1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::OMPParallelDirectiveClass: 177 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 178 break; 179 case Stmt::OMPSimdDirectiveClass: 180 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 181 break; 182 } 183 } 184 185 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 186 switch (S->getStmtClass()) { 187 default: return false; 188 case Stmt::NullStmtClass: break; 189 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 190 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 191 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 192 case Stmt::AttributedStmtClass: 193 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 194 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 195 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 196 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 197 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 198 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 199 } 200 201 return true; 202 } 203 204 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 205 /// this captures the expression result of the last sub-statement and returns it 206 /// (for use by the statement expression extension). 207 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 208 AggValueSlot AggSlot) { 209 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 210 "LLVM IR generation of compound statement ('{}')"); 211 212 // Keep track of the current cleanup stack depth, including debug scopes. 213 LexicalScope Scope(*this, S.getSourceRange()); 214 215 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 216 } 217 218 llvm::Value* 219 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 220 bool GetLast, 221 AggValueSlot AggSlot) { 222 223 for (CompoundStmt::const_body_iterator I = S.body_begin(), 224 E = S.body_end()-GetLast; I != E; ++I) 225 EmitStmt(*I); 226 227 llvm::Value *RetAlloca = nullptr; 228 if (GetLast) { 229 // We have to special case labels here. They are statements, but when put 230 // at the end of a statement expression, they yield the value of their 231 // subexpression. Handle this by walking through all labels we encounter, 232 // emitting them before we evaluate the subexpr. 233 const Stmt *LastStmt = S.body_back(); 234 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 235 EmitLabel(LS->getDecl()); 236 LastStmt = LS->getSubStmt(); 237 } 238 239 EnsureInsertPoint(); 240 241 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 242 if (hasAggregateEvaluationKind(ExprTy)) { 243 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 244 } else { 245 // We can't return an RValue here because there might be cleanups at 246 // the end of the StmtExpr. Because of that, we have to emit the result 247 // here into a temporary alloca. 248 RetAlloca = CreateMemTemp(ExprTy); 249 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 250 /*IsInit*/false); 251 } 252 253 } 254 255 return RetAlloca; 256 } 257 258 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 259 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 260 261 // If there is a cleanup stack, then we it isn't worth trying to 262 // simplify this block (we would need to remove it from the scope map 263 // and cleanup entry). 264 if (!EHStack.empty()) 265 return; 266 267 // Can only simplify direct branches. 268 if (!BI || !BI->isUnconditional()) 269 return; 270 271 // Can only simplify empty blocks. 272 if (BI != BB->begin()) 273 return; 274 275 BB->replaceAllUsesWith(BI->getSuccessor(0)); 276 BI->eraseFromParent(); 277 BB->eraseFromParent(); 278 } 279 280 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 281 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 282 283 // Fall out of the current block (if necessary). 284 EmitBranch(BB); 285 286 if (IsFinished && BB->use_empty()) { 287 delete BB; 288 return; 289 } 290 291 // Place the block after the current block, if possible, or else at 292 // the end of the function. 293 if (CurBB && CurBB->getParent()) 294 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 295 else 296 CurFn->getBasicBlockList().push_back(BB); 297 Builder.SetInsertPoint(BB); 298 } 299 300 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 301 // Emit a branch from the current block to the target one if this 302 // was a real block. If this was just a fall-through block after a 303 // terminator, don't emit it. 304 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 305 306 if (!CurBB || CurBB->getTerminator()) { 307 // If there is no insert point or the previous block is already 308 // terminated, don't touch it. 309 } else { 310 // Otherwise, create a fall-through branch. 311 Builder.CreateBr(Target); 312 } 313 314 Builder.ClearInsertionPoint(); 315 } 316 317 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 318 bool inserted = false; 319 for (llvm::User *u : block->users()) { 320 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 321 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 322 inserted = true; 323 break; 324 } 325 } 326 327 if (!inserted) 328 CurFn->getBasicBlockList().push_back(block); 329 330 Builder.SetInsertPoint(block); 331 } 332 333 CodeGenFunction::JumpDest 334 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 335 JumpDest &Dest = LabelMap[D]; 336 if (Dest.isValid()) return Dest; 337 338 // Create, but don't insert, the new block. 339 Dest = JumpDest(createBasicBlock(D->getName()), 340 EHScopeStack::stable_iterator::invalid(), 341 NextCleanupDestIndex++); 342 return Dest; 343 } 344 345 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 346 // Add this label to the current lexical scope if we're within any 347 // normal cleanups. Jumps "in" to this label --- when permitted by 348 // the language --- may need to be routed around such cleanups. 349 if (EHStack.hasNormalCleanups() && CurLexicalScope) 350 CurLexicalScope->addLabel(D); 351 352 JumpDest &Dest = LabelMap[D]; 353 354 // If we didn't need a forward reference to this label, just go 355 // ahead and create a destination at the current scope. 356 if (!Dest.isValid()) { 357 Dest = getJumpDestInCurrentScope(D->getName()); 358 359 // Otherwise, we need to give this label a target depth and remove 360 // it from the branch-fixups list. 361 } else { 362 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 363 Dest.setScopeDepth(EHStack.stable_begin()); 364 ResolveBranchFixups(Dest.getBlock()); 365 } 366 367 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 368 EmitBlock(Dest.getBlock()); 369 Cnt.beginRegion(Builder); 370 } 371 372 /// Change the cleanup scope of the labels in this lexical scope to 373 /// match the scope of the enclosing context. 374 void CodeGenFunction::LexicalScope::rescopeLabels() { 375 assert(!Labels.empty()); 376 EHScopeStack::stable_iterator innermostScope 377 = CGF.EHStack.getInnermostNormalCleanup(); 378 379 // Change the scope depth of all the labels. 380 for (SmallVectorImpl<const LabelDecl*>::const_iterator 381 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 382 assert(CGF.LabelMap.count(*i)); 383 JumpDest &dest = CGF.LabelMap.find(*i)->second; 384 assert(dest.getScopeDepth().isValid()); 385 assert(innermostScope.encloses(dest.getScopeDepth())); 386 dest.setScopeDepth(innermostScope); 387 } 388 389 // Reparent the labels if the new scope also has cleanups. 390 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 391 ParentScope->Labels.append(Labels.begin(), Labels.end()); 392 } 393 } 394 395 396 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 397 EmitLabel(S.getDecl()); 398 EmitStmt(S.getSubStmt()); 399 } 400 401 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 402 const Stmt *SubStmt = S.getSubStmt(); 403 switch (SubStmt->getStmtClass()) { 404 case Stmt::DoStmtClass: 405 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 406 break; 407 case Stmt::ForStmtClass: 408 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 409 break; 410 case Stmt::WhileStmtClass: 411 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 412 break; 413 case Stmt::CXXForRangeStmtClass: 414 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 415 break; 416 default: 417 EmitStmt(SubStmt); 418 } 419 } 420 421 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 422 // If this code is reachable then emit a stop point (if generating 423 // debug info). We have to do this ourselves because we are on the 424 // "simple" statement path. 425 if (HaveInsertPoint()) 426 EmitStopPoint(&S); 427 428 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 429 } 430 431 432 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 433 if (const LabelDecl *Target = S.getConstantTarget()) { 434 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 435 return; 436 } 437 438 // Ensure that we have an i8* for our PHI node. 439 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 440 Int8PtrTy, "addr"); 441 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 442 443 // Get the basic block for the indirect goto. 444 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 445 446 // The first instruction in the block has to be the PHI for the switch dest, 447 // add an entry for this branch. 448 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 449 450 EmitBranch(IndGotoBB); 451 } 452 453 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 454 // C99 6.8.4.1: The first substatement is executed if the expression compares 455 // unequal to 0. The condition must be a scalar type. 456 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 457 RegionCounter Cnt = getPGORegionCounter(&S); 458 459 if (S.getConditionVariable()) 460 EmitAutoVarDecl(*S.getConditionVariable()); 461 462 // If the condition constant folds and can be elided, try to avoid emitting 463 // the condition and the dead arm of the if/else. 464 bool CondConstant; 465 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 466 // Figure out which block (then or else) is executed. 467 const Stmt *Executed = S.getThen(); 468 const Stmt *Skipped = S.getElse(); 469 if (!CondConstant) // Condition false? 470 std::swap(Executed, Skipped); 471 472 // If the skipped block has no labels in it, just emit the executed block. 473 // This avoids emitting dead code and simplifies the CFG substantially. 474 if (!ContainsLabel(Skipped)) { 475 if (CondConstant) 476 Cnt.beginRegion(Builder); 477 if (Executed) { 478 RunCleanupsScope ExecutedScope(*this); 479 EmitStmt(Executed); 480 } 481 return; 482 } 483 } 484 485 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 486 // the conditional branch. 487 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 488 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 489 llvm::BasicBlock *ElseBlock = ContBlock; 490 if (S.getElse()) 491 ElseBlock = createBasicBlock("if.else"); 492 493 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 494 495 // Emit the 'then' code. 496 EmitBlock(ThenBlock); 497 Cnt.beginRegion(Builder); 498 { 499 RunCleanupsScope ThenScope(*this); 500 EmitStmt(S.getThen()); 501 } 502 EmitBranch(ContBlock); 503 504 // Emit the 'else' code if present. 505 if (const Stmt *Else = S.getElse()) { 506 // There is no need to emit line number for unconditional branch. 507 if (getDebugInfo()) 508 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 509 EmitBlock(ElseBlock); 510 { 511 RunCleanupsScope ElseScope(*this); 512 EmitStmt(Else); 513 } 514 // There is no need to emit line number for unconditional branch. 515 if (getDebugInfo()) 516 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 517 EmitBranch(ContBlock); 518 } 519 520 // Emit the continuation block for code after the if. 521 EmitBlock(ContBlock, true); 522 } 523 524 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 525 llvm::BranchInst *CondBr, 526 const ArrayRef<const Attr *> &Attrs) { 527 // Return if there are no hints. 528 if (Attrs.empty()) 529 return; 530 531 // Add vectorize hints to the metadata on the conditional branch. 532 SmallVector<llvm::Value *, 2> Metadata(1); 533 for (const auto *Attr : Attrs) { 534 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 535 536 // Skip non loop hint attributes 537 if (!LH) 538 continue; 539 540 LoopHintAttr::OptionType Option = LH->getOption(); 541 int ValueInt = LH->getValue(); 542 543 const char *MetadataName; 544 switch (Option) { 545 case LoopHintAttr::Vectorize: 546 case LoopHintAttr::VectorizeWidth: 547 MetadataName = "llvm.vectorizer.width"; 548 break; 549 case LoopHintAttr::Interleave: 550 case LoopHintAttr::InterleaveCount: 551 MetadataName = "llvm.vectorizer.unroll"; 552 break; 553 case LoopHintAttr::Unroll: 554 MetadataName = "llvm.loopunroll.enable"; 555 break; 556 case LoopHintAttr::UnrollCount: 557 MetadataName = "llvm.loopunroll.count"; 558 break; 559 } 560 561 llvm::Value *Value; 562 llvm::MDString *Name; 563 switch (Option) { 564 case LoopHintAttr::Vectorize: 565 case LoopHintAttr::Interleave: 566 if (ValueInt == 1) { 567 // FIXME: In the future I will modifiy the behavior of the metadata 568 // so we can enable/disable vectorization and interleaving separately. 569 Name = llvm::MDString::get(Context, "llvm.vectorizer.enable"); 570 Value = Builder.getTrue(); 571 break; 572 } 573 // Vectorization/interleaving is disabled, set width/count to 1. 574 ValueInt = 1; 575 // Fallthrough. 576 case LoopHintAttr::VectorizeWidth: 577 case LoopHintAttr::InterleaveCount: 578 Name = llvm::MDString::get(Context, MetadataName); 579 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 580 break; 581 case LoopHintAttr::Unroll: 582 Name = llvm::MDString::get(Context, MetadataName); 583 Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue(); 584 break; 585 case LoopHintAttr::UnrollCount: 586 Name = llvm::MDString::get(Context, MetadataName); 587 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 588 break; 589 } 590 591 SmallVector<llvm::Value *, 2> OpValues; 592 OpValues.push_back(Name); 593 OpValues.push_back(Value); 594 595 // Set or overwrite metadata indicated by Name. 596 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 597 } 598 599 if (!Metadata.empty()) { 600 // Add llvm.loop MDNode to CondBr. 601 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 602 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 603 604 CondBr->setMetadata("llvm.loop", LoopID); 605 } 606 } 607 608 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 609 const ArrayRef<const Attr *> &WhileAttrs) { 610 RegionCounter Cnt = getPGORegionCounter(&S); 611 612 // Emit the header for the loop, which will also become 613 // the continue target. 614 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 615 EmitBlock(LoopHeader.getBlock()); 616 617 LoopStack.push(LoopHeader.getBlock()); 618 619 // Create an exit block for when the condition fails, which will 620 // also become the break target. 621 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 622 623 // Store the blocks to use for break and continue. 624 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 625 626 // C++ [stmt.while]p2: 627 // When the condition of a while statement is a declaration, the 628 // scope of the variable that is declared extends from its point 629 // of declaration (3.3.2) to the end of the while statement. 630 // [...] 631 // The object created in a condition is destroyed and created 632 // with each iteration of the loop. 633 RunCleanupsScope ConditionScope(*this); 634 635 if (S.getConditionVariable()) 636 EmitAutoVarDecl(*S.getConditionVariable()); 637 638 // Evaluate the conditional in the while header. C99 6.8.5.1: The 639 // evaluation of the controlling expression takes place before each 640 // execution of the loop body. 641 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 642 643 // while(1) is common, avoid extra exit blocks. Be sure 644 // to correctly handle break/continue though. 645 bool EmitBoolCondBranch = true; 646 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 647 if (C->isOne()) 648 EmitBoolCondBranch = false; 649 650 // As long as the condition is true, go to the loop body. 651 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 652 if (EmitBoolCondBranch) { 653 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 654 if (ConditionScope.requiresCleanups()) 655 ExitBlock = createBasicBlock("while.exit"); 656 llvm::BranchInst *CondBr = 657 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 658 PGO.createLoopWeights(S.getCond(), Cnt)); 659 660 if (ExitBlock != LoopExit.getBlock()) { 661 EmitBlock(ExitBlock); 662 EmitBranchThroughCleanup(LoopExit); 663 } 664 665 // Attach metadata to loop body conditional branch. 666 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 667 } 668 669 // Emit the loop body. We have to emit this in a cleanup scope 670 // because it might be a singleton DeclStmt. 671 { 672 RunCleanupsScope BodyScope(*this); 673 EmitBlock(LoopBody); 674 Cnt.beginRegion(Builder); 675 EmitStmt(S.getBody()); 676 } 677 678 BreakContinueStack.pop_back(); 679 680 // Immediately force cleanup. 681 ConditionScope.ForceCleanup(); 682 683 // Branch to the loop header again. 684 EmitBranch(LoopHeader.getBlock()); 685 686 LoopStack.pop(); 687 688 // Emit the exit block. 689 EmitBlock(LoopExit.getBlock(), true); 690 691 // The LoopHeader typically is just a branch if we skipped emitting 692 // a branch, try to erase it. 693 if (!EmitBoolCondBranch) 694 SimplifyForwardingBlocks(LoopHeader.getBlock()); 695 } 696 697 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 698 const ArrayRef<const Attr *> &DoAttrs) { 699 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 700 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 701 702 RegionCounter Cnt = getPGORegionCounter(&S); 703 704 // Store the blocks to use for break and continue. 705 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 706 707 // Emit the body of the loop. 708 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 709 710 LoopStack.push(LoopBody); 711 712 EmitBlockWithFallThrough(LoopBody, Cnt); 713 { 714 RunCleanupsScope BodyScope(*this); 715 EmitStmt(S.getBody()); 716 } 717 718 EmitBlock(LoopCond.getBlock()); 719 720 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 721 // after each execution of the loop body." 722 723 // Evaluate the conditional in the while header. 724 // C99 6.8.5p2/p4: The first substatement is executed if the expression 725 // compares unequal to 0. The condition must be a scalar type. 726 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 727 728 BreakContinueStack.pop_back(); 729 730 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 731 // to correctly handle break/continue though. 732 bool EmitBoolCondBranch = true; 733 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 734 if (C->isZero()) 735 EmitBoolCondBranch = false; 736 737 // As long as the condition is true, iterate the loop. 738 if (EmitBoolCondBranch) { 739 llvm::BranchInst *CondBr = 740 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 741 PGO.createLoopWeights(S.getCond(), Cnt)); 742 743 // Attach metadata to loop body conditional branch. 744 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 745 } 746 747 LoopStack.pop(); 748 749 // Emit the exit block. 750 EmitBlock(LoopExit.getBlock()); 751 752 // The DoCond block typically is just a branch if we skipped 753 // emitting a branch, try to erase it. 754 if (!EmitBoolCondBranch) 755 SimplifyForwardingBlocks(LoopCond.getBlock()); 756 } 757 758 void CodeGenFunction::EmitForStmt(const ForStmt &S, 759 const ArrayRef<const Attr *> &ForAttrs) { 760 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 761 762 RunCleanupsScope ForScope(*this); 763 764 CGDebugInfo *DI = getDebugInfo(); 765 if (DI) 766 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 767 768 // Evaluate the first part before the loop. 769 if (S.getInit()) 770 EmitStmt(S.getInit()); 771 772 RegionCounter Cnt = getPGORegionCounter(&S); 773 774 // Start the loop with a block that tests the condition. 775 // If there's an increment, the continue scope will be overwritten 776 // later. 777 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 778 llvm::BasicBlock *CondBlock = Continue.getBlock(); 779 EmitBlock(CondBlock); 780 781 LoopStack.push(CondBlock); 782 783 // If the for loop doesn't have an increment we can just use the 784 // condition as the continue block. Otherwise we'll need to create 785 // a block for it (in the current scope, i.e. in the scope of the 786 // condition), and that we will become our continue block. 787 if (S.getInc()) 788 Continue = getJumpDestInCurrentScope("for.inc"); 789 790 // Store the blocks to use for break and continue. 791 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 792 793 // Create a cleanup scope for the condition variable cleanups. 794 RunCleanupsScope ConditionScope(*this); 795 796 if (S.getCond()) { 797 // If the for statement has a condition scope, emit the local variable 798 // declaration. 799 if (S.getConditionVariable()) { 800 EmitAutoVarDecl(*S.getConditionVariable()); 801 } 802 803 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 804 // If there are any cleanups between here and the loop-exit scope, 805 // create a block to stage a loop exit along. 806 if (ForScope.requiresCleanups()) 807 ExitBlock = createBasicBlock("for.cond.cleanup"); 808 809 // As long as the condition is true, iterate the loop. 810 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 811 812 // C99 6.8.5p2/p4: The first substatement is executed if the expression 813 // compares unequal to 0. The condition must be a scalar type. 814 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 815 llvm::BranchInst *CondBr = 816 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 817 PGO.createLoopWeights(S.getCond(), Cnt)); 818 819 // Attach metadata to loop body conditional branch. 820 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 821 822 if (ExitBlock != LoopExit.getBlock()) { 823 EmitBlock(ExitBlock); 824 EmitBranchThroughCleanup(LoopExit); 825 } 826 827 EmitBlock(ForBody); 828 } else { 829 // Treat it as a non-zero constant. Don't even create a new block for the 830 // body, just fall into it. 831 } 832 Cnt.beginRegion(Builder); 833 834 { 835 // Create a separate cleanup scope for the body, in case it is not 836 // a compound statement. 837 RunCleanupsScope BodyScope(*this); 838 EmitStmt(S.getBody()); 839 } 840 841 // If there is an increment, emit it next. 842 if (S.getInc()) { 843 EmitBlock(Continue.getBlock()); 844 EmitStmt(S.getInc()); 845 } 846 847 BreakContinueStack.pop_back(); 848 849 ConditionScope.ForceCleanup(); 850 EmitBranch(CondBlock); 851 852 ForScope.ForceCleanup(); 853 854 if (DI) 855 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 856 857 LoopStack.pop(); 858 859 // Emit the fall-through block. 860 EmitBlock(LoopExit.getBlock(), true); 861 } 862 863 void 864 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 865 const ArrayRef<const Attr *> &ForAttrs) { 866 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 867 868 RunCleanupsScope ForScope(*this); 869 870 CGDebugInfo *DI = getDebugInfo(); 871 if (DI) 872 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 873 874 // Evaluate the first pieces before the loop. 875 EmitStmt(S.getRangeStmt()); 876 EmitStmt(S.getBeginEndStmt()); 877 878 RegionCounter Cnt = getPGORegionCounter(&S); 879 880 // Start the loop with a block that tests the condition. 881 // If there's an increment, the continue scope will be overwritten 882 // later. 883 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 884 EmitBlock(CondBlock); 885 886 LoopStack.push(CondBlock); 887 888 // If there are any cleanups between here and the loop-exit scope, 889 // create a block to stage a loop exit along. 890 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 891 if (ForScope.requiresCleanups()) 892 ExitBlock = createBasicBlock("for.cond.cleanup"); 893 894 // The loop body, consisting of the specified body and the loop variable. 895 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 896 897 // The body is executed if the expression, contextually converted 898 // to bool, is true. 899 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 900 llvm::BranchInst *CondBr = Builder.CreateCondBr( 901 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 902 903 // Attach metadata to loop body conditional branch. 904 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 905 906 if (ExitBlock != LoopExit.getBlock()) { 907 EmitBlock(ExitBlock); 908 EmitBranchThroughCleanup(LoopExit); 909 } 910 911 EmitBlock(ForBody); 912 Cnt.beginRegion(Builder); 913 914 // Create a block for the increment. In case of a 'continue', we jump there. 915 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 916 917 // Store the blocks to use for break and continue. 918 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 919 920 { 921 // Create a separate cleanup scope for the loop variable and body. 922 RunCleanupsScope BodyScope(*this); 923 EmitStmt(S.getLoopVarStmt()); 924 EmitStmt(S.getBody()); 925 } 926 927 // If there is an increment, emit it next. 928 EmitBlock(Continue.getBlock()); 929 EmitStmt(S.getInc()); 930 931 BreakContinueStack.pop_back(); 932 933 EmitBranch(CondBlock); 934 935 ForScope.ForceCleanup(); 936 937 if (DI) 938 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 939 940 LoopStack.pop(); 941 942 // Emit the fall-through block. 943 EmitBlock(LoopExit.getBlock(), true); 944 } 945 946 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 947 if (RV.isScalar()) { 948 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 949 } else if (RV.isAggregate()) { 950 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 951 } else { 952 EmitStoreOfComplex(RV.getComplexVal(), 953 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 954 /*init*/ true); 955 } 956 EmitBranchThroughCleanup(ReturnBlock); 957 } 958 959 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 960 /// if the function returns void, or may be missing one if the function returns 961 /// non-void. Fun stuff :). 962 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 963 // Emit the result value, even if unused, to evalute the side effects. 964 const Expr *RV = S.getRetValue(); 965 966 // Treat block literals in a return expression as if they appeared 967 // in their own scope. This permits a small, easily-implemented 968 // exception to our over-conservative rules about not jumping to 969 // statements following block literals with non-trivial cleanups. 970 RunCleanupsScope cleanupScope(*this); 971 if (const ExprWithCleanups *cleanups = 972 dyn_cast_or_null<ExprWithCleanups>(RV)) { 973 enterFullExpression(cleanups); 974 RV = cleanups->getSubExpr(); 975 } 976 977 // FIXME: Clean this up by using an LValue for ReturnTemp, 978 // EmitStoreThroughLValue, and EmitAnyExpr. 979 if (getLangOpts().ElideConstructors && 980 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 981 // Apply the named return value optimization for this return statement, 982 // which means doing nothing: the appropriate result has already been 983 // constructed into the NRVO variable. 984 985 // If there is an NRVO flag for this variable, set it to 1 into indicate 986 // that the cleanup code should not destroy the variable. 987 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 988 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 989 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 990 // Make sure not to return anything, but evaluate the expression 991 // for side effects. 992 if (RV) 993 EmitAnyExpr(RV); 994 } else if (!RV) { 995 // Do nothing (return value is left uninitialized) 996 } else if (FnRetTy->isReferenceType()) { 997 // If this function returns a reference, take the address of the expression 998 // rather than the value. 999 RValue Result = EmitReferenceBindingToExpr(RV); 1000 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1001 } else { 1002 switch (getEvaluationKind(RV->getType())) { 1003 case TEK_Scalar: 1004 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1005 break; 1006 case TEK_Complex: 1007 EmitComplexExprIntoLValue(RV, 1008 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1009 /*isInit*/ true); 1010 break; 1011 case TEK_Aggregate: { 1012 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1013 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1014 Qualifiers(), 1015 AggValueSlot::IsDestructed, 1016 AggValueSlot::DoesNotNeedGCBarriers, 1017 AggValueSlot::IsNotAliased)); 1018 break; 1019 } 1020 } 1021 } 1022 1023 ++NumReturnExprs; 1024 if (!RV || RV->isEvaluatable(getContext())) 1025 ++NumSimpleReturnExprs; 1026 1027 cleanupScope.ForceCleanup(); 1028 EmitBranchThroughCleanup(ReturnBlock); 1029 } 1030 1031 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1032 // As long as debug info is modeled with instructions, we have to ensure we 1033 // have a place to insert here and write the stop point here. 1034 if (HaveInsertPoint()) 1035 EmitStopPoint(&S); 1036 1037 for (const auto *I : S.decls()) 1038 EmitDecl(*I); 1039 } 1040 1041 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1042 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1043 1044 // If this code is reachable then emit a stop point (if generating 1045 // debug info). We have to do this ourselves because we are on the 1046 // "simple" statement path. 1047 if (HaveInsertPoint()) 1048 EmitStopPoint(&S); 1049 1050 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1051 } 1052 1053 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1054 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1055 1056 // If this code is reachable then emit a stop point (if generating 1057 // debug info). We have to do this ourselves because we are on the 1058 // "simple" statement path. 1059 if (HaveInsertPoint()) 1060 EmitStopPoint(&S); 1061 1062 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1063 } 1064 1065 /// EmitCaseStmtRange - If case statement range is not too big then 1066 /// add multiple cases to switch instruction, one for each value within 1067 /// the range. If range is too big then emit "if" condition check. 1068 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1069 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1070 1071 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1072 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1073 1074 RegionCounter CaseCnt = getPGORegionCounter(&S); 1075 1076 // Emit the code for this case. We do this first to make sure it is 1077 // properly chained from our predecessor before generating the 1078 // switch machinery to enter this block. 1079 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1080 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1081 EmitStmt(S.getSubStmt()); 1082 1083 // If range is empty, do nothing. 1084 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1085 return; 1086 1087 llvm::APInt Range = RHS - LHS; 1088 // FIXME: parameters such as this should not be hardcoded. 1089 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1090 // Range is small enough to add multiple switch instruction cases. 1091 uint64_t Total = CaseCnt.getCount(); 1092 unsigned NCases = Range.getZExtValue() + 1; 1093 // We only have one region counter for the entire set of cases here, so we 1094 // need to divide the weights evenly between the generated cases, ensuring 1095 // that the total weight is preserved. E.g., a weight of 5 over three cases 1096 // will be distributed as weights of 2, 2, and 1. 1097 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1098 for (unsigned I = 0; I != NCases; ++I) { 1099 if (SwitchWeights) 1100 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1101 if (Rem) 1102 Rem--; 1103 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1104 LHS++; 1105 } 1106 return; 1107 } 1108 1109 // The range is too big. Emit "if" condition into a new block, 1110 // making sure to save and restore the current insertion point. 1111 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1112 1113 // Push this test onto the chain of range checks (which terminates 1114 // in the default basic block). The switch's default will be changed 1115 // to the top of this chain after switch emission is complete. 1116 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1117 CaseRangeBlock = createBasicBlock("sw.caserange"); 1118 1119 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1120 Builder.SetInsertPoint(CaseRangeBlock); 1121 1122 // Emit range check. 1123 llvm::Value *Diff = 1124 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1125 llvm::Value *Cond = 1126 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1127 1128 llvm::MDNode *Weights = nullptr; 1129 if (SwitchWeights) { 1130 uint64_t ThisCount = CaseCnt.getCount(); 1131 uint64_t DefaultCount = (*SwitchWeights)[0]; 1132 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1133 1134 // Since we're chaining the switch default through each large case range, we 1135 // need to update the weight for the default, ie, the first case, to include 1136 // this case. 1137 (*SwitchWeights)[0] += ThisCount; 1138 } 1139 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1140 1141 // Restore the appropriate insertion point. 1142 if (RestoreBB) 1143 Builder.SetInsertPoint(RestoreBB); 1144 else 1145 Builder.ClearInsertionPoint(); 1146 } 1147 1148 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1149 // If there is no enclosing switch instance that we're aware of, then this 1150 // case statement and its block can be elided. This situation only happens 1151 // when we've constant-folded the switch, are emitting the constant case, 1152 // and part of the constant case includes another case statement. For 1153 // instance: switch (4) { case 4: do { case 5: } while (1); } 1154 if (!SwitchInsn) { 1155 EmitStmt(S.getSubStmt()); 1156 return; 1157 } 1158 1159 // Handle case ranges. 1160 if (S.getRHS()) { 1161 EmitCaseStmtRange(S); 1162 return; 1163 } 1164 1165 RegionCounter CaseCnt = getPGORegionCounter(&S); 1166 llvm::ConstantInt *CaseVal = 1167 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1168 1169 // If the body of the case is just a 'break', try to not emit an empty block. 1170 // If we're profiling or we're not optimizing, leave the block in for better 1171 // debug and coverage analysis. 1172 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1173 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1174 isa<BreakStmt>(S.getSubStmt())) { 1175 JumpDest Block = BreakContinueStack.back().BreakBlock; 1176 1177 // Only do this optimization if there are no cleanups that need emitting. 1178 if (isObviouslyBranchWithoutCleanups(Block)) { 1179 if (SwitchWeights) 1180 SwitchWeights->push_back(CaseCnt.getCount()); 1181 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1182 1183 // If there was a fallthrough into this case, make sure to redirect it to 1184 // the end of the switch as well. 1185 if (Builder.GetInsertBlock()) { 1186 Builder.CreateBr(Block.getBlock()); 1187 Builder.ClearInsertionPoint(); 1188 } 1189 return; 1190 } 1191 } 1192 1193 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1194 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1195 if (SwitchWeights) 1196 SwitchWeights->push_back(CaseCnt.getCount()); 1197 SwitchInsn->addCase(CaseVal, CaseDest); 1198 1199 // Recursively emitting the statement is acceptable, but is not wonderful for 1200 // code where we have many case statements nested together, i.e.: 1201 // case 1: 1202 // case 2: 1203 // case 3: etc. 1204 // Handling this recursively will create a new block for each case statement 1205 // that falls through to the next case which is IR intensive. It also causes 1206 // deep recursion which can run into stack depth limitations. Handle 1207 // sequential non-range case statements specially. 1208 const CaseStmt *CurCase = &S; 1209 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1210 1211 // Otherwise, iteratively add consecutive cases to this switch stmt. 1212 while (NextCase && NextCase->getRHS() == nullptr) { 1213 CurCase = NextCase; 1214 llvm::ConstantInt *CaseVal = 1215 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1216 1217 CaseCnt = getPGORegionCounter(NextCase); 1218 if (SwitchWeights) 1219 SwitchWeights->push_back(CaseCnt.getCount()); 1220 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1221 CaseDest = createBasicBlock("sw.bb"); 1222 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1223 } 1224 1225 SwitchInsn->addCase(CaseVal, CaseDest); 1226 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1227 } 1228 1229 // Normal default recursion for non-cases. 1230 EmitStmt(CurCase->getSubStmt()); 1231 } 1232 1233 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1234 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1235 assert(DefaultBlock->empty() && 1236 "EmitDefaultStmt: Default block already defined?"); 1237 1238 RegionCounter Cnt = getPGORegionCounter(&S); 1239 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1240 1241 EmitStmt(S.getSubStmt()); 1242 } 1243 1244 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1245 /// constant value that is being switched on, see if we can dead code eliminate 1246 /// the body of the switch to a simple series of statements to emit. Basically, 1247 /// on a switch (5) we want to find these statements: 1248 /// case 5: 1249 /// printf(...); <-- 1250 /// ++i; <-- 1251 /// break; 1252 /// 1253 /// and add them to the ResultStmts vector. If it is unsafe to do this 1254 /// transformation (for example, one of the elided statements contains a label 1255 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1256 /// should include statements after it (e.g. the printf() line is a substmt of 1257 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1258 /// statement, then return CSFC_Success. 1259 /// 1260 /// If Case is non-null, then we are looking for the specified case, checking 1261 /// that nothing we jump over contains labels. If Case is null, then we found 1262 /// the case and are looking for the break. 1263 /// 1264 /// If the recursive walk actually finds our Case, then we set FoundCase to 1265 /// true. 1266 /// 1267 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1268 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1269 const SwitchCase *Case, 1270 bool &FoundCase, 1271 SmallVectorImpl<const Stmt*> &ResultStmts) { 1272 // If this is a null statement, just succeed. 1273 if (!S) 1274 return Case ? CSFC_Success : CSFC_FallThrough; 1275 1276 // If this is the switchcase (case 4: or default) that we're looking for, then 1277 // we're in business. Just add the substatement. 1278 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1279 if (S == Case) { 1280 FoundCase = true; 1281 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1282 ResultStmts); 1283 } 1284 1285 // Otherwise, this is some other case or default statement, just ignore it. 1286 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1287 ResultStmts); 1288 } 1289 1290 // If we are in the live part of the code and we found our break statement, 1291 // return a success! 1292 if (!Case && isa<BreakStmt>(S)) 1293 return CSFC_Success; 1294 1295 // If this is a switch statement, then it might contain the SwitchCase, the 1296 // break, or neither. 1297 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1298 // Handle this as two cases: we might be looking for the SwitchCase (if so 1299 // the skipped statements must be skippable) or we might already have it. 1300 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1301 if (Case) { 1302 // Keep track of whether we see a skipped declaration. The code could be 1303 // using the declaration even if it is skipped, so we can't optimize out 1304 // the decl if the kept statements might refer to it. 1305 bool HadSkippedDecl = false; 1306 1307 // If we're looking for the case, just see if we can skip each of the 1308 // substatements. 1309 for (; Case && I != E; ++I) { 1310 HadSkippedDecl |= isa<DeclStmt>(*I); 1311 1312 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1313 case CSFC_Failure: return CSFC_Failure; 1314 case CSFC_Success: 1315 // A successful result means that either 1) that the statement doesn't 1316 // have the case and is skippable, or 2) does contain the case value 1317 // and also contains the break to exit the switch. In the later case, 1318 // we just verify the rest of the statements are elidable. 1319 if (FoundCase) { 1320 // If we found the case and skipped declarations, we can't do the 1321 // optimization. 1322 if (HadSkippedDecl) 1323 return CSFC_Failure; 1324 1325 for (++I; I != E; ++I) 1326 if (CodeGenFunction::ContainsLabel(*I, true)) 1327 return CSFC_Failure; 1328 return CSFC_Success; 1329 } 1330 break; 1331 case CSFC_FallThrough: 1332 // If we have a fallthrough condition, then we must have found the 1333 // case started to include statements. Consider the rest of the 1334 // statements in the compound statement as candidates for inclusion. 1335 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1336 // We recursively found Case, so we're not looking for it anymore. 1337 Case = nullptr; 1338 1339 // If we found the case and skipped declarations, we can't do the 1340 // optimization. 1341 if (HadSkippedDecl) 1342 return CSFC_Failure; 1343 break; 1344 } 1345 } 1346 } 1347 1348 // If we have statements in our range, then we know that the statements are 1349 // live and need to be added to the set of statements we're tracking. 1350 for (; I != E; ++I) { 1351 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1352 case CSFC_Failure: return CSFC_Failure; 1353 case CSFC_FallThrough: 1354 // A fallthrough result means that the statement was simple and just 1355 // included in ResultStmt, keep adding them afterwards. 1356 break; 1357 case CSFC_Success: 1358 // A successful result means that we found the break statement and 1359 // stopped statement inclusion. We just ensure that any leftover stmts 1360 // are skippable and return success ourselves. 1361 for (++I; I != E; ++I) 1362 if (CodeGenFunction::ContainsLabel(*I, true)) 1363 return CSFC_Failure; 1364 return CSFC_Success; 1365 } 1366 } 1367 1368 return Case ? CSFC_Success : CSFC_FallThrough; 1369 } 1370 1371 // Okay, this is some other statement that we don't handle explicitly, like a 1372 // for statement or increment etc. If we are skipping over this statement, 1373 // just verify it doesn't have labels, which would make it invalid to elide. 1374 if (Case) { 1375 if (CodeGenFunction::ContainsLabel(S, true)) 1376 return CSFC_Failure; 1377 return CSFC_Success; 1378 } 1379 1380 // Otherwise, we want to include this statement. Everything is cool with that 1381 // so long as it doesn't contain a break out of the switch we're in. 1382 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1383 1384 // Otherwise, everything is great. Include the statement and tell the caller 1385 // that we fall through and include the next statement as well. 1386 ResultStmts.push_back(S); 1387 return CSFC_FallThrough; 1388 } 1389 1390 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1391 /// then invoke CollectStatementsForCase to find the list of statements to emit 1392 /// for a switch on constant. See the comment above CollectStatementsForCase 1393 /// for more details. 1394 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1395 const llvm::APSInt &ConstantCondValue, 1396 SmallVectorImpl<const Stmt*> &ResultStmts, 1397 ASTContext &C, 1398 const SwitchCase *&ResultCase) { 1399 // First step, find the switch case that is being branched to. We can do this 1400 // efficiently by scanning the SwitchCase list. 1401 const SwitchCase *Case = S.getSwitchCaseList(); 1402 const DefaultStmt *DefaultCase = nullptr; 1403 1404 for (; Case; Case = Case->getNextSwitchCase()) { 1405 // It's either a default or case. Just remember the default statement in 1406 // case we're not jumping to any numbered cases. 1407 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1408 DefaultCase = DS; 1409 continue; 1410 } 1411 1412 // Check to see if this case is the one we're looking for. 1413 const CaseStmt *CS = cast<CaseStmt>(Case); 1414 // Don't handle case ranges yet. 1415 if (CS->getRHS()) return false; 1416 1417 // If we found our case, remember it as 'case'. 1418 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1419 break; 1420 } 1421 1422 // If we didn't find a matching case, we use a default if it exists, or we 1423 // elide the whole switch body! 1424 if (!Case) { 1425 // It is safe to elide the body of the switch if it doesn't contain labels 1426 // etc. If it is safe, return successfully with an empty ResultStmts list. 1427 if (!DefaultCase) 1428 return !CodeGenFunction::ContainsLabel(&S); 1429 Case = DefaultCase; 1430 } 1431 1432 // Ok, we know which case is being jumped to, try to collect all the 1433 // statements that follow it. This can fail for a variety of reasons. Also, 1434 // check to see that the recursive walk actually found our case statement. 1435 // Insane cases like this can fail to find it in the recursive walk since we 1436 // don't handle every stmt kind: 1437 // switch (4) { 1438 // while (1) { 1439 // case 4: ... 1440 bool FoundCase = false; 1441 ResultCase = Case; 1442 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1443 ResultStmts) != CSFC_Failure && 1444 FoundCase; 1445 } 1446 1447 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1448 // Handle nested switch statements. 1449 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1450 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1451 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1452 1453 // See if we can constant fold the condition of the switch and therefore only 1454 // emit the live case statement (if any) of the switch. 1455 llvm::APSInt ConstantCondValue; 1456 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1457 SmallVector<const Stmt*, 4> CaseStmts; 1458 const SwitchCase *Case = nullptr; 1459 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1460 getContext(), Case)) { 1461 if (Case) { 1462 RegionCounter CaseCnt = getPGORegionCounter(Case); 1463 CaseCnt.beginRegion(Builder); 1464 } 1465 RunCleanupsScope ExecutedScope(*this); 1466 1467 // Emit the condition variable if needed inside the entire cleanup scope 1468 // used by this special case for constant folded switches. 1469 if (S.getConditionVariable()) 1470 EmitAutoVarDecl(*S.getConditionVariable()); 1471 1472 // At this point, we are no longer "within" a switch instance, so 1473 // we can temporarily enforce this to ensure that any embedded case 1474 // statements are not emitted. 1475 SwitchInsn = nullptr; 1476 1477 // Okay, we can dead code eliminate everything except this case. Emit the 1478 // specified series of statements and we're good. 1479 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1480 EmitStmt(CaseStmts[i]); 1481 RegionCounter ExitCnt = getPGORegionCounter(&S); 1482 ExitCnt.beginRegion(Builder); 1483 1484 // Now we want to restore the saved switch instance so that nested 1485 // switches continue to function properly 1486 SwitchInsn = SavedSwitchInsn; 1487 1488 return; 1489 } 1490 } 1491 1492 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1493 1494 RunCleanupsScope ConditionScope(*this); 1495 if (S.getConditionVariable()) 1496 EmitAutoVarDecl(*S.getConditionVariable()); 1497 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1498 1499 // Create basic block to hold stuff that comes after switch 1500 // statement. We also need to create a default block now so that 1501 // explicit case ranges tests can have a place to jump to on 1502 // failure. 1503 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1504 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1505 if (PGO.haveRegionCounts()) { 1506 // Walk the SwitchCase list to find how many there are. 1507 uint64_t DefaultCount = 0; 1508 unsigned NumCases = 0; 1509 for (const SwitchCase *Case = S.getSwitchCaseList(); 1510 Case; 1511 Case = Case->getNextSwitchCase()) { 1512 if (isa<DefaultStmt>(Case)) 1513 DefaultCount = getPGORegionCounter(Case).getCount(); 1514 NumCases += 1; 1515 } 1516 SwitchWeights = new SmallVector<uint64_t, 16>(); 1517 SwitchWeights->reserve(NumCases); 1518 // The default needs to be first. We store the edge count, so we already 1519 // know the right weight. 1520 SwitchWeights->push_back(DefaultCount); 1521 } 1522 CaseRangeBlock = DefaultBlock; 1523 1524 // Clear the insertion point to indicate we are in unreachable code. 1525 Builder.ClearInsertionPoint(); 1526 1527 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1528 // then reuse last ContinueBlock. 1529 JumpDest OuterContinue; 1530 if (!BreakContinueStack.empty()) 1531 OuterContinue = BreakContinueStack.back().ContinueBlock; 1532 1533 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1534 1535 // Emit switch body. 1536 EmitStmt(S.getBody()); 1537 1538 BreakContinueStack.pop_back(); 1539 1540 // Update the default block in case explicit case range tests have 1541 // been chained on top. 1542 SwitchInsn->setDefaultDest(CaseRangeBlock); 1543 1544 // If a default was never emitted: 1545 if (!DefaultBlock->getParent()) { 1546 // If we have cleanups, emit the default block so that there's a 1547 // place to jump through the cleanups from. 1548 if (ConditionScope.requiresCleanups()) { 1549 EmitBlock(DefaultBlock); 1550 1551 // Otherwise, just forward the default block to the switch end. 1552 } else { 1553 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1554 delete DefaultBlock; 1555 } 1556 } 1557 1558 ConditionScope.ForceCleanup(); 1559 1560 // Emit continuation. 1561 EmitBlock(SwitchExit.getBlock(), true); 1562 RegionCounter ExitCnt = getPGORegionCounter(&S); 1563 ExitCnt.beginRegion(Builder); 1564 1565 if (SwitchWeights) { 1566 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1567 "switch weights do not match switch cases"); 1568 // If there's only one jump destination there's no sense weighting it. 1569 if (SwitchWeights->size() > 1) 1570 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1571 PGO.createBranchWeights(*SwitchWeights)); 1572 delete SwitchWeights; 1573 } 1574 SwitchInsn = SavedSwitchInsn; 1575 SwitchWeights = SavedSwitchWeights; 1576 CaseRangeBlock = SavedCRBlock; 1577 } 1578 1579 static std::string 1580 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1581 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1582 std::string Result; 1583 1584 while (*Constraint) { 1585 switch (*Constraint) { 1586 default: 1587 Result += Target.convertConstraint(Constraint); 1588 break; 1589 // Ignore these 1590 case '*': 1591 case '?': 1592 case '!': 1593 case '=': // Will see this and the following in mult-alt constraints. 1594 case '+': 1595 break; 1596 case '#': // Ignore the rest of the constraint alternative. 1597 while (Constraint[1] && Constraint[1] != ',') 1598 Constraint++; 1599 break; 1600 case ',': 1601 Result += "|"; 1602 break; 1603 case 'g': 1604 Result += "imr"; 1605 break; 1606 case '[': { 1607 assert(OutCons && 1608 "Must pass output names to constraints with a symbolic name"); 1609 unsigned Index; 1610 bool result = Target.resolveSymbolicName(Constraint, 1611 &(*OutCons)[0], 1612 OutCons->size(), Index); 1613 assert(result && "Could not resolve symbolic name"); (void)result; 1614 Result += llvm::utostr(Index); 1615 break; 1616 } 1617 } 1618 1619 Constraint++; 1620 } 1621 1622 return Result; 1623 } 1624 1625 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1626 /// as using a particular register add that as a constraint that will be used 1627 /// in this asm stmt. 1628 static std::string 1629 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1630 const TargetInfo &Target, CodeGenModule &CGM, 1631 const AsmStmt &Stmt) { 1632 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1633 if (!AsmDeclRef) 1634 return Constraint; 1635 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1636 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1637 if (!Variable) 1638 return Constraint; 1639 if (Variable->getStorageClass() != SC_Register) 1640 return Constraint; 1641 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1642 if (!Attr) 1643 return Constraint; 1644 StringRef Register = Attr->getLabel(); 1645 assert(Target.isValidGCCRegisterName(Register)); 1646 // We're using validateOutputConstraint here because we only care if 1647 // this is a register constraint. 1648 TargetInfo::ConstraintInfo Info(Constraint, ""); 1649 if (Target.validateOutputConstraint(Info) && 1650 !Info.allowsRegister()) { 1651 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1652 return Constraint; 1653 } 1654 // Canonicalize the register here before returning it. 1655 Register = Target.getNormalizedGCCRegisterName(Register); 1656 return "{" + Register.str() + "}"; 1657 } 1658 1659 llvm::Value* 1660 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1661 LValue InputValue, QualType InputType, 1662 std::string &ConstraintStr, 1663 SourceLocation Loc) { 1664 llvm::Value *Arg; 1665 if (Info.allowsRegister() || !Info.allowsMemory()) { 1666 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1667 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1668 } else { 1669 llvm::Type *Ty = ConvertType(InputType); 1670 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1671 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1672 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1673 Ty = llvm::PointerType::getUnqual(Ty); 1674 1675 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1676 Ty)); 1677 } else { 1678 Arg = InputValue.getAddress(); 1679 ConstraintStr += '*'; 1680 } 1681 } 1682 } else { 1683 Arg = InputValue.getAddress(); 1684 ConstraintStr += '*'; 1685 } 1686 1687 return Arg; 1688 } 1689 1690 llvm::Value* CodeGenFunction::EmitAsmInput( 1691 const TargetInfo::ConstraintInfo &Info, 1692 const Expr *InputExpr, 1693 std::string &ConstraintStr) { 1694 if (Info.allowsRegister() || !Info.allowsMemory()) 1695 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1696 return EmitScalarExpr(InputExpr); 1697 1698 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1699 LValue Dest = EmitLValue(InputExpr); 1700 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1701 InputExpr->getExprLoc()); 1702 } 1703 1704 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1705 /// asm call instruction. The !srcloc MDNode contains a list of constant 1706 /// integers which are the source locations of the start of each line in the 1707 /// asm. 1708 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1709 CodeGenFunction &CGF) { 1710 SmallVector<llvm::Value *, 8> Locs; 1711 // Add the location of the first line to the MDNode. 1712 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1713 Str->getLocStart().getRawEncoding())); 1714 StringRef StrVal = Str->getString(); 1715 if (!StrVal.empty()) { 1716 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1717 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1718 1719 // Add the location of the start of each subsequent line of the asm to the 1720 // MDNode. 1721 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1722 if (StrVal[i] != '\n') continue; 1723 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1724 CGF.getTarget()); 1725 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1726 LineLoc.getRawEncoding())); 1727 } 1728 } 1729 1730 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1731 } 1732 1733 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1734 // Assemble the final asm string. 1735 std::string AsmString = S.generateAsmString(getContext()); 1736 1737 // Get all the output and input constraints together. 1738 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1739 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1740 1741 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1742 StringRef Name; 1743 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1744 Name = GAS->getOutputName(i); 1745 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1746 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1747 assert(IsValid && "Failed to parse output constraint"); 1748 OutputConstraintInfos.push_back(Info); 1749 } 1750 1751 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1752 StringRef Name; 1753 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1754 Name = GAS->getInputName(i); 1755 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1756 bool IsValid = 1757 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1758 S.getNumOutputs(), Info); 1759 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1760 InputConstraintInfos.push_back(Info); 1761 } 1762 1763 std::string Constraints; 1764 1765 std::vector<LValue> ResultRegDests; 1766 std::vector<QualType> ResultRegQualTys; 1767 std::vector<llvm::Type *> ResultRegTypes; 1768 std::vector<llvm::Type *> ResultTruncRegTypes; 1769 std::vector<llvm::Type *> ArgTypes; 1770 std::vector<llvm::Value*> Args; 1771 1772 // Keep track of inout constraints. 1773 std::string InOutConstraints; 1774 std::vector<llvm::Value*> InOutArgs; 1775 std::vector<llvm::Type*> InOutArgTypes; 1776 1777 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1778 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1779 1780 // Simplify the output constraint. 1781 std::string OutputConstraint(S.getOutputConstraint(i)); 1782 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1783 getTarget()); 1784 1785 const Expr *OutExpr = S.getOutputExpr(i); 1786 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1787 1788 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1789 getTarget(), CGM, S); 1790 1791 LValue Dest = EmitLValue(OutExpr); 1792 if (!Constraints.empty()) 1793 Constraints += ','; 1794 1795 // If this is a register output, then make the inline asm return it 1796 // by-value. If this is a memory result, return the value by-reference. 1797 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1798 Constraints += "=" + OutputConstraint; 1799 ResultRegQualTys.push_back(OutExpr->getType()); 1800 ResultRegDests.push_back(Dest); 1801 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1802 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1803 1804 // If this output is tied to an input, and if the input is larger, then 1805 // we need to set the actual result type of the inline asm node to be the 1806 // same as the input type. 1807 if (Info.hasMatchingInput()) { 1808 unsigned InputNo; 1809 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1810 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1811 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1812 break; 1813 } 1814 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1815 1816 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1817 QualType OutputType = OutExpr->getType(); 1818 1819 uint64_t InputSize = getContext().getTypeSize(InputTy); 1820 if (getContext().getTypeSize(OutputType) < InputSize) { 1821 // Form the asm to return the value as a larger integer or fp type. 1822 ResultRegTypes.back() = ConvertType(InputTy); 1823 } 1824 } 1825 if (llvm::Type* AdjTy = 1826 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1827 ResultRegTypes.back())) 1828 ResultRegTypes.back() = AdjTy; 1829 else { 1830 CGM.getDiags().Report(S.getAsmLoc(), 1831 diag::err_asm_invalid_type_in_input) 1832 << OutExpr->getType() << OutputConstraint; 1833 } 1834 } else { 1835 ArgTypes.push_back(Dest.getAddress()->getType()); 1836 Args.push_back(Dest.getAddress()); 1837 Constraints += "=*"; 1838 Constraints += OutputConstraint; 1839 } 1840 1841 if (Info.isReadWrite()) { 1842 InOutConstraints += ','; 1843 1844 const Expr *InputExpr = S.getOutputExpr(i); 1845 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1846 InOutConstraints, 1847 InputExpr->getExprLoc()); 1848 1849 if (llvm::Type* AdjTy = 1850 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1851 Arg->getType())) 1852 Arg = Builder.CreateBitCast(Arg, AdjTy); 1853 1854 if (Info.allowsRegister()) 1855 InOutConstraints += llvm::utostr(i); 1856 else 1857 InOutConstraints += OutputConstraint; 1858 1859 InOutArgTypes.push_back(Arg->getType()); 1860 InOutArgs.push_back(Arg); 1861 } 1862 } 1863 1864 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1865 1866 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1867 const Expr *InputExpr = S.getInputExpr(i); 1868 1869 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1870 1871 if (!Constraints.empty()) 1872 Constraints += ','; 1873 1874 // Simplify the input constraint. 1875 std::string InputConstraint(S.getInputConstraint(i)); 1876 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1877 &OutputConstraintInfos); 1878 1879 InputConstraint = 1880 AddVariableConstraints(InputConstraint, 1881 *InputExpr->IgnoreParenNoopCasts(getContext()), 1882 getTarget(), CGM, S); 1883 1884 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1885 1886 // If this input argument is tied to a larger output result, extend the 1887 // input to be the same size as the output. The LLVM backend wants to see 1888 // the input and output of a matching constraint be the same size. Note 1889 // that GCC does not define what the top bits are here. We use zext because 1890 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1891 if (Info.hasTiedOperand()) { 1892 unsigned Output = Info.getTiedOperand(); 1893 QualType OutputType = S.getOutputExpr(Output)->getType(); 1894 QualType InputTy = InputExpr->getType(); 1895 1896 if (getContext().getTypeSize(OutputType) > 1897 getContext().getTypeSize(InputTy)) { 1898 // Use ptrtoint as appropriate so that we can do our extension. 1899 if (isa<llvm::PointerType>(Arg->getType())) 1900 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1901 llvm::Type *OutputTy = ConvertType(OutputType); 1902 if (isa<llvm::IntegerType>(OutputTy)) 1903 Arg = Builder.CreateZExt(Arg, OutputTy); 1904 else if (isa<llvm::PointerType>(OutputTy)) 1905 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1906 else { 1907 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1908 Arg = Builder.CreateFPExt(Arg, OutputTy); 1909 } 1910 } 1911 } 1912 if (llvm::Type* AdjTy = 1913 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1914 Arg->getType())) 1915 Arg = Builder.CreateBitCast(Arg, AdjTy); 1916 else 1917 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1918 << InputExpr->getType() << InputConstraint; 1919 1920 ArgTypes.push_back(Arg->getType()); 1921 Args.push_back(Arg); 1922 Constraints += InputConstraint; 1923 } 1924 1925 // Append the "input" part of inout constraints last. 1926 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1927 ArgTypes.push_back(InOutArgTypes[i]); 1928 Args.push_back(InOutArgs[i]); 1929 } 1930 Constraints += InOutConstraints; 1931 1932 // Clobbers 1933 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1934 StringRef Clobber = S.getClobber(i); 1935 1936 if (Clobber != "memory" && Clobber != "cc") 1937 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1938 1939 if (i != 0 || NumConstraints != 0) 1940 Constraints += ','; 1941 1942 Constraints += "~{"; 1943 Constraints += Clobber; 1944 Constraints += '}'; 1945 } 1946 1947 // Add machine specific clobbers 1948 std::string MachineClobbers = getTarget().getClobbers(); 1949 if (!MachineClobbers.empty()) { 1950 if (!Constraints.empty()) 1951 Constraints += ','; 1952 Constraints += MachineClobbers; 1953 } 1954 1955 llvm::Type *ResultType; 1956 if (ResultRegTypes.empty()) 1957 ResultType = VoidTy; 1958 else if (ResultRegTypes.size() == 1) 1959 ResultType = ResultRegTypes[0]; 1960 else 1961 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1962 1963 llvm::FunctionType *FTy = 1964 llvm::FunctionType::get(ResultType, ArgTypes, false); 1965 1966 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1967 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1968 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1969 llvm::InlineAsm *IA = 1970 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1971 /* IsAlignStack */ false, AsmDialect); 1972 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1973 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1974 llvm::Attribute::NoUnwind); 1975 1976 // Slap the source location of the inline asm into a !srcloc metadata on the 1977 // call. FIXME: Handle metadata for MS-style inline asms. 1978 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1979 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 1980 *this)); 1981 1982 // Extract all of the register value results from the asm. 1983 std::vector<llvm::Value*> RegResults; 1984 if (ResultRegTypes.size() == 1) { 1985 RegResults.push_back(Result); 1986 } else { 1987 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1988 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1989 RegResults.push_back(Tmp); 1990 } 1991 } 1992 1993 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1994 llvm::Value *Tmp = RegResults[i]; 1995 1996 // If the result type of the LLVM IR asm doesn't match the result type of 1997 // the expression, do the conversion. 1998 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1999 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2000 2001 // Truncate the integer result to the right size, note that TruncTy can be 2002 // a pointer. 2003 if (TruncTy->isFloatingPointTy()) 2004 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2005 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2006 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2007 Tmp = Builder.CreateTrunc(Tmp, 2008 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2009 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2010 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2011 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2012 Tmp = Builder.CreatePtrToInt(Tmp, 2013 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2014 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2015 } else if (TruncTy->isIntegerTy()) { 2016 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2017 } else if (TruncTy->isVectorTy()) { 2018 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2019 } 2020 } 2021 2022 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2023 } 2024 } 2025 2026 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 2027 const RecordDecl *RD = S.getCapturedRecordDecl(); 2028 QualType RecordTy = CGF.getContext().getRecordType(RD); 2029 2030 // Initialize the captured struct. 2031 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 2032 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2033 2034 RecordDecl::field_iterator CurField = RD->field_begin(); 2035 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2036 E = S.capture_init_end(); 2037 I != E; ++I, ++CurField) { 2038 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 2039 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 2040 } 2041 2042 return SlotLV; 2043 } 2044 2045 /// Generate an outlined function for the body of a CapturedStmt, store any 2046 /// captured variables into the captured struct, and call the outlined function. 2047 llvm::Function * 2048 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2049 const CapturedDecl *CD = S.getCapturedDecl(); 2050 const RecordDecl *RD = S.getCapturedRecordDecl(); 2051 assert(CD->hasBody() && "missing CapturedDecl body"); 2052 2053 LValue CapStruct = InitCapturedStruct(*this, S); 2054 2055 // Emit the CapturedDecl 2056 CodeGenFunction CGF(CGM, true); 2057 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2058 llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart()); 2059 delete CGF.CapturedStmtInfo; 2060 2061 // Emit call to the helper function. 2062 EmitCallOrInvoke(F, CapStruct.getAddress()); 2063 2064 return F; 2065 } 2066 2067 llvm::Value * 2068 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2069 LValue CapStruct = InitCapturedStruct(*this, S); 2070 return CapStruct.getAddress(); 2071 } 2072 2073 /// Creates the outlined function for a CapturedStmt. 2074 llvm::Function * 2075 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD, 2076 const RecordDecl *RD, 2077 SourceLocation Loc) { 2078 assert(CapturedStmtInfo && 2079 "CapturedStmtInfo should be set when generating the captured function"); 2080 2081 // Build the argument list. 2082 ASTContext &Ctx = CGM.getContext(); 2083 FunctionArgList Args; 2084 Args.append(CD->param_begin(), CD->param_end()); 2085 2086 // Create the function declaration. 2087 FunctionType::ExtInfo ExtInfo; 2088 const CGFunctionInfo &FuncInfo = 2089 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2090 /*IsVariadic=*/false); 2091 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2092 2093 llvm::Function *F = 2094 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2095 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2096 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2097 2098 // Generate the function. 2099 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2100 CD->getLocation(), 2101 CD->getBody()->getLocStart()); 2102 2103 // Set the context parameter in CapturedStmtInfo. 2104 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2105 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2106 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2107 2108 // If 'this' is captured, load it into CXXThisValue. 2109 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2110 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2111 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2112 Ctx.getTagDeclType(RD)); 2113 LValue ThisLValue = EmitLValueForField(LV, FD); 2114 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2115 } 2116 2117 PGO.assignRegionCounters(CD, F); 2118 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2119 FinishFunction(CD->getBodyRBrace()); 2120 PGO.emitInstrumentationData(); 2121 PGO.destroyRegionCounters(); 2122 2123 return F; 2124 } 2125