1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106 
107     EmitIgnoredExpr(cast<Expr>(S));
108 
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111 
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130 
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138 
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140 
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CoroutineBodyStmtClass:
145   case Stmt::CoreturnStmtClass:
146     CGM.ErrorUnsupported(S, "coroutine");
147     break;
148   case Stmt::CapturedStmtClass: {
149     const CapturedStmt *CS = cast<CapturedStmt>(S);
150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
151     }
152     break;
153   case Stmt::ObjCAtTryStmtClass:
154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
155     break;
156   case Stmt::ObjCAtCatchStmtClass:
157     llvm_unreachable(
158                     "@catch statements should be handled by EmitObjCAtTryStmt");
159   case Stmt::ObjCAtFinallyStmtClass:
160     llvm_unreachable(
161                   "@finally statements should be handled by EmitObjCAtTryStmt");
162   case Stmt::ObjCAtThrowStmtClass:
163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
164     break;
165   case Stmt::ObjCAtSynchronizedStmtClass:
166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
167     break;
168   case Stmt::ObjCForCollectionStmtClass:
169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
170     break;
171   case Stmt::ObjCAutoreleasePoolStmtClass:
172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
173     break;
174 
175   case Stmt::CXXTryStmtClass:
176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
177     break;
178   case Stmt::CXXForRangeStmtClass:
179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
180     break;
181   case Stmt::SEHTryStmtClass:
182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
183     break;
184   case Stmt::OMPParallelDirectiveClass:
185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
186     break;
187   case Stmt::OMPSimdDirectiveClass:
188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
189     break;
190   case Stmt::OMPForDirectiveClass:
191     EmitOMPForDirective(cast<OMPForDirective>(*S));
192     break;
193   case Stmt::OMPForSimdDirectiveClass:
194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
195     break;
196   case Stmt::OMPSectionsDirectiveClass:
197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
198     break;
199   case Stmt::OMPSectionDirectiveClass:
200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
201     break;
202   case Stmt::OMPSingleDirectiveClass:
203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
204     break;
205   case Stmt::OMPMasterDirectiveClass:
206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
207     break;
208   case Stmt::OMPCriticalDirectiveClass:
209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
210     break;
211   case Stmt::OMPParallelForDirectiveClass:
212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
213     break;
214   case Stmt::OMPParallelForSimdDirectiveClass:
215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
216     break;
217   case Stmt::OMPParallelSectionsDirectiveClass:
218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
219     break;
220   case Stmt::OMPTaskDirectiveClass:
221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
222     break;
223   case Stmt::OMPTaskyieldDirectiveClass:
224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
225     break;
226   case Stmt::OMPBarrierDirectiveClass:
227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
228     break;
229   case Stmt::OMPTaskwaitDirectiveClass:
230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
231     break;
232   case Stmt::OMPTaskgroupDirectiveClass:
233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
234     break;
235   case Stmt::OMPFlushDirectiveClass:
236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
237     break;
238   case Stmt::OMPOrderedDirectiveClass:
239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
240     break;
241   case Stmt::OMPAtomicDirectiveClass:
242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
243     break;
244   case Stmt::OMPTargetDirectiveClass:
245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
246     break;
247   case Stmt::OMPTeamsDirectiveClass:
248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
249     break;
250   case Stmt::OMPCancellationPointDirectiveClass:
251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
252     break;
253   case Stmt::OMPCancelDirectiveClass:
254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
255     break;
256   case Stmt::OMPTargetDataDirectiveClass:
257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
258     break;
259   case Stmt::OMPTargetEnterDataDirectiveClass:
260     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
261     break;
262   case Stmt::OMPTargetExitDataDirectiveClass:
263     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
264     break;
265   case Stmt::OMPTargetParallelDirectiveClass:
266     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
267     break;
268   case Stmt::OMPTargetParallelForDirectiveClass:
269     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
270     break;
271   case Stmt::OMPTaskLoopDirectiveClass:
272     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
273     break;
274   case Stmt::OMPTaskLoopSimdDirectiveClass:
275     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
276     break;
277   case Stmt::OMPDistributeDirectiveClass:
278     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
279     break;
280   case Stmt::OMPTargetUpdateDirectiveClass:
281     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
282     break;
283   case Stmt::OMPDistributeParallelForDirectiveClass:
284     EmitOMPDistributeParallelForDirective(
285         cast<OMPDistributeParallelForDirective>(*S));
286     break;
287   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
288     EmitOMPDistributeParallelForSimdDirective(
289         cast<OMPDistributeParallelForSimdDirective>(*S));
290     break;
291   case Stmt::OMPDistributeSimdDirectiveClass:
292     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
293     break;
294   case Stmt::OMPTargetParallelForSimdDirectiveClass:
295     EmitOMPTargetParallelForSimdDirective(
296         cast<OMPTargetParallelForSimdDirective>(*S));
297     break;
298   case Stmt::OMPTargetSimdDirectiveClass:
299     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
300     break;
301   case Stmt::OMPTeamsDistributeDirectiveClass:
302     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
303     break;
304   }
305 }
306 
307 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
308   switch (S->getStmtClass()) {
309   default: return false;
310   case Stmt::NullStmtClass: break;
311   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
312   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
313   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
314   case Stmt::AttributedStmtClass:
315                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
316   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
317   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
318   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
319   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
320   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
321   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
322   }
323 
324   return true;
325 }
326 
327 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
328 /// this captures the expression result of the last sub-statement and returns it
329 /// (for use by the statement expression extension).
330 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
331                                           AggValueSlot AggSlot) {
332   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
333                              "LLVM IR generation of compound statement ('{}')");
334 
335   // Keep track of the current cleanup stack depth, including debug scopes.
336   LexicalScope Scope(*this, S.getSourceRange());
337 
338   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
339 }
340 
341 Address
342 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
343                                               bool GetLast,
344                                               AggValueSlot AggSlot) {
345 
346   for (CompoundStmt::const_body_iterator I = S.body_begin(),
347        E = S.body_end()-GetLast; I != E; ++I)
348     EmitStmt(*I);
349 
350   Address RetAlloca = Address::invalid();
351   if (GetLast) {
352     // We have to special case labels here.  They are statements, but when put
353     // at the end of a statement expression, they yield the value of their
354     // subexpression.  Handle this by walking through all labels we encounter,
355     // emitting them before we evaluate the subexpr.
356     const Stmt *LastStmt = S.body_back();
357     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
358       EmitLabel(LS->getDecl());
359       LastStmt = LS->getSubStmt();
360     }
361 
362     EnsureInsertPoint();
363 
364     QualType ExprTy = cast<Expr>(LastStmt)->getType();
365     if (hasAggregateEvaluationKind(ExprTy)) {
366       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
367     } else {
368       // We can't return an RValue here because there might be cleanups at
369       // the end of the StmtExpr.  Because of that, we have to emit the result
370       // here into a temporary alloca.
371       RetAlloca = CreateMemTemp(ExprTy);
372       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
373                        /*IsInit*/false);
374     }
375 
376   }
377 
378   return RetAlloca;
379 }
380 
381 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
382   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
383 
384   // If there is a cleanup stack, then we it isn't worth trying to
385   // simplify this block (we would need to remove it from the scope map
386   // and cleanup entry).
387   if (!EHStack.empty())
388     return;
389 
390   // Can only simplify direct branches.
391   if (!BI || !BI->isUnconditional())
392     return;
393 
394   // Can only simplify empty blocks.
395   if (BI->getIterator() != BB->begin())
396     return;
397 
398   BB->replaceAllUsesWith(BI->getSuccessor(0));
399   BI->eraseFromParent();
400   BB->eraseFromParent();
401 }
402 
403 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
404   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
405 
406   // Fall out of the current block (if necessary).
407   EmitBranch(BB);
408 
409   if (IsFinished && BB->use_empty()) {
410     delete BB;
411     return;
412   }
413 
414   // Place the block after the current block, if possible, or else at
415   // the end of the function.
416   if (CurBB && CurBB->getParent())
417     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
418   else
419     CurFn->getBasicBlockList().push_back(BB);
420   Builder.SetInsertPoint(BB);
421 }
422 
423 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
424   // Emit a branch from the current block to the target one if this
425   // was a real block.  If this was just a fall-through block after a
426   // terminator, don't emit it.
427   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
428 
429   if (!CurBB || CurBB->getTerminator()) {
430     // If there is no insert point or the previous block is already
431     // terminated, don't touch it.
432   } else {
433     // Otherwise, create a fall-through branch.
434     Builder.CreateBr(Target);
435   }
436 
437   Builder.ClearInsertionPoint();
438 }
439 
440 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
441   bool inserted = false;
442   for (llvm::User *u : block->users()) {
443     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
444       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
445                                              block);
446       inserted = true;
447       break;
448     }
449   }
450 
451   if (!inserted)
452     CurFn->getBasicBlockList().push_back(block);
453 
454   Builder.SetInsertPoint(block);
455 }
456 
457 CodeGenFunction::JumpDest
458 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
459   JumpDest &Dest = LabelMap[D];
460   if (Dest.isValid()) return Dest;
461 
462   // Create, but don't insert, the new block.
463   Dest = JumpDest(createBasicBlock(D->getName()),
464                   EHScopeStack::stable_iterator::invalid(),
465                   NextCleanupDestIndex++);
466   return Dest;
467 }
468 
469 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
470   // Add this label to the current lexical scope if we're within any
471   // normal cleanups.  Jumps "in" to this label --- when permitted by
472   // the language --- may need to be routed around such cleanups.
473   if (EHStack.hasNormalCleanups() && CurLexicalScope)
474     CurLexicalScope->addLabel(D);
475 
476   JumpDest &Dest = LabelMap[D];
477 
478   // If we didn't need a forward reference to this label, just go
479   // ahead and create a destination at the current scope.
480   if (!Dest.isValid()) {
481     Dest = getJumpDestInCurrentScope(D->getName());
482 
483   // Otherwise, we need to give this label a target depth and remove
484   // it from the branch-fixups list.
485   } else {
486     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
487     Dest.setScopeDepth(EHStack.stable_begin());
488     ResolveBranchFixups(Dest.getBlock());
489   }
490 
491   EmitBlock(Dest.getBlock());
492   incrementProfileCounter(D->getStmt());
493 }
494 
495 /// Change the cleanup scope of the labels in this lexical scope to
496 /// match the scope of the enclosing context.
497 void CodeGenFunction::LexicalScope::rescopeLabels() {
498   assert(!Labels.empty());
499   EHScopeStack::stable_iterator innermostScope
500     = CGF.EHStack.getInnermostNormalCleanup();
501 
502   // Change the scope depth of all the labels.
503   for (SmallVectorImpl<const LabelDecl*>::const_iterator
504          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
505     assert(CGF.LabelMap.count(*i));
506     JumpDest &dest = CGF.LabelMap.find(*i)->second;
507     assert(dest.getScopeDepth().isValid());
508     assert(innermostScope.encloses(dest.getScopeDepth()));
509     dest.setScopeDepth(innermostScope);
510   }
511 
512   // Reparent the labels if the new scope also has cleanups.
513   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
514     ParentScope->Labels.append(Labels.begin(), Labels.end());
515   }
516 }
517 
518 
519 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
520   EmitLabel(S.getDecl());
521   EmitStmt(S.getSubStmt());
522 }
523 
524 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
525   const Stmt *SubStmt = S.getSubStmt();
526   switch (SubStmt->getStmtClass()) {
527   case Stmt::DoStmtClass:
528     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
529     break;
530   case Stmt::ForStmtClass:
531     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
532     break;
533   case Stmt::WhileStmtClass:
534     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
535     break;
536   case Stmt::CXXForRangeStmtClass:
537     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
538     break;
539   default:
540     EmitStmt(SubStmt);
541   }
542 }
543 
544 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
545   // If this code is reachable then emit a stop point (if generating
546   // debug info). We have to do this ourselves because we are on the
547   // "simple" statement path.
548   if (HaveInsertPoint())
549     EmitStopPoint(&S);
550 
551   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
552 }
553 
554 
555 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
556   if (const LabelDecl *Target = S.getConstantTarget()) {
557     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
558     return;
559   }
560 
561   // Ensure that we have an i8* for our PHI node.
562   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
563                                          Int8PtrTy, "addr");
564   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
565 
566   // Get the basic block for the indirect goto.
567   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
568 
569   // The first instruction in the block has to be the PHI for the switch dest,
570   // add an entry for this branch.
571   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
572 
573   EmitBranch(IndGotoBB);
574 }
575 
576 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
577   // C99 6.8.4.1: The first substatement is executed if the expression compares
578   // unequal to 0.  The condition must be a scalar type.
579   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
580 
581   if (S.getInit())
582     EmitStmt(S.getInit());
583 
584   if (S.getConditionVariable())
585     EmitAutoVarDecl(*S.getConditionVariable());
586 
587   // If the condition constant folds and can be elided, try to avoid emitting
588   // the condition and the dead arm of the if/else.
589   bool CondConstant;
590   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
591                                    S.isConstexpr())) {
592     // Figure out which block (then or else) is executed.
593     const Stmt *Executed = S.getThen();
594     const Stmt *Skipped  = S.getElse();
595     if (!CondConstant)  // Condition false?
596       std::swap(Executed, Skipped);
597 
598     // If the skipped block has no labels in it, just emit the executed block.
599     // This avoids emitting dead code and simplifies the CFG substantially.
600     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
601       if (CondConstant)
602         incrementProfileCounter(&S);
603       if (Executed) {
604         RunCleanupsScope ExecutedScope(*this);
605         EmitStmt(Executed);
606       }
607       return;
608     }
609   }
610 
611   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
612   // the conditional branch.
613   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
614   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
615   llvm::BasicBlock *ElseBlock = ContBlock;
616   if (S.getElse())
617     ElseBlock = createBasicBlock("if.else");
618 
619   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
620                        getProfileCount(S.getThen()));
621 
622   // Emit the 'then' code.
623   EmitBlock(ThenBlock);
624   incrementProfileCounter(&S);
625   {
626     RunCleanupsScope ThenScope(*this);
627     EmitStmt(S.getThen());
628   }
629   EmitBranch(ContBlock);
630 
631   // Emit the 'else' code if present.
632   if (const Stmt *Else = S.getElse()) {
633     {
634       // There is no need to emit line number for an unconditional branch.
635       auto NL = ApplyDebugLocation::CreateEmpty(*this);
636       EmitBlock(ElseBlock);
637     }
638     {
639       RunCleanupsScope ElseScope(*this);
640       EmitStmt(Else);
641     }
642     {
643       // There is no need to emit line number for an unconditional branch.
644       auto NL = ApplyDebugLocation::CreateEmpty(*this);
645       EmitBranch(ContBlock);
646     }
647   }
648 
649   // Emit the continuation block for code after the if.
650   EmitBlock(ContBlock, true);
651 }
652 
653 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
654                                     ArrayRef<const Attr *> WhileAttrs) {
655   // Emit the header for the loop, which will also become
656   // the continue target.
657   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
658   EmitBlock(LoopHeader.getBlock());
659 
660   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
661                  Builder.getCurrentDebugLocation());
662 
663   // Create an exit block for when the condition fails, which will
664   // also become the break target.
665   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
666 
667   // Store the blocks to use for break and continue.
668   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
669 
670   // C++ [stmt.while]p2:
671   //   When the condition of a while statement is a declaration, the
672   //   scope of the variable that is declared extends from its point
673   //   of declaration (3.3.2) to the end of the while statement.
674   //   [...]
675   //   The object created in a condition is destroyed and created
676   //   with each iteration of the loop.
677   RunCleanupsScope ConditionScope(*this);
678 
679   if (S.getConditionVariable())
680     EmitAutoVarDecl(*S.getConditionVariable());
681 
682   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
683   // evaluation of the controlling expression takes place before each
684   // execution of the loop body.
685   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
686 
687   // while(1) is common, avoid extra exit blocks.  Be sure
688   // to correctly handle break/continue though.
689   bool EmitBoolCondBranch = true;
690   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
691     if (C->isOne())
692       EmitBoolCondBranch = false;
693 
694   // As long as the condition is true, go to the loop body.
695   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
696   if (EmitBoolCondBranch) {
697     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
698     if (ConditionScope.requiresCleanups())
699       ExitBlock = createBasicBlock("while.exit");
700     Builder.CreateCondBr(
701         BoolCondVal, LoopBody, ExitBlock,
702         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
703 
704     if (ExitBlock != LoopExit.getBlock()) {
705       EmitBlock(ExitBlock);
706       EmitBranchThroughCleanup(LoopExit);
707     }
708   }
709 
710   // Emit the loop body.  We have to emit this in a cleanup scope
711   // because it might be a singleton DeclStmt.
712   {
713     RunCleanupsScope BodyScope(*this);
714     EmitBlock(LoopBody);
715     incrementProfileCounter(&S);
716     EmitStmt(S.getBody());
717   }
718 
719   BreakContinueStack.pop_back();
720 
721   // Immediately force cleanup.
722   ConditionScope.ForceCleanup();
723 
724   EmitStopPoint(&S);
725   // Branch to the loop header again.
726   EmitBranch(LoopHeader.getBlock());
727 
728   LoopStack.pop();
729 
730   // Emit the exit block.
731   EmitBlock(LoopExit.getBlock(), true);
732 
733   // The LoopHeader typically is just a branch if we skipped emitting
734   // a branch, try to erase it.
735   if (!EmitBoolCondBranch)
736     SimplifyForwardingBlocks(LoopHeader.getBlock());
737 }
738 
739 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
740                                  ArrayRef<const Attr *> DoAttrs) {
741   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
742   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
743 
744   uint64_t ParentCount = getCurrentProfileCount();
745 
746   // Store the blocks to use for break and continue.
747   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
748 
749   // Emit the body of the loop.
750   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
751 
752   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
753                  Builder.getCurrentDebugLocation());
754 
755   EmitBlockWithFallThrough(LoopBody, &S);
756   {
757     RunCleanupsScope BodyScope(*this);
758     EmitStmt(S.getBody());
759   }
760 
761   EmitBlock(LoopCond.getBlock());
762 
763   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
764   // after each execution of the loop body."
765 
766   // Evaluate the conditional in the while header.
767   // C99 6.8.5p2/p4: The first substatement is executed if the expression
768   // compares unequal to 0.  The condition must be a scalar type.
769   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
770 
771   BreakContinueStack.pop_back();
772 
773   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
774   // to correctly handle break/continue though.
775   bool EmitBoolCondBranch = true;
776   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
777     if (C->isZero())
778       EmitBoolCondBranch = false;
779 
780   // As long as the condition is true, iterate the loop.
781   if (EmitBoolCondBranch) {
782     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
783     Builder.CreateCondBr(
784         BoolCondVal, LoopBody, LoopExit.getBlock(),
785         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
786   }
787 
788   LoopStack.pop();
789 
790   // Emit the exit block.
791   EmitBlock(LoopExit.getBlock());
792 
793   // The DoCond block typically is just a branch if we skipped
794   // emitting a branch, try to erase it.
795   if (!EmitBoolCondBranch)
796     SimplifyForwardingBlocks(LoopCond.getBlock());
797 }
798 
799 void CodeGenFunction::EmitForStmt(const ForStmt &S,
800                                   ArrayRef<const Attr *> ForAttrs) {
801   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
802 
803   LexicalScope ForScope(*this, S.getSourceRange());
804 
805   llvm::DebugLoc DL = Builder.getCurrentDebugLocation();
806 
807   // Evaluate the first part before the loop.
808   if (S.getInit())
809     EmitStmt(S.getInit());
810 
811   // Start the loop with a block that tests the condition.
812   // If there's an increment, the continue scope will be overwritten
813   // later.
814   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
815   llvm::BasicBlock *CondBlock = Continue.getBlock();
816   EmitBlock(CondBlock);
817 
818   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL);
819 
820   // If the for loop doesn't have an increment we can just use the
821   // condition as the continue block.  Otherwise we'll need to create
822   // a block for it (in the current scope, i.e. in the scope of the
823   // condition), and that we will become our continue block.
824   if (S.getInc())
825     Continue = getJumpDestInCurrentScope("for.inc");
826 
827   // Store the blocks to use for break and continue.
828   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
829 
830   // Create a cleanup scope for the condition variable cleanups.
831   LexicalScope ConditionScope(*this, S.getSourceRange());
832 
833   if (S.getCond()) {
834     // If the for statement has a condition scope, emit the local variable
835     // declaration.
836     if (S.getConditionVariable()) {
837       EmitAutoVarDecl(*S.getConditionVariable());
838     }
839 
840     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
841     // If there are any cleanups between here and the loop-exit scope,
842     // create a block to stage a loop exit along.
843     if (ForScope.requiresCleanups())
844       ExitBlock = createBasicBlock("for.cond.cleanup");
845 
846     // As long as the condition is true, iterate the loop.
847     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
848 
849     // C99 6.8.5p2/p4: The first substatement is executed if the expression
850     // compares unequal to 0.  The condition must be a scalar type.
851     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
852     Builder.CreateCondBr(
853         BoolCondVal, ForBody, ExitBlock,
854         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
855 
856     if (ExitBlock != LoopExit.getBlock()) {
857       EmitBlock(ExitBlock);
858       EmitBranchThroughCleanup(LoopExit);
859     }
860 
861     EmitBlock(ForBody);
862   } else {
863     // Treat it as a non-zero constant.  Don't even create a new block for the
864     // body, just fall into it.
865   }
866   incrementProfileCounter(&S);
867 
868   {
869     // Create a separate cleanup scope for the body, in case it is not
870     // a compound statement.
871     RunCleanupsScope BodyScope(*this);
872     EmitStmt(S.getBody());
873   }
874 
875   // If there is an increment, emit it next.
876   if (S.getInc()) {
877     EmitBlock(Continue.getBlock());
878     EmitStmt(S.getInc());
879   }
880 
881   BreakContinueStack.pop_back();
882 
883   ConditionScope.ForceCleanup();
884 
885   EmitStopPoint(&S);
886   EmitBranch(CondBlock);
887 
888   ForScope.ForceCleanup();
889 
890   LoopStack.pop();
891 
892   // Emit the fall-through block.
893   EmitBlock(LoopExit.getBlock(), true);
894 }
895 
896 void
897 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
898                                      ArrayRef<const Attr *> ForAttrs) {
899   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
900 
901   LexicalScope ForScope(*this, S.getSourceRange());
902 
903   llvm::DebugLoc DL = Builder.getCurrentDebugLocation();
904 
905   // Evaluate the first pieces before the loop.
906   EmitStmt(S.getRangeStmt());
907   EmitStmt(S.getBeginStmt());
908   EmitStmt(S.getEndStmt());
909 
910   // Start the loop with a block that tests the condition.
911   // If there's an increment, the continue scope will be overwritten
912   // later.
913   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
914   EmitBlock(CondBlock);
915 
916   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL);
917 
918   // If there are any cleanups between here and the loop-exit scope,
919   // create a block to stage a loop exit along.
920   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
921   if (ForScope.requiresCleanups())
922     ExitBlock = createBasicBlock("for.cond.cleanup");
923 
924   // The loop body, consisting of the specified body and the loop variable.
925   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
926 
927   // The body is executed if the expression, contextually converted
928   // to bool, is true.
929   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
930   Builder.CreateCondBr(
931       BoolCondVal, ForBody, ExitBlock,
932       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
933 
934   if (ExitBlock != LoopExit.getBlock()) {
935     EmitBlock(ExitBlock);
936     EmitBranchThroughCleanup(LoopExit);
937   }
938 
939   EmitBlock(ForBody);
940   incrementProfileCounter(&S);
941 
942   // Create a block for the increment. In case of a 'continue', we jump there.
943   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
944 
945   // Store the blocks to use for break and continue.
946   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
947 
948   {
949     // Create a separate cleanup scope for the loop variable and body.
950     LexicalScope BodyScope(*this, S.getSourceRange());
951     EmitStmt(S.getLoopVarStmt());
952     EmitStmt(S.getBody());
953   }
954 
955   EmitStopPoint(&S);
956   // If there is an increment, emit it next.
957   EmitBlock(Continue.getBlock());
958   EmitStmt(S.getInc());
959 
960   BreakContinueStack.pop_back();
961 
962   EmitBranch(CondBlock);
963 
964   ForScope.ForceCleanup();
965 
966   LoopStack.pop();
967 
968   // Emit the fall-through block.
969   EmitBlock(LoopExit.getBlock(), true);
970 }
971 
972 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
973   if (RV.isScalar()) {
974     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
975   } else if (RV.isAggregate()) {
976     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
977   } else {
978     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
979                        /*init*/ true);
980   }
981   EmitBranchThroughCleanup(ReturnBlock);
982 }
983 
984 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
985 /// if the function returns void, or may be missing one if the function returns
986 /// non-void.  Fun stuff :).
987 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
988   // Returning from an outlined SEH helper is UB, and we already warn on it.
989   if (IsOutlinedSEHHelper) {
990     Builder.CreateUnreachable();
991     Builder.ClearInsertionPoint();
992   }
993 
994   // Emit the result value, even if unused, to evalute the side effects.
995   const Expr *RV = S.getRetValue();
996 
997   // Treat block literals in a return expression as if they appeared
998   // in their own scope.  This permits a small, easily-implemented
999   // exception to our over-conservative rules about not jumping to
1000   // statements following block literals with non-trivial cleanups.
1001   RunCleanupsScope cleanupScope(*this);
1002   if (const ExprWithCleanups *cleanups =
1003         dyn_cast_or_null<ExprWithCleanups>(RV)) {
1004     enterFullExpression(cleanups);
1005     RV = cleanups->getSubExpr();
1006   }
1007 
1008   // FIXME: Clean this up by using an LValue for ReturnTemp,
1009   // EmitStoreThroughLValue, and EmitAnyExpr.
1010   if (getLangOpts().ElideConstructors &&
1011       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1012     // Apply the named return value optimization for this return statement,
1013     // which means doing nothing: the appropriate result has already been
1014     // constructed into the NRVO variable.
1015 
1016     // If there is an NRVO flag for this variable, set it to 1 into indicate
1017     // that the cleanup code should not destroy the variable.
1018     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1019       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1020   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1021     // Make sure not to return anything, but evaluate the expression
1022     // for side effects.
1023     if (RV)
1024       EmitAnyExpr(RV);
1025   } else if (!RV) {
1026     // Do nothing (return value is left uninitialized)
1027   } else if (FnRetTy->isReferenceType()) {
1028     // If this function returns a reference, take the address of the expression
1029     // rather than the value.
1030     RValue Result = EmitReferenceBindingToExpr(RV);
1031     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1032   } else {
1033     switch (getEvaluationKind(RV->getType())) {
1034     case TEK_Scalar:
1035       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1036       break;
1037     case TEK_Complex:
1038       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1039                                 /*isInit*/ true);
1040       break;
1041     case TEK_Aggregate:
1042       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
1043                                             Qualifiers(),
1044                                             AggValueSlot::IsDestructed,
1045                                             AggValueSlot::DoesNotNeedGCBarriers,
1046                                             AggValueSlot::IsNotAliased));
1047       break;
1048     }
1049   }
1050 
1051   ++NumReturnExprs;
1052   if (!RV || RV->isEvaluatable(getContext()))
1053     ++NumSimpleReturnExprs;
1054 
1055   cleanupScope.ForceCleanup();
1056   EmitBranchThroughCleanup(ReturnBlock);
1057 }
1058 
1059 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1060   // As long as debug info is modeled with instructions, we have to ensure we
1061   // have a place to insert here and write the stop point here.
1062   if (HaveInsertPoint())
1063     EmitStopPoint(&S);
1064 
1065   for (const auto *I : S.decls())
1066     EmitDecl(*I);
1067 }
1068 
1069 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1070   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1071 
1072   // If this code is reachable then emit a stop point (if generating
1073   // debug info). We have to do this ourselves because we are on the
1074   // "simple" statement path.
1075   if (HaveInsertPoint())
1076     EmitStopPoint(&S);
1077 
1078   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1079 }
1080 
1081 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1082   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1083 
1084   // If this code is reachable then emit a stop point (if generating
1085   // debug info). We have to do this ourselves because we are on the
1086   // "simple" statement path.
1087   if (HaveInsertPoint())
1088     EmitStopPoint(&S);
1089 
1090   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1091 }
1092 
1093 /// EmitCaseStmtRange - If case statement range is not too big then
1094 /// add multiple cases to switch instruction, one for each value within
1095 /// the range. If range is too big then emit "if" condition check.
1096 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1097   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1098 
1099   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1100   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1101 
1102   // Emit the code for this case. We do this first to make sure it is
1103   // properly chained from our predecessor before generating the
1104   // switch machinery to enter this block.
1105   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1106   EmitBlockWithFallThrough(CaseDest, &S);
1107   EmitStmt(S.getSubStmt());
1108 
1109   // If range is empty, do nothing.
1110   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1111     return;
1112 
1113   llvm::APInt Range = RHS - LHS;
1114   // FIXME: parameters such as this should not be hardcoded.
1115   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1116     // Range is small enough to add multiple switch instruction cases.
1117     uint64_t Total = getProfileCount(&S);
1118     unsigned NCases = Range.getZExtValue() + 1;
1119     // We only have one region counter for the entire set of cases here, so we
1120     // need to divide the weights evenly between the generated cases, ensuring
1121     // that the total weight is preserved. E.g., a weight of 5 over three cases
1122     // will be distributed as weights of 2, 2, and 1.
1123     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1124     for (unsigned I = 0; I != NCases; ++I) {
1125       if (SwitchWeights)
1126         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1127       if (Rem)
1128         Rem--;
1129       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1130       LHS++;
1131     }
1132     return;
1133   }
1134 
1135   // The range is too big. Emit "if" condition into a new block,
1136   // making sure to save and restore the current insertion point.
1137   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1138 
1139   // Push this test onto the chain of range checks (which terminates
1140   // in the default basic block). The switch's default will be changed
1141   // to the top of this chain after switch emission is complete.
1142   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1143   CaseRangeBlock = createBasicBlock("sw.caserange");
1144 
1145   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1146   Builder.SetInsertPoint(CaseRangeBlock);
1147 
1148   // Emit range check.
1149   llvm::Value *Diff =
1150     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1151   llvm::Value *Cond =
1152     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1153 
1154   llvm::MDNode *Weights = nullptr;
1155   if (SwitchWeights) {
1156     uint64_t ThisCount = getProfileCount(&S);
1157     uint64_t DefaultCount = (*SwitchWeights)[0];
1158     Weights = createProfileWeights(ThisCount, DefaultCount);
1159 
1160     // Since we're chaining the switch default through each large case range, we
1161     // need to update the weight for the default, ie, the first case, to include
1162     // this case.
1163     (*SwitchWeights)[0] += ThisCount;
1164   }
1165   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1166 
1167   // Restore the appropriate insertion point.
1168   if (RestoreBB)
1169     Builder.SetInsertPoint(RestoreBB);
1170   else
1171     Builder.ClearInsertionPoint();
1172 }
1173 
1174 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1175   // If there is no enclosing switch instance that we're aware of, then this
1176   // case statement and its block can be elided.  This situation only happens
1177   // when we've constant-folded the switch, are emitting the constant case,
1178   // and part of the constant case includes another case statement.  For
1179   // instance: switch (4) { case 4: do { case 5: } while (1); }
1180   if (!SwitchInsn) {
1181     EmitStmt(S.getSubStmt());
1182     return;
1183   }
1184 
1185   // Handle case ranges.
1186   if (S.getRHS()) {
1187     EmitCaseStmtRange(S);
1188     return;
1189   }
1190 
1191   llvm::ConstantInt *CaseVal =
1192     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1193 
1194   // If the body of the case is just a 'break', try to not emit an empty block.
1195   // If we're profiling or we're not optimizing, leave the block in for better
1196   // debug and coverage analysis.
1197   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1198       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1199       isa<BreakStmt>(S.getSubStmt())) {
1200     JumpDest Block = BreakContinueStack.back().BreakBlock;
1201 
1202     // Only do this optimization if there are no cleanups that need emitting.
1203     if (isObviouslyBranchWithoutCleanups(Block)) {
1204       if (SwitchWeights)
1205         SwitchWeights->push_back(getProfileCount(&S));
1206       SwitchInsn->addCase(CaseVal, Block.getBlock());
1207 
1208       // If there was a fallthrough into this case, make sure to redirect it to
1209       // the end of the switch as well.
1210       if (Builder.GetInsertBlock()) {
1211         Builder.CreateBr(Block.getBlock());
1212         Builder.ClearInsertionPoint();
1213       }
1214       return;
1215     }
1216   }
1217 
1218   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1219   EmitBlockWithFallThrough(CaseDest, &S);
1220   if (SwitchWeights)
1221     SwitchWeights->push_back(getProfileCount(&S));
1222   SwitchInsn->addCase(CaseVal, CaseDest);
1223 
1224   // Recursively emitting the statement is acceptable, but is not wonderful for
1225   // code where we have many case statements nested together, i.e.:
1226   //  case 1:
1227   //    case 2:
1228   //      case 3: etc.
1229   // Handling this recursively will create a new block for each case statement
1230   // that falls through to the next case which is IR intensive.  It also causes
1231   // deep recursion which can run into stack depth limitations.  Handle
1232   // sequential non-range case statements specially.
1233   const CaseStmt *CurCase = &S;
1234   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1235 
1236   // Otherwise, iteratively add consecutive cases to this switch stmt.
1237   while (NextCase && NextCase->getRHS() == nullptr) {
1238     CurCase = NextCase;
1239     llvm::ConstantInt *CaseVal =
1240       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1241 
1242     if (SwitchWeights)
1243       SwitchWeights->push_back(getProfileCount(NextCase));
1244     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1245       CaseDest = createBasicBlock("sw.bb");
1246       EmitBlockWithFallThrough(CaseDest, &S);
1247     }
1248 
1249     SwitchInsn->addCase(CaseVal, CaseDest);
1250     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1251   }
1252 
1253   // Normal default recursion for non-cases.
1254   EmitStmt(CurCase->getSubStmt());
1255 }
1256 
1257 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1258   // If there is no enclosing switch instance that we're aware of, then this
1259   // default statement can be elided. This situation only happens when we've
1260   // constant-folded the switch.
1261   if (!SwitchInsn) {
1262     EmitStmt(S.getSubStmt());
1263     return;
1264   }
1265 
1266   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1267   assert(DefaultBlock->empty() &&
1268          "EmitDefaultStmt: Default block already defined?");
1269 
1270   EmitBlockWithFallThrough(DefaultBlock, &S);
1271 
1272   EmitStmt(S.getSubStmt());
1273 }
1274 
1275 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1276 /// constant value that is being switched on, see if we can dead code eliminate
1277 /// the body of the switch to a simple series of statements to emit.  Basically,
1278 /// on a switch (5) we want to find these statements:
1279 ///    case 5:
1280 ///      printf(...);    <--
1281 ///      ++i;            <--
1282 ///      break;
1283 ///
1284 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1285 /// transformation (for example, one of the elided statements contains a label
1286 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1287 /// should include statements after it (e.g. the printf() line is a substmt of
1288 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1289 /// statement, then return CSFC_Success.
1290 ///
1291 /// If Case is non-null, then we are looking for the specified case, checking
1292 /// that nothing we jump over contains labels.  If Case is null, then we found
1293 /// the case and are looking for the break.
1294 ///
1295 /// If the recursive walk actually finds our Case, then we set FoundCase to
1296 /// true.
1297 ///
1298 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1299 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1300                                             const SwitchCase *Case,
1301                                             bool &FoundCase,
1302                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1303   // If this is a null statement, just succeed.
1304   if (!S)
1305     return Case ? CSFC_Success : CSFC_FallThrough;
1306 
1307   // If this is the switchcase (case 4: or default) that we're looking for, then
1308   // we're in business.  Just add the substatement.
1309   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1310     if (S == Case) {
1311       FoundCase = true;
1312       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1313                                       ResultStmts);
1314     }
1315 
1316     // Otherwise, this is some other case or default statement, just ignore it.
1317     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1318                                     ResultStmts);
1319   }
1320 
1321   // If we are in the live part of the code and we found our break statement,
1322   // return a success!
1323   if (!Case && isa<BreakStmt>(S))
1324     return CSFC_Success;
1325 
1326   // If this is a switch statement, then it might contain the SwitchCase, the
1327   // break, or neither.
1328   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1329     // Handle this as two cases: we might be looking for the SwitchCase (if so
1330     // the skipped statements must be skippable) or we might already have it.
1331     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1332     if (Case) {
1333       // Keep track of whether we see a skipped declaration.  The code could be
1334       // using the declaration even if it is skipped, so we can't optimize out
1335       // the decl if the kept statements might refer to it.
1336       bool HadSkippedDecl = false;
1337 
1338       // If we're looking for the case, just see if we can skip each of the
1339       // substatements.
1340       for (; Case && I != E; ++I) {
1341         HadSkippedDecl |= isa<DeclStmt>(*I);
1342 
1343         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1344         case CSFC_Failure: return CSFC_Failure;
1345         case CSFC_Success:
1346           // A successful result means that either 1) that the statement doesn't
1347           // have the case and is skippable, or 2) does contain the case value
1348           // and also contains the break to exit the switch.  In the later case,
1349           // we just verify the rest of the statements are elidable.
1350           if (FoundCase) {
1351             // If we found the case and skipped declarations, we can't do the
1352             // optimization.
1353             if (HadSkippedDecl)
1354               return CSFC_Failure;
1355 
1356             for (++I; I != E; ++I)
1357               if (CodeGenFunction::ContainsLabel(*I, true))
1358                 return CSFC_Failure;
1359             return CSFC_Success;
1360           }
1361           break;
1362         case CSFC_FallThrough:
1363           // If we have a fallthrough condition, then we must have found the
1364           // case started to include statements.  Consider the rest of the
1365           // statements in the compound statement as candidates for inclusion.
1366           assert(FoundCase && "Didn't find case but returned fallthrough?");
1367           // We recursively found Case, so we're not looking for it anymore.
1368           Case = nullptr;
1369 
1370           // If we found the case and skipped declarations, we can't do the
1371           // optimization.
1372           if (HadSkippedDecl)
1373             return CSFC_Failure;
1374           break;
1375         }
1376       }
1377     }
1378 
1379     // If we have statements in our range, then we know that the statements are
1380     // live and need to be added to the set of statements we're tracking.
1381     for (; I != E; ++I) {
1382       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1383       case CSFC_Failure: return CSFC_Failure;
1384       case CSFC_FallThrough:
1385         // A fallthrough result means that the statement was simple and just
1386         // included in ResultStmt, keep adding them afterwards.
1387         break;
1388       case CSFC_Success:
1389         // A successful result means that we found the break statement and
1390         // stopped statement inclusion.  We just ensure that any leftover stmts
1391         // are skippable and return success ourselves.
1392         for (++I; I != E; ++I)
1393           if (CodeGenFunction::ContainsLabel(*I, true))
1394             return CSFC_Failure;
1395         return CSFC_Success;
1396       }
1397     }
1398 
1399     return Case ? CSFC_Success : CSFC_FallThrough;
1400   }
1401 
1402   // Okay, this is some other statement that we don't handle explicitly, like a
1403   // for statement or increment etc.  If we are skipping over this statement,
1404   // just verify it doesn't have labels, which would make it invalid to elide.
1405   if (Case) {
1406     if (CodeGenFunction::ContainsLabel(S, true))
1407       return CSFC_Failure;
1408     return CSFC_Success;
1409   }
1410 
1411   // Otherwise, we want to include this statement.  Everything is cool with that
1412   // so long as it doesn't contain a break out of the switch we're in.
1413   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1414 
1415   // Otherwise, everything is great.  Include the statement and tell the caller
1416   // that we fall through and include the next statement as well.
1417   ResultStmts.push_back(S);
1418   return CSFC_FallThrough;
1419 }
1420 
1421 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1422 /// then invoke CollectStatementsForCase to find the list of statements to emit
1423 /// for a switch on constant.  See the comment above CollectStatementsForCase
1424 /// for more details.
1425 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1426                                        const llvm::APSInt &ConstantCondValue,
1427                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1428                                        ASTContext &C,
1429                                        const SwitchCase *&ResultCase) {
1430   // First step, find the switch case that is being branched to.  We can do this
1431   // efficiently by scanning the SwitchCase list.
1432   const SwitchCase *Case = S.getSwitchCaseList();
1433   const DefaultStmt *DefaultCase = nullptr;
1434 
1435   for (; Case; Case = Case->getNextSwitchCase()) {
1436     // It's either a default or case.  Just remember the default statement in
1437     // case we're not jumping to any numbered cases.
1438     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1439       DefaultCase = DS;
1440       continue;
1441     }
1442 
1443     // Check to see if this case is the one we're looking for.
1444     const CaseStmt *CS = cast<CaseStmt>(Case);
1445     // Don't handle case ranges yet.
1446     if (CS->getRHS()) return false;
1447 
1448     // If we found our case, remember it as 'case'.
1449     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1450       break;
1451   }
1452 
1453   // If we didn't find a matching case, we use a default if it exists, or we
1454   // elide the whole switch body!
1455   if (!Case) {
1456     // It is safe to elide the body of the switch if it doesn't contain labels
1457     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1458     if (!DefaultCase)
1459       return !CodeGenFunction::ContainsLabel(&S);
1460     Case = DefaultCase;
1461   }
1462 
1463   // Ok, we know which case is being jumped to, try to collect all the
1464   // statements that follow it.  This can fail for a variety of reasons.  Also,
1465   // check to see that the recursive walk actually found our case statement.
1466   // Insane cases like this can fail to find it in the recursive walk since we
1467   // don't handle every stmt kind:
1468   // switch (4) {
1469   //   while (1) {
1470   //     case 4: ...
1471   bool FoundCase = false;
1472   ResultCase = Case;
1473   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1474                                   ResultStmts) != CSFC_Failure &&
1475          FoundCase;
1476 }
1477 
1478 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1479   // Handle nested switch statements.
1480   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1481   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1482   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1483 
1484   // See if we can constant fold the condition of the switch and therefore only
1485   // emit the live case statement (if any) of the switch.
1486   llvm::APSInt ConstantCondValue;
1487   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1488     SmallVector<const Stmt*, 4> CaseStmts;
1489     const SwitchCase *Case = nullptr;
1490     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1491                                    getContext(), Case)) {
1492       if (Case)
1493         incrementProfileCounter(Case);
1494       RunCleanupsScope ExecutedScope(*this);
1495 
1496       if (S.getInit())
1497         EmitStmt(S.getInit());
1498 
1499       // Emit the condition variable if needed inside the entire cleanup scope
1500       // used by this special case for constant folded switches.
1501       if (S.getConditionVariable())
1502         EmitAutoVarDecl(*S.getConditionVariable());
1503 
1504       // At this point, we are no longer "within" a switch instance, so
1505       // we can temporarily enforce this to ensure that any embedded case
1506       // statements are not emitted.
1507       SwitchInsn = nullptr;
1508 
1509       // Okay, we can dead code eliminate everything except this case.  Emit the
1510       // specified series of statements and we're good.
1511       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1512         EmitStmt(CaseStmts[i]);
1513       incrementProfileCounter(&S);
1514 
1515       // Now we want to restore the saved switch instance so that nested
1516       // switches continue to function properly
1517       SwitchInsn = SavedSwitchInsn;
1518 
1519       return;
1520     }
1521   }
1522 
1523   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1524 
1525   RunCleanupsScope ConditionScope(*this);
1526 
1527   if (S.getInit())
1528     EmitStmt(S.getInit());
1529 
1530   if (S.getConditionVariable())
1531     EmitAutoVarDecl(*S.getConditionVariable());
1532   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1533 
1534   // Create basic block to hold stuff that comes after switch
1535   // statement. We also need to create a default block now so that
1536   // explicit case ranges tests can have a place to jump to on
1537   // failure.
1538   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1539   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1540   if (PGO.haveRegionCounts()) {
1541     // Walk the SwitchCase list to find how many there are.
1542     uint64_t DefaultCount = 0;
1543     unsigned NumCases = 0;
1544     for (const SwitchCase *Case = S.getSwitchCaseList();
1545          Case;
1546          Case = Case->getNextSwitchCase()) {
1547       if (isa<DefaultStmt>(Case))
1548         DefaultCount = getProfileCount(Case);
1549       NumCases += 1;
1550     }
1551     SwitchWeights = new SmallVector<uint64_t, 16>();
1552     SwitchWeights->reserve(NumCases);
1553     // The default needs to be first. We store the edge count, so we already
1554     // know the right weight.
1555     SwitchWeights->push_back(DefaultCount);
1556   }
1557   CaseRangeBlock = DefaultBlock;
1558 
1559   // Clear the insertion point to indicate we are in unreachable code.
1560   Builder.ClearInsertionPoint();
1561 
1562   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1563   // then reuse last ContinueBlock.
1564   JumpDest OuterContinue;
1565   if (!BreakContinueStack.empty())
1566     OuterContinue = BreakContinueStack.back().ContinueBlock;
1567 
1568   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1569 
1570   // Emit switch body.
1571   EmitStmt(S.getBody());
1572 
1573   BreakContinueStack.pop_back();
1574 
1575   // Update the default block in case explicit case range tests have
1576   // been chained on top.
1577   SwitchInsn->setDefaultDest(CaseRangeBlock);
1578 
1579   // If a default was never emitted:
1580   if (!DefaultBlock->getParent()) {
1581     // If we have cleanups, emit the default block so that there's a
1582     // place to jump through the cleanups from.
1583     if (ConditionScope.requiresCleanups()) {
1584       EmitBlock(DefaultBlock);
1585 
1586     // Otherwise, just forward the default block to the switch end.
1587     } else {
1588       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1589       delete DefaultBlock;
1590     }
1591   }
1592 
1593   ConditionScope.ForceCleanup();
1594 
1595   // Emit continuation.
1596   EmitBlock(SwitchExit.getBlock(), true);
1597   incrementProfileCounter(&S);
1598 
1599   // If the switch has a condition wrapped by __builtin_unpredictable,
1600   // create metadata that specifies that the switch is unpredictable.
1601   // Don't bother if not optimizing because that metadata would not be used.
1602   auto *Call = dyn_cast<CallExpr>(S.getCond());
1603   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1604     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1605     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1606       llvm::MDBuilder MDHelper(getLLVMContext());
1607       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1608                               MDHelper.createUnpredictable());
1609     }
1610   }
1611 
1612   if (SwitchWeights) {
1613     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1614            "switch weights do not match switch cases");
1615     // If there's only one jump destination there's no sense weighting it.
1616     if (SwitchWeights->size() > 1)
1617       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1618                               createProfileWeights(*SwitchWeights));
1619     delete SwitchWeights;
1620   }
1621   SwitchInsn = SavedSwitchInsn;
1622   SwitchWeights = SavedSwitchWeights;
1623   CaseRangeBlock = SavedCRBlock;
1624 }
1625 
1626 static std::string
1627 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1628                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1629   std::string Result;
1630 
1631   while (*Constraint) {
1632     switch (*Constraint) {
1633     default:
1634       Result += Target.convertConstraint(Constraint);
1635       break;
1636     // Ignore these
1637     case '*':
1638     case '?':
1639     case '!':
1640     case '=': // Will see this and the following in mult-alt constraints.
1641     case '+':
1642       break;
1643     case '#': // Ignore the rest of the constraint alternative.
1644       while (Constraint[1] && Constraint[1] != ',')
1645         Constraint++;
1646       break;
1647     case '&':
1648     case '%':
1649       Result += *Constraint;
1650       while (Constraint[1] && Constraint[1] == *Constraint)
1651         Constraint++;
1652       break;
1653     case ',':
1654       Result += "|";
1655       break;
1656     case 'g':
1657       Result += "imr";
1658       break;
1659     case '[': {
1660       assert(OutCons &&
1661              "Must pass output names to constraints with a symbolic name");
1662       unsigned Index;
1663       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1664       assert(result && "Could not resolve symbolic name"); (void)result;
1665       Result += llvm::utostr(Index);
1666       break;
1667     }
1668     }
1669 
1670     Constraint++;
1671   }
1672 
1673   return Result;
1674 }
1675 
1676 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1677 /// as using a particular register add that as a constraint that will be used
1678 /// in this asm stmt.
1679 static std::string
1680 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1681                        const TargetInfo &Target, CodeGenModule &CGM,
1682                        const AsmStmt &Stmt, const bool EarlyClobber) {
1683   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1684   if (!AsmDeclRef)
1685     return Constraint;
1686   const ValueDecl &Value = *AsmDeclRef->getDecl();
1687   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1688   if (!Variable)
1689     return Constraint;
1690   if (Variable->getStorageClass() != SC_Register)
1691     return Constraint;
1692   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1693   if (!Attr)
1694     return Constraint;
1695   StringRef Register = Attr->getLabel();
1696   assert(Target.isValidGCCRegisterName(Register));
1697   // We're using validateOutputConstraint here because we only care if
1698   // this is a register constraint.
1699   TargetInfo::ConstraintInfo Info(Constraint, "");
1700   if (Target.validateOutputConstraint(Info) &&
1701       !Info.allowsRegister()) {
1702     CGM.ErrorUnsupported(&Stmt, "__asm__");
1703     return Constraint;
1704   }
1705   // Canonicalize the register here before returning it.
1706   Register = Target.getNormalizedGCCRegisterName(Register);
1707   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1708 }
1709 
1710 llvm::Value*
1711 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1712                                     LValue InputValue, QualType InputType,
1713                                     std::string &ConstraintStr,
1714                                     SourceLocation Loc) {
1715   llvm::Value *Arg;
1716   if (Info.allowsRegister() || !Info.allowsMemory()) {
1717     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1718       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1719     } else {
1720       llvm::Type *Ty = ConvertType(InputType);
1721       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1722       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1723         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1724         Ty = llvm::PointerType::getUnqual(Ty);
1725 
1726         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1727                                                        Ty));
1728       } else {
1729         Arg = InputValue.getPointer();
1730         ConstraintStr += '*';
1731       }
1732     }
1733   } else {
1734     Arg = InputValue.getPointer();
1735     ConstraintStr += '*';
1736   }
1737 
1738   return Arg;
1739 }
1740 
1741 llvm::Value* CodeGenFunction::EmitAsmInput(
1742                                          const TargetInfo::ConstraintInfo &Info,
1743                                            const Expr *InputExpr,
1744                                            std::string &ConstraintStr) {
1745   // If this can't be a register or memory, i.e., has to be a constant
1746   // (immediate or symbolic), try to emit it as such.
1747   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1748     llvm::APSInt Result;
1749     if (InputExpr->EvaluateAsInt(Result, getContext()))
1750       return llvm::ConstantInt::get(getLLVMContext(), Result);
1751     assert(!Info.requiresImmediateConstant() &&
1752            "Required-immediate inlineasm arg isn't constant?");
1753   }
1754 
1755   if (Info.allowsRegister() || !Info.allowsMemory())
1756     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1757       return EmitScalarExpr(InputExpr);
1758   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1759     return EmitScalarExpr(InputExpr);
1760   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1761   LValue Dest = EmitLValue(InputExpr);
1762   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1763                             InputExpr->getExprLoc());
1764 }
1765 
1766 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1767 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1768 /// integers which are the source locations of the start of each line in the
1769 /// asm.
1770 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1771                                       CodeGenFunction &CGF) {
1772   SmallVector<llvm::Metadata *, 8> Locs;
1773   // Add the location of the first line to the MDNode.
1774   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1775       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1776   StringRef StrVal = Str->getString();
1777   if (!StrVal.empty()) {
1778     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1779     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1780     unsigned StartToken = 0;
1781     unsigned ByteOffset = 0;
1782 
1783     // Add the location of the start of each subsequent line of the asm to the
1784     // MDNode.
1785     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1786       if (StrVal[i] != '\n') continue;
1787       SourceLocation LineLoc = Str->getLocationOfByte(
1788           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1789       Locs.push_back(llvm::ConstantAsMetadata::get(
1790           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1791     }
1792   }
1793 
1794   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1795 }
1796 
1797 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1798   // Assemble the final asm string.
1799   std::string AsmString = S.generateAsmString(getContext());
1800 
1801   // Get all the output and input constraints together.
1802   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1803   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1804 
1805   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1806     StringRef Name;
1807     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1808       Name = GAS->getOutputName(i);
1809     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1810     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1811     assert(IsValid && "Failed to parse output constraint");
1812     OutputConstraintInfos.push_back(Info);
1813   }
1814 
1815   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1816     StringRef Name;
1817     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1818       Name = GAS->getInputName(i);
1819     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1820     bool IsValid =
1821       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1822     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1823     InputConstraintInfos.push_back(Info);
1824   }
1825 
1826   std::string Constraints;
1827 
1828   std::vector<LValue> ResultRegDests;
1829   std::vector<QualType> ResultRegQualTys;
1830   std::vector<llvm::Type *> ResultRegTypes;
1831   std::vector<llvm::Type *> ResultTruncRegTypes;
1832   std::vector<llvm::Type *> ArgTypes;
1833   std::vector<llvm::Value*> Args;
1834 
1835   // Keep track of inout constraints.
1836   std::string InOutConstraints;
1837   std::vector<llvm::Value*> InOutArgs;
1838   std::vector<llvm::Type*> InOutArgTypes;
1839 
1840   // An inline asm can be marked readonly if it meets the following conditions:
1841   //  - it doesn't have any sideeffects
1842   //  - it doesn't clobber memory
1843   //  - it doesn't return a value by-reference
1844   // It can be marked readnone if it doesn't have any input memory constraints
1845   // in addition to meeting the conditions listed above.
1846   bool ReadOnly = true, ReadNone = true;
1847 
1848   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1849     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1850 
1851     // Simplify the output constraint.
1852     std::string OutputConstraint(S.getOutputConstraint(i));
1853     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1854                                           getTarget());
1855 
1856     const Expr *OutExpr = S.getOutputExpr(i);
1857     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1858 
1859     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1860                                               getTarget(), CGM, S,
1861                                               Info.earlyClobber());
1862 
1863     LValue Dest = EmitLValue(OutExpr);
1864     if (!Constraints.empty())
1865       Constraints += ',';
1866 
1867     // If this is a register output, then make the inline asm return it
1868     // by-value.  If this is a memory result, return the value by-reference.
1869     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1870       Constraints += "=" + OutputConstraint;
1871       ResultRegQualTys.push_back(OutExpr->getType());
1872       ResultRegDests.push_back(Dest);
1873       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1874       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1875 
1876       // If this output is tied to an input, and if the input is larger, then
1877       // we need to set the actual result type of the inline asm node to be the
1878       // same as the input type.
1879       if (Info.hasMatchingInput()) {
1880         unsigned InputNo;
1881         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1882           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1883           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1884             break;
1885         }
1886         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1887 
1888         QualType InputTy = S.getInputExpr(InputNo)->getType();
1889         QualType OutputType = OutExpr->getType();
1890 
1891         uint64_t InputSize = getContext().getTypeSize(InputTy);
1892         if (getContext().getTypeSize(OutputType) < InputSize) {
1893           // Form the asm to return the value as a larger integer or fp type.
1894           ResultRegTypes.back() = ConvertType(InputTy);
1895         }
1896       }
1897       if (llvm::Type* AdjTy =
1898             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1899                                                  ResultRegTypes.back()))
1900         ResultRegTypes.back() = AdjTy;
1901       else {
1902         CGM.getDiags().Report(S.getAsmLoc(),
1903                               diag::err_asm_invalid_type_in_input)
1904             << OutExpr->getType() << OutputConstraint;
1905       }
1906     } else {
1907       ArgTypes.push_back(Dest.getAddress().getType());
1908       Args.push_back(Dest.getPointer());
1909       Constraints += "=*";
1910       Constraints += OutputConstraint;
1911       ReadOnly = ReadNone = false;
1912     }
1913 
1914     if (Info.isReadWrite()) {
1915       InOutConstraints += ',';
1916 
1917       const Expr *InputExpr = S.getOutputExpr(i);
1918       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1919                                             InOutConstraints,
1920                                             InputExpr->getExprLoc());
1921 
1922       if (llvm::Type* AdjTy =
1923           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1924                                                Arg->getType()))
1925         Arg = Builder.CreateBitCast(Arg, AdjTy);
1926 
1927       if (Info.allowsRegister())
1928         InOutConstraints += llvm::utostr(i);
1929       else
1930         InOutConstraints += OutputConstraint;
1931 
1932       InOutArgTypes.push_back(Arg->getType());
1933       InOutArgs.push_back(Arg);
1934     }
1935   }
1936 
1937   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1938   // to the return value slot. Only do this when returning in registers.
1939   if (isa<MSAsmStmt>(&S)) {
1940     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1941     if (RetAI.isDirect() || RetAI.isExtend()) {
1942       // Make a fake lvalue for the return value slot.
1943       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1944       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1945           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1946           ResultRegDests, AsmString, S.getNumOutputs());
1947       SawAsmBlock = true;
1948     }
1949   }
1950 
1951   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1952     const Expr *InputExpr = S.getInputExpr(i);
1953 
1954     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1955 
1956     if (Info.allowsMemory())
1957       ReadNone = false;
1958 
1959     if (!Constraints.empty())
1960       Constraints += ',';
1961 
1962     // Simplify the input constraint.
1963     std::string InputConstraint(S.getInputConstraint(i));
1964     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1965                                          &OutputConstraintInfos);
1966 
1967     InputConstraint = AddVariableConstraints(
1968         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1969         getTarget(), CGM, S, false /* No EarlyClobber */);
1970 
1971     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1972 
1973     // If this input argument is tied to a larger output result, extend the
1974     // input to be the same size as the output.  The LLVM backend wants to see
1975     // the input and output of a matching constraint be the same size.  Note
1976     // that GCC does not define what the top bits are here.  We use zext because
1977     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1978     if (Info.hasTiedOperand()) {
1979       unsigned Output = Info.getTiedOperand();
1980       QualType OutputType = S.getOutputExpr(Output)->getType();
1981       QualType InputTy = InputExpr->getType();
1982 
1983       if (getContext().getTypeSize(OutputType) >
1984           getContext().getTypeSize(InputTy)) {
1985         // Use ptrtoint as appropriate so that we can do our extension.
1986         if (isa<llvm::PointerType>(Arg->getType()))
1987           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1988         llvm::Type *OutputTy = ConvertType(OutputType);
1989         if (isa<llvm::IntegerType>(OutputTy))
1990           Arg = Builder.CreateZExt(Arg, OutputTy);
1991         else if (isa<llvm::PointerType>(OutputTy))
1992           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1993         else {
1994           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1995           Arg = Builder.CreateFPExt(Arg, OutputTy);
1996         }
1997       }
1998     }
1999     if (llvm::Type* AdjTy =
2000               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
2001                                                    Arg->getType()))
2002       Arg = Builder.CreateBitCast(Arg, AdjTy);
2003     else
2004       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2005           << InputExpr->getType() << InputConstraint;
2006 
2007     ArgTypes.push_back(Arg->getType());
2008     Args.push_back(Arg);
2009     Constraints += InputConstraint;
2010   }
2011 
2012   // Append the "input" part of inout constraints last.
2013   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2014     ArgTypes.push_back(InOutArgTypes[i]);
2015     Args.push_back(InOutArgs[i]);
2016   }
2017   Constraints += InOutConstraints;
2018 
2019   // Clobbers
2020   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2021     StringRef Clobber = S.getClobber(i);
2022 
2023     if (Clobber == "memory")
2024       ReadOnly = ReadNone = false;
2025     else if (Clobber != "cc")
2026       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2027 
2028     if (!Constraints.empty())
2029       Constraints += ',';
2030 
2031     Constraints += "~{";
2032     Constraints += Clobber;
2033     Constraints += '}';
2034   }
2035 
2036   // Add machine specific clobbers
2037   std::string MachineClobbers = getTarget().getClobbers();
2038   if (!MachineClobbers.empty()) {
2039     if (!Constraints.empty())
2040       Constraints += ',';
2041     Constraints += MachineClobbers;
2042   }
2043 
2044   llvm::Type *ResultType;
2045   if (ResultRegTypes.empty())
2046     ResultType = VoidTy;
2047   else if (ResultRegTypes.size() == 1)
2048     ResultType = ResultRegTypes[0];
2049   else
2050     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2051 
2052   llvm::FunctionType *FTy =
2053     llvm::FunctionType::get(ResultType, ArgTypes, false);
2054 
2055   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2056   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2057     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2058   llvm::InlineAsm *IA =
2059     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2060                          /* IsAlignStack */ false, AsmDialect);
2061   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2062   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2063                        llvm::Attribute::NoUnwind);
2064 
2065   if (isa<MSAsmStmt>(&S)) {
2066     // If the assembly contains any labels, mark the call noduplicate to prevent
2067     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
2068     // works.
2069     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
2070       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2071                            llvm::Attribute::NoDuplicate);
2072   }
2073 
2074   // Attach readnone and readonly attributes.
2075   if (!HasSideEffect) {
2076     if (ReadNone)
2077       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2078                            llvm::Attribute::ReadNone);
2079     else if (ReadOnly)
2080       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2081                            llvm::Attribute::ReadOnly);
2082   }
2083 
2084   // Slap the source location of the inline asm into a !srcloc metadata on the
2085   // call.
2086   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2087     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2088                                                    *this));
2089   } else {
2090     // At least put the line number on MS inline asm blobs.
2091     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2092     Result->setMetadata("srcloc",
2093                         llvm::MDNode::get(getLLVMContext(),
2094                                           llvm::ConstantAsMetadata::get(Loc)));
2095   }
2096 
2097   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
2098     // Conservatively, mark all inline asm blocks in CUDA as convergent
2099     // (meaning, they may call an intrinsically convergent op, such as bar.sync,
2100     // and so can't have certain optimizations applied around them).
2101     Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2102                          llvm::Attribute::Convergent);
2103   }
2104 
2105   // Extract all of the register value results from the asm.
2106   std::vector<llvm::Value*> RegResults;
2107   if (ResultRegTypes.size() == 1) {
2108     RegResults.push_back(Result);
2109   } else {
2110     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2111       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2112       RegResults.push_back(Tmp);
2113     }
2114   }
2115 
2116   assert(RegResults.size() == ResultRegTypes.size());
2117   assert(RegResults.size() == ResultTruncRegTypes.size());
2118   assert(RegResults.size() == ResultRegDests.size());
2119   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2120     llvm::Value *Tmp = RegResults[i];
2121 
2122     // If the result type of the LLVM IR asm doesn't match the result type of
2123     // the expression, do the conversion.
2124     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2125       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2126 
2127       // Truncate the integer result to the right size, note that TruncTy can be
2128       // a pointer.
2129       if (TruncTy->isFloatingPointTy())
2130         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2131       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2132         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2133         Tmp = Builder.CreateTrunc(Tmp,
2134                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2135         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2136       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2137         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2138         Tmp = Builder.CreatePtrToInt(Tmp,
2139                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2140         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2141       } else if (TruncTy->isIntegerTy()) {
2142         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2143       } else if (TruncTy->isVectorTy()) {
2144         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2145       }
2146     }
2147 
2148     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2149   }
2150 }
2151 
2152 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2153   const RecordDecl *RD = S.getCapturedRecordDecl();
2154   QualType RecordTy = getContext().getRecordType(RD);
2155 
2156   // Initialize the captured struct.
2157   LValue SlotLV =
2158     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2159 
2160   RecordDecl::field_iterator CurField = RD->field_begin();
2161   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2162                                                  E = S.capture_init_end();
2163        I != E; ++I, ++CurField) {
2164     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2165     if (CurField->hasCapturedVLAType()) {
2166       auto VAT = CurField->getCapturedVLAType();
2167       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2168     } else {
2169       EmitInitializerForField(*CurField, LV, *I, None);
2170     }
2171   }
2172 
2173   return SlotLV;
2174 }
2175 
2176 /// Generate an outlined function for the body of a CapturedStmt, store any
2177 /// captured variables into the captured struct, and call the outlined function.
2178 llvm::Function *
2179 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2180   LValue CapStruct = InitCapturedStruct(S);
2181 
2182   // Emit the CapturedDecl
2183   CodeGenFunction CGF(CGM, true);
2184   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2185   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2186   delete CGF.CapturedStmtInfo;
2187 
2188   // Emit call to the helper function.
2189   EmitCallOrInvoke(F, CapStruct.getPointer());
2190 
2191   return F;
2192 }
2193 
2194 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2195   LValue CapStruct = InitCapturedStruct(S);
2196   return CapStruct.getAddress();
2197 }
2198 
2199 /// Creates the outlined function for a CapturedStmt.
2200 llvm::Function *
2201 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2202   assert(CapturedStmtInfo &&
2203     "CapturedStmtInfo should be set when generating the captured function");
2204   const CapturedDecl *CD = S.getCapturedDecl();
2205   const RecordDecl *RD = S.getCapturedRecordDecl();
2206   SourceLocation Loc = S.getLocStart();
2207   assert(CD->hasBody() && "missing CapturedDecl body");
2208 
2209   // Build the argument list.
2210   ASTContext &Ctx = CGM.getContext();
2211   FunctionArgList Args;
2212   Args.append(CD->param_begin(), CD->param_end());
2213 
2214   // Create the function declaration.
2215   FunctionType::ExtInfo ExtInfo;
2216   const CGFunctionInfo &FuncInfo =
2217     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2218   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2219 
2220   llvm::Function *F =
2221     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2222                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2223   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2224   if (CD->isNothrow())
2225     F->addFnAttr(llvm::Attribute::NoUnwind);
2226 
2227   // Generate the function.
2228   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2229                 CD->getLocation(),
2230                 CD->getBody()->getLocStart());
2231   // Set the context parameter in CapturedStmtInfo.
2232   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2233   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2234 
2235   // Initialize variable-length arrays.
2236   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2237                                            Ctx.getTagDeclType(RD));
2238   for (auto *FD : RD->fields()) {
2239     if (FD->hasCapturedVLAType()) {
2240       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2241                                        S.getLocStart()).getScalarVal();
2242       auto VAT = FD->getCapturedVLAType();
2243       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2244     }
2245   }
2246 
2247   // If 'this' is captured, load it into CXXThisValue.
2248   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2249     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2250     LValue ThisLValue = EmitLValueForField(Base, FD);
2251     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2252   }
2253 
2254   PGO.assignRegionCounters(GlobalDecl(CD), F);
2255   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2256   FinishFunction(CD->getBodyRBrace());
2257 
2258   return F;
2259 }
2260