1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::SEHLeaveStmtClass: 177 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 178 break; 179 case Stmt::OMPParallelDirectiveClass: 180 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 181 break; 182 case Stmt::OMPSimdDirectiveClass: 183 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 184 break; 185 case Stmt::OMPForDirectiveClass: 186 EmitOMPForDirective(cast<OMPForDirective>(*S)); 187 break; 188 case Stmt::OMPForSimdDirectiveClass: 189 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 190 break; 191 case Stmt::OMPSectionsDirectiveClass: 192 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 193 break; 194 case Stmt::OMPSectionDirectiveClass: 195 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 196 break; 197 case Stmt::OMPSingleDirectiveClass: 198 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 199 break; 200 case Stmt::OMPMasterDirectiveClass: 201 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 202 break; 203 case Stmt::OMPCriticalDirectiveClass: 204 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 205 break; 206 case Stmt::OMPParallelForDirectiveClass: 207 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 208 break; 209 case Stmt::OMPParallelForSimdDirectiveClass: 210 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 211 break; 212 case Stmt::OMPParallelSectionsDirectiveClass: 213 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 214 break; 215 case Stmt::OMPTaskDirectiveClass: 216 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 217 break; 218 case Stmt::OMPTaskyieldDirectiveClass: 219 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 220 break; 221 case Stmt::OMPBarrierDirectiveClass: 222 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 223 break; 224 case Stmt::OMPTaskwaitDirectiveClass: 225 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 226 break; 227 case Stmt::OMPFlushDirectiveClass: 228 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 229 break; 230 case Stmt::OMPOrderedDirectiveClass: 231 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 232 break; 233 case Stmt::OMPAtomicDirectiveClass: 234 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 235 break; 236 case Stmt::OMPTargetDirectiveClass: 237 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 238 break; 239 case Stmt::OMPTeamsDirectiveClass: 240 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 241 break; 242 } 243 } 244 245 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 246 switch (S->getStmtClass()) { 247 default: return false; 248 case Stmt::NullStmtClass: break; 249 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 250 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 251 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 252 case Stmt::AttributedStmtClass: 253 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 254 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 255 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 256 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 257 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 258 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 259 } 260 261 return true; 262 } 263 264 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 265 /// this captures the expression result of the last sub-statement and returns it 266 /// (for use by the statement expression extension). 267 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 268 AggValueSlot AggSlot) { 269 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 270 "LLVM IR generation of compound statement ('{}')"); 271 272 // Keep track of the current cleanup stack depth, including debug scopes. 273 LexicalScope Scope(*this, S.getSourceRange()); 274 275 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 276 } 277 278 llvm::Value* 279 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 280 bool GetLast, 281 AggValueSlot AggSlot) { 282 283 for (CompoundStmt::const_body_iterator I = S.body_begin(), 284 E = S.body_end()-GetLast; I != E; ++I) 285 EmitStmt(*I); 286 287 llvm::Value *RetAlloca = nullptr; 288 if (GetLast) { 289 // We have to special case labels here. They are statements, but when put 290 // at the end of a statement expression, they yield the value of their 291 // subexpression. Handle this by walking through all labels we encounter, 292 // emitting them before we evaluate the subexpr. 293 const Stmt *LastStmt = S.body_back(); 294 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 295 EmitLabel(LS->getDecl()); 296 LastStmt = LS->getSubStmt(); 297 } 298 299 EnsureInsertPoint(); 300 301 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 302 if (hasAggregateEvaluationKind(ExprTy)) { 303 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 304 } else { 305 // We can't return an RValue here because there might be cleanups at 306 // the end of the StmtExpr. Because of that, we have to emit the result 307 // here into a temporary alloca. 308 RetAlloca = CreateMemTemp(ExprTy); 309 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 310 /*IsInit*/false); 311 } 312 313 } 314 315 return RetAlloca; 316 } 317 318 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 319 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 320 321 // If there is a cleanup stack, then we it isn't worth trying to 322 // simplify this block (we would need to remove it from the scope map 323 // and cleanup entry). 324 if (!EHStack.empty()) 325 return; 326 327 // Can only simplify direct branches. 328 if (!BI || !BI->isUnconditional()) 329 return; 330 331 // Can only simplify empty blocks. 332 if (BI != BB->begin()) 333 return; 334 335 BB->replaceAllUsesWith(BI->getSuccessor(0)); 336 BI->eraseFromParent(); 337 BB->eraseFromParent(); 338 } 339 340 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 341 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 342 343 // Fall out of the current block (if necessary). 344 EmitBranch(BB); 345 346 if (IsFinished && BB->use_empty()) { 347 delete BB; 348 return; 349 } 350 351 // Place the block after the current block, if possible, or else at 352 // the end of the function. 353 if (CurBB && CurBB->getParent()) 354 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 355 else 356 CurFn->getBasicBlockList().push_back(BB); 357 Builder.SetInsertPoint(BB); 358 } 359 360 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 361 // Emit a branch from the current block to the target one if this 362 // was a real block. If this was just a fall-through block after a 363 // terminator, don't emit it. 364 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 365 366 if (!CurBB || CurBB->getTerminator()) { 367 // If there is no insert point or the previous block is already 368 // terminated, don't touch it. 369 } else { 370 // Otherwise, create a fall-through branch. 371 Builder.CreateBr(Target); 372 } 373 374 Builder.ClearInsertionPoint(); 375 } 376 377 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 378 bool inserted = false; 379 for (llvm::User *u : block->users()) { 380 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 381 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 382 inserted = true; 383 break; 384 } 385 } 386 387 if (!inserted) 388 CurFn->getBasicBlockList().push_back(block); 389 390 Builder.SetInsertPoint(block); 391 } 392 393 CodeGenFunction::JumpDest 394 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 395 JumpDest &Dest = LabelMap[D]; 396 if (Dest.isValid()) return Dest; 397 398 // Create, but don't insert, the new block. 399 Dest = JumpDest(createBasicBlock(D->getName()), 400 EHScopeStack::stable_iterator::invalid(), 401 NextCleanupDestIndex++); 402 return Dest; 403 } 404 405 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 406 // Add this label to the current lexical scope if we're within any 407 // normal cleanups. Jumps "in" to this label --- when permitted by 408 // the language --- may need to be routed around such cleanups. 409 if (EHStack.hasNormalCleanups() && CurLexicalScope) 410 CurLexicalScope->addLabel(D); 411 412 JumpDest &Dest = LabelMap[D]; 413 414 // If we didn't need a forward reference to this label, just go 415 // ahead and create a destination at the current scope. 416 if (!Dest.isValid()) { 417 Dest = getJumpDestInCurrentScope(D->getName()); 418 419 // Otherwise, we need to give this label a target depth and remove 420 // it from the branch-fixups list. 421 } else { 422 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 423 Dest.setScopeDepth(EHStack.stable_begin()); 424 ResolveBranchFixups(Dest.getBlock()); 425 } 426 427 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 428 EmitBlock(Dest.getBlock()); 429 Cnt.beginRegion(Builder); 430 } 431 432 /// Change the cleanup scope of the labels in this lexical scope to 433 /// match the scope of the enclosing context. 434 void CodeGenFunction::LexicalScope::rescopeLabels() { 435 assert(!Labels.empty()); 436 EHScopeStack::stable_iterator innermostScope 437 = CGF.EHStack.getInnermostNormalCleanup(); 438 439 // Change the scope depth of all the labels. 440 for (SmallVectorImpl<const LabelDecl*>::const_iterator 441 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 442 assert(CGF.LabelMap.count(*i)); 443 JumpDest &dest = CGF.LabelMap.find(*i)->second; 444 assert(dest.getScopeDepth().isValid()); 445 assert(innermostScope.encloses(dest.getScopeDepth())); 446 dest.setScopeDepth(innermostScope); 447 } 448 449 // Reparent the labels if the new scope also has cleanups. 450 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 451 ParentScope->Labels.append(Labels.begin(), Labels.end()); 452 } 453 } 454 455 456 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 457 EmitLabel(S.getDecl()); 458 EmitStmt(S.getSubStmt()); 459 } 460 461 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 462 const Stmt *SubStmt = S.getSubStmt(); 463 switch (SubStmt->getStmtClass()) { 464 case Stmt::DoStmtClass: 465 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 466 break; 467 case Stmt::ForStmtClass: 468 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 469 break; 470 case Stmt::WhileStmtClass: 471 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 472 break; 473 case Stmt::CXXForRangeStmtClass: 474 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 475 break; 476 default: 477 EmitStmt(SubStmt); 478 } 479 } 480 481 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 482 // If this code is reachable then emit a stop point (if generating 483 // debug info). We have to do this ourselves because we are on the 484 // "simple" statement path. 485 if (HaveInsertPoint()) 486 EmitStopPoint(&S); 487 488 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 489 } 490 491 492 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 493 if (const LabelDecl *Target = S.getConstantTarget()) { 494 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 495 return; 496 } 497 498 // Ensure that we have an i8* for our PHI node. 499 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 500 Int8PtrTy, "addr"); 501 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 502 503 // Get the basic block for the indirect goto. 504 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 505 506 // The first instruction in the block has to be the PHI for the switch dest, 507 // add an entry for this branch. 508 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 509 510 EmitBranch(IndGotoBB); 511 } 512 513 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 514 // C99 6.8.4.1: The first substatement is executed if the expression compares 515 // unequal to 0. The condition must be a scalar type. 516 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 517 RegionCounter Cnt = getPGORegionCounter(&S); 518 519 if (S.getConditionVariable()) 520 EmitAutoVarDecl(*S.getConditionVariable()); 521 522 // If the condition constant folds and can be elided, try to avoid emitting 523 // the condition and the dead arm of the if/else. 524 bool CondConstant; 525 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 526 // Figure out which block (then or else) is executed. 527 const Stmt *Executed = S.getThen(); 528 const Stmt *Skipped = S.getElse(); 529 if (!CondConstant) // Condition false? 530 std::swap(Executed, Skipped); 531 532 // If the skipped block has no labels in it, just emit the executed block. 533 // This avoids emitting dead code and simplifies the CFG substantially. 534 if (!ContainsLabel(Skipped)) { 535 if (CondConstant) 536 Cnt.beginRegion(Builder); 537 if (Executed) { 538 RunCleanupsScope ExecutedScope(*this); 539 EmitStmt(Executed); 540 } 541 return; 542 } 543 } 544 545 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 546 // the conditional branch. 547 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 548 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 549 llvm::BasicBlock *ElseBlock = ContBlock; 550 if (S.getElse()) 551 ElseBlock = createBasicBlock("if.else"); 552 553 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 554 555 // Emit the 'then' code. 556 EmitBlock(ThenBlock); 557 Cnt.beginRegion(Builder); 558 { 559 RunCleanupsScope ThenScope(*this); 560 EmitStmt(S.getThen()); 561 } 562 EmitBranch(ContBlock); 563 564 // Emit the 'else' code if present. 565 if (const Stmt *Else = S.getElse()) { 566 { 567 // There is no need to emit line number for unconditional branch. 568 SuppressDebugLocation S(Builder); 569 EmitBlock(ElseBlock); 570 } 571 { 572 RunCleanupsScope ElseScope(*this); 573 EmitStmt(Else); 574 } 575 { 576 // There is no need to emit line number for unconditional branch. 577 SuppressDebugLocation S(Builder); 578 EmitBranch(ContBlock); 579 } 580 } 581 582 // Emit the continuation block for code after the if. 583 EmitBlock(ContBlock, true); 584 } 585 586 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 587 llvm::BranchInst *CondBr, 588 ArrayRef<const Attr *> Attrs) { 589 // Return if there are no hints. 590 if (Attrs.empty()) 591 return; 592 593 // Add vectorize and unroll hints to the metadata on the conditional branch. 594 SmallVector<llvm::Value *, 2> Metadata(1); 595 for (const auto *Attr : Attrs) { 596 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 597 598 // Skip non loop hint attributes 599 if (!LH) 600 continue; 601 602 LoopHintAttr::OptionType Option = LH->getOption(); 603 LoopHintAttr::LoopHintState State = LH->getState(); 604 const char *MetadataName; 605 switch (Option) { 606 case LoopHintAttr::Vectorize: 607 case LoopHintAttr::VectorizeWidth: 608 MetadataName = "llvm.loop.vectorize.width"; 609 break; 610 case LoopHintAttr::Interleave: 611 case LoopHintAttr::InterleaveCount: 612 MetadataName = "llvm.loop.interleave.count"; 613 break; 614 case LoopHintAttr::Unroll: 615 // With the unroll loop hint, a non-zero value indicates full unrolling. 616 MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable" 617 : "llvm.loop.unroll.full"; 618 break; 619 case LoopHintAttr::UnrollCount: 620 MetadataName = "llvm.loop.unroll.count"; 621 break; 622 } 623 624 Expr *ValueExpr = LH->getValue(); 625 int ValueInt = 1; 626 if (ValueExpr) { 627 llvm::APSInt ValueAPS = 628 ValueExpr->EvaluateKnownConstInt(CGM.getContext()); 629 ValueInt = static_cast<int>(ValueAPS.getSExtValue()); 630 } 631 632 llvm::Value *Value; 633 llvm::MDString *Name; 634 switch (Option) { 635 case LoopHintAttr::Vectorize: 636 case LoopHintAttr::Interleave: 637 if (State != LoopHintAttr::Disable) { 638 // FIXME: In the future I will modifiy the behavior of the metadata 639 // so we can enable/disable vectorization and interleaving separately. 640 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 641 Value = Builder.getTrue(); 642 break; 643 } 644 // Vectorization/interleaving is disabled, set width/count to 1. 645 ValueInt = 1; 646 // Fallthrough. 647 case LoopHintAttr::VectorizeWidth: 648 case LoopHintAttr::InterleaveCount: 649 case LoopHintAttr::UnrollCount: 650 Name = llvm::MDString::get(Context, MetadataName); 651 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 652 break; 653 case LoopHintAttr::Unroll: 654 Name = llvm::MDString::get(Context, MetadataName); 655 Value = nullptr; 656 break; 657 } 658 659 SmallVector<llvm::Value *, 2> OpValues; 660 OpValues.push_back(Name); 661 if (Value) 662 OpValues.push_back(Value); 663 664 // Set or overwrite metadata indicated by Name. 665 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 666 } 667 668 if (!Metadata.empty()) { 669 // Add llvm.loop MDNode to CondBr. 670 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 671 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 672 673 CondBr->setMetadata("llvm.loop", LoopID); 674 } 675 } 676 677 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 678 ArrayRef<const Attr *> WhileAttrs) { 679 RegionCounter Cnt = getPGORegionCounter(&S); 680 681 // Emit the header for the loop, which will also become 682 // the continue target. 683 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 684 EmitBlock(LoopHeader.getBlock()); 685 686 LoopStack.push(LoopHeader.getBlock()); 687 688 // Create an exit block for when the condition fails, which will 689 // also become the break target. 690 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 691 692 // Store the blocks to use for break and continue. 693 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 694 695 // C++ [stmt.while]p2: 696 // When the condition of a while statement is a declaration, the 697 // scope of the variable that is declared extends from its point 698 // of declaration (3.3.2) to the end of the while statement. 699 // [...] 700 // The object created in a condition is destroyed and created 701 // with each iteration of the loop. 702 RunCleanupsScope ConditionScope(*this); 703 704 if (S.getConditionVariable()) 705 EmitAutoVarDecl(*S.getConditionVariable()); 706 707 // Evaluate the conditional in the while header. C99 6.8.5.1: The 708 // evaluation of the controlling expression takes place before each 709 // execution of the loop body. 710 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 711 712 // while(1) is common, avoid extra exit blocks. Be sure 713 // to correctly handle break/continue though. 714 bool EmitBoolCondBranch = true; 715 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 716 if (C->isOne()) 717 EmitBoolCondBranch = false; 718 719 // As long as the condition is true, go to the loop body. 720 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 721 if (EmitBoolCondBranch) { 722 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 723 if (ConditionScope.requiresCleanups()) 724 ExitBlock = createBasicBlock("while.exit"); 725 llvm::BranchInst *CondBr = 726 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 727 PGO.createLoopWeights(S.getCond(), Cnt)); 728 729 if (ExitBlock != LoopExit.getBlock()) { 730 EmitBlock(ExitBlock); 731 EmitBranchThroughCleanup(LoopExit); 732 } 733 734 // Attach metadata to loop body conditional branch. 735 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 736 } 737 738 // Emit the loop body. We have to emit this in a cleanup scope 739 // because it might be a singleton DeclStmt. 740 { 741 RunCleanupsScope BodyScope(*this); 742 EmitBlock(LoopBody); 743 Cnt.beginRegion(Builder); 744 EmitStmt(S.getBody()); 745 } 746 747 BreakContinueStack.pop_back(); 748 749 // Immediately force cleanup. 750 ConditionScope.ForceCleanup(); 751 752 EmitStopPoint(&S); 753 // Branch to the loop header again. 754 EmitBranch(LoopHeader.getBlock()); 755 756 LoopStack.pop(); 757 758 // Emit the exit block. 759 EmitBlock(LoopExit.getBlock(), true); 760 761 // The LoopHeader typically is just a branch if we skipped emitting 762 // a branch, try to erase it. 763 if (!EmitBoolCondBranch) 764 SimplifyForwardingBlocks(LoopHeader.getBlock()); 765 } 766 767 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 768 ArrayRef<const Attr *> DoAttrs) { 769 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 770 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 771 772 RegionCounter Cnt = getPGORegionCounter(&S); 773 774 // Store the blocks to use for break and continue. 775 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 776 777 // Emit the body of the loop. 778 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 779 780 LoopStack.push(LoopBody); 781 782 EmitBlockWithFallThrough(LoopBody, Cnt); 783 { 784 RunCleanupsScope BodyScope(*this); 785 EmitStmt(S.getBody()); 786 } 787 788 EmitBlock(LoopCond.getBlock()); 789 790 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 791 // after each execution of the loop body." 792 793 // Evaluate the conditional in the while header. 794 // C99 6.8.5p2/p4: The first substatement is executed if the expression 795 // compares unequal to 0. The condition must be a scalar type. 796 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 797 798 BreakContinueStack.pop_back(); 799 800 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 801 // to correctly handle break/continue though. 802 bool EmitBoolCondBranch = true; 803 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 804 if (C->isZero()) 805 EmitBoolCondBranch = false; 806 807 // As long as the condition is true, iterate the loop. 808 if (EmitBoolCondBranch) { 809 llvm::BranchInst *CondBr = 810 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 811 PGO.createLoopWeights(S.getCond(), Cnt)); 812 813 // Attach metadata to loop body conditional branch. 814 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 815 } 816 817 LoopStack.pop(); 818 819 // Emit the exit block. 820 EmitBlock(LoopExit.getBlock()); 821 822 // The DoCond block typically is just a branch if we skipped 823 // emitting a branch, try to erase it. 824 if (!EmitBoolCondBranch) 825 SimplifyForwardingBlocks(LoopCond.getBlock()); 826 } 827 828 void CodeGenFunction::EmitForStmt(const ForStmt &S, 829 ArrayRef<const Attr *> ForAttrs) { 830 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 831 832 LexicalScope ForScope(*this, S.getSourceRange()); 833 834 // Evaluate the first part before the loop. 835 if (S.getInit()) 836 EmitStmt(S.getInit()); 837 838 RegionCounter Cnt = getPGORegionCounter(&S); 839 840 // Start the loop with a block that tests the condition. 841 // If there's an increment, the continue scope will be overwritten 842 // later. 843 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 844 llvm::BasicBlock *CondBlock = Continue.getBlock(); 845 EmitBlock(CondBlock); 846 847 LoopStack.push(CondBlock); 848 849 // If the for loop doesn't have an increment we can just use the 850 // condition as the continue block. Otherwise we'll need to create 851 // a block for it (in the current scope, i.e. in the scope of the 852 // condition), and that we will become our continue block. 853 if (S.getInc()) 854 Continue = getJumpDestInCurrentScope("for.inc"); 855 856 // Store the blocks to use for break and continue. 857 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 858 859 // Create a cleanup scope for the condition variable cleanups. 860 LexicalScope ConditionScope(*this, S.getSourceRange()); 861 862 if (S.getCond()) { 863 // If the for statement has a condition scope, emit the local variable 864 // declaration. 865 if (S.getConditionVariable()) { 866 EmitAutoVarDecl(*S.getConditionVariable()); 867 } 868 869 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 870 // If there are any cleanups between here and the loop-exit scope, 871 // create a block to stage a loop exit along. 872 if (ForScope.requiresCleanups()) 873 ExitBlock = createBasicBlock("for.cond.cleanup"); 874 875 // As long as the condition is true, iterate the loop. 876 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 877 878 // C99 6.8.5p2/p4: The first substatement is executed if the expression 879 // compares unequal to 0. The condition must be a scalar type. 880 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 881 llvm::BranchInst *CondBr = 882 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 883 PGO.createLoopWeights(S.getCond(), Cnt)); 884 885 // Attach metadata to loop body conditional branch. 886 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 887 888 if (ExitBlock != LoopExit.getBlock()) { 889 EmitBlock(ExitBlock); 890 EmitBranchThroughCleanup(LoopExit); 891 } 892 893 EmitBlock(ForBody); 894 } else { 895 // Treat it as a non-zero constant. Don't even create a new block for the 896 // body, just fall into it. 897 } 898 Cnt.beginRegion(Builder); 899 900 { 901 // Create a separate cleanup scope for the body, in case it is not 902 // a compound statement. 903 RunCleanupsScope BodyScope(*this); 904 EmitStmt(S.getBody()); 905 } 906 907 // If there is an increment, emit it next. 908 if (S.getInc()) { 909 EmitBlock(Continue.getBlock()); 910 EmitStmt(S.getInc()); 911 } 912 913 BreakContinueStack.pop_back(); 914 915 ConditionScope.ForceCleanup(); 916 917 EmitStopPoint(&S); 918 EmitBranch(CondBlock); 919 920 ForScope.ForceCleanup(); 921 922 LoopStack.pop(); 923 924 // Emit the fall-through block. 925 EmitBlock(LoopExit.getBlock(), true); 926 } 927 928 void 929 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 930 ArrayRef<const Attr *> ForAttrs) { 931 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 932 933 LexicalScope ForScope(*this, S.getSourceRange()); 934 935 // Evaluate the first pieces before the loop. 936 EmitStmt(S.getRangeStmt()); 937 EmitStmt(S.getBeginEndStmt()); 938 939 RegionCounter Cnt = getPGORegionCounter(&S); 940 941 // Start the loop with a block that tests the condition. 942 // If there's an increment, the continue scope will be overwritten 943 // later. 944 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 945 EmitBlock(CondBlock); 946 947 LoopStack.push(CondBlock); 948 949 // If there are any cleanups between here and the loop-exit scope, 950 // create a block to stage a loop exit along. 951 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 952 if (ForScope.requiresCleanups()) 953 ExitBlock = createBasicBlock("for.cond.cleanup"); 954 955 // The loop body, consisting of the specified body and the loop variable. 956 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 957 958 // The body is executed if the expression, contextually converted 959 // to bool, is true. 960 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 961 llvm::BranchInst *CondBr = Builder.CreateCondBr( 962 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 963 964 // Attach metadata to loop body conditional branch. 965 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 966 967 if (ExitBlock != LoopExit.getBlock()) { 968 EmitBlock(ExitBlock); 969 EmitBranchThroughCleanup(LoopExit); 970 } 971 972 EmitBlock(ForBody); 973 Cnt.beginRegion(Builder); 974 975 // Create a block for the increment. In case of a 'continue', we jump there. 976 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 977 978 // Store the blocks to use for break and continue. 979 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 980 981 { 982 // Create a separate cleanup scope for the loop variable and body. 983 LexicalScope BodyScope(*this, S.getSourceRange()); 984 EmitStmt(S.getLoopVarStmt()); 985 EmitStmt(S.getBody()); 986 } 987 988 EmitStopPoint(&S); 989 // If there is an increment, emit it next. 990 EmitBlock(Continue.getBlock()); 991 EmitStmt(S.getInc()); 992 993 BreakContinueStack.pop_back(); 994 995 EmitBranch(CondBlock); 996 997 ForScope.ForceCleanup(); 998 999 LoopStack.pop(); 1000 1001 // Emit the fall-through block. 1002 EmitBlock(LoopExit.getBlock(), true); 1003 } 1004 1005 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1006 if (RV.isScalar()) { 1007 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1008 } else if (RV.isAggregate()) { 1009 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 1010 } else { 1011 EmitStoreOfComplex(RV.getComplexVal(), 1012 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 1013 /*init*/ true); 1014 } 1015 EmitBranchThroughCleanup(ReturnBlock); 1016 } 1017 1018 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1019 /// if the function returns void, or may be missing one if the function returns 1020 /// non-void. Fun stuff :). 1021 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1022 // Emit the result value, even if unused, to evalute the side effects. 1023 const Expr *RV = S.getRetValue(); 1024 1025 // Treat block literals in a return expression as if they appeared 1026 // in their own scope. This permits a small, easily-implemented 1027 // exception to our over-conservative rules about not jumping to 1028 // statements following block literals with non-trivial cleanups. 1029 RunCleanupsScope cleanupScope(*this); 1030 if (const ExprWithCleanups *cleanups = 1031 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1032 enterFullExpression(cleanups); 1033 RV = cleanups->getSubExpr(); 1034 } 1035 1036 // FIXME: Clean this up by using an LValue for ReturnTemp, 1037 // EmitStoreThroughLValue, and EmitAnyExpr. 1038 if (getLangOpts().ElideConstructors && 1039 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1040 // Apply the named return value optimization for this return statement, 1041 // which means doing nothing: the appropriate result has already been 1042 // constructed into the NRVO variable. 1043 1044 // If there is an NRVO flag for this variable, set it to 1 into indicate 1045 // that the cleanup code should not destroy the variable. 1046 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1047 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1048 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1049 // Make sure not to return anything, but evaluate the expression 1050 // for side effects. 1051 if (RV) 1052 EmitAnyExpr(RV); 1053 } else if (!RV) { 1054 // Do nothing (return value is left uninitialized) 1055 } else if (FnRetTy->isReferenceType()) { 1056 // If this function returns a reference, take the address of the expression 1057 // rather than the value. 1058 RValue Result = EmitReferenceBindingToExpr(RV); 1059 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1060 } else { 1061 switch (getEvaluationKind(RV->getType())) { 1062 case TEK_Scalar: 1063 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1064 break; 1065 case TEK_Complex: 1066 EmitComplexExprIntoLValue(RV, 1067 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1068 /*isInit*/ true); 1069 break; 1070 case TEK_Aggregate: { 1071 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1072 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1073 Qualifiers(), 1074 AggValueSlot::IsDestructed, 1075 AggValueSlot::DoesNotNeedGCBarriers, 1076 AggValueSlot::IsNotAliased)); 1077 break; 1078 } 1079 } 1080 } 1081 1082 ++NumReturnExprs; 1083 if (!RV || RV->isEvaluatable(getContext())) 1084 ++NumSimpleReturnExprs; 1085 1086 cleanupScope.ForceCleanup(); 1087 EmitBranchThroughCleanup(ReturnBlock); 1088 } 1089 1090 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1091 // As long as debug info is modeled with instructions, we have to ensure we 1092 // have a place to insert here and write the stop point here. 1093 if (HaveInsertPoint()) 1094 EmitStopPoint(&S); 1095 1096 for (const auto *I : S.decls()) 1097 EmitDecl(*I); 1098 } 1099 1100 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1101 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1102 1103 // If this code is reachable then emit a stop point (if generating 1104 // debug info). We have to do this ourselves because we are on the 1105 // "simple" statement path. 1106 if (HaveInsertPoint()) 1107 EmitStopPoint(&S); 1108 1109 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1110 } 1111 1112 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1113 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1114 1115 // If this code is reachable then emit a stop point (if generating 1116 // debug info). We have to do this ourselves because we are on the 1117 // "simple" statement path. 1118 if (HaveInsertPoint()) 1119 EmitStopPoint(&S); 1120 1121 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1122 } 1123 1124 /// EmitCaseStmtRange - If case statement range is not too big then 1125 /// add multiple cases to switch instruction, one for each value within 1126 /// the range. If range is too big then emit "if" condition check. 1127 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1128 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1129 1130 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1131 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1132 1133 RegionCounter CaseCnt = getPGORegionCounter(&S); 1134 1135 // Emit the code for this case. We do this first to make sure it is 1136 // properly chained from our predecessor before generating the 1137 // switch machinery to enter this block. 1138 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1139 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1140 EmitStmt(S.getSubStmt()); 1141 1142 // If range is empty, do nothing. 1143 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1144 return; 1145 1146 llvm::APInt Range = RHS - LHS; 1147 // FIXME: parameters such as this should not be hardcoded. 1148 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1149 // Range is small enough to add multiple switch instruction cases. 1150 uint64_t Total = CaseCnt.getCount(); 1151 unsigned NCases = Range.getZExtValue() + 1; 1152 // We only have one region counter for the entire set of cases here, so we 1153 // need to divide the weights evenly between the generated cases, ensuring 1154 // that the total weight is preserved. E.g., a weight of 5 over three cases 1155 // will be distributed as weights of 2, 2, and 1. 1156 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1157 for (unsigned I = 0; I != NCases; ++I) { 1158 if (SwitchWeights) 1159 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1160 if (Rem) 1161 Rem--; 1162 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1163 LHS++; 1164 } 1165 return; 1166 } 1167 1168 // The range is too big. Emit "if" condition into a new block, 1169 // making sure to save and restore the current insertion point. 1170 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1171 1172 // Push this test onto the chain of range checks (which terminates 1173 // in the default basic block). The switch's default will be changed 1174 // to the top of this chain after switch emission is complete. 1175 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1176 CaseRangeBlock = createBasicBlock("sw.caserange"); 1177 1178 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1179 Builder.SetInsertPoint(CaseRangeBlock); 1180 1181 // Emit range check. 1182 llvm::Value *Diff = 1183 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1184 llvm::Value *Cond = 1185 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1186 1187 llvm::MDNode *Weights = nullptr; 1188 if (SwitchWeights) { 1189 uint64_t ThisCount = CaseCnt.getCount(); 1190 uint64_t DefaultCount = (*SwitchWeights)[0]; 1191 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1192 1193 // Since we're chaining the switch default through each large case range, we 1194 // need to update the weight for the default, ie, the first case, to include 1195 // this case. 1196 (*SwitchWeights)[0] += ThisCount; 1197 } 1198 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1199 1200 // Restore the appropriate insertion point. 1201 if (RestoreBB) 1202 Builder.SetInsertPoint(RestoreBB); 1203 else 1204 Builder.ClearInsertionPoint(); 1205 } 1206 1207 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1208 // If there is no enclosing switch instance that we're aware of, then this 1209 // case statement and its block can be elided. This situation only happens 1210 // when we've constant-folded the switch, are emitting the constant case, 1211 // and part of the constant case includes another case statement. For 1212 // instance: switch (4) { case 4: do { case 5: } while (1); } 1213 if (!SwitchInsn) { 1214 EmitStmt(S.getSubStmt()); 1215 return; 1216 } 1217 1218 // Handle case ranges. 1219 if (S.getRHS()) { 1220 EmitCaseStmtRange(S); 1221 return; 1222 } 1223 1224 RegionCounter CaseCnt = getPGORegionCounter(&S); 1225 llvm::ConstantInt *CaseVal = 1226 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1227 1228 // If the body of the case is just a 'break', try to not emit an empty block. 1229 // If we're profiling or we're not optimizing, leave the block in for better 1230 // debug and coverage analysis. 1231 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1232 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1233 isa<BreakStmt>(S.getSubStmt())) { 1234 JumpDest Block = BreakContinueStack.back().BreakBlock; 1235 1236 // Only do this optimization if there are no cleanups that need emitting. 1237 if (isObviouslyBranchWithoutCleanups(Block)) { 1238 if (SwitchWeights) 1239 SwitchWeights->push_back(CaseCnt.getCount()); 1240 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1241 1242 // If there was a fallthrough into this case, make sure to redirect it to 1243 // the end of the switch as well. 1244 if (Builder.GetInsertBlock()) { 1245 Builder.CreateBr(Block.getBlock()); 1246 Builder.ClearInsertionPoint(); 1247 } 1248 return; 1249 } 1250 } 1251 1252 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1253 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1254 if (SwitchWeights) 1255 SwitchWeights->push_back(CaseCnt.getCount()); 1256 SwitchInsn->addCase(CaseVal, CaseDest); 1257 1258 // Recursively emitting the statement is acceptable, but is not wonderful for 1259 // code where we have many case statements nested together, i.e.: 1260 // case 1: 1261 // case 2: 1262 // case 3: etc. 1263 // Handling this recursively will create a new block for each case statement 1264 // that falls through to the next case which is IR intensive. It also causes 1265 // deep recursion which can run into stack depth limitations. Handle 1266 // sequential non-range case statements specially. 1267 const CaseStmt *CurCase = &S; 1268 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1269 1270 // Otherwise, iteratively add consecutive cases to this switch stmt. 1271 while (NextCase && NextCase->getRHS() == nullptr) { 1272 CurCase = NextCase; 1273 llvm::ConstantInt *CaseVal = 1274 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1275 1276 CaseCnt = getPGORegionCounter(NextCase); 1277 if (SwitchWeights) 1278 SwitchWeights->push_back(CaseCnt.getCount()); 1279 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1280 CaseDest = createBasicBlock("sw.bb"); 1281 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1282 } 1283 1284 SwitchInsn->addCase(CaseVal, CaseDest); 1285 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1286 } 1287 1288 // Normal default recursion for non-cases. 1289 EmitStmt(CurCase->getSubStmt()); 1290 } 1291 1292 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1293 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1294 assert(DefaultBlock->empty() && 1295 "EmitDefaultStmt: Default block already defined?"); 1296 1297 RegionCounter Cnt = getPGORegionCounter(&S); 1298 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1299 1300 EmitStmt(S.getSubStmt()); 1301 } 1302 1303 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1304 /// constant value that is being switched on, see if we can dead code eliminate 1305 /// the body of the switch to a simple series of statements to emit. Basically, 1306 /// on a switch (5) we want to find these statements: 1307 /// case 5: 1308 /// printf(...); <-- 1309 /// ++i; <-- 1310 /// break; 1311 /// 1312 /// and add them to the ResultStmts vector. If it is unsafe to do this 1313 /// transformation (for example, one of the elided statements contains a label 1314 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1315 /// should include statements after it (e.g. the printf() line is a substmt of 1316 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1317 /// statement, then return CSFC_Success. 1318 /// 1319 /// If Case is non-null, then we are looking for the specified case, checking 1320 /// that nothing we jump over contains labels. If Case is null, then we found 1321 /// the case and are looking for the break. 1322 /// 1323 /// If the recursive walk actually finds our Case, then we set FoundCase to 1324 /// true. 1325 /// 1326 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1327 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1328 const SwitchCase *Case, 1329 bool &FoundCase, 1330 SmallVectorImpl<const Stmt*> &ResultStmts) { 1331 // If this is a null statement, just succeed. 1332 if (!S) 1333 return Case ? CSFC_Success : CSFC_FallThrough; 1334 1335 // If this is the switchcase (case 4: or default) that we're looking for, then 1336 // we're in business. Just add the substatement. 1337 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1338 if (S == Case) { 1339 FoundCase = true; 1340 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1341 ResultStmts); 1342 } 1343 1344 // Otherwise, this is some other case or default statement, just ignore it. 1345 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1346 ResultStmts); 1347 } 1348 1349 // If we are in the live part of the code and we found our break statement, 1350 // return a success! 1351 if (!Case && isa<BreakStmt>(S)) 1352 return CSFC_Success; 1353 1354 // If this is a switch statement, then it might contain the SwitchCase, the 1355 // break, or neither. 1356 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1357 // Handle this as two cases: we might be looking for the SwitchCase (if so 1358 // the skipped statements must be skippable) or we might already have it. 1359 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1360 if (Case) { 1361 // Keep track of whether we see a skipped declaration. The code could be 1362 // using the declaration even if it is skipped, so we can't optimize out 1363 // the decl if the kept statements might refer to it. 1364 bool HadSkippedDecl = false; 1365 1366 // If we're looking for the case, just see if we can skip each of the 1367 // substatements. 1368 for (; Case && I != E; ++I) { 1369 HadSkippedDecl |= isa<DeclStmt>(*I); 1370 1371 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1372 case CSFC_Failure: return CSFC_Failure; 1373 case CSFC_Success: 1374 // A successful result means that either 1) that the statement doesn't 1375 // have the case and is skippable, or 2) does contain the case value 1376 // and also contains the break to exit the switch. In the later case, 1377 // we just verify the rest of the statements are elidable. 1378 if (FoundCase) { 1379 // If we found the case and skipped declarations, we can't do the 1380 // optimization. 1381 if (HadSkippedDecl) 1382 return CSFC_Failure; 1383 1384 for (++I; I != E; ++I) 1385 if (CodeGenFunction::ContainsLabel(*I, true)) 1386 return CSFC_Failure; 1387 return CSFC_Success; 1388 } 1389 break; 1390 case CSFC_FallThrough: 1391 // If we have a fallthrough condition, then we must have found the 1392 // case started to include statements. Consider the rest of the 1393 // statements in the compound statement as candidates for inclusion. 1394 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1395 // We recursively found Case, so we're not looking for it anymore. 1396 Case = nullptr; 1397 1398 // If we found the case and skipped declarations, we can't do the 1399 // optimization. 1400 if (HadSkippedDecl) 1401 return CSFC_Failure; 1402 break; 1403 } 1404 } 1405 } 1406 1407 // If we have statements in our range, then we know that the statements are 1408 // live and need to be added to the set of statements we're tracking. 1409 for (; I != E; ++I) { 1410 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1411 case CSFC_Failure: return CSFC_Failure; 1412 case CSFC_FallThrough: 1413 // A fallthrough result means that the statement was simple and just 1414 // included in ResultStmt, keep adding them afterwards. 1415 break; 1416 case CSFC_Success: 1417 // A successful result means that we found the break statement and 1418 // stopped statement inclusion. We just ensure that any leftover stmts 1419 // are skippable and return success ourselves. 1420 for (++I; I != E; ++I) 1421 if (CodeGenFunction::ContainsLabel(*I, true)) 1422 return CSFC_Failure; 1423 return CSFC_Success; 1424 } 1425 } 1426 1427 return Case ? CSFC_Success : CSFC_FallThrough; 1428 } 1429 1430 // Okay, this is some other statement that we don't handle explicitly, like a 1431 // for statement or increment etc. If we are skipping over this statement, 1432 // just verify it doesn't have labels, which would make it invalid to elide. 1433 if (Case) { 1434 if (CodeGenFunction::ContainsLabel(S, true)) 1435 return CSFC_Failure; 1436 return CSFC_Success; 1437 } 1438 1439 // Otherwise, we want to include this statement. Everything is cool with that 1440 // so long as it doesn't contain a break out of the switch we're in. 1441 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1442 1443 // Otherwise, everything is great. Include the statement and tell the caller 1444 // that we fall through and include the next statement as well. 1445 ResultStmts.push_back(S); 1446 return CSFC_FallThrough; 1447 } 1448 1449 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1450 /// then invoke CollectStatementsForCase to find the list of statements to emit 1451 /// for a switch on constant. See the comment above CollectStatementsForCase 1452 /// for more details. 1453 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1454 const llvm::APSInt &ConstantCondValue, 1455 SmallVectorImpl<const Stmt*> &ResultStmts, 1456 ASTContext &C, 1457 const SwitchCase *&ResultCase) { 1458 // First step, find the switch case that is being branched to. We can do this 1459 // efficiently by scanning the SwitchCase list. 1460 const SwitchCase *Case = S.getSwitchCaseList(); 1461 const DefaultStmt *DefaultCase = nullptr; 1462 1463 for (; Case; Case = Case->getNextSwitchCase()) { 1464 // It's either a default or case. Just remember the default statement in 1465 // case we're not jumping to any numbered cases. 1466 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1467 DefaultCase = DS; 1468 continue; 1469 } 1470 1471 // Check to see if this case is the one we're looking for. 1472 const CaseStmt *CS = cast<CaseStmt>(Case); 1473 // Don't handle case ranges yet. 1474 if (CS->getRHS()) return false; 1475 1476 // If we found our case, remember it as 'case'. 1477 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1478 break; 1479 } 1480 1481 // If we didn't find a matching case, we use a default if it exists, or we 1482 // elide the whole switch body! 1483 if (!Case) { 1484 // It is safe to elide the body of the switch if it doesn't contain labels 1485 // etc. If it is safe, return successfully with an empty ResultStmts list. 1486 if (!DefaultCase) 1487 return !CodeGenFunction::ContainsLabel(&S); 1488 Case = DefaultCase; 1489 } 1490 1491 // Ok, we know which case is being jumped to, try to collect all the 1492 // statements that follow it. This can fail for a variety of reasons. Also, 1493 // check to see that the recursive walk actually found our case statement. 1494 // Insane cases like this can fail to find it in the recursive walk since we 1495 // don't handle every stmt kind: 1496 // switch (4) { 1497 // while (1) { 1498 // case 4: ... 1499 bool FoundCase = false; 1500 ResultCase = Case; 1501 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1502 ResultStmts) != CSFC_Failure && 1503 FoundCase; 1504 } 1505 1506 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1507 // Handle nested switch statements. 1508 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1509 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1510 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1511 1512 // See if we can constant fold the condition of the switch and therefore only 1513 // emit the live case statement (if any) of the switch. 1514 llvm::APSInt ConstantCondValue; 1515 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1516 SmallVector<const Stmt*, 4> CaseStmts; 1517 const SwitchCase *Case = nullptr; 1518 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1519 getContext(), Case)) { 1520 if (Case) { 1521 RegionCounter CaseCnt = getPGORegionCounter(Case); 1522 CaseCnt.beginRegion(Builder); 1523 } 1524 RunCleanupsScope ExecutedScope(*this); 1525 1526 // Emit the condition variable if needed inside the entire cleanup scope 1527 // used by this special case for constant folded switches. 1528 if (S.getConditionVariable()) 1529 EmitAutoVarDecl(*S.getConditionVariable()); 1530 1531 // At this point, we are no longer "within" a switch instance, so 1532 // we can temporarily enforce this to ensure that any embedded case 1533 // statements are not emitted. 1534 SwitchInsn = nullptr; 1535 1536 // Okay, we can dead code eliminate everything except this case. Emit the 1537 // specified series of statements and we're good. 1538 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1539 EmitStmt(CaseStmts[i]); 1540 RegionCounter ExitCnt = getPGORegionCounter(&S); 1541 ExitCnt.beginRegion(Builder); 1542 1543 // Now we want to restore the saved switch instance so that nested 1544 // switches continue to function properly 1545 SwitchInsn = SavedSwitchInsn; 1546 1547 return; 1548 } 1549 } 1550 1551 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1552 1553 RunCleanupsScope ConditionScope(*this); 1554 if (S.getConditionVariable()) 1555 EmitAutoVarDecl(*S.getConditionVariable()); 1556 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1557 1558 // Create basic block to hold stuff that comes after switch 1559 // statement. We also need to create a default block now so that 1560 // explicit case ranges tests can have a place to jump to on 1561 // failure. 1562 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1563 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1564 if (PGO.haveRegionCounts()) { 1565 // Walk the SwitchCase list to find how many there are. 1566 uint64_t DefaultCount = 0; 1567 unsigned NumCases = 0; 1568 for (const SwitchCase *Case = S.getSwitchCaseList(); 1569 Case; 1570 Case = Case->getNextSwitchCase()) { 1571 if (isa<DefaultStmt>(Case)) 1572 DefaultCount = getPGORegionCounter(Case).getCount(); 1573 NumCases += 1; 1574 } 1575 SwitchWeights = new SmallVector<uint64_t, 16>(); 1576 SwitchWeights->reserve(NumCases); 1577 // The default needs to be first. We store the edge count, so we already 1578 // know the right weight. 1579 SwitchWeights->push_back(DefaultCount); 1580 } 1581 CaseRangeBlock = DefaultBlock; 1582 1583 // Clear the insertion point to indicate we are in unreachable code. 1584 Builder.ClearInsertionPoint(); 1585 1586 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1587 // then reuse last ContinueBlock. 1588 JumpDest OuterContinue; 1589 if (!BreakContinueStack.empty()) 1590 OuterContinue = BreakContinueStack.back().ContinueBlock; 1591 1592 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1593 1594 // Emit switch body. 1595 EmitStmt(S.getBody()); 1596 1597 BreakContinueStack.pop_back(); 1598 1599 // Update the default block in case explicit case range tests have 1600 // been chained on top. 1601 SwitchInsn->setDefaultDest(CaseRangeBlock); 1602 1603 // If a default was never emitted: 1604 if (!DefaultBlock->getParent()) { 1605 // If we have cleanups, emit the default block so that there's a 1606 // place to jump through the cleanups from. 1607 if (ConditionScope.requiresCleanups()) { 1608 EmitBlock(DefaultBlock); 1609 1610 // Otherwise, just forward the default block to the switch end. 1611 } else { 1612 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1613 delete DefaultBlock; 1614 } 1615 } 1616 1617 ConditionScope.ForceCleanup(); 1618 1619 // Emit continuation. 1620 EmitBlock(SwitchExit.getBlock(), true); 1621 RegionCounter ExitCnt = getPGORegionCounter(&S); 1622 ExitCnt.beginRegion(Builder); 1623 1624 if (SwitchWeights) { 1625 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1626 "switch weights do not match switch cases"); 1627 // If there's only one jump destination there's no sense weighting it. 1628 if (SwitchWeights->size() > 1) 1629 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1630 PGO.createBranchWeights(*SwitchWeights)); 1631 delete SwitchWeights; 1632 } 1633 SwitchInsn = SavedSwitchInsn; 1634 SwitchWeights = SavedSwitchWeights; 1635 CaseRangeBlock = SavedCRBlock; 1636 } 1637 1638 static std::string 1639 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1640 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1641 std::string Result; 1642 1643 while (*Constraint) { 1644 switch (*Constraint) { 1645 default: 1646 Result += Target.convertConstraint(Constraint); 1647 break; 1648 // Ignore these 1649 case '*': 1650 case '?': 1651 case '!': 1652 case '=': // Will see this and the following in mult-alt constraints. 1653 case '+': 1654 break; 1655 case '#': // Ignore the rest of the constraint alternative. 1656 while (Constraint[1] && Constraint[1] != ',') 1657 Constraint++; 1658 break; 1659 case ',': 1660 Result += "|"; 1661 break; 1662 case 'g': 1663 Result += "imr"; 1664 break; 1665 case '[': { 1666 assert(OutCons && 1667 "Must pass output names to constraints with a symbolic name"); 1668 unsigned Index; 1669 bool result = Target.resolveSymbolicName(Constraint, 1670 &(*OutCons)[0], 1671 OutCons->size(), Index); 1672 assert(result && "Could not resolve symbolic name"); (void)result; 1673 Result += llvm::utostr(Index); 1674 break; 1675 } 1676 } 1677 1678 Constraint++; 1679 } 1680 1681 return Result; 1682 } 1683 1684 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1685 /// as using a particular register add that as a constraint that will be used 1686 /// in this asm stmt. 1687 static std::string 1688 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1689 const TargetInfo &Target, CodeGenModule &CGM, 1690 const AsmStmt &Stmt) { 1691 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1692 if (!AsmDeclRef) 1693 return Constraint; 1694 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1695 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1696 if (!Variable) 1697 return Constraint; 1698 if (Variable->getStorageClass() != SC_Register) 1699 return Constraint; 1700 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1701 if (!Attr) 1702 return Constraint; 1703 StringRef Register = Attr->getLabel(); 1704 assert(Target.isValidGCCRegisterName(Register)); 1705 // We're using validateOutputConstraint here because we only care if 1706 // this is a register constraint. 1707 TargetInfo::ConstraintInfo Info(Constraint, ""); 1708 if (Target.validateOutputConstraint(Info) && 1709 !Info.allowsRegister()) { 1710 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1711 return Constraint; 1712 } 1713 // Canonicalize the register here before returning it. 1714 Register = Target.getNormalizedGCCRegisterName(Register); 1715 return "{" + Register.str() + "}"; 1716 } 1717 1718 llvm::Value* 1719 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1720 LValue InputValue, QualType InputType, 1721 std::string &ConstraintStr, 1722 SourceLocation Loc) { 1723 llvm::Value *Arg; 1724 if (Info.allowsRegister() || !Info.allowsMemory()) { 1725 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1726 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1727 } else { 1728 llvm::Type *Ty = ConvertType(InputType); 1729 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1730 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1731 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1732 Ty = llvm::PointerType::getUnqual(Ty); 1733 1734 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1735 Ty)); 1736 } else { 1737 Arg = InputValue.getAddress(); 1738 ConstraintStr += '*'; 1739 } 1740 } 1741 } else { 1742 Arg = InputValue.getAddress(); 1743 ConstraintStr += '*'; 1744 } 1745 1746 return Arg; 1747 } 1748 1749 llvm::Value* CodeGenFunction::EmitAsmInput( 1750 const TargetInfo::ConstraintInfo &Info, 1751 const Expr *InputExpr, 1752 std::string &ConstraintStr) { 1753 if (Info.allowsRegister() || !Info.allowsMemory()) 1754 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1755 return EmitScalarExpr(InputExpr); 1756 1757 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1758 LValue Dest = EmitLValue(InputExpr); 1759 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1760 InputExpr->getExprLoc()); 1761 } 1762 1763 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1764 /// asm call instruction. The !srcloc MDNode contains a list of constant 1765 /// integers which are the source locations of the start of each line in the 1766 /// asm. 1767 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1768 CodeGenFunction &CGF) { 1769 SmallVector<llvm::Value *, 8> Locs; 1770 // Add the location of the first line to the MDNode. 1771 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1772 Str->getLocStart().getRawEncoding())); 1773 StringRef StrVal = Str->getString(); 1774 if (!StrVal.empty()) { 1775 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1776 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1777 1778 // Add the location of the start of each subsequent line of the asm to the 1779 // MDNode. 1780 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1781 if (StrVal[i] != '\n') continue; 1782 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1783 CGF.getTarget()); 1784 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1785 LineLoc.getRawEncoding())); 1786 } 1787 } 1788 1789 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1790 } 1791 1792 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1793 // Assemble the final asm string. 1794 std::string AsmString = S.generateAsmString(getContext()); 1795 1796 // Get all the output and input constraints together. 1797 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1798 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1799 1800 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1801 StringRef Name; 1802 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1803 Name = GAS->getOutputName(i); 1804 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1805 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1806 assert(IsValid && "Failed to parse output constraint"); 1807 OutputConstraintInfos.push_back(Info); 1808 } 1809 1810 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1811 StringRef Name; 1812 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1813 Name = GAS->getInputName(i); 1814 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1815 bool IsValid = 1816 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1817 S.getNumOutputs(), Info); 1818 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1819 InputConstraintInfos.push_back(Info); 1820 } 1821 1822 std::string Constraints; 1823 1824 std::vector<LValue> ResultRegDests; 1825 std::vector<QualType> ResultRegQualTys; 1826 std::vector<llvm::Type *> ResultRegTypes; 1827 std::vector<llvm::Type *> ResultTruncRegTypes; 1828 std::vector<llvm::Type *> ArgTypes; 1829 std::vector<llvm::Value*> Args; 1830 1831 // Keep track of inout constraints. 1832 std::string InOutConstraints; 1833 std::vector<llvm::Value*> InOutArgs; 1834 std::vector<llvm::Type*> InOutArgTypes; 1835 1836 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1837 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1838 1839 // Simplify the output constraint. 1840 std::string OutputConstraint(S.getOutputConstraint(i)); 1841 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1842 getTarget()); 1843 1844 const Expr *OutExpr = S.getOutputExpr(i); 1845 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1846 1847 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1848 getTarget(), CGM, S); 1849 1850 LValue Dest = EmitLValue(OutExpr); 1851 if (!Constraints.empty()) 1852 Constraints += ','; 1853 1854 // If this is a register output, then make the inline asm return it 1855 // by-value. If this is a memory result, return the value by-reference. 1856 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1857 Constraints += "=" + OutputConstraint; 1858 ResultRegQualTys.push_back(OutExpr->getType()); 1859 ResultRegDests.push_back(Dest); 1860 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1861 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1862 1863 // If this output is tied to an input, and if the input is larger, then 1864 // we need to set the actual result type of the inline asm node to be the 1865 // same as the input type. 1866 if (Info.hasMatchingInput()) { 1867 unsigned InputNo; 1868 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1869 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1870 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1871 break; 1872 } 1873 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1874 1875 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1876 QualType OutputType = OutExpr->getType(); 1877 1878 uint64_t InputSize = getContext().getTypeSize(InputTy); 1879 if (getContext().getTypeSize(OutputType) < InputSize) { 1880 // Form the asm to return the value as a larger integer or fp type. 1881 ResultRegTypes.back() = ConvertType(InputTy); 1882 } 1883 } 1884 if (llvm::Type* AdjTy = 1885 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1886 ResultRegTypes.back())) 1887 ResultRegTypes.back() = AdjTy; 1888 else { 1889 CGM.getDiags().Report(S.getAsmLoc(), 1890 diag::err_asm_invalid_type_in_input) 1891 << OutExpr->getType() << OutputConstraint; 1892 } 1893 } else { 1894 ArgTypes.push_back(Dest.getAddress()->getType()); 1895 Args.push_back(Dest.getAddress()); 1896 Constraints += "=*"; 1897 Constraints += OutputConstraint; 1898 } 1899 1900 if (Info.isReadWrite()) { 1901 InOutConstraints += ','; 1902 1903 const Expr *InputExpr = S.getOutputExpr(i); 1904 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1905 InOutConstraints, 1906 InputExpr->getExprLoc()); 1907 1908 if (llvm::Type* AdjTy = 1909 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1910 Arg->getType())) 1911 Arg = Builder.CreateBitCast(Arg, AdjTy); 1912 1913 if (Info.allowsRegister()) 1914 InOutConstraints += llvm::utostr(i); 1915 else 1916 InOutConstraints += OutputConstraint; 1917 1918 InOutArgTypes.push_back(Arg->getType()); 1919 InOutArgs.push_back(Arg); 1920 } 1921 } 1922 1923 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1924 // to the return value slot. Only do this when returning in registers. 1925 if (isa<MSAsmStmt>(&S)) { 1926 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1927 if (RetAI.isDirect() || RetAI.isExtend()) { 1928 // Make a fake lvalue for the return value slot. 1929 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1930 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1931 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1932 ResultRegDests, AsmString, S.getNumOutputs()); 1933 SawAsmBlock = true; 1934 } 1935 } 1936 1937 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1938 const Expr *InputExpr = S.getInputExpr(i); 1939 1940 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1941 1942 if (!Constraints.empty()) 1943 Constraints += ','; 1944 1945 // Simplify the input constraint. 1946 std::string InputConstraint(S.getInputConstraint(i)); 1947 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1948 &OutputConstraintInfos); 1949 1950 InputConstraint = 1951 AddVariableConstraints(InputConstraint, 1952 *InputExpr->IgnoreParenNoopCasts(getContext()), 1953 getTarget(), CGM, S); 1954 1955 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1956 1957 // If this input argument is tied to a larger output result, extend the 1958 // input to be the same size as the output. The LLVM backend wants to see 1959 // the input and output of a matching constraint be the same size. Note 1960 // that GCC does not define what the top bits are here. We use zext because 1961 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1962 if (Info.hasTiedOperand()) { 1963 unsigned Output = Info.getTiedOperand(); 1964 QualType OutputType = S.getOutputExpr(Output)->getType(); 1965 QualType InputTy = InputExpr->getType(); 1966 1967 if (getContext().getTypeSize(OutputType) > 1968 getContext().getTypeSize(InputTy)) { 1969 // Use ptrtoint as appropriate so that we can do our extension. 1970 if (isa<llvm::PointerType>(Arg->getType())) 1971 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1972 llvm::Type *OutputTy = ConvertType(OutputType); 1973 if (isa<llvm::IntegerType>(OutputTy)) 1974 Arg = Builder.CreateZExt(Arg, OutputTy); 1975 else if (isa<llvm::PointerType>(OutputTy)) 1976 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1977 else { 1978 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1979 Arg = Builder.CreateFPExt(Arg, OutputTy); 1980 } 1981 } 1982 } 1983 if (llvm::Type* AdjTy = 1984 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1985 Arg->getType())) 1986 Arg = Builder.CreateBitCast(Arg, AdjTy); 1987 else 1988 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1989 << InputExpr->getType() << InputConstraint; 1990 1991 ArgTypes.push_back(Arg->getType()); 1992 Args.push_back(Arg); 1993 Constraints += InputConstraint; 1994 } 1995 1996 // Append the "input" part of inout constraints last. 1997 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1998 ArgTypes.push_back(InOutArgTypes[i]); 1999 Args.push_back(InOutArgs[i]); 2000 } 2001 Constraints += InOutConstraints; 2002 2003 // Clobbers 2004 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2005 StringRef Clobber = S.getClobber(i); 2006 2007 if (Clobber != "memory" && Clobber != "cc") 2008 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2009 2010 if (!Constraints.empty()) 2011 Constraints += ','; 2012 2013 Constraints += "~{"; 2014 Constraints += Clobber; 2015 Constraints += '}'; 2016 } 2017 2018 // Add machine specific clobbers 2019 std::string MachineClobbers = getTarget().getClobbers(); 2020 if (!MachineClobbers.empty()) { 2021 if (!Constraints.empty()) 2022 Constraints += ','; 2023 Constraints += MachineClobbers; 2024 } 2025 2026 llvm::Type *ResultType; 2027 if (ResultRegTypes.empty()) 2028 ResultType = VoidTy; 2029 else if (ResultRegTypes.size() == 1) 2030 ResultType = ResultRegTypes[0]; 2031 else 2032 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2033 2034 llvm::FunctionType *FTy = 2035 llvm::FunctionType::get(ResultType, ArgTypes, false); 2036 2037 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2038 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2039 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2040 llvm::InlineAsm *IA = 2041 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2042 /* IsAlignStack */ false, AsmDialect); 2043 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2044 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2045 llvm::Attribute::NoUnwind); 2046 2047 // Slap the source location of the inline asm into a !srcloc metadata on the 2048 // call. 2049 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2050 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2051 *this)); 2052 } else { 2053 // At least put the line number on MS inline asm blobs. 2054 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2055 Result->setMetadata("srcloc", llvm::MDNode::get(getLLVMContext(), Loc)); 2056 } 2057 2058 // Extract all of the register value results from the asm. 2059 std::vector<llvm::Value*> RegResults; 2060 if (ResultRegTypes.size() == 1) { 2061 RegResults.push_back(Result); 2062 } else { 2063 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2064 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2065 RegResults.push_back(Tmp); 2066 } 2067 } 2068 2069 assert(RegResults.size() == ResultRegTypes.size()); 2070 assert(RegResults.size() == ResultTruncRegTypes.size()); 2071 assert(RegResults.size() == ResultRegDests.size()); 2072 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2073 llvm::Value *Tmp = RegResults[i]; 2074 2075 // If the result type of the LLVM IR asm doesn't match the result type of 2076 // the expression, do the conversion. 2077 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2078 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2079 2080 // Truncate the integer result to the right size, note that TruncTy can be 2081 // a pointer. 2082 if (TruncTy->isFloatingPointTy()) 2083 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2084 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2085 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2086 Tmp = Builder.CreateTrunc(Tmp, 2087 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2088 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2089 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2090 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2091 Tmp = Builder.CreatePtrToInt(Tmp, 2092 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2093 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2094 } else if (TruncTy->isIntegerTy()) { 2095 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2096 } else if (TruncTy->isVectorTy()) { 2097 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2098 } 2099 } 2100 2101 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2102 } 2103 } 2104 2105 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 2106 const RecordDecl *RD = S.getCapturedRecordDecl(); 2107 QualType RecordTy = CGF.getContext().getRecordType(RD); 2108 2109 // Initialize the captured struct. 2110 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 2111 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2112 2113 RecordDecl::field_iterator CurField = RD->field_begin(); 2114 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2115 E = S.capture_init_end(); 2116 I != E; ++I, ++CurField) { 2117 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 2118 CGF.EmitInitializerForField(*CurField, LV, *I, None); 2119 } 2120 2121 return SlotLV; 2122 } 2123 2124 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) { 2125 for (auto &C : S.captures()) { 2126 if (C.capturesVariable()) { 2127 QualType QTy; 2128 auto VD = C.getCapturedVar(); 2129 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 2130 QTy = PVD->getOriginalType(); 2131 else 2132 QTy = VD->getType(); 2133 if (QTy->isVariablyModifiedType()) { 2134 CGF.EmitVariablyModifiedType(QTy); 2135 } 2136 } 2137 } 2138 } 2139 2140 /// Generate an outlined function for the body of a CapturedStmt, store any 2141 /// captured variables into the captured struct, and call the outlined function. 2142 llvm::Function * 2143 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2144 LValue CapStruct = InitCapturedStruct(*this, S); 2145 2146 // Emit the CapturedDecl 2147 CodeGenFunction CGF(CGM, true); 2148 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2149 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2150 delete CGF.CapturedStmtInfo; 2151 2152 // Emit call to the helper function. 2153 EmitCallOrInvoke(F, CapStruct.getAddress()); 2154 2155 return F; 2156 } 2157 2158 llvm::Value * 2159 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2160 LValue CapStruct = InitCapturedStruct(*this, S); 2161 return CapStruct.getAddress(); 2162 } 2163 2164 /// Creates the outlined function for a CapturedStmt. 2165 llvm::Function * 2166 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2167 assert(CapturedStmtInfo && 2168 "CapturedStmtInfo should be set when generating the captured function"); 2169 const CapturedDecl *CD = S.getCapturedDecl(); 2170 const RecordDecl *RD = S.getCapturedRecordDecl(); 2171 SourceLocation Loc = S.getLocStart(); 2172 assert(CD->hasBody() && "missing CapturedDecl body"); 2173 2174 // Build the argument list. 2175 ASTContext &Ctx = CGM.getContext(); 2176 FunctionArgList Args; 2177 Args.append(CD->param_begin(), CD->param_end()); 2178 2179 // Create the function declaration. 2180 FunctionType::ExtInfo ExtInfo; 2181 const CGFunctionInfo &FuncInfo = 2182 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2183 /*IsVariadic=*/false); 2184 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2185 2186 llvm::Function *F = 2187 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2188 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2189 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2190 2191 // Generate the function. 2192 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2193 CD->getLocation(), 2194 CD->getBody()->getLocStart()); 2195 // Set the context parameter in CapturedStmtInfo. 2196 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2197 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2198 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2199 2200 // Initialize variable-length arrays. 2201 InitVLACaptures(*this, S); 2202 2203 // If 'this' is captured, load it into CXXThisValue. 2204 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2205 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2206 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2207 Ctx.getTagDeclType(RD)); 2208 LValue ThisLValue = EmitLValueForField(LV, FD); 2209 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2210 } 2211 2212 PGO.assignRegionCounters(CD, F); 2213 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2214 FinishFunction(CD->getBodyRBrace()); 2215 PGO.emitInstrumentationData(); 2216 PGO.destroyRegionCounters(); 2217 2218 return F; 2219 } 2220