1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "CodeGenFunction.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/InlineAsm.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/Target/TargetData.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Statement Emission 30 //===----------------------------------------------------------------------===// 31 32 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 33 if (CGDebugInfo *DI = getDebugInfo()) { 34 if (isa<DeclStmt>(S)) 35 DI->setLocation(S->getLocEnd()); 36 else 37 DI->setLocation(S->getLocStart()); 38 DI->UpdateLineDirectiveRegion(Builder); 39 DI->EmitStopPoint(Builder); 40 } 41 } 42 43 void CodeGenFunction::EmitStmt(const Stmt *S) { 44 assert(S && "Null statement?"); 45 46 // Check if we can handle this without bothering to generate an 47 // insert point or debug info. 48 if (EmitSimpleStmt(S)) 49 return; 50 51 // Check if we are generating unreachable code. 52 if (!HaveInsertPoint()) { 53 // If so, and the statement doesn't contain a label, then we do not need to 54 // generate actual code. This is safe because (1) the current point is 55 // unreachable, so we don't need to execute the code, and (2) we've already 56 // handled the statements which update internal data structures (like the 57 // local variable map) which could be used by subsequent statements. 58 if (!ContainsLabel(S)) { 59 // Verify that any decl statements were handled as simple, they may be in 60 // scope of subsequent reachable statements. 61 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 62 return; 63 } 64 65 // Otherwise, make a new block to hold the code. 66 EnsureInsertPoint(); 67 } 68 69 // Generate a stoppoint if we are emitting debug info. 70 EmitStopPoint(S); 71 72 switch (S->getStmtClass()) { 73 case Stmt::NoStmtClass: 74 case Stmt::CXXCatchStmtClass: 75 case Stmt::SEHExceptStmtClass: 76 case Stmt::SEHFinallyStmtClass: 77 llvm_unreachable("invalid statement class to emit generically"); 78 case Stmt::NullStmtClass: 79 case Stmt::CompoundStmtClass: 80 case Stmt::DeclStmtClass: 81 case Stmt::LabelStmtClass: 82 case Stmt::GotoStmtClass: 83 case Stmt::BreakStmtClass: 84 case Stmt::ContinueStmtClass: 85 case Stmt::DefaultStmtClass: 86 case Stmt::CaseStmtClass: 87 llvm_unreachable("should have emitted these statements as simple"); 88 89 #define STMT(Type, Base) 90 #define ABSTRACT_STMT(Op) 91 #define EXPR(Type, Base) \ 92 case Stmt::Type##Class: 93 #include "clang/AST/StmtNodes.inc" 94 { 95 // Remember the block we came in on. 96 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 97 assert(incoming && "expression emission must have an insertion point"); 98 99 EmitIgnoredExpr(cast<Expr>(S)); 100 101 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 102 assert(outgoing && "expression emission cleared block!"); 103 104 // The expression emitters assume (reasonably!) that the insertion 105 // point is always set. To maintain that, the call-emission code 106 // for noreturn functions has to enter a new block with no 107 // predecessors. We want to kill that block and mark the current 108 // insertion point unreachable in the common case of a call like 109 // "exit();". Since expression emission doesn't otherwise create 110 // blocks with no predecessors, we can just test for that. 111 // However, we must be careful not to do this to our incoming 112 // block, because *statement* emission does sometimes create 113 // reachable blocks which will have no predecessors until later in 114 // the function. This occurs with, e.g., labels that are not 115 // reachable by fallthrough. 116 if (incoming != outgoing && outgoing->use_empty()) { 117 outgoing->eraseFromParent(); 118 Builder.ClearInsertionPoint(); 119 } 120 break; 121 } 122 123 case Stmt::IndirectGotoStmtClass: 124 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 125 126 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 127 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 128 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 129 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 130 131 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 132 133 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 134 case Stmt::AsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 135 136 case Stmt::ObjCAtTryStmtClass: 137 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 138 break; 139 case Stmt::ObjCAtCatchStmtClass: 140 assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt"); 141 break; 142 case Stmt::ObjCAtFinallyStmtClass: 143 assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt"); 144 break; 145 case Stmt::ObjCAtThrowStmtClass: 146 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 147 break; 148 case Stmt::ObjCAtSynchronizedStmtClass: 149 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 150 break; 151 case Stmt::ObjCForCollectionStmtClass: 152 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 153 break; 154 case Stmt::ObjCAutoreleasePoolStmtClass: 155 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 156 break; 157 158 case Stmt::CXXTryStmtClass: 159 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 160 break; 161 case Stmt::CXXForRangeStmtClass: 162 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 163 case Stmt::SEHTryStmtClass: 164 // FIXME Not yet implemented 165 break; 166 } 167 } 168 169 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 170 switch (S->getStmtClass()) { 171 default: return false; 172 case Stmt::NullStmtClass: break; 173 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 174 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 175 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 176 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 177 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 178 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 179 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 180 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 181 } 182 183 return true; 184 } 185 186 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 187 /// this captures the expression result of the last sub-statement and returns it 188 /// (for use by the statement expression extension). 189 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 190 AggValueSlot AggSlot) { 191 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 192 "LLVM IR generation of compound statement ('{}')"); 193 194 CGDebugInfo *DI = getDebugInfo(); 195 if (DI) { 196 DI->setLocation(S.getLBracLoc()); 197 DI->EmitRegionStart(Builder); 198 } 199 200 // Keep track of the current cleanup stack depth. 201 RunCleanupsScope Scope(*this); 202 203 for (CompoundStmt::const_body_iterator I = S.body_begin(), 204 E = S.body_end()-GetLast; I != E; ++I) 205 EmitStmt(*I); 206 207 if (DI) { 208 DI->setLocation(S.getRBracLoc()); 209 DI->EmitRegionEnd(Builder); 210 } 211 212 RValue RV; 213 if (!GetLast) 214 RV = RValue::get(0); 215 else { 216 // We have to special case labels here. They are statements, but when put 217 // at the end of a statement expression, they yield the value of their 218 // subexpression. Handle this by walking through all labels we encounter, 219 // emitting them before we evaluate the subexpr. 220 const Stmt *LastStmt = S.body_back(); 221 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 222 EmitLabel(LS->getDecl()); 223 LastStmt = LS->getSubStmt(); 224 } 225 226 EnsureInsertPoint(); 227 228 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot); 229 } 230 231 return RV; 232 } 233 234 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 235 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 236 237 // If there is a cleanup stack, then we it isn't worth trying to 238 // simplify this block (we would need to remove it from the scope map 239 // and cleanup entry). 240 if (!EHStack.empty()) 241 return; 242 243 // Can only simplify direct branches. 244 if (!BI || !BI->isUnconditional()) 245 return; 246 247 BB->replaceAllUsesWith(BI->getSuccessor(0)); 248 BI->eraseFromParent(); 249 BB->eraseFromParent(); 250 } 251 252 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 253 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 254 255 // Fall out of the current block (if necessary). 256 EmitBranch(BB); 257 258 if (IsFinished && BB->use_empty()) { 259 delete BB; 260 return; 261 } 262 263 // Place the block after the current block, if possible, or else at 264 // the end of the function. 265 if (CurBB && CurBB->getParent()) 266 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 267 else 268 CurFn->getBasicBlockList().push_back(BB); 269 Builder.SetInsertPoint(BB); 270 } 271 272 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 273 // Emit a branch from the current block to the target one if this 274 // was a real block. If this was just a fall-through block after a 275 // terminator, don't emit it. 276 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 277 278 if (!CurBB || CurBB->getTerminator()) { 279 // If there is no insert point or the previous block is already 280 // terminated, don't touch it. 281 } else { 282 // Otherwise, create a fall-through branch. 283 Builder.CreateBr(Target); 284 } 285 286 Builder.ClearInsertionPoint(); 287 } 288 289 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 290 bool inserted = false; 291 for (llvm::BasicBlock::use_iterator 292 i = block->use_begin(), e = block->use_end(); i != e; ++i) { 293 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) { 294 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 295 inserted = true; 296 break; 297 } 298 } 299 300 if (!inserted) 301 CurFn->getBasicBlockList().push_back(block); 302 303 Builder.SetInsertPoint(block); 304 } 305 306 CodeGenFunction::JumpDest 307 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 308 JumpDest &Dest = LabelMap[D]; 309 if (Dest.isValid()) return Dest; 310 311 // Create, but don't insert, the new block. 312 Dest = JumpDest(createBasicBlock(D->getName()), 313 EHScopeStack::stable_iterator::invalid(), 314 NextCleanupDestIndex++); 315 return Dest; 316 } 317 318 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 319 JumpDest &Dest = LabelMap[D]; 320 321 // If we didn't need a forward reference to this label, just go 322 // ahead and create a destination at the current scope. 323 if (!Dest.isValid()) { 324 Dest = getJumpDestInCurrentScope(D->getName()); 325 326 // Otherwise, we need to give this label a target depth and remove 327 // it from the branch-fixups list. 328 } else { 329 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 330 Dest = JumpDest(Dest.getBlock(), 331 EHStack.stable_begin(), 332 Dest.getDestIndex()); 333 334 ResolveBranchFixups(Dest.getBlock()); 335 } 336 337 EmitBlock(Dest.getBlock()); 338 } 339 340 341 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 342 EmitLabel(S.getDecl()); 343 EmitStmt(S.getSubStmt()); 344 } 345 346 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 347 // If this code is reachable then emit a stop point (if generating 348 // debug info). We have to do this ourselves because we are on the 349 // "simple" statement path. 350 if (HaveInsertPoint()) 351 EmitStopPoint(&S); 352 353 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 354 } 355 356 357 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 358 if (const LabelDecl *Target = S.getConstantTarget()) { 359 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 360 return; 361 } 362 363 // Ensure that we have an i8* for our PHI node. 364 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 365 Int8PtrTy, "addr"); 366 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 367 368 369 // Get the basic block for the indirect goto. 370 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 371 372 // The first instruction in the block has to be the PHI for the switch dest, 373 // add an entry for this branch. 374 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 375 376 EmitBranch(IndGotoBB); 377 } 378 379 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 380 // C99 6.8.4.1: The first substatement is executed if the expression compares 381 // unequal to 0. The condition must be a scalar type. 382 RunCleanupsScope ConditionScope(*this); 383 384 if (S.getConditionVariable()) 385 EmitAutoVarDecl(*S.getConditionVariable()); 386 387 // If the condition constant folds and can be elided, try to avoid emitting 388 // the condition and the dead arm of the if/else. 389 bool CondConstant; 390 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 391 // Figure out which block (then or else) is executed. 392 const Stmt *Executed = S.getThen(); 393 const Stmt *Skipped = S.getElse(); 394 if (!CondConstant) // Condition false? 395 std::swap(Executed, Skipped); 396 397 // If the skipped block has no labels in it, just emit the executed block. 398 // This avoids emitting dead code and simplifies the CFG substantially. 399 if (!ContainsLabel(Skipped)) { 400 if (Executed) { 401 RunCleanupsScope ExecutedScope(*this); 402 EmitStmt(Executed); 403 } 404 return; 405 } 406 } 407 408 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 409 // the conditional branch. 410 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 411 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 412 llvm::BasicBlock *ElseBlock = ContBlock; 413 if (S.getElse()) 414 ElseBlock = createBasicBlock("if.else"); 415 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); 416 417 // Emit the 'then' code. 418 EmitBlock(ThenBlock); 419 { 420 RunCleanupsScope ThenScope(*this); 421 EmitStmt(S.getThen()); 422 } 423 EmitBranch(ContBlock); 424 425 // Emit the 'else' code if present. 426 if (const Stmt *Else = S.getElse()) { 427 // There is no need to emit line number for unconditional branch. 428 if (getDebugInfo()) 429 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 430 EmitBlock(ElseBlock); 431 { 432 RunCleanupsScope ElseScope(*this); 433 EmitStmt(Else); 434 } 435 // There is no need to emit line number for unconditional branch. 436 if (getDebugInfo()) 437 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 438 EmitBranch(ContBlock); 439 } 440 441 // Emit the continuation block for code after the if. 442 EmitBlock(ContBlock, true); 443 } 444 445 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 446 // Emit the header for the loop, which will also become 447 // the continue target. 448 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 449 EmitBlock(LoopHeader.getBlock()); 450 451 // Create an exit block for when the condition fails, which will 452 // also become the break target. 453 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 454 455 // Store the blocks to use for break and continue. 456 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 457 458 // C++ [stmt.while]p2: 459 // When the condition of a while statement is a declaration, the 460 // scope of the variable that is declared extends from its point 461 // of declaration (3.3.2) to the end of the while statement. 462 // [...] 463 // The object created in a condition is destroyed and created 464 // with each iteration of the loop. 465 RunCleanupsScope ConditionScope(*this); 466 467 if (S.getConditionVariable()) 468 EmitAutoVarDecl(*S.getConditionVariable()); 469 470 // Evaluate the conditional in the while header. C99 6.8.5.1: The 471 // evaluation of the controlling expression takes place before each 472 // execution of the loop body. 473 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 474 475 // while(1) is common, avoid extra exit blocks. Be sure 476 // to correctly handle break/continue though. 477 bool EmitBoolCondBranch = true; 478 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 479 if (C->isOne()) 480 EmitBoolCondBranch = false; 481 482 // As long as the condition is true, go to the loop body. 483 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 484 if (EmitBoolCondBranch) { 485 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 486 if (ConditionScope.requiresCleanups()) 487 ExitBlock = createBasicBlock("while.exit"); 488 489 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 490 491 if (ExitBlock != LoopExit.getBlock()) { 492 EmitBlock(ExitBlock); 493 EmitBranchThroughCleanup(LoopExit); 494 } 495 } 496 497 // Emit the loop body. We have to emit this in a cleanup scope 498 // because it might be a singleton DeclStmt. 499 { 500 RunCleanupsScope BodyScope(*this); 501 EmitBlock(LoopBody); 502 EmitStmt(S.getBody()); 503 } 504 505 BreakContinueStack.pop_back(); 506 507 // Immediately force cleanup. 508 ConditionScope.ForceCleanup(); 509 510 // Branch to the loop header again. 511 EmitBranch(LoopHeader.getBlock()); 512 513 // Emit the exit block. 514 EmitBlock(LoopExit.getBlock(), true); 515 516 // The LoopHeader typically is just a branch if we skipped emitting 517 // a branch, try to erase it. 518 if (!EmitBoolCondBranch) 519 SimplifyForwardingBlocks(LoopHeader.getBlock()); 520 } 521 522 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 523 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 524 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 525 526 // Store the blocks to use for break and continue. 527 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 528 529 // Emit the body of the loop. 530 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 531 EmitBlock(LoopBody); 532 { 533 RunCleanupsScope BodyScope(*this); 534 EmitStmt(S.getBody()); 535 } 536 537 BreakContinueStack.pop_back(); 538 539 EmitBlock(LoopCond.getBlock()); 540 541 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 542 // after each execution of the loop body." 543 544 // Evaluate the conditional in the while header. 545 // C99 6.8.5p2/p4: The first substatement is executed if the expression 546 // compares unequal to 0. The condition must be a scalar type. 547 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 548 549 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 550 // to correctly handle break/continue though. 551 bool EmitBoolCondBranch = true; 552 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 553 if (C->isZero()) 554 EmitBoolCondBranch = false; 555 556 // As long as the condition is true, iterate the loop. 557 if (EmitBoolCondBranch) 558 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); 559 560 // Emit the exit block. 561 EmitBlock(LoopExit.getBlock()); 562 563 // The DoCond block typically is just a branch if we skipped 564 // emitting a branch, try to erase it. 565 if (!EmitBoolCondBranch) 566 SimplifyForwardingBlocks(LoopCond.getBlock()); 567 } 568 569 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 570 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 571 572 RunCleanupsScope ForScope(*this); 573 574 CGDebugInfo *DI = getDebugInfo(); 575 if (DI) { 576 DI->setLocation(S.getSourceRange().getBegin()); 577 DI->EmitRegionStart(Builder); 578 } 579 580 // Evaluate the first part before the loop. 581 if (S.getInit()) 582 EmitStmt(S.getInit()); 583 584 // Start the loop with a block that tests the condition. 585 // If there's an increment, the continue scope will be overwritten 586 // later. 587 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 588 llvm::BasicBlock *CondBlock = Continue.getBlock(); 589 EmitBlock(CondBlock); 590 591 // Create a cleanup scope for the condition variable cleanups. 592 RunCleanupsScope ConditionScope(*this); 593 594 llvm::Value *BoolCondVal = 0; 595 if (S.getCond()) { 596 // If the for statement has a condition scope, emit the local variable 597 // declaration. 598 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 599 if (S.getConditionVariable()) { 600 EmitAutoVarDecl(*S.getConditionVariable()); 601 } 602 603 // If there are any cleanups between here and the loop-exit scope, 604 // create a block to stage a loop exit along. 605 if (ForScope.requiresCleanups()) 606 ExitBlock = createBasicBlock("for.cond.cleanup"); 607 608 // As long as the condition is true, iterate the loop. 609 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 610 611 // C99 6.8.5p2/p4: The first substatement is executed if the expression 612 // compares unequal to 0. The condition must be a scalar type. 613 BoolCondVal = EvaluateExprAsBool(S.getCond()); 614 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 615 616 if (ExitBlock != LoopExit.getBlock()) { 617 EmitBlock(ExitBlock); 618 EmitBranchThroughCleanup(LoopExit); 619 } 620 621 EmitBlock(ForBody); 622 } else { 623 // Treat it as a non-zero constant. Don't even create a new block for the 624 // body, just fall into it. 625 } 626 627 // If the for loop doesn't have an increment we can just use the 628 // condition as the continue block. Otherwise we'll need to create 629 // a block for it (in the current scope, i.e. in the scope of the 630 // condition), and that we will become our continue block. 631 if (S.getInc()) 632 Continue = getJumpDestInCurrentScope("for.inc"); 633 634 // Store the blocks to use for break and continue. 635 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 636 637 { 638 // Create a separate cleanup scope for the body, in case it is not 639 // a compound statement. 640 RunCleanupsScope BodyScope(*this); 641 EmitStmt(S.getBody()); 642 } 643 644 // If there is an increment, emit it next. 645 if (S.getInc()) { 646 EmitBlock(Continue.getBlock()); 647 EmitStmt(S.getInc()); 648 } 649 650 BreakContinueStack.pop_back(); 651 652 ConditionScope.ForceCleanup(); 653 EmitBranch(CondBlock); 654 655 ForScope.ForceCleanup(); 656 657 if (DI) { 658 DI->setLocation(S.getSourceRange().getEnd()); 659 DI->EmitRegionEnd(Builder); 660 } 661 662 // Emit the fall-through block. 663 EmitBlock(LoopExit.getBlock(), true); 664 } 665 666 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 667 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 668 669 RunCleanupsScope ForScope(*this); 670 671 CGDebugInfo *DI = getDebugInfo(); 672 if (DI) { 673 DI->setLocation(S.getSourceRange().getBegin()); 674 DI->EmitRegionStart(Builder); 675 } 676 677 // Evaluate the first pieces before the loop. 678 EmitStmt(S.getRangeStmt()); 679 EmitStmt(S.getBeginEndStmt()); 680 681 // Start the loop with a block that tests the condition. 682 // If there's an increment, the continue scope will be overwritten 683 // later. 684 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 685 EmitBlock(CondBlock); 686 687 // If there are any cleanups between here and the loop-exit scope, 688 // create a block to stage a loop exit along. 689 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 690 if (ForScope.requiresCleanups()) 691 ExitBlock = createBasicBlock("for.cond.cleanup"); 692 693 // The loop body, consisting of the specified body and the loop variable. 694 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 695 696 // The body is executed if the expression, contextually converted 697 // to bool, is true. 698 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 699 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 700 701 if (ExitBlock != LoopExit.getBlock()) { 702 EmitBlock(ExitBlock); 703 EmitBranchThroughCleanup(LoopExit); 704 } 705 706 EmitBlock(ForBody); 707 708 // Create a block for the increment. In case of a 'continue', we jump there. 709 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 710 711 // Store the blocks to use for break and continue. 712 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 713 714 { 715 // Create a separate cleanup scope for the loop variable and body. 716 RunCleanupsScope BodyScope(*this); 717 EmitStmt(S.getLoopVarStmt()); 718 EmitStmt(S.getBody()); 719 } 720 721 // If there is an increment, emit it next. 722 EmitBlock(Continue.getBlock()); 723 EmitStmt(S.getInc()); 724 725 BreakContinueStack.pop_back(); 726 727 EmitBranch(CondBlock); 728 729 ForScope.ForceCleanup(); 730 731 if (DI) { 732 DI->setLocation(S.getSourceRange().getEnd()); 733 DI->EmitRegionEnd(Builder); 734 } 735 736 // Emit the fall-through block. 737 EmitBlock(LoopExit.getBlock(), true); 738 } 739 740 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 741 if (RV.isScalar()) { 742 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 743 } else if (RV.isAggregate()) { 744 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 745 } else { 746 StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); 747 } 748 EmitBranchThroughCleanup(ReturnBlock); 749 } 750 751 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 752 /// if the function returns void, or may be missing one if the function returns 753 /// non-void. Fun stuff :). 754 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 755 // Emit the result value, even if unused, to evalute the side effects. 756 const Expr *RV = S.getRetValue(); 757 758 // FIXME: Clean this up by using an LValue for ReturnTemp, 759 // EmitStoreThroughLValue, and EmitAnyExpr. 760 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() && 761 !Target.useGlobalsForAutomaticVariables()) { 762 // Apply the named return value optimization for this return statement, 763 // which means doing nothing: the appropriate result has already been 764 // constructed into the NRVO variable. 765 766 // If there is an NRVO flag for this variable, set it to 1 into indicate 767 // that the cleanup code should not destroy the variable. 768 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 769 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 770 } else if (!ReturnValue) { 771 // Make sure not to return anything, but evaluate the expression 772 // for side effects. 773 if (RV) 774 EmitAnyExpr(RV); 775 } else if (RV == 0) { 776 // Do nothing (return value is left uninitialized) 777 } else if (FnRetTy->isReferenceType()) { 778 // If this function returns a reference, take the address of the expression 779 // rather than the value. 780 RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0); 781 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 782 } else if (!hasAggregateLLVMType(RV->getType())) { 783 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 784 } else if (RV->getType()->isAnyComplexType()) { 785 EmitComplexExprIntoAddr(RV, ReturnValue, false); 786 } else { 787 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Qualifiers(), 788 AggValueSlot::IsDestructed, 789 AggValueSlot::DoesNotNeedGCBarriers, 790 AggValueSlot::IsNotAliased)); 791 } 792 793 EmitBranchThroughCleanup(ReturnBlock); 794 } 795 796 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 797 // As long as debug info is modeled with instructions, we have to ensure we 798 // have a place to insert here and write the stop point here. 799 if (getDebugInfo() && HaveInsertPoint()) 800 EmitStopPoint(&S); 801 802 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); 803 I != E; ++I) 804 EmitDecl(**I); 805 } 806 807 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 808 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 809 810 // If this code is reachable then emit a stop point (if generating 811 // debug info). We have to do this ourselves because we are on the 812 // "simple" statement path. 813 if (HaveInsertPoint()) 814 EmitStopPoint(&S); 815 816 JumpDest Block = BreakContinueStack.back().BreakBlock; 817 EmitBranchThroughCleanup(Block); 818 } 819 820 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 821 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 822 823 // If this code is reachable then emit a stop point (if generating 824 // debug info). We have to do this ourselves because we are on the 825 // "simple" statement path. 826 if (HaveInsertPoint()) 827 EmitStopPoint(&S); 828 829 JumpDest Block = BreakContinueStack.back().ContinueBlock; 830 EmitBranchThroughCleanup(Block); 831 } 832 833 /// EmitCaseStmtRange - If case statement range is not too big then 834 /// add multiple cases to switch instruction, one for each value within 835 /// the range. If range is too big then emit "if" condition check. 836 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 837 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 838 839 llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext()); 840 llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext()); 841 842 // Emit the code for this case. We do this first to make sure it is 843 // properly chained from our predecessor before generating the 844 // switch machinery to enter this block. 845 EmitBlock(createBasicBlock("sw.bb")); 846 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 847 EmitStmt(S.getSubStmt()); 848 849 // If range is empty, do nothing. 850 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 851 return; 852 853 llvm::APInt Range = RHS - LHS; 854 // FIXME: parameters such as this should not be hardcoded. 855 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 856 // Range is small enough to add multiple switch instruction cases. 857 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { 858 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 859 LHS++; 860 } 861 return; 862 } 863 864 // The range is too big. Emit "if" condition into a new block, 865 // making sure to save and restore the current insertion point. 866 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 867 868 // Push this test onto the chain of range checks (which terminates 869 // in the default basic block). The switch's default will be changed 870 // to the top of this chain after switch emission is complete. 871 llvm::BasicBlock *FalseDest = CaseRangeBlock; 872 CaseRangeBlock = createBasicBlock("sw.caserange"); 873 874 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 875 Builder.SetInsertPoint(CaseRangeBlock); 876 877 // Emit range check. 878 llvm::Value *Diff = 879 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS), "tmp"); 880 llvm::Value *Cond = 881 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 882 Builder.CreateCondBr(Cond, CaseDest, FalseDest); 883 884 // Restore the appropriate insertion point. 885 if (RestoreBB) 886 Builder.SetInsertPoint(RestoreBB); 887 else 888 Builder.ClearInsertionPoint(); 889 } 890 891 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 892 // Handle case ranges. 893 if (S.getRHS()) { 894 EmitCaseStmtRange(S); 895 return; 896 } 897 898 llvm::ConstantInt *CaseVal = 899 Builder.getInt(S.getLHS()->EvaluateAsInt(getContext())); 900 901 // If the body of the case is just a 'break', and if there was no fallthrough, 902 // try to not emit an empty block. 903 if (isa<BreakStmt>(S.getSubStmt())) { 904 JumpDest Block = BreakContinueStack.back().BreakBlock; 905 906 // Only do this optimization if there are no cleanups that need emitting. 907 if (isObviouslyBranchWithoutCleanups(Block)) { 908 SwitchInsn->addCase(CaseVal, Block.getBlock()); 909 910 // If there was a fallthrough into this case, make sure to redirect it to 911 // the end of the switch as well. 912 if (Builder.GetInsertBlock()) { 913 Builder.CreateBr(Block.getBlock()); 914 Builder.ClearInsertionPoint(); 915 } 916 return; 917 } 918 } 919 920 EmitBlock(createBasicBlock("sw.bb")); 921 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 922 SwitchInsn->addCase(CaseVal, CaseDest); 923 924 // Recursively emitting the statement is acceptable, but is not wonderful for 925 // code where we have many case statements nested together, i.e.: 926 // case 1: 927 // case 2: 928 // case 3: etc. 929 // Handling this recursively will create a new block for each case statement 930 // that falls through to the next case which is IR intensive. It also causes 931 // deep recursion which can run into stack depth limitations. Handle 932 // sequential non-range case statements specially. 933 const CaseStmt *CurCase = &S; 934 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 935 936 // Otherwise, iteratively add consecutive cases to this switch stmt. 937 while (NextCase && NextCase->getRHS() == 0) { 938 CurCase = NextCase; 939 llvm::ConstantInt *CaseVal = 940 Builder.getInt(CurCase->getLHS()->EvaluateAsInt(getContext())); 941 SwitchInsn->addCase(CaseVal, CaseDest); 942 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 943 } 944 945 // Normal default recursion for non-cases. 946 EmitStmt(CurCase->getSubStmt()); 947 } 948 949 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 950 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 951 assert(DefaultBlock->empty() && 952 "EmitDefaultStmt: Default block already defined?"); 953 EmitBlock(DefaultBlock); 954 EmitStmt(S.getSubStmt()); 955 } 956 957 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 958 /// constant value that is being switched on, see if we can dead code eliminate 959 /// the body of the switch to a simple series of statements to emit. Basically, 960 /// on a switch (5) we want to find these statements: 961 /// case 5: 962 /// printf(...); <-- 963 /// ++i; <-- 964 /// break; 965 /// 966 /// and add them to the ResultStmts vector. If it is unsafe to do this 967 /// transformation (for example, one of the elided statements contains a label 968 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 969 /// should include statements after it (e.g. the printf() line is a substmt of 970 /// the case) then return CSFC_FallThrough. If we handled it and found a break 971 /// statement, then return CSFC_Success. 972 /// 973 /// If Case is non-null, then we are looking for the specified case, checking 974 /// that nothing we jump over contains labels. If Case is null, then we found 975 /// the case and are looking for the break. 976 /// 977 /// If the recursive walk actually finds our Case, then we set FoundCase to 978 /// true. 979 /// 980 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 981 static CSFC_Result CollectStatementsForCase(const Stmt *S, 982 const SwitchCase *Case, 983 bool &FoundCase, 984 SmallVectorImpl<const Stmt*> &ResultStmts) { 985 // If this is a null statement, just succeed. 986 if (S == 0) 987 return Case ? CSFC_Success : CSFC_FallThrough; 988 989 // If this is the switchcase (case 4: or default) that we're looking for, then 990 // we're in business. Just add the substatement. 991 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 992 if (S == Case) { 993 FoundCase = true; 994 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 995 ResultStmts); 996 } 997 998 // Otherwise, this is some other case or default statement, just ignore it. 999 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1000 ResultStmts); 1001 } 1002 1003 // If we are in the live part of the code and we found our break statement, 1004 // return a success! 1005 if (Case == 0 && isa<BreakStmt>(S)) 1006 return CSFC_Success; 1007 1008 // If this is a switch statement, then it might contain the SwitchCase, the 1009 // break, or neither. 1010 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1011 // Handle this as two cases: we might be looking for the SwitchCase (if so 1012 // the skipped statements must be skippable) or we might already have it. 1013 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1014 if (Case) { 1015 // Keep track of whether we see a skipped declaration. The code could be 1016 // using the declaration even if it is skipped, so we can't optimize out 1017 // the decl if the kept statements might refer to it. 1018 bool HadSkippedDecl = false; 1019 1020 // If we're looking for the case, just see if we can skip each of the 1021 // substatements. 1022 for (; Case && I != E; ++I) { 1023 HadSkippedDecl |= isa<DeclStmt>(*I); 1024 1025 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1026 case CSFC_Failure: return CSFC_Failure; 1027 case CSFC_Success: 1028 // A successful result means that either 1) that the statement doesn't 1029 // have the case and is skippable, or 2) does contain the case value 1030 // and also contains the break to exit the switch. In the later case, 1031 // we just verify the rest of the statements are elidable. 1032 if (FoundCase) { 1033 // If we found the case and skipped declarations, we can't do the 1034 // optimization. 1035 if (HadSkippedDecl) 1036 return CSFC_Failure; 1037 1038 for (++I; I != E; ++I) 1039 if (CodeGenFunction::ContainsLabel(*I, true)) 1040 return CSFC_Failure; 1041 return CSFC_Success; 1042 } 1043 break; 1044 case CSFC_FallThrough: 1045 // If we have a fallthrough condition, then we must have found the 1046 // case started to include statements. Consider the rest of the 1047 // statements in the compound statement as candidates for inclusion. 1048 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1049 // We recursively found Case, so we're not looking for it anymore. 1050 Case = 0; 1051 1052 // If we found the case and skipped declarations, we can't do the 1053 // optimization. 1054 if (HadSkippedDecl) 1055 return CSFC_Failure; 1056 break; 1057 } 1058 } 1059 } 1060 1061 // If we have statements in our range, then we know that the statements are 1062 // live and need to be added to the set of statements we're tracking. 1063 for (; I != E; ++I) { 1064 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1065 case CSFC_Failure: return CSFC_Failure; 1066 case CSFC_FallThrough: 1067 // A fallthrough result means that the statement was simple and just 1068 // included in ResultStmt, keep adding them afterwards. 1069 break; 1070 case CSFC_Success: 1071 // A successful result means that we found the break statement and 1072 // stopped statement inclusion. We just ensure that any leftover stmts 1073 // are skippable and return success ourselves. 1074 for (++I; I != E; ++I) 1075 if (CodeGenFunction::ContainsLabel(*I, true)) 1076 return CSFC_Failure; 1077 return CSFC_Success; 1078 } 1079 } 1080 1081 return Case ? CSFC_Success : CSFC_FallThrough; 1082 } 1083 1084 // Okay, this is some other statement that we don't handle explicitly, like a 1085 // for statement or increment etc. If we are skipping over this statement, 1086 // just verify it doesn't have labels, which would make it invalid to elide. 1087 if (Case) { 1088 if (CodeGenFunction::ContainsLabel(S, true)) 1089 return CSFC_Failure; 1090 return CSFC_Success; 1091 } 1092 1093 // Otherwise, we want to include this statement. Everything is cool with that 1094 // so long as it doesn't contain a break out of the switch we're in. 1095 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1096 1097 // Otherwise, everything is great. Include the statement and tell the caller 1098 // that we fall through and include the next statement as well. 1099 ResultStmts.push_back(S); 1100 return CSFC_FallThrough; 1101 } 1102 1103 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1104 /// then invoke CollectStatementsForCase to find the list of statements to emit 1105 /// for a switch on constant. See the comment above CollectStatementsForCase 1106 /// for more details. 1107 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1108 const llvm::APInt &ConstantCondValue, 1109 SmallVectorImpl<const Stmt*> &ResultStmts, 1110 ASTContext &C) { 1111 // First step, find the switch case that is being branched to. We can do this 1112 // efficiently by scanning the SwitchCase list. 1113 const SwitchCase *Case = S.getSwitchCaseList(); 1114 const DefaultStmt *DefaultCase = 0; 1115 1116 for (; Case; Case = Case->getNextSwitchCase()) { 1117 // It's either a default or case. Just remember the default statement in 1118 // case we're not jumping to any numbered cases. 1119 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1120 DefaultCase = DS; 1121 continue; 1122 } 1123 1124 // Check to see if this case is the one we're looking for. 1125 const CaseStmt *CS = cast<CaseStmt>(Case); 1126 // Don't handle case ranges yet. 1127 if (CS->getRHS()) return false; 1128 1129 // If we found our case, remember it as 'case'. 1130 if (CS->getLHS()->EvaluateAsInt(C) == ConstantCondValue) 1131 break; 1132 } 1133 1134 // If we didn't find a matching case, we use a default if it exists, or we 1135 // elide the whole switch body! 1136 if (Case == 0) { 1137 // It is safe to elide the body of the switch if it doesn't contain labels 1138 // etc. If it is safe, return successfully with an empty ResultStmts list. 1139 if (DefaultCase == 0) 1140 return !CodeGenFunction::ContainsLabel(&S); 1141 Case = DefaultCase; 1142 } 1143 1144 // Ok, we know which case is being jumped to, try to collect all the 1145 // statements that follow it. This can fail for a variety of reasons. Also, 1146 // check to see that the recursive walk actually found our case statement. 1147 // Insane cases like this can fail to find it in the recursive walk since we 1148 // don't handle every stmt kind: 1149 // switch (4) { 1150 // while (1) { 1151 // case 4: ... 1152 bool FoundCase = false; 1153 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1154 ResultStmts) != CSFC_Failure && 1155 FoundCase; 1156 } 1157 1158 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1159 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1160 1161 RunCleanupsScope ConditionScope(*this); 1162 1163 if (S.getConditionVariable()) 1164 EmitAutoVarDecl(*S.getConditionVariable()); 1165 1166 // See if we can constant fold the condition of the switch and therefore only 1167 // emit the live case statement (if any) of the switch. 1168 llvm::APInt ConstantCondValue; 1169 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1170 SmallVector<const Stmt*, 4> CaseStmts; 1171 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1172 getContext())) { 1173 RunCleanupsScope ExecutedScope(*this); 1174 1175 // Okay, we can dead code eliminate everything except this case. Emit the 1176 // specified series of statements and we're good. 1177 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1178 EmitStmt(CaseStmts[i]); 1179 return; 1180 } 1181 } 1182 1183 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1184 1185 // Handle nested switch statements. 1186 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1187 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1188 1189 // Create basic block to hold stuff that comes after switch 1190 // statement. We also need to create a default block now so that 1191 // explicit case ranges tests can have a place to jump to on 1192 // failure. 1193 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1194 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1195 CaseRangeBlock = DefaultBlock; 1196 1197 // Clear the insertion point to indicate we are in unreachable code. 1198 Builder.ClearInsertionPoint(); 1199 1200 // All break statements jump to NextBlock. If BreakContinueStack is non empty 1201 // then reuse last ContinueBlock. 1202 JumpDest OuterContinue; 1203 if (!BreakContinueStack.empty()) 1204 OuterContinue = BreakContinueStack.back().ContinueBlock; 1205 1206 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1207 1208 // Emit switch body. 1209 EmitStmt(S.getBody()); 1210 1211 BreakContinueStack.pop_back(); 1212 1213 // Update the default block in case explicit case range tests have 1214 // been chained on top. 1215 SwitchInsn->setSuccessor(0, CaseRangeBlock); 1216 1217 // If a default was never emitted: 1218 if (!DefaultBlock->getParent()) { 1219 // If we have cleanups, emit the default block so that there's a 1220 // place to jump through the cleanups from. 1221 if (ConditionScope.requiresCleanups()) { 1222 EmitBlock(DefaultBlock); 1223 1224 // Otherwise, just forward the default block to the switch end. 1225 } else { 1226 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1227 delete DefaultBlock; 1228 } 1229 } 1230 1231 ConditionScope.ForceCleanup(); 1232 1233 // Emit continuation. 1234 EmitBlock(SwitchExit.getBlock(), true); 1235 1236 SwitchInsn = SavedSwitchInsn; 1237 CaseRangeBlock = SavedCRBlock; 1238 } 1239 1240 static std::string 1241 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1242 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1243 std::string Result; 1244 1245 while (*Constraint) { 1246 switch (*Constraint) { 1247 default: 1248 Result += Target.convertConstraint(Constraint); 1249 break; 1250 // Ignore these 1251 case '*': 1252 case '?': 1253 case '!': 1254 case '=': // Will see this and the following in mult-alt constraints. 1255 case '+': 1256 break; 1257 case ',': 1258 Result += "|"; 1259 break; 1260 case 'g': 1261 Result += "imr"; 1262 break; 1263 case '[': { 1264 assert(OutCons && 1265 "Must pass output names to constraints with a symbolic name"); 1266 unsigned Index; 1267 bool result = Target.resolveSymbolicName(Constraint, 1268 &(*OutCons)[0], 1269 OutCons->size(), Index); 1270 assert(result && "Could not resolve symbolic name"); (void)result; 1271 Result += llvm::utostr(Index); 1272 break; 1273 } 1274 } 1275 1276 Constraint++; 1277 } 1278 1279 return Result; 1280 } 1281 1282 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1283 /// as using a particular register add that as a constraint that will be used 1284 /// in this asm stmt. 1285 static std::string 1286 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1287 const TargetInfo &Target, CodeGenModule &CGM, 1288 const AsmStmt &Stmt) { 1289 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1290 if (!AsmDeclRef) 1291 return Constraint; 1292 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1293 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1294 if (!Variable) 1295 return Constraint; 1296 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1297 if (!Attr) 1298 return Constraint; 1299 StringRef Register = Attr->getLabel(); 1300 assert(Target.isValidGCCRegisterName(Register)); 1301 // We're using validateOutputConstraint here because we only care if 1302 // this is a register constraint. 1303 TargetInfo::ConstraintInfo Info(Constraint, ""); 1304 if (Target.validateOutputConstraint(Info) && 1305 !Info.allowsRegister()) { 1306 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1307 return Constraint; 1308 } 1309 // Canonicalize the register here before returning it. 1310 Register = Target.getNormalizedGCCRegisterName(Register); 1311 return "{" + Register.str() + "}"; 1312 } 1313 1314 llvm::Value* 1315 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S, 1316 const TargetInfo::ConstraintInfo &Info, 1317 LValue InputValue, QualType InputType, 1318 std::string &ConstraintStr) { 1319 llvm::Value *Arg; 1320 if (Info.allowsRegister() || !Info.allowsMemory()) { 1321 if (!CodeGenFunction::hasAggregateLLVMType(InputType)) { 1322 Arg = EmitLoadOfLValue(InputValue).getScalarVal(); 1323 } else { 1324 llvm::Type *Ty = ConvertType(InputType); 1325 uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); 1326 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1327 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1328 Ty = llvm::PointerType::getUnqual(Ty); 1329 1330 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1331 Ty)); 1332 } else { 1333 Arg = InputValue.getAddress(); 1334 ConstraintStr += '*'; 1335 } 1336 } 1337 } else { 1338 Arg = InputValue.getAddress(); 1339 ConstraintStr += '*'; 1340 } 1341 1342 return Arg; 1343 } 1344 1345 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, 1346 const TargetInfo::ConstraintInfo &Info, 1347 const Expr *InputExpr, 1348 std::string &ConstraintStr) { 1349 if (Info.allowsRegister() || !Info.allowsMemory()) 1350 if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) 1351 return EmitScalarExpr(InputExpr); 1352 1353 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1354 LValue Dest = EmitLValue(InputExpr); 1355 return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr); 1356 } 1357 1358 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1359 /// asm call instruction. The !srcloc MDNode contains a list of constant 1360 /// integers which are the source locations of the start of each line in the 1361 /// asm. 1362 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1363 CodeGenFunction &CGF) { 1364 SmallVector<llvm::Value *, 8> Locs; 1365 // Add the location of the first line to the MDNode. 1366 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1367 Str->getLocStart().getRawEncoding())); 1368 StringRef StrVal = Str->getString(); 1369 if (!StrVal.empty()) { 1370 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1371 const LangOptions &LangOpts = CGF.CGM.getLangOptions(); 1372 1373 // Add the location of the start of each subsequent line of the asm to the 1374 // MDNode. 1375 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1376 if (StrVal[i] != '\n') continue; 1377 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1378 CGF.Target); 1379 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1380 LineLoc.getRawEncoding())); 1381 } 1382 } 1383 1384 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1385 } 1386 1387 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1388 // Analyze the asm string to decompose it into its pieces. We know that Sema 1389 // has already done this, so it is guaranteed to be successful. 1390 SmallVector<AsmStmt::AsmStringPiece, 4> Pieces; 1391 unsigned DiagOffs; 1392 S.AnalyzeAsmString(Pieces, getContext(), DiagOffs); 1393 1394 // Assemble the pieces into the final asm string. 1395 std::string AsmString; 1396 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 1397 if (Pieces[i].isString()) 1398 AsmString += Pieces[i].getString(); 1399 else if (Pieces[i].getModifier() == '\0') 1400 AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); 1401 else 1402 AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + 1403 Pieces[i].getModifier() + '}'; 1404 } 1405 1406 // Get all the output and input constraints together. 1407 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1408 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1409 1410 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1411 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), 1412 S.getOutputName(i)); 1413 bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid; 1414 assert(IsValid && "Failed to parse output constraint"); 1415 OutputConstraintInfos.push_back(Info); 1416 } 1417 1418 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1419 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), 1420 S.getInputName(i)); 1421 bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(), 1422 S.getNumOutputs(), Info); 1423 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1424 InputConstraintInfos.push_back(Info); 1425 } 1426 1427 std::string Constraints; 1428 1429 std::vector<LValue> ResultRegDests; 1430 std::vector<QualType> ResultRegQualTys; 1431 std::vector<llvm::Type *> ResultRegTypes; 1432 std::vector<llvm::Type *> ResultTruncRegTypes; 1433 std::vector<llvm::Type*> ArgTypes; 1434 std::vector<llvm::Value*> Args; 1435 1436 // Keep track of inout constraints. 1437 std::string InOutConstraints; 1438 std::vector<llvm::Value*> InOutArgs; 1439 std::vector<llvm::Type*> InOutArgTypes; 1440 1441 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1442 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1443 1444 // Simplify the output constraint. 1445 std::string OutputConstraint(S.getOutputConstraint(i)); 1446 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); 1447 1448 const Expr *OutExpr = S.getOutputExpr(i); 1449 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1450 1451 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1452 Target, CGM, S); 1453 1454 LValue Dest = EmitLValue(OutExpr); 1455 if (!Constraints.empty()) 1456 Constraints += ','; 1457 1458 // If this is a register output, then make the inline asm return it 1459 // by-value. If this is a memory result, return the value by-reference. 1460 if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) { 1461 Constraints += "=" + OutputConstraint; 1462 ResultRegQualTys.push_back(OutExpr->getType()); 1463 ResultRegDests.push_back(Dest); 1464 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1465 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1466 1467 // If this output is tied to an input, and if the input is larger, then 1468 // we need to set the actual result type of the inline asm node to be the 1469 // same as the input type. 1470 if (Info.hasMatchingInput()) { 1471 unsigned InputNo; 1472 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1473 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1474 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1475 break; 1476 } 1477 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1478 1479 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1480 QualType OutputType = OutExpr->getType(); 1481 1482 uint64_t InputSize = getContext().getTypeSize(InputTy); 1483 if (getContext().getTypeSize(OutputType) < InputSize) { 1484 // Form the asm to return the value as a larger integer or fp type. 1485 ResultRegTypes.back() = ConvertType(InputTy); 1486 } 1487 } 1488 if (llvm::Type* AdjTy = 1489 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1490 ResultRegTypes.back())) 1491 ResultRegTypes.back() = AdjTy; 1492 } else { 1493 ArgTypes.push_back(Dest.getAddress()->getType()); 1494 Args.push_back(Dest.getAddress()); 1495 Constraints += "=*"; 1496 Constraints += OutputConstraint; 1497 } 1498 1499 if (Info.isReadWrite()) { 1500 InOutConstraints += ','; 1501 1502 const Expr *InputExpr = S.getOutputExpr(i); 1503 llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), 1504 InOutConstraints); 1505 1506 if (Info.allowsRegister()) 1507 InOutConstraints += llvm::utostr(i); 1508 else 1509 InOutConstraints += OutputConstraint; 1510 1511 InOutArgTypes.push_back(Arg->getType()); 1512 InOutArgs.push_back(Arg); 1513 } 1514 } 1515 1516 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1517 1518 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1519 const Expr *InputExpr = S.getInputExpr(i); 1520 1521 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1522 1523 if (!Constraints.empty()) 1524 Constraints += ','; 1525 1526 // Simplify the input constraint. 1527 std::string InputConstraint(S.getInputConstraint(i)); 1528 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, 1529 &OutputConstraintInfos); 1530 1531 InputConstraint = 1532 AddVariableConstraints(InputConstraint, 1533 *InputExpr->IgnoreParenNoopCasts(getContext()), 1534 Target, CGM, S); 1535 1536 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); 1537 1538 // If this input argument is tied to a larger output result, extend the 1539 // input to be the same size as the output. The LLVM backend wants to see 1540 // the input and output of a matching constraint be the same size. Note 1541 // that GCC does not define what the top bits are here. We use zext because 1542 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1543 if (Info.hasTiedOperand()) { 1544 unsigned Output = Info.getTiedOperand(); 1545 QualType OutputType = S.getOutputExpr(Output)->getType(); 1546 QualType InputTy = InputExpr->getType(); 1547 1548 if (getContext().getTypeSize(OutputType) > 1549 getContext().getTypeSize(InputTy)) { 1550 // Use ptrtoint as appropriate so that we can do our extension. 1551 if (isa<llvm::PointerType>(Arg->getType())) 1552 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1553 llvm::Type *OutputTy = ConvertType(OutputType); 1554 if (isa<llvm::IntegerType>(OutputTy)) 1555 Arg = Builder.CreateZExt(Arg, OutputTy); 1556 else if (isa<llvm::PointerType>(OutputTy)) 1557 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1558 else { 1559 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1560 Arg = Builder.CreateFPExt(Arg, OutputTy); 1561 } 1562 } 1563 } 1564 if (llvm::Type* AdjTy = 1565 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1566 Arg->getType())) 1567 Arg = Builder.CreateBitCast(Arg, AdjTy); 1568 1569 ArgTypes.push_back(Arg->getType()); 1570 Args.push_back(Arg); 1571 Constraints += InputConstraint; 1572 } 1573 1574 // Append the "input" part of inout constraints last. 1575 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1576 ArgTypes.push_back(InOutArgTypes[i]); 1577 Args.push_back(InOutArgs[i]); 1578 } 1579 Constraints += InOutConstraints; 1580 1581 // Clobbers 1582 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1583 StringRef Clobber = S.getClobber(i)->getString(); 1584 1585 if (Clobber != "memory" && Clobber != "cc") 1586 Clobber = Target.getNormalizedGCCRegisterName(Clobber); 1587 1588 if (i != 0 || NumConstraints != 0) 1589 Constraints += ','; 1590 1591 Constraints += "~{"; 1592 Constraints += Clobber; 1593 Constraints += '}'; 1594 } 1595 1596 // Add machine specific clobbers 1597 std::string MachineClobbers = Target.getClobbers(); 1598 if (!MachineClobbers.empty()) { 1599 if (!Constraints.empty()) 1600 Constraints += ','; 1601 Constraints += MachineClobbers; 1602 } 1603 1604 llvm::Type *ResultType; 1605 if (ResultRegTypes.empty()) 1606 ResultType = llvm::Type::getVoidTy(getLLVMContext()); 1607 else if (ResultRegTypes.size() == 1) 1608 ResultType = ResultRegTypes[0]; 1609 else 1610 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1611 1612 llvm::FunctionType *FTy = 1613 llvm::FunctionType::get(ResultType, ArgTypes, false); 1614 1615 llvm::InlineAsm *IA = 1616 llvm::InlineAsm::get(FTy, AsmString, Constraints, 1617 S.isVolatile() || S.getNumOutputs() == 0); 1618 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1619 Result->addAttribute(~0, llvm::Attribute::NoUnwind); 1620 1621 // Slap the source location of the inline asm into a !srcloc metadata on the 1622 // call. 1623 Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this)); 1624 1625 // Extract all of the register value results from the asm. 1626 std::vector<llvm::Value*> RegResults; 1627 if (ResultRegTypes.size() == 1) { 1628 RegResults.push_back(Result); 1629 } else { 1630 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1631 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1632 RegResults.push_back(Tmp); 1633 } 1634 } 1635 1636 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1637 llvm::Value *Tmp = RegResults[i]; 1638 1639 // If the result type of the LLVM IR asm doesn't match the result type of 1640 // the expression, do the conversion. 1641 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1642 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1643 1644 // Truncate the integer result to the right size, note that TruncTy can be 1645 // a pointer. 1646 if (TruncTy->isFloatingPointTy()) 1647 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1648 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1649 uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy); 1650 Tmp = Builder.CreateTrunc(Tmp, 1651 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1652 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1653 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1654 uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType()); 1655 Tmp = Builder.CreatePtrToInt(Tmp, 1656 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1657 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1658 } else if (TruncTy->isIntegerTy()) { 1659 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1660 } else if (TruncTy->isVectorTy()) { 1661 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1662 } 1663 } 1664 1665 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1666 } 1667 } 1668