the function.  This occurs with, e.g., labels that are not
134     // reachable by fallthrough.
135     if (incoming != outgoing && outgoing->use_empty()) {
136       outgoing->eraseFromParent();
137       Builder.ClearInsertionPoint();
138     }
139     break;
140   }
141 
142   case Stmt::IndirectGotoStmtClass:
143     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
144 
145   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
146   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
147   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
148   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
149 
150   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
151 
152   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
153   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
154   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
155   case Stmt::CoroutineBodyStmtClass:
156     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
157     break;
158   case Stmt::CoreturnStmtClass:
159     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
160     break;
161   case Stmt::CapturedStmtClass: {
162     const CapturedStmt *CS = cast<CapturedStmt>(S);
163     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
164     }
165     break;
166   case Stmt::ObjCAtTryStmtClass:
167     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
168     break;
169   case Stmt::ObjCAtCatchStmtClass:
170     llvm_unreachable(
171                     "@catch statements should be handled by EmitObjCAtTryStmt");
172   case Stmt::ObjCAtFinallyStmtClass:
173     llvm_unreachable(
174                   "@finally statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtThrowStmtClass:
176     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
177     break;
178   case Stmt::ObjCAtSynchronizedStmtClass:
179     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
180     break;
181   case Stmt::ObjCForCollectionStmtClass:
182     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
183     break;
184   case Stmt::ObjCAutoreleasePoolStmtClass:
185     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
186     break;
187 
188   case Stmt::CXXTryStmtClass:
189     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
190     break;
191   case Stmt::CXXForRangeStmtClass:
192     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
193     break;
194   case Stmt::SEHTryStmtClass:
195     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
196     break;
197   case Stmt::OMPParallelDirectiveClass:
198     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
199     break;
200   case Stmt::OMPSimdDirectiveClass:
201     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
202     break;
203   case Stmt::OMPForDirectiveClass:
204     EmitOMPForDirective(cast<OMPForDirective>(*S));
205     break;
206   case Stmt::OMPForSimdDirectiveClass:
207     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
208     break;
209   case Stmt::OMPSectionsDirectiveClass:
210     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
211     break;
212   case Stmt::OMPSectionDirectiveClass:
213     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
214     break;
215   case Stmt::OMPSingleDirectiveClass:
216     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
217     break;
218   case Stmt::OMPMasterDirectiveClass:
219     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
220     break;
221   case Stmt::OMPCriticalDirectiveClass:
222     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
223     break;
224   case Stmt::OMPParallelForDirectiveClass:
225     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
226     break;
227   case Stmt::OMPParallelForSimdDirectiveClass:
228     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
229     break;
230   case Stmt::OMPParallelMasterDirectiveClass:
231     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
232     break;
233   case Stmt::OMPParallelSectionsDirectiveClass:
234     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
235     break;
236   case Stmt::OMPTaskDirectiveClass:
237     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
238     break;
239   case Stmt::OMPTaskyieldDirectiveClass:
240     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
241     break;
242   case Stmt::OMPBarrierDirectiveClass:
243     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
244     break;
245   case Stmt::OMPTaskwaitDirectiveClass:
246     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
247     break;
248   case Stmt::OMPTaskgroupDirectiveClass:
249     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
250     break;
251   case Stmt::OMPFlushDirectiveClass:
252     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
253     break;
254   case Stmt::OMPDepobjDirectiveClass:
255     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
256     break;
257   case Stmt::OMPScanDirectiveClass:
258     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
259     break;
260   case Stmt::OMPOrderedDirectiveClass:
261     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
262     break;
263   case Stmt::OMPAtomicDirectiveClass:
264     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
265     break;
266   case Stmt::OMPTargetDirectiveClass:
267     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
268     break;
269   case Stmt::OMPTeamsDirectiveClass:
270     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
271     break;
272   case Stmt::OMPCancellationPointDirectiveClass:
273     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
274     break;
275   case Stmt::OMPCancelDirectiveClass:
276     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
277     break;
278   case Stmt::OMPTargetDataDirectiveClass:
279     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
280     break;
281   case Stmt::OMPTargetEnterDataDirectiveClass:
282     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
283     break;
284   case Stmt::OMPTargetExitDataDirectiveClass:
285     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
286     break;
287   case Stmt::OMPTargetParallelDirectiveClass:
288     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
289     break;
290   case Stmt::OMPTargetParallelForDirectiveClass:
291     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
292     break;
293   case Stmt::OMPTaskLoopDirectiveClass:
294     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
295     break;
296   case Stmt::OMPTaskLoopSimdDirectiveClass:
297     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
298     break;
299   case Stmt::OMPMasterTaskLoopDirectiveClass:
300     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
301     break;
302   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
303     EmitOMPMasterTaskLoopSimdDirective(
304         cast<OMPMasterTaskLoopSimdDirective>(*S));
305     break;
306   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
307     EmitOMPParallelMasterTaskLoopDirective(
308         cast<OMPParallelMasterTaskLoopDirective>(*S));
309     break;
310   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
311     EmitOMPParallelMasterTaskLoopSimdDirective(
312         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
313     break;
314   case Stmt::OMPDistributeDirectiveClass:
315     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
316     break;
317   case Stmt::OMPTargetUpdateDirectiveClass:
318     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
319     break;
320   case Stmt::OMPDistributeParallelForDirectiveClass:
321     EmitOMPDistributeParallelForDirective(
322         cast<OMPDistributeParallelForDirective>(*S));
323     break;
324   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
325     EmitOMPDistributeParallelForSimdDirective(
326         cast<OMPDistributeParallelForSimdDirective>(*S));
327     break;
328   case Stmt::OMPDistributeSimdDirectiveClass:
329     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
330     break;
331   case Stmt::OMPTargetParallelForSimdDirectiveClass:
332     EmitOMPTargetParallelForSimdDirective(
333         cast<OMPTargetParallelForSimdDirective>(*S));
334     break;
335   case Stmt::OMPTargetSimdDirectiveClass:
336     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
337     break;
338   case Stmt::OMPTeamsDistributeDirectiveClass:
339     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
340     break;
341   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
342     EmitOMPTeamsDistributeSimdDirective(
343         cast<OMPTeamsDistributeSimdDirective>(*S));
344     break;
345   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
346     EmitOMPTeamsDistributeParallelForSimdDirective(
347         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
348     break;
349   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
350     EmitOMPTeamsDistributeParallelForDirective(
351         cast<OMPTeamsDistributeParallelForDirective>(*S));
352     break;
353   case Stmt::OMPTargetTeamsDirectiveClass:
354     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
355     break;
356   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
357     EmitOMPTargetTeamsDistributeDirective(
358         cast<OMPTargetTeamsDistributeDirective>(*S));
359     break;
360   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
361     EmitOMPTargetTeamsDistributeParallelForDirective(
362         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
363     break;
364   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
365     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
366         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
367     break;
368   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
369     EmitOMPTargetTeamsDistributeSimdDirective(
370         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
371     break;
372   }
373 }
374 
375 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
376                                      ArrayRef<const Attr *> Attrs) {
377   switch (S->getStmtClass()) {
378   default:
379     return false;
380   case Stmt::NullStmtClass:
381     break;
382   case Stmt::CompoundStmtClass:
383     EmitCompoundStmt(cast<CompoundStmt>(*S));
384     break;
385   case Stmt::DeclStmtClass:
386     EmitDeclStmt(cast<DeclStmt>(*S));
387     break;
388   case Stmt::LabelStmtClass:
389     EmitLabelStmt(cast<LabelStmt>(*S));
390     break;
391   case Stmt::AttributedStmtClass:
392     EmitAttributedStmt(cast<AttributedStmt>(*S));
393     break;
394   case Stmt::GotoStmtClass:
395     EmitGotoStmt(cast<GotoStmt>(*S));
396     break;
397   case Stmt::BreakStmtClass:
398     EmitBreakStmt(cast<BreakStmt>(*S));
399     break;
400   case Stmt::ContinueStmtClass:
401     EmitContinueStmt(cast<ContinueStmt>(*S));
402     break;
403   case Stmt::DefaultStmtClass:
404     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
405     break;
406   case Stmt::CaseStmtClass:
407     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
408     break;
409   case Stmt::SEHLeaveStmtClass:
410     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
411     break;
412   }
413   return true;
414 }
415 
416 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
417 /// this captures the expression result of the last sub-statement and returns it
418 /// (for use by the statement expression extension).
419 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
420                                           AggValueSlot AggSlot) {
421   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
422                              "LLVM IR generation of compound statement ('{}')");
423 
424   // Keep track of the current cleanup stack depth, including debug scopes.
425   LexicalScope Scope(*this, S.getSourceRange());
426 
427   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
428 }
429 
430 Address
431 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
432                                               bool GetLast,
433                                               AggValueSlot AggSlot) {
434 
435   const Stmt *ExprResult = S.getStmtExprResult();
436   assert((!GetLast || (GetLast && ExprResult)) &&
437          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
438 
439   Address RetAlloca = Address::invalid();
440 
441   for (auto *CurStmt : S.body()) {
442     if (GetLast && ExprResult == CurStmt) {
443       // We have to special case labels here.  They are statements, but when put
444       // at the end of a statement expression, they yield the value of their
445       // subexpression.  Handle this by walking through all labels we encounter,
446       // emitting them before we evaluate the subexpr.
447       // Similar issues arise for attributed statements.
448       while (!isa<Expr>(ExprResult)) {
449         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
450           EmitLabel(LS->getDecl());
451           ExprResult = LS->getSubStmt();
452         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
453           // FIXME: Update this if we ever have attributes that affect the
454           // semantics of an expression.
455           ExprResult = AS->getSubStmt();
456         } else {
457           llvm_unreachable("unknown value statement");
458         }
459       }
460 
461       EnsureInsertPoint();
462 
463       const Expr *E = cast<Expr>(ExprResult);
464       QualType ExprTy = E->getType();
465       if (hasAggregateEvaluationKind(ExprTy)) {
466         EmitAggExpr(E, AggSlot);
467       } else {
468         // We can't return an RValue here because there might be cleanups at
469         // the end of the StmtExpr.  Because of that, we have to emit the result
470         // here into a temporary alloca.
471         RetAlloca = CreateMemTemp(ExprTy);
472         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
473                          /*IsInit*/ false);
474       }
475     } else {
476       EmitStmt(CurStmt);
477     }
478   }
479 
480   return RetAlloca;
481 }
482 
483 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
484   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
485 
486   // If there is a cleanup stack, then we it isn't worth trying to
487   // simplify this block (we would need to remove it from the scope map
488   // and cleanup entry).
489   if (!EHStack.empty())
490     return;
491 
492   // Can only simplify direct branches.
493   if (!BI || !BI->isUnconditional())
494     return;
495 
496   // Can only simplify empty blocks.
497   if (BI->getIterator() != BB->begin())
498     return;
499 
500   BB->replaceAllUsesWith(BI->getSuccessor(0));
501   BI->eraseFromParent();
502   BB->eraseFromParent();
503 }
504 
505 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
506   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
507 
508   // Fall out of the current block (if necessary).
509   EmitBranch(BB);
510 
511   if (IsFinished && BB->use_empty()) {
512     delete BB;
513     return;
514   }
515 
516   // Place the block after the current block, if possible, or else at
517   // the end of the function.
518   if (CurBB && CurBB->getParent())
519     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
520   else
521     CurFn->getBasicBlockList().push_back(BB);
522   Builder.SetInsertPoint(BB);
523 }
524 
525 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
526   // Emit a branch from the current block to the target one if this
527   // was a real block.  If this was just a fall-through block after a
528   // terminator, don't emit it.
529   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
530 
531   if (!CurBB || CurBB->getTerminator()) {
532     // If there is no insert point or the previous block is already
533     // terminated, don't touch it.
534   } else {
535     // Otherwise, create a fall-through branch.
536     Builder.CreateBr(Target);
537   }
538 
539   Builder.ClearInsertionPoint();
540 }
541 
542 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
543   bool inserted = false;
544   for (llvm::User *u : block->users()) {
545     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
546       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
547                                              block);
548       inserted = true;
549       break;
550     }
551   }
552 
553   if (!inserted)
554     CurFn->getBasicBlockList().push_back(block);
555 
556   Builder.SetInsertPoint(block);
557 }
558 
559 CodeGenFunction::JumpDest
560 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
561   JumpDest &Dest = LabelMap[D];
562   if (Dest.isValid()) return Dest;
563 
564   // Create, but don't insert, the new block.
565   Dest = JumpDest(createBasicBlock(D->getName()),
566                   EHScopeStack::stable_iterator::invalid(),
567                   NextCleanupDestIndex++);
568   return Dest;
569 }
570 
571 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
572   // Add this label to the current lexical scope if we're within any
573   // normal cleanups.  Jumps "in" to this label --- when permitted by
574   // the language --- may need to be routed around such cleanups.
575   if (EHStack.hasNormalCleanups() && CurLexicalScope)
576     CurLexicalScope->addLabel(D);
577 
578   JumpDest &Dest = LabelMap[D];
579 
580   // If we didn't need a forward reference to this label, just go
581   // ahead and create a destination at the current scope.
582   if (!Dest.isValid()) {
583     Dest = getJumpDestInCurrentScope(D->getName());
584 
585   // Otherwise, we need to give this label a target depth and remove
586   // it from the branch-fixups list.
587   } else {
588     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
589     Dest.setScopeDepth(EHStack.stable_begin());
590     ResolveBranchFixups(Dest.getBlock());
591   }
592 
593   EmitBlock(Dest.getBlock());
594 
595   // Emit debug info for labels.
596   if (CGDebugInfo *DI = getDebugInfo()) {
597     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
598       DI->setLocation(D->getLocation());
599       DI->EmitLabel(D, Builder);
600     }
601   }
602 
603   incrementProfileCounter(D->getStmt());
604 }
605 
606 /// Change the cleanup scope of the labels in this lexical scope to
607 /// match the scope of the enclosing context.
608 void CodeGenFunction::LexicalScope::rescopeLabels() {
609   assert(!Labels.empty());
610   EHScopeStack::stable_iterator innermostScope
611     = CGF.EHStack.getInnermostNormalCleanup();
612 
613   // Change the scope depth of all the labels.
614   for (SmallVectorImpl<const LabelDecl*>::const_iterator
615          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
616     assert(CGF.LabelMap.count(*i));
617     JumpDest &dest = CGF.LabelMap.find(*i)->second;
618     assert(dest.getScopeDepth().isValid());
619     assert(innermostScope.encloses(dest.getScopeDepth()));
620     dest.setScopeDepth(innermostScope);
621   }
622 
623   // Reparent the labels if the new scope also has cleanups.
624   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
625     ParentScope->Labels.append(Labels.begin(), Labels.end());
626   }
627 }
628 
629 
630 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
631   EmitLabel(S.getDecl());
632   EmitStmt(S.getSubStmt());
633 }
634 
635 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
636   bool nomerge = false;
637   for (const auto *A : S.getAttrs())
638     if (A->getKind() == attr::NoMerge) {
639       nomerge = true;
640       break;
641     }
642   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
643   EmitStmt(S.getSubStmt(), S.getAttrs());
644 }
645 
646 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
647   // If this code is reachable then emit a stop point (if generating
648   // debug info). We have to do this ourselves because we are on the
649   // "simple" statement path.
650   if (HaveInsertPoint())
651     EmitStopPoint(&S);
652 
653   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
654 }
655 
656 
657 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
658   if (const LabelDecl *Target = S.getConstantTarget()) {
659     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
660     return;
661   }
662 
663   // Ensure that we have an i8* for our PHI node.
664   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
665                                          Int8PtrTy, "addr");
666   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
667 
668   // Get the basic block for the indirect goto.
669   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
670 
671   // The first instruction in the block has to be the PHI for the switch dest,
672   // add an entry for this branch.
673   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
674 
675   EmitBranch(IndGotoBB);
676 }
677 
678 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
679   // C99 6.8.4.1: The first substatement is executed if the expression compares
680   // unequal to 0.  The condition must be a scalar type.
681   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
682 
683   if (S.getInit())
684     EmitStmt(S.getInit());
685 
686   if (S.getConditionVariable())
687     EmitDecl(*S.getConditionVariable());
688 
689   // If the condition constant folds and can be elided, try to avoid emitting
690   // the condition and the dead arm of the if/else.
691   bool CondConstant;
692   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
693                                    S.isConstexpr())) {
694     // Figure out which block (then or else) is executed.
695     const Stmt *Executed = S.getThen();
696     const Stmt *Skipped  = S.getElse();
697     if (!CondConstant)  // Condition false?
698       std::swap(Executed, Skipped);
699 
700     // If the skipped block has no labels in it, just emit the executed block.
701     // This avoids emitting dead code and simplifies the CFG substantially.
702     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
703       if (CondConstant)
704         incrementProfileCounter(&S);
705       if (Executed) {
706         RunCleanupsScope ExecutedScope(*this);
707         EmitStmt(Executed);
708       }
709       return;
710     }
711   }
712 
713   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
714   // the conditional branch.
715   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
716   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
717   llvm::BasicBlock *ElseBlock = ContBlock;
718   if (S.getElse())
719     ElseBlock = createBasicBlock("if.else");
720 
721   // Prefer the PGO based weights over the likelihood attribute.
722   // When the build isn't optimized the metadata isn't used, so don't generate
723   // it.
724   Stmt::Likelihood LH = Stmt::LH_None;
725   uint64_t Count = getProfileCount(S.getThen());
726   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
727     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
728   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
729 
730   // Emit the 'then' code.
731   EmitBlock(ThenBlock);
732   incrementProfileCounter(&S);
733   {
734     RunCleanupsScope ThenScope(*this);
735     EmitStmt(S.getThen());
736   }
737   EmitBranch(ContBlock);
738 
739   // Emit the 'else' code if present.
740   if (const Stmt *Else = S.getElse()) {
741     {
742       // There is no need to emit line number for an unconditional branch.
743       auto NL = ApplyDebugLocation::CreateEmpty(*this);
744       EmitBlock(ElseBlock);
745     }
746     {
747       RunCleanupsScope ElseScope(*this);
748       EmitStmt(Else);
749     }
750     {
751       // There is no need to emit line number for an unconditional branch.
752       auto NL = ApplyDebugLocation::CreateEmpty(*this);
753       EmitBranch(ContBlock);
754     }
755   }
756 
757   // Emit the continuation block for code after the if.
758   EmitBlock(ContBlock, true);
759 }
760 
761 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
762                                     ArrayRef<const Attr *> WhileAttrs) {
763   // Emit the header for the loop, which will also become
764   // the continue target.
765   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
766   EmitBlock(LoopHeader.getBlock());
767 
768   // Create an exit block for when the condition fails, which will
769   // also become the break target.
770   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
771 
772   // Store the blocks to use for break and continue.
773   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
774 
775   // C++ [stmt.while]p2:
776   //   When the condition of a while statement is a declaration, the
777   //   scope of the variable that is declared extends from its point
778   //   of declaration (3.3.2) to the end of the while statement.
779   //   [...]
780   //   The object created in a condition is destroyed and created
781   //   with each iteration of the loop.
782   RunCleanupsScope ConditionScope(*this);
783 
784   if (S.getConditionVariable())
785     EmitDecl(*S.getConditionVariable());
786 
787   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
788   // evaluation of the controlling expression takes place before each
789   // execution of the loop body.
790   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
791 
792   // while(1) is common, avoid extra exit blocks.  Be sure
793   // to correctly handle break/continue though.
794   bool EmitBoolCondBranch = true;
795   bool LoopMustProgress = false;
796   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) {
797     if (C->isOne()) {
798       EmitBoolCondBranch = false;
799       FnIsMustProgress = false;
800     }
801   } else if (LanguageRequiresProgress())
802     LoopMustProgress = true;
803 
804   const SourceRange &R = S.getSourceRange();
805   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
806                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
807                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
808 
809   // As long as the condition is true, go to the loop body.
810   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
811   if (EmitBoolCondBranch) {
812     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
813     if (ConditionScope.requiresCleanups())
814       ExitBlock = createBasicBlock("while.exit");
815     llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop(
816         S.getCond(), getProfileCount(S.getBody()), S.getBody());
817     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
818 
819     if (ExitBlock != LoopExit.getBlock()) {
820       EmitBlock(ExitBlock);
821       EmitBranchThroughCleanup(LoopExit);
822     }
823   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
824     CGM.getDiags().Report(A->getLocation(),
825                           diag::warn_attribute_has_no_effect_on_infinite_loop)
826         << A << A->getRange();
827     CGM.getDiags().Report(
828         S.getWhileLoc(),
829         diag::note_attribute_has_no_effect_on_infinite_loop_here)
830         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
831   }
832 
833   // Emit the loop body.  We have to emit this in a cleanup scope
834   // because it might be a singleton DeclStmt.
835   {
836     RunCleanupsScope BodyScope(*this);
837     EmitBlock(LoopBody);
838     incrementProfileCounter(&S);
839     EmitStmt(S.getBody());
840   }
841 
842   BreakContinueStack.pop_back();
843 
844   // Immediately force cleanup.
845   ConditionScope.ForceCleanup();
846 
847   EmitStopPoint(&S);
848   // Branch to the loop header again.
849   EmitBranch(LoopHeader.getBlock());
850 
851   LoopStack.pop();
852 
853   // Emit the exit block.
854   EmitBlock(LoopExit.getBlock(), true);
855 
856   // The LoopHeader typically is just a branch if we skipped emitting
857   // a branch, try to erase it.
858   if (!EmitBoolCondBranch)
859     SimplifyForwardingBlocks(LoopHeader.getBlock());
860 }
861 
862 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
863                                  ArrayRef<const Attr *> DoAttrs) {
864   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
865   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
866 
867   uint64_t ParentCount = getCurrentProfileCount();
868 
869   // Store the blocks to use for break and continue.
870   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
871 
872   // Emit the body of the loop.
873   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
874 
875   EmitBlockWithFallThrough(LoopBody, &S);
876   {
877     RunCleanupsScope BodyScope(*this);
878     EmitStmt(S.getBody());
879   }
880 
881   EmitBlock(LoopCond.getBlock());
882 
883   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
884   // after each execution of the loop body."
885 
886   // Evaluate the conditional in the while header.
887   // C99 6.8.5p2/p4: The first substatement is executed if the expression
888   // compares unequal to 0.  The condition must be a scalar type.
889   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
890 
891   BreakContinueStack.pop_back();
892 
893   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
894   // to correctly handle break/continue though.
895   bool EmitBoolCondBranch = true;
896   bool LoopMustProgress = false;
897   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) {
898     if (C->isZero())
899       EmitBoolCondBranch = false;
900     else if (C->isOne())
901       FnIsMustProgress = false;
902   } else if (LanguageRequiresProgress())
903     LoopMustProgress = true;
904 
905   const SourceRange &R = S.getSourceRange();
906   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
907                  SourceLocToDebugLoc(R.getBegin()),
908                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
909 
910   // As long as the condition is true, iterate the loop.
911   if (EmitBoolCondBranch) {
912     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
913     Builder.CreateCondBr(
914         BoolCondVal, LoopBody, LoopExit.getBlock(),
915         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
916   }
917 
918   LoopStack.pop();
919 
920   // Emit the exit block.
921   EmitBlock(LoopExit.getBlock());
922 
923   // The DoCond block typically is just a branch if we skipped
924   // emitting a branch, try to erase it.
925   if (!EmitBoolCondBranch)
926     SimplifyForwardingBlocks(LoopCond.getBlock());
927 }
928 
929 void CodeGenFunction::EmitForStmt(const ForStmt &S,
930                                   ArrayRef<const Attr *> ForAttrs) {
931   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
932 
933   LexicalScope ForScope(*this, S.getSourceRange());
934 
935   // Evaluate the first part before the loop.
936   if (S.getInit())
937     EmitStmt(S.getInit());
938 
939   // Start the loop with a block that tests the condition.
940   // If there's an increment, the continue scope will be overwritten
941   // later.
942   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
943   llvm::BasicBlock *CondBlock = Continue.getBlock();
944   EmitBlock(CondBlock);
945 
946   bool LoopMustProgress = false;
947   Expr::EvalResult Result;
948   if (LanguageRequiresProgress()) {
949     if (!S.getCond()) {
950       LoopMustProgress = true;
951       FnIsMustProgress = false;
952     } else if (!S.getCond()->EvaluateAsInt(Result, getContext())) {
953       LoopMustProgress = true;
954     }
955   }
956 
957   const SourceRange &R = S.getSourceRange();
958   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
959                  SourceLocToDebugLoc(R.getBegin()),
960                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
961 
962   // If the for loop doesn't have an increment we can just use the
963   // condition as the continue block.  Otherwise we'll need to create
964   // a block for it (in the current scope, i.e. in the scope of the
965   // condition), and that we will become our continue block.
966   if (S.getInc())
967     Continue = getJumpDestInCurrentScope("for.inc");
968 
969   // Store the blocks to use for break and continue.
970   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
971 
972   // Create a cleanup scope for the condition variable cleanups.
973   LexicalScope ConditionScope(*this, S.getSourceRange());
974 
975   if (S.getCond()) {
976     // If the for statement has a condition scope, emit the local variable
977     // declaration.
978     if (S.getConditionVariable()) {
979       EmitDecl(*S.getConditionVariable());
980     }
981 
982     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
983     // If there are any cleanups between here and the loop-exit scope,
984     // create a block to stage a loop exit along.
985     if (ForScope.requiresCleanups())
986       ExitBlock = createBasicBlock("for.cond.cleanup");
987 
988     // As long as the condition is true, iterate the loop.
989     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
990 
991     // C99 6.8.5p2/p4: The first substatement is executed if the expression
992     // compares unequal to 0.  The condition must be a scalar type.
993     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
994     llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop(
995         S.getCond(), getProfileCount(S.getBody()), S.getBody());
996 
997     if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
998       if (C->isOne())
999         FnIsMustProgress = false;
1000 
1001     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1002 
1003     if (ExitBlock != LoopExit.getBlock()) {
1004       EmitBlock(ExitBlock);
1005       EmitBranchThroughCleanup(LoopExit);
1006     }
1007 
1008     EmitBlock(ForBody);
1009   } else {
1010     // Treat it as a non-zero constant.  Don't even create a new block for the
1011     // body, just fall into it.
1012   }
1013   incrementProfileCounter(&S);
1014 
1015   {
1016     // Create a separate cleanup scope for the body, in case it is not
1017     // a compound statement.
1018     RunCleanupsScope BodyScope(*this);
1019     EmitStmt(S.getBody());
1020   }
1021 
1022   // If there is an increment, emit it next.
1023   if (S.getInc()) {
1024     EmitBlock(Continue.getBlock());
1025     EmitStmt(S.getInc());
1026   }
1027 
1028   BreakContinueStack.pop_back();
1029 
1030   ConditionScope.ForceCleanup();
1031 
1032   EmitStopPoint(&S);
1033   EmitBranch(CondBlock);
1034 
1035   ForScope.ForceCleanup();
1036 
1037   LoopStack.pop();
1038 
1039   // Emit the fall-through block.
1040   EmitBlock(LoopExit.getBlock(), true);
1041 }
1042 
1043 void
1044 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1045                                      ArrayRef<const Attr *> ForAttrs) {
1046   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1047 
1048   LexicalScope ForScope(*this, S.getSourceRange());
1049 
1050   // Evaluate the first pieces before the loop.
1051   if (S.getInit())
1052     EmitStmt(S.getInit());
1053   EmitStmt(S.getRangeStmt());
1054   EmitStmt(S.getBeginStmt());
1055   EmitStmt(S.getEndStmt());
1056 
1057   // Start the loop with a block that tests the condition.
1058   // If there's an increment, the continue scope will be overwritten
1059   // later.
1060   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1061   EmitBlock(CondBlock);
1062 
1063   const SourceRange &R = S.getSourceRange();
1064   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1065                  SourceLocToDebugLoc(R.getBegin()),
1066                  SourceLocToDebugLoc(R.getEnd()));
1067 
1068   // If there are any cleanups between here and the loop-exit scope,
1069   // create a block to stage a loop exit along.
1070   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1071   if (ForScope.requiresCleanups())
1072     ExitBlock = createBasicBlock("for.cond.cleanup");
1073 
1074   // The loop body, consisting of the specified body and the loop variable.
1075   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1076 
1077   // The body is executed if the expression, contextually converted
1078   // to bool, is true.
1079   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1080   llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop(
1081       S.getCond(), getProfileCount(S.getBody()), S.getBody());
1082   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1083 
1084   if (ExitBlock != LoopExit.getBlock()) {
1085     EmitBlock(ExitBlock);
1086     EmitBranchThroughCleanup(LoopExit);
1087   }
1088 
1089   EmitBlock(ForBody);
1090   incrementProfileCounter(&S);
1091 
1092   // Create a block for the increment. In case of a 'continue', we jump there.
1093   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1094 
1095   // Store the blocks to use for break and continue.
1096   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1097 
1098   {
1099     // Create a separate cleanup scope for the loop variable and body.
1100     LexicalScope BodyScope(*this, S.getSourceRange());
1101     EmitStmt(S.getLoopVarStmt());
1102     EmitStmt(S.getBody());
1103   }
1104 
1105   EmitStopPoint(&S);
1106   // If there is an increment, emit it next.
1107   EmitBlock(Continue.getBlock());
1108   EmitStmt(S.getInc());
1109 
1110   BreakContinueStack.pop_back();
1111 
1112   EmitBranch(CondBlock);
1113 
1114   ForScope.ForceCleanup();
1115 
1116   LoopStack.pop();
1117 
1118   // Emit the fall-through block.
1119   EmitBlock(LoopExit.getBlock(), true);
1120 }
1121 
1122 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1123   if (RV.isScalar()) {
1124     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1125   } else if (RV.isAggregate()) {
1126     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1127     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1128     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1129   } else {
1130     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1131                        /*init*/ true);
1132   }
1133   EmitBranchThroughCleanup(ReturnBlock);
1134 }
1135 
1136 namespace {
1137 // RAII struct used to save and restore a return statment's result expression.
1138 struct SaveRetExprRAII {
1139   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1140       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1141     CGF.RetExpr = RetExpr;
1142   }
1143   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1144   const Expr *OldRetExpr;
1145   CodeGenFunction &CGF;
1146 };
1147 } // namespace
1148 
1149 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1150 /// if the function returns void, or may be missing one if the function returns
1151 /// non-void.  Fun stuff :).
1152 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1153   if (requiresReturnValueCheck()) {
1154     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1155     auto *SLocPtr =
1156         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1157                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1158     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1159     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1160     assert(ReturnLocation.isValid() && "No valid return location");
1161     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1162                         ReturnLocation);
1163   }
1164 
1165   // Returning from an outlined SEH helper is UB, and we already warn on it.
1166   if (IsOutlinedSEHHelper) {
1167     Builder.CreateUnreachable();
1168     Builder.ClearInsertionPoint();
1169   }
1170 
1171   // Emit the result value, even if unused, to evaluate the side effects.
1172   const Expr *RV = S.getRetValue();
1173 
1174   // Record the result expression of the return statement. The recorded
1175   // expression is used to determine whether a block capture's lifetime should
1176   // end at the end of the full expression as opposed to the end of the scope
1177   // enclosing the block expression.
1178   //
1179   // This permits a small, easily-implemented exception to our over-conservative
1180   // rules about not jumping to statements following block literals with
1181   // non-trivial cleanups.
1182   SaveRetExprRAII SaveRetExpr(RV, *this);
1183 
1184   RunCleanupsScope cleanupScope(*this);
1185   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1186     RV = EWC->getSubExpr();
1187   // FIXME: Clean this up by using an LValue for ReturnTemp,
1188   // EmitStoreThroughLValue, and EmitAnyExpr.
1189   // Check if the NRVO candidate was not globalized in OpenMP mode.
1190   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1191       S.getNRVOCandidate()->isNRVOVariable() &&
1192       (!getLangOpts().OpenMP ||
1193        !CGM.getOpenMPRuntime()
1194             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1195             .isValid())) {
1196     // Apply the named return value optimization for this return statement,
1197     // which means doing nothing: the appropriate result has already been
1198     // constructed into the NRVO variable.
1199 
1200     // If there is an NRVO flag for this variable, set it to 1 into indicate
1201     // that the cleanup code should not destroy the variable.
1202     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1203       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1204   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1205     // Make sure not to return anything, but evaluate the expression
1206     // for side effects.
1207     if (RV)
1208       EmitAnyExpr(RV);
1209   } else if (!RV) {
1210     // Do nothing (return value is left uninitialized)
1211   } else if (FnRetTy->isReferenceType()) {
1212     // If this function returns a reference, take the address of the expression
1213     // rather than the value.
1214     RValue Result = EmitReferenceBindingToExpr(RV);
1215     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1216   } else {
1217     switch (getEvaluationKind(RV->getType())) {
1218     case TEK_Scalar:
1219       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1220       break;
1221     case TEK_Complex:
1222       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1223                                 /*isInit*/ true);
1224       break;
1225     case TEK_Aggregate:
1226       EmitAggExpr(RV, AggValueSlot::forAddr(
1227                           ReturnValue, Qualifiers(),
1228                           AggValueSlot::IsDestructed,
1229                           AggValueSlot::DoesNotNeedGCBarriers,
1230                           AggValueSlot::IsNotAliased,
1231                           getOverlapForReturnValue()));
1232       break;
1233     }
1234   }
1235 
1236   ++NumReturnExprs;
1237   if (!RV || RV->isEvaluatable(getContext()))
1238     ++NumSimpleReturnExprs;
1239 
1240   cleanupScope.ForceCleanup();
1241   EmitBranchThroughCleanup(ReturnBlock);
1242 }
1243 
1244 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1245   // As long as debug info is modeled with instructions, we have to ensure we
1246   // have a place to insert here and write the stop point here.
1247   if (HaveInsertPoint())
1248     EmitStopPoint(&S);
1249 
1250   for (const auto *I : S.decls())
1251     EmitDecl(*I);
1252 }
1253 
1254 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1255   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1256 
1257   // If this code is reachable then emit a stop point (if generating
1258   // debug info). We have to do this ourselves because we are on the
1259   // "simple" statement path.
1260   if (HaveInsertPoint())
1261     EmitStopPoint(&S);
1262 
1263   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1264 }
1265 
1266 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1267   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1268 
1269   // If this code is reachable then emit a stop point (if generating
1270   // debug info). We have to do this ourselves because we are on the
1271   // "simple" statement path.
1272   if (HaveInsertPoint())
1273     EmitStopPoint(&S);
1274 
1275   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1276 }
1277 
1278 /// EmitCaseStmtRange - If case statement range is not too big then
1279 /// add multiple cases to switch instruction, one for each value within
1280 /// the range. If range is too big then emit "if" condition check.
1281 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1282                                         ArrayRef<const Attr *> Attrs) {
1283   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1284 
1285   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1286   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1287 
1288   // Emit the code for this case. We do this first to make sure it is
1289   // properly chained from our predecessor before generating the
1290   // switch machinery to enter this block.
1291   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1292   EmitBlockWithFallThrough(CaseDest, &S);
1293   EmitStmt(S.getSubStmt());
1294 
1295   // If range is empty, do nothing.
1296   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1297     return;
1298 
1299   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1300   llvm::APInt Range = RHS - LHS;
1301   // FIXME: parameters such as this should not be hardcoded.
1302   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1303     // Range is small enough to add multiple switch instruction cases.
1304     uint64_t Total = getProfileCount(&S);
1305     unsigned NCases = Range.getZExtValue() + 1;
1306     // We only have one region counter for the entire set of cases here, so we
1307     // need to divide the weights evenly between the generated cases, ensuring
1308     // that the total weight is preserved. E.g., a weight of 5 over three cases
1309     // will be distributed as weights of 2, 2, and 1.
1310     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1311     for (unsigned I = 0; I != NCases; ++I) {
1312       if (SwitchWeights)
1313         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1314       else if (SwitchLikelihood)
1315         SwitchLikelihood->push_back(LH);
1316 
1317       if (Rem)
1318         Rem--;
1319       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1320       ++LHS;
1321     }
1322     return;
1323   }
1324 
1325   // The range is too big. Emit "if" condition into a new block,
1326   // making sure to save and restore the current insertion point.
1327   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1328 
1329   // Push this test onto the chain of range checks (which terminates
1330   // in the default basic block). The switch's default will be changed
1331   // to the top of this chain after switch emission is complete.
1332   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1333   CaseRangeBlock = createBasicBlock("sw.caserange");
1334 
1335   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1336   Builder.SetInsertPoint(CaseRangeBlock);
1337 
1338   // Emit range check.
1339   llvm::Value *Diff =
1340     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1341   llvm::Value *Cond =
1342     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1343 
1344   llvm::MDNode *Weights = nullptr;
1345   if (SwitchWeights) {
1346     uint64_t ThisCount = getProfileCount(&S);
1347     uint64_t DefaultCount = (*SwitchWeights)[0];
1348     Weights = createProfileWeights(ThisCount, DefaultCount);
1349 
1350     // Since we're chaining the switch default through each large case range, we
1351     // need to update the weight for the default, ie, the first case, to include
1352     // this case.
1353     (*SwitchWeights)[0] += ThisCount;
1354   } else if (SwitchLikelihood)
1355     Weights = createBranchWeights(LH);
1356 
1357   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1358 
1359   // Restore the appropriate insertion point.
1360   if (RestoreBB)
1361     Builder.SetInsertPoint(RestoreBB);
1362   else
1363     Builder.ClearInsertionPoint();
1364 }
1365 
1366 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1367                                    ArrayRef<const Attr *> Attrs) {
1368   // If there is no enclosing switch instance that we're aware of, then this
1369   // case statement and its block can be elided.  This situation only happens
1370   // when we've constant-folded the switch, are emitting the constant case,
1371   // and part of the constant case includes another case statement.  For
1372   // instance: switch (4) { case 4: do { case 5: } while (1); }
1373   if (!SwitchInsn) {
1374     EmitStmt(S.getSubStmt());
1375     return;
1376   }
1377 
1378   // Handle case ranges.
1379   if (S.getRHS()) {
1380     EmitCaseStmtRange(S, Attrs);
1381     return;
1382   }
1383 
1384   llvm::ConstantInt *CaseVal =
1385     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1386   if (SwitchLikelihood)
1387     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1388 
1389   // If the body of the case is just a 'break', try to not emit an empty block.
1390   // If we're profiling or we're not optimizing, leave the block in for better
1391   // debug and coverage analysis.
1392   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1393       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1394       isa<BreakStmt>(S.getSubStmt())) {
1395     JumpDest Block = BreakContinueStack.back().BreakBlock;
1396 
1397     // Only do this optimization if there are no cleanups that need emitting.
1398     if (isObviouslyBranchWithoutCleanups(Block)) {
1399       if (SwitchWeights)
1400         SwitchWeights->push_back(getProfileCount(&S));
1401       SwitchInsn->addCase(CaseVal, Block.getBlock());
1402 
1403       // If there was a fallthrough into this case, make sure to redirect it to
1404       // the end of the switch as well.
1405       if (Builder.GetInsertBlock()) {
1406         Builder.CreateBr(Block.getBlock());
1407         Builder.ClearInsertionPoint();
1408       }
1409       return;
1410     }
1411   }
1412 
1413   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1414   EmitBlockWithFallThrough(CaseDest, &S);
1415   if (SwitchWeights)
1416     SwitchWeights->push_back(getProfileCount(&S));
1417   SwitchInsn->addCase(CaseVal, CaseDest);
1418 
1419   // Recursively emitting the statement is acceptable, but is not wonderful for
1420   // code where we have many case statements nested together, i.e.:
1421   //  case 1:
1422   //    case 2:
1423   //      case 3: etc.
1424   // Handling this recursively will create a new block for each case statement
1425   // that falls through to the next case which is IR intensive.  It also causes
1426   // deep recursion which can run into stack depth limitations.  Handle
1427   // sequential non-range case statements specially.
1428   //
1429   // TODO When the next case has a likelihood attribute the code returns to the
1430   // recursive algorithm. Maybe improve this case if it becomes common practice
1431   // to use a lot of attributes.
1432   const CaseStmt *CurCase = &S;
1433   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1434 
1435   // Otherwise, iteratively add consecutive cases to this switch stmt.
1436   while (NextCase && NextCase->getRHS() == nullptr) {
1437     CurCase = NextCase;
1438     llvm::ConstantInt *CaseVal =
1439       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1440 
1441     if (SwitchWeights)
1442       SwitchWeights->push_back(getProfileCount(NextCase));
1443     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1444       CaseDest = createBasicBlock("sw.bb");
1445       EmitBlockWithFallThrough(CaseDest, &S);
1446     }
1447     // Since this loop is only executed when the CaseStmt has no attributes
1448     // use a hard-coded value.
1449     if (SwitchLikelihood)
1450       SwitchLikelihood->push_back(Stmt::LH_None);
1451 
1452     SwitchInsn->addCase(CaseVal, CaseDest);
1453     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1454   }
1455 
1456   // Normal default recursion for non-cases.
1457   EmitStmt(CurCase->getSubStmt());
1458 }
1459 
1460 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1461                                       ArrayRef<const Attr *> Attrs) {
1462   // If there is no enclosing switch instance that we're aware of, then this
1463   // default statement can be elided. This situation only happens when we've
1464   // constant-folded the switch.
1465   if (!SwitchInsn) {
1466     EmitStmt(S.getSubStmt());
1467     return;
1468   }
1469 
1470   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1471   assert(DefaultBlock->empty() &&
1472          "EmitDefaultStmt: Default block already defined?");
1473 
1474   if (SwitchLikelihood)
1475     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1476 
1477   EmitBlockWithFallThrough(DefaultBlock, &S);
1478 
1479   EmitStmt(S.getSubStmt());
1480 }
1481 
1482 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1483 /// constant value that is being switched on, see if we can dead code eliminate
1484 /// the body of the switch to a simple series of statements to emit.  Basically,
1485 /// on a switch (5) we want to find these statements:
1486 ///    case 5:
1487 ///      printf(...);    <--
1488 ///      ++i;            <--
1489 ///      break;
1490 ///
1491 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1492 /// transformation (for example, one of the elided statements contains a label
1493 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1494 /// should include statements after it (e.g. the printf() line is a substmt of
1495 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1496 /// statement, then return CSFC_Success.
1497 ///
1498 /// If Case is non-null, then we are looking for the specified case, checking
1499 /// that nothing we jump over contains labels.  If Case is null, then we found
1500 /// the case and are looking for the break.
1501 ///
1502 /// If the recursive walk actually finds our Case, then we set FoundCase to
1503 /// true.
1504 ///
1505 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1506 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1507                                             const SwitchCase *Case,
1508                                             bool &FoundCase,
1509                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1510   // If this is a null statement, just succeed.
1511   if (!S)
1512     return Case ? CSFC_Success : CSFC_FallThrough;
1513 
1514   // If this is the switchcase (case 4: or default) that we're looking for, then
1515   // we're in business.  Just add the substatement.
1516   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1517     if (S == Case) {
1518       FoundCase = true;
1519       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1520                                       ResultStmts);
1521     }
1522 
1523     // Otherwise, this is some other case or default statement, just ignore it.
1524     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1525                                     ResultStmts);
1526   }
1527 
1528   // If we are in the live part of the code and we found our break statement,
1529   // return a success!
1530   if (!Case && isa<BreakStmt>(S))
1531     return CSFC_Success;
1532 
1533   // If this is a switch statement, then it might contain the SwitchCase, the
1534   // break, or neither.
1535   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1536     // Handle this as two cases: we might be looking for the SwitchCase (if so
1537     // the skipped statements must be skippable) or we might already have it.
1538     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1539     bool StartedInLiveCode = FoundCase;
1540     unsigned StartSize = ResultStmts.size();
1541 
1542     // If we've not found the case yet, scan through looking for it.
1543     if (Case) {
1544       // Keep track of whether we see a skipped declaration.  The code could be
1545       // using the declaration even if it is skipped, so we can't optimize out
1546       // the decl if the kept statements might refer to it.
1547       bool HadSkippedDecl = false;
1548 
1549       // If we're looking for the case, just see if we can skip each of the
1550       // substatements.
1551       for (; Case && I != E; ++I) {
1552         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1553 
1554         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1555         case CSFC_Failure: return CSFC_Failure;
1556         case CSFC_Success:
1557           // A successful result means that either 1) that the statement doesn't
1558           // have the case and is skippable, or 2) does contain the case value
1559           // and also contains the break to exit the switch.  In the later case,
1560           // we just verify the rest of the statements are elidable.
1561           if (FoundCase) {
1562             // If we found the case and skipped declarations, we can't do the
1563             // optimization.
1564             if (HadSkippedDecl)
1565               return CSFC_Failure;
1566 
1567             for (++I; I != E; ++I)
1568               if (CodeGenFunction::ContainsLabel(*I, true))
1569                 return CSFC_Failure;
1570             return CSFC_Success;
1571           }
1572           break;
1573         case CSFC_FallThrough:
1574           // If we have a fallthrough condition, then we must have found the
1575           // case started to include statements.  Consider the rest of the
1576           // statements in the compound statement as candidates for inclusion.
1577           assert(FoundCase && "Didn't find case but returned fallthrough?");
1578           // We recursively found Case, so we're not looking for it anymore.
1579           Case = nullptr;
1580 
1581           // If we found the case and skipped declarations, we can't do the
1582           // optimization.
1583           if (HadSkippedDecl)
1584             return CSFC_Failure;
1585           break;
1586         }
1587       }
1588 
1589       if (!FoundCase)
1590         return CSFC_Success;
1591 
1592       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1593     }
1594 
1595     // If we have statements in our range, then we know that the statements are
1596     // live and need to be added to the set of statements we're tracking.
1597     bool AnyDecls = false;
1598     for (; I != E; ++I) {
1599       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1600 
1601       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1602       case CSFC_Failure: return CSFC_Failure;
1603       case CSFC_FallThrough:
1604         // A fallthrough result means that the statement was simple and just
1605         // included in ResultStmt, keep adding them afterwards.
1606         break;
1607       case CSFC_Success:
1608         // A successful result means that we found the break statement and
1609         // stopped statement inclusion.  We just ensure that any leftover stmts
1610         // are skippable and return success ourselves.
1611         for (++I; I != E; ++I)
1612           if (CodeGenFunction::ContainsLabel(*I, true))
1613             return CSFC_Failure;
1614         return CSFC_Success;
1615       }
1616     }
1617 
1618     // If we're about to fall out of a scope without hitting a 'break;', we
1619     // can't perform the optimization if there were any decls in that scope
1620     // (we'd lose their end-of-lifetime).
1621     if (AnyDecls) {
1622       // If the entire compound statement was live, there's one more thing we
1623       // can try before giving up: emit the whole thing as a single statement.
1624       // We can do that unless the statement contains a 'break;'.
1625       // FIXME: Such a break must be at the end of a construct within this one.
1626       // We could emit this by just ignoring the BreakStmts entirely.
1627       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1628         ResultStmts.resize(StartSize);
1629         ResultStmts.push_back(S);
1630       } else {
1631         return CSFC_Failure;
1632       }
1633     }
1634 
1635     return CSFC_FallThrough;
1636   }
1637 
1638   // Okay, this is some other statement that we don't handle explicitly, like a
1639   // for statement or increment etc.  If we are skipping over this statement,
1640   // just verify it doesn't have labels, which would make it invalid to elide.
1641   if (Case) {
1642     if (CodeGenFunction::ContainsLabel(S, true))
1643       return CSFC_Failure;
1644     return CSFC_Success;
1645   }
1646 
1647   // Otherwise, we want to include this statement.  Everything is cool with that
1648   // so long as it doesn't contain a break out of the switch we're in.
1649   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1650 
1651   // Otherwise, everything is great.  Include the statement and tell the caller
1652   // that we fall through and include the next statement as well.
1653   ResultStmts.push_back(S);
1654   return CSFC_FallThrough;
1655 }
1656 
1657 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1658 /// then invoke CollectStatementsForCase to find the list of statements to emit
1659 /// for a switch on constant.  See the comment above CollectStatementsForCase
1660 /// for more details.
1661 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1662                                        const llvm::APSInt &ConstantCondValue,
1663                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1664                                        ASTContext &C,
1665                                        const SwitchCase *&ResultCase) {
1666   // First step, find the switch case that is being branched to.  We can do this
1667   // efficiently by scanning the SwitchCase list.
1668   const SwitchCase *Case = S.getSwitchCaseList();
1669   const DefaultStmt *DefaultCase = nullptr;
1670 
1671   for (; Case; Case = Case->getNextSwitchCase()) {
1672     // It's either a default or case.  Just remember the default statement in
1673     // case we're not jumping to any numbered cases.
1674     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1675       DefaultCase = DS;
1676       continue;
1677     }
1678 
1679     // Check to see if this case is the one we're looking for.
1680     const CaseStmt *CS = cast<CaseStmt>(Case);
1681     // Don't handle case ranges yet.
1682     if (CS->getRHS()) return false;
1683 
1684     // If we found our case, remember it as 'case'.
1685     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1686       break;
1687   }
1688 
1689   // If we didn't find a matching case, we use a default if it exists, or we
1690   // elide the whole switch body!
1691   if (!Case) {
1692     // It is safe to elide the body of the switch if it doesn't contain labels
1693     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1694     if (!DefaultCase)
1695       return !CodeGenFunction::ContainsLabel(&S);
1696     Case = DefaultCase;
1697   }
1698 
1699   // Ok, we know which case is being jumped to, try to collect all the
1700   // statements that follow it.  This can fail for a variety of reasons.  Also,
1701   // check to see that the recursive walk actually found our case statement.
1702   // Insane cases like this can fail to find it in the recursive walk since we
1703   // don't handle every stmt kind:
1704   // switch (4) {
1705   //   while (1) {
1706   //     case 4: ...
1707   bool FoundCase = false;
1708   ResultCase = Case;
1709   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1710                                   ResultStmts) != CSFC_Failure &&
1711          FoundCase;
1712 }
1713 
1714 static Optional<SmallVector<uint64_t, 16>>
1715 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1716   // Are there enough branches to weight them?
1717   if (Likelihoods.size() <= 1)
1718     return None;
1719 
1720   uint64_t NumUnlikely = 0;
1721   uint64_t NumNone = 0;
1722   uint64_t NumLikely = 0;
1723   for (const auto LH : Likelihoods) {
1724     switch (LH) {
1725     case Stmt::LH_Unlikely:
1726       ++NumUnlikely;
1727       break;
1728     case Stmt::LH_None:
1729       ++NumNone;
1730       break;
1731     case Stmt::LH_Likely:
1732       ++NumLikely;
1733       break;
1734     }
1735   }
1736 
1737   // Is there a likelihood attribute used?
1738   if (NumUnlikely == 0 && NumLikely == 0)
1739     return None;
1740 
1741   // When multiple cases share the same code they can be combined during
1742   // optimization. In that case the weights of the branch will be the sum of
1743   // the individual weights. Make sure the combined sum of all neutral cases
1744   // doesn't exceed the value of a single likely attribute.
1745   // The additions both avoid divisions by 0 and make sure the weights of None
1746   // don't exceed the weight of Likely.
1747   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1748   const uint64_t None = Likely / (NumNone + 1);
1749   const uint64_t Unlikely = 0;
1750 
1751   SmallVector<uint64_t, 16> Result;
1752   Result.reserve(Likelihoods.size());
1753   for (const auto LH : Likelihoods) {
1754     switch (LH) {
1755     case Stmt::LH_Unlikely:
1756       Result.push_back(Unlikely);
1757       break;
1758     case Stmt::LH_None:
1759       Result.push_back(None);
1760       break;
1761     case Stmt::LH_Likely:
1762       Result.push_back(Likely);
1763       break;
1764     }
1765   }
1766 
1767   return Result;
1768 }
1769 
1770 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1771   // Handle nested switch statements.
1772   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1773   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1774   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1775   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1776 
1777   // See if we can constant fold the condition of the switch and therefore only
1778   // emit the live case statement (if any) of the switch.
1779   llvm::APSInt ConstantCondValue;
1780   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1781     SmallVector<const Stmt*, 4> CaseStmts;
1782     const SwitchCase *Case = nullptr;
1783     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1784                                    getContext(), Case)) {
1785       if (Case)
1786         incrementProfileCounter(Case);
1787       RunCleanupsScope ExecutedScope(*this);
1788 
1789       if (S.getInit())
1790         EmitStmt(S.getInit());
1791 
1792       // Emit the condition variable if needed inside the entire cleanup scope
1793       // used by this special case for constant folded switches.
1794       if (S.getConditionVariable())
1795         EmitDecl(*S.getConditionVariable());
1796 
1797       // At this point, we are no longer "within" a switch instance, so
1798       // we can temporarily enforce this to ensure that any embedded case
1799       // statements are not emitted.
1800       SwitchInsn = nullptr;
1801 
1802       // Okay, we can dead code eliminate everything except this case.  Emit the
1803       // specified series of statements and we're good.
1804       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1805         EmitStmt(CaseStmts[i]);
1806       incrementProfileCounter(&S);
1807 
1808       // Now we want to restore the saved switch instance so that nested
1809       // switches continue to function properly
1810       SwitchInsn = SavedSwitchInsn;
1811 
1812       return;
1813     }
1814   }
1815 
1816   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1817 
1818   RunCleanupsScope ConditionScope(*this);
1819 
1820   if (S.getInit())
1821     EmitStmt(S.getInit());
1822 
1823   if (S.getConditionVariable())
1824     EmitDecl(*S.getConditionVariable());
1825   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1826 
1827   // Create basic block to hold stuff that comes after switch
1828   // statement. We also need to create a default block now so that
1829   // explicit case ranges tests can have a place to jump to on
1830   // failure.
1831   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1832   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1833   if (PGO.haveRegionCounts()) {
1834     // Walk the SwitchCase list to find how many there are.
1835     uint64_t DefaultCount = 0;
1836     unsigned NumCases = 0;
1837     for (const SwitchCase *Case = S.getSwitchCaseList();
1838          Case;
1839          Case = Case->getNextSwitchCase()) {
1840       if (isa<DefaultStmt>(Case))
1841         DefaultCount = getProfileCount(Case);
1842       NumCases += 1;
1843     }
1844     SwitchWeights = new SmallVector<uint64_t, 16>();
1845     SwitchWeights->reserve(NumCases);
1846     // The default needs to be first. We store the edge count, so we already
1847     // know the right weight.
1848     SwitchWeights->push_back(DefaultCount);
1849   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1850     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1851     // Initialize the default case.
1852     SwitchLikelihood->push_back(Stmt::LH_None);
1853   }
1854 
1855   CaseRangeBlock = DefaultBlock;
1856 
1857   // Clear the insertion point to indicate we are in unreachable code.
1858   Builder.ClearInsertionPoint();
1859 
1860   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1861   // then reuse last ContinueBlock.
1862   JumpDest OuterContinue;
1863   if (!BreakContinueStack.empty())
1864     OuterContinue = BreakContinueStack.back().ContinueBlock;
1865 
1866   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1867 
1868   // Emit switch body.
1869   EmitStmt(S.getBody());
1870 
1871   BreakContinueStack.pop_back();
1872 
1873   // Update the default block in case explicit case range tests have
1874   // been chained on top.
1875   SwitchInsn->setDefaultDest(CaseRangeBlock);
1876 
1877   // If a default was never emitted:
1878   if (!DefaultBlock->getParent()) {
1879     // If we have cleanups, emit the default block so that there's a
1880     // place to jump through the cleanups from.
1881     if (ConditionScope.requiresCleanups()) {
1882       EmitBlock(DefaultBlock);
1883 
1884     // Otherwise, just forward the default block to the switch end.
1885     } else {
1886       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1887       delete DefaultBlock;
1888     }
1889   }
1890 
1891   ConditionScope.ForceCleanup();
1892 
1893   // Emit continuation.
1894   EmitBlock(SwitchExit.getBlock(), true);
1895   incrementProfileCounter(&S);
1896 
1897   // If the switch has a condition wrapped by __builtin_unpredictable,
1898   // create metadata that specifies that the switch is unpredictable.
1899   // Don't bother if not optimizing because that metadata would not be used.
1900   auto *Call = dyn_cast<CallExpr>(S.getCond());
1901   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1902     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1903     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1904       llvm::MDBuilder MDHelper(getLLVMContext());
1905       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1906                               MDHelper.createUnpredictable());
1907     }
1908   }
1909 
1910   if (SwitchWeights) {
1911     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1912            "switch weights do not match switch cases");
1913     // If there's only one jump destination there's no sense weighting it.
1914     if (SwitchWeights->size() > 1)
1915       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1916                               createProfileWeights(*SwitchWeights));
1917     delete SwitchWeights;
1918   } else if (SwitchLikelihood) {
1919     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
1920            "switch likelihoods do not match switch cases");
1921     Optional<SmallVector<uint64_t, 16>> LHW =
1922         getLikelihoodWeights(*SwitchLikelihood);
1923     if (LHW) {
1924       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
1925       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1926                               createProfileWeights(*LHW));
1927     }
1928     delete SwitchLikelihood;
1929   }
1930   SwitchInsn = SavedSwitchInsn;
1931   SwitchWeights = SavedSwitchWeights;
1932   SwitchLikelihood = SavedSwitchLikelihood;
1933   CaseRangeBlock = SavedCRBlock;
1934 }
1935 
1936 static std::string
1937 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1938                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1939   std::string Result;
1940 
1941   while (*Constraint) {
1942     switch (*Constraint) {
1943     default:
1944       Result += Target.convertConstraint(Constraint);
1945       break;
1946     // Ignore these
1947     case '*':
1948     case '?':
1949     case '!':
1950     case '=': // Will see this and the following in mult-alt constraints.
1951     case '+':
1952       break;
1953     case '#': // Ignore the rest of the constraint alternative.
1954       while (Constraint[1] && Constraint[1] != ',')
1955         Constraint++;
1956       break;
1957     case '&':
1958     case '%':
1959       Result += *Constraint;
1960       while (Constraint[1] && Constraint[1] == *Constraint)
1961         Constraint++;
1962       break;
1963     case ',':
1964       Result += "|";
1965       break;
1966     case 'g':
1967       Result += "imr";
1968       break;
1969     case '[': {
1970       assert(OutCons &&
1971              "Must pass output names to constraints with a symbolic name");
1972       unsigned Index;
1973       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1974       assert(result && "Could not resolve symbolic name"); (void)result;
1975       Result += llvm::utostr(Index);
1976       break;
1977     }
1978     }
1979 
1980     Constraint++;
1981   }
1982 
1983   return Result;
1984 }
1985 
1986 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1987 /// as using a particular register add that as a constraint that will be used
1988 /// in this asm stmt.
1989 static std::string
1990 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1991                        const TargetInfo &Target, CodeGenModule &CGM,
1992                        const AsmStmt &Stmt, const bool EarlyClobber,
1993                        std::string *GCCReg = nullptr) {
1994   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1995   if (!AsmDeclRef)
1996     return Constraint;
1997   const ValueDecl &Value = *AsmDeclRef->getDecl();
1998   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1999   if (!Variable)
2000     return Constraint;
2001   if (Variable->getStorageClass() != SC_Register)
2002     return Constraint;
2003   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2004   if (!Attr)
2005     return Constraint;
2006   StringRef Register = Attr->getLabel();
2007   assert(Target.isValidGCCRegisterName(Register));
2008   // We're using validateOutputConstraint here because we only care if
2009   // this is a register constraint.
2010   TargetInfo::ConstraintInfo Info(Constraint, "");
2011   if (Target.validateOutputConstraint(Info) &&
2012       !Info.allowsRegister()) {
2013     CGM.ErrorUnsupported(&Stmt, "__asm__");
2014     return Constraint;
2015   }
2016   // Canonicalize the register here before returning it.
2017   Register = Target.getNormalizedGCCRegisterName(Register);
2018   if (GCCReg != nullptr)
2019     *GCCReg = Register.str();
2020   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2021 }
2022 
2023 llvm::Value*
2024 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2025                                     LValue InputValue, QualType InputType,
2026                                     std::string &ConstraintStr,
2027                                     SourceLocation Loc) {
2028   llvm::Value *Arg;
2029   if (Info.allowsRegister() || !Info.allowsMemory()) {
2030     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
2031       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
2032     } else {
2033       llvm::Type *Ty = ConvertType(InputType);
2034       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2035       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
2036         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2037         Ty = llvm::PointerType::getUnqual(Ty);
2038 
2039         Arg = Builder.CreateLoad(
2040             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
2041       } else {
2042         Arg = InputValue.getPointer(*this);
2043         ConstraintStr += '*';
2044       }
2045     }
2046   } else {
2047     Arg = InputValue.getPointer(*this);
2048     ConstraintStr += '*';
2049   }
2050 
2051   return Arg;
2052 }
2053 
2054 llvm::Value* CodeGenFunction::EmitAsmInput(
2055                                          const TargetInfo::ConstraintInfo &Info,
2056                                            const Expr *InputExpr,
2057                                            std::string &ConstraintStr) {
2058   // If this can't be a register or memory, i.e., has to be a constant
2059   // (immediate or symbolic), try to emit it as such.
2060   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2061     if (Info.requiresImmediateConstant()) {
2062       Expr::EvalResult EVResult;
2063       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2064 
2065       llvm::APSInt IntResult;
2066       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2067                                           getContext()))
2068         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
2069     }
2070 
2071     Expr::EvalResult Result;
2072     if (InputExpr->EvaluateAsInt(Result, getContext()))
2073       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
2074   }
2075 
2076   if (Info.allowsRegister() || !Info.allowsMemory())
2077     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2078       return EmitScalarExpr(InputExpr);
2079   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2080     return EmitScalarExpr(InputExpr);
2081   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2082   LValue Dest = EmitLValue(InputExpr);
2083   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2084                             InputExpr->getExprLoc());
2085 }
2086 
2087 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2088 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2089 /// integers which are the source locations of the start of each line in the
2090 /// asm.
2091 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2092                                       CodeGenFunction &CGF) {
2093   SmallVector<llvm::Metadata *, 8> Locs;
2094   // Add the location of the first line to the MDNode.
2095   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2096       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
2097   StringRef StrVal = Str->getString();
2098   if (!StrVal.empty()) {
2099     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2100     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2101     unsigned StartToken = 0;
2102     unsigned ByteOffset = 0;
2103 
2104     // Add the location of the start of each subsequent line of the asm to the
2105     // MDNode.
2106     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2107       if (StrVal[i] != '\n') continue;
2108       SourceLocation LineLoc = Str->getLocationOfByte(
2109           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2110       Locs.push_back(llvm::ConstantAsMetadata::get(
2111           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
2112     }
2113   }
2114 
2115   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2116 }
2117 
2118 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2119                               bool ReadOnly, bool ReadNone, bool NoMerge,
2120                               const AsmStmt &S,
2121                               const std::vector<llvm::Type *> &ResultRegTypes,
2122                               CodeGenFunction &CGF,
2123                               std::vector<llvm::Value *> &RegResults) {
2124   Result.addAttribute(llvm::AttributeList::FunctionIndex,
2125                       llvm::Attribute::NoUnwind);
2126   if (NoMerge)
2127     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2128                         llvm::Attribute::NoMerge);
2129   // Attach readnone and readonly attributes.
2130   if (!HasSideEffect) {
2131     if (ReadNone)
2132       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2133                           llvm::Attribute::ReadNone);
2134     else if (ReadOnly)
2135       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2136                           llvm::Attribute::ReadOnly);
2137   }
2138 
2139   // Slap the source location of the inline asm into a !srcloc metadata on the
2140   // call.
2141   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2142     Result.setMetadata("srcloc",
2143                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2144   else {
2145     // At least put the line number on MS inline asm blobs.
2146     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
2147                                         S.getAsmLoc().getRawEncoding());
2148     Result.setMetadata("srcloc",
2149                        llvm::MDNode::get(CGF.getLLVMContext(),
2150                                          llvm::ConstantAsMetadata::get(Loc)));
2151   }
2152 
2153   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2154     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2155     // convergent (meaning, they may call an intrinsically convergent op, such
2156     // as bar.sync, and so can't have certain optimizations applied around
2157     // them).
2158     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2159                         llvm::Attribute::Convergent);
2160   // Extract all of the register value results from the asm.
2161   if (ResultRegTypes.size() == 1) {
2162     RegResults.push_back(&Result);
2163   } else {
2164     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2165       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2166       RegResults.push_back(Tmp);
2167     }
2168   }
2169 }
2170 
2171 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2172   // Assemble the final asm string.
2173   std::string AsmString = S.generateAsmString(getContext());
2174 
2175   // Get all the output and input constraints together.
2176   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2177   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2178 
2179   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2180     StringRef Name;
2181     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2182       Name = GAS->getOutputName(i);
2183     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2184     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2185     assert(IsValid && "Failed to parse output constraint");
2186     OutputConstraintInfos.push_back(Info);
2187   }
2188 
2189   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2190     StringRef Name;
2191     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2192       Name = GAS->getInputName(i);
2193     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2194     bool IsValid =
2195       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2196     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2197     InputConstraintInfos.push_back(Info);
2198   }
2199 
2200   std::string Constraints;
2201 
2202   std::vector<LValue> ResultRegDests;
2203   std::vector<QualType> ResultRegQualTys;
2204   std::vector<llvm::Type *> ResultRegTypes;
2205   std::vector<llvm::Type *> ResultTruncRegTypes;
2206   std::vector<llvm::Type *> ArgTypes;
2207   std::vector<llvm::Value*> Args;
2208   llvm::BitVector ResultTypeRequiresCast;
2209 
2210   // Keep track of inout constraints.
2211   std::string InOutConstraints;
2212   std::vector<llvm::Value*> InOutArgs;
2213   std::vector<llvm::Type*> InOutArgTypes;
2214 
2215   // Keep track of out constraints for tied input operand.
2216   std::vector<std::string> OutputConstraints;
2217 
2218   // Keep track of defined physregs.
2219   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2220 
2221   // An inline asm can be marked readonly if it meets the following conditions:
2222   //  - it doesn't have any sideeffects
2223   //  - it doesn't clobber memory
2224   //  - it doesn't return a value by-reference
2225   // It can be marked readnone if it doesn't have any input memory constraints
2226   // in addition to meeting the conditions listed above.
2227   bool ReadOnly = true, ReadNone = true;
2228 
2229   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2230     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2231 
2232     // Simplify the output constraint.
2233     std::string OutputConstraint(S.getOutputConstraint(i));
2234     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2235                                           getTarget(), &OutputConstraintInfos);
2236 
2237     const Expr *OutExpr = S.getOutputExpr(i);
2238     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2239 
2240     std::string GCCReg;
2241     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2242                                               getTarget(), CGM, S,
2243                                               Info.earlyClobber(),
2244                                               &GCCReg);
2245     // Give an error on multiple outputs to same physreg.
2246     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2247       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2248 
2249     OutputConstraints.push_back(OutputConstraint);
2250     LValue Dest = EmitLValue(OutExpr);
2251     if (!Constraints.empty())
2252       Constraints += ',';
2253 
2254     // If this is a register output, then make the inline asm return it
2255     // by-value.  If this is a memory result, return the value by-reference.
2256     bool isScalarizableAggregate =
2257         hasAggregateEvaluationKind(OutExpr->getType());
2258     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2259                                  isScalarizableAggregate)) {
2260       Constraints += "=" + OutputConstraint;
2261       ResultRegQualTys.push_back(OutExpr->getType());
2262       ResultRegDests.push_back(Dest);
2263       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2264       if (Info.allowsRegister() && isScalarizableAggregate) {
2265         ResultTypeRequiresCast.push_back(true);
2266         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2267         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2268         ResultRegTypes.push_back(ConvTy);
2269       } else {
2270         ResultTypeRequiresCast.push_back(false);
2271         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2272       }
2273       // If this output is tied to an input, and if the input is larger, then
2274       // we need to set the actual result type of the inline asm node to be the
2275       // same as the input type.
2276       if (Info.hasMatchingInput()) {
2277         unsigned InputNo;
2278         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2279           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2280           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2281             break;
2282         }
2283         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2284 
2285         QualType InputTy = S.getInputExpr(InputNo)->getType();
2286         QualType OutputType = OutExpr->getType();
2287 
2288         uint64_t InputSize = getContext().getTypeSize(InputTy);
2289         if (getContext().getTypeSize(OutputType) < InputSize) {
2290           // Form the asm to return the value as a larger integer or fp type.
2291           ResultRegTypes.back() = ConvertType(InputTy);
2292         }
2293       }
2294       if (llvm::Type* AdjTy =
2295             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2296                                                  ResultRegTypes.back()))
2297         ResultRegTypes.back() = AdjTy;
2298       else {
2299         CGM.getDiags().Report(S.getAsmLoc(),
2300                               diag::err_asm_invalid_type_in_input)
2301             << OutExpr->getType() << OutputConstraint;
2302       }
2303 
2304       // Update largest vector width for any vector types.
2305       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2306         LargestVectorWidth =
2307             std::max((uint64_t)LargestVectorWidth,
2308                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2309     } else {
2310       ArgTypes.push_back(Dest.getAddress(*this).getType());
2311       Args.push_back(Dest.getPointer(*this));
2312       Constraints += "=*";
2313       Constraints += OutputConstraint;
2314       ReadOnly = ReadNone = false;
2315     }
2316 
2317     if (Info.isReadWrite()) {
2318       InOutConstraints += ',';
2319 
2320       const Expr *InputExpr = S.getOutputExpr(i);
2321       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2322                                             InOutConstraints,
2323                                             InputExpr->getExprLoc());
2324 
2325       if (llvm::Type* AdjTy =
2326           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2327                                                Arg->getType()))
2328         Arg = Builder.CreateBitCast(Arg, AdjTy);
2329 
2330       // Update largest vector width for any vector types.
2331       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2332         LargestVectorWidth =
2333             std::max((uint64_t)LargestVectorWidth,
2334                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2335       // Only tie earlyclobber physregs.
2336       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2337         InOutConstraints += llvm::utostr(i);
2338       else
2339         InOutConstraints += OutputConstraint;
2340 
2341       InOutArgTypes.push_back(Arg->getType());
2342       InOutArgs.push_back(Arg);
2343     }
2344   }
2345 
2346   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2347   // to the return value slot. Only do this when returning in registers.
2348   if (isa<MSAsmStmt>(&S)) {
2349     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2350     if (RetAI.isDirect() || RetAI.isExtend()) {
2351       // Make a fake lvalue for the return value slot.
2352       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2353       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2354           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2355           ResultRegDests, AsmString, S.getNumOutputs());
2356       SawAsmBlock = true;
2357     }
2358   }
2359 
2360   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2361     const Expr *InputExpr = S.getInputExpr(i);
2362 
2363     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2364 
2365     if (Info.allowsMemory())
2366       ReadNone = false;
2367 
2368     if (!Constraints.empty())
2369       Constraints += ',';
2370 
2371     // Simplify the input constraint.
2372     std::string InputConstraint(S.getInputConstraint(i));
2373     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2374                                          &OutputConstraintInfos);
2375 
2376     InputConstraint = AddVariableConstraints(
2377         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2378         getTarget(), CGM, S, false /* No EarlyClobber */);
2379 
2380     std::string ReplaceConstraint (InputConstraint);
2381     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2382 
2383     // If this input argument is tied to a larger output result, extend the
2384     // input to be the same size as the output.  The LLVM backend wants to see
2385     // the input and output of a matching constraint be the same size.  Note
2386     // that GCC does not define what the top bits are here.  We use zext because
2387     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2388     if (Info.hasTiedOperand()) {
2389       unsigned Output = Info.getTiedOperand();
2390       QualType OutputType = S.getOutputExpr(Output)->getType();
2391       QualType InputTy = InputExpr->getType();
2392 
2393       if (getContext().getTypeSize(OutputType) >
2394           getContext().getTypeSize(InputTy)) {
2395         // Use ptrtoint as appropriate so that we can do our extension.
2396         if (isa<llvm::PointerType>(Arg->getType()))
2397           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2398         llvm::Type *OutputTy = ConvertType(OutputType);
2399         if (isa<llvm::IntegerType>(OutputTy))
2400           Arg = Builder.CreateZExt(Arg, OutputTy);
2401         else if (isa<llvm::PointerType>(OutputTy))
2402           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2403         else {
2404           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2405           Arg = Builder.CreateFPExt(Arg, OutputTy);
2406         }
2407       }
2408       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2409       ReplaceConstraint = OutputConstraints[Output];
2410     }
2411     if (llvm::Type* AdjTy =
2412           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2413                                                    Arg->getType()))
2414       Arg = Builder.CreateBitCast(Arg, AdjTy);
2415     else
2416       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2417           << InputExpr->getType() << InputConstraint;
2418 
2419     // Update largest vector width for any vector types.
2420     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2421       LargestVectorWidth =
2422           std::max((uint64_t)LargestVectorWidth,
2423                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2424 
2425     ArgTypes.push_back(Arg->getType());
2426     Args.push_back(Arg);
2427     Constraints += InputConstraint;
2428   }
2429 
2430   // Labels
2431   SmallVector<llvm::BasicBlock *, 16> Transfer;
2432   llvm::BasicBlock *Fallthrough = nullptr;
2433   bool IsGCCAsmGoto = false;
2434   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2435     IsGCCAsmGoto = GS->isAsmGoto();
2436     if (IsGCCAsmGoto) {
2437       for (const auto *E : GS->labels()) {
2438         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2439         Transfer.push_back(Dest.getBlock());
2440         llvm::BlockAddress *BA =
2441             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2442         Args.push_back(BA);
2443         ArgTypes.push_back(BA->getType());
2444         if (!Constraints.empty())
2445           Constraints += ',';
2446         Constraints += 'X';
2447       }
2448       Fallthrough = createBasicBlock("asm.fallthrough");
2449     }
2450   }
2451 
2452   // Append the "input" part of inout constraints last.
2453   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2454     ArgTypes.push_back(InOutArgTypes[i]);
2455     Args.push_back(InOutArgs[i]);
2456   }
2457   Constraints += InOutConstraints;
2458 
2459   // Clobbers
2460   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2461     StringRef Clobber = S.getClobber(i);
2462 
2463     if (Clobber == "memory")
2464       ReadOnly = ReadNone = false;
2465     else if (Clobber != "cc") {
2466       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2467       if (CGM.getCodeGenOpts().StackClashProtector &&
2468           getTarget().isSPRegName(Clobber)) {
2469         CGM.getDiags().Report(S.getAsmLoc(),
2470                               diag::warn_stack_clash_protection_inline_asm);
2471       }
2472     }
2473 
2474     if (!Constraints.empty())
2475       Constraints += ',';
2476 
2477     Constraints += "~{";
2478     Constraints += Clobber;
2479     Constraints += '}';
2480   }
2481 
2482   // Add machine specific clobbers
2483   std::string MachineClobbers = getTarget().getClobbers();
2484   if (!MachineClobbers.empty()) {
2485     if (!Constraints.empty())
2486       Constraints += ',';
2487     Constraints += MachineClobbers;
2488   }
2489 
2490   llvm::Type *ResultType;
2491   if (ResultRegTypes.empty())
2492     ResultType = VoidTy;
2493   else if (ResultRegTypes.size() == 1)
2494     ResultType = ResultRegTypes[0];
2495   else
2496     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2497 
2498   llvm::FunctionType *FTy =
2499     llvm::FunctionType::get(ResultType, ArgTypes, false);
2500 
2501   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2502   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2503     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2504   llvm::InlineAsm *IA =
2505     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2506                          /* IsAlignStack */ false, AsmDialect);
2507   std::vector<llvm::Value*> RegResults;
2508   if (IsGCCAsmGoto) {
2509     llvm::CallBrInst *Result =
2510         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2511     EmitBlock(Fallthrough);
2512     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2513                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2514                       *this, RegResults);
2515   } else {
2516     llvm::CallInst *Result =
2517         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2518     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2519                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2520                       *this, RegResults);
2521   }
2522 
2523   assert(RegResults.size() == ResultRegTypes.size());
2524   assert(RegResults.size() == ResultTruncRegTypes.size());
2525   assert(RegResults.size() == ResultRegDests.size());
2526   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2527   // in which case its size may grow.
2528   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2529   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2530     llvm::Value *Tmp = RegResults[i];
2531 
2532     // If the result type of the LLVM IR asm doesn't match the result type of
2533     // the expression, do the conversion.
2534     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2535       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2536 
2537       // Truncate the integer result to the right size, note that TruncTy can be
2538       // a pointer.
2539       if (TruncTy->isFloatingPointTy())
2540         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2541       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2542         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2543         Tmp = Builder.CreateTrunc(Tmp,
2544                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2545         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2546       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2547         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2548         Tmp = Builder.CreatePtrToInt(Tmp,
2549                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2550         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2551       } else if (TruncTy->isIntegerTy()) {
2552         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2553       } else if (TruncTy->isVectorTy()) {
2554         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2555       }
2556     }
2557 
2558     LValue Dest = ResultRegDests[i];
2559     // ResultTypeRequiresCast elements correspond to the first
2560     // ResultTypeRequiresCast.size() elements of RegResults.
2561     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2562       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2563       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2564                                         ResultRegTypes[i]->getPointerTo());
2565       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2566       if (Ty.isNull()) {
2567         const Expr *OutExpr = S.getOutputExpr(i);
2568         CGM.Error(
2569             OutExpr->getExprLoc(),
2570             "impossible constraint in asm: can't store value into a register");
2571         return;
2572       }
2573       Dest = MakeAddrLValue(A, Ty);
2574     }
2575     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2576   }
2577 }
2578 
2579 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2580   const RecordDecl *RD = S.getCapturedRecordDecl();
2581   QualType RecordTy = getContext().getRecordType(RD);
2582 
2583   // Initialize the captured struct.
2584   LValue SlotLV =
2585     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2586 
2587   RecordDecl::field_iterator CurField = RD->field_begin();
2588   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2589                                                  E = S.capture_init_end();
2590        I != E; ++I, ++CurField) {
2591     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2592     if (CurField->hasCapturedVLAType()) {
2593       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2594     } else {
2595       EmitInitializerForField(*CurField, LV, *I);
2596     }
2597   }
2598 
2599   return SlotLV;
2600 }
2601 
2602 /// Generate an outlined function for the body of a CapturedStmt, store any
2603 /// captured variables into the captured struct, and call the outlined function.
2604 llvm::Function *
2605 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2606   LValue CapStruct = InitCapturedStruct(S);
2607 
2608   // Emit the CapturedDecl
2609   CodeGenFunction CGF(CGM, true);
2610   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2611   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2612   delete CGF.CapturedStmtInfo;
2613 
2614   // Emit call to the helper function.
2615   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2616 
2617   return F;
2618 }
2619 
2620 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2621   LValue CapStruct = InitCapturedStruct(S);
2622   return CapStruct.getAddress(*this);
2623 }
2624 
2625 /// Creates the outlined function for a CapturedStmt.
2626 llvm::Function *
2627 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2628   assert(CapturedStmtInfo &&
2629     "CapturedStmtInfo should be set when generating the captured function");
2630   const CapturedDecl *CD = S.getCapturedDecl();
2631   const RecordDecl *RD = S.getCapturedRecordDecl();
2632   SourceLocation Loc = S.getBeginLoc();
2633   assert(CD->hasBody() && "missing CapturedDecl body");
2634 
2635   // Build the argument list.
2636   ASTContext &Ctx = CGM.getContext();
2637   FunctionArgList Args;
2638   Args.append(CD->param_begin(), CD->param_end());
2639 
2640   // Create the function declaration.
2641   const CGFunctionInfo &FuncInfo =
2642     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2643   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2644 
2645   llvm::Function *F =
2646     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2647                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2648   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2649   if (CD->isNothrow())
2650     F->addFnAttr(llvm::Attribute::NoUnwind);
2651 
2652   // Generate the function.
2653   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2654                 CD->getBody()->getBeginLoc());
2655   // Set the context parameter in CapturedStmtInfo.
2656   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2657   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2658 
2659   // Initialize variable-length arrays.
2660   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2661                                            Ctx.getTagDeclType(RD));
2662   for (auto *FD : RD->fields()) {
2663     if (FD->hasCapturedVLAType()) {
2664       auto *ExprArg =
2665           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2666               .getScalarVal();
2667       auto VAT = FD->getCapturedVLAType();
2668       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2669     }
2670   }
2671 
2672   // If 'this' is captured, load it into CXXThisValue.
2673   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2674     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2675     LValue ThisLValue = EmitLValueForField(Base, FD);
2676     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2677   }
2678 
2679   PGO.assignRegionCounters(GlobalDecl(CD), F);
2680   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2681   FinishFunction(CD->getBodyRBrace());
2682 
2683   return F;
2684 }
2685