1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 146 break; 147 case Stmt::CoreturnStmtClass: 148 CGM.ErrorUnsupported(S, "coroutine"); 149 break; 150 case Stmt::CapturedStmtClass: { 151 const CapturedStmt *CS = cast<CapturedStmt>(S); 152 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 153 } 154 break; 155 case Stmt::ObjCAtTryStmtClass: 156 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 157 break; 158 case Stmt::ObjCAtCatchStmtClass: 159 llvm_unreachable( 160 "@catch statements should be handled by EmitObjCAtTryStmt"); 161 case Stmt::ObjCAtFinallyStmtClass: 162 llvm_unreachable( 163 "@finally statements should be handled by EmitObjCAtTryStmt"); 164 case Stmt::ObjCAtThrowStmtClass: 165 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 166 break; 167 case Stmt::ObjCAtSynchronizedStmtClass: 168 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 169 break; 170 case Stmt::ObjCForCollectionStmtClass: 171 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 172 break; 173 case Stmt::ObjCAutoreleasePoolStmtClass: 174 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 175 break; 176 177 case Stmt::CXXTryStmtClass: 178 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 179 break; 180 case Stmt::CXXForRangeStmtClass: 181 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 182 break; 183 case Stmt::SEHTryStmtClass: 184 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 185 break; 186 case Stmt::OMPParallelDirectiveClass: 187 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 188 break; 189 case Stmt::OMPSimdDirectiveClass: 190 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 191 break; 192 case Stmt::OMPForDirectiveClass: 193 EmitOMPForDirective(cast<OMPForDirective>(*S)); 194 break; 195 case Stmt::OMPForSimdDirectiveClass: 196 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 197 break; 198 case Stmt::OMPSectionsDirectiveClass: 199 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 200 break; 201 case Stmt::OMPSectionDirectiveClass: 202 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 203 break; 204 case Stmt::OMPSingleDirectiveClass: 205 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 206 break; 207 case Stmt::OMPMasterDirectiveClass: 208 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 209 break; 210 case Stmt::OMPCriticalDirectiveClass: 211 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 212 break; 213 case Stmt::OMPParallelForDirectiveClass: 214 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 215 break; 216 case Stmt::OMPParallelForSimdDirectiveClass: 217 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 218 break; 219 case Stmt::OMPParallelSectionsDirectiveClass: 220 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 221 break; 222 case Stmt::OMPTaskDirectiveClass: 223 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 224 break; 225 case Stmt::OMPTaskyieldDirectiveClass: 226 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 227 break; 228 case Stmt::OMPBarrierDirectiveClass: 229 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 230 break; 231 case Stmt::OMPTaskwaitDirectiveClass: 232 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 233 break; 234 case Stmt::OMPTaskgroupDirectiveClass: 235 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 236 break; 237 case Stmt::OMPFlushDirectiveClass: 238 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 239 break; 240 case Stmt::OMPOrderedDirectiveClass: 241 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 242 break; 243 case Stmt::OMPAtomicDirectiveClass: 244 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 245 break; 246 case Stmt::OMPTargetDirectiveClass: 247 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 248 break; 249 case Stmt::OMPTeamsDirectiveClass: 250 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 251 break; 252 case Stmt::OMPCancellationPointDirectiveClass: 253 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 254 break; 255 case Stmt::OMPCancelDirectiveClass: 256 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 257 break; 258 case Stmt::OMPTargetDataDirectiveClass: 259 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 260 break; 261 case Stmt::OMPTargetEnterDataDirectiveClass: 262 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 263 break; 264 case Stmt::OMPTargetExitDataDirectiveClass: 265 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 266 break; 267 case Stmt::OMPTargetParallelDirectiveClass: 268 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 269 break; 270 case Stmt::OMPTargetParallelForDirectiveClass: 271 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 272 break; 273 case Stmt::OMPTaskLoopDirectiveClass: 274 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 275 break; 276 case Stmt::OMPTaskLoopSimdDirectiveClass: 277 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 278 break; 279 case Stmt::OMPDistributeDirectiveClass: 280 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 281 break; 282 case Stmt::OMPTargetUpdateDirectiveClass: 283 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 284 break; 285 case Stmt::OMPDistributeParallelForDirectiveClass: 286 EmitOMPDistributeParallelForDirective( 287 cast<OMPDistributeParallelForDirective>(*S)); 288 break; 289 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 290 EmitOMPDistributeParallelForSimdDirective( 291 cast<OMPDistributeParallelForSimdDirective>(*S)); 292 break; 293 case Stmt::OMPDistributeSimdDirectiveClass: 294 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 295 break; 296 case Stmt::OMPTargetParallelForSimdDirectiveClass: 297 EmitOMPTargetParallelForSimdDirective( 298 cast<OMPTargetParallelForSimdDirective>(*S)); 299 break; 300 case Stmt::OMPTargetSimdDirectiveClass: 301 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 302 break; 303 case Stmt::OMPTeamsDistributeDirectiveClass: 304 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 305 break; 306 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 307 EmitOMPTeamsDistributeSimdDirective( 308 cast<OMPTeamsDistributeSimdDirective>(*S)); 309 break; 310 } 311 } 312 313 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 314 switch (S->getStmtClass()) { 315 default: return false; 316 case Stmt::NullStmtClass: break; 317 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 318 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 319 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 320 case Stmt::AttributedStmtClass: 321 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 322 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 323 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 324 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 325 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 326 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 327 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 328 } 329 330 return true; 331 } 332 333 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 334 /// this captures the expression result of the last sub-statement and returns it 335 /// (for use by the statement expression extension). 336 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 337 AggValueSlot AggSlot) { 338 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 339 "LLVM IR generation of compound statement ('{}')"); 340 341 // Keep track of the current cleanup stack depth, including debug scopes. 342 LexicalScope Scope(*this, S.getSourceRange()); 343 344 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 345 } 346 347 Address 348 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 349 bool GetLast, 350 AggValueSlot AggSlot) { 351 352 for (CompoundStmt::const_body_iterator I = S.body_begin(), 353 E = S.body_end()-GetLast; I != E; ++I) 354 EmitStmt(*I); 355 356 Address RetAlloca = Address::invalid(); 357 if (GetLast) { 358 // We have to special case labels here. They are statements, but when put 359 // at the end of a statement expression, they yield the value of their 360 // subexpression. Handle this by walking through all labels we encounter, 361 // emitting them before we evaluate the subexpr. 362 const Stmt *LastStmt = S.body_back(); 363 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 364 EmitLabel(LS->getDecl()); 365 LastStmt = LS->getSubStmt(); 366 } 367 368 EnsureInsertPoint(); 369 370 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 371 if (hasAggregateEvaluationKind(ExprTy)) { 372 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 373 } else { 374 // We can't return an RValue here because there might be cleanups at 375 // the end of the StmtExpr. Because of that, we have to emit the result 376 // here into a temporary alloca. 377 RetAlloca = CreateMemTemp(ExprTy); 378 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 379 /*IsInit*/false); 380 } 381 382 } 383 384 return RetAlloca; 385 } 386 387 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 388 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 389 390 // If there is a cleanup stack, then we it isn't worth trying to 391 // simplify this block (we would need to remove it from the scope map 392 // and cleanup entry). 393 if (!EHStack.empty()) 394 return; 395 396 // Can only simplify direct branches. 397 if (!BI || !BI->isUnconditional()) 398 return; 399 400 // Can only simplify empty blocks. 401 if (BI->getIterator() != BB->begin()) 402 return; 403 404 BB->replaceAllUsesWith(BI->getSuccessor(0)); 405 BI->eraseFromParent(); 406 BB->eraseFromParent(); 407 } 408 409 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 410 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 411 412 // Fall out of the current block (if necessary). 413 EmitBranch(BB); 414 415 if (IsFinished && BB->use_empty()) { 416 delete BB; 417 return; 418 } 419 420 // Place the block after the current block, if possible, or else at 421 // the end of the function. 422 if (CurBB && CurBB->getParent()) 423 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 424 else 425 CurFn->getBasicBlockList().push_back(BB); 426 Builder.SetInsertPoint(BB); 427 } 428 429 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 430 // Emit a branch from the current block to the target one if this 431 // was a real block. If this was just a fall-through block after a 432 // terminator, don't emit it. 433 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 434 435 if (!CurBB || CurBB->getTerminator()) { 436 // If there is no insert point or the previous block is already 437 // terminated, don't touch it. 438 } else { 439 // Otherwise, create a fall-through branch. 440 Builder.CreateBr(Target); 441 } 442 443 Builder.ClearInsertionPoint(); 444 } 445 446 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 447 bool inserted = false; 448 for (llvm::User *u : block->users()) { 449 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 450 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 451 block); 452 inserted = true; 453 break; 454 } 455 } 456 457 if (!inserted) 458 CurFn->getBasicBlockList().push_back(block); 459 460 Builder.SetInsertPoint(block); 461 } 462 463 CodeGenFunction::JumpDest 464 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 465 JumpDest &Dest = LabelMap[D]; 466 if (Dest.isValid()) return Dest; 467 468 // Create, but don't insert, the new block. 469 Dest = JumpDest(createBasicBlock(D->getName()), 470 EHScopeStack::stable_iterator::invalid(), 471 NextCleanupDestIndex++); 472 return Dest; 473 } 474 475 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 476 // Add this label to the current lexical scope if we're within any 477 // normal cleanups. Jumps "in" to this label --- when permitted by 478 // the language --- may need to be routed around such cleanups. 479 if (EHStack.hasNormalCleanups() && CurLexicalScope) 480 CurLexicalScope->addLabel(D); 481 482 JumpDest &Dest = LabelMap[D]; 483 484 // If we didn't need a forward reference to this label, just go 485 // ahead and create a destination at the current scope. 486 if (!Dest.isValid()) { 487 Dest = getJumpDestInCurrentScope(D->getName()); 488 489 // Otherwise, we need to give this label a target depth and remove 490 // it from the branch-fixups list. 491 } else { 492 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 493 Dest.setScopeDepth(EHStack.stable_begin()); 494 ResolveBranchFixups(Dest.getBlock()); 495 } 496 497 EmitBlock(Dest.getBlock()); 498 incrementProfileCounter(D->getStmt()); 499 } 500 501 /// Change the cleanup scope of the labels in this lexical scope to 502 /// match the scope of the enclosing context. 503 void CodeGenFunction::LexicalScope::rescopeLabels() { 504 assert(!Labels.empty()); 505 EHScopeStack::stable_iterator innermostScope 506 = CGF.EHStack.getInnermostNormalCleanup(); 507 508 // Change the scope depth of all the labels. 509 for (SmallVectorImpl<const LabelDecl*>::const_iterator 510 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 511 assert(CGF.LabelMap.count(*i)); 512 JumpDest &dest = CGF.LabelMap.find(*i)->second; 513 assert(dest.getScopeDepth().isValid()); 514 assert(innermostScope.encloses(dest.getScopeDepth())); 515 dest.setScopeDepth(innermostScope); 516 } 517 518 // Reparent the labels if the new scope also has cleanups. 519 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 520 ParentScope->Labels.append(Labels.begin(), Labels.end()); 521 } 522 } 523 524 525 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 526 EmitLabel(S.getDecl()); 527 EmitStmt(S.getSubStmt()); 528 } 529 530 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 531 const Stmt *SubStmt = S.getSubStmt(); 532 switch (SubStmt->getStmtClass()) { 533 case Stmt::DoStmtClass: 534 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 535 break; 536 case Stmt::ForStmtClass: 537 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 538 break; 539 case Stmt::WhileStmtClass: 540 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 541 break; 542 case Stmt::CXXForRangeStmtClass: 543 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 544 break; 545 default: 546 EmitStmt(SubStmt); 547 } 548 } 549 550 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 551 // If this code is reachable then emit a stop point (if generating 552 // debug info). We have to do this ourselves because we are on the 553 // "simple" statement path. 554 if (HaveInsertPoint()) 555 EmitStopPoint(&S); 556 557 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 558 } 559 560 561 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 562 if (const LabelDecl *Target = S.getConstantTarget()) { 563 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 564 return; 565 } 566 567 // Ensure that we have an i8* for our PHI node. 568 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 569 Int8PtrTy, "addr"); 570 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 571 572 // Get the basic block for the indirect goto. 573 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 574 575 // The first instruction in the block has to be the PHI for the switch dest, 576 // add an entry for this branch. 577 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 578 579 EmitBranch(IndGotoBB); 580 } 581 582 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 583 // C99 6.8.4.1: The first substatement is executed if the expression compares 584 // unequal to 0. The condition must be a scalar type. 585 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 586 587 if (S.getInit()) 588 EmitStmt(S.getInit()); 589 590 if (S.getConditionVariable()) 591 EmitAutoVarDecl(*S.getConditionVariable()); 592 593 // If the condition constant folds and can be elided, try to avoid emitting 594 // the condition and the dead arm of the if/else. 595 bool CondConstant; 596 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 597 S.isConstexpr())) { 598 // Figure out which block (then or else) is executed. 599 const Stmt *Executed = S.getThen(); 600 const Stmt *Skipped = S.getElse(); 601 if (!CondConstant) // Condition false? 602 std::swap(Executed, Skipped); 603 604 // If the skipped block has no labels in it, just emit the executed block. 605 // This avoids emitting dead code and simplifies the CFG substantially. 606 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 607 if (CondConstant) 608 incrementProfileCounter(&S); 609 if (Executed) { 610 RunCleanupsScope ExecutedScope(*this); 611 EmitStmt(Executed); 612 } 613 return; 614 } 615 } 616 617 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 618 // the conditional branch. 619 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 620 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 621 llvm::BasicBlock *ElseBlock = ContBlock; 622 if (S.getElse()) 623 ElseBlock = createBasicBlock("if.else"); 624 625 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 626 getProfileCount(S.getThen())); 627 628 // Emit the 'then' code. 629 EmitBlock(ThenBlock); 630 incrementProfileCounter(&S); 631 { 632 RunCleanupsScope ThenScope(*this); 633 EmitStmt(S.getThen()); 634 } 635 EmitBranch(ContBlock); 636 637 // Emit the 'else' code if present. 638 if (const Stmt *Else = S.getElse()) { 639 { 640 // There is no need to emit line number for an unconditional branch. 641 auto NL = ApplyDebugLocation::CreateEmpty(*this); 642 EmitBlock(ElseBlock); 643 } 644 { 645 RunCleanupsScope ElseScope(*this); 646 EmitStmt(Else); 647 } 648 { 649 // There is no need to emit line number for an unconditional branch. 650 auto NL = ApplyDebugLocation::CreateEmpty(*this); 651 EmitBranch(ContBlock); 652 } 653 } 654 655 // Emit the continuation block for code after the if. 656 EmitBlock(ContBlock, true); 657 } 658 659 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 660 ArrayRef<const Attr *> WhileAttrs) { 661 // Emit the header for the loop, which will also become 662 // the continue target. 663 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 664 EmitBlock(LoopHeader.getBlock()); 665 666 const SourceRange &R = S.getSourceRange(); 667 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 668 SourceLocToDebugLoc(R.getBegin()), 669 SourceLocToDebugLoc(R.getEnd())); 670 671 // Create an exit block for when the condition fails, which will 672 // also become the break target. 673 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 674 675 // Store the blocks to use for break and continue. 676 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 677 678 // C++ [stmt.while]p2: 679 // When the condition of a while statement is a declaration, the 680 // scope of the variable that is declared extends from its point 681 // of declaration (3.3.2) to the end of the while statement. 682 // [...] 683 // The object created in a condition is destroyed and created 684 // with each iteration of the loop. 685 RunCleanupsScope ConditionScope(*this); 686 687 if (S.getConditionVariable()) 688 EmitAutoVarDecl(*S.getConditionVariable()); 689 690 // Evaluate the conditional in the while header. C99 6.8.5.1: The 691 // evaluation of the controlling expression takes place before each 692 // execution of the loop body. 693 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 694 695 // while(1) is common, avoid extra exit blocks. Be sure 696 // to correctly handle break/continue though. 697 bool EmitBoolCondBranch = true; 698 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 699 if (C->isOne()) 700 EmitBoolCondBranch = false; 701 702 // As long as the condition is true, go to the loop body. 703 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 704 if (EmitBoolCondBranch) { 705 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 706 if (ConditionScope.requiresCleanups()) 707 ExitBlock = createBasicBlock("while.exit"); 708 Builder.CreateCondBr( 709 BoolCondVal, LoopBody, ExitBlock, 710 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 711 712 if (ExitBlock != LoopExit.getBlock()) { 713 EmitBlock(ExitBlock); 714 EmitBranchThroughCleanup(LoopExit); 715 } 716 } 717 718 // Emit the loop body. We have to emit this in a cleanup scope 719 // because it might be a singleton DeclStmt. 720 { 721 RunCleanupsScope BodyScope(*this); 722 EmitBlock(LoopBody); 723 incrementProfileCounter(&S); 724 EmitStmt(S.getBody()); 725 } 726 727 BreakContinueStack.pop_back(); 728 729 // Immediately force cleanup. 730 ConditionScope.ForceCleanup(); 731 732 EmitStopPoint(&S); 733 // Branch to the loop header again. 734 EmitBranch(LoopHeader.getBlock()); 735 736 LoopStack.pop(); 737 738 // Emit the exit block. 739 EmitBlock(LoopExit.getBlock(), true); 740 741 // The LoopHeader typically is just a branch if we skipped emitting 742 // a branch, try to erase it. 743 if (!EmitBoolCondBranch) 744 SimplifyForwardingBlocks(LoopHeader.getBlock()); 745 } 746 747 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 748 ArrayRef<const Attr *> DoAttrs) { 749 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 750 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 751 752 uint64_t ParentCount = getCurrentProfileCount(); 753 754 // Store the blocks to use for break and continue. 755 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 756 757 // Emit the body of the loop. 758 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 759 760 const SourceRange &R = S.getSourceRange(); 761 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 762 SourceLocToDebugLoc(R.getBegin()), 763 SourceLocToDebugLoc(R.getEnd())); 764 765 EmitBlockWithFallThrough(LoopBody, &S); 766 { 767 RunCleanupsScope BodyScope(*this); 768 EmitStmt(S.getBody()); 769 } 770 771 EmitBlock(LoopCond.getBlock()); 772 773 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 774 // after each execution of the loop body." 775 776 // Evaluate the conditional in the while header. 777 // C99 6.8.5p2/p4: The first substatement is executed if the expression 778 // compares unequal to 0. The condition must be a scalar type. 779 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 780 781 BreakContinueStack.pop_back(); 782 783 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 784 // to correctly handle break/continue though. 785 bool EmitBoolCondBranch = true; 786 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 787 if (C->isZero()) 788 EmitBoolCondBranch = false; 789 790 // As long as the condition is true, iterate the loop. 791 if (EmitBoolCondBranch) { 792 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 793 Builder.CreateCondBr( 794 BoolCondVal, LoopBody, LoopExit.getBlock(), 795 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 796 } 797 798 LoopStack.pop(); 799 800 // Emit the exit block. 801 EmitBlock(LoopExit.getBlock()); 802 803 // The DoCond block typically is just a branch if we skipped 804 // emitting a branch, try to erase it. 805 if (!EmitBoolCondBranch) 806 SimplifyForwardingBlocks(LoopCond.getBlock()); 807 } 808 809 void CodeGenFunction::EmitForStmt(const ForStmt &S, 810 ArrayRef<const Attr *> ForAttrs) { 811 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 812 813 LexicalScope ForScope(*this, S.getSourceRange()); 814 815 // Evaluate the first part before the loop. 816 if (S.getInit()) 817 EmitStmt(S.getInit()); 818 819 // Start the loop with a block that tests the condition. 820 // If there's an increment, the continue scope will be overwritten 821 // later. 822 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 823 llvm::BasicBlock *CondBlock = Continue.getBlock(); 824 EmitBlock(CondBlock); 825 826 const SourceRange &R = S.getSourceRange(); 827 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 828 SourceLocToDebugLoc(R.getBegin()), 829 SourceLocToDebugLoc(R.getEnd())); 830 831 // If the for loop doesn't have an increment we can just use the 832 // condition as the continue block. Otherwise we'll need to create 833 // a block for it (in the current scope, i.e. in the scope of the 834 // condition), and that we will become our continue block. 835 if (S.getInc()) 836 Continue = getJumpDestInCurrentScope("for.inc"); 837 838 // Store the blocks to use for break and continue. 839 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 840 841 // Create a cleanup scope for the condition variable cleanups. 842 LexicalScope ConditionScope(*this, S.getSourceRange()); 843 844 if (S.getCond()) { 845 // If the for statement has a condition scope, emit the local variable 846 // declaration. 847 if (S.getConditionVariable()) { 848 EmitAutoVarDecl(*S.getConditionVariable()); 849 } 850 851 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 852 // If there are any cleanups between here and the loop-exit scope, 853 // create a block to stage a loop exit along. 854 if (ForScope.requiresCleanups()) 855 ExitBlock = createBasicBlock("for.cond.cleanup"); 856 857 // As long as the condition is true, iterate the loop. 858 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 859 860 // C99 6.8.5p2/p4: The first substatement is executed if the expression 861 // compares unequal to 0. The condition must be a scalar type. 862 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 863 Builder.CreateCondBr( 864 BoolCondVal, ForBody, ExitBlock, 865 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 866 867 if (ExitBlock != LoopExit.getBlock()) { 868 EmitBlock(ExitBlock); 869 EmitBranchThroughCleanup(LoopExit); 870 } 871 872 EmitBlock(ForBody); 873 } else { 874 // Treat it as a non-zero constant. Don't even create a new block for the 875 // body, just fall into it. 876 } 877 incrementProfileCounter(&S); 878 879 { 880 // Create a separate cleanup scope for the body, in case it is not 881 // a compound statement. 882 RunCleanupsScope BodyScope(*this); 883 EmitStmt(S.getBody()); 884 } 885 886 // If there is an increment, emit it next. 887 if (S.getInc()) { 888 EmitBlock(Continue.getBlock()); 889 EmitStmt(S.getInc()); 890 } 891 892 BreakContinueStack.pop_back(); 893 894 ConditionScope.ForceCleanup(); 895 896 EmitStopPoint(&S); 897 EmitBranch(CondBlock); 898 899 ForScope.ForceCleanup(); 900 901 LoopStack.pop(); 902 903 // Emit the fall-through block. 904 EmitBlock(LoopExit.getBlock(), true); 905 } 906 907 void 908 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 909 ArrayRef<const Attr *> ForAttrs) { 910 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 911 912 LexicalScope ForScope(*this, S.getSourceRange()); 913 914 // Evaluate the first pieces before the loop. 915 EmitStmt(S.getRangeStmt()); 916 EmitStmt(S.getBeginStmt()); 917 EmitStmt(S.getEndStmt()); 918 919 // Start the loop with a block that tests the condition. 920 // If there's an increment, the continue scope will be overwritten 921 // later. 922 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 923 EmitBlock(CondBlock); 924 925 const SourceRange &R = S.getSourceRange(); 926 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 927 SourceLocToDebugLoc(R.getBegin()), 928 SourceLocToDebugLoc(R.getEnd())); 929 930 // If there are any cleanups between here and the loop-exit scope, 931 // create a block to stage a loop exit along. 932 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 933 if (ForScope.requiresCleanups()) 934 ExitBlock = createBasicBlock("for.cond.cleanup"); 935 936 // The loop body, consisting of the specified body and the loop variable. 937 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 938 939 // The body is executed if the expression, contextually converted 940 // to bool, is true. 941 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 942 Builder.CreateCondBr( 943 BoolCondVal, ForBody, ExitBlock, 944 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 945 946 if (ExitBlock != LoopExit.getBlock()) { 947 EmitBlock(ExitBlock); 948 EmitBranchThroughCleanup(LoopExit); 949 } 950 951 EmitBlock(ForBody); 952 incrementProfileCounter(&S); 953 954 // Create a block for the increment. In case of a 'continue', we jump there. 955 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 956 957 // Store the blocks to use for break and continue. 958 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 959 960 { 961 // Create a separate cleanup scope for the loop variable and body. 962 LexicalScope BodyScope(*this, S.getSourceRange()); 963 EmitStmt(S.getLoopVarStmt()); 964 EmitStmt(S.getBody()); 965 } 966 967 EmitStopPoint(&S); 968 // If there is an increment, emit it next. 969 EmitBlock(Continue.getBlock()); 970 EmitStmt(S.getInc()); 971 972 BreakContinueStack.pop_back(); 973 974 EmitBranch(CondBlock); 975 976 ForScope.ForceCleanup(); 977 978 LoopStack.pop(); 979 980 // Emit the fall-through block. 981 EmitBlock(LoopExit.getBlock(), true); 982 } 983 984 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 985 if (RV.isScalar()) { 986 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 987 } else if (RV.isAggregate()) { 988 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 989 } else { 990 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 991 /*init*/ true); 992 } 993 EmitBranchThroughCleanup(ReturnBlock); 994 } 995 996 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 997 /// if the function returns void, or may be missing one if the function returns 998 /// non-void. Fun stuff :). 999 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1000 // Returning from an outlined SEH helper is UB, and we already warn on it. 1001 if (IsOutlinedSEHHelper) { 1002 Builder.CreateUnreachable(); 1003 Builder.ClearInsertionPoint(); 1004 } 1005 1006 // Emit the result value, even if unused, to evalute the side effects. 1007 const Expr *RV = S.getRetValue(); 1008 1009 // Treat block literals in a return expression as if they appeared 1010 // in their own scope. This permits a small, easily-implemented 1011 // exception to our over-conservative rules about not jumping to 1012 // statements following block literals with non-trivial cleanups. 1013 RunCleanupsScope cleanupScope(*this); 1014 if (const ExprWithCleanups *cleanups = 1015 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1016 enterFullExpression(cleanups); 1017 RV = cleanups->getSubExpr(); 1018 } 1019 1020 // FIXME: Clean this up by using an LValue for ReturnTemp, 1021 // EmitStoreThroughLValue, and EmitAnyExpr. 1022 if (getLangOpts().ElideConstructors && 1023 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1024 // Apply the named return value optimization for this return statement, 1025 // which means doing nothing: the appropriate result has already been 1026 // constructed into the NRVO variable. 1027 1028 // If there is an NRVO flag for this variable, set it to 1 into indicate 1029 // that the cleanup code should not destroy the variable. 1030 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1031 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1032 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1033 // Make sure not to return anything, but evaluate the expression 1034 // for side effects. 1035 if (RV) 1036 EmitAnyExpr(RV); 1037 } else if (!RV) { 1038 // Do nothing (return value is left uninitialized) 1039 } else if (FnRetTy->isReferenceType()) { 1040 // If this function returns a reference, take the address of the expression 1041 // rather than the value. 1042 RValue Result = EmitReferenceBindingToExpr(RV); 1043 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1044 } else { 1045 switch (getEvaluationKind(RV->getType())) { 1046 case TEK_Scalar: 1047 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1048 break; 1049 case TEK_Complex: 1050 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1051 /*isInit*/ true); 1052 break; 1053 case TEK_Aggregate: 1054 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 1055 Qualifiers(), 1056 AggValueSlot::IsDestructed, 1057 AggValueSlot::DoesNotNeedGCBarriers, 1058 AggValueSlot::IsNotAliased)); 1059 break; 1060 } 1061 } 1062 1063 ++NumReturnExprs; 1064 if (!RV || RV->isEvaluatable(getContext())) 1065 ++NumSimpleReturnExprs; 1066 1067 cleanupScope.ForceCleanup(); 1068 EmitBranchThroughCleanup(ReturnBlock); 1069 } 1070 1071 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1072 // As long as debug info is modeled with instructions, we have to ensure we 1073 // have a place to insert here and write the stop point here. 1074 if (HaveInsertPoint()) 1075 EmitStopPoint(&S); 1076 1077 for (const auto *I : S.decls()) 1078 EmitDecl(*I); 1079 } 1080 1081 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1082 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1083 1084 // If this code is reachable then emit a stop point (if generating 1085 // debug info). We have to do this ourselves because we are on the 1086 // "simple" statement path. 1087 if (HaveInsertPoint()) 1088 EmitStopPoint(&S); 1089 1090 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1091 } 1092 1093 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1094 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1095 1096 // If this code is reachable then emit a stop point (if generating 1097 // debug info). We have to do this ourselves because we are on the 1098 // "simple" statement path. 1099 if (HaveInsertPoint()) 1100 EmitStopPoint(&S); 1101 1102 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1103 } 1104 1105 /// EmitCaseStmtRange - If case statement range is not too big then 1106 /// add multiple cases to switch instruction, one for each value within 1107 /// the range. If range is too big then emit "if" condition check. 1108 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1109 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1110 1111 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1112 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1113 1114 // Emit the code for this case. We do this first to make sure it is 1115 // properly chained from our predecessor before generating the 1116 // switch machinery to enter this block. 1117 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1118 EmitBlockWithFallThrough(CaseDest, &S); 1119 EmitStmt(S.getSubStmt()); 1120 1121 // If range is empty, do nothing. 1122 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1123 return; 1124 1125 llvm::APInt Range = RHS - LHS; 1126 // FIXME: parameters such as this should not be hardcoded. 1127 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1128 // Range is small enough to add multiple switch instruction cases. 1129 uint64_t Total = getProfileCount(&S); 1130 unsigned NCases = Range.getZExtValue() + 1; 1131 // We only have one region counter for the entire set of cases here, so we 1132 // need to divide the weights evenly between the generated cases, ensuring 1133 // that the total weight is preserved. E.g., a weight of 5 over three cases 1134 // will be distributed as weights of 2, 2, and 1. 1135 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1136 for (unsigned I = 0; I != NCases; ++I) { 1137 if (SwitchWeights) 1138 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1139 if (Rem) 1140 Rem--; 1141 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1142 LHS++; 1143 } 1144 return; 1145 } 1146 1147 // The range is too big. Emit "if" condition into a new block, 1148 // making sure to save and restore the current insertion point. 1149 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1150 1151 // Push this test onto the chain of range checks (which terminates 1152 // in the default basic block). The switch's default will be changed 1153 // to the top of this chain after switch emission is complete. 1154 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1155 CaseRangeBlock = createBasicBlock("sw.caserange"); 1156 1157 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1158 Builder.SetInsertPoint(CaseRangeBlock); 1159 1160 // Emit range check. 1161 llvm::Value *Diff = 1162 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1163 llvm::Value *Cond = 1164 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1165 1166 llvm::MDNode *Weights = nullptr; 1167 if (SwitchWeights) { 1168 uint64_t ThisCount = getProfileCount(&S); 1169 uint64_t DefaultCount = (*SwitchWeights)[0]; 1170 Weights = createProfileWeights(ThisCount, DefaultCount); 1171 1172 // Since we're chaining the switch default through each large case range, we 1173 // need to update the weight for the default, ie, the first case, to include 1174 // this case. 1175 (*SwitchWeights)[0] += ThisCount; 1176 } 1177 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1178 1179 // Restore the appropriate insertion point. 1180 if (RestoreBB) 1181 Builder.SetInsertPoint(RestoreBB); 1182 else 1183 Builder.ClearInsertionPoint(); 1184 } 1185 1186 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1187 // If there is no enclosing switch instance that we're aware of, then this 1188 // case statement and its block can be elided. This situation only happens 1189 // when we've constant-folded the switch, are emitting the constant case, 1190 // and part of the constant case includes another case statement. For 1191 // instance: switch (4) { case 4: do { case 5: } while (1); } 1192 if (!SwitchInsn) { 1193 EmitStmt(S.getSubStmt()); 1194 return; 1195 } 1196 1197 // Handle case ranges. 1198 if (S.getRHS()) { 1199 EmitCaseStmtRange(S); 1200 return; 1201 } 1202 1203 llvm::ConstantInt *CaseVal = 1204 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1205 1206 // If the body of the case is just a 'break', try to not emit an empty block. 1207 // If we're profiling or we're not optimizing, leave the block in for better 1208 // debug and coverage analysis. 1209 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1210 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1211 isa<BreakStmt>(S.getSubStmt())) { 1212 JumpDest Block = BreakContinueStack.back().BreakBlock; 1213 1214 // Only do this optimization if there are no cleanups that need emitting. 1215 if (isObviouslyBranchWithoutCleanups(Block)) { 1216 if (SwitchWeights) 1217 SwitchWeights->push_back(getProfileCount(&S)); 1218 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1219 1220 // If there was a fallthrough into this case, make sure to redirect it to 1221 // the end of the switch as well. 1222 if (Builder.GetInsertBlock()) { 1223 Builder.CreateBr(Block.getBlock()); 1224 Builder.ClearInsertionPoint(); 1225 } 1226 return; 1227 } 1228 } 1229 1230 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1231 EmitBlockWithFallThrough(CaseDest, &S); 1232 if (SwitchWeights) 1233 SwitchWeights->push_back(getProfileCount(&S)); 1234 SwitchInsn->addCase(CaseVal, CaseDest); 1235 1236 // Recursively emitting the statement is acceptable, but is not wonderful for 1237 // code where we have many case statements nested together, i.e.: 1238 // case 1: 1239 // case 2: 1240 // case 3: etc. 1241 // Handling this recursively will create a new block for each case statement 1242 // that falls through to the next case which is IR intensive. It also causes 1243 // deep recursion which can run into stack depth limitations. Handle 1244 // sequential non-range case statements specially. 1245 const CaseStmt *CurCase = &S; 1246 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1247 1248 // Otherwise, iteratively add consecutive cases to this switch stmt. 1249 while (NextCase && NextCase->getRHS() == nullptr) { 1250 CurCase = NextCase; 1251 llvm::ConstantInt *CaseVal = 1252 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1253 1254 if (SwitchWeights) 1255 SwitchWeights->push_back(getProfileCount(NextCase)); 1256 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1257 CaseDest = createBasicBlock("sw.bb"); 1258 EmitBlockWithFallThrough(CaseDest, &S); 1259 } 1260 1261 SwitchInsn->addCase(CaseVal, CaseDest); 1262 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1263 } 1264 1265 // Normal default recursion for non-cases. 1266 EmitStmt(CurCase->getSubStmt()); 1267 } 1268 1269 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1270 // If there is no enclosing switch instance that we're aware of, then this 1271 // default statement can be elided. This situation only happens when we've 1272 // constant-folded the switch. 1273 if (!SwitchInsn) { 1274 EmitStmt(S.getSubStmt()); 1275 return; 1276 } 1277 1278 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1279 assert(DefaultBlock->empty() && 1280 "EmitDefaultStmt: Default block already defined?"); 1281 1282 EmitBlockWithFallThrough(DefaultBlock, &S); 1283 1284 EmitStmt(S.getSubStmt()); 1285 } 1286 1287 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1288 /// constant value that is being switched on, see if we can dead code eliminate 1289 /// the body of the switch to a simple series of statements to emit. Basically, 1290 /// on a switch (5) we want to find these statements: 1291 /// case 5: 1292 /// printf(...); <-- 1293 /// ++i; <-- 1294 /// break; 1295 /// 1296 /// and add them to the ResultStmts vector. If it is unsafe to do this 1297 /// transformation (for example, one of the elided statements contains a label 1298 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1299 /// should include statements after it (e.g. the printf() line is a substmt of 1300 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1301 /// statement, then return CSFC_Success. 1302 /// 1303 /// If Case is non-null, then we are looking for the specified case, checking 1304 /// that nothing we jump over contains labels. If Case is null, then we found 1305 /// the case and are looking for the break. 1306 /// 1307 /// If the recursive walk actually finds our Case, then we set FoundCase to 1308 /// true. 1309 /// 1310 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1311 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1312 const SwitchCase *Case, 1313 bool &FoundCase, 1314 SmallVectorImpl<const Stmt*> &ResultStmts) { 1315 // If this is a null statement, just succeed. 1316 if (!S) 1317 return Case ? CSFC_Success : CSFC_FallThrough; 1318 1319 // If this is the switchcase (case 4: or default) that we're looking for, then 1320 // we're in business. Just add the substatement. 1321 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1322 if (S == Case) { 1323 FoundCase = true; 1324 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1325 ResultStmts); 1326 } 1327 1328 // Otherwise, this is some other case or default statement, just ignore it. 1329 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1330 ResultStmts); 1331 } 1332 1333 // If we are in the live part of the code and we found our break statement, 1334 // return a success! 1335 if (!Case && isa<BreakStmt>(S)) 1336 return CSFC_Success; 1337 1338 // If this is a switch statement, then it might contain the SwitchCase, the 1339 // break, or neither. 1340 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1341 // Handle this as two cases: we might be looking for the SwitchCase (if so 1342 // the skipped statements must be skippable) or we might already have it. 1343 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1344 bool StartedInLiveCode = FoundCase; 1345 unsigned StartSize = ResultStmts.size(); 1346 1347 // If we've not found the case yet, scan through looking for it. 1348 if (Case) { 1349 // Keep track of whether we see a skipped declaration. The code could be 1350 // using the declaration even if it is skipped, so we can't optimize out 1351 // the decl if the kept statements might refer to it. 1352 bool HadSkippedDecl = false; 1353 1354 // If we're looking for the case, just see if we can skip each of the 1355 // substatements. 1356 for (; Case && I != E; ++I) { 1357 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1358 1359 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1360 case CSFC_Failure: return CSFC_Failure; 1361 case CSFC_Success: 1362 // A successful result means that either 1) that the statement doesn't 1363 // have the case and is skippable, or 2) does contain the case value 1364 // and also contains the break to exit the switch. In the later case, 1365 // we just verify the rest of the statements are elidable. 1366 if (FoundCase) { 1367 // If we found the case and skipped declarations, we can't do the 1368 // optimization. 1369 if (HadSkippedDecl) 1370 return CSFC_Failure; 1371 1372 for (++I; I != E; ++I) 1373 if (CodeGenFunction::ContainsLabel(*I, true)) 1374 return CSFC_Failure; 1375 return CSFC_Success; 1376 } 1377 break; 1378 case CSFC_FallThrough: 1379 // If we have a fallthrough condition, then we must have found the 1380 // case started to include statements. Consider the rest of the 1381 // statements in the compound statement as candidates for inclusion. 1382 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1383 // We recursively found Case, so we're not looking for it anymore. 1384 Case = nullptr; 1385 1386 // If we found the case and skipped declarations, we can't do the 1387 // optimization. 1388 if (HadSkippedDecl) 1389 return CSFC_Failure; 1390 break; 1391 } 1392 } 1393 1394 if (!FoundCase) 1395 return CSFC_Success; 1396 1397 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1398 } 1399 1400 // If we have statements in our range, then we know that the statements are 1401 // live and need to be added to the set of statements we're tracking. 1402 bool AnyDecls = false; 1403 for (; I != E; ++I) { 1404 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1405 1406 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1407 case CSFC_Failure: return CSFC_Failure; 1408 case CSFC_FallThrough: 1409 // A fallthrough result means that the statement was simple and just 1410 // included in ResultStmt, keep adding them afterwards. 1411 break; 1412 case CSFC_Success: 1413 // A successful result means that we found the break statement and 1414 // stopped statement inclusion. We just ensure that any leftover stmts 1415 // are skippable and return success ourselves. 1416 for (++I; I != E; ++I) 1417 if (CodeGenFunction::ContainsLabel(*I, true)) 1418 return CSFC_Failure; 1419 return CSFC_Success; 1420 } 1421 } 1422 1423 // If we're about to fall out of a scope without hitting a 'break;', we 1424 // can't perform the optimization if there were any decls in that scope 1425 // (we'd lose their end-of-lifetime). 1426 if (AnyDecls) { 1427 // If the entire compound statement was live, there's one more thing we 1428 // can try before giving up: emit the whole thing as a single statement. 1429 // We can do that unless the statement contains a 'break;'. 1430 // FIXME: Such a break must be at the end of a construct within this one. 1431 // We could emit this by just ignoring the BreakStmts entirely. 1432 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1433 ResultStmts.resize(StartSize); 1434 ResultStmts.push_back(S); 1435 } else { 1436 return CSFC_Failure; 1437 } 1438 } 1439 1440 return CSFC_FallThrough; 1441 } 1442 1443 // Okay, this is some other statement that we don't handle explicitly, like a 1444 // for statement or increment etc. If we are skipping over this statement, 1445 // just verify it doesn't have labels, which would make it invalid to elide. 1446 if (Case) { 1447 if (CodeGenFunction::ContainsLabel(S, true)) 1448 return CSFC_Failure; 1449 return CSFC_Success; 1450 } 1451 1452 // Otherwise, we want to include this statement. Everything is cool with that 1453 // so long as it doesn't contain a break out of the switch we're in. 1454 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1455 1456 // Otherwise, everything is great. Include the statement and tell the caller 1457 // that we fall through and include the next statement as well. 1458 ResultStmts.push_back(S); 1459 return CSFC_FallThrough; 1460 } 1461 1462 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1463 /// then invoke CollectStatementsForCase to find the list of statements to emit 1464 /// for a switch on constant. See the comment above CollectStatementsForCase 1465 /// for more details. 1466 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1467 const llvm::APSInt &ConstantCondValue, 1468 SmallVectorImpl<const Stmt*> &ResultStmts, 1469 ASTContext &C, 1470 const SwitchCase *&ResultCase) { 1471 // First step, find the switch case that is being branched to. We can do this 1472 // efficiently by scanning the SwitchCase list. 1473 const SwitchCase *Case = S.getSwitchCaseList(); 1474 const DefaultStmt *DefaultCase = nullptr; 1475 1476 for (; Case; Case = Case->getNextSwitchCase()) { 1477 // It's either a default or case. Just remember the default statement in 1478 // case we're not jumping to any numbered cases. 1479 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1480 DefaultCase = DS; 1481 continue; 1482 } 1483 1484 // Check to see if this case is the one we're looking for. 1485 const CaseStmt *CS = cast<CaseStmt>(Case); 1486 // Don't handle case ranges yet. 1487 if (CS->getRHS()) return false; 1488 1489 // If we found our case, remember it as 'case'. 1490 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1491 break; 1492 } 1493 1494 // If we didn't find a matching case, we use a default if it exists, or we 1495 // elide the whole switch body! 1496 if (!Case) { 1497 // It is safe to elide the body of the switch if it doesn't contain labels 1498 // etc. If it is safe, return successfully with an empty ResultStmts list. 1499 if (!DefaultCase) 1500 return !CodeGenFunction::ContainsLabel(&S); 1501 Case = DefaultCase; 1502 } 1503 1504 // Ok, we know which case is being jumped to, try to collect all the 1505 // statements that follow it. This can fail for a variety of reasons. Also, 1506 // check to see that the recursive walk actually found our case statement. 1507 // Insane cases like this can fail to find it in the recursive walk since we 1508 // don't handle every stmt kind: 1509 // switch (4) { 1510 // while (1) { 1511 // case 4: ... 1512 bool FoundCase = false; 1513 ResultCase = Case; 1514 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1515 ResultStmts) != CSFC_Failure && 1516 FoundCase; 1517 } 1518 1519 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1520 // Handle nested switch statements. 1521 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1522 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1523 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1524 1525 // See if we can constant fold the condition of the switch and therefore only 1526 // emit the live case statement (if any) of the switch. 1527 llvm::APSInt ConstantCondValue; 1528 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1529 SmallVector<const Stmt*, 4> CaseStmts; 1530 const SwitchCase *Case = nullptr; 1531 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1532 getContext(), Case)) { 1533 if (Case) 1534 incrementProfileCounter(Case); 1535 RunCleanupsScope ExecutedScope(*this); 1536 1537 if (S.getInit()) 1538 EmitStmt(S.getInit()); 1539 1540 // Emit the condition variable if needed inside the entire cleanup scope 1541 // used by this special case for constant folded switches. 1542 if (S.getConditionVariable()) 1543 EmitAutoVarDecl(*S.getConditionVariable()); 1544 1545 // At this point, we are no longer "within" a switch instance, so 1546 // we can temporarily enforce this to ensure that any embedded case 1547 // statements are not emitted. 1548 SwitchInsn = nullptr; 1549 1550 // Okay, we can dead code eliminate everything except this case. Emit the 1551 // specified series of statements and we're good. 1552 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1553 EmitStmt(CaseStmts[i]); 1554 incrementProfileCounter(&S); 1555 1556 // Now we want to restore the saved switch instance so that nested 1557 // switches continue to function properly 1558 SwitchInsn = SavedSwitchInsn; 1559 1560 return; 1561 } 1562 } 1563 1564 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1565 1566 RunCleanupsScope ConditionScope(*this); 1567 1568 if (S.getInit()) 1569 EmitStmt(S.getInit()); 1570 1571 if (S.getConditionVariable()) 1572 EmitAutoVarDecl(*S.getConditionVariable()); 1573 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1574 1575 // Create basic block to hold stuff that comes after switch 1576 // statement. We also need to create a default block now so that 1577 // explicit case ranges tests can have a place to jump to on 1578 // failure. 1579 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1580 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1581 if (PGO.haveRegionCounts()) { 1582 // Walk the SwitchCase list to find how many there are. 1583 uint64_t DefaultCount = 0; 1584 unsigned NumCases = 0; 1585 for (const SwitchCase *Case = S.getSwitchCaseList(); 1586 Case; 1587 Case = Case->getNextSwitchCase()) { 1588 if (isa<DefaultStmt>(Case)) 1589 DefaultCount = getProfileCount(Case); 1590 NumCases += 1; 1591 } 1592 SwitchWeights = new SmallVector<uint64_t, 16>(); 1593 SwitchWeights->reserve(NumCases); 1594 // The default needs to be first. We store the edge count, so we already 1595 // know the right weight. 1596 SwitchWeights->push_back(DefaultCount); 1597 } 1598 CaseRangeBlock = DefaultBlock; 1599 1600 // Clear the insertion point to indicate we are in unreachable code. 1601 Builder.ClearInsertionPoint(); 1602 1603 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1604 // then reuse last ContinueBlock. 1605 JumpDest OuterContinue; 1606 if (!BreakContinueStack.empty()) 1607 OuterContinue = BreakContinueStack.back().ContinueBlock; 1608 1609 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1610 1611 // Emit switch body. 1612 EmitStmt(S.getBody()); 1613 1614 BreakContinueStack.pop_back(); 1615 1616 // Update the default block in case explicit case range tests have 1617 // been chained on top. 1618 SwitchInsn->setDefaultDest(CaseRangeBlock); 1619 1620 // If a default was never emitted: 1621 if (!DefaultBlock->getParent()) { 1622 // If we have cleanups, emit the default block so that there's a 1623 // place to jump through the cleanups from. 1624 if (ConditionScope.requiresCleanups()) { 1625 EmitBlock(DefaultBlock); 1626 1627 // Otherwise, just forward the default block to the switch end. 1628 } else { 1629 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1630 delete DefaultBlock; 1631 } 1632 } 1633 1634 ConditionScope.ForceCleanup(); 1635 1636 // Emit continuation. 1637 EmitBlock(SwitchExit.getBlock(), true); 1638 incrementProfileCounter(&S); 1639 1640 // If the switch has a condition wrapped by __builtin_unpredictable, 1641 // create metadata that specifies that the switch is unpredictable. 1642 // Don't bother if not optimizing because that metadata would not be used. 1643 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1644 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1645 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1646 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1647 llvm::MDBuilder MDHelper(getLLVMContext()); 1648 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1649 MDHelper.createUnpredictable()); 1650 } 1651 } 1652 1653 if (SwitchWeights) { 1654 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1655 "switch weights do not match switch cases"); 1656 // If there's only one jump destination there's no sense weighting it. 1657 if (SwitchWeights->size() > 1) 1658 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1659 createProfileWeights(*SwitchWeights)); 1660 delete SwitchWeights; 1661 } 1662 SwitchInsn = SavedSwitchInsn; 1663 SwitchWeights = SavedSwitchWeights; 1664 CaseRangeBlock = SavedCRBlock; 1665 } 1666 1667 static std::string 1668 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1669 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1670 std::string Result; 1671 1672 while (*Constraint) { 1673 switch (*Constraint) { 1674 default: 1675 Result += Target.convertConstraint(Constraint); 1676 break; 1677 // Ignore these 1678 case '*': 1679 case '?': 1680 case '!': 1681 case '=': // Will see this and the following in mult-alt constraints. 1682 case '+': 1683 break; 1684 case '#': // Ignore the rest of the constraint alternative. 1685 while (Constraint[1] && Constraint[1] != ',') 1686 Constraint++; 1687 break; 1688 case '&': 1689 case '%': 1690 Result += *Constraint; 1691 while (Constraint[1] && Constraint[1] == *Constraint) 1692 Constraint++; 1693 break; 1694 case ',': 1695 Result += "|"; 1696 break; 1697 case 'g': 1698 Result += "imr"; 1699 break; 1700 case '[': { 1701 assert(OutCons && 1702 "Must pass output names to constraints with a symbolic name"); 1703 unsigned Index; 1704 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1705 assert(result && "Could not resolve symbolic name"); (void)result; 1706 Result += llvm::utostr(Index); 1707 break; 1708 } 1709 } 1710 1711 Constraint++; 1712 } 1713 1714 return Result; 1715 } 1716 1717 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1718 /// as using a particular register add that as a constraint that will be used 1719 /// in this asm stmt. 1720 static std::string 1721 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1722 const TargetInfo &Target, CodeGenModule &CGM, 1723 const AsmStmt &Stmt, const bool EarlyClobber) { 1724 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1725 if (!AsmDeclRef) 1726 return Constraint; 1727 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1728 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1729 if (!Variable) 1730 return Constraint; 1731 if (Variable->getStorageClass() != SC_Register) 1732 return Constraint; 1733 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1734 if (!Attr) 1735 return Constraint; 1736 StringRef Register = Attr->getLabel(); 1737 assert(Target.isValidGCCRegisterName(Register)); 1738 // We're using validateOutputConstraint here because we only care if 1739 // this is a register constraint. 1740 TargetInfo::ConstraintInfo Info(Constraint, ""); 1741 if (Target.validateOutputConstraint(Info) && 1742 !Info.allowsRegister()) { 1743 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1744 return Constraint; 1745 } 1746 // Canonicalize the register here before returning it. 1747 Register = Target.getNormalizedGCCRegisterName(Register); 1748 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1749 } 1750 1751 llvm::Value* 1752 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1753 LValue InputValue, QualType InputType, 1754 std::string &ConstraintStr, 1755 SourceLocation Loc) { 1756 llvm::Value *Arg; 1757 if (Info.allowsRegister() || !Info.allowsMemory()) { 1758 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1759 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1760 } else { 1761 llvm::Type *Ty = ConvertType(InputType); 1762 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1763 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1764 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1765 Ty = llvm::PointerType::getUnqual(Ty); 1766 1767 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1768 Ty)); 1769 } else { 1770 Arg = InputValue.getPointer(); 1771 ConstraintStr += '*'; 1772 } 1773 } 1774 } else { 1775 Arg = InputValue.getPointer(); 1776 ConstraintStr += '*'; 1777 } 1778 1779 return Arg; 1780 } 1781 1782 llvm::Value* CodeGenFunction::EmitAsmInput( 1783 const TargetInfo::ConstraintInfo &Info, 1784 const Expr *InputExpr, 1785 std::string &ConstraintStr) { 1786 // If this can't be a register or memory, i.e., has to be a constant 1787 // (immediate or symbolic), try to emit it as such. 1788 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1789 llvm::APSInt Result; 1790 if (InputExpr->EvaluateAsInt(Result, getContext())) 1791 return llvm::ConstantInt::get(getLLVMContext(), Result); 1792 assert(!Info.requiresImmediateConstant() && 1793 "Required-immediate inlineasm arg isn't constant?"); 1794 } 1795 1796 if (Info.allowsRegister() || !Info.allowsMemory()) 1797 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1798 return EmitScalarExpr(InputExpr); 1799 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1800 return EmitScalarExpr(InputExpr); 1801 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1802 LValue Dest = EmitLValue(InputExpr); 1803 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1804 InputExpr->getExprLoc()); 1805 } 1806 1807 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1808 /// asm call instruction. The !srcloc MDNode contains a list of constant 1809 /// integers which are the source locations of the start of each line in the 1810 /// asm. 1811 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1812 CodeGenFunction &CGF) { 1813 SmallVector<llvm::Metadata *, 8> Locs; 1814 // Add the location of the first line to the MDNode. 1815 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1816 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1817 StringRef StrVal = Str->getString(); 1818 if (!StrVal.empty()) { 1819 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1820 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1821 unsigned StartToken = 0; 1822 unsigned ByteOffset = 0; 1823 1824 // Add the location of the start of each subsequent line of the asm to the 1825 // MDNode. 1826 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1827 if (StrVal[i] != '\n') continue; 1828 SourceLocation LineLoc = Str->getLocationOfByte( 1829 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1830 Locs.push_back(llvm::ConstantAsMetadata::get( 1831 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1832 } 1833 } 1834 1835 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1836 } 1837 1838 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1839 // Assemble the final asm string. 1840 std::string AsmString = S.generateAsmString(getContext()); 1841 1842 // Get all the output and input constraints together. 1843 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1844 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1845 1846 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1847 StringRef Name; 1848 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1849 Name = GAS->getOutputName(i); 1850 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1851 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1852 assert(IsValid && "Failed to parse output constraint"); 1853 OutputConstraintInfos.push_back(Info); 1854 } 1855 1856 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1857 StringRef Name; 1858 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1859 Name = GAS->getInputName(i); 1860 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1861 bool IsValid = 1862 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1863 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1864 InputConstraintInfos.push_back(Info); 1865 } 1866 1867 std::string Constraints; 1868 1869 std::vector<LValue> ResultRegDests; 1870 std::vector<QualType> ResultRegQualTys; 1871 std::vector<llvm::Type *> ResultRegTypes; 1872 std::vector<llvm::Type *> ResultTruncRegTypes; 1873 std::vector<llvm::Type *> ArgTypes; 1874 std::vector<llvm::Value*> Args; 1875 1876 // Keep track of inout constraints. 1877 std::string InOutConstraints; 1878 std::vector<llvm::Value*> InOutArgs; 1879 std::vector<llvm::Type*> InOutArgTypes; 1880 1881 // An inline asm can be marked readonly if it meets the following conditions: 1882 // - it doesn't have any sideeffects 1883 // - it doesn't clobber memory 1884 // - it doesn't return a value by-reference 1885 // It can be marked readnone if it doesn't have any input memory constraints 1886 // in addition to meeting the conditions listed above. 1887 bool ReadOnly = true, ReadNone = true; 1888 1889 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1890 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1891 1892 // Simplify the output constraint. 1893 std::string OutputConstraint(S.getOutputConstraint(i)); 1894 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1895 getTarget()); 1896 1897 const Expr *OutExpr = S.getOutputExpr(i); 1898 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1899 1900 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1901 getTarget(), CGM, S, 1902 Info.earlyClobber()); 1903 1904 LValue Dest = EmitLValue(OutExpr); 1905 if (!Constraints.empty()) 1906 Constraints += ','; 1907 1908 // If this is a register output, then make the inline asm return it 1909 // by-value. If this is a memory result, return the value by-reference. 1910 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1911 Constraints += "=" + OutputConstraint; 1912 ResultRegQualTys.push_back(OutExpr->getType()); 1913 ResultRegDests.push_back(Dest); 1914 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1915 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1916 1917 // If this output is tied to an input, and if the input is larger, then 1918 // we need to set the actual result type of the inline asm node to be the 1919 // same as the input type. 1920 if (Info.hasMatchingInput()) { 1921 unsigned InputNo; 1922 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1923 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1924 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1925 break; 1926 } 1927 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1928 1929 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1930 QualType OutputType = OutExpr->getType(); 1931 1932 uint64_t InputSize = getContext().getTypeSize(InputTy); 1933 if (getContext().getTypeSize(OutputType) < InputSize) { 1934 // Form the asm to return the value as a larger integer or fp type. 1935 ResultRegTypes.back() = ConvertType(InputTy); 1936 } 1937 } 1938 if (llvm::Type* AdjTy = 1939 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1940 ResultRegTypes.back())) 1941 ResultRegTypes.back() = AdjTy; 1942 else { 1943 CGM.getDiags().Report(S.getAsmLoc(), 1944 diag::err_asm_invalid_type_in_input) 1945 << OutExpr->getType() << OutputConstraint; 1946 } 1947 } else { 1948 ArgTypes.push_back(Dest.getAddress().getType()); 1949 Args.push_back(Dest.getPointer()); 1950 Constraints += "=*"; 1951 Constraints += OutputConstraint; 1952 ReadOnly = ReadNone = false; 1953 } 1954 1955 if (Info.isReadWrite()) { 1956 InOutConstraints += ','; 1957 1958 const Expr *InputExpr = S.getOutputExpr(i); 1959 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1960 InOutConstraints, 1961 InputExpr->getExprLoc()); 1962 1963 if (llvm::Type* AdjTy = 1964 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1965 Arg->getType())) 1966 Arg = Builder.CreateBitCast(Arg, AdjTy); 1967 1968 if (Info.allowsRegister()) 1969 InOutConstraints += llvm::utostr(i); 1970 else 1971 InOutConstraints += OutputConstraint; 1972 1973 InOutArgTypes.push_back(Arg->getType()); 1974 InOutArgs.push_back(Arg); 1975 } 1976 } 1977 1978 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1979 // to the return value slot. Only do this when returning in registers. 1980 if (isa<MSAsmStmt>(&S)) { 1981 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1982 if (RetAI.isDirect() || RetAI.isExtend()) { 1983 // Make a fake lvalue for the return value slot. 1984 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1985 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1986 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1987 ResultRegDests, AsmString, S.getNumOutputs()); 1988 SawAsmBlock = true; 1989 } 1990 } 1991 1992 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1993 const Expr *InputExpr = S.getInputExpr(i); 1994 1995 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1996 1997 if (Info.allowsMemory()) 1998 ReadNone = false; 1999 2000 if (!Constraints.empty()) 2001 Constraints += ','; 2002 2003 // Simplify the input constraint. 2004 std::string InputConstraint(S.getInputConstraint(i)); 2005 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2006 &OutputConstraintInfos); 2007 2008 InputConstraint = AddVariableConstraints( 2009 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2010 getTarget(), CGM, S, false /* No EarlyClobber */); 2011 2012 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2013 2014 // If this input argument is tied to a larger output result, extend the 2015 // input to be the same size as the output. The LLVM backend wants to see 2016 // the input and output of a matching constraint be the same size. Note 2017 // that GCC does not define what the top bits are here. We use zext because 2018 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2019 if (Info.hasTiedOperand()) { 2020 unsigned Output = Info.getTiedOperand(); 2021 QualType OutputType = S.getOutputExpr(Output)->getType(); 2022 QualType InputTy = InputExpr->getType(); 2023 2024 if (getContext().getTypeSize(OutputType) > 2025 getContext().getTypeSize(InputTy)) { 2026 // Use ptrtoint as appropriate so that we can do our extension. 2027 if (isa<llvm::PointerType>(Arg->getType())) 2028 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2029 llvm::Type *OutputTy = ConvertType(OutputType); 2030 if (isa<llvm::IntegerType>(OutputTy)) 2031 Arg = Builder.CreateZExt(Arg, OutputTy); 2032 else if (isa<llvm::PointerType>(OutputTy)) 2033 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2034 else { 2035 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2036 Arg = Builder.CreateFPExt(Arg, OutputTy); 2037 } 2038 } 2039 } 2040 if (llvm::Type* AdjTy = 2041 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2042 Arg->getType())) 2043 Arg = Builder.CreateBitCast(Arg, AdjTy); 2044 else 2045 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2046 << InputExpr->getType() << InputConstraint; 2047 2048 ArgTypes.push_back(Arg->getType()); 2049 Args.push_back(Arg); 2050 Constraints += InputConstraint; 2051 } 2052 2053 // Append the "input" part of inout constraints last. 2054 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2055 ArgTypes.push_back(InOutArgTypes[i]); 2056 Args.push_back(InOutArgs[i]); 2057 } 2058 Constraints += InOutConstraints; 2059 2060 // Clobbers 2061 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2062 StringRef Clobber = S.getClobber(i); 2063 2064 if (Clobber == "memory") 2065 ReadOnly = ReadNone = false; 2066 else if (Clobber != "cc") 2067 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2068 2069 if (!Constraints.empty()) 2070 Constraints += ','; 2071 2072 Constraints += "~{"; 2073 Constraints += Clobber; 2074 Constraints += '}'; 2075 } 2076 2077 // Add machine specific clobbers 2078 std::string MachineClobbers = getTarget().getClobbers(); 2079 if (!MachineClobbers.empty()) { 2080 if (!Constraints.empty()) 2081 Constraints += ','; 2082 Constraints += MachineClobbers; 2083 } 2084 2085 llvm::Type *ResultType; 2086 if (ResultRegTypes.empty()) 2087 ResultType = VoidTy; 2088 else if (ResultRegTypes.size() == 1) 2089 ResultType = ResultRegTypes[0]; 2090 else 2091 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2092 2093 llvm::FunctionType *FTy = 2094 llvm::FunctionType::get(ResultType, ArgTypes, false); 2095 2096 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2097 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2098 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2099 llvm::InlineAsm *IA = 2100 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2101 /* IsAlignStack */ false, AsmDialect); 2102 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2103 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2104 llvm::Attribute::NoUnwind); 2105 2106 if (isa<MSAsmStmt>(&S)) { 2107 // If the assembly contains any labels, mark the call noduplicate to prevent 2108 // defining the same ASM label twice (PR23715). This is pretty hacky, but it 2109 // works. 2110 if (AsmString.find("__MSASMLABEL_") != std::string::npos) 2111 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2112 llvm::Attribute::NoDuplicate); 2113 } 2114 2115 // Attach readnone and readonly attributes. 2116 if (!HasSideEffect) { 2117 if (ReadNone) 2118 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2119 llvm::Attribute::ReadNone); 2120 else if (ReadOnly) 2121 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2122 llvm::Attribute::ReadOnly); 2123 } 2124 2125 // Slap the source location of the inline asm into a !srcloc metadata on the 2126 // call. 2127 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2128 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2129 *this)); 2130 } else { 2131 // At least put the line number on MS inline asm blobs. 2132 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2133 Result->setMetadata("srcloc", 2134 llvm::MDNode::get(getLLVMContext(), 2135 llvm::ConstantAsMetadata::get(Loc))); 2136 } 2137 2138 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 2139 // Conservatively, mark all inline asm blocks in CUDA as convergent 2140 // (meaning, they may call an intrinsically convergent op, such as bar.sync, 2141 // and so can't have certain optimizations applied around them). 2142 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2143 llvm::Attribute::Convergent); 2144 } 2145 2146 // Extract all of the register value results from the asm. 2147 std::vector<llvm::Value*> RegResults; 2148 if (ResultRegTypes.size() == 1) { 2149 RegResults.push_back(Result); 2150 } else { 2151 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2152 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2153 RegResults.push_back(Tmp); 2154 } 2155 } 2156 2157 assert(RegResults.size() == ResultRegTypes.size()); 2158 assert(RegResults.size() == ResultTruncRegTypes.size()); 2159 assert(RegResults.size() == ResultRegDests.size()); 2160 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2161 llvm::Value *Tmp = RegResults[i]; 2162 2163 // If the result type of the LLVM IR asm doesn't match the result type of 2164 // the expression, do the conversion. 2165 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2166 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2167 2168 // Truncate the integer result to the right size, note that TruncTy can be 2169 // a pointer. 2170 if (TruncTy->isFloatingPointTy()) 2171 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2172 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2173 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2174 Tmp = Builder.CreateTrunc(Tmp, 2175 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2176 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2177 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2178 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2179 Tmp = Builder.CreatePtrToInt(Tmp, 2180 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2181 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2182 } else if (TruncTy->isIntegerTy()) { 2183 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2184 } else if (TruncTy->isVectorTy()) { 2185 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2186 } 2187 } 2188 2189 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2190 } 2191 } 2192 2193 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2194 const RecordDecl *RD = S.getCapturedRecordDecl(); 2195 QualType RecordTy = getContext().getRecordType(RD); 2196 2197 // Initialize the captured struct. 2198 LValue SlotLV = 2199 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2200 2201 RecordDecl::field_iterator CurField = RD->field_begin(); 2202 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2203 E = S.capture_init_end(); 2204 I != E; ++I, ++CurField) { 2205 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2206 if (CurField->hasCapturedVLAType()) { 2207 auto VAT = CurField->getCapturedVLAType(); 2208 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2209 } else { 2210 EmitInitializerForField(*CurField, LV, *I, None); 2211 } 2212 } 2213 2214 return SlotLV; 2215 } 2216 2217 /// Generate an outlined function for the body of a CapturedStmt, store any 2218 /// captured variables into the captured struct, and call the outlined function. 2219 llvm::Function * 2220 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2221 LValue CapStruct = InitCapturedStruct(S); 2222 2223 // Emit the CapturedDecl 2224 CodeGenFunction CGF(CGM, true); 2225 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2226 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2227 delete CGF.CapturedStmtInfo; 2228 2229 // Emit call to the helper function. 2230 EmitCallOrInvoke(F, CapStruct.getPointer()); 2231 2232 return F; 2233 } 2234 2235 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2236 LValue CapStruct = InitCapturedStruct(S); 2237 return CapStruct.getAddress(); 2238 } 2239 2240 /// Creates the outlined function for a CapturedStmt. 2241 llvm::Function * 2242 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2243 assert(CapturedStmtInfo && 2244 "CapturedStmtInfo should be set when generating the captured function"); 2245 const CapturedDecl *CD = S.getCapturedDecl(); 2246 const RecordDecl *RD = S.getCapturedRecordDecl(); 2247 SourceLocation Loc = S.getLocStart(); 2248 assert(CD->hasBody() && "missing CapturedDecl body"); 2249 2250 // Build the argument list. 2251 ASTContext &Ctx = CGM.getContext(); 2252 FunctionArgList Args; 2253 Args.append(CD->param_begin(), CD->param_end()); 2254 2255 // Create the function declaration. 2256 FunctionType::ExtInfo ExtInfo; 2257 const CGFunctionInfo &FuncInfo = 2258 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2259 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2260 2261 llvm::Function *F = 2262 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2263 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2264 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2265 if (CD->isNothrow()) 2266 F->addFnAttr(llvm::Attribute::NoUnwind); 2267 2268 // Generate the function. 2269 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2270 CD->getLocation(), 2271 CD->getBody()->getLocStart()); 2272 // Set the context parameter in CapturedStmtInfo. 2273 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2274 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2275 2276 // Initialize variable-length arrays. 2277 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2278 Ctx.getTagDeclType(RD)); 2279 for (auto *FD : RD->fields()) { 2280 if (FD->hasCapturedVLAType()) { 2281 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2282 S.getLocStart()).getScalarVal(); 2283 auto VAT = FD->getCapturedVLAType(); 2284 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2285 } 2286 } 2287 2288 // If 'this' is captured, load it into CXXThisValue. 2289 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2290 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2291 LValue ThisLValue = EmitLValueForField(Base, FD); 2292 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2293 } 2294 2295 PGO.assignRegionCounters(GlobalDecl(CD), F); 2296 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2297 FinishFunction(CD->getBodyRBrace()); 2298 2299 return F; 2300 } 2301