1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/LoopHint.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/IR/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                              Statement Emission
33 //===----------------------------------------------------------------------===//
34 
35 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36   if (CGDebugInfo *DI = getDebugInfo()) {
37     SourceLocation Loc;
38     Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40 
41     LastStopPoint = Loc;
42   }
43 }
44 
45 void CodeGenFunction::EmitStmt(const Stmt *S) {
46   assert(S && "Null statement?");
47   PGO.setCurrentStmt(S);
48 
49   // These statements have their own debug info handling.
50   if (EmitSimpleStmt(S))
51     return;
52 
53   // Check if we are generating unreachable code.
54   if (!HaveInsertPoint()) {
55     // If so, and the statement doesn't contain a label, then we do not need to
56     // generate actual code. This is safe because (1) the current point is
57     // unreachable, so we don't need to execute the code, and (2) we've already
58     // handled the statements which update internal data structures (like the
59     // local variable map) which could be used by subsequent statements.
60     if (!ContainsLabel(S)) {
61       // Verify that any decl statements were handled as simple, they may be in
62       // scope of subsequent reachable statements.
63       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64       return;
65     }
66 
67     // Otherwise, make a new block to hold the code.
68     EnsureInsertPoint();
69   }
70 
71   // Generate a stoppoint if we are emitting debug info.
72   EmitStopPoint(S);
73 
74   switch (S->getStmtClass()) {
75   case Stmt::NoStmtClass:
76   case Stmt::CXXCatchStmtClass:
77   case Stmt::SEHExceptStmtClass:
78   case Stmt::SEHFinallyStmtClass:
79   case Stmt::MSDependentExistsStmtClass:
80     llvm_unreachable("invalid statement class to emit generically");
81   case Stmt::NullStmtClass:
82   case Stmt::CompoundStmtClass:
83   case Stmt::DeclStmtClass:
84   case Stmt::LabelStmtClass:
85   case Stmt::AttributedStmtClass:
86   case Stmt::GotoStmtClass:
87   case Stmt::BreakStmtClass:
88   case Stmt::ContinueStmtClass:
89   case Stmt::DefaultStmtClass:
90   case Stmt::CaseStmtClass:
91     llvm_unreachable("should have emitted these statements as simple");
92 
93 #define STMT(Type, Base)
94 #define ABSTRACT_STMT(Op)
95 #define EXPR(Type, Base) \
96   case Stmt::Type##Class:
97 #include "clang/AST/StmtNodes.inc"
98   {
99     // Remember the block we came in on.
100     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
101     assert(incoming && "expression emission must have an insertion point");
102 
103     EmitIgnoredExpr(cast<Expr>(S));
104 
105     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
106     assert(outgoing && "expression emission cleared block!");
107 
108     // The expression emitters assume (reasonably!) that the insertion
109     // point is always set.  To maintain that, the call-emission code
110     // for noreturn functions has to enter a new block with no
111     // predecessors.  We want to kill that block and mark the current
112     // insertion point unreachable in the common case of a call like
113     // "exit();".  Since expression emission doesn't otherwise create
114     // blocks with no predecessors, we can just test for that.
115     // However, we must be careful not to do this to our incoming
116     // block, because *statement* emission does sometimes create
117     // reachable blocks which will have no predecessors until later in
118     // the function.  This occurs with, e.g., labels that are not
119     // reachable by fallthrough.
120     if (incoming != outgoing && outgoing->use_empty()) {
121       outgoing->eraseFromParent();
122       Builder.ClearInsertionPoint();
123     }
124     break;
125   }
126 
127   case Stmt::IndirectGotoStmtClass:
128     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
129 
130   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
131   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
132   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
133   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
134 
135   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
136 
137   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
138   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
139   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
140   case Stmt::CapturedStmtClass: {
141     const CapturedStmt *CS = cast<CapturedStmt>(S);
142     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
143     }
144     break;
145   case Stmt::ObjCAtTryStmtClass:
146     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
147     break;
148   case Stmt::ObjCAtCatchStmtClass:
149     llvm_unreachable(
150                     "@catch statements should be handled by EmitObjCAtTryStmt");
151   case Stmt::ObjCAtFinallyStmtClass:
152     llvm_unreachable(
153                   "@finally statements should be handled by EmitObjCAtTryStmt");
154   case Stmt::ObjCAtThrowStmtClass:
155     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
156     break;
157   case Stmt::ObjCAtSynchronizedStmtClass:
158     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
159     break;
160   case Stmt::ObjCForCollectionStmtClass:
161     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
162     break;
163   case Stmt::ObjCAutoreleasePoolStmtClass:
164     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
165     break;
166 
167   case Stmt::CXXTryStmtClass:
168     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
169     break;
170   case Stmt::CXXForRangeStmtClass:
171     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
172     break;
173   case Stmt::SEHTryStmtClass:
174     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
175     break;
176   case Stmt::SEHLeaveStmtClass:
177     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
178     break;
179   case Stmt::OMPParallelDirectiveClass:
180     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
181     break;
182   case Stmt::OMPSimdDirectiveClass:
183     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
184     break;
185   case Stmt::OMPForDirectiveClass:
186     EmitOMPForDirective(cast<OMPForDirective>(*S));
187     break;
188   case Stmt::OMPForSimdDirectiveClass:
189     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
190     break;
191   case Stmt::OMPSectionsDirectiveClass:
192     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
193     break;
194   case Stmt::OMPSectionDirectiveClass:
195     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
196     break;
197   case Stmt::OMPSingleDirectiveClass:
198     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
199     break;
200   case Stmt::OMPMasterDirectiveClass:
201     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
202     break;
203   case Stmt::OMPCriticalDirectiveClass:
204     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
205     break;
206   case Stmt::OMPParallelForDirectiveClass:
207     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
208     break;
209   case Stmt::OMPParallelForSimdDirectiveClass:
210     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
211     break;
212   case Stmt::OMPParallelSectionsDirectiveClass:
213     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
214     break;
215   case Stmt::OMPTaskDirectiveClass:
216     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
217     break;
218   case Stmt::OMPTaskyieldDirectiveClass:
219     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
220     break;
221   case Stmt::OMPBarrierDirectiveClass:
222     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
223     break;
224   case Stmt::OMPTaskwaitDirectiveClass:
225     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
226     break;
227   case Stmt::OMPFlushDirectiveClass:
228     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
229     break;
230   case Stmt::OMPOrderedDirectiveClass:
231     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
232     break;
233   case Stmt::OMPAtomicDirectiveClass:
234     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
235     break;
236   case Stmt::OMPTargetDirectiveClass:
237     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
238     break;
239   case Stmt::OMPTeamsDirectiveClass:
240     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
241     break;
242   }
243 }
244 
245 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
246   switch (S->getStmtClass()) {
247   default: return false;
248   case Stmt::NullStmtClass: break;
249   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
250   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
251   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
252   case Stmt::AttributedStmtClass:
253                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
254   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
255   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
256   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
257   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
258   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
259   }
260 
261   return true;
262 }
263 
264 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
265 /// this captures the expression result of the last sub-statement and returns it
266 /// (for use by the statement expression extension).
267 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
268                                                AggValueSlot AggSlot) {
269   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
270                              "LLVM IR generation of compound statement ('{}')");
271 
272   // Keep track of the current cleanup stack depth, including debug scopes.
273   LexicalScope Scope(*this, S.getSourceRange());
274 
275   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
276 }
277 
278 llvm::Value*
279 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
280                                               bool GetLast,
281                                               AggValueSlot AggSlot) {
282 
283   for (CompoundStmt::const_body_iterator I = S.body_begin(),
284        E = S.body_end()-GetLast; I != E; ++I)
285     EmitStmt(*I);
286 
287   llvm::Value *RetAlloca = nullptr;
288   if (GetLast) {
289     // We have to special case labels here.  They are statements, but when put
290     // at the end of a statement expression, they yield the value of their
291     // subexpression.  Handle this by walking through all labels we encounter,
292     // emitting them before we evaluate the subexpr.
293     const Stmt *LastStmt = S.body_back();
294     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
295       EmitLabel(LS->getDecl());
296       LastStmt = LS->getSubStmt();
297     }
298 
299     EnsureInsertPoint();
300 
301     QualType ExprTy = cast<Expr>(LastStmt)->getType();
302     if (hasAggregateEvaluationKind(ExprTy)) {
303       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
304     } else {
305       // We can't return an RValue here because there might be cleanups at
306       // the end of the StmtExpr.  Because of that, we have to emit the result
307       // here into a temporary alloca.
308       RetAlloca = CreateMemTemp(ExprTy);
309       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
310                        /*IsInit*/false);
311     }
312 
313   }
314 
315   return RetAlloca;
316 }
317 
318 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
319   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
320 
321   // If there is a cleanup stack, then we it isn't worth trying to
322   // simplify this block (we would need to remove it from the scope map
323   // and cleanup entry).
324   if (!EHStack.empty())
325     return;
326 
327   // Can only simplify direct branches.
328   if (!BI || !BI->isUnconditional())
329     return;
330 
331   // Can only simplify empty blocks.
332   if (BI != BB->begin())
333     return;
334 
335   BB->replaceAllUsesWith(BI->getSuccessor(0));
336   BI->eraseFromParent();
337   BB->eraseFromParent();
338 }
339 
340 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
341   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
342 
343   // Fall out of the current block (if necessary).
344   EmitBranch(BB);
345 
346   if (IsFinished && BB->use_empty()) {
347     delete BB;
348     return;
349   }
350 
351   // Place the block after the current block, if possible, or else at
352   // the end of the function.
353   if (CurBB && CurBB->getParent())
354     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
355   else
356     CurFn->getBasicBlockList().push_back(BB);
357   Builder.SetInsertPoint(BB);
358 }
359 
360 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
361   // Emit a branch from the current block to the target one if this
362   // was a real block.  If this was just a fall-through block after a
363   // terminator, don't emit it.
364   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
365 
366   if (!CurBB || CurBB->getTerminator()) {
367     // If there is no insert point or the previous block is already
368     // terminated, don't touch it.
369   } else {
370     // Otherwise, create a fall-through branch.
371     Builder.CreateBr(Target);
372   }
373 
374   Builder.ClearInsertionPoint();
375 }
376 
377 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
378   bool inserted = false;
379   for (llvm::User *u : block->users()) {
380     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
381       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
382       inserted = true;
383       break;
384     }
385   }
386 
387   if (!inserted)
388     CurFn->getBasicBlockList().push_back(block);
389 
390   Builder.SetInsertPoint(block);
391 }
392 
393 CodeGenFunction::JumpDest
394 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
395   JumpDest &Dest = LabelMap[D];
396   if (Dest.isValid()) return Dest;
397 
398   // Create, but don't insert, the new block.
399   Dest = JumpDest(createBasicBlock(D->getName()),
400                   EHScopeStack::stable_iterator::invalid(),
401                   NextCleanupDestIndex++);
402   return Dest;
403 }
404 
405 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
406   // Add this label to the current lexical scope if we're within any
407   // normal cleanups.  Jumps "in" to this label --- when permitted by
408   // the language --- may need to be routed around such cleanups.
409   if (EHStack.hasNormalCleanups() && CurLexicalScope)
410     CurLexicalScope->addLabel(D);
411 
412   JumpDest &Dest = LabelMap[D];
413 
414   // If we didn't need a forward reference to this label, just go
415   // ahead and create a destination at the current scope.
416   if (!Dest.isValid()) {
417     Dest = getJumpDestInCurrentScope(D->getName());
418 
419   // Otherwise, we need to give this label a target depth and remove
420   // it from the branch-fixups list.
421   } else {
422     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
423     Dest.setScopeDepth(EHStack.stable_begin());
424     ResolveBranchFixups(Dest.getBlock());
425   }
426 
427   RegionCounter Cnt = getPGORegionCounter(D->getStmt());
428   EmitBlock(Dest.getBlock());
429   Cnt.beginRegion(Builder);
430 }
431 
432 /// Change the cleanup scope of the labels in this lexical scope to
433 /// match the scope of the enclosing context.
434 void CodeGenFunction::LexicalScope::rescopeLabels() {
435   assert(!Labels.empty());
436   EHScopeStack::stable_iterator innermostScope
437     = CGF.EHStack.getInnermostNormalCleanup();
438 
439   // Change the scope depth of all the labels.
440   for (SmallVectorImpl<const LabelDecl*>::const_iterator
441          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
442     assert(CGF.LabelMap.count(*i));
443     JumpDest &dest = CGF.LabelMap.find(*i)->second;
444     assert(dest.getScopeDepth().isValid());
445     assert(innermostScope.encloses(dest.getScopeDepth()));
446     dest.setScopeDepth(innermostScope);
447   }
448 
449   // Reparent the labels if the new scope also has cleanups.
450   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
451     ParentScope->Labels.append(Labels.begin(), Labels.end());
452   }
453 }
454 
455 
456 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
457   EmitLabel(S.getDecl());
458   EmitStmt(S.getSubStmt());
459 }
460 
461 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
462   const Stmt *SubStmt = S.getSubStmt();
463   switch (SubStmt->getStmtClass()) {
464   case Stmt::DoStmtClass:
465     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
466     break;
467   case Stmt::ForStmtClass:
468     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
469     break;
470   case Stmt::WhileStmtClass:
471     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
472     break;
473   case Stmt::CXXForRangeStmtClass:
474     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
475     break;
476   default:
477     EmitStmt(SubStmt);
478   }
479 }
480 
481 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
482   // If this code is reachable then emit a stop point (if generating
483   // debug info). We have to do this ourselves because we are on the
484   // "simple" statement path.
485   if (HaveInsertPoint())
486     EmitStopPoint(&S);
487 
488   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
489 }
490 
491 
492 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
493   if (const LabelDecl *Target = S.getConstantTarget()) {
494     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
495     return;
496   }
497 
498   // Ensure that we have an i8* for our PHI node.
499   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
500                                          Int8PtrTy, "addr");
501   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
502 
503   // Get the basic block for the indirect goto.
504   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
505 
506   // The first instruction in the block has to be the PHI for the switch dest,
507   // add an entry for this branch.
508   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
509 
510   EmitBranch(IndGotoBB);
511 }
512 
513 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
514   // C99 6.8.4.1: The first substatement is executed if the expression compares
515   // unequal to 0.  The condition must be a scalar type.
516   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
517   RegionCounter Cnt = getPGORegionCounter(&S);
518 
519   if (S.getConditionVariable())
520     EmitAutoVarDecl(*S.getConditionVariable());
521 
522   // If the condition constant folds and can be elided, try to avoid emitting
523   // the condition and the dead arm of the if/else.
524   bool CondConstant;
525   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
526     // Figure out which block (then or else) is executed.
527     const Stmt *Executed = S.getThen();
528     const Stmt *Skipped  = S.getElse();
529     if (!CondConstant)  // Condition false?
530       std::swap(Executed, Skipped);
531 
532     // If the skipped block has no labels in it, just emit the executed block.
533     // This avoids emitting dead code and simplifies the CFG substantially.
534     if (!ContainsLabel(Skipped)) {
535       if (CondConstant)
536         Cnt.beginRegion(Builder);
537       if (Executed) {
538         RunCleanupsScope ExecutedScope(*this);
539         EmitStmt(Executed);
540       }
541       return;
542     }
543   }
544 
545   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
546   // the conditional branch.
547   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
548   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
549   llvm::BasicBlock *ElseBlock = ContBlock;
550   if (S.getElse())
551     ElseBlock = createBasicBlock("if.else");
552 
553   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
554 
555   // Emit the 'then' code.
556   EmitBlock(ThenBlock);
557   Cnt.beginRegion(Builder);
558   {
559     RunCleanupsScope ThenScope(*this);
560     EmitStmt(S.getThen());
561   }
562   EmitBranch(ContBlock);
563 
564   // Emit the 'else' code if present.
565   if (const Stmt *Else = S.getElse()) {
566     {
567       // There is no need to emit line number for unconditional branch.
568       SuppressDebugLocation S(Builder);
569       EmitBlock(ElseBlock);
570     }
571     {
572       RunCleanupsScope ElseScope(*this);
573       EmitStmt(Else);
574     }
575     {
576       // There is no need to emit line number for unconditional branch.
577       SuppressDebugLocation S(Builder);
578       EmitBranch(ContBlock);
579     }
580   }
581 
582   // Emit the continuation block for code after the if.
583   EmitBlock(ContBlock, true);
584 }
585 
586 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
587                                       llvm::BranchInst *CondBr,
588                                       ArrayRef<const Attr *> Attrs) {
589   // Return if there are no hints.
590   if (Attrs.empty())
591     return;
592 
593   // Add vectorize and unroll hints to the metadata on the conditional branch.
594   SmallVector<llvm::Value *, 2> Metadata(1);
595   for (const auto *Attr : Attrs) {
596     const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
597 
598     // Skip non loop hint attributes
599     if (!LH)
600       continue;
601 
602     LoopHintAttr::OptionType Option = LH->getOption();
603     LoopHintAttr::LoopHintState State = LH->getState();
604     const char *MetadataName;
605     switch (Option) {
606     case LoopHintAttr::Vectorize:
607     case LoopHintAttr::VectorizeWidth:
608       MetadataName = "llvm.loop.vectorize.width";
609       break;
610     case LoopHintAttr::Interleave:
611     case LoopHintAttr::InterleaveCount:
612       MetadataName = "llvm.loop.interleave.count";
613       break;
614     case LoopHintAttr::Unroll:
615       // With the unroll loop hint, a non-zero value indicates full unrolling.
616       MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable"
617                                                     : "llvm.loop.unroll.full";
618       break;
619     case LoopHintAttr::UnrollCount:
620       MetadataName = "llvm.loop.unroll.count";
621       break;
622     }
623 
624     Expr *ValueExpr = LH->getValue();
625     int ValueInt = 1;
626     if (ValueExpr) {
627       llvm::APSInt ValueAPS =
628           ValueExpr->EvaluateKnownConstInt(CGM.getContext());
629       ValueInt = static_cast<int>(ValueAPS.getSExtValue());
630     }
631 
632     llvm::Value *Value;
633     llvm::MDString *Name;
634     switch (Option) {
635     case LoopHintAttr::Vectorize:
636     case LoopHintAttr::Interleave:
637       if (State != LoopHintAttr::Disable) {
638         // FIXME: In the future I will modifiy the behavior of the metadata
639         // so we can enable/disable vectorization and interleaving separately.
640         Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable");
641         Value = Builder.getTrue();
642         break;
643       }
644       // Vectorization/interleaving is disabled, set width/count to 1.
645       ValueInt = 1;
646       // Fallthrough.
647     case LoopHintAttr::VectorizeWidth:
648     case LoopHintAttr::InterleaveCount:
649     case LoopHintAttr::UnrollCount:
650       Name = llvm::MDString::get(Context, MetadataName);
651       Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
652       break;
653     case LoopHintAttr::Unroll:
654       Name = llvm::MDString::get(Context, MetadataName);
655       Value = nullptr;
656       break;
657     }
658 
659     SmallVector<llvm::Value *, 2> OpValues;
660     OpValues.push_back(Name);
661     if (Value)
662       OpValues.push_back(Value);
663 
664     // Set or overwrite metadata indicated by Name.
665     Metadata.push_back(llvm::MDNode::get(Context, OpValues));
666   }
667 
668   if (!Metadata.empty()) {
669     // Add llvm.loop MDNode to CondBr.
670     llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
671     LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
672 
673     CondBr->setMetadata("llvm.loop", LoopID);
674   }
675 }
676 
677 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
678                                     ArrayRef<const Attr *> WhileAttrs) {
679   RegionCounter Cnt = getPGORegionCounter(&S);
680 
681   // Emit the header for the loop, which will also become
682   // the continue target.
683   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
684   EmitBlock(LoopHeader.getBlock());
685 
686   LoopStack.push(LoopHeader.getBlock());
687 
688   // Create an exit block for when the condition fails, which will
689   // also become the break target.
690   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
691 
692   // Store the blocks to use for break and continue.
693   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
694 
695   // C++ [stmt.while]p2:
696   //   When the condition of a while statement is a declaration, the
697   //   scope of the variable that is declared extends from its point
698   //   of declaration (3.3.2) to the end of the while statement.
699   //   [...]
700   //   The object created in a condition is destroyed and created
701   //   with each iteration of the loop.
702   RunCleanupsScope ConditionScope(*this);
703 
704   if (S.getConditionVariable())
705     EmitAutoVarDecl(*S.getConditionVariable());
706 
707   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
708   // evaluation of the controlling expression takes place before each
709   // execution of the loop body.
710   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
711 
712   // while(1) is common, avoid extra exit blocks.  Be sure
713   // to correctly handle break/continue though.
714   bool EmitBoolCondBranch = true;
715   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
716     if (C->isOne())
717       EmitBoolCondBranch = false;
718 
719   // As long as the condition is true, go to the loop body.
720   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
721   if (EmitBoolCondBranch) {
722     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
723     if (ConditionScope.requiresCleanups())
724       ExitBlock = createBasicBlock("while.exit");
725     llvm::BranchInst *CondBr =
726         Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
727                              PGO.createLoopWeights(S.getCond(), Cnt));
728 
729     if (ExitBlock != LoopExit.getBlock()) {
730       EmitBlock(ExitBlock);
731       EmitBranchThroughCleanup(LoopExit);
732     }
733 
734     // Attach metadata to loop body conditional branch.
735     EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
736   }
737 
738   // Emit the loop body.  We have to emit this in a cleanup scope
739   // because it might be a singleton DeclStmt.
740   {
741     RunCleanupsScope BodyScope(*this);
742     EmitBlock(LoopBody);
743     Cnt.beginRegion(Builder);
744     EmitStmt(S.getBody());
745   }
746 
747   BreakContinueStack.pop_back();
748 
749   // Immediately force cleanup.
750   ConditionScope.ForceCleanup();
751 
752   EmitStopPoint(&S);
753   // Branch to the loop header again.
754   EmitBranch(LoopHeader.getBlock());
755 
756   LoopStack.pop();
757 
758   // Emit the exit block.
759   EmitBlock(LoopExit.getBlock(), true);
760 
761   // The LoopHeader typically is just a branch if we skipped emitting
762   // a branch, try to erase it.
763   if (!EmitBoolCondBranch)
764     SimplifyForwardingBlocks(LoopHeader.getBlock());
765 }
766 
767 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
768                                  ArrayRef<const Attr *> DoAttrs) {
769   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
770   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
771 
772   RegionCounter Cnt = getPGORegionCounter(&S);
773 
774   // Store the blocks to use for break and continue.
775   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
776 
777   // Emit the body of the loop.
778   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
779 
780   LoopStack.push(LoopBody);
781 
782   EmitBlockWithFallThrough(LoopBody, Cnt);
783   {
784     RunCleanupsScope BodyScope(*this);
785     EmitStmt(S.getBody());
786   }
787 
788   EmitBlock(LoopCond.getBlock());
789 
790   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
791   // after each execution of the loop body."
792 
793   // Evaluate the conditional in the while header.
794   // C99 6.8.5p2/p4: The first substatement is executed if the expression
795   // compares unequal to 0.  The condition must be a scalar type.
796   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
797 
798   BreakContinueStack.pop_back();
799 
800   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
801   // to correctly handle break/continue though.
802   bool EmitBoolCondBranch = true;
803   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
804     if (C->isZero())
805       EmitBoolCondBranch = false;
806 
807   // As long as the condition is true, iterate the loop.
808   if (EmitBoolCondBranch) {
809     llvm::BranchInst *CondBr =
810         Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
811                              PGO.createLoopWeights(S.getCond(), Cnt));
812 
813     // Attach metadata to loop body conditional branch.
814     EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
815   }
816 
817   LoopStack.pop();
818 
819   // Emit the exit block.
820   EmitBlock(LoopExit.getBlock());
821 
822   // The DoCond block typically is just a branch if we skipped
823   // emitting a branch, try to erase it.
824   if (!EmitBoolCondBranch)
825     SimplifyForwardingBlocks(LoopCond.getBlock());
826 }
827 
828 void CodeGenFunction::EmitForStmt(const ForStmt &S,
829                                   ArrayRef<const Attr *> ForAttrs) {
830   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
831 
832   LexicalScope ForScope(*this, S.getSourceRange());
833 
834   // Evaluate the first part before the loop.
835   if (S.getInit())
836     EmitStmt(S.getInit());
837 
838   RegionCounter Cnt = getPGORegionCounter(&S);
839 
840   // Start the loop with a block that tests the condition.
841   // If there's an increment, the continue scope will be overwritten
842   // later.
843   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
844   llvm::BasicBlock *CondBlock = Continue.getBlock();
845   EmitBlock(CondBlock);
846 
847   LoopStack.push(CondBlock);
848 
849   // If the for loop doesn't have an increment we can just use the
850   // condition as the continue block.  Otherwise we'll need to create
851   // a block for it (in the current scope, i.e. in the scope of the
852   // condition), and that we will become our continue block.
853   if (S.getInc())
854     Continue = getJumpDestInCurrentScope("for.inc");
855 
856   // Store the blocks to use for break and continue.
857   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
858 
859   // Create a cleanup scope for the condition variable cleanups.
860   LexicalScope ConditionScope(*this, S.getSourceRange());
861 
862   if (S.getCond()) {
863     // If the for statement has a condition scope, emit the local variable
864     // declaration.
865     if (S.getConditionVariable()) {
866       EmitAutoVarDecl(*S.getConditionVariable());
867     }
868 
869     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
870     // If there are any cleanups between here and the loop-exit scope,
871     // create a block to stage a loop exit along.
872     if (ForScope.requiresCleanups())
873       ExitBlock = createBasicBlock("for.cond.cleanup");
874 
875     // As long as the condition is true, iterate the loop.
876     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
877 
878     // C99 6.8.5p2/p4: The first substatement is executed if the expression
879     // compares unequal to 0.  The condition must be a scalar type.
880     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
881     llvm::BranchInst *CondBr =
882         Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
883                              PGO.createLoopWeights(S.getCond(), Cnt));
884 
885     // Attach metadata to loop body conditional branch.
886     EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
887 
888     if (ExitBlock != LoopExit.getBlock()) {
889       EmitBlock(ExitBlock);
890       EmitBranchThroughCleanup(LoopExit);
891     }
892 
893     EmitBlock(ForBody);
894   } else {
895     // Treat it as a non-zero constant.  Don't even create a new block for the
896     // body, just fall into it.
897   }
898   Cnt.beginRegion(Builder);
899 
900   {
901     // Create a separate cleanup scope for the body, in case it is not
902     // a compound statement.
903     RunCleanupsScope BodyScope(*this);
904     EmitStmt(S.getBody());
905   }
906 
907   // If there is an increment, emit it next.
908   if (S.getInc()) {
909     EmitBlock(Continue.getBlock());
910     EmitStmt(S.getInc());
911   }
912 
913   BreakContinueStack.pop_back();
914 
915   ConditionScope.ForceCleanup();
916 
917   EmitStopPoint(&S);
918   EmitBranch(CondBlock);
919 
920   ForScope.ForceCleanup();
921 
922   LoopStack.pop();
923 
924   // Emit the fall-through block.
925   EmitBlock(LoopExit.getBlock(), true);
926 }
927 
928 void
929 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
930                                      ArrayRef<const Attr *> ForAttrs) {
931   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
932 
933   LexicalScope ForScope(*this, S.getSourceRange());
934 
935   // Evaluate the first pieces before the loop.
936   EmitStmt(S.getRangeStmt());
937   EmitStmt(S.getBeginEndStmt());
938 
939   RegionCounter Cnt = getPGORegionCounter(&S);
940 
941   // Start the loop with a block that tests the condition.
942   // If there's an increment, the continue scope will be overwritten
943   // later.
944   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
945   EmitBlock(CondBlock);
946 
947   LoopStack.push(CondBlock);
948 
949   // If there are any cleanups between here and the loop-exit scope,
950   // create a block to stage a loop exit along.
951   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
952   if (ForScope.requiresCleanups())
953     ExitBlock = createBasicBlock("for.cond.cleanup");
954 
955   // The loop body, consisting of the specified body and the loop variable.
956   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
957 
958   // The body is executed if the expression, contextually converted
959   // to bool, is true.
960   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
961   llvm::BranchInst *CondBr = Builder.CreateCondBr(
962       BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt));
963 
964   // Attach metadata to loop body conditional branch.
965   EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
966 
967   if (ExitBlock != LoopExit.getBlock()) {
968     EmitBlock(ExitBlock);
969     EmitBranchThroughCleanup(LoopExit);
970   }
971 
972   EmitBlock(ForBody);
973   Cnt.beginRegion(Builder);
974 
975   // Create a block for the increment. In case of a 'continue', we jump there.
976   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
977 
978   // Store the blocks to use for break and continue.
979   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
980 
981   {
982     // Create a separate cleanup scope for the loop variable and body.
983     LexicalScope BodyScope(*this, S.getSourceRange());
984     EmitStmt(S.getLoopVarStmt());
985     EmitStmt(S.getBody());
986   }
987 
988   EmitStopPoint(&S);
989   // If there is an increment, emit it next.
990   EmitBlock(Continue.getBlock());
991   EmitStmt(S.getInc());
992 
993   BreakContinueStack.pop_back();
994 
995   EmitBranch(CondBlock);
996 
997   ForScope.ForceCleanup();
998 
999   LoopStack.pop();
1000 
1001   // Emit the fall-through block.
1002   EmitBlock(LoopExit.getBlock(), true);
1003 }
1004 
1005 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1006   if (RV.isScalar()) {
1007     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1008   } else if (RV.isAggregate()) {
1009     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
1010   } else {
1011     EmitStoreOfComplex(RV.getComplexVal(),
1012                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
1013                        /*init*/ true);
1014   }
1015   EmitBranchThroughCleanup(ReturnBlock);
1016 }
1017 
1018 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1019 /// if the function returns void, or may be missing one if the function returns
1020 /// non-void.  Fun stuff :).
1021 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1022   // Emit the result value, even if unused, to evalute the side effects.
1023   const Expr *RV = S.getRetValue();
1024 
1025   // Treat block literals in a return expression as if they appeared
1026   // in their own scope.  This permits a small, easily-implemented
1027   // exception to our over-conservative rules about not jumping to
1028   // statements following block literals with non-trivial cleanups.
1029   RunCleanupsScope cleanupScope(*this);
1030   if (const ExprWithCleanups *cleanups =
1031         dyn_cast_or_null<ExprWithCleanups>(RV)) {
1032     enterFullExpression(cleanups);
1033     RV = cleanups->getSubExpr();
1034   }
1035 
1036   // FIXME: Clean this up by using an LValue for ReturnTemp,
1037   // EmitStoreThroughLValue, and EmitAnyExpr.
1038   if (getLangOpts().ElideConstructors &&
1039       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1040     // Apply the named return value optimization for this return statement,
1041     // which means doing nothing: the appropriate result has already been
1042     // constructed into the NRVO variable.
1043 
1044     // If there is an NRVO flag for this variable, set it to 1 into indicate
1045     // that the cleanup code should not destroy the variable.
1046     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1047       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
1048   } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
1049     // Make sure not to return anything, but evaluate the expression
1050     // for side effects.
1051     if (RV)
1052       EmitAnyExpr(RV);
1053   } else if (!RV) {
1054     // Do nothing (return value is left uninitialized)
1055   } else if (FnRetTy->isReferenceType()) {
1056     // If this function returns a reference, take the address of the expression
1057     // rather than the value.
1058     RValue Result = EmitReferenceBindingToExpr(RV);
1059     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1060   } else {
1061     switch (getEvaluationKind(RV->getType())) {
1062     case TEK_Scalar:
1063       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1064       break;
1065     case TEK_Complex:
1066       EmitComplexExprIntoLValue(RV,
1067                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
1068                                 /*isInit*/ true);
1069       break;
1070     case TEK_Aggregate: {
1071       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
1072       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
1073                                             Qualifiers(),
1074                                             AggValueSlot::IsDestructed,
1075                                             AggValueSlot::DoesNotNeedGCBarriers,
1076                                             AggValueSlot::IsNotAliased));
1077       break;
1078     }
1079     }
1080   }
1081 
1082   ++NumReturnExprs;
1083   if (!RV || RV->isEvaluatable(getContext()))
1084     ++NumSimpleReturnExprs;
1085 
1086   cleanupScope.ForceCleanup();
1087   EmitBranchThroughCleanup(ReturnBlock);
1088 }
1089 
1090 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1091   // As long as debug info is modeled with instructions, we have to ensure we
1092   // have a place to insert here and write the stop point here.
1093   if (HaveInsertPoint())
1094     EmitStopPoint(&S);
1095 
1096   for (const auto *I : S.decls())
1097     EmitDecl(*I);
1098 }
1099 
1100 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1101   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1102 
1103   // If this code is reachable then emit a stop point (if generating
1104   // debug info). We have to do this ourselves because we are on the
1105   // "simple" statement path.
1106   if (HaveInsertPoint())
1107     EmitStopPoint(&S);
1108 
1109   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1110 }
1111 
1112 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1113   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1114 
1115   // If this code is reachable then emit a stop point (if generating
1116   // debug info). We have to do this ourselves because we are on the
1117   // "simple" statement path.
1118   if (HaveInsertPoint())
1119     EmitStopPoint(&S);
1120 
1121   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1122 }
1123 
1124 /// EmitCaseStmtRange - If case statement range is not too big then
1125 /// add multiple cases to switch instruction, one for each value within
1126 /// the range. If range is too big then emit "if" condition check.
1127 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1128   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1129 
1130   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1131   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1132 
1133   RegionCounter CaseCnt = getPGORegionCounter(&S);
1134 
1135   // Emit the code for this case. We do this first to make sure it is
1136   // properly chained from our predecessor before generating the
1137   // switch machinery to enter this block.
1138   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1139   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1140   EmitStmt(S.getSubStmt());
1141 
1142   // If range is empty, do nothing.
1143   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1144     return;
1145 
1146   llvm::APInt Range = RHS - LHS;
1147   // FIXME: parameters such as this should not be hardcoded.
1148   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1149     // Range is small enough to add multiple switch instruction cases.
1150     uint64_t Total = CaseCnt.getCount();
1151     unsigned NCases = Range.getZExtValue() + 1;
1152     // We only have one region counter for the entire set of cases here, so we
1153     // need to divide the weights evenly between the generated cases, ensuring
1154     // that the total weight is preserved. E.g., a weight of 5 over three cases
1155     // will be distributed as weights of 2, 2, and 1.
1156     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1157     for (unsigned I = 0; I != NCases; ++I) {
1158       if (SwitchWeights)
1159         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1160       if (Rem)
1161         Rem--;
1162       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1163       LHS++;
1164     }
1165     return;
1166   }
1167 
1168   // The range is too big. Emit "if" condition into a new block,
1169   // making sure to save and restore the current insertion point.
1170   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1171 
1172   // Push this test onto the chain of range checks (which terminates
1173   // in the default basic block). The switch's default will be changed
1174   // to the top of this chain after switch emission is complete.
1175   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1176   CaseRangeBlock = createBasicBlock("sw.caserange");
1177 
1178   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1179   Builder.SetInsertPoint(CaseRangeBlock);
1180 
1181   // Emit range check.
1182   llvm::Value *Diff =
1183     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1184   llvm::Value *Cond =
1185     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1186 
1187   llvm::MDNode *Weights = nullptr;
1188   if (SwitchWeights) {
1189     uint64_t ThisCount = CaseCnt.getCount();
1190     uint64_t DefaultCount = (*SwitchWeights)[0];
1191     Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
1192 
1193     // Since we're chaining the switch default through each large case range, we
1194     // need to update the weight for the default, ie, the first case, to include
1195     // this case.
1196     (*SwitchWeights)[0] += ThisCount;
1197   }
1198   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1199 
1200   // Restore the appropriate insertion point.
1201   if (RestoreBB)
1202     Builder.SetInsertPoint(RestoreBB);
1203   else
1204     Builder.ClearInsertionPoint();
1205 }
1206 
1207 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1208   // If there is no enclosing switch instance that we're aware of, then this
1209   // case statement and its block can be elided.  This situation only happens
1210   // when we've constant-folded the switch, are emitting the constant case,
1211   // and part of the constant case includes another case statement.  For
1212   // instance: switch (4) { case 4: do { case 5: } while (1); }
1213   if (!SwitchInsn) {
1214     EmitStmt(S.getSubStmt());
1215     return;
1216   }
1217 
1218   // Handle case ranges.
1219   if (S.getRHS()) {
1220     EmitCaseStmtRange(S);
1221     return;
1222   }
1223 
1224   RegionCounter CaseCnt = getPGORegionCounter(&S);
1225   llvm::ConstantInt *CaseVal =
1226     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1227 
1228   // If the body of the case is just a 'break', try to not emit an empty block.
1229   // If we're profiling or we're not optimizing, leave the block in for better
1230   // debug and coverage analysis.
1231   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1232       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1233       isa<BreakStmt>(S.getSubStmt())) {
1234     JumpDest Block = BreakContinueStack.back().BreakBlock;
1235 
1236     // Only do this optimization if there are no cleanups that need emitting.
1237     if (isObviouslyBranchWithoutCleanups(Block)) {
1238       if (SwitchWeights)
1239         SwitchWeights->push_back(CaseCnt.getCount());
1240       SwitchInsn->addCase(CaseVal, Block.getBlock());
1241 
1242       // If there was a fallthrough into this case, make sure to redirect it to
1243       // the end of the switch as well.
1244       if (Builder.GetInsertBlock()) {
1245         Builder.CreateBr(Block.getBlock());
1246         Builder.ClearInsertionPoint();
1247       }
1248       return;
1249     }
1250   }
1251 
1252   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1253   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1254   if (SwitchWeights)
1255     SwitchWeights->push_back(CaseCnt.getCount());
1256   SwitchInsn->addCase(CaseVal, CaseDest);
1257 
1258   // Recursively emitting the statement is acceptable, but is not wonderful for
1259   // code where we have many case statements nested together, i.e.:
1260   //  case 1:
1261   //    case 2:
1262   //      case 3: etc.
1263   // Handling this recursively will create a new block for each case statement
1264   // that falls through to the next case which is IR intensive.  It also causes
1265   // deep recursion which can run into stack depth limitations.  Handle
1266   // sequential non-range case statements specially.
1267   const CaseStmt *CurCase = &S;
1268   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1269 
1270   // Otherwise, iteratively add consecutive cases to this switch stmt.
1271   while (NextCase && NextCase->getRHS() == nullptr) {
1272     CurCase = NextCase;
1273     llvm::ConstantInt *CaseVal =
1274       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1275 
1276     CaseCnt = getPGORegionCounter(NextCase);
1277     if (SwitchWeights)
1278       SwitchWeights->push_back(CaseCnt.getCount());
1279     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1280       CaseDest = createBasicBlock("sw.bb");
1281       EmitBlockWithFallThrough(CaseDest, CaseCnt);
1282     }
1283 
1284     SwitchInsn->addCase(CaseVal, CaseDest);
1285     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1286   }
1287 
1288   // Normal default recursion for non-cases.
1289   EmitStmt(CurCase->getSubStmt());
1290 }
1291 
1292 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1293   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1294   assert(DefaultBlock->empty() &&
1295          "EmitDefaultStmt: Default block already defined?");
1296 
1297   RegionCounter Cnt = getPGORegionCounter(&S);
1298   EmitBlockWithFallThrough(DefaultBlock, Cnt);
1299 
1300   EmitStmt(S.getSubStmt());
1301 }
1302 
1303 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1304 /// constant value that is being switched on, see if we can dead code eliminate
1305 /// the body of the switch to a simple series of statements to emit.  Basically,
1306 /// on a switch (5) we want to find these statements:
1307 ///    case 5:
1308 ///      printf(...);    <--
1309 ///      ++i;            <--
1310 ///      break;
1311 ///
1312 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1313 /// transformation (for example, one of the elided statements contains a label
1314 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1315 /// should include statements after it (e.g. the printf() line is a substmt of
1316 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1317 /// statement, then return CSFC_Success.
1318 ///
1319 /// If Case is non-null, then we are looking for the specified case, checking
1320 /// that nothing we jump over contains labels.  If Case is null, then we found
1321 /// the case and are looking for the break.
1322 ///
1323 /// If the recursive walk actually finds our Case, then we set FoundCase to
1324 /// true.
1325 ///
1326 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1327 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1328                                             const SwitchCase *Case,
1329                                             bool &FoundCase,
1330                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1331   // If this is a null statement, just succeed.
1332   if (!S)
1333     return Case ? CSFC_Success : CSFC_FallThrough;
1334 
1335   // If this is the switchcase (case 4: or default) that we're looking for, then
1336   // we're in business.  Just add the substatement.
1337   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1338     if (S == Case) {
1339       FoundCase = true;
1340       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1341                                       ResultStmts);
1342     }
1343 
1344     // Otherwise, this is some other case or default statement, just ignore it.
1345     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1346                                     ResultStmts);
1347   }
1348 
1349   // If we are in the live part of the code and we found our break statement,
1350   // return a success!
1351   if (!Case && isa<BreakStmt>(S))
1352     return CSFC_Success;
1353 
1354   // If this is a switch statement, then it might contain the SwitchCase, the
1355   // break, or neither.
1356   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1357     // Handle this as two cases: we might be looking for the SwitchCase (if so
1358     // the skipped statements must be skippable) or we might already have it.
1359     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1360     if (Case) {
1361       // Keep track of whether we see a skipped declaration.  The code could be
1362       // using the declaration even if it is skipped, so we can't optimize out
1363       // the decl if the kept statements might refer to it.
1364       bool HadSkippedDecl = false;
1365 
1366       // If we're looking for the case, just see if we can skip each of the
1367       // substatements.
1368       for (; Case && I != E; ++I) {
1369         HadSkippedDecl |= isa<DeclStmt>(*I);
1370 
1371         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1372         case CSFC_Failure: return CSFC_Failure;
1373         case CSFC_Success:
1374           // A successful result means that either 1) that the statement doesn't
1375           // have the case and is skippable, or 2) does contain the case value
1376           // and also contains the break to exit the switch.  In the later case,
1377           // we just verify the rest of the statements are elidable.
1378           if (FoundCase) {
1379             // If we found the case and skipped declarations, we can't do the
1380             // optimization.
1381             if (HadSkippedDecl)
1382               return CSFC_Failure;
1383 
1384             for (++I; I != E; ++I)
1385               if (CodeGenFunction::ContainsLabel(*I, true))
1386                 return CSFC_Failure;
1387             return CSFC_Success;
1388           }
1389           break;
1390         case CSFC_FallThrough:
1391           // If we have a fallthrough condition, then we must have found the
1392           // case started to include statements.  Consider the rest of the
1393           // statements in the compound statement as candidates for inclusion.
1394           assert(FoundCase && "Didn't find case but returned fallthrough?");
1395           // We recursively found Case, so we're not looking for it anymore.
1396           Case = nullptr;
1397 
1398           // If we found the case and skipped declarations, we can't do the
1399           // optimization.
1400           if (HadSkippedDecl)
1401             return CSFC_Failure;
1402           break;
1403         }
1404       }
1405     }
1406 
1407     // If we have statements in our range, then we know that the statements are
1408     // live and need to be added to the set of statements we're tracking.
1409     for (; I != E; ++I) {
1410       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1411       case CSFC_Failure: return CSFC_Failure;
1412       case CSFC_FallThrough:
1413         // A fallthrough result means that the statement was simple and just
1414         // included in ResultStmt, keep adding them afterwards.
1415         break;
1416       case CSFC_Success:
1417         // A successful result means that we found the break statement and
1418         // stopped statement inclusion.  We just ensure that any leftover stmts
1419         // are skippable and return success ourselves.
1420         for (++I; I != E; ++I)
1421           if (CodeGenFunction::ContainsLabel(*I, true))
1422             return CSFC_Failure;
1423         return CSFC_Success;
1424       }
1425     }
1426 
1427     return Case ? CSFC_Success : CSFC_FallThrough;
1428   }
1429 
1430   // Okay, this is some other statement that we don't handle explicitly, like a
1431   // for statement or increment etc.  If we are skipping over this statement,
1432   // just verify it doesn't have labels, which would make it invalid to elide.
1433   if (Case) {
1434     if (CodeGenFunction::ContainsLabel(S, true))
1435       return CSFC_Failure;
1436     return CSFC_Success;
1437   }
1438 
1439   // Otherwise, we want to include this statement.  Everything is cool with that
1440   // so long as it doesn't contain a break out of the switch we're in.
1441   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1442 
1443   // Otherwise, everything is great.  Include the statement and tell the caller
1444   // that we fall through and include the next statement as well.
1445   ResultStmts.push_back(S);
1446   return CSFC_FallThrough;
1447 }
1448 
1449 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1450 /// then invoke CollectStatementsForCase to find the list of statements to emit
1451 /// for a switch on constant.  See the comment above CollectStatementsForCase
1452 /// for more details.
1453 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1454                                        const llvm::APSInt &ConstantCondValue,
1455                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1456                                        ASTContext &C,
1457                                        const SwitchCase *&ResultCase) {
1458   // First step, find the switch case that is being branched to.  We can do this
1459   // efficiently by scanning the SwitchCase list.
1460   const SwitchCase *Case = S.getSwitchCaseList();
1461   const DefaultStmt *DefaultCase = nullptr;
1462 
1463   for (; Case; Case = Case->getNextSwitchCase()) {
1464     // It's either a default or case.  Just remember the default statement in
1465     // case we're not jumping to any numbered cases.
1466     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1467       DefaultCase = DS;
1468       continue;
1469     }
1470 
1471     // Check to see if this case is the one we're looking for.
1472     const CaseStmt *CS = cast<CaseStmt>(Case);
1473     // Don't handle case ranges yet.
1474     if (CS->getRHS()) return false;
1475 
1476     // If we found our case, remember it as 'case'.
1477     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1478       break;
1479   }
1480 
1481   // If we didn't find a matching case, we use a default if it exists, or we
1482   // elide the whole switch body!
1483   if (!Case) {
1484     // It is safe to elide the body of the switch if it doesn't contain labels
1485     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1486     if (!DefaultCase)
1487       return !CodeGenFunction::ContainsLabel(&S);
1488     Case = DefaultCase;
1489   }
1490 
1491   // Ok, we know which case is being jumped to, try to collect all the
1492   // statements that follow it.  This can fail for a variety of reasons.  Also,
1493   // check to see that the recursive walk actually found our case statement.
1494   // Insane cases like this can fail to find it in the recursive walk since we
1495   // don't handle every stmt kind:
1496   // switch (4) {
1497   //   while (1) {
1498   //     case 4: ...
1499   bool FoundCase = false;
1500   ResultCase = Case;
1501   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1502                                   ResultStmts) != CSFC_Failure &&
1503          FoundCase;
1504 }
1505 
1506 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1507   // Handle nested switch statements.
1508   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1509   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1510   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1511 
1512   // See if we can constant fold the condition of the switch and therefore only
1513   // emit the live case statement (if any) of the switch.
1514   llvm::APSInt ConstantCondValue;
1515   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1516     SmallVector<const Stmt*, 4> CaseStmts;
1517     const SwitchCase *Case = nullptr;
1518     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1519                                    getContext(), Case)) {
1520       if (Case) {
1521         RegionCounter CaseCnt = getPGORegionCounter(Case);
1522         CaseCnt.beginRegion(Builder);
1523       }
1524       RunCleanupsScope ExecutedScope(*this);
1525 
1526       // Emit the condition variable if needed inside the entire cleanup scope
1527       // used by this special case for constant folded switches.
1528       if (S.getConditionVariable())
1529         EmitAutoVarDecl(*S.getConditionVariable());
1530 
1531       // At this point, we are no longer "within" a switch instance, so
1532       // we can temporarily enforce this to ensure that any embedded case
1533       // statements are not emitted.
1534       SwitchInsn = nullptr;
1535 
1536       // Okay, we can dead code eliminate everything except this case.  Emit the
1537       // specified series of statements and we're good.
1538       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1539         EmitStmt(CaseStmts[i]);
1540       RegionCounter ExitCnt = getPGORegionCounter(&S);
1541       ExitCnt.beginRegion(Builder);
1542 
1543       // Now we want to restore the saved switch instance so that nested
1544       // switches continue to function properly
1545       SwitchInsn = SavedSwitchInsn;
1546 
1547       return;
1548     }
1549   }
1550 
1551   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1552 
1553   RunCleanupsScope ConditionScope(*this);
1554   if (S.getConditionVariable())
1555     EmitAutoVarDecl(*S.getConditionVariable());
1556   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1557 
1558   // Create basic block to hold stuff that comes after switch
1559   // statement. We also need to create a default block now so that
1560   // explicit case ranges tests can have a place to jump to on
1561   // failure.
1562   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1563   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1564   if (PGO.haveRegionCounts()) {
1565     // Walk the SwitchCase list to find how many there are.
1566     uint64_t DefaultCount = 0;
1567     unsigned NumCases = 0;
1568     for (const SwitchCase *Case = S.getSwitchCaseList();
1569          Case;
1570          Case = Case->getNextSwitchCase()) {
1571       if (isa<DefaultStmt>(Case))
1572         DefaultCount = getPGORegionCounter(Case).getCount();
1573       NumCases += 1;
1574     }
1575     SwitchWeights = new SmallVector<uint64_t, 16>();
1576     SwitchWeights->reserve(NumCases);
1577     // The default needs to be first. We store the edge count, so we already
1578     // know the right weight.
1579     SwitchWeights->push_back(DefaultCount);
1580   }
1581   CaseRangeBlock = DefaultBlock;
1582 
1583   // Clear the insertion point to indicate we are in unreachable code.
1584   Builder.ClearInsertionPoint();
1585 
1586   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1587   // then reuse last ContinueBlock.
1588   JumpDest OuterContinue;
1589   if (!BreakContinueStack.empty())
1590     OuterContinue = BreakContinueStack.back().ContinueBlock;
1591 
1592   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1593 
1594   // Emit switch body.
1595   EmitStmt(S.getBody());
1596 
1597   BreakContinueStack.pop_back();
1598 
1599   // Update the default block in case explicit case range tests have
1600   // been chained on top.
1601   SwitchInsn->setDefaultDest(CaseRangeBlock);
1602 
1603   // If a default was never emitted:
1604   if (!DefaultBlock->getParent()) {
1605     // If we have cleanups, emit the default block so that there's a
1606     // place to jump through the cleanups from.
1607     if (ConditionScope.requiresCleanups()) {
1608       EmitBlock(DefaultBlock);
1609 
1610     // Otherwise, just forward the default block to the switch end.
1611     } else {
1612       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1613       delete DefaultBlock;
1614     }
1615   }
1616 
1617   ConditionScope.ForceCleanup();
1618 
1619   // Emit continuation.
1620   EmitBlock(SwitchExit.getBlock(), true);
1621   RegionCounter ExitCnt = getPGORegionCounter(&S);
1622   ExitCnt.beginRegion(Builder);
1623 
1624   if (SwitchWeights) {
1625     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1626            "switch weights do not match switch cases");
1627     // If there's only one jump destination there's no sense weighting it.
1628     if (SwitchWeights->size() > 1)
1629       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1630                               PGO.createBranchWeights(*SwitchWeights));
1631     delete SwitchWeights;
1632   }
1633   SwitchInsn = SavedSwitchInsn;
1634   SwitchWeights = SavedSwitchWeights;
1635   CaseRangeBlock = SavedCRBlock;
1636 }
1637 
1638 static std::string
1639 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1640                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1641   std::string Result;
1642 
1643   while (*Constraint) {
1644     switch (*Constraint) {
1645     default:
1646       Result += Target.convertConstraint(Constraint);
1647       break;
1648     // Ignore these
1649     case '*':
1650     case '?':
1651     case '!':
1652     case '=': // Will see this and the following in mult-alt constraints.
1653     case '+':
1654       break;
1655     case '#': // Ignore the rest of the constraint alternative.
1656       while (Constraint[1] && Constraint[1] != ',')
1657         Constraint++;
1658       break;
1659     case ',':
1660       Result += "|";
1661       break;
1662     case 'g':
1663       Result += "imr";
1664       break;
1665     case '[': {
1666       assert(OutCons &&
1667              "Must pass output names to constraints with a symbolic name");
1668       unsigned Index;
1669       bool result = Target.resolveSymbolicName(Constraint,
1670                                                &(*OutCons)[0],
1671                                                OutCons->size(), Index);
1672       assert(result && "Could not resolve symbolic name"); (void)result;
1673       Result += llvm::utostr(Index);
1674       break;
1675     }
1676     }
1677 
1678     Constraint++;
1679   }
1680 
1681   return Result;
1682 }
1683 
1684 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1685 /// as using a particular register add that as a constraint that will be used
1686 /// in this asm stmt.
1687 static std::string
1688 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1689                        const TargetInfo &Target, CodeGenModule &CGM,
1690                        const AsmStmt &Stmt) {
1691   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1692   if (!AsmDeclRef)
1693     return Constraint;
1694   const ValueDecl &Value = *AsmDeclRef->getDecl();
1695   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1696   if (!Variable)
1697     return Constraint;
1698   if (Variable->getStorageClass() != SC_Register)
1699     return Constraint;
1700   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1701   if (!Attr)
1702     return Constraint;
1703   StringRef Register = Attr->getLabel();
1704   assert(Target.isValidGCCRegisterName(Register));
1705   // We're using validateOutputConstraint here because we only care if
1706   // this is a register constraint.
1707   TargetInfo::ConstraintInfo Info(Constraint, "");
1708   if (Target.validateOutputConstraint(Info) &&
1709       !Info.allowsRegister()) {
1710     CGM.ErrorUnsupported(&Stmt, "__asm__");
1711     return Constraint;
1712   }
1713   // Canonicalize the register here before returning it.
1714   Register = Target.getNormalizedGCCRegisterName(Register);
1715   return "{" + Register.str() + "}";
1716 }
1717 
1718 llvm::Value*
1719 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1720                                     LValue InputValue, QualType InputType,
1721                                     std::string &ConstraintStr,
1722                                     SourceLocation Loc) {
1723   llvm::Value *Arg;
1724   if (Info.allowsRegister() || !Info.allowsMemory()) {
1725     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1726       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1727     } else {
1728       llvm::Type *Ty = ConvertType(InputType);
1729       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1730       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1731         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1732         Ty = llvm::PointerType::getUnqual(Ty);
1733 
1734         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1735                                                        Ty));
1736       } else {
1737         Arg = InputValue.getAddress();
1738         ConstraintStr += '*';
1739       }
1740     }
1741   } else {
1742     Arg = InputValue.getAddress();
1743     ConstraintStr += '*';
1744   }
1745 
1746   return Arg;
1747 }
1748 
1749 llvm::Value* CodeGenFunction::EmitAsmInput(
1750                                          const TargetInfo::ConstraintInfo &Info,
1751                                            const Expr *InputExpr,
1752                                            std::string &ConstraintStr) {
1753   if (Info.allowsRegister() || !Info.allowsMemory())
1754     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1755       return EmitScalarExpr(InputExpr);
1756 
1757   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1758   LValue Dest = EmitLValue(InputExpr);
1759   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1760                             InputExpr->getExprLoc());
1761 }
1762 
1763 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1764 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1765 /// integers which are the source locations of the start of each line in the
1766 /// asm.
1767 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1768                                       CodeGenFunction &CGF) {
1769   SmallVector<llvm::Value *, 8> Locs;
1770   // Add the location of the first line to the MDNode.
1771   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1772                                         Str->getLocStart().getRawEncoding()));
1773   StringRef StrVal = Str->getString();
1774   if (!StrVal.empty()) {
1775     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1776     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1777 
1778     // Add the location of the start of each subsequent line of the asm to the
1779     // MDNode.
1780     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1781       if (StrVal[i] != '\n') continue;
1782       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1783                                                       CGF.getTarget());
1784       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1785                                             LineLoc.getRawEncoding()));
1786     }
1787   }
1788 
1789   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1790 }
1791 
1792 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1793   // Assemble the final asm string.
1794   std::string AsmString = S.generateAsmString(getContext());
1795 
1796   // Get all the output and input constraints together.
1797   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1798   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1799 
1800   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1801     StringRef Name;
1802     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1803       Name = GAS->getOutputName(i);
1804     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1805     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1806     assert(IsValid && "Failed to parse output constraint");
1807     OutputConstraintInfos.push_back(Info);
1808   }
1809 
1810   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1811     StringRef Name;
1812     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1813       Name = GAS->getInputName(i);
1814     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1815     bool IsValid =
1816       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1817                                           S.getNumOutputs(), Info);
1818     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1819     InputConstraintInfos.push_back(Info);
1820   }
1821 
1822   std::string Constraints;
1823 
1824   std::vector<LValue> ResultRegDests;
1825   std::vector<QualType> ResultRegQualTys;
1826   std::vector<llvm::Type *> ResultRegTypes;
1827   std::vector<llvm::Type *> ResultTruncRegTypes;
1828   std::vector<llvm::Type *> ArgTypes;
1829   std::vector<llvm::Value*> Args;
1830 
1831   // Keep track of inout constraints.
1832   std::string InOutConstraints;
1833   std::vector<llvm::Value*> InOutArgs;
1834   std::vector<llvm::Type*> InOutArgTypes;
1835 
1836   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1837     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1838 
1839     // Simplify the output constraint.
1840     std::string OutputConstraint(S.getOutputConstraint(i));
1841     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1842                                           getTarget());
1843 
1844     const Expr *OutExpr = S.getOutputExpr(i);
1845     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1846 
1847     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1848                                               getTarget(), CGM, S);
1849 
1850     LValue Dest = EmitLValue(OutExpr);
1851     if (!Constraints.empty())
1852       Constraints += ',';
1853 
1854     // If this is a register output, then make the inline asm return it
1855     // by-value.  If this is a memory result, return the value by-reference.
1856     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1857       Constraints += "=" + OutputConstraint;
1858       ResultRegQualTys.push_back(OutExpr->getType());
1859       ResultRegDests.push_back(Dest);
1860       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1861       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1862 
1863       // If this output is tied to an input, and if the input is larger, then
1864       // we need to set the actual result type of the inline asm node to be the
1865       // same as the input type.
1866       if (Info.hasMatchingInput()) {
1867         unsigned InputNo;
1868         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1869           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1870           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1871             break;
1872         }
1873         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1874 
1875         QualType InputTy = S.getInputExpr(InputNo)->getType();
1876         QualType OutputType = OutExpr->getType();
1877 
1878         uint64_t InputSize = getContext().getTypeSize(InputTy);
1879         if (getContext().getTypeSize(OutputType) < InputSize) {
1880           // Form the asm to return the value as a larger integer or fp type.
1881           ResultRegTypes.back() = ConvertType(InputTy);
1882         }
1883       }
1884       if (llvm::Type* AdjTy =
1885             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1886                                                  ResultRegTypes.back()))
1887         ResultRegTypes.back() = AdjTy;
1888       else {
1889         CGM.getDiags().Report(S.getAsmLoc(),
1890                               diag::err_asm_invalid_type_in_input)
1891             << OutExpr->getType() << OutputConstraint;
1892       }
1893     } else {
1894       ArgTypes.push_back(Dest.getAddress()->getType());
1895       Args.push_back(Dest.getAddress());
1896       Constraints += "=*";
1897       Constraints += OutputConstraint;
1898     }
1899 
1900     if (Info.isReadWrite()) {
1901       InOutConstraints += ',';
1902 
1903       const Expr *InputExpr = S.getOutputExpr(i);
1904       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1905                                             InOutConstraints,
1906                                             InputExpr->getExprLoc());
1907 
1908       if (llvm::Type* AdjTy =
1909           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1910                                                Arg->getType()))
1911         Arg = Builder.CreateBitCast(Arg, AdjTy);
1912 
1913       if (Info.allowsRegister())
1914         InOutConstraints += llvm::utostr(i);
1915       else
1916         InOutConstraints += OutputConstraint;
1917 
1918       InOutArgTypes.push_back(Arg->getType());
1919       InOutArgs.push_back(Arg);
1920     }
1921   }
1922 
1923   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1924   // to the return value slot. Only do this when returning in registers.
1925   if (isa<MSAsmStmt>(&S)) {
1926     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1927     if (RetAI.isDirect() || RetAI.isExtend()) {
1928       // Make a fake lvalue for the return value slot.
1929       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1930       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1931           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1932           ResultRegDests, AsmString, S.getNumOutputs());
1933       SawAsmBlock = true;
1934     }
1935   }
1936 
1937   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1938     const Expr *InputExpr = S.getInputExpr(i);
1939 
1940     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1941 
1942     if (!Constraints.empty())
1943       Constraints += ',';
1944 
1945     // Simplify the input constraint.
1946     std::string InputConstraint(S.getInputConstraint(i));
1947     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1948                                          &OutputConstraintInfos);
1949 
1950     InputConstraint =
1951       AddVariableConstraints(InputConstraint,
1952                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1953                             getTarget(), CGM, S);
1954 
1955     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1956 
1957     // If this input argument is tied to a larger output result, extend the
1958     // input to be the same size as the output.  The LLVM backend wants to see
1959     // the input and output of a matching constraint be the same size.  Note
1960     // that GCC does not define what the top bits are here.  We use zext because
1961     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1962     if (Info.hasTiedOperand()) {
1963       unsigned Output = Info.getTiedOperand();
1964       QualType OutputType = S.getOutputExpr(Output)->getType();
1965       QualType InputTy = InputExpr->getType();
1966 
1967       if (getContext().getTypeSize(OutputType) >
1968           getContext().getTypeSize(InputTy)) {
1969         // Use ptrtoint as appropriate so that we can do our extension.
1970         if (isa<llvm::PointerType>(Arg->getType()))
1971           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1972         llvm::Type *OutputTy = ConvertType(OutputType);
1973         if (isa<llvm::IntegerType>(OutputTy))
1974           Arg = Builder.CreateZExt(Arg, OutputTy);
1975         else if (isa<llvm::PointerType>(OutputTy))
1976           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1977         else {
1978           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1979           Arg = Builder.CreateFPExt(Arg, OutputTy);
1980         }
1981       }
1982     }
1983     if (llvm::Type* AdjTy =
1984               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1985                                                    Arg->getType()))
1986       Arg = Builder.CreateBitCast(Arg, AdjTy);
1987     else
1988       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1989           << InputExpr->getType() << InputConstraint;
1990 
1991     ArgTypes.push_back(Arg->getType());
1992     Args.push_back(Arg);
1993     Constraints += InputConstraint;
1994   }
1995 
1996   // Append the "input" part of inout constraints last.
1997   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1998     ArgTypes.push_back(InOutArgTypes[i]);
1999     Args.push_back(InOutArgs[i]);
2000   }
2001   Constraints += InOutConstraints;
2002 
2003   // Clobbers
2004   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2005     StringRef Clobber = S.getClobber(i);
2006 
2007     if (Clobber != "memory" && Clobber != "cc")
2008       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2009 
2010     if (!Constraints.empty())
2011       Constraints += ',';
2012 
2013     Constraints += "~{";
2014     Constraints += Clobber;
2015     Constraints += '}';
2016   }
2017 
2018   // Add machine specific clobbers
2019   std::string MachineClobbers = getTarget().getClobbers();
2020   if (!MachineClobbers.empty()) {
2021     if (!Constraints.empty())
2022       Constraints += ',';
2023     Constraints += MachineClobbers;
2024   }
2025 
2026   llvm::Type *ResultType;
2027   if (ResultRegTypes.empty())
2028     ResultType = VoidTy;
2029   else if (ResultRegTypes.size() == 1)
2030     ResultType = ResultRegTypes[0];
2031   else
2032     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2033 
2034   llvm::FunctionType *FTy =
2035     llvm::FunctionType::get(ResultType, ArgTypes, false);
2036 
2037   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2038   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2039     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2040   llvm::InlineAsm *IA =
2041     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2042                          /* IsAlignStack */ false, AsmDialect);
2043   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2044   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2045                        llvm::Attribute::NoUnwind);
2046 
2047   // Slap the source location of the inline asm into a !srcloc metadata on the
2048   // call.
2049   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2050     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2051                                                    *this));
2052   } else {
2053     // At least put the line number on MS inline asm blobs.
2054     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2055     Result->setMetadata("srcloc", llvm::MDNode::get(getLLVMContext(), Loc));
2056   }
2057 
2058   // Extract all of the register value results from the asm.
2059   std::vector<llvm::Value*> RegResults;
2060   if (ResultRegTypes.size() == 1) {
2061     RegResults.push_back(Result);
2062   } else {
2063     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2064       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2065       RegResults.push_back(Tmp);
2066     }
2067   }
2068 
2069   assert(RegResults.size() == ResultRegTypes.size());
2070   assert(RegResults.size() == ResultTruncRegTypes.size());
2071   assert(RegResults.size() == ResultRegDests.size());
2072   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2073     llvm::Value *Tmp = RegResults[i];
2074 
2075     // If the result type of the LLVM IR asm doesn't match the result type of
2076     // the expression, do the conversion.
2077     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2078       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2079 
2080       // Truncate the integer result to the right size, note that TruncTy can be
2081       // a pointer.
2082       if (TruncTy->isFloatingPointTy())
2083         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2084       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2085         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2086         Tmp = Builder.CreateTrunc(Tmp,
2087                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2088         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2089       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2090         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2091         Tmp = Builder.CreatePtrToInt(Tmp,
2092                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2093         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2094       } else if (TruncTy->isIntegerTy()) {
2095         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2096       } else if (TruncTy->isVectorTy()) {
2097         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2098       }
2099     }
2100 
2101     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2102   }
2103 }
2104 
2105 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
2106   const RecordDecl *RD = S.getCapturedRecordDecl();
2107   QualType RecordTy = CGF.getContext().getRecordType(RD);
2108 
2109   // Initialize the captured struct.
2110   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
2111                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2112 
2113   RecordDecl::field_iterator CurField = RD->field_begin();
2114   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
2115                                            E = S.capture_init_end();
2116        I != E; ++I, ++CurField) {
2117     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
2118     CGF.EmitInitializerForField(*CurField, LV, *I, None);
2119   }
2120 
2121   return SlotLV;
2122 }
2123 
2124 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) {
2125   for (auto &C : S.captures()) {
2126     if (C.capturesVariable()) {
2127       QualType QTy;
2128       auto VD = C.getCapturedVar();
2129       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
2130         QTy = PVD->getOriginalType();
2131       else
2132         QTy = VD->getType();
2133       if (QTy->isVariablyModifiedType()) {
2134         CGF.EmitVariablyModifiedType(QTy);
2135       }
2136     }
2137   }
2138 }
2139 
2140 /// Generate an outlined function for the body of a CapturedStmt, store any
2141 /// captured variables into the captured struct, and call the outlined function.
2142 llvm::Function *
2143 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2144   LValue CapStruct = InitCapturedStruct(*this, S);
2145 
2146   // Emit the CapturedDecl
2147   CodeGenFunction CGF(CGM, true);
2148   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
2149   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2150   delete CGF.CapturedStmtInfo;
2151 
2152   // Emit call to the helper function.
2153   EmitCallOrInvoke(F, CapStruct.getAddress());
2154 
2155   return F;
2156 }
2157 
2158 llvm::Value *
2159 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2160   LValue CapStruct = InitCapturedStruct(*this, S);
2161   return CapStruct.getAddress();
2162 }
2163 
2164 /// Creates the outlined function for a CapturedStmt.
2165 llvm::Function *
2166 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2167   assert(CapturedStmtInfo &&
2168     "CapturedStmtInfo should be set when generating the captured function");
2169   const CapturedDecl *CD = S.getCapturedDecl();
2170   const RecordDecl *RD = S.getCapturedRecordDecl();
2171   SourceLocation Loc = S.getLocStart();
2172   assert(CD->hasBody() && "missing CapturedDecl body");
2173 
2174   // Build the argument list.
2175   ASTContext &Ctx = CGM.getContext();
2176   FunctionArgList Args;
2177   Args.append(CD->param_begin(), CD->param_end());
2178 
2179   // Create the function declaration.
2180   FunctionType::ExtInfo ExtInfo;
2181   const CGFunctionInfo &FuncInfo =
2182       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2183                                                     /*IsVariadic=*/false);
2184   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2185 
2186   llvm::Function *F =
2187     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2188                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2189   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2190 
2191   // Generate the function.
2192   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2193                 CD->getLocation(),
2194                 CD->getBody()->getLocStart());
2195   // Set the context parameter in CapturedStmtInfo.
2196   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
2197   assert(DeclPtr && "missing context parameter for CapturedStmt");
2198   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2199 
2200   // Initialize variable-length arrays.
2201   InitVLACaptures(*this, S);
2202 
2203   // If 'this' is captured, load it into CXXThisValue.
2204   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2205     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2206     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2207                                            Ctx.getTagDeclType(RD));
2208     LValue ThisLValue = EmitLValueForField(LV, FD);
2209     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2210   }
2211 
2212   PGO.assignRegionCounters(CD, F);
2213   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2214   FinishFunction(CD->getBodyRBrace());
2215   PGO.emitInstrumentationData();
2216   PGO.destroyRegionCounters();
2217 
2218   return F;
2219 }
2220