1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 case Stmt::SEHLeaveStmtClass: 92 llvm_unreachable("should have emitted these statements as simple"); 93 94 #define STMT(Type, Base) 95 #define ABSTRACT_STMT(Op) 96 #define EXPR(Type, Base) \ 97 case Stmt::Type##Class: 98 #include "clang/AST/StmtNodes.inc" 99 { 100 // Remember the block we came in on. 101 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 102 assert(incoming && "expression emission must have an insertion point"); 103 104 EmitIgnoredExpr(cast<Expr>(S)); 105 106 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 107 assert(outgoing && "expression emission cleared block!"); 108 109 // The expression emitters assume (reasonably!) that the insertion 110 // point is always set. To maintain that, the call-emission code 111 // for noreturn functions has to enter a new block with no 112 // predecessors. We want to kill that block and mark the current 113 // insertion point unreachable in the common case of a call like 114 // "exit();". Since expression emission doesn't otherwise create 115 // blocks with no predecessors, we can just test for that. 116 // However, we must be careful not to do this to our incoming 117 // block, because *statement* emission does sometimes create 118 // reachable blocks which will have no predecessors until later in 119 // the function. This occurs with, e.g., labels that are not 120 // reachable by fallthrough. 121 if (incoming != outgoing && outgoing->use_empty()) { 122 outgoing->eraseFromParent(); 123 Builder.ClearInsertionPoint(); 124 } 125 break; 126 } 127 128 case Stmt::IndirectGotoStmtClass: 129 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 130 131 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 132 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 133 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 134 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 135 136 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 137 138 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 139 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 140 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 141 case Stmt::CapturedStmtClass: { 142 const CapturedStmt *CS = cast<CapturedStmt>(S); 143 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 144 } 145 break; 146 case Stmt::ObjCAtTryStmtClass: 147 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 148 break; 149 case Stmt::ObjCAtCatchStmtClass: 150 llvm_unreachable( 151 "@catch statements should be handled by EmitObjCAtTryStmt"); 152 case Stmt::ObjCAtFinallyStmtClass: 153 llvm_unreachable( 154 "@finally statements should be handled by EmitObjCAtTryStmt"); 155 case Stmt::ObjCAtThrowStmtClass: 156 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 157 break; 158 case Stmt::ObjCAtSynchronizedStmtClass: 159 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 160 break; 161 case Stmt::ObjCForCollectionStmtClass: 162 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 163 break; 164 case Stmt::ObjCAutoreleasePoolStmtClass: 165 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 166 break; 167 168 case Stmt::CXXTryStmtClass: 169 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 170 break; 171 case Stmt::CXXForRangeStmtClass: 172 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 173 break; 174 case Stmt::SEHTryStmtClass: 175 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 176 break; 177 case Stmt::OMPParallelDirectiveClass: 178 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 179 break; 180 case Stmt::OMPSimdDirectiveClass: 181 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 182 break; 183 case Stmt::OMPForDirectiveClass: 184 EmitOMPForDirective(cast<OMPForDirective>(*S)); 185 break; 186 case Stmt::OMPForSimdDirectiveClass: 187 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 188 break; 189 case Stmt::OMPSectionsDirectiveClass: 190 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 191 break; 192 case Stmt::OMPSectionDirectiveClass: 193 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 194 break; 195 case Stmt::OMPSingleDirectiveClass: 196 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 197 break; 198 case Stmt::OMPMasterDirectiveClass: 199 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 200 break; 201 case Stmt::OMPCriticalDirectiveClass: 202 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 203 break; 204 case Stmt::OMPParallelForDirectiveClass: 205 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 206 break; 207 case Stmt::OMPParallelForSimdDirectiveClass: 208 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 209 break; 210 case Stmt::OMPParallelSectionsDirectiveClass: 211 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 212 break; 213 case Stmt::OMPTaskDirectiveClass: 214 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 215 break; 216 case Stmt::OMPTaskyieldDirectiveClass: 217 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 218 break; 219 case Stmt::OMPBarrierDirectiveClass: 220 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 221 break; 222 case Stmt::OMPTaskwaitDirectiveClass: 223 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 224 break; 225 case Stmt::OMPFlushDirectiveClass: 226 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 227 break; 228 case Stmt::OMPOrderedDirectiveClass: 229 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 230 break; 231 case Stmt::OMPAtomicDirectiveClass: 232 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 233 break; 234 case Stmt::OMPTargetDirectiveClass: 235 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 236 break; 237 case Stmt::OMPTeamsDirectiveClass: 238 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 239 break; 240 } 241 } 242 243 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 244 switch (S->getStmtClass()) { 245 default: return false; 246 case Stmt::NullStmtClass: break; 247 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 248 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 249 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 250 case Stmt::AttributedStmtClass: 251 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 252 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 253 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 254 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 255 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 256 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 257 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 258 } 259 260 return true; 261 } 262 263 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 264 /// this captures the expression result of the last sub-statement and returns it 265 /// (for use by the statement expression extension). 266 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 267 AggValueSlot AggSlot) { 268 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 269 "LLVM IR generation of compound statement ('{}')"); 270 271 // Keep track of the current cleanup stack depth, including debug scopes. 272 LexicalScope Scope(*this, S.getSourceRange()); 273 274 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 275 } 276 277 llvm::Value* 278 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 279 bool GetLast, 280 AggValueSlot AggSlot) { 281 282 for (CompoundStmt::const_body_iterator I = S.body_begin(), 283 E = S.body_end()-GetLast; I != E; ++I) 284 EmitStmt(*I); 285 286 llvm::Value *RetAlloca = nullptr; 287 if (GetLast) { 288 // We have to special case labels here. They are statements, but when put 289 // at the end of a statement expression, they yield the value of their 290 // subexpression. Handle this by walking through all labels we encounter, 291 // emitting them before we evaluate the subexpr. 292 const Stmt *LastStmt = S.body_back(); 293 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 294 EmitLabel(LS->getDecl()); 295 LastStmt = LS->getSubStmt(); 296 } 297 298 EnsureInsertPoint(); 299 300 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 301 if (hasAggregateEvaluationKind(ExprTy)) { 302 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 303 } else { 304 // We can't return an RValue here because there might be cleanups at 305 // the end of the StmtExpr. Because of that, we have to emit the result 306 // here into a temporary alloca. 307 RetAlloca = CreateMemTemp(ExprTy); 308 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 309 /*IsInit*/false); 310 } 311 312 } 313 314 return RetAlloca; 315 } 316 317 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 318 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 319 320 // If there is a cleanup stack, then we it isn't worth trying to 321 // simplify this block (we would need to remove it from the scope map 322 // and cleanup entry). 323 if (!EHStack.empty()) 324 return; 325 326 // Can only simplify direct branches. 327 if (!BI || !BI->isUnconditional()) 328 return; 329 330 // Can only simplify empty blocks. 331 if (BI != BB->begin()) 332 return; 333 334 BB->replaceAllUsesWith(BI->getSuccessor(0)); 335 BI->eraseFromParent(); 336 BB->eraseFromParent(); 337 } 338 339 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 340 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 341 342 // Fall out of the current block (if necessary). 343 EmitBranch(BB); 344 345 if (IsFinished && BB->use_empty()) { 346 delete BB; 347 return; 348 } 349 350 // Place the block after the current block, if possible, or else at 351 // the end of the function. 352 if (CurBB && CurBB->getParent()) 353 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 354 else 355 CurFn->getBasicBlockList().push_back(BB); 356 Builder.SetInsertPoint(BB); 357 } 358 359 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 360 // Emit a branch from the current block to the target one if this 361 // was a real block. If this was just a fall-through block after a 362 // terminator, don't emit it. 363 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 364 365 if (!CurBB || CurBB->getTerminator()) { 366 // If there is no insert point or the previous block is already 367 // terminated, don't touch it. 368 } else { 369 // Otherwise, create a fall-through branch. 370 Builder.CreateBr(Target); 371 } 372 373 Builder.ClearInsertionPoint(); 374 } 375 376 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 377 bool inserted = false; 378 for (llvm::User *u : block->users()) { 379 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 380 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 381 inserted = true; 382 break; 383 } 384 } 385 386 if (!inserted) 387 CurFn->getBasicBlockList().push_back(block); 388 389 Builder.SetInsertPoint(block); 390 } 391 392 CodeGenFunction::JumpDest 393 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 394 JumpDest &Dest = LabelMap[D]; 395 if (Dest.isValid()) return Dest; 396 397 // Create, but don't insert, the new block. 398 Dest = JumpDest(createBasicBlock(D->getName()), 399 EHScopeStack::stable_iterator::invalid(), 400 NextCleanupDestIndex++); 401 return Dest; 402 } 403 404 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 405 // Add this label to the current lexical scope if we're within any 406 // normal cleanups. Jumps "in" to this label --- when permitted by 407 // the language --- may need to be routed around such cleanups. 408 if (EHStack.hasNormalCleanups() && CurLexicalScope) 409 CurLexicalScope->addLabel(D); 410 411 JumpDest &Dest = LabelMap[D]; 412 413 // If we didn't need a forward reference to this label, just go 414 // ahead and create a destination at the current scope. 415 if (!Dest.isValid()) { 416 Dest = getJumpDestInCurrentScope(D->getName()); 417 418 // Otherwise, we need to give this label a target depth and remove 419 // it from the branch-fixups list. 420 } else { 421 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 422 Dest.setScopeDepth(EHStack.stable_begin()); 423 ResolveBranchFixups(Dest.getBlock()); 424 } 425 426 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 427 EmitBlock(Dest.getBlock()); 428 Cnt.beginRegion(Builder); 429 } 430 431 /// Change the cleanup scope of the labels in this lexical scope to 432 /// match the scope of the enclosing context. 433 void CodeGenFunction::LexicalScope::rescopeLabels() { 434 assert(!Labels.empty()); 435 EHScopeStack::stable_iterator innermostScope 436 = CGF.EHStack.getInnermostNormalCleanup(); 437 438 // Change the scope depth of all the labels. 439 for (SmallVectorImpl<const LabelDecl*>::const_iterator 440 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 441 assert(CGF.LabelMap.count(*i)); 442 JumpDest &dest = CGF.LabelMap.find(*i)->second; 443 assert(dest.getScopeDepth().isValid()); 444 assert(innermostScope.encloses(dest.getScopeDepth())); 445 dest.setScopeDepth(innermostScope); 446 } 447 448 // Reparent the labels if the new scope also has cleanups. 449 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 450 ParentScope->Labels.append(Labels.begin(), Labels.end()); 451 } 452 } 453 454 455 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 456 EmitLabel(S.getDecl()); 457 EmitStmt(S.getSubStmt()); 458 } 459 460 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 461 const Stmt *SubStmt = S.getSubStmt(); 462 switch (SubStmt->getStmtClass()) { 463 case Stmt::DoStmtClass: 464 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 465 break; 466 case Stmt::ForStmtClass: 467 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 468 break; 469 case Stmt::WhileStmtClass: 470 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 471 break; 472 case Stmt::CXXForRangeStmtClass: 473 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 474 break; 475 default: 476 EmitStmt(SubStmt); 477 } 478 } 479 480 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 481 // If this code is reachable then emit a stop point (if generating 482 // debug info). We have to do this ourselves because we are on the 483 // "simple" statement path. 484 if (HaveInsertPoint()) 485 EmitStopPoint(&S); 486 487 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 488 } 489 490 491 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 492 if (const LabelDecl *Target = S.getConstantTarget()) { 493 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 494 return; 495 } 496 497 // Ensure that we have an i8* for our PHI node. 498 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 499 Int8PtrTy, "addr"); 500 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 501 502 // Get the basic block for the indirect goto. 503 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 504 505 // The first instruction in the block has to be the PHI for the switch dest, 506 // add an entry for this branch. 507 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 508 509 EmitBranch(IndGotoBB); 510 } 511 512 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 513 // C99 6.8.4.1: The first substatement is executed if the expression compares 514 // unequal to 0. The condition must be a scalar type. 515 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 516 RegionCounter Cnt = getPGORegionCounter(&S); 517 518 if (S.getConditionVariable()) 519 EmitAutoVarDecl(*S.getConditionVariable()); 520 521 // If the condition constant folds and can be elided, try to avoid emitting 522 // the condition and the dead arm of the if/else. 523 bool CondConstant; 524 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 525 // Figure out which block (then or else) is executed. 526 const Stmt *Executed = S.getThen(); 527 const Stmt *Skipped = S.getElse(); 528 if (!CondConstant) // Condition false? 529 std::swap(Executed, Skipped); 530 531 // If the skipped block has no labels in it, just emit the executed block. 532 // This avoids emitting dead code and simplifies the CFG substantially. 533 if (!ContainsLabel(Skipped)) { 534 if (CondConstant) 535 Cnt.beginRegion(Builder); 536 if (Executed) { 537 RunCleanupsScope ExecutedScope(*this); 538 EmitStmt(Executed); 539 } 540 return; 541 } 542 } 543 544 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 545 // the conditional branch. 546 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 547 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 548 llvm::BasicBlock *ElseBlock = ContBlock; 549 if (S.getElse()) 550 ElseBlock = createBasicBlock("if.else"); 551 552 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 553 554 // Emit the 'then' code. 555 EmitBlock(ThenBlock); 556 Cnt.beginRegion(Builder); 557 { 558 RunCleanupsScope ThenScope(*this); 559 EmitStmt(S.getThen()); 560 } 561 EmitBranch(ContBlock); 562 563 // Emit the 'else' code if present. 564 if (const Stmt *Else = S.getElse()) { 565 { 566 // There is no need to emit line number for an unconditional branch. 567 auto NL = ApplyDebugLocation::CreateEmpty(*this); 568 EmitBlock(ElseBlock); 569 } 570 { 571 RunCleanupsScope ElseScope(*this); 572 EmitStmt(Else); 573 } 574 { 575 // There is no need to emit line number for an unconditional branch. 576 auto NL = ApplyDebugLocation::CreateEmpty(*this); 577 EmitBranch(ContBlock); 578 } 579 } 580 581 // Emit the continuation block for code after the if. 582 EmitBlock(ContBlock, true); 583 } 584 585 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 586 llvm::BranchInst *CondBr, 587 ArrayRef<const Attr *> Attrs) { 588 // Return if there are no hints. 589 if (Attrs.empty()) 590 return; 591 592 // Add vectorize and unroll hints to the metadata on the conditional branch. 593 // 594 // FIXME: Should this really start with a size of 1? 595 SmallVector<llvm::Metadata *, 2> Metadata(1); 596 for (const auto *Attr : Attrs) { 597 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 598 599 // Skip non loop hint attributes 600 if (!LH) 601 continue; 602 603 LoopHintAttr::OptionType Option = LH->getOption(); 604 LoopHintAttr::LoopHintState State = LH->getState(); 605 const char *MetadataName; 606 switch (Option) { 607 case LoopHintAttr::Vectorize: 608 case LoopHintAttr::VectorizeWidth: 609 MetadataName = "llvm.loop.vectorize.width"; 610 break; 611 case LoopHintAttr::Interleave: 612 case LoopHintAttr::InterleaveCount: 613 MetadataName = "llvm.loop.interleave.count"; 614 break; 615 case LoopHintAttr::Unroll: 616 // With the unroll loop hint, a non-zero value indicates full unrolling. 617 MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable" 618 : "llvm.loop.unroll.full"; 619 break; 620 case LoopHintAttr::UnrollCount: 621 MetadataName = "llvm.loop.unroll.count"; 622 break; 623 } 624 625 Expr *ValueExpr = LH->getValue(); 626 int ValueInt = 1; 627 if (ValueExpr) { 628 llvm::APSInt ValueAPS = 629 ValueExpr->EvaluateKnownConstInt(CGM.getContext()); 630 ValueInt = static_cast<int>(ValueAPS.getSExtValue()); 631 } 632 633 llvm::Constant *Value; 634 llvm::MDString *Name; 635 switch (Option) { 636 case LoopHintAttr::Vectorize: 637 case LoopHintAttr::Interleave: 638 if (State != LoopHintAttr::Disable) { 639 // FIXME: In the future I will modifiy the behavior of the metadata 640 // so we can enable/disable vectorization and interleaving separately. 641 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 642 Value = Builder.getTrue(); 643 break; 644 } 645 // Vectorization/interleaving is disabled, set width/count to 1. 646 ValueInt = 1; 647 // Fallthrough. 648 case LoopHintAttr::VectorizeWidth: 649 case LoopHintAttr::InterleaveCount: 650 case LoopHintAttr::UnrollCount: 651 Name = llvm::MDString::get(Context, MetadataName); 652 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 653 break; 654 case LoopHintAttr::Unroll: 655 Name = llvm::MDString::get(Context, MetadataName); 656 Value = nullptr; 657 break; 658 } 659 660 SmallVector<llvm::Metadata *, 2> OpValues; 661 OpValues.push_back(Name); 662 if (Value) 663 OpValues.push_back(llvm::ConstantAsMetadata::get(Value)); 664 665 // Set or overwrite metadata indicated by Name. 666 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 667 } 668 669 // FIXME: This condition is never false. Should it be an assert? 670 if (!Metadata.empty()) { 671 // Add llvm.loop MDNode to CondBr. 672 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 673 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 674 675 CondBr->setMetadata("llvm.loop", LoopID); 676 } 677 } 678 679 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 680 ArrayRef<const Attr *> WhileAttrs) { 681 RegionCounter Cnt = getPGORegionCounter(&S); 682 683 // Emit the header for the loop, which will also become 684 // the continue target. 685 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 686 EmitBlock(LoopHeader.getBlock()); 687 688 LoopStack.push(LoopHeader.getBlock()); 689 690 // Create an exit block for when the condition fails, which will 691 // also become the break target. 692 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 693 694 // Store the blocks to use for break and continue. 695 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 696 697 // C++ [stmt.while]p2: 698 // When the condition of a while statement is a declaration, the 699 // scope of the variable that is declared extends from its point 700 // of declaration (3.3.2) to the end of the while statement. 701 // [...] 702 // The object created in a condition is destroyed and created 703 // with each iteration of the loop. 704 RunCleanupsScope ConditionScope(*this); 705 706 if (S.getConditionVariable()) 707 EmitAutoVarDecl(*S.getConditionVariable()); 708 709 // Evaluate the conditional in the while header. C99 6.8.5.1: The 710 // evaluation of the controlling expression takes place before each 711 // execution of the loop body. 712 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 713 714 // while(1) is common, avoid extra exit blocks. Be sure 715 // to correctly handle break/continue though. 716 bool EmitBoolCondBranch = true; 717 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 718 if (C->isOne()) 719 EmitBoolCondBranch = false; 720 721 // As long as the condition is true, go to the loop body. 722 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 723 if (EmitBoolCondBranch) { 724 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 725 if (ConditionScope.requiresCleanups()) 726 ExitBlock = createBasicBlock("while.exit"); 727 llvm::BranchInst *CondBr = 728 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 729 PGO.createLoopWeights(S.getCond(), Cnt)); 730 731 if (ExitBlock != LoopExit.getBlock()) { 732 EmitBlock(ExitBlock); 733 EmitBranchThroughCleanup(LoopExit); 734 } 735 736 // Attach metadata to loop body conditional branch. 737 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 738 } 739 740 // Emit the loop body. We have to emit this in a cleanup scope 741 // because it might be a singleton DeclStmt. 742 { 743 RunCleanupsScope BodyScope(*this); 744 EmitBlock(LoopBody); 745 Cnt.beginRegion(Builder); 746 EmitStmt(S.getBody()); 747 } 748 749 BreakContinueStack.pop_back(); 750 751 // Immediately force cleanup. 752 ConditionScope.ForceCleanup(); 753 754 EmitStopPoint(&S); 755 // Branch to the loop header again. 756 EmitBranch(LoopHeader.getBlock()); 757 758 LoopStack.pop(); 759 760 // Emit the exit block. 761 EmitBlock(LoopExit.getBlock(), true); 762 763 // The LoopHeader typically is just a branch if we skipped emitting 764 // a branch, try to erase it. 765 if (!EmitBoolCondBranch) 766 SimplifyForwardingBlocks(LoopHeader.getBlock()); 767 } 768 769 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 770 ArrayRef<const Attr *> DoAttrs) { 771 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 772 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 773 774 RegionCounter Cnt = getPGORegionCounter(&S); 775 776 // Store the blocks to use for break and continue. 777 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 778 779 // Emit the body of the loop. 780 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 781 782 LoopStack.push(LoopBody); 783 784 EmitBlockWithFallThrough(LoopBody, Cnt); 785 { 786 RunCleanupsScope BodyScope(*this); 787 EmitStmt(S.getBody()); 788 } 789 790 EmitBlock(LoopCond.getBlock()); 791 792 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 793 // after each execution of the loop body." 794 795 // Evaluate the conditional in the while header. 796 // C99 6.8.5p2/p4: The first substatement is executed if the expression 797 // compares unequal to 0. The condition must be a scalar type. 798 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 799 800 BreakContinueStack.pop_back(); 801 802 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 803 // to correctly handle break/continue though. 804 bool EmitBoolCondBranch = true; 805 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 806 if (C->isZero()) 807 EmitBoolCondBranch = false; 808 809 // As long as the condition is true, iterate the loop. 810 if (EmitBoolCondBranch) { 811 llvm::BranchInst *CondBr = 812 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 813 PGO.createLoopWeights(S.getCond(), Cnt)); 814 815 // Attach metadata to loop body conditional branch. 816 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 817 } 818 819 LoopStack.pop(); 820 821 // Emit the exit block. 822 EmitBlock(LoopExit.getBlock()); 823 824 // The DoCond block typically is just a branch if we skipped 825 // emitting a branch, try to erase it. 826 if (!EmitBoolCondBranch) 827 SimplifyForwardingBlocks(LoopCond.getBlock()); 828 } 829 830 void CodeGenFunction::EmitForStmt(const ForStmt &S, 831 ArrayRef<const Attr *> ForAttrs) { 832 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 833 834 LexicalScope ForScope(*this, S.getSourceRange()); 835 836 // Evaluate the first part before the loop. 837 if (S.getInit()) 838 EmitStmt(S.getInit()); 839 840 RegionCounter Cnt = getPGORegionCounter(&S); 841 842 // Start the loop with a block that tests the condition. 843 // If there's an increment, the continue scope will be overwritten 844 // later. 845 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 846 llvm::BasicBlock *CondBlock = Continue.getBlock(); 847 EmitBlock(CondBlock); 848 849 LoopStack.push(CondBlock); 850 851 // If the for loop doesn't have an increment we can just use the 852 // condition as the continue block. Otherwise we'll need to create 853 // a block for it (in the current scope, i.e. in the scope of the 854 // condition), and that we will become our continue block. 855 if (S.getInc()) 856 Continue = getJumpDestInCurrentScope("for.inc"); 857 858 // Store the blocks to use for break and continue. 859 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 860 861 // Create a cleanup scope for the condition variable cleanups. 862 LexicalScope ConditionScope(*this, S.getSourceRange()); 863 864 if (S.getCond()) { 865 // If the for statement has a condition scope, emit the local variable 866 // declaration. 867 if (S.getConditionVariable()) { 868 EmitAutoVarDecl(*S.getConditionVariable()); 869 } 870 871 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 872 // If there are any cleanups between here and the loop-exit scope, 873 // create a block to stage a loop exit along. 874 if (ForScope.requiresCleanups()) 875 ExitBlock = createBasicBlock("for.cond.cleanup"); 876 877 // As long as the condition is true, iterate the loop. 878 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 879 880 // C99 6.8.5p2/p4: The first substatement is executed if the expression 881 // compares unequal to 0. The condition must be a scalar type. 882 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 883 llvm::BranchInst *CondBr = 884 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 885 PGO.createLoopWeights(S.getCond(), Cnt)); 886 887 // Attach metadata to loop body conditional branch. 888 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 889 890 if (ExitBlock != LoopExit.getBlock()) { 891 EmitBlock(ExitBlock); 892 EmitBranchThroughCleanup(LoopExit); 893 } 894 895 EmitBlock(ForBody); 896 } else { 897 // Treat it as a non-zero constant. Don't even create a new block for the 898 // body, just fall into it. 899 } 900 Cnt.beginRegion(Builder); 901 902 { 903 // Create a separate cleanup scope for the body, in case it is not 904 // a compound statement. 905 RunCleanupsScope BodyScope(*this); 906 EmitStmt(S.getBody()); 907 } 908 909 // If there is an increment, emit it next. 910 if (S.getInc()) { 911 EmitBlock(Continue.getBlock()); 912 EmitStmt(S.getInc()); 913 } 914 915 BreakContinueStack.pop_back(); 916 917 ConditionScope.ForceCleanup(); 918 919 EmitStopPoint(&S); 920 EmitBranch(CondBlock); 921 922 ForScope.ForceCleanup(); 923 924 LoopStack.pop(); 925 926 // Emit the fall-through block. 927 EmitBlock(LoopExit.getBlock(), true); 928 } 929 930 void 931 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 932 ArrayRef<const Attr *> ForAttrs) { 933 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 934 935 LexicalScope ForScope(*this, S.getSourceRange()); 936 937 // Evaluate the first pieces before the loop. 938 EmitStmt(S.getRangeStmt()); 939 EmitStmt(S.getBeginEndStmt()); 940 941 RegionCounter Cnt = getPGORegionCounter(&S); 942 943 // Start the loop with a block that tests the condition. 944 // If there's an increment, the continue scope will be overwritten 945 // later. 946 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 947 EmitBlock(CondBlock); 948 949 LoopStack.push(CondBlock); 950 951 // If there are any cleanups between here and the loop-exit scope, 952 // create a block to stage a loop exit along. 953 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 954 if (ForScope.requiresCleanups()) 955 ExitBlock = createBasicBlock("for.cond.cleanup"); 956 957 // The loop body, consisting of the specified body and the loop variable. 958 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 959 960 // The body is executed if the expression, contextually converted 961 // to bool, is true. 962 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 963 llvm::BranchInst *CondBr = Builder.CreateCondBr( 964 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 965 966 // Attach metadata to loop body conditional branch. 967 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 968 969 if (ExitBlock != LoopExit.getBlock()) { 970 EmitBlock(ExitBlock); 971 EmitBranchThroughCleanup(LoopExit); 972 } 973 974 EmitBlock(ForBody); 975 Cnt.beginRegion(Builder); 976 977 // Create a block for the increment. In case of a 'continue', we jump there. 978 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 979 980 // Store the blocks to use for break and continue. 981 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 982 983 { 984 // Create a separate cleanup scope for the loop variable and body. 985 LexicalScope BodyScope(*this, S.getSourceRange()); 986 EmitStmt(S.getLoopVarStmt()); 987 EmitStmt(S.getBody()); 988 } 989 990 EmitStopPoint(&S); 991 // If there is an increment, emit it next. 992 EmitBlock(Continue.getBlock()); 993 EmitStmt(S.getInc()); 994 995 BreakContinueStack.pop_back(); 996 997 EmitBranch(CondBlock); 998 999 ForScope.ForceCleanup(); 1000 1001 LoopStack.pop(); 1002 1003 // Emit the fall-through block. 1004 EmitBlock(LoopExit.getBlock(), true); 1005 } 1006 1007 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1008 if (RV.isScalar()) { 1009 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1010 } else if (RV.isAggregate()) { 1011 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 1012 } else { 1013 EmitStoreOfComplex(RV.getComplexVal(), 1014 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 1015 /*init*/ true); 1016 } 1017 EmitBranchThroughCleanup(ReturnBlock); 1018 } 1019 1020 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1021 /// if the function returns void, or may be missing one if the function returns 1022 /// non-void. Fun stuff :). 1023 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1024 // Emit the result value, even if unused, to evalute the side effects. 1025 const Expr *RV = S.getRetValue(); 1026 1027 // Treat block literals in a return expression as if they appeared 1028 // in their own scope. This permits a small, easily-implemented 1029 // exception to our over-conservative rules about not jumping to 1030 // statements following block literals with non-trivial cleanups. 1031 RunCleanupsScope cleanupScope(*this); 1032 if (const ExprWithCleanups *cleanups = 1033 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1034 enterFullExpression(cleanups); 1035 RV = cleanups->getSubExpr(); 1036 } 1037 1038 // FIXME: Clean this up by using an LValue for ReturnTemp, 1039 // EmitStoreThroughLValue, and EmitAnyExpr. 1040 if (getLangOpts().ElideConstructors && 1041 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1042 // Apply the named return value optimization for this return statement, 1043 // which means doing nothing: the appropriate result has already been 1044 // constructed into the NRVO variable. 1045 1046 // If there is an NRVO flag for this variable, set it to 1 into indicate 1047 // that the cleanup code should not destroy the variable. 1048 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1049 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1050 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1051 // Make sure not to return anything, but evaluate the expression 1052 // for side effects. 1053 if (RV) 1054 EmitAnyExpr(RV); 1055 } else if (!RV) { 1056 // Do nothing (return value is left uninitialized) 1057 } else if (FnRetTy->isReferenceType()) { 1058 // If this function returns a reference, take the address of the expression 1059 // rather than the value. 1060 RValue Result = EmitReferenceBindingToExpr(RV); 1061 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1062 } else { 1063 switch (getEvaluationKind(RV->getType())) { 1064 case TEK_Scalar: 1065 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1066 break; 1067 case TEK_Complex: 1068 EmitComplexExprIntoLValue(RV, 1069 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1070 /*isInit*/ true); 1071 break; 1072 case TEK_Aggregate: { 1073 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1074 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1075 Qualifiers(), 1076 AggValueSlot::IsDestructed, 1077 AggValueSlot::DoesNotNeedGCBarriers, 1078 AggValueSlot::IsNotAliased)); 1079 break; 1080 } 1081 } 1082 } 1083 1084 ++NumReturnExprs; 1085 if (!RV || RV->isEvaluatable(getContext())) 1086 ++NumSimpleReturnExprs; 1087 1088 cleanupScope.ForceCleanup(); 1089 EmitBranchThroughCleanup(ReturnBlock); 1090 } 1091 1092 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1093 // As long as debug info is modeled with instructions, we have to ensure we 1094 // have a place to insert here and write the stop point here. 1095 if (HaveInsertPoint()) 1096 EmitStopPoint(&S); 1097 1098 for (const auto *I : S.decls()) 1099 EmitDecl(*I); 1100 } 1101 1102 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1103 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1104 1105 // If this code is reachable then emit a stop point (if generating 1106 // debug info). We have to do this ourselves because we are on the 1107 // "simple" statement path. 1108 if (HaveInsertPoint()) 1109 EmitStopPoint(&S); 1110 1111 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1112 } 1113 1114 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1115 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1116 1117 // If this code is reachable then emit a stop point (if generating 1118 // debug info). We have to do this ourselves because we are on the 1119 // "simple" statement path. 1120 if (HaveInsertPoint()) 1121 EmitStopPoint(&S); 1122 1123 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1124 } 1125 1126 /// EmitCaseStmtRange - If case statement range is not too big then 1127 /// add multiple cases to switch instruction, one for each value within 1128 /// the range. If range is too big then emit "if" condition check. 1129 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1130 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1131 1132 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1133 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1134 1135 RegionCounter CaseCnt = getPGORegionCounter(&S); 1136 1137 // Emit the code for this case. We do this first to make sure it is 1138 // properly chained from our predecessor before generating the 1139 // switch machinery to enter this block. 1140 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1141 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1142 EmitStmt(S.getSubStmt()); 1143 1144 // If range is empty, do nothing. 1145 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1146 return; 1147 1148 llvm::APInt Range = RHS - LHS; 1149 // FIXME: parameters such as this should not be hardcoded. 1150 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1151 // Range is small enough to add multiple switch instruction cases. 1152 uint64_t Total = CaseCnt.getCount(); 1153 unsigned NCases = Range.getZExtValue() + 1; 1154 // We only have one region counter for the entire set of cases here, so we 1155 // need to divide the weights evenly between the generated cases, ensuring 1156 // that the total weight is preserved. E.g., a weight of 5 over three cases 1157 // will be distributed as weights of 2, 2, and 1. 1158 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1159 for (unsigned I = 0; I != NCases; ++I) { 1160 if (SwitchWeights) 1161 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1162 if (Rem) 1163 Rem--; 1164 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1165 LHS++; 1166 } 1167 return; 1168 } 1169 1170 // The range is too big. Emit "if" condition into a new block, 1171 // making sure to save and restore the current insertion point. 1172 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1173 1174 // Push this test onto the chain of range checks (which terminates 1175 // in the default basic block). The switch's default will be changed 1176 // to the top of this chain after switch emission is complete. 1177 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1178 CaseRangeBlock = createBasicBlock("sw.caserange"); 1179 1180 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1181 Builder.SetInsertPoint(CaseRangeBlock); 1182 1183 // Emit range check. 1184 llvm::Value *Diff = 1185 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1186 llvm::Value *Cond = 1187 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1188 1189 llvm::MDNode *Weights = nullptr; 1190 if (SwitchWeights) { 1191 uint64_t ThisCount = CaseCnt.getCount(); 1192 uint64_t DefaultCount = (*SwitchWeights)[0]; 1193 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1194 1195 // Since we're chaining the switch default through each large case range, we 1196 // need to update the weight for the default, ie, the first case, to include 1197 // this case. 1198 (*SwitchWeights)[0] += ThisCount; 1199 } 1200 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1201 1202 // Restore the appropriate insertion point. 1203 if (RestoreBB) 1204 Builder.SetInsertPoint(RestoreBB); 1205 else 1206 Builder.ClearInsertionPoint(); 1207 } 1208 1209 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1210 // If there is no enclosing switch instance that we're aware of, then this 1211 // case statement and its block can be elided. This situation only happens 1212 // when we've constant-folded the switch, are emitting the constant case, 1213 // and part of the constant case includes another case statement. For 1214 // instance: switch (4) { case 4: do { case 5: } while (1); } 1215 if (!SwitchInsn) { 1216 EmitStmt(S.getSubStmt()); 1217 return; 1218 } 1219 1220 // Handle case ranges. 1221 if (S.getRHS()) { 1222 EmitCaseStmtRange(S); 1223 return; 1224 } 1225 1226 RegionCounter CaseCnt = getPGORegionCounter(&S); 1227 llvm::ConstantInt *CaseVal = 1228 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1229 1230 // If the body of the case is just a 'break', try to not emit an empty block. 1231 // If we're profiling or we're not optimizing, leave the block in for better 1232 // debug and coverage analysis. 1233 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1234 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1235 isa<BreakStmt>(S.getSubStmt())) { 1236 JumpDest Block = BreakContinueStack.back().BreakBlock; 1237 1238 // Only do this optimization if there are no cleanups that need emitting. 1239 if (isObviouslyBranchWithoutCleanups(Block)) { 1240 if (SwitchWeights) 1241 SwitchWeights->push_back(CaseCnt.getCount()); 1242 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1243 1244 // If there was a fallthrough into this case, make sure to redirect it to 1245 // the end of the switch as well. 1246 if (Builder.GetInsertBlock()) { 1247 Builder.CreateBr(Block.getBlock()); 1248 Builder.ClearInsertionPoint(); 1249 } 1250 return; 1251 } 1252 } 1253 1254 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1255 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1256 if (SwitchWeights) 1257 SwitchWeights->push_back(CaseCnt.getCount()); 1258 SwitchInsn->addCase(CaseVal, CaseDest); 1259 1260 // Recursively emitting the statement is acceptable, but is not wonderful for 1261 // code where we have many case statements nested together, i.e.: 1262 // case 1: 1263 // case 2: 1264 // case 3: etc. 1265 // Handling this recursively will create a new block for each case statement 1266 // that falls through to the next case which is IR intensive. It also causes 1267 // deep recursion which can run into stack depth limitations. Handle 1268 // sequential non-range case statements specially. 1269 const CaseStmt *CurCase = &S; 1270 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1271 1272 // Otherwise, iteratively add consecutive cases to this switch stmt. 1273 while (NextCase && NextCase->getRHS() == nullptr) { 1274 CurCase = NextCase; 1275 llvm::ConstantInt *CaseVal = 1276 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1277 1278 CaseCnt = getPGORegionCounter(NextCase); 1279 if (SwitchWeights) 1280 SwitchWeights->push_back(CaseCnt.getCount()); 1281 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1282 CaseDest = createBasicBlock("sw.bb"); 1283 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1284 } 1285 1286 SwitchInsn->addCase(CaseVal, CaseDest); 1287 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1288 } 1289 1290 // Normal default recursion for non-cases. 1291 EmitStmt(CurCase->getSubStmt()); 1292 } 1293 1294 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1295 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1296 assert(DefaultBlock->empty() && 1297 "EmitDefaultStmt: Default block already defined?"); 1298 1299 RegionCounter Cnt = getPGORegionCounter(&S); 1300 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1301 1302 EmitStmt(S.getSubStmt()); 1303 } 1304 1305 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1306 /// constant value that is being switched on, see if we can dead code eliminate 1307 /// the body of the switch to a simple series of statements to emit. Basically, 1308 /// on a switch (5) we want to find these statements: 1309 /// case 5: 1310 /// printf(...); <-- 1311 /// ++i; <-- 1312 /// break; 1313 /// 1314 /// and add them to the ResultStmts vector. If it is unsafe to do this 1315 /// transformation (for example, one of the elided statements contains a label 1316 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1317 /// should include statements after it (e.g. the printf() line is a substmt of 1318 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1319 /// statement, then return CSFC_Success. 1320 /// 1321 /// If Case is non-null, then we are looking for the specified case, checking 1322 /// that nothing we jump over contains labels. If Case is null, then we found 1323 /// the case and are looking for the break. 1324 /// 1325 /// If the recursive walk actually finds our Case, then we set FoundCase to 1326 /// true. 1327 /// 1328 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1329 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1330 const SwitchCase *Case, 1331 bool &FoundCase, 1332 SmallVectorImpl<const Stmt*> &ResultStmts) { 1333 // If this is a null statement, just succeed. 1334 if (!S) 1335 return Case ? CSFC_Success : CSFC_FallThrough; 1336 1337 // If this is the switchcase (case 4: or default) that we're looking for, then 1338 // we're in business. Just add the substatement. 1339 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1340 if (S == Case) { 1341 FoundCase = true; 1342 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1343 ResultStmts); 1344 } 1345 1346 // Otherwise, this is some other case or default statement, just ignore it. 1347 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1348 ResultStmts); 1349 } 1350 1351 // If we are in the live part of the code and we found our break statement, 1352 // return a success! 1353 if (!Case && isa<BreakStmt>(S)) 1354 return CSFC_Success; 1355 1356 // If this is a switch statement, then it might contain the SwitchCase, the 1357 // break, or neither. 1358 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1359 // Handle this as two cases: we might be looking for the SwitchCase (if so 1360 // the skipped statements must be skippable) or we might already have it. 1361 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1362 if (Case) { 1363 // Keep track of whether we see a skipped declaration. The code could be 1364 // using the declaration even if it is skipped, so we can't optimize out 1365 // the decl if the kept statements might refer to it. 1366 bool HadSkippedDecl = false; 1367 1368 // If we're looking for the case, just see if we can skip each of the 1369 // substatements. 1370 for (; Case && I != E; ++I) { 1371 HadSkippedDecl |= isa<DeclStmt>(*I); 1372 1373 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1374 case CSFC_Failure: return CSFC_Failure; 1375 case CSFC_Success: 1376 // A successful result means that either 1) that the statement doesn't 1377 // have the case and is skippable, or 2) does contain the case value 1378 // and also contains the break to exit the switch. In the later case, 1379 // we just verify the rest of the statements are elidable. 1380 if (FoundCase) { 1381 // If we found the case and skipped declarations, we can't do the 1382 // optimization. 1383 if (HadSkippedDecl) 1384 return CSFC_Failure; 1385 1386 for (++I; I != E; ++I) 1387 if (CodeGenFunction::ContainsLabel(*I, true)) 1388 return CSFC_Failure; 1389 return CSFC_Success; 1390 } 1391 break; 1392 case CSFC_FallThrough: 1393 // If we have a fallthrough condition, then we must have found the 1394 // case started to include statements. Consider the rest of the 1395 // statements in the compound statement as candidates for inclusion. 1396 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1397 // We recursively found Case, so we're not looking for it anymore. 1398 Case = nullptr; 1399 1400 // If we found the case and skipped declarations, we can't do the 1401 // optimization. 1402 if (HadSkippedDecl) 1403 return CSFC_Failure; 1404 break; 1405 } 1406 } 1407 } 1408 1409 // If we have statements in our range, then we know that the statements are 1410 // live and need to be added to the set of statements we're tracking. 1411 for (; I != E; ++I) { 1412 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1413 case CSFC_Failure: return CSFC_Failure; 1414 case CSFC_FallThrough: 1415 // A fallthrough result means that the statement was simple and just 1416 // included in ResultStmt, keep adding them afterwards. 1417 break; 1418 case CSFC_Success: 1419 // A successful result means that we found the break statement and 1420 // stopped statement inclusion. We just ensure that any leftover stmts 1421 // are skippable and return success ourselves. 1422 for (++I; I != E; ++I) 1423 if (CodeGenFunction::ContainsLabel(*I, true)) 1424 return CSFC_Failure; 1425 return CSFC_Success; 1426 } 1427 } 1428 1429 return Case ? CSFC_Success : CSFC_FallThrough; 1430 } 1431 1432 // Okay, this is some other statement that we don't handle explicitly, like a 1433 // for statement or increment etc. If we are skipping over this statement, 1434 // just verify it doesn't have labels, which would make it invalid to elide. 1435 if (Case) { 1436 if (CodeGenFunction::ContainsLabel(S, true)) 1437 return CSFC_Failure; 1438 return CSFC_Success; 1439 } 1440 1441 // Otherwise, we want to include this statement. Everything is cool with that 1442 // so long as it doesn't contain a break out of the switch we're in. 1443 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1444 1445 // Otherwise, everything is great. Include the statement and tell the caller 1446 // that we fall through and include the next statement as well. 1447 ResultStmts.push_back(S); 1448 return CSFC_FallThrough; 1449 } 1450 1451 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1452 /// then invoke CollectStatementsForCase to find the list of statements to emit 1453 /// for a switch on constant. See the comment above CollectStatementsForCase 1454 /// for more details. 1455 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1456 const llvm::APSInt &ConstantCondValue, 1457 SmallVectorImpl<const Stmt*> &ResultStmts, 1458 ASTContext &C, 1459 const SwitchCase *&ResultCase) { 1460 // First step, find the switch case that is being branched to. We can do this 1461 // efficiently by scanning the SwitchCase list. 1462 const SwitchCase *Case = S.getSwitchCaseList(); 1463 const DefaultStmt *DefaultCase = nullptr; 1464 1465 for (; Case; Case = Case->getNextSwitchCase()) { 1466 // It's either a default or case. Just remember the default statement in 1467 // case we're not jumping to any numbered cases. 1468 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1469 DefaultCase = DS; 1470 continue; 1471 } 1472 1473 // Check to see if this case is the one we're looking for. 1474 const CaseStmt *CS = cast<CaseStmt>(Case); 1475 // Don't handle case ranges yet. 1476 if (CS->getRHS()) return false; 1477 1478 // If we found our case, remember it as 'case'. 1479 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1480 break; 1481 } 1482 1483 // If we didn't find a matching case, we use a default if it exists, or we 1484 // elide the whole switch body! 1485 if (!Case) { 1486 // It is safe to elide the body of the switch if it doesn't contain labels 1487 // etc. If it is safe, return successfully with an empty ResultStmts list. 1488 if (!DefaultCase) 1489 return !CodeGenFunction::ContainsLabel(&S); 1490 Case = DefaultCase; 1491 } 1492 1493 // Ok, we know which case is being jumped to, try to collect all the 1494 // statements that follow it. This can fail for a variety of reasons. Also, 1495 // check to see that the recursive walk actually found our case statement. 1496 // Insane cases like this can fail to find it in the recursive walk since we 1497 // don't handle every stmt kind: 1498 // switch (4) { 1499 // while (1) { 1500 // case 4: ... 1501 bool FoundCase = false; 1502 ResultCase = Case; 1503 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1504 ResultStmts) != CSFC_Failure && 1505 FoundCase; 1506 } 1507 1508 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1509 // Handle nested switch statements. 1510 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1511 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1512 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1513 1514 // See if we can constant fold the condition of the switch and therefore only 1515 // emit the live case statement (if any) of the switch. 1516 llvm::APSInt ConstantCondValue; 1517 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1518 SmallVector<const Stmt*, 4> CaseStmts; 1519 const SwitchCase *Case = nullptr; 1520 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1521 getContext(), Case)) { 1522 if (Case) { 1523 RegionCounter CaseCnt = getPGORegionCounter(Case); 1524 CaseCnt.beginRegion(Builder); 1525 } 1526 RunCleanupsScope ExecutedScope(*this); 1527 1528 // Emit the condition variable if needed inside the entire cleanup scope 1529 // used by this special case for constant folded switches. 1530 if (S.getConditionVariable()) 1531 EmitAutoVarDecl(*S.getConditionVariable()); 1532 1533 // At this point, we are no longer "within" a switch instance, so 1534 // we can temporarily enforce this to ensure that any embedded case 1535 // statements are not emitted. 1536 SwitchInsn = nullptr; 1537 1538 // Okay, we can dead code eliminate everything except this case. Emit the 1539 // specified series of statements and we're good. 1540 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1541 EmitStmt(CaseStmts[i]); 1542 RegionCounter ExitCnt = getPGORegionCounter(&S); 1543 ExitCnt.beginRegion(Builder); 1544 1545 // Now we want to restore the saved switch instance so that nested 1546 // switches continue to function properly 1547 SwitchInsn = SavedSwitchInsn; 1548 1549 return; 1550 } 1551 } 1552 1553 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1554 1555 RunCleanupsScope ConditionScope(*this); 1556 if (S.getConditionVariable()) 1557 EmitAutoVarDecl(*S.getConditionVariable()); 1558 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1559 1560 // Create basic block to hold stuff that comes after switch 1561 // statement. We also need to create a default block now so that 1562 // explicit case ranges tests can have a place to jump to on 1563 // failure. 1564 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1565 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1566 if (PGO.haveRegionCounts()) { 1567 // Walk the SwitchCase list to find how many there are. 1568 uint64_t DefaultCount = 0; 1569 unsigned NumCases = 0; 1570 for (const SwitchCase *Case = S.getSwitchCaseList(); 1571 Case; 1572 Case = Case->getNextSwitchCase()) { 1573 if (isa<DefaultStmt>(Case)) 1574 DefaultCount = getPGORegionCounter(Case).getCount(); 1575 NumCases += 1; 1576 } 1577 SwitchWeights = new SmallVector<uint64_t, 16>(); 1578 SwitchWeights->reserve(NumCases); 1579 // The default needs to be first. We store the edge count, so we already 1580 // know the right weight. 1581 SwitchWeights->push_back(DefaultCount); 1582 } 1583 CaseRangeBlock = DefaultBlock; 1584 1585 // Clear the insertion point to indicate we are in unreachable code. 1586 Builder.ClearInsertionPoint(); 1587 1588 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1589 // then reuse last ContinueBlock. 1590 JumpDest OuterContinue; 1591 if (!BreakContinueStack.empty()) 1592 OuterContinue = BreakContinueStack.back().ContinueBlock; 1593 1594 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1595 1596 // Emit switch body. 1597 EmitStmt(S.getBody()); 1598 1599 BreakContinueStack.pop_back(); 1600 1601 // Update the default block in case explicit case range tests have 1602 // been chained on top. 1603 SwitchInsn->setDefaultDest(CaseRangeBlock); 1604 1605 // If a default was never emitted: 1606 if (!DefaultBlock->getParent()) { 1607 // If we have cleanups, emit the default block so that there's a 1608 // place to jump through the cleanups from. 1609 if (ConditionScope.requiresCleanups()) { 1610 EmitBlock(DefaultBlock); 1611 1612 // Otherwise, just forward the default block to the switch end. 1613 } else { 1614 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1615 delete DefaultBlock; 1616 } 1617 } 1618 1619 ConditionScope.ForceCleanup(); 1620 1621 // Emit continuation. 1622 EmitBlock(SwitchExit.getBlock(), true); 1623 RegionCounter ExitCnt = getPGORegionCounter(&S); 1624 ExitCnt.beginRegion(Builder); 1625 1626 if (SwitchWeights) { 1627 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1628 "switch weights do not match switch cases"); 1629 // If there's only one jump destination there's no sense weighting it. 1630 if (SwitchWeights->size() > 1) 1631 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1632 PGO.createBranchWeights(*SwitchWeights)); 1633 delete SwitchWeights; 1634 } 1635 SwitchInsn = SavedSwitchInsn; 1636 SwitchWeights = SavedSwitchWeights; 1637 CaseRangeBlock = SavedCRBlock; 1638 } 1639 1640 static std::string 1641 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1642 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1643 std::string Result; 1644 1645 while (*Constraint) { 1646 switch (*Constraint) { 1647 default: 1648 Result += Target.convertConstraint(Constraint); 1649 break; 1650 // Ignore these 1651 case '*': 1652 case '?': 1653 case '!': 1654 case '=': // Will see this and the following in mult-alt constraints. 1655 case '+': 1656 break; 1657 case '#': // Ignore the rest of the constraint alternative. 1658 while (Constraint[1] && Constraint[1] != ',') 1659 Constraint++; 1660 break; 1661 case '&': 1662 case '%': 1663 Result += *Constraint; 1664 while (Constraint[1] && Constraint[1] == *Constraint) 1665 Constraint++; 1666 break; 1667 case ',': 1668 Result += "|"; 1669 break; 1670 case 'g': 1671 Result += "imr"; 1672 break; 1673 case '[': { 1674 assert(OutCons && 1675 "Must pass output names to constraints with a symbolic name"); 1676 unsigned Index; 1677 bool result = Target.resolveSymbolicName(Constraint, 1678 &(*OutCons)[0], 1679 OutCons->size(), Index); 1680 assert(result && "Could not resolve symbolic name"); (void)result; 1681 Result += llvm::utostr(Index); 1682 break; 1683 } 1684 } 1685 1686 Constraint++; 1687 } 1688 1689 return Result; 1690 } 1691 1692 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1693 /// as using a particular register add that as a constraint that will be used 1694 /// in this asm stmt. 1695 static std::string 1696 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1697 const TargetInfo &Target, CodeGenModule &CGM, 1698 const AsmStmt &Stmt, const bool EarlyClobber) { 1699 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1700 if (!AsmDeclRef) 1701 return Constraint; 1702 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1703 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1704 if (!Variable) 1705 return Constraint; 1706 if (Variable->getStorageClass() != SC_Register) 1707 return Constraint; 1708 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1709 if (!Attr) 1710 return Constraint; 1711 StringRef Register = Attr->getLabel(); 1712 assert(Target.isValidGCCRegisterName(Register)); 1713 // We're using validateOutputConstraint here because we only care if 1714 // this is a register constraint. 1715 TargetInfo::ConstraintInfo Info(Constraint, ""); 1716 if (Target.validateOutputConstraint(Info) && 1717 !Info.allowsRegister()) { 1718 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1719 return Constraint; 1720 } 1721 // Canonicalize the register here before returning it. 1722 Register = Target.getNormalizedGCCRegisterName(Register); 1723 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1724 } 1725 1726 llvm::Value* 1727 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1728 LValue InputValue, QualType InputType, 1729 std::string &ConstraintStr, 1730 SourceLocation Loc) { 1731 llvm::Value *Arg; 1732 if (Info.allowsRegister() || !Info.allowsMemory()) { 1733 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1734 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1735 } else { 1736 llvm::Type *Ty = ConvertType(InputType); 1737 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1738 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1739 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1740 Ty = llvm::PointerType::getUnqual(Ty); 1741 1742 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1743 Ty)); 1744 } else { 1745 Arg = InputValue.getAddress(); 1746 ConstraintStr += '*'; 1747 } 1748 } 1749 } else { 1750 Arg = InputValue.getAddress(); 1751 ConstraintStr += '*'; 1752 } 1753 1754 return Arg; 1755 } 1756 1757 llvm::Value* CodeGenFunction::EmitAsmInput( 1758 const TargetInfo::ConstraintInfo &Info, 1759 const Expr *InputExpr, 1760 std::string &ConstraintStr) { 1761 if (Info.allowsRegister() || !Info.allowsMemory()) 1762 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1763 return EmitScalarExpr(InputExpr); 1764 1765 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1766 LValue Dest = EmitLValue(InputExpr); 1767 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1768 InputExpr->getExprLoc()); 1769 } 1770 1771 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1772 /// asm call instruction. The !srcloc MDNode contains a list of constant 1773 /// integers which are the source locations of the start of each line in the 1774 /// asm. 1775 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1776 CodeGenFunction &CGF) { 1777 SmallVector<llvm::Metadata *, 8> Locs; 1778 // Add the location of the first line to the MDNode. 1779 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1780 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1781 StringRef StrVal = Str->getString(); 1782 if (!StrVal.empty()) { 1783 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1784 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1785 1786 // Add the location of the start of each subsequent line of the asm to the 1787 // MDNode. 1788 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1789 if (StrVal[i] != '\n') continue; 1790 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1791 CGF.getTarget()); 1792 Locs.push_back(llvm::ConstantAsMetadata::get( 1793 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1794 } 1795 } 1796 1797 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1798 } 1799 1800 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1801 // Assemble the final asm string. 1802 std::string AsmString = S.generateAsmString(getContext()); 1803 1804 // Get all the output and input constraints together. 1805 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1806 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1807 1808 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1809 StringRef Name; 1810 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1811 Name = GAS->getOutputName(i); 1812 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1813 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1814 assert(IsValid && "Failed to parse output constraint"); 1815 OutputConstraintInfos.push_back(Info); 1816 } 1817 1818 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1819 StringRef Name; 1820 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1821 Name = GAS->getInputName(i); 1822 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1823 bool IsValid = 1824 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1825 S.getNumOutputs(), Info); 1826 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1827 InputConstraintInfos.push_back(Info); 1828 } 1829 1830 std::string Constraints; 1831 1832 std::vector<LValue> ResultRegDests; 1833 std::vector<QualType> ResultRegQualTys; 1834 std::vector<llvm::Type *> ResultRegTypes; 1835 std::vector<llvm::Type *> ResultTruncRegTypes; 1836 std::vector<llvm::Type *> ArgTypes; 1837 std::vector<llvm::Value*> Args; 1838 1839 // Keep track of inout constraints. 1840 std::string InOutConstraints; 1841 std::vector<llvm::Value*> InOutArgs; 1842 std::vector<llvm::Type*> InOutArgTypes; 1843 1844 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1845 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1846 1847 // Simplify the output constraint. 1848 std::string OutputConstraint(S.getOutputConstraint(i)); 1849 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1850 getTarget()); 1851 1852 const Expr *OutExpr = S.getOutputExpr(i); 1853 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1854 1855 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1856 getTarget(), CGM, S, 1857 Info.earlyClobber()); 1858 1859 LValue Dest = EmitLValue(OutExpr); 1860 if (!Constraints.empty()) 1861 Constraints += ','; 1862 1863 // If this is a register output, then make the inline asm return it 1864 // by-value. If this is a memory result, return the value by-reference. 1865 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1866 Constraints += "=" + OutputConstraint; 1867 ResultRegQualTys.push_back(OutExpr->getType()); 1868 ResultRegDests.push_back(Dest); 1869 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1870 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1871 1872 // If this output is tied to an input, and if the input is larger, then 1873 // we need to set the actual result type of the inline asm node to be the 1874 // same as the input type. 1875 if (Info.hasMatchingInput()) { 1876 unsigned InputNo; 1877 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1878 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1879 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1880 break; 1881 } 1882 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1883 1884 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1885 QualType OutputType = OutExpr->getType(); 1886 1887 uint64_t InputSize = getContext().getTypeSize(InputTy); 1888 if (getContext().getTypeSize(OutputType) < InputSize) { 1889 // Form the asm to return the value as a larger integer or fp type. 1890 ResultRegTypes.back() = ConvertType(InputTy); 1891 } 1892 } 1893 if (llvm::Type* AdjTy = 1894 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1895 ResultRegTypes.back())) 1896 ResultRegTypes.back() = AdjTy; 1897 else { 1898 CGM.getDiags().Report(S.getAsmLoc(), 1899 diag::err_asm_invalid_type_in_input) 1900 << OutExpr->getType() << OutputConstraint; 1901 } 1902 } else { 1903 ArgTypes.push_back(Dest.getAddress()->getType()); 1904 Args.push_back(Dest.getAddress()); 1905 Constraints += "=*"; 1906 Constraints += OutputConstraint; 1907 } 1908 1909 if (Info.isReadWrite()) { 1910 InOutConstraints += ','; 1911 1912 const Expr *InputExpr = S.getOutputExpr(i); 1913 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1914 InOutConstraints, 1915 InputExpr->getExprLoc()); 1916 1917 if (llvm::Type* AdjTy = 1918 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1919 Arg->getType())) 1920 Arg = Builder.CreateBitCast(Arg, AdjTy); 1921 1922 if (Info.allowsRegister()) 1923 InOutConstraints += llvm::utostr(i); 1924 else 1925 InOutConstraints += OutputConstraint; 1926 1927 InOutArgTypes.push_back(Arg->getType()); 1928 InOutArgs.push_back(Arg); 1929 } 1930 } 1931 1932 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1933 // to the return value slot. Only do this when returning in registers. 1934 if (isa<MSAsmStmt>(&S)) { 1935 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1936 if (RetAI.isDirect() || RetAI.isExtend()) { 1937 // Make a fake lvalue for the return value slot. 1938 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1939 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1940 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1941 ResultRegDests, AsmString, S.getNumOutputs()); 1942 SawAsmBlock = true; 1943 } 1944 } 1945 1946 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1947 const Expr *InputExpr = S.getInputExpr(i); 1948 1949 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1950 1951 if (!Constraints.empty()) 1952 Constraints += ','; 1953 1954 // Simplify the input constraint. 1955 std::string InputConstraint(S.getInputConstraint(i)); 1956 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1957 &OutputConstraintInfos); 1958 1959 InputConstraint = AddVariableConstraints( 1960 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 1961 getTarget(), CGM, S, false /* No EarlyClobber */); 1962 1963 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1964 1965 // If this input argument is tied to a larger output result, extend the 1966 // input to be the same size as the output. The LLVM backend wants to see 1967 // the input and output of a matching constraint be the same size. Note 1968 // that GCC does not define what the top bits are here. We use zext because 1969 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1970 if (Info.hasTiedOperand()) { 1971 unsigned Output = Info.getTiedOperand(); 1972 QualType OutputType = S.getOutputExpr(Output)->getType(); 1973 QualType InputTy = InputExpr->getType(); 1974 1975 if (getContext().getTypeSize(OutputType) > 1976 getContext().getTypeSize(InputTy)) { 1977 // Use ptrtoint as appropriate so that we can do our extension. 1978 if (isa<llvm::PointerType>(Arg->getType())) 1979 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1980 llvm::Type *OutputTy = ConvertType(OutputType); 1981 if (isa<llvm::IntegerType>(OutputTy)) 1982 Arg = Builder.CreateZExt(Arg, OutputTy); 1983 else if (isa<llvm::PointerType>(OutputTy)) 1984 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1985 else { 1986 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1987 Arg = Builder.CreateFPExt(Arg, OutputTy); 1988 } 1989 } 1990 } 1991 if (llvm::Type* AdjTy = 1992 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1993 Arg->getType())) 1994 Arg = Builder.CreateBitCast(Arg, AdjTy); 1995 else 1996 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1997 << InputExpr->getType() << InputConstraint; 1998 1999 ArgTypes.push_back(Arg->getType()); 2000 Args.push_back(Arg); 2001 Constraints += InputConstraint; 2002 } 2003 2004 // Append the "input" part of inout constraints last. 2005 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2006 ArgTypes.push_back(InOutArgTypes[i]); 2007 Args.push_back(InOutArgs[i]); 2008 } 2009 Constraints += InOutConstraints; 2010 2011 // Clobbers 2012 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2013 StringRef Clobber = S.getClobber(i); 2014 2015 if (Clobber != "memory" && Clobber != "cc") 2016 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2017 2018 if (!Constraints.empty()) 2019 Constraints += ','; 2020 2021 Constraints += "~{"; 2022 Constraints += Clobber; 2023 Constraints += '}'; 2024 } 2025 2026 // Add machine specific clobbers 2027 std::string MachineClobbers = getTarget().getClobbers(); 2028 if (!MachineClobbers.empty()) { 2029 if (!Constraints.empty()) 2030 Constraints += ','; 2031 Constraints += MachineClobbers; 2032 } 2033 2034 llvm::Type *ResultType; 2035 if (ResultRegTypes.empty()) 2036 ResultType = VoidTy; 2037 else if (ResultRegTypes.size() == 1) 2038 ResultType = ResultRegTypes[0]; 2039 else 2040 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2041 2042 llvm::FunctionType *FTy = 2043 llvm::FunctionType::get(ResultType, ArgTypes, false); 2044 2045 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2046 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2047 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2048 llvm::InlineAsm *IA = 2049 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2050 /* IsAlignStack */ false, AsmDialect); 2051 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2052 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2053 llvm::Attribute::NoUnwind); 2054 2055 // Slap the source location of the inline asm into a !srcloc metadata on the 2056 // call. 2057 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2058 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2059 *this)); 2060 } else { 2061 // At least put the line number on MS inline asm blobs. 2062 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2063 Result->setMetadata("srcloc", 2064 llvm::MDNode::get(getLLVMContext(), 2065 llvm::ConstantAsMetadata::get(Loc))); 2066 } 2067 2068 // Extract all of the register value results from the asm. 2069 std::vector<llvm::Value*> RegResults; 2070 if (ResultRegTypes.size() == 1) { 2071 RegResults.push_back(Result); 2072 } else { 2073 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2074 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2075 RegResults.push_back(Tmp); 2076 } 2077 } 2078 2079 assert(RegResults.size() == ResultRegTypes.size()); 2080 assert(RegResults.size() == ResultTruncRegTypes.size()); 2081 assert(RegResults.size() == ResultRegDests.size()); 2082 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2083 llvm::Value *Tmp = RegResults[i]; 2084 2085 // If the result type of the LLVM IR asm doesn't match the result type of 2086 // the expression, do the conversion. 2087 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2088 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2089 2090 // Truncate the integer result to the right size, note that TruncTy can be 2091 // a pointer. 2092 if (TruncTy->isFloatingPointTy()) 2093 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2094 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2095 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2096 Tmp = Builder.CreateTrunc(Tmp, 2097 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2098 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2099 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2100 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2101 Tmp = Builder.CreatePtrToInt(Tmp, 2102 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2103 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2104 } else if (TruncTy->isIntegerTy()) { 2105 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2106 } else if (TruncTy->isVectorTy()) { 2107 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2108 } 2109 } 2110 2111 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2112 } 2113 } 2114 2115 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2116 const RecordDecl *RD = S.getCapturedRecordDecl(); 2117 QualType RecordTy = getContext().getRecordType(RD); 2118 2119 // Initialize the captured struct. 2120 LValue SlotLV = MakeNaturalAlignAddrLValue( 2121 CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2122 2123 RecordDecl::field_iterator CurField = RD->field_begin(); 2124 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2125 E = S.capture_init_end(); 2126 I != E; ++I, ++CurField) { 2127 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2128 if (CurField->hasCapturedVLAType()) { 2129 auto VAT = CurField->getCapturedVLAType(); 2130 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2131 } else { 2132 EmitInitializerForField(*CurField, LV, *I, None); 2133 } 2134 } 2135 2136 return SlotLV; 2137 } 2138 2139 /// Generate an outlined function for the body of a CapturedStmt, store any 2140 /// captured variables into the captured struct, and call the outlined function. 2141 llvm::Function * 2142 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2143 LValue CapStruct = InitCapturedStruct(S); 2144 2145 // Emit the CapturedDecl 2146 CodeGenFunction CGF(CGM, true); 2147 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2148 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2149 delete CGF.CapturedStmtInfo; 2150 2151 // Emit call to the helper function. 2152 EmitCallOrInvoke(F, CapStruct.getAddress()); 2153 2154 return F; 2155 } 2156 2157 llvm::Value * 2158 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2159 LValue CapStruct = InitCapturedStruct(S); 2160 return CapStruct.getAddress(); 2161 } 2162 2163 /// Creates the outlined function for a CapturedStmt. 2164 llvm::Function * 2165 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2166 assert(CapturedStmtInfo && 2167 "CapturedStmtInfo should be set when generating the captured function"); 2168 const CapturedDecl *CD = S.getCapturedDecl(); 2169 const RecordDecl *RD = S.getCapturedRecordDecl(); 2170 SourceLocation Loc = S.getLocStart(); 2171 assert(CD->hasBody() && "missing CapturedDecl body"); 2172 2173 // Build the argument list. 2174 ASTContext &Ctx = CGM.getContext(); 2175 FunctionArgList Args; 2176 Args.append(CD->param_begin(), CD->param_end()); 2177 2178 // Create the function declaration. 2179 FunctionType::ExtInfo ExtInfo; 2180 const CGFunctionInfo &FuncInfo = 2181 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2182 /*IsVariadic=*/false); 2183 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2184 2185 llvm::Function *F = 2186 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2187 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2188 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2189 2190 // Generate the function. 2191 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2192 CD->getLocation(), 2193 CD->getBody()->getLocStart()); 2194 // Set the context parameter in CapturedStmtInfo. 2195 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2196 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2197 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2198 2199 // Initialize variable-length arrays. 2200 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2201 Ctx.getTagDeclType(RD)); 2202 for (auto *FD : RD->fields()) { 2203 if (FD->hasCapturedVLAType()) { 2204 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2205 S.getLocStart()).getScalarVal(); 2206 auto VAT = FD->getCapturedVLAType(); 2207 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2208 } 2209 } 2210 2211 // If 'this' is captured, load it into CXXThisValue. 2212 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2213 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2214 LValue ThisLValue = EmitLValueForField(Base, FD); 2215 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2216 } 2217 2218 PGO.assignRegionCounters(CD, F); 2219 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2220 FinishFunction(CD->getBodyRBrace()); 2221 2222 return F; 2223 } 2224