1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Assumptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 //===----------------------------------------------------------------------===// 40 // Statement Emission 41 //===----------------------------------------------------------------------===// 42 43 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 44 if (CGDebugInfo *DI = getDebugInfo()) { 45 SourceLocation Loc; 46 Loc = S->getBeginLoc(); 47 DI->EmitLocation(Builder, Loc); 48 49 LastStopPoint = Loc; 50 } 51 } 52 53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 54 assert(S && "Null statement?"); 55 PGO.setCurrentStmt(S); 56 57 // These statements have their own debug info handling. 58 if (EmitSimpleStmt(S, Attrs)) 59 return; 60 61 // Check if we are generating unreachable code. 62 if (!HaveInsertPoint()) { 63 // If so, and the statement doesn't contain a label, then we do not need to 64 // generate actual code. This is safe because (1) the current point is 65 // unreachable, so we don't need to execute the code, and (2) we've already 66 // handled the statements which update internal data structures (like the 67 // local variable map) which could be used by subsequent statements. 68 if (!ContainsLabel(S)) { 69 // Verify that any decl statements were handled as simple, they may be in 70 // scope of subsequent reachable statements. 71 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 72 return; 73 } 74 75 // Otherwise, make a new block to hold the code. 76 EnsureInsertPoint(); 77 } 78 79 // Generate a stoppoint if we are emitting debug info. 80 EmitStopPoint(S); 81 82 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 83 // enabled. 84 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 85 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 86 EmitSimpleOMPExecutableDirective(*D); 87 return; 88 } 89 } 90 91 switch (S->getStmtClass()) { 92 case Stmt::NoStmtClass: 93 case Stmt::CXXCatchStmtClass: 94 case Stmt::SEHExceptStmtClass: 95 case Stmt::SEHFinallyStmtClass: 96 case Stmt::MSDependentExistsStmtClass: 97 llvm_unreachable("invalid statement class to emit generically"); 98 case Stmt::NullStmtClass: 99 case Stmt::CompoundStmtClass: 100 case Stmt::DeclStmtClass: 101 case Stmt::LabelStmtClass: 102 case Stmt::AttributedStmtClass: 103 case Stmt::GotoStmtClass: 104 case Stmt::BreakStmtClass: 105 case Stmt::ContinueStmtClass: 106 case Stmt::DefaultStmtClass: 107 case Stmt::CaseStmtClass: 108 case Stmt::SEHLeaveStmtClass: 109 llvm_unreachable("should have emitted these statements as simple"); 110 111 #define STMT(Type, Base) 112 #define ABSTRACT_STMT(Op) 113 #define EXPR(Type, Base) \ 114 case Stmt::Type##Class: 115 #include "clang/AST/StmtNodes.inc" 116 { 117 // Remember the block we came in on. 118 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 119 assert(incoming && "expression emission must have an insertion point"); 120 121 EmitIgnoredExpr(cast<Expr>(S)); 122 123 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 124 assert(outgoing && "expression emission cleared block!"); 125 126 // The expression emitters assume (reasonably!) that the insertion 127 // point is always set. To maintain that, the call-emission code 128 // for noreturn functions has to enter a new block with no 129 // predecessors. We want to kill that block and mark the current 130 // insertion point unreachable in the common case of a call like 131 // "exit();". Since expression emission doesn't otherwise create 132 // blocks with no predecessors, we can just test for that. 133 // However, we must be careful not to do this to our incoming 134 // block, because *statement* emission does sometimes create 135 // reachable blocks which will have no predecessors until later in 136 // the function. This occurs with, e.g., labels that are not 137 // reachable by fallthrough. 138 if (incoming != outgoing && outgoing->use_empty()) { 139 outgoing->eraseFromParent(); 140 Builder.ClearInsertionPoint(); 141 } 142 break; 143 } 144 145 case Stmt::IndirectGotoStmtClass: 146 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 147 148 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 149 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 150 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 151 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 152 153 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 154 155 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 156 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 157 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 158 case Stmt::CoroutineBodyStmtClass: 159 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 160 break; 161 case Stmt::CoreturnStmtClass: 162 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 163 break; 164 case Stmt::CapturedStmtClass: { 165 const CapturedStmt *CS = cast<CapturedStmt>(S); 166 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 167 } 168 break; 169 case Stmt::ObjCAtTryStmtClass: 170 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 171 break; 172 case Stmt::ObjCAtCatchStmtClass: 173 llvm_unreachable( 174 "@catch statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtFinallyStmtClass: 176 llvm_unreachable( 177 "@finally statements should be handled by EmitObjCAtTryStmt"); 178 case Stmt::ObjCAtThrowStmtClass: 179 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 180 break; 181 case Stmt::ObjCAtSynchronizedStmtClass: 182 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 183 break; 184 case Stmt::ObjCForCollectionStmtClass: 185 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 186 break; 187 case Stmt::ObjCAutoreleasePoolStmtClass: 188 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 189 break; 190 191 case Stmt::CXXTryStmtClass: 192 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 193 break; 194 case Stmt::CXXForRangeStmtClass: 195 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 196 break; 197 case Stmt::SEHTryStmtClass: 198 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 199 break; 200 case Stmt::OMPMetaDirectiveClass: 201 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S)); 202 break; 203 case Stmt::OMPCanonicalLoopClass: 204 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 205 break; 206 case Stmt::OMPParallelDirectiveClass: 207 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 208 break; 209 case Stmt::OMPSimdDirectiveClass: 210 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 211 break; 212 case Stmt::OMPTileDirectiveClass: 213 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 214 break; 215 case Stmt::OMPUnrollDirectiveClass: 216 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); 217 break; 218 case Stmt::OMPForDirectiveClass: 219 EmitOMPForDirective(cast<OMPForDirective>(*S)); 220 break; 221 case Stmt::OMPForSimdDirectiveClass: 222 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 223 break; 224 case Stmt::OMPSectionsDirectiveClass: 225 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 226 break; 227 case Stmt::OMPSectionDirectiveClass: 228 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 229 break; 230 case Stmt::OMPSingleDirectiveClass: 231 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 232 break; 233 case Stmt::OMPMasterDirectiveClass: 234 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 235 break; 236 case Stmt::OMPCriticalDirectiveClass: 237 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 238 break; 239 case Stmt::OMPParallelForDirectiveClass: 240 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 241 break; 242 case Stmt::OMPParallelForSimdDirectiveClass: 243 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 244 break; 245 case Stmt::OMPParallelMasterDirectiveClass: 246 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 247 break; 248 case Stmt::OMPParallelSectionsDirectiveClass: 249 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 250 break; 251 case Stmt::OMPTaskDirectiveClass: 252 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 253 break; 254 case Stmt::OMPTaskyieldDirectiveClass: 255 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 256 break; 257 case Stmt::OMPBarrierDirectiveClass: 258 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 259 break; 260 case Stmt::OMPTaskwaitDirectiveClass: 261 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 262 break; 263 case Stmt::OMPTaskgroupDirectiveClass: 264 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 265 break; 266 case Stmt::OMPFlushDirectiveClass: 267 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 268 break; 269 case Stmt::OMPDepobjDirectiveClass: 270 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 271 break; 272 case Stmt::OMPScanDirectiveClass: 273 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 274 break; 275 case Stmt::OMPOrderedDirectiveClass: 276 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 277 break; 278 case Stmt::OMPAtomicDirectiveClass: 279 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 280 break; 281 case Stmt::OMPTargetDirectiveClass: 282 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 283 break; 284 case Stmt::OMPTeamsDirectiveClass: 285 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 286 break; 287 case Stmt::OMPCancellationPointDirectiveClass: 288 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 289 break; 290 case Stmt::OMPCancelDirectiveClass: 291 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 292 break; 293 case Stmt::OMPTargetDataDirectiveClass: 294 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 295 break; 296 case Stmt::OMPTargetEnterDataDirectiveClass: 297 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 298 break; 299 case Stmt::OMPTargetExitDataDirectiveClass: 300 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 301 break; 302 case Stmt::OMPTargetParallelDirectiveClass: 303 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 304 break; 305 case Stmt::OMPTargetParallelForDirectiveClass: 306 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 307 break; 308 case Stmt::OMPTaskLoopDirectiveClass: 309 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 310 break; 311 case Stmt::OMPTaskLoopSimdDirectiveClass: 312 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPMasterTaskLoopDirectiveClass: 315 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 316 break; 317 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 318 EmitOMPMasterTaskLoopSimdDirective( 319 cast<OMPMasterTaskLoopSimdDirective>(*S)); 320 break; 321 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 322 EmitOMPParallelMasterTaskLoopDirective( 323 cast<OMPParallelMasterTaskLoopDirective>(*S)); 324 break; 325 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 326 EmitOMPParallelMasterTaskLoopSimdDirective( 327 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 328 break; 329 case Stmt::OMPDistributeDirectiveClass: 330 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 331 break; 332 case Stmt::OMPTargetUpdateDirectiveClass: 333 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 334 break; 335 case Stmt::OMPDistributeParallelForDirectiveClass: 336 EmitOMPDistributeParallelForDirective( 337 cast<OMPDistributeParallelForDirective>(*S)); 338 break; 339 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 340 EmitOMPDistributeParallelForSimdDirective( 341 cast<OMPDistributeParallelForSimdDirective>(*S)); 342 break; 343 case Stmt::OMPDistributeSimdDirectiveClass: 344 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 345 break; 346 case Stmt::OMPTargetParallelForSimdDirectiveClass: 347 EmitOMPTargetParallelForSimdDirective( 348 cast<OMPTargetParallelForSimdDirective>(*S)); 349 break; 350 case Stmt::OMPTargetSimdDirectiveClass: 351 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 352 break; 353 case Stmt::OMPTeamsDistributeDirectiveClass: 354 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 355 break; 356 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 357 EmitOMPTeamsDistributeSimdDirective( 358 cast<OMPTeamsDistributeSimdDirective>(*S)); 359 break; 360 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 361 EmitOMPTeamsDistributeParallelForSimdDirective( 362 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 363 break; 364 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 365 EmitOMPTeamsDistributeParallelForDirective( 366 cast<OMPTeamsDistributeParallelForDirective>(*S)); 367 break; 368 case Stmt::OMPTargetTeamsDirectiveClass: 369 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 370 break; 371 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 372 EmitOMPTargetTeamsDistributeDirective( 373 cast<OMPTargetTeamsDistributeDirective>(*S)); 374 break; 375 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 376 EmitOMPTargetTeamsDistributeParallelForDirective( 377 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 378 break; 379 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 380 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 381 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 382 break; 383 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 384 EmitOMPTargetTeamsDistributeSimdDirective( 385 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 386 break; 387 case Stmt::OMPInteropDirectiveClass: 388 EmitOMPInteropDirective(cast<OMPInteropDirective>(*S)); 389 break; 390 case Stmt::OMPDispatchDirectiveClass: 391 llvm_unreachable("Dispatch directive not supported yet."); 392 break; 393 case Stmt::OMPMaskedDirectiveClass: 394 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 395 break; 396 case Stmt::OMPGenericLoopDirectiveClass: 397 EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S)); 398 break; 399 } 400 } 401 402 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 403 ArrayRef<const Attr *> Attrs) { 404 switch (S->getStmtClass()) { 405 default: 406 return false; 407 case Stmt::NullStmtClass: 408 break; 409 case Stmt::CompoundStmtClass: 410 EmitCompoundStmt(cast<CompoundStmt>(*S)); 411 break; 412 case Stmt::DeclStmtClass: 413 EmitDeclStmt(cast<DeclStmt>(*S)); 414 break; 415 case Stmt::LabelStmtClass: 416 EmitLabelStmt(cast<LabelStmt>(*S)); 417 break; 418 case Stmt::AttributedStmtClass: 419 EmitAttributedStmt(cast<AttributedStmt>(*S)); 420 break; 421 case Stmt::GotoStmtClass: 422 EmitGotoStmt(cast<GotoStmt>(*S)); 423 break; 424 case Stmt::BreakStmtClass: 425 EmitBreakStmt(cast<BreakStmt>(*S)); 426 break; 427 case Stmt::ContinueStmtClass: 428 EmitContinueStmt(cast<ContinueStmt>(*S)); 429 break; 430 case Stmt::DefaultStmtClass: 431 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 432 break; 433 case Stmt::CaseStmtClass: 434 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 435 break; 436 case Stmt::SEHLeaveStmtClass: 437 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 438 break; 439 } 440 return true; 441 } 442 443 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 444 /// this captures the expression result of the last sub-statement and returns it 445 /// (for use by the statement expression extension). 446 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 447 AggValueSlot AggSlot) { 448 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 449 "LLVM IR generation of compound statement ('{}')"); 450 451 // Keep track of the current cleanup stack depth, including debug scopes. 452 LexicalScope Scope(*this, S.getSourceRange()); 453 454 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 455 } 456 457 Address 458 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 459 bool GetLast, 460 AggValueSlot AggSlot) { 461 462 const Stmt *ExprResult = S.getStmtExprResult(); 463 assert((!GetLast || (GetLast && ExprResult)) && 464 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 465 466 Address RetAlloca = Address::invalid(); 467 468 for (auto *CurStmt : S.body()) { 469 if (GetLast && ExprResult == CurStmt) { 470 // We have to special case labels here. They are statements, but when put 471 // at the end of a statement expression, they yield the value of their 472 // subexpression. Handle this by walking through all labels we encounter, 473 // emitting them before we evaluate the subexpr. 474 // Similar issues arise for attributed statements. 475 while (!isa<Expr>(ExprResult)) { 476 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 477 EmitLabel(LS->getDecl()); 478 ExprResult = LS->getSubStmt(); 479 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 480 // FIXME: Update this if we ever have attributes that affect the 481 // semantics of an expression. 482 ExprResult = AS->getSubStmt(); 483 } else { 484 llvm_unreachable("unknown value statement"); 485 } 486 } 487 488 EnsureInsertPoint(); 489 490 const Expr *E = cast<Expr>(ExprResult); 491 QualType ExprTy = E->getType(); 492 if (hasAggregateEvaluationKind(ExprTy)) { 493 EmitAggExpr(E, AggSlot); 494 } else { 495 // We can't return an RValue here because there might be cleanups at 496 // the end of the StmtExpr. Because of that, we have to emit the result 497 // here into a temporary alloca. 498 RetAlloca = CreateMemTemp(ExprTy); 499 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 500 /*IsInit*/ false); 501 } 502 } else { 503 EmitStmt(CurStmt); 504 } 505 } 506 507 return RetAlloca; 508 } 509 510 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 511 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 512 513 // If there is a cleanup stack, then we it isn't worth trying to 514 // simplify this block (we would need to remove it from the scope map 515 // and cleanup entry). 516 if (!EHStack.empty()) 517 return; 518 519 // Can only simplify direct branches. 520 if (!BI || !BI->isUnconditional()) 521 return; 522 523 // Can only simplify empty blocks. 524 if (BI->getIterator() != BB->begin()) 525 return; 526 527 BB->replaceAllUsesWith(BI->getSuccessor(0)); 528 BI->eraseFromParent(); 529 BB->eraseFromParent(); 530 } 531 532 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 533 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 534 535 // Fall out of the current block (if necessary). 536 EmitBranch(BB); 537 538 if (IsFinished && BB->use_empty()) { 539 delete BB; 540 return; 541 } 542 543 // Place the block after the current block, if possible, or else at 544 // the end of the function. 545 if (CurBB && CurBB->getParent()) 546 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 547 else 548 CurFn->getBasicBlockList().push_back(BB); 549 Builder.SetInsertPoint(BB); 550 } 551 552 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 553 // Emit a branch from the current block to the target one if this 554 // was a real block. If this was just a fall-through block after a 555 // terminator, don't emit it. 556 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 557 558 if (!CurBB || CurBB->getTerminator()) { 559 // If there is no insert point or the previous block is already 560 // terminated, don't touch it. 561 } else { 562 // Otherwise, create a fall-through branch. 563 Builder.CreateBr(Target); 564 } 565 566 Builder.ClearInsertionPoint(); 567 } 568 569 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 570 bool inserted = false; 571 for (llvm::User *u : block->users()) { 572 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 573 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 574 block); 575 inserted = true; 576 break; 577 } 578 } 579 580 if (!inserted) 581 CurFn->getBasicBlockList().push_back(block); 582 583 Builder.SetInsertPoint(block); 584 } 585 586 CodeGenFunction::JumpDest 587 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 588 JumpDest &Dest = LabelMap[D]; 589 if (Dest.isValid()) return Dest; 590 591 // Create, but don't insert, the new block. 592 Dest = JumpDest(createBasicBlock(D->getName()), 593 EHScopeStack::stable_iterator::invalid(), 594 NextCleanupDestIndex++); 595 return Dest; 596 } 597 598 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 599 // Add this label to the current lexical scope if we're within any 600 // normal cleanups. Jumps "in" to this label --- when permitted by 601 // the language --- may need to be routed around such cleanups. 602 if (EHStack.hasNormalCleanups() && CurLexicalScope) 603 CurLexicalScope->addLabel(D); 604 605 JumpDest &Dest = LabelMap[D]; 606 607 // If we didn't need a forward reference to this label, just go 608 // ahead and create a destination at the current scope. 609 if (!Dest.isValid()) { 610 Dest = getJumpDestInCurrentScope(D->getName()); 611 612 // Otherwise, we need to give this label a target depth and remove 613 // it from the branch-fixups list. 614 } else { 615 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 616 Dest.setScopeDepth(EHStack.stable_begin()); 617 ResolveBranchFixups(Dest.getBlock()); 618 } 619 620 EmitBlock(Dest.getBlock()); 621 622 // Emit debug info for labels. 623 if (CGDebugInfo *DI = getDebugInfo()) { 624 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 625 DI->setLocation(D->getLocation()); 626 DI->EmitLabel(D, Builder); 627 } 628 } 629 630 incrementProfileCounter(D->getStmt()); 631 } 632 633 /// Change the cleanup scope of the labels in this lexical scope to 634 /// match the scope of the enclosing context. 635 void CodeGenFunction::LexicalScope::rescopeLabels() { 636 assert(!Labels.empty()); 637 EHScopeStack::stable_iterator innermostScope 638 = CGF.EHStack.getInnermostNormalCleanup(); 639 640 // Change the scope depth of all the labels. 641 for (SmallVectorImpl<const LabelDecl*>::const_iterator 642 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 643 assert(CGF.LabelMap.count(*i)); 644 JumpDest &dest = CGF.LabelMap.find(*i)->second; 645 assert(dest.getScopeDepth().isValid()); 646 assert(innermostScope.encloses(dest.getScopeDepth())); 647 dest.setScopeDepth(innermostScope); 648 } 649 650 // Reparent the labels if the new scope also has cleanups. 651 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 652 ParentScope->Labels.append(Labels.begin(), Labels.end()); 653 } 654 } 655 656 657 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 658 EmitLabel(S.getDecl()); 659 660 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 661 if (getLangOpts().EHAsynch && S.isSideEntry()) 662 EmitSehCppScopeBegin(); 663 664 EmitStmt(S.getSubStmt()); 665 } 666 667 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 668 bool nomerge = false; 669 bool noinline = false; 670 bool alwaysinline = false; 671 const CallExpr *musttail = nullptr; 672 673 for (const auto *A : S.getAttrs()) { 674 switch (A->getKind()) { 675 default: 676 break; 677 case attr::NoMerge: 678 nomerge = true; 679 break; 680 case attr::NoInline: 681 noinline = true; 682 break; 683 case attr::AlwaysInline: 684 alwaysinline = true; 685 break; 686 case attr::MustTail: 687 const Stmt *Sub = S.getSubStmt(); 688 const ReturnStmt *R = cast<ReturnStmt>(Sub); 689 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 690 break; 691 } 692 } 693 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 694 SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline); 695 SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt, 696 alwaysinline); 697 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 698 EmitStmt(S.getSubStmt(), S.getAttrs()); 699 } 700 701 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 702 // If this code is reachable then emit a stop point (if generating 703 // debug info). We have to do this ourselves because we are on the 704 // "simple" statement path. 705 if (HaveInsertPoint()) 706 EmitStopPoint(&S); 707 708 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 709 } 710 711 712 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 713 if (const LabelDecl *Target = S.getConstantTarget()) { 714 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 715 return; 716 } 717 718 // Ensure that we have an i8* for our PHI node. 719 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 720 Int8PtrTy, "addr"); 721 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 722 723 // Get the basic block for the indirect goto. 724 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 725 726 // The first instruction in the block has to be the PHI for the switch dest, 727 // add an entry for this branch. 728 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 729 730 EmitBranch(IndGotoBB); 731 } 732 733 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 734 // The else branch of a consteval if statement is always the only branch that 735 // can be runtime evaluated. 736 if (S.isConsteval()) { 737 const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse(); 738 if (Executed) { 739 RunCleanupsScope ExecutedScope(*this); 740 EmitStmt(Executed); 741 } 742 return; 743 } 744 745 // C99 6.8.4.1: The first substatement is executed if the expression compares 746 // unequal to 0. The condition must be a scalar type. 747 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 748 749 if (S.getInit()) 750 EmitStmt(S.getInit()); 751 752 if (S.getConditionVariable()) 753 EmitDecl(*S.getConditionVariable()); 754 755 // If the condition constant folds and can be elided, try to avoid emitting 756 // the condition and the dead arm of the if/else. 757 bool CondConstant; 758 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 759 S.isConstexpr())) { 760 // Figure out which block (then or else) is executed. 761 const Stmt *Executed = S.getThen(); 762 const Stmt *Skipped = S.getElse(); 763 if (!CondConstant) // Condition false? 764 std::swap(Executed, Skipped); 765 766 // If the skipped block has no labels in it, just emit the executed block. 767 // This avoids emitting dead code and simplifies the CFG substantially. 768 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 769 if (CondConstant) 770 incrementProfileCounter(&S); 771 if (Executed) { 772 RunCleanupsScope ExecutedScope(*this); 773 EmitStmt(Executed); 774 } 775 return; 776 } 777 } 778 779 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 780 // the conditional branch. 781 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 782 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 783 llvm::BasicBlock *ElseBlock = ContBlock; 784 if (S.getElse()) 785 ElseBlock = createBasicBlock("if.else"); 786 787 // Prefer the PGO based weights over the likelihood attribute. 788 // When the build isn't optimized the metadata isn't used, so don't generate 789 // it. 790 Stmt::Likelihood LH = Stmt::LH_None; 791 uint64_t Count = getProfileCount(S.getThen()); 792 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 793 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 794 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 795 796 // Emit the 'then' code. 797 EmitBlock(ThenBlock); 798 incrementProfileCounter(&S); 799 { 800 RunCleanupsScope ThenScope(*this); 801 EmitStmt(S.getThen()); 802 } 803 EmitBranch(ContBlock); 804 805 // Emit the 'else' code if present. 806 if (const Stmt *Else = S.getElse()) { 807 { 808 // There is no need to emit line number for an unconditional branch. 809 auto NL = ApplyDebugLocation::CreateEmpty(*this); 810 EmitBlock(ElseBlock); 811 } 812 { 813 RunCleanupsScope ElseScope(*this); 814 EmitStmt(Else); 815 } 816 { 817 // There is no need to emit line number for an unconditional branch. 818 auto NL = ApplyDebugLocation::CreateEmpty(*this); 819 EmitBranch(ContBlock); 820 } 821 } 822 823 // Emit the continuation block for code after the if. 824 EmitBlock(ContBlock, true); 825 } 826 827 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 828 ArrayRef<const Attr *> WhileAttrs) { 829 // Emit the header for the loop, which will also become 830 // the continue target. 831 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 832 EmitBlock(LoopHeader.getBlock()); 833 834 // Create an exit block for when the condition fails, which will 835 // also become the break target. 836 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 837 838 // Store the blocks to use for break and continue. 839 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 840 841 // C++ [stmt.while]p2: 842 // When the condition of a while statement is a declaration, the 843 // scope of the variable that is declared extends from its point 844 // of declaration (3.3.2) to the end of the while statement. 845 // [...] 846 // The object created in a condition is destroyed and created 847 // with each iteration of the loop. 848 RunCleanupsScope ConditionScope(*this); 849 850 if (S.getConditionVariable()) 851 EmitDecl(*S.getConditionVariable()); 852 853 // Evaluate the conditional in the while header. C99 6.8.5.1: The 854 // evaluation of the controlling expression takes place before each 855 // execution of the loop body. 856 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 857 858 // while(1) is common, avoid extra exit blocks. Be sure 859 // to correctly handle break/continue though. 860 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 861 bool CondIsConstInt = C != nullptr; 862 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 863 const SourceRange &R = S.getSourceRange(); 864 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 865 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 866 SourceLocToDebugLoc(R.getEnd()), 867 checkIfLoopMustProgress(CondIsConstInt)); 868 869 // As long as the condition is true, go to the loop body. 870 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 871 if (EmitBoolCondBranch) { 872 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 873 if (ConditionScope.requiresCleanups()) 874 ExitBlock = createBasicBlock("while.exit"); 875 llvm::MDNode *Weights = 876 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 877 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 878 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 879 BoolCondVal, Stmt::getLikelihood(S.getBody())); 880 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 881 882 if (ExitBlock != LoopExit.getBlock()) { 883 EmitBlock(ExitBlock); 884 EmitBranchThroughCleanup(LoopExit); 885 } 886 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 887 CGM.getDiags().Report(A->getLocation(), 888 diag::warn_attribute_has_no_effect_on_infinite_loop) 889 << A << A->getRange(); 890 CGM.getDiags().Report( 891 S.getWhileLoc(), 892 diag::note_attribute_has_no_effect_on_infinite_loop_here) 893 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 894 } 895 896 // Emit the loop body. We have to emit this in a cleanup scope 897 // because it might be a singleton DeclStmt. 898 { 899 RunCleanupsScope BodyScope(*this); 900 EmitBlock(LoopBody); 901 incrementProfileCounter(&S); 902 EmitStmt(S.getBody()); 903 } 904 905 BreakContinueStack.pop_back(); 906 907 // Immediately force cleanup. 908 ConditionScope.ForceCleanup(); 909 910 EmitStopPoint(&S); 911 // Branch to the loop header again. 912 EmitBranch(LoopHeader.getBlock()); 913 914 LoopStack.pop(); 915 916 // Emit the exit block. 917 EmitBlock(LoopExit.getBlock(), true); 918 919 // The LoopHeader typically is just a branch if we skipped emitting 920 // a branch, try to erase it. 921 if (!EmitBoolCondBranch) 922 SimplifyForwardingBlocks(LoopHeader.getBlock()); 923 } 924 925 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 926 ArrayRef<const Attr *> DoAttrs) { 927 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 928 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 929 930 uint64_t ParentCount = getCurrentProfileCount(); 931 932 // Store the blocks to use for break and continue. 933 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 934 935 // Emit the body of the loop. 936 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 937 938 EmitBlockWithFallThrough(LoopBody, &S); 939 { 940 RunCleanupsScope BodyScope(*this); 941 EmitStmt(S.getBody()); 942 } 943 944 EmitBlock(LoopCond.getBlock()); 945 946 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 947 // after each execution of the loop body." 948 949 // Evaluate the conditional in the while header. 950 // C99 6.8.5p2/p4: The first substatement is executed if the expression 951 // compares unequal to 0. The condition must be a scalar type. 952 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 953 954 BreakContinueStack.pop_back(); 955 956 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 957 // to correctly handle break/continue though. 958 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 959 bool CondIsConstInt = C; 960 bool EmitBoolCondBranch = !C || !C->isZero(); 961 962 const SourceRange &R = S.getSourceRange(); 963 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 964 SourceLocToDebugLoc(R.getBegin()), 965 SourceLocToDebugLoc(R.getEnd()), 966 checkIfLoopMustProgress(CondIsConstInt)); 967 968 // As long as the condition is true, iterate the loop. 969 if (EmitBoolCondBranch) { 970 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 971 Builder.CreateCondBr( 972 BoolCondVal, LoopBody, LoopExit.getBlock(), 973 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 974 } 975 976 LoopStack.pop(); 977 978 // Emit the exit block. 979 EmitBlock(LoopExit.getBlock()); 980 981 // The DoCond block typically is just a branch if we skipped 982 // emitting a branch, try to erase it. 983 if (!EmitBoolCondBranch) 984 SimplifyForwardingBlocks(LoopCond.getBlock()); 985 } 986 987 void CodeGenFunction::EmitForStmt(const ForStmt &S, 988 ArrayRef<const Attr *> ForAttrs) { 989 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 990 991 LexicalScope ForScope(*this, S.getSourceRange()); 992 993 // Evaluate the first part before the loop. 994 if (S.getInit()) 995 EmitStmt(S.getInit()); 996 997 // Start the loop with a block that tests the condition. 998 // If there's an increment, the continue scope will be overwritten 999 // later. 1000 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 1001 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 1002 EmitBlock(CondBlock); 1003 1004 Expr::EvalResult Result; 1005 bool CondIsConstInt = 1006 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 1007 1008 const SourceRange &R = S.getSourceRange(); 1009 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1010 SourceLocToDebugLoc(R.getBegin()), 1011 SourceLocToDebugLoc(R.getEnd()), 1012 checkIfLoopMustProgress(CondIsConstInt)); 1013 1014 // Create a cleanup scope for the condition variable cleanups. 1015 LexicalScope ConditionScope(*this, S.getSourceRange()); 1016 1017 // If the for loop doesn't have an increment we can just use the condition as 1018 // the continue block. Otherwise, if there is no condition variable, we can 1019 // form the continue block now. If there is a condition variable, we can't 1020 // form the continue block until after we've emitted the condition, because 1021 // the condition is in scope in the increment, but Sema's jump diagnostics 1022 // ensure that there are no continues from the condition variable that jump 1023 // to the loop increment. 1024 JumpDest Continue; 1025 if (!S.getInc()) 1026 Continue = CondDest; 1027 else if (!S.getConditionVariable()) 1028 Continue = getJumpDestInCurrentScope("for.inc"); 1029 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1030 1031 if (S.getCond()) { 1032 // If the for statement has a condition scope, emit the local variable 1033 // declaration. 1034 if (S.getConditionVariable()) { 1035 EmitDecl(*S.getConditionVariable()); 1036 1037 // We have entered the condition variable's scope, so we're now able to 1038 // jump to the continue block. 1039 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1040 BreakContinueStack.back().ContinueBlock = Continue; 1041 } 1042 1043 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1044 // If there are any cleanups between here and the loop-exit scope, 1045 // create a block to stage a loop exit along. 1046 if (ForScope.requiresCleanups()) 1047 ExitBlock = createBasicBlock("for.cond.cleanup"); 1048 1049 // As long as the condition is true, iterate the loop. 1050 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1051 1052 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1053 // compares unequal to 0. The condition must be a scalar type. 1054 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1055 llvm::MDNode *Weights = 1056 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1057 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1058 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1059 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1060 1061 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1062 1063 if (ExitBlock != LoopExit.getBlock()) { 1064 EmitBlock(ExitBlock); 1065 EmitBranchThroughCleanup(LoopExit); 1066 } 1067 1068 EmitBlock(ForBody); 1069 } else { 1070 // Treat it as a non-zero constant. Don't even create a new block for the 1071 // body, just fall into it. 1072 } 1073 incrementProfileCounter(&S); 1074 1075 { 1076 // Create a separate cleanup scope for the body, in case it is not 1077 // a compound statement. 1078 RunCleanupsScope BodyScope(*this); 1079 EmitStmt(S.getBody()); 1080 } 1081 1082 // If there is an increment, emit it next. 1083 if (S.getInc()) { 1084 EmitBlock(Continue.getBlock()); 1085 EmitStmt(S.getInc()); 1086 } 1087 1088 BreakContinueStack.pop_back(); 1089 1090 ConditionScope.ForceCleanup(); 1091 1092 EmitStopPoint(&S); 1093 EmitBranch(CondBlock); 1094 1095 ForScope.ForceCleanup(); 1096 1097 LoopStack.pop(); 1098 1099 // Emit the fall-through block. 1100 EmitBlock(LoopExit.getBlock(), true); 1101 } 1102 1103 void 1104 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1105 ArrayRef<const Attr *> ForAttrs) { 1106 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1107 1108 LexicalScope ForScope(*this, S.getSourceRange()); 1109 1110 // Evaluate the first pieces before the loop. 1111 if (S.getInit()) 1112 EmitStmt(S.getInit()); 1113 EmitStmt(S.getRangeStmt()); 1114 EmitStmt(S.getBeginStmt()); 1115 EmitStmt(S.getEndStmt()); 1116 1117 // Start the loop with a block that tests the condition. 1118 // If there's an increment, the continue scope will be overwritten 1119 // later. 1120 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1121 EmitBlock(CondBlock); 1122 1123 const SourceRange &R = S.getSourceRange(); 1124 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1125 SourceLocToDebugLoc(R.getBegin()), 1126 SourceLocToDebugLoc(R.getEnd())); 1127 1128 // If there are any cleanups between here and the loop-exit scope, 1129 // create a block to stage a loop exit along. 1130 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1131 if (ForScope.requiresCleanups()) 1132 ExitBlock = createBasicBlock("for.cond.cleanup"); 1133 1134 // The loop body, consisting of the specified body and the loop variable. 1135 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1136 1137 // The body is executed if the expression, contextually converted 1138 // to bool, is true. 1139 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1140 llvm::MDNode *Weights = 1141 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1142 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1143 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1144 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1145 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1146 1147 if (ExitBlock != LoopExit.getBlock()) { 1148 EmitBlock(ExitBlock); 1149 EmitBranchThroughCleanup(LoopExit); 1150 } 1151 1152 EmitBlock(ForBody); 1153 incrementProfileCounter(&S); 1154 1155 // Create a block for the increment. In case of a 'continue', we jump there. 1156 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1157 1158 // Store the blocks to use for break and continue. 1159 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1160 1161 { 1162 // Create a separate cleanup scope for the loop variable and body. 1163 LexicalScope BodyScope(*this, S.getSourceRange()); 1164 EmitStmt(S.getLoopVarStmt()); 1165 EmitStmt(S.getBody()); 1166 } 1167 1168 EmitStopPoint(&S); 1169 // If there is an increment, emit it next. 1170 EmitBlock(Continue.getBlock()); 1171 EmitStmt(S.getInc()); 1172 1173 BreakContinueStack.pop_back(); 1174 1175 EmitBranch(CondBlock); 1176 1177 ForScope.ForceCleanup(); 1178 1179 LoopStack.pop(); 1180 1181 // Emit the fall-through block. 1182 EmitBlock(LoopExit.getBlock(), true); 1183 } 1184 1185 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1186 if (RV.isScalar()) { 1187 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1188 } else if (RV.isAggregate()) { 1189 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1190 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1191 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1192 } else { 1193 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1194 /*init*/ true); 1195 } 1196 EmitBranchThroughCleanup(ReturnBlock); 1197 } 1198 1199 namespace { 1200 // RAII struct used to save and restore a return statment's result expression. 1201 struct SaveRetExprRAII { 1202 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1203 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1204 CGF.RetExpr = RetExpr; 1205 } 1206 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1207 const Expr *OldRetExpr; 1208 CodeGenFunction &CGF; 1209 }; 1210 } // namespace 1211 1212 /// If we have 'return f(...);', where both caller and callee are SwiftAsync, 1213 /// codegen it as 'tail call ...; ret void;'. 1214 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, 1215 const CGFunctionInfo *CurFnInfo) { 1216 auto calleeQualType = CE->getCallee()->getType(); 1217 const FunctionType *calleeType = nullptr; 1218 if (calleeQualType->isFunctionPointerType() || 1219 calleeQualType->isFunctionReferenceType() || 1220 calleeQualType->isBlockPointerType() || 1221 calleeQualType->isMemberFunctionPointerType()) { 1222 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); 1223 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { 1224 calleeType = ty; 1225 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 1226 if (auto methodDecl = CMCE->getMethodDecl()) { 1227 // getMethodDecl() doesn't handle member pointers at the moment. 1228 calleeType = methodDecl->getType()->castAs<FunctionType>(); 1229 } else { 1230 return; 1231 } 1232 } else { 1233 return; 1234 } 1235 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && 1236 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { 1237 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); 1238 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 1239 Builder.CreateRetVoid(); 1240 Builder.ClearInsertionPoint(); 1241 } 1242 } 1243 1244 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1245 /// if the function returns void, or may be missing one if the function returns 1246 /// non-void. Fun stuff :). 1247 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1248 if (requiresReturnValueCheck()) { 1249 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1250 auto *SLocPtr = 1251 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1252 llvm::GlobalVariable::PrivateLinkage, SLoc); 1253 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1254 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1255 assert(ReturnLocation.isValid() && "No valid return location"); 1256 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1257 ReturnLocation); 1258 } 1259 1260 // Returning from an outlined SEH helper is UB, and we already warn on it. 1261 if (IsOutlinedSEHHelper) { 1262 Builder.CreateUnreachable(); 1263 Builder.ClearInsertionPoint(); 1264 } 1265 1266 // Emit the result value, even if unused, to evaluate the side effects. 1267 const Expr *RV = S.getRetValue(); 1268 1269 // Record the result expression of the return statement. The recorded 1270 // expression is used to determine whether a block capture's lifetime should 1271 // end at the end of the full expression as opposed to the end of the scope 1272 // enclosing the block expression. 1273 // 1274 // This permits a small, easily-implemented exception to our over-conservative 1275 // rules about not jumping to statements following block literals with 1276 // non-trivial cleanups. 1277 SaveRetExprRAII SaveRetExpr(RV, *this); 1278 1279 RunCleanupsScope cleanupScope(*this); 1280 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1281 RV = EWC->getSubExpr(); 1282 // FIXME: Clean this up by using an LValue for ReturnTemp, 1283 // EmitStoreThroughLValue, and EmitAnyExpr. 1284 // Check if the NRVO candidate was not globalized in OpenMP mode. 1285 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1286 S.getNRVOCandidate()->isNRVOVariable() && 1287 (!getLangOpts().OpenMP || 1288 !CGM.getOpenMPRuntime() 1289 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1290 .isValid())) { 1291 // Apply the named return value optimization for this return statement, 1292 // which means doing nothing: the appropriate result has already been 1293 // constructed into the NRVO variable. 1294 1295 // If there is an NRVO flag for this variable, set it to 1 into indicate 1296 // that the cleanup code should not destroy the variable. 1297 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1298 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1299 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1300 // Make sure not to return anything, but evaluate the expression 1301 // for side effects. 1302 if (RV) { 1303 EmitAnyExpr(RV); 1304 if (auto *CE = dyn_cast<CallExpr>(RV)) 1305 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); 1306 } 1307 } else if (!RV) { 1308 // Do nothing (return value is left uninitialized) 1309 } else if (FnRetTy->isReferenceType()) { 1310 // If this function returns a reference, take the address of the expression 1311 // rather than the value. 1312 RValue Result = EmitReferenceBindingToExpr(RV); 1313 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1314 } else { 1315 switch (getEvaluationKind(RV->getType())) { 1316 case TEK_Scalar: 1317 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1318 break; 1319 case TEK_Complex: 1320 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1321 /*isInit*/ true); 1322 break; 1323 case TEK_Aggregate: 1324 EmitAggExpr(RV, AggValueSlot::forAddr( 1325 ReturnValue, Qualifiers(), 1326 AggValueSlot::IsDestructed, 1327 AggValueSlot::DoesNotNeedGCBarriers, 1328 AggValueSlot::IsNotAliased, 1329 getOverlapForReturnValue())); 1330 break; 1331 } 1332 } 1333 1334 ++NumReturnExprs; 1335 if (!RV || RV->isEvaluatable(getContext())) 1336 ++NumSimpleReturnExprs; 1337 1338 cleanupScope.ForceCleanup(); 1339 EmitBranchThroughCleanup(ReturnBlock); 1340 } 1341 1342 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1343 // As long as debug info is modeled with instructions, we have to ensure we 1344 // have a place to insert here and write the stop point here. 1345 if (HaveInsertPoint()) 1346 EmitStopPoint(&S); 1347 1348 for (const auto *I : S.decls()) 1349 EmitDecl(*I); 1350 } 1351 1352 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1353 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1354 1355 // If this code is reachable then emit a stop point (if generating 1356 // debug info). We have to do this ourselves because we are on the 1357 // "simple" statement path. 1358 if (HaveInsertPoint()) 1359 EmitStopPoint(&S); 1360 1361 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1362 } 1363 1364 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1365 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1366 1367 // If this code is reachable then emit a stop point (if generating 1368 // debug info). We have to do this ourselves because we are on the 1369 // "simple" statement path. 1370 if (HaveInsertPoint()) 1371 EmitStopPoint(&S); 1372 1373 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1374 } 1375 1376 /// EmitCaseStmtRange - If case statement range is not too big then 1377 /// add multiple cases to switch instruction, one for each value within 1378 /// the range. If range is too big then emit "if" condition check. 1379 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1380 ArrayRef<const Attr *> Attrs) { 1381 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1382 1383 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1384 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1385 1386 // Emit the code for this case. We do this first to make sure it is 1387 // properly chained from our predecessor before generating the 1388 // switch machinery to enter this block. 1389 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1390 EmitBlockWithFallThrough(CaseDest, &S); 1391 EmitStmt(S.getSubStmt()); 1392 1393 // If range is empty, do nothing. 1394 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1395 return; 1396 1397 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1398 llvm::APInt Range = RHS - LHS; 1399 // FIXME: parameters such as this should not be hardcoded. 1400 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1401 // Range is small enough to add multiple switch instruction cases. 1402 uint64_t Total = getProfileCount(&S); 1403 unsigned NCases = Range.getZExtValue() + 1; 1404 // We only have one region counter for the entire set of cases here, so we 1405 // need to divide the weights evenly between the generated cases, ensuring 1406 // that the total weight is preserved. E.g., a weight of 5 over three cases 1407 // will be distributed as weights of 2, 2, and 1. 1408 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1409 for (unsigned I = 0; I != NCases; ++I) { 1410 if (SwitchWeights) 1411 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1412 else if (SwitchLikelihood) 1413 SwitchLikelihood->push_back(LH); 1414 1415 if (Rem) 1416 Rem--; 1417 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1418 ++LHS; 1419 } 1420 return; 1421 } 1422 1423 // The range is too big. Emit "if" condition into a new block, 1424 // making sure to save and restore the current insertion point. 1425 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1426 1427 // Push this test onto the chain of range checks (which terminates 1428 // in the default basic block). The switch's default will be changed 1429 // to the top of this chain after switch emission is complete. 1430 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1431 CaseRangeBlock = createBasicBlock("sw.caserange"); 1432 1433 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1434 Builder.SetInsertPoint(CaseRangeBlock); 1435 1436 // Emit range check. 1437 llvm::Value *Diff = 1438 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1439 llvm::Value *Cond = 1440 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1441 1442 llvm::MDNode *Weights = nullptr; 1443 if (SwitchWeights) { 1444 uint64_t ThisCount = getProfileCount(&S); 1445 uint64_t DefaultCount = (*SwitchWeights)[0]; 1446 Weights = createProfileWeights(ThisCount, DefaultCount); 1447 1448 // Since we're chaining the switch default through each large case range, we 1449 // need to update the weight for the default, ie, the first case, to include 1450 // this case. 1451 (*SwitchWeights)[0] += ThisCount; 1452 } else if (SwitchLikelihood) 1453 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1454 1455 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1456 1457 // Restore the appropriate insertion point. 1458 if (RestoreBB) 1459 Builder.SetInsertPoint(RestoreBB); 1460 else 1461 Builder.ClearInsertionPoint(); 1462 } 1463 1464 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1465 ArrayRef<const Attr *> Attrs) { 1466 // If there is no enclosing switch instance that we're aware of, then this 1467 // case statement and its block can be elided. This situation only happens 1468 // when we've constant-folded the switch, are emitting the constant case, 1469 // and part of the constant case includes another case statement. For 1470 // instance: switch (4) { case 4: do { case 5: } while (1); } 1471 if (!SwitchInsn) { 1472 EmitStmt(S.getSubStmt()); 1473 return; 1474 } 1475 1476 // Handle case ranges. 1477 if (S.getRHS()) { 1478 EmitCaseStmtRange(S, Attrs); 1479 return; 1480 } 1481 1482 llvm::ConstantInt *CaseVal = 1483 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1484 if (SwitchLikelihood) 1485 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1486 1487 // If the body of the case is just a 'break', try to not emit an empty block. 1488 // If we're profiling or we're not optimizing, leave the block in for better 1489 // debug and coverage analysis. 1490 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1491 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1492 isa<BreakStmt>(S.getSubStmt())) { 1493 JumpDest Block = BreakContinueStack.back().BreakBlock; 1494 1495 // Only do this optimization if there are no cleanups that need emitting. 1496 if (isObviouslyBranchWithoutCleanups(Block)) { 1497 if (SwitchWeights) 1498 SwitchWeights->push_back(getProfileCount(&S)); 1499 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1500 1501 // If there was a fallthrough into this case, make sure to redirect it to 1502 // the end of the switch as well. 1503 if (Builder.GetInsertBlock()) { 1504 Builder.CreateBr(Block.getBlock()); 1505 Builder.ClearInsertionPoint(); 1506 } 1507 return; 1508 } 1509 } 1510 1511 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1512 EmitBlockWithFallThrough(CaseDest, &S); 1513 if (SwitchWeights) 1514 SwitchWeights->push_back(getProfileCount(&S)); 1515 SwitchInsn->addCase(CaseVal, CaseDest); 1516 1517 // Recursively emitting the statement is acceptable, but is not wonderful for 1518 // code where we have many case statements nested together, i.e.: 1519 // case 1: 1520 // case 2: 1521 // case 3: etc. 1522 // Handling this recursively will create a new block for each case statement 1523 // that falls through to the next case which is IR intensive. It also causes 1524 // deep recursion which can run into stack depth limitations. Handle 1525 // sequential non-range case statements specially. 1526 // 1527 // TODO When the next case has a likelihood attribute the code returns to the 1528 // recursive algorithm. Maybe improve this case if it becomes common practice 1529 // to use a lot of attributes. 1530 const CaseStmt *CurCase = &S; 1531 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1532 1533 // Otherwise, iteratively add consecutive cases to this switch stmt. 1534 while (NextCase && NextCase->getRHS() == nullptr) { 1535 CurCase = NextCase; 1536 llvm::ConstantInt *CaseVal = 1537 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1538 1539 if (SwitchWeights) 1540 SwitchWeights->push_back(getProfileCount(NextCase)); 1541 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1542 CaseDest = createBasicBlock("sw.bb"); 1543 EmitBlockWithFallThrough(CaseDest, CurCase); 1544 } 1545 // Since this loop is only executed when the CaseStmt has no attributes 1546 // use a hard-coded value. 1547 if (SwitchLikelihood) 1548 SwitchLikelihood->push_back(Stmt::LH_None); 1549 1550 SwitchInsn->addCase(CaseVal, CaseDest); 1551 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1552 } 1553 1554 // Generate a stop point for debug info if the case statement is 1555 // followed by a default statement. A fallthrough case before a 1556 // default case gets its own branch target. 1557 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass) 1558 EmitStopPoint(CurCase); 1559 1560 // Normal default recursion for non-cases. 1561 EmitStmt(CurCase->getSubStmt()); 1562 } 1563 1564 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1565 ArrayRef<const Attr *> Attrs) { 1566 // If there is no enclosing switch instance that we're aware of, then this 1567 // default statement can be elided. This situation only happens when we've 1568 // constant-folded the switch. 1569 if (!SwitchInsn) { 1570 EmitStmt(S.getSubStmt()); 1571 return; 1572 } 1573 1574 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1575 assert(DefaultBlock->empty() && 1576 "EmitDefaultStmt: Default block already defined?"); 1577 1578 if (SwitchLikelihood) 1579 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1580 1581 EmitBlockWithFallThrough(DefaultBlock, &S); 1582 1583 EmitStmt(S.getSubStmt()); 1584 } 1585 1586 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1587 /// constant value that is being switched on, see if we can dead code eliminate 1588 /// the body of the switch to a simple series of statements to emit. Basically, 1589 /// on a switch (5) we want to find these statements: 1590 /// case 5: 1591 /// printf(...); <-- 1592 /// ++i; <-- 1593 /// break; 1594 /// 1595 /// and add them to the ResultStmts vector. If it is unsafe to do this 1596 /// transformation (for example, one of the elided statements contains a label 1597 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1598 /// should include statements after it (e.g. the printf() line is a substmt of 1599 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1600 /// statement, then return CSFC_Success. 1601 /// 1602 /// If Case is non-null, then we are looking for the specified case, checking 1603 /// that nothing we jump over contains labels. If Case is null, then we found 1604 /// the case and are looking for the break. 1605 /// 1606 /// If the recursive walk actually finds our Case, then we set FoundCase to 1607 /// true. 1608 /// 1609 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1610 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1611 const SwitchCase *Case, 1612 bool &FoundCase, 1613 SmallVectorImpl<const Stmt*> &ResultStmts) { 1614 // If this is a null statement, just succeed. 1615 if (!S) 1616 return Case ? CSFC_Success : CSFC_FallThrough; 1617 1618 // If this is the switchcase (case 4: or default) that we're looking for, then 1619 // we're in business. Just add the substatement. 1620 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1621 if (S == Case) { 1622 FoundCase = true; 1623 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1624 ResultStmts); 1625 } 1626 1627 // Otherwise, this is some other case or default statement, just ignore it. 1628 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1629 ResultStmts); 1630 } 1631 1632 // If we are in the live part of the code and we found our break statement, 1633 // return a success! 1634 if (!Case && isa<BreakStmt>(S)) 1635 return CSFC_Success; 1636 1637 // If this is a switch statement, then it might contain the SwitchCase, the 1638 // break, or neither. 1639 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1640 // Handle this as two cases: we might be looking for the SwitchCase (if so 1641 // the skipped statements must be skippable) or we might already have it. 1642 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1643 bool StartedInLiveCode = FoundCase; 1644 unsigned StartSize = ResultStmts.size(); 1645 1646 // If we've not found the case yet, scan through looking for it. 1647 if (Case) { 1648 // Keep track of whether we see a skipped declaration. The code could be 1649 // using the declaration even if it is skipped, so we can't optimize out 1650 // the decl if the kept statements might refer to it. 1651 bool HadSkippedDecl = false; 1652 1653 // If we're looking for the case, just see if we can skip each of the 1654 // substatements. 1655 for (; Case && I != E; ++I) { 1656 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1657 1658 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1659 case CSFC_Failure: return CSFC_Failure; 1660 case CSFC_Success: 1661 // A successful result means that either 1) that the statement doesn't 1662 // have the case and is skippable, or 2) does contain the case value 1663 // and also contains the break to exit the switch. In the later case, 1664 // we just verify the rest of the statements are elidable. 1665 if (FoundCase) { 1666 // If we found the case and skipped declarations, we can't do the 1667 // optimization. 1668 if (HadSkippedDecl) 1669 return CSFC_Failure; 1670 1671 for (++I; I != E; ++I) 1672 if (CodeGenFunction::ContainsLabel(*I, true)) 1673 return CSFC_Failure; 1674 return CSFC_Success; 1675 } 1676 break; 1677 case CSFC_FallThrough: 1678 // If we have a fallthrough condition, then we must have found the 1679 // case started to include statements. Consider the rest of the 1680 // statements in the compound statement as candidates for inclusion. 1681 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1682 // We recursively found Case, so we're not looking for it anymore. 1683 Case = nullptr; 1684 1685 // If we found the case and skipped declarations, we can't do the 1686 // optimization. 1687 if (HadSkippedDecl) 1688 return CSFC_Failure; 1689 break; 1690 } 1691 } 1692 1693 if (!FoundCase) 1694 return CSFC_Success; 1695 1696 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1697 } 1698 1699 // If we have statements in our range, then we know that the statements are 1700 // live and need to be added to the set of statements we're tracking. 1701 bool AnyDecls = false; 1702 for (; I != E; ++I) { 1703 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1704 1705 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1706 case CSFC_Failure: return CSFC_Failure; 1707 case CSFC_FallThrough: 1708 // A fallthrough result means that the statement was simple and just 1709 // included in ResultStmt, keep adding them afterwards. 1710 break; 1711 case CSFC_Success: 1712 // A successful result means that we found the break statement and 1713 // stopped statement inclusion. We just ensure that any leftover stmts 1714 // are skippable and return success ourselves. 1715 for (++I; I != E; ++I) 1716 if (CodeGenFunction::ContainsLabel(*I, true)) 1717 return CSFC_Failure; 1718 return CSFC_Success; 1719 } 1720 } 1721 1722 // If we're about to fall out of a scope without hitting a 'break;', we 1723 // can't perform the optimization if there were any decls in that scope 1724 // (we'd lose their end-of-lifetime). 1725 if (AnyDecls) { 1726 // If the entire compound statement was live, there's one more thing we 1727 // can try before giving up: emit the whole thing as a single statement. 1728 // We can do that unless the statement contains a 'break;'. 1729 // FIXME: Such a break must be at the end of a construct within this one. 1730 // We could emit this by just ignoring the BreakStmts entirely. 1731 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1732 ResultStmts.resize(StartSize); 1733 ResultStmts.push_back(S); 1734 } else { 1735 return CSFC_Failure; 1736 } 1737 } 1738 1739 return CSFC_FallThrough; 1740 } 1741 1742 // Okay, this is some other statement that we don't handle explicitly, like a 1743 // for statement or increment etc. If we are skipping over this statement, 1744 // just verify it doesn't have labels, which would make it invalid to elide. 1745 if (Case) { 1746 if (CodeGenFunction::ContainsLabel(S, true)) 1747 return CSFC_Failure; 1748 return CSFC_Success; 1749 } 1750 1751 // Otherwise, we want to include this statement. Everything is cool with that 1752 // so long as it doesn't contain a break out of the switch we're in. 1753 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1754 1755 // Otherwise, everything is great. Include the statement and tell the caller 1756 // that we fall through and include the next statement as well. 1757 ResultStmts.push_back(S); 1758 return CSFC_FallThrough; 1759 } 1760 1761 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1762 /// then invoke CollectStatementsForCase to find the list of statements to emit 1763 /// for a switch on constant. See the comment above CollectStatementsForCase 1764 /// for more details. 1765 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1766 const llvm::APSInt &ConstantCondValue, 1767 SmallVectorImpl<const Stmt*> &ResultStmts, 1768 ASTContext &C, 1769 const SwitchCase *&ResultCase) { 1770 // First step, find the switch case that is being branched to. We can do this 1771 // efficiently by scanning the SwitchCase list. 1772 const SwitchCase *Case = S.getSwitchCaseList(); 1773 const DefaultStmt *DefaultCase = nullptr; 1774 1775 for (; Case; Case = Case->getNextSwitchCase()) { 1776 // It's either a default or case. Just remember the default statement in 1777 // case we're not jumping to any numbered cases. 1778 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1779 DefaultCase = DS; 1780 continue; 1781 } 1782 1783 // Check to see if this case is the one we're looking for. 1784 const CaseStmt *CS = cast<CaseStmt>(Case); 1785 // Don't handle case ranges yet. 1786 if (CS->getRHS()) return false; 1787 1788 // If we found our case, remember it as 'case'. 1789 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1790 break; 1791 } 1792 1793 // If we didn't find a matching case, we use a default if it exists, or we 1794 // elide the whole switch body! 1795 if (!Case) { 1796 // It is safe to elide the body of the switch if it doesn't contain labels 1797 // etc. If it is safe, return successfully with an empty ResultStmts list. 1798 if (!DefaultCase) 1799 return !CodeGenFunction::ContainsLabel(&S); 1800 Case = DefaultCase; 1801 } 1802 1803 // Ok, we know which case is being jumped to, try to collect all the 1804 // statements that follow it. This can fail for a variety of reasons. Also, 1805 // check to see that the recursive walk actually found our case statement. 1806 // Insane cases like this can fail to find it in the recursive walk since we 1807 // don't handle every stmt kind: 1808 // switch (4) { 1809 // while (1) { 1810 // case 4: ... 1811 bool FoundCase = false; 1812 ResultCase = Case; 1813 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1814 ResultStmts) != CSFC_Failure && 1815 FoundCase; 1816 } 1817 1818 static Optional<SmallVector<uint64_t, 16>> 1819 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1820 // Are there enough branches to weight them? 1821 if (Likelihoods.size() <= 1) 1822 return None; 1823 1824 uint64_t NumUnlikely = 0; 1825 uint64_t NumNone = 0; 1826 uint64_t NumLikely = 0; 1827 for (const auto LH : Likelihoods) { 1828 switch (LH) { 1829 case Stmt::LH_Unlikely: 1830 ++NumUnlikely; 1831 break; 1832 case Stmt::LH_None: 1833 ++NumNone; 1834 break; 1835 case Stmt::LH_Likely: 1836 ++NumLikely; 1837 break; 1838 } 1839 } 1840 1841 // Is there a likelihood attribute used? 1842 if (NumUnlikely == 0 && NumLikely == 0) 1843 return None; 1844 1845 // When multiple cases share the same code they can be combined during 1846 // optimization. In that case the weights of the branch will be the sum of 1847 // the individual weights. Make sure the combined sum of all neutral cases 1848 // doesn't exceed the value of a single likely attribute. 1849 // The additions both avoid divisions by 0 and make sure the weights of None 1850 // don't exceed the weight of Likely. 1851 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1852 const uint64_t None = Likely / (NumNone + 1); 1853 const uint64_t Unlikely = 0; 1854 1855 SmallVector<uint64_t, 16> Result; 1856 Result.reserve(Likelihoods.size()); 1857 for (const auto LH : Likelihoods) { 1858 switch (LH) { 1859 case Stmt::LH_Unlikely: 1860 Result.push_back(Unlikely); 1861 break; 1862 case Stmt::LH_None: 1863 Result.push_back(None); 1864 break; 1865 case Stmt::LH_Likely: 1866 Result.push_back(Likely); 1867 break; 1868 } 1869 } 1870 1871 return Result; 1872 } 1873 1874 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1875 // Handle nested switch statements. 1876 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1877 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1878 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1879 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1880 1881 // See if we can constant fold the condition of the switch and therefore only 1882 // emit the live case statement (if any) of the switch. 1883 llvm::APSInt ConstantCondValue; 1884 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1885 SmallVector<const Stmt*, 4> CaseStmts; 1886 const SwitchCase *Case = nullptr; 1887 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1888 getContext(), Case)) { 1889 if (Case) 1890 incrementProfileCounter(Case); 1891 RunCleanupsScope ExecutedScope(*this); 1892 1893 if (S.getInit()) 1894 EmitStmt(S.getInit()); 1895 1896 // Emit the condition variable if needed inside the entire cleanup scope 1897 // used by this special case for constant folded switches. 1898 if (S.getConditionVariable()) 1899 EmitDecl(*S.getConditionVariable()); 1900 1901 // At this point, we are no longer "within" a switch instance, so 1902 // we can temporarily enforce this to ensure that any embedded case 1903 // statements are not emitted. 1904 SwitchInsn = nullptr; 1905 1906 // Okay, we can dead code eliminate everything except this case. Emit the 1907 // specified series of statements and we're good. 1908 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1909 EmitStmt(CaseStmts[i]); 1910 incrementProfileCounter(&S); 1911 1912 // Now we want to restore the saved switch instance so that nested 1913 // switches continue to function properly 1914 SwitchInsn = SavedSwitchInsn; 1915 1916 return; 1917 } 1918 } 1919 1920 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1921 1922 RunCleanupsScope ConditionScope(*this); 1923 1924 if (S.getInit()) 1925 EmitStmt(S.getInit()); 1926 1927 if (S.getConditionVariable()) 1928 EmitDecl(*S.getConditionVariable()); 1929 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1930 1931 // Create basic block to hold stuff that comes after switch 1932 // statement. We also need to create a default block now so that 1933 // explicit case ranges tests can have a place to jump to on 1934 // failure. 1935 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1936 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1937 if (PGO.haveRegionCounts()) { 1938 // Walk the SwitchCase list to find how many there are. 1939 uint64_t DefaultCount = 0; 1940 unsigned NumCases = 0; 1941 for (const SwitchCase *Case = S.getSwitchCaseList(); 1942 Case; 1943 Case = Case->getNextSwitchCase()) { 1944 if (isa<DefaultStmt>(Case)) 1945 DefaultCount = getProfileCount(Case); 1946 NumCases += 1; 1947 } 1948 SwitchWeights = new SmallVector<uint64_t, 16>(); 1949 SwitchWeights->reserve(NumCases); 1950 // The default needs to be first. We store the edge count, so we already 1951 // know the right weight. 1952 SwitchWeights->push_back(DefaultCount); 1953 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1954 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1955 // Initialize the default case. 1956 SwitchLikelihood->push_back(Stmt::LH_None); 1957 } 1958 1959 CaseRangeBlock = DefaultBlock; 1960 1961 // Clear the insertion point to indicate we are in unreachable code. 1962 Builder.ClearInsertionPoint(); 1963 1964 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1965 // then reuse last ContinueBlock. 1966 JumpDest OuterContinue; 1967 if (!BreakContinueStack.empty()) 1968 OuterContinue = BreakContinueStack.back().ContinueBlock; 1969 1970 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1971 1972 // Emit switch body. 1973 EmitStmt(S.getBody()); 1974 1975 BreakContinueStack.pop_back(); 1976 1977 // Update the default block in case explicit case range tests have 1978 // been chained on top. 1979 SwitchInsn->setDefaultDest(CaseRangeBlock); 1980 1981 // If a default was never emitted: 1982 if (!DefaultBlock->getParent()) { 1983 // If we have cleanups, emit the default block so that there's a 1984 // place to jump through the cleanups from. 1985 if (ConditionScope.requiresCleanups()) { 1986 EmitBlock(DefaultBlock); 1987 1988 // Otherwise, just forward the default block to the switch end. 1989 } else { 1990 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1991 delete DefaultBlock; 1992 } 1993 } 1994 1995 ConditionScope.ForceCleanup(); 1996 1997 // Emit continuation. 1998 EmitBlock(SwitchExit.getBlock(), true); 1999 incrementProfileCounter(&S); 2000 2001 // If the switch has a condition wrapped by __builtin_unpredictable, 2002 // create metadata that specifies that the switch is unpredictable. 2003 // Don't bother if not optimizing because that metadata would not be used. 2004 auto *Call = dyn_cast<CallExpr>(S.getCond()); 2005 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2006 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2007 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2008 llvm::MDBuilder MDHelper(getLLVMContext()); 2009 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 2010 MDHelper.createUnpredictable()); 2011 } 2012 } 2013 2014 if (SwitchWeights) { 2015 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 2016 "switch weights do not match switch cases"); 2017 // If there's only one jump destination there's no sense weighting it. 2018 if (SwitchWeights->size() > 1) 2019 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2020 createProfileWeights(*SwitchWeights)); 2021 delete SwitchWeights; 2022 } else if (SwitchLikelihood) { 2023 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 2024 "switch likelihoods do not match switch cases"); 2025 Optional<SmallVector<uint64_t, 16>> LHW = 2026 getLikelihoodWeights(*SwitchLikelihood); 2027 if (LHW) { 2028 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2029 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2030 createProfileWeights(*LHW)); 2031 } 2032 delete SwitchLikelihood; 2033 } 2034 SwitchInsn = SavedSwitchInsn; 2035 SwitchWeights = SavedSwitchWeights; 2036 SwitchLikelihood = SavedSwitchLikelihood; 2037 CaseRangeBlock = SavedCRBlock; 2038 } 2039 2040 static std::string 2041 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 2042 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 2043 std::string Result; 2044 2045 while (*Constraint) { 2046 switch (*Constraint) { 2047 default: 2048 Result += Target.convertConstraint(Constraint); 2049 break; 2050 // Ignore these 2051 case '*': 2052 case '?': 2053 case '!': 2054 case '=': // Will see this and the following in mult-alt constraints. 2055 case '+': 2056 break; 2057 case '#': // Ignore the rest of the constraint alternative. 2058 while (Constraint[1] && Constraint[1] != ',') 2059 Constraint++; 2060 break; 2061 case '&': 2062 case '%': 2063 Result += *Constraint; 2064 while (Constraint[1] && Constraint[1] == *Constraint) 2065 Constraint++; 2066 break; 2067 case ',': 2068 Result += "|"; 2069 break; 2070 case 'g': 2071 Result += "imr"; 2072 break; 2073 case '[': { 2074 assert(OutCons && 2075 "Must pass output names to constraints with a symbolic name"); 2076 unsigned Index; 2077 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2078 assert(result && "Could not resolve symbolic name"); (void)result; 2079 Result += llvm::utostr(Index); 2080 break; 2081 } 2082 } 2083 2084 Constraint++; 2085 } 2086 2087 return Result; 2088 } 2089 2090 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2091 /// as using a particular register add that as a constraint that will be used 2092 /// in this asm stmt. 2093 static std::string 2094 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2095 const TargetInfo &Target, CodeGenModule &CGM, 2096 const AsmStmt &Stmt, const bool EarlyClobber, 2097 std::string *GCCReg = nullptr) { 2098 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2099 if (!AsmDeclRef) 2100 return Constraint; 2101 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2102 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2103 if (!Variable) 2104 return Constraint; 2105 if (Variable->getStorageClass() != SC_Register) 2106 return Constraint; 2107 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2108 if (!Attr) 2109 return Constraint; 2110 StringRef Register = Attr->getLabel(); 2111 assert(Target.isValidGCCRegisterName(Register)); 2112 // We're using validateOutputConstraint here because we only care if 2113 // this is a register constraint. 2114 TargetInfo::ConstraintInfo Info(Constraint, ""); 2115 if (Target.validateOutputConstraint(Info) && 2116 !Info.allowsRegister()) { 2117 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2118 return Constraint; 2119 } 2120 // Canonicalize the register here before returning it. 2121 Register = Target.getNormalizedGCCRegisterName(Register); 2122 if (GCCReg != nullptr) 2123 *GCCReg = Register.str(); 2124 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2125 } 2126 2127 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue( 2128 const TargetInfo::ConstraintInfo &Info, LValue InputValue, 2129 QualType InputType, std::string &ConstraintStr, SourceLocation Loc) { 2130 if (Info.allowsRegister() || !Info.allowsMemory()) { 2131 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) 2132 return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr}; 2133 2134 llvm::Type *Ty = ConvertType(InputType); 2135 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2136 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || 2137 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { 2138 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2139 2140 return {Builder.CreateLoad(Builder.CreateElementBitCast( 2141 InputValue.getAddress(*this), Ty)), 2142 nullptr}; 2143 } 2144 } 2145 2146 Address Addr = InputValue.getAddress(*this); 2147 ConstraintStr += '*'; 2148 return {Addr.getPointer(), Addr.getElementType()}; 2149 } 2150 2151 std::pair<llvm::Value *, llvm::Type *> 2152 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2153 const Expr *InputExpr, 2154 std::string &ConstraintStr) { 2155 // If this can't be a register or memory, i.e., has to be a constant 2156 // (immediate or symbolic), try to emit it as such. 2157 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2158 if (Info.requiresImmediateConstant()) { 2159 Expr::EvalResult EVResult; 2160 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2161 2162 llvm::APSInt IntResult; 2163 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2164 getContext())) 2165 return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr}; 2166 } 2167 2168 Expr::EvalResult Result; 2169 if (InputExpr->EvaluateAsInt(Result, getContext())) 2170 return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()), 2171 nullptr}; 2172 } 2173 2174 if (Info.allowsRegister() || !Info.allowsMemory()) 2175 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2176 return {EmitScalarExpr(InputExpr), nullptr}; 2177 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2178 return {EmitScalarExpr(InputExpr), nullptr}; 2179 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2180 LValue Dest = EmitLValue(InputExpr); 2181 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2182 InputExpr->getExprLoc()); 2183 } 2184 2185 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2186 /// asm call instruction. The !srcloc MDNode contains a list of constant 2187 /// integers which are the source locations of the start of each line in the 2188 /// asm. 2189 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2190 CodeGenFunction &CGF) { 2191 SmallVector<llvm::Metadata *, 8> Locs; 2192 // Add the location of the first line to the MDNode. 2193 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2194 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); 2195 StringRef StrVal = Str->getString(); 2196 if (!StrVal.empty()) { 2197 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2198 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2199 unsigned StartToken = 0; 2200 unsigned ByteOffset = 0; 2201 2202 // Add the location of the start of each subsequent line of the asm to the 2203 // MDNode. 2204 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2205 if (StrVal[i] != '\n') continue; 2206 SourceLocation LineLoc = Str->getLocationOfByte( 2207 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2208 Locs.push_back(llvm::ConstantAsMetadata::get( 2209 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); 2210 } 2211 } 2212 2213 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2214 } 2215 2216 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2217 bool HasUnwindClobber, bool ReadOnly, 2218 bool ReadNone, bool NoMerge, const AsmStmt &S, 2219 const std::vector<llvm::Type *> &ResultRegTypes, 2220 const std::vector<llvm::Type *> &ArgElemTypes, 2221 CodeGenFunction &CGF, 2222 std::vector<llvm::Value *> &RegResults) { 2223 if (!HasUnwindClobber) 2224 Result.addFnAttr(llvm::Attribute::NoUnwind); 2225 2226 if (NoMerge) 2227 Result.addFnAttr(llvm::Attribute::NoMerge); 2228 // Attach readnone and readonly attributes. 2229 if (!HasSideEffect) { 2230 if (ReadNone) 2231 Result.addFnAttr(llvm::Attribute::ReadNone); 2232 else if (ReadOnly) 2233 Result.addFnAttr(llvm::Attribute::ReadOnly); 2234 } 2235 2236 // Add elementtype attribute for indirect constraints. 2237 for (auto Pair : llvm::enumerate(ArgElemTypes)) { 2238 if (Pair.value()) { 2239 auto Attr = llvm::Attribute::get( 2240 CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value()); 2241 Result.addParamAttr(Pair.index(), Attr); 2242 } 2243 } 2244 2245 // Slap the source location of the inline asm into a !srcloc metadata on the 2246 // call. 2247 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2248 Result.setMetadata("srcloc", 2249 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2250 else { 2251 // At least put the line number on MS inline asm blobs. 2252 llvm::Constant *Loc = 2253 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); 2254 Result.setMetadata("srcloc", 2255 llvm::MDNode::get(CGF.getLLVMContext(), 2256 llvm::ConstantAsMetadata::get(Loc))); 2257 } 2258 2259 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2260 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2261 // convergent (meaning, they may call an intrinsically convergent op, such 2262 // as bar.sync, and so can't have certain optimizations applied around 2263 // them). 2264 Result.addFnAttr(llvm::Attribute::Convergent); 2265 // Extract all of the register value results from the asm. 2266 if (ResultRegTypes.size() == 1) { 2267 RegResults.push_back(&Result); 2268 } else { 2269 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2270 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2271 RegResults.push_back(Tmp); 2272 } 2273 } 2274 } 2275 2276 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2277 // Assemble the final asm string. 2278 std::string AsmString = S.generateAsmString(getContext()); 2279 2280 // Get all the output and input constraints together. 2281 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2282 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2283 2284 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2285 StringRef Name; 2286 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2287 Name = GAS->getOutputName(i); 2288 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2289 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2290 assert(IsValid && "Failed to parse output constraint"); 2291 OutputConstraintInfos.push_back(Info); 2292 } 2293 2294 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2295 StringRef Name; 2296 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2297 Name = GAS->getInputName(i); 2298 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2299 bool IsValid = 2300 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2301 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2302 InputConstraintInfos.push_back(Info); 2303 } 2304 2305 std::string Constraints; 2306 2307 std::vector<LValue> ResultRegDests; 2308 std::vector<QualType> ResultRegQualTys; 2309 std::vector<llvm::Type *> ResultRegTypes; 2310 std::vector<llvm::Type *> ResultTruncRegTypes; 2311 std::vector<llvm::Type *> ArgTypes; 2312 std::vector<llvm::Type *> ArgElemTypes; 2313 std::vector<llvm::Value*> Args; 2314 llvm::BitVector ResultTypeRequiresCast; 2315 2316 // Keep track of inout constraints. 2317 std::string InOutConstraints; 2318 std::vector<llvm::Value*> InOutArgs; 2319 std::vector<llvm::Type*> InOutArgTypes; 2320 std::vector<llvm::Type*> InOutArgElemTypes; 2321 2322 // Keep track of out constraints for tied input operand. 2323 std::vector<std::string> OutputConstraints; 2324 2325 // Keep track of defined physregs. 2326 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2327 2328 // An inline asm can be marked readonly if it meets the following conditions: 2329 // - it doesn't have any sideeffects 2330 // - it doesn't clobber memory 2331 // - it doesn't return a value by-reference 2332 // It can be marked readnone if it doesn't have any input memory constraints 2333 // in addition to meeting the conditions listed above. 2334 bool ReadOnly = true, ReadNone = true; 2335 2336 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2337 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2338 2339 // Simplify the output constraint. 2340 std::string OutputConstraint(S.getOutputConstraint(i)); 2341 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2342 getTarget(), &OutputConstraintInfos); 2343 2344 const Expr *OutExpr = S.getOutputExpr(i); 2345 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2346 2347 std::string GCCReg; 2348 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2349 getTarget(), CGM, S, 2350 Info.earlyClobber(), 2351 &GCCReg); 2352 // Give an error on multiple outputs to same physreg. 2353 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2354 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2355 2356 OutputConstraints.push_back(OutputConstraint); 2357 LValue Dest = EmitLValue(OutExpr); 2358 if (!Constraints.empty()) 2359 Constraints += ','; 2360 2361 // If this is a register output, then make the inline asm return it 2362 // by-value. If this is a memory result, return the value by-reference. 2363 QualType QTy = OutExpr->getType(); 2364 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || 2365 hasAggregateEvaluationKind(QTy); 2366 if (!Info.allowsMemory() && IsScalarOrAggregate) { 2367 2368 Constraints += "=" + OutputConstraint; 2369 ResultRegQualTys.push_back(QTy); 2370 ResultRegDests.push_back(Dest); 2371 2372 llvm::Type *Ty = ConvertTypeForMem(QTy); 2373 const bool RequiresCast = Info.allowsRegister() && 2374 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || 2375 Ty->isAggregateType()); 2376 2377 ResultTruncRegTypes.push_back(Ty); 2378 ResultTypeRequiresCast.push_back(RequiresCast); 2379 2380 if (RequiresCast) { 2381 unsigned Size = getContext().getTypeSize(QTy); 2382 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2383 } 2384 ResultRegTypes.push_back(Ty); 2385 // If this output is tied to an input, and if the input is larger, then 2386 // we need to set the actual result type of the inline asm node to be the 2387 // same as the input type. 2388 if (Info.hasMatchingInput()) { 2389 unsigned InputNo; 2390 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2391 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2392 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2393 break; 2394 } 2395 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2396 2397 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2398 QualType OutputType = OutExpr->getType(); 2399 2400 uint64_t InputSize = getContext().getTypeSize(InputTy); 2401 if (getContext().getTypeSize(OutputType) < InputSize) { 2402 // Form the asm to return the value as a larger integer or fp type. 2403 ResultRegTypes.back() = ConvertType(InputTy); 2404 } 2405 } 2406 if (llvm::Type* AdjTy = 2407 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2408 ResultRegTypes.back())) 2409 ResultRegTypes.back() = AdjTy; 2410 else { 2411 CGM.getDiags().Report(S.getAsmLoc(), 2412 diag::err_asm_invalid_type_in_input) 2413 << OutExpr->getType() << OutputConstraint; 2414 } 2415 2416 // Update largest vector width for any vector types. 2417 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2418 LargestVectorWidth = 2419 std::max((uint64_t)LargestVectorWidth, 2420 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2421 } else { 2422 Address DestAddr = Dest.getAddress(*this); 2423 // Matrix types in memory are represented by arrays, but accessed through 2424 // vector pointers, with the alignment specified on the access operation. 2425 // For inline assembly, update pointer arguments to use vector pointers. 2426 // Otherwise there will be a mis-match if the matrix is also an 2427 // input-argument which is represented as vector. 2428 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) 2429 DestAddr = Builder.CreateElementBitCast( 2430 DestAddr, ConvertType(OutExpr->getType())); 2431 2432 ArgTypes.push_back(DestAddr.getType()); 2433 ArgElemTypes.push_back(DestAddr.getElementType()); 2434 Args.push_back(DestAddr.getPointer()); 2435 Constraints += "=*"; 2436 Constraints += OutputConstraint; 2437 ReadOnly = ReadNone = false; 2438 } 2439 2440 if (Info.isReadWrite()) { 2441 InOutConstraints += ','; 2442 2443 const Expr *InputExpr = S.getOutputExpr(i); 2444 llvm::Value *Arg; 2445 llvm::Type *ArgElemType; 2446 std::tie(Arg, ArgElemType) = EmitAsmInputLValue( 2447 Info, Dest, InputExpr->getType(), InOutConstraints, 2448 InputExpr->getExprLoc()); 2449 2450 if (llvm::Type* AdjTy = 2451 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2452 Arg->getType())) 2453 Arg = Builder.CreateBitCast(Arg, AdjTy); 2454 2455 // Update largest vector width for any vector types. 2456 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2457 LargestVectorWidth = 2458 std::max((uint64_t)LargestVectorWidth, 2459 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2460 // Only tie earlyclobber physregs. 2461 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2462 InOutConstraints += llvm::utostr(i); 2463 else 2464 InOutConstraints += OutputConstraint; 2465 2466 InOutArgTypes.push_back(Arg->getType()); 2467 InOutArgElemTypes.push_back(ArgElemType); 2468 InOutArgs.push_back(Arg); 2469 } 2470 } 2471 2472 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2473 // to the return value slot. Only do this when returning in registers. 2474 if (isa<MSAsmStmt>(&S)) { 2475 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2476 if (RetAI.isDirect() || RetAI.isExtend()) { 2477 // Make a fake lvalue for the return value slot. 2478 LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy); 2479 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2480 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2481 ResultRegDests, AsmString, S.getNumOutputs()); 2482 SawAsmBlock = true; 2483 } 2484 } 2485 2486 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2487 const Expr *InputExpr = S.getInputExpr(i); 2488 2489 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2490 2491 if (Info.allowsMemory()) 2492 ReadNone = false; 2493 2494 if (!Constraints.empty()) 2495 Constraints += ','; 2496 2497 // Simplify the input constraint. 2498 std::string InputConstraint(S.getInputConstraint(i)); 2499 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2500 &OutputConstraintInfos); 2501 2502 InputConstraint = AddVariableConstraints( 2503 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2504 getTarget(), CGM, S, false /* No EarlyClobber */); 2505 2506 std::string ReplaceConstraint (InputConstraint); 2507 llvm::Value *Arg; 2508 llvm::Type *ArgElemType; 2509 std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints); 2510 2511 // If this input argument is tied to a larger output result, extend the 2512 // input to be the same size as the output. The LLVM backend wants to see 2513 // the input and output of a matching constraint be the same size. Note 2514 // that GCC does not define what the top bits are here. We use zext because 2515 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2516 if (Info.hasTiedOperand()) { 2517 unsigned Output = Info.getTiedOperand(); 2518 QualType OutputType = S.getOutputExpr(Output)->getType(); 2519 QualType InputTy = InputExpr->getType(); 2520 2521 if (getContext().getTypeSize(OutputType) > 2522 getContext().getTypeSize(InputTy)) { 2523 // Use ptrtoint as appropriate so that we can do our extension. 2524 if (isa<llvm::PointerType>(Arg->getType())) 2525 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2526 llvm::Type *OutputTy = ConvertType(OutputType); 2527 if (isa<llvm::IntegerType>(OutputTy)) 2528 Arg = Builder.CreateZExt(Arg, OutputTy); 2529 else if (isa<llvm::PointerType>(OutputTy)) 2530 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2531 else if (OutputTy->isFloatingPointTy()) 2532 Arg = Builder.CreateFPExt(Arg, OutputTy); 2533 } 2534 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2535 ReplaceConstraint = OutputConstraints[Output]; 2536 } 2537 if (llvm::Type* AdjTy = 2538 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2539 Arg->getType())) 2540 Arg = Builder.CreateBitCast(Arg, AdjTy); 2541 else 2542 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2543 << InputExpr->getType() << InputConstraint; 2544 2545 // Update largest vector width for any vector types. 2546 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2547 LargestVectorWidth = 2548 std::max((uint64_t)LargestVectorWidth, 2549 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2550 2551 ArgTypes.push_back(Arg->getType()); 2552 ArgElemTypes.push_back(ArgElemType); 2553 Args.push_back(Arg); 2554 Constraints += InputConstraint; 2555 } 2556 2557 // Append the "input" part of inout constraints. 2558 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2559 ArgTypes.push_back(InOutArgTypes[i]); 2560 ArgElemTypes.push_back(InOutArgElemTypes[i]); 2561 Args.push_back(InOutArgs[i]); 2562 } 2563 Constraints += InOutConstraints; 2564 2565 // Labels 2566 SmallVector<llvm::BasicBlock *, 16> Transfer; 2567 llvm::BasicBlock *Fallthrough = nullptr; 2568 bool IsGCCAsmGoto = false; 2569 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2570 IsGCCAsmGoto = GS->isAsmGoto(); 2571 if (IsGCCAsmGoto) { 2572 for (const auto *E : GS->labels()) { 2573 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2574 Transfer.push_back(Dest.getBlock()); 2575 llvm::BlockAddress *BA = 2576 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2577 Args.push_back(BA); 2578 ArgTypes.push_back(BA->getType()); 2579 ArgElemTypes.push_back(nullptr); 2580 if (!Constraints.empty()) 2581 Constraints += ','; 2582 Constraints += 'i'; 2583 } 2584 Fallthrough = createBasicBlock("asm.fallthrough"); 2585 } 2586 } 2587 2588 bool HasUnwindClobber = false; 2589 2590 // Clobbers 2591 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2592 StringRef Clobber = S.getClobber(i); 2593 2594 if (Clobber == "memory") 2595 ReadOnly = ReadNone = false; 2596 else if (Clobber == "unwind") { 2597 HasUnwindClobber = true; 2598 continue; 2599 } else if (Clobber != "cc") { 2600 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2601 if (CGM.getCodeGenOpts().StackClashProtector && 2602 getTarget().isSPRegName(Clobber)) { 2603 CGM.getDiags().Report(S.getAsmLoc(), 2604 diag::warn_stack_clash_protection_inline_asm); 2605 } 2606 } 2607 2608 if (isa<MSAsmStmt>(&S)) { 2609 if (Clobber == "eax" || Clobber == "edx") { 2610 if (Constraints.find("=&A") != std::string::npos) 2611 continue; 2612 std::string::size_type position1 = 2613 Constraints.find("={" + Clobber.str() + "}"); 2614 if (position1 != std::string::npos) { 2615 Constraints.insert(position1 + 1, "&"); 2616 continue; 2617 } 2618 std::string::size_type position2 = Constraints.find("=A"); 2619 if (position2 != std::string::npos) { 2620 Constraints.insert(position2 + 1, "&"); 2621 continue; 2622 } 2623 } 2624 } 2625 if (!Constraints.empty()) 2626 Constraints += ','; 2627 2628 Constraints += "~{"; 2629 Constraints += Clobber; 2630 Constraints += '}'; 2631 } 2632 2633 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2634 "unwind clobber can't be used with asm goto"); 2635 2636 // Add machine specific clobbers 2637 std::string MachineClobbers = getTarget().getClobbers(); 2638 if (!MachineClobbers.empty()) { 2639 if (!Constraints.empty()) 2640 Constraints += ','; 2641 Constraints += MachineClobbers; 2642 } 2643 2644 llvm::Type *ResultType; 2645 if (ResultRegTypes.empty()) 2646 ResultType = VoidTy; 2647 else if (ResultRegTypes.size() == 1) 2648 ResultType = ResultRegTypes[0]; 2649 else 2650 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2651 2652 llvm::FunctionType *FTy = 2653 llvm::FunctionType::get(ResultType, ArgTypes, false); 2654 2655 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2656 2657 llvm::InlineAsm::AsmDialect GnuAsmDialect = 2658 CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT 2659 ? llvm::InlineAsm::AD_ATT 2660 : llvm::InlineAsm::AD_Intel; 2661 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2662 llvm::InlineAsm::AD_Intel : GnuAsmDialect; 2663 2664 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2665 FTy, AsmString, Constraints, HasSideEffect, 2666 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2667 std::vector<llvm::Value*> RegResults; 2668 if (IsGCCAsmGoto) { 2669 llvm::CallBrInst *Result = 2670 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2671 EmitBlock(Fallthrough); 2672 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2673 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2674 ResultRegTypes, ArgElemTypes, *this, RegResults); 2675 } else if (HasUnwindClobber) { 2676 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2677 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2678 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes, 2679 *this, RegResults); 2680 } else { 2681 llvm::CallInst *Result = 2682 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2683 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2684 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2685 ResultRegTypes, ArgElemTypes, *this, RegResults); 2686 } 2687 2688 assert(RegResults.size() == ResultRegTypes.size()); 2689 assert(RegResults.size() == ResultTruncRegTypes.size()); 2690 assert(RegResults.size() == ResultRegDests.size()); 2691 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2692 // in which case its size may grow. 2693 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2694 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2695 llvm::Value *Tmp = RegResults[i]; 2696 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2697 2698 // If the result type of the LLVM IR asm doesn't match the result type of 2699 // the expression, do the conversion. 2700 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2701 2702 // Truncate the integer result to the right size, note that TruncTy can be 2703 // a pointer. 2704 if (TruncTy->isFloatingPointTy()) 2705 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2706 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2707 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2708 Tmp = Builder.CreateTrunc(Tmp, 2709 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2710 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2711 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2712 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2713 Tmp = Builder.CreatePtrToInt(Tmp, 2714 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2715 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2716 } else if (TruncTy->isIntegerTy()) { 2717 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2718 } else if (TruncTy->isVectorTy()) { 2719 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2720 } 2721 } 2722 2723 LValue Dest = ResultRegDests[i]; 2724 // ResultTypeRequiresCast elements correspond to the first 2725 // ResultTypeRequiresCast.size() elements of RegResults. 2726 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2727 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2728 Address A = Builder.CreateElementBitCast(Dest.getAddress(*this), 2729 ResultRegTypes[i]); 2730 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { 2731 Builder.CreateStore(Tmp, A); 2732 continue; 2733 } 2734 2735 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2736 if (Ty.isNull()) { 2737 const Expr *OutExpr = S.getOutputExpr(i); 2738 CGM.Error( 2739 OutExpr->getExprLoc(), 2740 "impossible constraint in asm: can't store value into a register"); 2741 return; 2742 } 2743 Dest = MakeAddrLValue(A, Ty); 2744 } 2745 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2746 } 2747 } 2748 2749 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2750 const RecordDecl *RD = S.getCapturedRecordDecl(); 2751 QualType RecordTy = getContext().getRecordType(RD); 2752 2753 // Initialize the captured struct. 2754 LValue SlotLV = 2755 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2756 2757 RecordDecl::field_iterator CurField = RD->field_begin(); 2758 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2759 E = S.capture_init_end(); 2760 I != E; ++I, ++CurField) { 2761 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2762 if (CurField->hasCapturedVLAType()) { 2763 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2764 } else { 2765 EmitInitializerForField(*CurField, LV, *I); 2766 } 2767 } 2768 2769 return SlotLV; 2770 } 2771 2772 /// Generate an outlined function for the body of a CapturedStmt, store any 2773 /// captured variables into the captured struct, and call the outlined function. 2774 llvm::Function * 2775 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2776 LValue CapStruct = InitCapturedStruct(S); 2777 2778 // Emit the CapturedDecl 2779 CodeGenFunction CGF(CGM, true); 2780 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2781 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2782 delete CGF.CapturedStmtInfo; 2783 2784 // Emit call to the helper function. 2785 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2786 2787 return F; 2788 } 2789 2790 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2791 LValue CapStruct = InitCapturedStruct(S); 2792 return CapStruct.getAddress(*this); 2793 } 2794 2795 /// Creates the outlined function for a CapturedStmt. 2796 llvm::Function * 2797 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2798 assert(CapturedStmtInfo && 2799 "CapturedStmtInfo should be set when generating the captured function"); 2800 const CapturedDecl *CD = S.getCapturedDecl(); 2801 const RecordDecl *RD = S.getCapturedRecordDecl(); 2802 SourceLocation Loc = S.getBeginLoc(); 2803 assert(CD->hasBody() && "missing CapturedDecl body"); 2804 2805 // Build the argument list. 2806 ASTContext &Ctx = CGM.getContext(); 2807 FunctionArgList Args; 2808 Args.append(CD->param_begin(), CD->param_end()); 2809 2810 // Create the function declaration. 2811 const CGFunctionInfo &FuncInfo = 2812 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2813 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2814 2815 llvm::Function *F = 2816 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2817 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2818 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2819 if (CD->isNothrow()) 2820 F->addFnAttr(llvm::Attribute::NoUnwind); 2821 2822 // Generate the function. 2823 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2824 CD->getBody()->getBeginLoc()); 2825 // Set the context parameter in CapturedStmtInfo. 2826 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2827 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2828 2829 // Initialize variable-length arrays. 2830 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2831 Ctx.getTagDeclType(RD)); 2832 for (auto *FD : RD->fields()) { 2833 if (FD->hasCapturedVLAType()) { 2834 auto *ExprArg = 2835 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2836 .getScalarVal(); 2837 auto VAT = FD->getCapturedVLAType(); 2838 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2839 } 2840 } 2841 2842 // If 'this' is captured, load it into CXXThisValue. 2843 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2844 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2845 LValue ThisLValue = EmitLValueForField(Base, FD); 2846 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2847 } 2848 2849 PGO.assignRegionCounters(GlobalDecl(CD), F); 2850 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2851 FinishFunction(CD->getBodyRBrace()); 2852 2853 return F; 2854 } 2855