1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106 
107     EmitIgnoredExpr(cast<Expr>(S));
108 
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111 
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130 
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138 
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140 
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CoroutineBodyStmtClass:
145   case Stmt::CoreturnStmtClass:
146     CGM.ErrorUnsupported(S, "coroutine");
147     break;
148   case Stmt::CapturedStmtClass: {
149     const CapturedStmt *CS = cast<CapturedStmt>(S);
150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
151     }
152     break;
153   case Stmt::ObjCAtTryStmtClass:
154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
155     break;
156   case Stmt::ObjCAtCatchStmtClass:
157     llvm_unreachable(
158                     "@catch statements should be handled by EmitObjCAtTryStmt");
159   case Stmt::ObjCAtFinallyStmtClass:
160     llvm_unreachable(
161                   "@finally statements should be handled by EmitObjCAtTryStmt");
162   case Stmt::ObjCAtThrowStmtClass:
163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
164     break;
165   case Stmt::ObjCAtSynchronizedStmtClass:
166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
167     break;
168   case Stmt::ObjCForCollectionStmtClass:
169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
170     break;
171   case Stmt::ObjCAutoreleasePoolStmtClass:
172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
173     break;
174 
175   case Stmt::CXXTryStmtClass:
176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
177     break;
178   case Stmt::CXXForRangeStmtClass:
179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
180     break;
181   case Stmt::SEHTryStmtClass:
182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
183     break;
184   case Stmt::OMPParallelDirectiveClass:
185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
186     break;
187   case Stmt::OMPSimdDirectiveClass:
188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
189     break;
190   case Stmt::OMPForDirectiveClass:
191     EmitOMPForDirective(cast<OMPForDirective>(*S));
192     break;
193   case Stmt::OMPForSimdDirectiveClass:
194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
195     break;
196   case Stmt::OMPSectionsDirectiveClass:
197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
198     break;
199   case Stmt::OMPSectionDirectiveClass:
200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
201     break;
202   case Stmt::OMPSingleDirectiveClass:
203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
204     break;
205   case Stmt::OMPMasterDirectiveClass:
206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
207     break;
208   case Stmt::OMPCriticalDirectiveClass:
209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
210     break;
211   case Stmt::OMPParallelForDirectiveClass:
212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
213     break;
214   case Stmt::OMPParallelForSimdDirectiveClass:
215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
216     break;
217   case Stmt::OMPParallelSectionsDirectiveClass:
218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
219     break;
220   case Stmt::OMPTaskDirectiveClass:
221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
222     break;
223   case Stmt::OMPTaskyieldDirectiveClass:
224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
225     break;
226   case Stmt::OMPBarrierDirectiveClass:
227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
228     break;
229   case Stmt::OMPTaskwaitDirectiveClass:
230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
231     break;
232   case Stmt::OMPTaskgroupDirectiveClass:
233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
234     break;
235   case Stmt::OMPFlushDirectiveClass:
236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
237     break;
238   case Stmt::OMPOrderedDirectiveClass:
239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
240     break;
241   case Stmt::OMPAtomicDirectiveClass:
242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
243     break;
244   case Stmt::OMPTargetDirectiveClass:
245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
246     break;
247   case Stmt::OMPTeamsDirectiveClass:
248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
249     break;
250   case Stmt::OMPCancellationPointDirectiveClass:
251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
252     break;
253   case Stmt::OMPCancelDirectiveClass:
254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
255     break;
256   case Stmt::OMPTargetDataDirectiveClass:
257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
258     break;
259   case Stmt::OMPTargetEnterDataDirectiveClass:
260     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
261     break;
262   case Stmt::OMPTargetExitDataDirectiveClass:
263     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
264     break;
265   case Stmt::OMPTargetParallelDirectiveClass:
266     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
267     break;
268   case Stmt::OMPTargetParallelForDirectiveClass:
269     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
270     break;
271   case Stmt::OMPTaskLoopDirectiveClass:
272     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
273     break;
274   case Stmt::OMPTaskLoopSimdDirectiveClass:
275     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
276     break;
277   case Stmt::OMPDistributeDirectiveClass:
278     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
279     break;
280   case Stmt::OMPTargetUpdateDirectiveClass:
281     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
282     break;
283   }
284 }
285 
286 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
287   switch (S->getStmtClass()) {
288   default: return false;
289   case Stmt::NullStmtClass: break;
290   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
291   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
292   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
293   case Stmt::AttributedStmtClass:
294                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
295   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
296   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
297   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
298   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
299   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
300   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
301   }
302 
303   return true;
304 }
305 
306 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
307 /// this captures the expression result of the last sub-statement and returns it
308 /// (for use by the statement expression extension).
309 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
310                                           AggValueSlot AggSlot) {
311   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
312                              "LLVM IR generation of compound statement ('{}')");
313 
314   // Keep track of the current cleanup stack depth, including debug scopes.
315   LexicalScope Scope(*this, S.getSourceRange());
316 
317   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
318 }
319 
320 Address
321 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
322                                               bool GetLast,
323                                               AggValueSlot AggSlot) {
324 
325   for (CompoundStmt::const_body_iterator I = S.body_begin(),
326        E = S.body_end()-GetLast; I != E; ++I)
327     EmitStmt(*I);
328 
329   Address RetAlloca = Address::invalid();
330   if (GetLast) {
331     // We have to special case labels here.  They are statements, but when put
332     // at the end of a statement expression, they yield the value of their
333     // subexpression.  Handle this by walking through all labels we encounter,
334     // emitting them before we evaluate the subexpr.
335     const Stmt *LastStmt = S.body_back();
336     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
337       EmitLabel(LS->getDecl());
338       LastStmt = LS->getSubStmt();
339     }
340 
341     EnsureInsertPoint();
342 
343     QualType ExprTy = cast<Expr>(LastStmt)->getType();
344     if (hasAggregateEvaluationKind(ExprTy)) {
345       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
346     } else {
347       // We can't return an RValue here because there might be cleanups at
348       // the end of the StmtExpr.  Because of that, we have to emit the result
349       // here into a temporary alloca.
350       RetAlloca = CreateMemTemp(ExprTy);
351       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
352                        /*IsInit*/false);
353     }
354 
355   }
356 
357   return RetAlloca;
358 }
359 
360 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
361   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
362 
363   // If there is a cleanup stack, then we it isn't worth trying to
364   // simplify this block (we would need to remove it from the scope map
365   // and cleanup entry).
366   if (!EHStack.empty())
367     return;
368 
369   // Can only simplify direct branches.
370   if (!BI || !BI->isUnconditional())
371     return;
372 
373   // Can only simplify empty blocks.
374   if (BI->getIterator() != BB->begin())
375     return;
376 
377   BB->replaceAllUsesWith(BI->getSuccessor(0));
378   BI->eraseFromParent();
379   BB->eraseFromParent();
380 }
381 
382 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
383   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
384 
385   // Fall out of the current block (if necessary).
386   EmitBranch(BB);
387 
388   if (IsFinished && BB->use_empty()) {
389     delete BB;
390     return;
391   }
392 
393   // Place the block after the current block, if possible, or else at
394   // the end of the function.
395   if (CurBB && CurBB->getParent())
396     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
397   else
398     CurFn->getBasicBlockList().push_back(BB);
399   Builder.SetInsertPoint(BB);
400 }
401 
402 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
403   // Emit a branch from the current block to the target one if this
404   // was a real block.  If this was just a fall-through block after a
405   // terminator, don't emit it.
406   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
407 
408   if (!CurBB || CurBB->getTerminator()) {
409     // If there is no insert point or the previous block is already
410     // terminated, don't touch it.
411   } else {
412     // Otherwise, create a fall-through branch.
413     Builder.CreateBr(Target);
414   }
415 
416   Builder.ClearInsertionPoint();
417 }
418 
419 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
420   bool inserted = false;
421   for (llvm::User *u : block->users()) {
422     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
423       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
424                                              block);
425       inserted = true;
426       break;
427     }
428   }
429 
430   if (!inserted)
431     CurFn->getBasicBlockList().push_back(block);
432 
433   Builder.SetInsertPoint(block);
434 }
435 
436 CodeGenFunction::JumpDest
437 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
438   JumpDest &Dest = LabelMap[D];
439   if (Dest.isValid()) return Dest;
440 
441   // Create, but don't insert, the new block.
442   Dest = JumpDest(createBasicBlock(D->getName()),
443                   EHScopeStack::stable_iterator::invalid(),
444                   NextCleanupDestIndex++);
445   return Dest;
446 }
447 
448 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
449   // Add this label to the current lexical scope if we're within any
450   // normal cleanups.  Jumps "in" to this label --- when permitted by
451   // the language --- may need to be routed around such cleanups.
452   if (EHStack.hasNormalCleanups() && CurLexicalScope)
453     CurLexicalScope->addLabel(D);
454 
455   JumpDest &Dest = LabelMap[D];
456 
457   // If we didn't need a forward reference to this label, just go
458   // ahead and create a destination at the current scope.
459   if (!Dest.isValid()) {
460     Dest = getJumpDestInCurrentScope(D->getName());
461 
462   // Otherwise, we need to give this label a target depth and remove
463   // it from the branch-fixups list.
464   } else {
465     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
466     Dest.setScopeDepth(EHStack.stable_begin());
467     ResolveBranchFixups(Dest.getBlock());
468   }
469 
470   EmitBlock(Dest.getBlock());
471   incrementProfileCounter(D->getStmt());
472 }
473 
474 /// Change the cleanup scope of the labels in this lexical scope to
475 /// match the scope of the enclosing context.
476 void CodeGenFunction::LexicalScope::rescopeLabels() {
477   assert(!Labels.empty());
478   EHScopeStack::stable_iterator innermostScope
479     = CGF.EHStack.getInnermostNormalCleanup();
480 
481   // Change the scope depth of all the labels.
482   for (SmallVectorImpl<const LabelDecl*>::const_iterator
483          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
484     assert(CGF.LabelMap.count(*i));
485     JumpDest &dest = CGF.LabelMap.find(*i)->second;
486     assert(dest.getScopeDepth().isValid());
487     assert(innermostScope.encloses(dest.getScopeDepth()));
488     dest.setScopeDepth(innermostScope);
489   }
490 
491   // Reparent the labels if the new scope also has cleanups.
492   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
493     ParentScope->Labels.append(Labels.begin(), Labels.end());
494   }
495 }
496 
497 
498 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
499   EmitLabel(S.getDecl());
500   EmitStmt(S.getSubStmt());
501 }
502 
503 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
504   const Stmt *SubStmt = S.getSubStmt();
505   switch (SubStmt->getStmtClass()) {
506   case Stmt::DoStmtClass:
507     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
508     break;
509   case Stmt::ForStmtClass:
510     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
511     break;
512   case Stmt::WhileStmtClass:
513     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
514     break;
515   case Stmt::CXXForRangeStmtClass:
516     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
517     break;
518   default:
519     EmitStmt(SubStmt);
520   }
521 }
522 
523 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
524   // If this code is reachable then emit a stop point (if generating
525   // debug info). We have to do this ourselves because we are on the
526   // "simple" statement path.
527   if (HaveInsertPoint())
528     EmitStopPoint(&S);
529 
530   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
531 }
532 
533 
534 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
535   if (const LabelDecl *Target = S.getConstantTarget()) {
536     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
537     return;
538   }
539 
540   // Ensure that we have an i8* for our PHI node.
541   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
542                                          Int8PtrTy, "addr");
543   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
544 
545   // Get the basic block for the indirect goto.
546   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
547 
548   // The first instruction in the block has to be the PHI for the switch dest,
549   // add an entry for this branch.
550   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
551 
552   EmitBranch(IndGotoBB);
553 }
554 
555 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
556   // C99 6.8.4.1: The first substatement is executed if the expression compares
557   // unequal to 0.  The condition must be a scalar type.
558   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
559 
560   if (S.getConditionVariable())
561     EmitAutoVarDecl(*S.getConditionVariable());
562 
563   // If the condition constant folds and can be elided, try to avoid emitting
564   // the condition and the dead arm of the if/else.
565   bool CondConstant;
566   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
567     // Figure out which block (then or else) is executed.
568     const Stmt *Executed = S.getThen();
569     const Stmt *Skipped  = S.getElse();
570     if (!CondConstant)  // Condition false?
571       std::swap(Executed, Skipped);
572 
573     // If the skipped block has no labels in it, just emit the executed block.
574     // This avoids emitting dead code and simplifies the CFG substantially.
575     if (!ContainsLabel(Skipped)) {
576       if (CondConstant)
577         incrementProfileCounter(&S);
578       if (Executed) {
579         RunCleanupsScope ExecutedScope(*this);
580         EmitStmt(Executed);
581       }
582       return;
583     }
584   }
585 
586   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
587   // the conditional branch.
588   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
589   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
590   llvm::BasicBlock *ElseBlock = ContBlock;
591   if (S.getElse())
592     ElseBlock = createBasicBlock("if.else");
593 
594   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
595                        getProfileCount(S.getThen()));
596 
597   // Emit the 'then' code.
598   EmitBlock(ThenBlock);
599   incrementProfileCounter(&S);
600   {
601     RunCleanupsScope ThenScope(*this);
602     EmitStmt(S.getThen());
603   }
604   EmitBranch(ContBlock);
605 
606   // Emit the 'else' code if present.
607   if (const Stmt *Else = S.getElse()) {
608     {
609       // There is no need to emit line number for an unconditional branch.
610       auto NL = ApplyDebugLocation::CreateEmpty(*this);
611       EmitBlock(ElseBlock);
612     }
613     {
614       RunCleanupsScope ElseScope(*this);
615       EmitStmt(Else);
616     }
617     {
618       // There is no need to emit line number for an unconditional branch.
619       auto NL = ApplyDebugLocation::CreateEmpty(*this);
620       EmitBranch(ContBlock);
621     }
622   }
623 
624   // Emit the continuation block for code after the if.
625   EmitBlock(ContBlock, true);
626 }
627 
628 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
629                                     ArrayRef<const Attr *> WhileAttrs) {
630   // Emit the header for the loop, which will also become
631   // the continue target.
632   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
633   EmitBlock(LoopHeader.getBlock());
634 
635   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
636                  Builder.getCurrentDebugLocation());
637 
638   // Create an exit block for when the condition fails, which will
639   // also become the break target.
640   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
641 
642   // Store the blocks to use for break and continue.
643   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
644 
645   // C++ [stmt.while]p2:
646   //   When the condition of a while statement is a declaration, the
647   //   scope of the variable that is declared extends from its point
648   //   of declaration (3.3.2) to the end of the while statement.
649   //   [...]
650   //   The object created in a condition is destroyed and created
651   //   with each iteration of the loop.
652   RunCleanupsScope ConditionScope(*this);
653 
654   if (S.getConditionVariable())
655     EmitAutoVarDecl(*S.getConditionVariable());
656 
657   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
658   // evaluation of the controlling expression takes place before each
659   // execution of the loop body.
660   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
661 
662   // while(1) is common, avoid extra exit blocks.  Be sure
663   // to correctly handle break/continue though.
664   bool EmitBoolCondBranch = true;
665   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
666     if (C->isOne())
667       EmitBoolCondBranch = false;
668 
669   // As long as the condition is true, go to the loop body.
670   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
671   if (EmitBoolCondBranch) {
672     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
673     if (ConditionScope.requiresCleanups())
674       ExitBlock = createBasicBlock("while.exit");
675     Builder.CreateCondBr(
676         BoolCondVal, LoopBody, ExitBlock,
677         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
678 
679     if (ExitBlock != LoopExit.getBlock()) {
680       EmitBlock(ExitBlock);
681       EmitBranchThroughCleanup(LoopExit);
682     }
683   }
684 
685   // Emit the loop body.  We have to emit this in a cleanup scope
686   // because it might be a singleton DeclStmt.
687   {
688     RunCleanupsScope BodyScope(*this);
689     EmitBlock(LoopBody);
690     incrementProfileCounter(&S);
691     EmitStmt(S.getBody());
692   }
693 
694   BreakContinueStack.pop_back();
695 
696   // Immediately force cleanup.
697   ConditionScope.ForceCleanup();
698 
699   EmitStopPoint(&S);
700   // Branch to the loop header again.
701   EmitBranch(LoopHeader.getBlock());
702 
703   LoopStack.pop();
704 
705   // Emit the exit block.
706   EmitBlock(LoopExit.getBlock(), true);
707 
708   // The LoopHeader typically is just a branch if we skipped emitting
709   // a branch, try to erase it.
710   if (!EmitBoolCondBranch)
711     SimplifyForwardingBlocks(LoopHeader.getBlock());
712 }
713 
714 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
715                                  ArrayRef<const Attr *> DoAttrs) {
716   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
717   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
718 
719   uint64_t ParentCount = getCurrentProfileCount();
720 
721   // Store the blocks to use for break and continue.
722   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
723 
724   // Emit the body of the loop.
725   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
726 
727   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
728                  Builder.getCurrentDebugLocation());
729 
730   EmitBlockWithFallThrough(LoopBody, &S);
731   {
732     RunCleanupsScope BodyScope(*this);
733     EmitStmt(S.getBody());
734   }
735 
736   EmitBlock(LoopCond.getBlock());
737 
738   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
739   // after each execution of the loop body."
740 
741   // Evaluate the conditional in the while header.
742   // C99 6.8.5p2/p4: The first substatement is executed if the expression
743   // compares unequal to 0.  The condition must be a scalar type.
744   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
745 
746   BreakContinueStack.pop_back();
747 
748   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
749   // to correctly handle break/continue though.
750   bool EmitBoolCondBranch = true;
751   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
752     if (C->isZero())
753       EmitBoolCondBranch = false;
754 
755   // As long as the condition is true, iterate the loop.
756   if (EmitBoolCondBranch) {
757     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
758     Builder.CreateCondBr(
759         BoolCondVal, LoopBody, LoopExit.getBlock(),
760         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
761   }
762 
763   LoopStack.pop();
764 
765   // Emit the exit block.
766   EmitBlock(LoopExit.getBlock());
767 
768   // The DoCond block typically is just a branch if we skipped
769   // emitting a branch, try to erase it.
770   if (!EmitBoolCondBranch)
771     SimplifyForwardingBlocks(LoopCond.getBlock());
772 }
773 
774 void CodeGenFunction::EmitForStmt(const ForStmt &S,
775                                   ArrayRef<const Attr *> ForAttrs) {
776   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
777 
778   LexicalScope ForScope(*this, S.getSourceRange());
779 
780   llvm::DebugLoc DL = Builder.getCurrentDebugLocation();
781 
782   // Evaluate the first part before the loop.
783   if (S.getInit())
784     EmitStmt(S.getInit());
785 
786   // Start the loop with a block that tests the condition.
787   // If there's an increment, the continue scope will be overwritten
788   // later.
789   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
790   llvm::BasicBlock *CondBlock = Continue.getBlock();
791   EmitBlock(CondBlock);
792 
793   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL);
794 
795   // If the for loop doesn't have an increment we can just use the
796   // condition as the continue block.  Otherwise we'll need to create
797   // a block for it (in the current scope, i.e. in the scope of the
798   // condition), and that we will become our continue block.
799   if (S.getInc())
800     Continue = getJumpDestInCurrentScope("for.inc");
801 
802   // Store the blocks to use for break and continue.
803   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
804 
805   // Create a cleanup scope for the condition variable cleanups.
806   LexicalScope ConditionScope(*this, S.getSourceRange());
807 
808   if (S.getCond()) {
809     // If the for statement has a condition scope, emit the local variable
810     // declaration.
811     if (S.getConditionVariable()) {
812       EmitAutoVarDecl(*S.getConditionVariable());
813     }
814 
815     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
816     // If there are any cleanups between here and the loop-exit scope,
817     // create a block to stage a loop exit along.
818     if (ForScope.requiresCleanups())
819       ExitBlock = createBasicBlock("for.cond.cleanup");
820 
821     // As long as the condition is true, iterate the loop.
822     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
823 
824     // C99 6.8.5p2/p4: The first substatement is executed if the expression
825     // compares unequal to 0.  The condition must be a scalar type.
826     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
827     Builder.CreateCondBr(
828         BoolCondVal, ForBody, ExitBlock,
829         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
830 
831     if (ExitBlock != LoopExit.getBlock()) {
832       EmitBlock(ExitBlock);
833       EmitBranchThroughCleanup(LoopExit);
834     }
835 
836     EmitBlock(ForBody);
837   } else {
838     // Treat it as a non-zero constant.  Don't even create a new block for the
839     // body, just fall into it.
840   }
841   incrementProfileCounter(&S);
842 
843   {
844     // Create a separate cleanup scope for the body, in case it is not
845     // a compound statement.
846     RunCleanupsScope BodyScope(*this);
847     EmitStmt(S.getBody());
848   }
849 
850   // If there is an increment, emit it next.
851   if (S.getInc()) {
852     EmitBlock(Continue.getBlock());
853     EmitStmt(S.getInc());
854   }
855 
856   BreakContinueStack.pop_back();
857 
858   ConditionScope.ForceCleanup();
859 
860   EmitStopPoint(&S);
861   EmitBranch(CondBlock);
862 
863   ForScope.ForceCleanup();
864 
865   LoopStack.pop();
866 
867   // Emit the fall-through block.
868   EmitBlock(LoopExit.getBlock(), true);
869 }
870 
871 void
872 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
873                                      ArrayRef<const Attr *> ForAttrs) {
874   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
875 
876   LexicalScope ForScope(*this, S.getSourceRange());
877 
878   llvm::DebugLoc DL = Builder.getCurrentDebugLocation();
879 
880   // Evaluate the first pieces before the loop.
881   EmitStmt(S.getRangeStmt());
882   EmitStmt(S.getBeginStmt());
883   EmitStmt(S.getEndStmt());
884 
885   // Start the loop with a block that tests the condition.
886   // If there's an increment, the continue scope will be overwritten
887   // later.
888   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
889   EmitBlock(CondBlock);
890 
891   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL);
892 
893   // If there are any cleanups between here and the loop-exit scope,
894   // create a block to stage a loop exit along.
895   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
896   if (ForScope.requiresCleanups())
897     ExitBlock = createBasicBlock("for.cond.cleanup");
898 
899   // The loop body, consisting of the specified body and the loop variable.
900   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
901 
902   // The body is executed if the expression, contextually converted
903   // to bool, is true.
904   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
905   Builder.CreateCondBr(
906       BoolCondVal, ForBody, ExitBlock,
907       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
908 
909   if (ExitBlock != LoopExit.getBlock()) {
910     EmitBlock(ExitBlock);
911     EmitBranchThroughCleanup(LoopExit);
912   }
913 
914   EmitBlock(ForBody);
915   incrementProfileCounter(&S);
916 
917   // Create a block for the increment. In case of a 'continue', we jump there.
918   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
919 
920   // Store the blocks to use for break and continue.
921   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
922 
923   {
924     // Create a separate cleanup scope for the loop variable and body.
925     LexicalScope BodyScope(*this, S.getSourceRange());
926     EmitStmt(S.getLoopVarStmt());
927     EmitStmt(S.getBody());
928   }
929 
930   EmitStopPoint(&S);
931   // If there is an increment, emit it next.
932   EmitBlock(Continue.getBlock());
933   EmitStmt(S.getInc());
934 
935   BreakContinueStack.pop_back();
936 
937   EmitBranch(CondBlock);
938 
939   ForScope.ForceCleanup();
940 
941   LoopStack.pop();
942 
943   // Emit the fall-through block.
944   EmitBlock(LoopExit.getBlock(), true);
945 }
946 
947 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
948   if (RV.isScalar()) {
949     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
950   } else if (RV.isAggregate()) {
951     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
952   } else {
953     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
954                        /*init*/ true);
955   }
956   EmitBranchThroughCleanup(ReturnBlock);
957 }
958 
959 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
960 /// if the function returns void, or may be missing one if the function returns
961 /// non-void.  Fun stuff :).
962 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
963   // Returning from an outlined SEH helper is UB, and we already warn on it.
964   if (IsOutlinedSEHHelper) {
965     Builder.CreateUnreachable();
966     Builder.ClearInsertionPoint();
967   }
968 
969   // Emit the result value, even if unused, to evalute the side effects.
970   const Expr *RV = S.getRetValue();
971 
972   // Treat block literals in a return expression as if they appeared
973   // in their own scope.  This permits a small, easily-implemented
974   // exception to our over-conservative rules about not jumping to
975   // statements following block literals with non-trivial cleanups.
976   RunCleanupsScope cleanupScope(*this);
977   if (const ExprWithCleanups *cleanups =
978         dyn_cast_or_null<ExprWithCleanups>(RV)) {
979     enterFullExpression(cleanups);
980     RV = cleanups->getSubExpr();
981   }
982 
983   // FIXME: Clean this up by using an LValue for ReturnTemp,
984   // EmitStoreThroughLValue, and EmitAnyExpr.
985   if (getLangOpts().ElideConstructors &&
986       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
987     // Apply the named return value optimization for this return statement,
988     // which means doing nothing: the appropriate result has already been
989     // constructed into the NRVO variable.
990 
991     // If there is an NRVO flag for this variable, set it to 1 into indicate
992     // that the cleanup code should not destroy the variable.
993     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
994       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
995   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
996     // Make sure not to return anything, but evaluate the expression
997     // for side effects.
998     if (RV)
999       EmitAnyExpr(RV);
1000   } else if (!RV) {
1001     // Do nothing (return value is left uninitialized)
1002   } else if (FnRetTy->isReferenceType()) {
1003     // If this function returns a reference, take the address of the expression
1004     // rather than the value.
1005     RValue Result = EmitReferenceBindingToExpr(RV);
1006     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1007   } else {
1008     switch (getEvaluationKind(RV->getType())) {
1009     case TEK_Scalar:
1010       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1011       break;
1012     case TEK_Complex:
1013       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1014                                 /*isInit*/ true);
1015       break;
1016     case TEK_Aggregate:
1017       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
1018                                             Qualifiers(),
1019                                             AggValueSlot::IsDestructed,
1020                                             AggValueSlot::DoesNotNeedGCBarriers,
1021                                             AggValueSlot::IsNotAliased));
1022       break;
1023     }
1024   }
1025 
1026   ++NumReturnExprs;
1027   if (!RV || RV->isEvaluatable(getContext()))
1028     ++NumSimpleReturnExprs;
1029 
1030   cleanupScope.ForceCleanup();
1031   EmitBranchThroughCleanup(ReturnBlock);
1032 }
1033 
1034 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1035   // As long as debug info is modeled with instructions, we have to ensure we
1036   // have a place to insert here and write the stop point here.
1037   if (HaveInsertPoint())
1038     EmitStopPoint(&S);
1039 
1040   for (const auto *I : S.decls())
1041     EmitDecl(*I);
1042 }
1043 
1044 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1045   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1046 
1047   // If this code is reachable then emit a stop point (if generating
1048   // debug info). We have to do this ourselves because we are on the
1049   // "simple" statement path.
1050   if (HaveInsertPoint())
1051     EmitStopPoint(&S);
1052 
1053   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1054 }
1055 
1056 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1057   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1058 
1059   // If this code is reachable then emit a stop point (if generating
1060   // debug info). We have to do this ourselves because we are on the
1061   // "simple" statement path.
1062   if (HaveInsertPoint())
1063     EmitStopPoint(&S);
1064 
1065   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1066 }
1067 
1068 /// EmitCaseStmtRange - If case statement range is not too big then
1069 /// add multiple cases to switch instruction, one for each value within
1070 /// the range. If range is too big then emit "if" condition check.
1071 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1072   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1073 
1074   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1075   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1076 
1077   // Emit the code for this case. We do this first to make sure it is
1078   // properly chained from our predecessor before generating the
1079   // switch machinery to enter this block.
1080   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1081   EmitBlockWithFallThrough(CaseDest, &S);
1082   EmitStmt(S.getSubStmt());
1083 
1084   // If range is empty, do nothing.
1085   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1086     return;
1087 
1088   llvm::APInt Range = RHS - LHS;
1089   // FIXME: parameters such as this should not be hardcoded.
1090   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1091     // Range is small enough to add multiple switch instruction cases.
1092     uint64_t Total = getProfileCount(&S);
1093     unsigned NCases = Range.getZExtValue() + 1;
1094     // We only have one region counter for the entire set of cases here, so we
1095     // need to divide the weights evenly between the generated cases, ensuring
1096     // that the total weight is preserved. E.g., a weight of 5 over three cases
1097     // will be distributed as weights of 2, 2, and 1.
1098     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1099     for (unsigned I = 0; I != NCases; ++I) {
1100       if (SwitchWeights)
1101         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1102       if (Rem)
1103         Rem--;
1104       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1105       LHS++;
1106     }
1107     return;
1108   }
1109 
1110   // The range is too big. Emit "if" condition into a new block,
1111   // making sure to save and restore the current insertion point.
1112   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1113 
1114   // Push this test onto the chain of range checks (which terminates
1115   // in the default basic block). The switch's default will be changed
1116   // to the top of this chain after switch emission is complete.
1117   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1118   CaseRangeBlock = createBasicBlock("sw.caserange");
1119 
1120   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1121   Builder.SetInsertPoint(CaseRangeBlock);
1122 
1123   // Emit range check.
1124   llvm::Value *Diff =
1125     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1126   llvm::Value *Cond =
1127     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1128 
1129   llvm::MDNode *Weights = nullptr;
1130   if (SwitchWeights) {
1131     uint64_t ThisCount = getProfileCount(&S);
1132     uint64_t DefaultCount = (*SwitchWeights)[0];
1133     Weights = createProfileWeights(ThisCount, DefaultCount);
1134 
1135     // Since we're chaining the switch default through each large case range, we
1136     // need to update the weight for the default, ie, the first case, to include
1137     // this case.
1138     (*SwitchWeights)[0] += ThisCount;
1139   }
1140   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1141 
1142   // Restore the appropriate insertion point.
1143   if (RestoreBB)
1144     Builder.SetInsertPoint(RestoreBB);
1145   else
1146     Builder.ClearInsertionPoint();
1147 }
1148 
1149 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1150   // If there is no enclosing switch instance that we're aware of, then this
1151   // case statement and its block can be elided.  This situation only happens
1152   // when we've constant-folded the switch, are emitting the constant case,
1153   // and part of the constant case includes another case statement.  For
1154   // instance: switch (4) { case 4: do { case 5: } while (1); }
1155   if (!SwitchInsn) {
1156     EmitStmt(S.getSubStmt());
1157     return;
1158   }
1159 
1160   // Handle case ranges.
1161   if (S.getRHS()) {
1162     EmitCaseStmtRange(S);
1163     return;
1164   }
1165 
1166   llvm::ConstantInt *CaseVal =
1167     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1168 
1169   // If the body of the case is just a 'break', try to not emit an empty block.
1170   // If we're profiling or we're not optimizing, leave the block in for better
1171   // debug and coverage analysis.
1172   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1173       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1174       isa<BreakStmt>(S.getSubStmt())) {
1175     JumpDest Block = BreakContinueStack.back().BreakBlock;
1176 
1177     // Only do this optimization if there are no cleanups that need emitting.
1178     if (isObviouslyBranchWithoutCleanups(Block)) {
1179       if (SwitchWeights)
1180         SwitchWeights->push_back(getProfileCount(&S));
1181       SwitchInsn->addCase(CaseVal, Block.getBlock());
1182 
1183       // If there was a fallthrough into this case, make sure to redirect it to
1184       // the end of the switch as well.
1185       if (Builder.GetInsertBlock()) {
1186         Builder.CreateBr(Block.getBlock());
1187         Builder.ClearInsertionPoint();
1188       }
1189       return;
1190     }
1191   }
1192 
1193   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1194   EmitBlockWithFallThrough(CaseDest, &S);
1195   if (SwitchWeights)
1196     SwitchWeights->push_back(getProfileCount(&S));
1197   SwitchInsn->addCase(CaseVal, CaseDest);
1198 
1199   // Recursively emitting the statement is acceptable, but is not wonderful for
1200   // code where we have many case statements nested together, i.e.:
1201   //  case 1:
1202   //    case 2:
1203   //      case 3: etc.
1204   // Handling this recursively will create a new block for each case statement
1205   // that falls through to the next case which is IR intensive.  It also causes
1206   // deep recursion which can run into stack depth limitations.  Handle
1207   // sequential non-range case statements specially.
1208   const CaseStmt *CurCase = &S;
1209   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1210 
1211   // Otherwise, iteratively add consecutive cases to this switch stmt.
1212   while (NextCase && NextCase->getRHS() == nullptr) {
1213     CurCase = NextCase;
1214     llvm::ConstantInt *CaseVal =
1215       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1216 
1217     if (SwitchWeights)
1218       SwitchWeights->push_back(getProfileCount(NextCase));
1219     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1220       CaseDest = createBasicBlock("sw.bb");
1221       EmitBlockWithFallThrough(CaseDest, &S);
1222     }
1223 
1224     SwitchInsn->addCase(CaseVal, CaseDest);
1225     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1226   }
1227 
1228   // Normal default recursion for non-cases.
1229   EmitStmt(CurCase->getSubStmt());
1230 }
1231 
1232 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1233   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1234   assert(DefaultBlock->empty() &&
1235          "EmitDefaultStmt: Default block already defined?");
1236 
1237   EmitBlockWithFallThrough(DefaultBlock, &S);
1238 
1239   EmitStmt(S.getSubStmt());
1240 }
1241 
1242 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1243 /// constant value that is being switched on, see if we can dead code eliminate
1244 /// the body of the switch to a simple series of statements to emit.  Basically,
1245 /// on a switch (5) we want to find these statements:
1246 ///    case 5:
1247 ///      printf(...);    <--
1248 ///      ++i;            <--
1249 ///      break;
1250 ///
1251 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1252 /// transformation (for example, one of the elided statements contains a label
1253 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1254 /// should include statements after it (e.g. the printf() line is a substmt of
1255 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1256 /// statement, then return CSFC_Success.
1257 ///
1258 /// If Case is non-null, then we are looking for the specified case, checking
1259 /// that nothing we jump over contains labels.  If Case is null, then we found
1260 /// the case and are looking for the break.
1261 ///
1262 /// If the recursive walk actually finds our Case, then we set FoundCase to
1263 /// true.
1264 ///
1265 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1266 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1267                                             const SwitchCase *Case,
1268                                             bool &FoundCase,
1269                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1270   // If this is a null statement, just succeed.
1271   if (!S)
1272     return Case ? CSFC_Success : CSFC_FallThrough;
1273 
1274   // If this is the switchcase (case 4: or default) that we're looking for, then
1275   // we're in business.  Just add the substatement.
1276   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1277     if (S == Case) {
1278       FoundCase = true;
1279       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1280                                       ResultStmts);
1281     }
1282 
1283     // Otherwise, this is some other case or default statement, just ignore it.
1284     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1285                                     ResultStmts);
1286   }
1287 
1288   // If we are in the live part of the code and we found our break statement,
1289   // return a success!
1290   if (!Case && isa<BreakStmt>(S))
1291     return CSFC_Success;
1292 
1293   // If this is a switch statement, then it might contain the SwitchCase, the
1294   // break, or neither.
1295   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1296     // Handle this as two cases: we might be looking for the SwitchCase (if so
1297     // the skipped statements must be skippable) or we might already have it.
1298     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1299     if (Case) {
1300       // Keep track of whether we see a skipped declaration.  The code could be
1301       // using the declaration even if it is skipped, so we can't optimize out
1302       // the decl if the kept statements might refer to it.
1303       bool HadSkippedDecl = false;
1304 
1305       // If we're looking for the case, just see if we can skip each of the
1306       // substatements.
1307       for (; Case && I != E; ++I) {
1308         HadSkippedDecl |= isa<DeclStmt>(*I);
1309 
1310         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1311         case CSFC_Failure: return CSFC_Failure;
1312         case CSFC_Success:
1313           // A successful result means that either 1) that the statement doesn't
1314           // have the case and is skippable, or 2) does contain the case value
1315           // and also contains the break to exit the switch.  In the later case,
1316           // we just verify the rest of the statements are elidable.
1317           if (FoundCase) {
1318             // If we found the case and skipped declarations, we can't do the
1319             // optimization.
1320             if (HadSkippedDecl)
1321               return CSFC_Failure;
1322 
1323             for (++I; I != E; ++I)
1324               if (CodeGenFunction::ContainsLabel(*I, true))
1325                 return CSFC_Failure;
1326             return CSFC_Success;
1327           }
1328           break;
1329         case CSFC_FallThrough:
1330           // If we have a fallthrough condition, then we must have found the
1331           // case started to include statements.  Consider the rest of the
1332           // statements in the compound statement as candidates for inclusion.
1333           assert(FoundCase && "Didn't find case but returned fallthrough?");
1334           // We recursively found Case, so we're not looking for it anymore.
1335           Case = nullptr;
1336 
1337           // If we found the case and skipped declarations, we can't do the
1338           // optimization.
1339           if (HadSkippedDecl)
1340             return CSFC_Failure;
1341           break;
1342         }
1343       }
1344     }
1345 
1346     // If we have statements in our range, then we know that the statements are
1347     // live and need to be added to the set of statements we're tracking.
1348     for (; I != E; ++I) {
1349       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1350       case CSFC_Failure: return CSFC_Failure;
1351       case CSFC_FallThrough:
1352         // A fallthrough result means that the statement was simple and just
1353         // included in ResultStmt, keep adding them afterwards.
1354         break;
1355       case CSFC_Success:
1356         // A successful result means that we found the break statement and
1357         // stopped statement inclusion.  We just ensure that any leftover stmts
1358         // are skippable and return success ourselves.
1359         for (++I; I != E; ++I)
1360           if (CodeGenFunction::ContainsLabel(*I, true))
1361             return CSFC_Failure;
1362         return CSFC_Success;
1363       }
1364     }
1365 
1366     return Case ? CSFC_Success : CSFC_FallThrough;
1367   }
1368 
1369   // Okay, this is some other statement that we don't handle explicitly, like a
1370   // for statement or increment etc.  If we are skipping over this statement,
1371   // just verify it doesn't have labels, which would make it invalid to elide.
1372   if (Case) {
1373     if (CodeGenFunction::ContainsLabel(S, true))
1374       return CSFC_Failure;
1375     return CSFC_Success;
1376   }
1377 
1378   // Otherwise, we want to include this statement.  Everything is cool with that
1379   // so long as it doesn't contain a break out of the switch we're in.
1380   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1381 
1382   // Otherwise, everything is great.  Include the statement and tell the caller
1383   // that we fall through and include the next statement as well.
1384   ResultStmts.push_back(S);
1385   return CSFC_FallThrough;
1386 }
1387 
1388 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1389 /// then invoke CollectStatementsForCase to find the list of statements to emit
1390 /// for a switch on constant.  See the comment above CollectStatementsForCase
1391 /// for more details.
1392 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1393                                        const llvm::APSInt &ConstantCondValue,
1394                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1395                                        ASTContext &C,
1396                                        const SwitchCase *&ResultCase) {
1397   // First step, find the switch case that is being branched to.  We can do this
1398   // efficiently by scanning the SwitchCase list.
1399   const SwitchCase *Case = S.getSwitchCaseList();
1400   const DefaultStmt *DefaultCase = nullptr;
1401 
1402   for (; Case; Case = Case->getNextSwitchCase()) {
1403     // It's either a default or case.  Just remember the default statement in
1404     // case we're not jumping to any numbered cases.
1405     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1406       DefaultCase = DS;
1407       continue;
1408     }
1409 
1410     // Check to see if this case is the one we're looking for.
1411     const CaseStmt *CS = cast<CaseStmt>(Case);
1412     // Don't handle case ranges yet.
1413     if (CS->getRHS()) return false;
1414 
1415     // If we found our case, remember it as 'case'.
1416     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1417       break;
1418   }
1419 
1420   // If we didn't find a matching case, we use a default if it exists, or we
1421   // elide the whole switch body!
1422   if (!Case) {
1423     // It is safe to elide the body of the switch if it doesn't contain labels
1424     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1425     if (!DefaultCase)
1426       return !CodeGenFunction::ContainsLabel(&S);
1427     Case = DefaultCase;
1428   }
1429 
1430   // Ok, we know which case is being jumped to, try to collect all the
1431   // statements that follow it.  This can fail for a variety of reasons.  Also,
1432   // check to see that the recursive walk actually found our case statement.
1433   // Insane cases like this can fail to find it in the recursive walk since we
1434   // don't handle every stmt kind:
1435   // switch (4) {
1436   //   while (1) {
1437   //     case 4: ...
1438   bool FoundCase = false;
1439   ResultCase = Case;
1440   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1441                                   ResultStmts) != CSFC_Failure &&
1442          FoundCase;
1443 }
1444 
1445 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1446   // Handle nested switch statements.
1447   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1448   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1449   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1450 
1451   // See if we can constant fold the condition of the switch and therefore only
1452   // emit the live case statement (if any) of the switch.
1453   llvm::APSInt ConstantCondValue;
1454   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1455     SmallVector<const Stmt*, 4> CaseStmts;
1456     const SwitchCase *Case = nullptr;
1457     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1458                                    getContext(), Case)) {
1459       if (Case)
1460         incrementProfileCounter(Case);
1461       RunCleanupsScope ExecutedScope(*this);
1462 
1463       // Emit the condition variable if needed inside the entire cleanup scope
1464       // used by this special case for constant folded switches.
1465       if (S.getConditionVariable())
1466         EmitAutoVarDecl(*S.getConditionVariable());
1467 
1468       // At this point, we are no longer "within" a switch instance, so
1469       // we can temporarily enforce this to ensure that any embedded case
1470       // statements are not emitted.
1471       SwitchInsn = nullptr;
1472 
1473       // Okay, we can dead code eliminate everything except this case.  Emit the
1474       // specified series of statements and we're good.
1475       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1476         EmitStmt(CaseStmts[i]);
1477       incrementProfileCounter(&S);
1478 
1479       // Now we want to restore the saved switch instance so that nested
1480       // switches continue to function properly
1481       SwitchInsn = SavedSwitchInsn;
1482 
1483       return;
1484     }
1485   }
1486 
1487   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1488 
1489   RunCleanupsScope ConditionScope(*this);
1490   if (S.getConditionVariable())
1491     EmitAutoVarDecl(*S.getConditionVariable());
1492   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1493 
1494   // Create basic block to hold stuff that comes after switch
1495   // statement. We also need to create a default block now so that
1496   // explicit case ranges tests can have a place to jump to on
1497   // failure.
1498   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1499   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1500   if (PGO.haveRegionCounts()) {
1501     // Walk the SwitchCase list to find how many there are.
1502     uint64_t DefaultCount = 0;
1503     unsigned NumCases = 0;
1504     for (const SwitchCase *Case = S.getSwitchCaseList();
1505          Case;
1506          Case = Case->getNextSwitchCase()) {
1507       if (isa<DefaultStmt>(Case))
1508         DefaultCount = getProfileCount(Case);
1509       NumCases += 1;
1510     }
1511     SwitchWeights = new SmallVector<uint64_t, 16>();
1512     SwitchWeights->reserve(NumCases);
1513     // The default needs to be first. We store the edge count, so we already
1514     // know the right weight.
1515     SwitchWeights->push_back(DefaultCount);
1516   }
1517   CaseRangeBlock = DefaultBlock;
1518 
1519   // Clear the insertion point to indicate we are in unreachable code.
1520   Builder.ClearInsertionPoint();
1521 
1522   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1523   // then reuse last ContinueBlock.
1524   JumpDest OuterContinue;
1525   if (!BreakContinueStack.empty())
1526     OuterContinue = BreakContinueStack.back().ContinueBlock;
1527 
1528   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1529 
1530   // Emit switch body.
1531   EmitStmt(S.getBody());
1532 
1533   BreakContinueStack.pop_back();
1534 
1535   // Update the default block in case explicit case range tests have
1536   // been chained on top.
1537   SwitchInsn->setDefaultDest(CaseRangeBlock);
1538 
1539   // If a default was never emitted:
1540   if (!DefaultBlock->getParent()) {
1541     // If we have cleanups, emit the default block so that there's a
1542     // place to jump through the cleanups from.
1543     if (ConditionScope.requiresCleanups()) {
1544       EmitBlock(DefaultBlock);
1545 
1546     // Otherwise, just forward the default block to the switch end.
1547     } else {
1548       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1549       delete DefaultBlock;
1550     }
1551   }
1552 
1553   ConditionScope.ForceCleanup();
1554 
1555   // Emit continuation.
1556   EmitBlock(SwitchExit.getBlock(), true);
1557   incrementProfileCounter(&S);
1558 
1559   // If the switch has a condition wrapped by __builtin_unpredictable,
1560   // create metadata that specifies that the switch is unpredictable.
1561   // Don't bother if not optimizing because that metadata would not be used.
1562   auto *Call = dyn_cast<CallExpr>(S.getCond());
1563   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1564     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1565     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1566       llvm::MDBuilder MDHelper(getLLVMContext());
1567       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1568                               MDHelper.createUnpredictable());
1569     }
1570   }
1571 
1572   if (SwitchWeights) {
1573     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1574            "switch weights do not match switch cases");
1575     // If there's only one jump destination there's no sense weighting it.
1576     if (SwitchWeights->size() > 1)
1577       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1578                               createProfileWeights(*SwitchWeights));
1579     delete SwitchWeights;
1580   }
1581   SwitchInsn = SavedSwitchInsn;
1582   SwitchWeights = SavedSwitchWeights;
1583   CaseRangeBlock = SavedCRBlock;
1584 }
1585 
1586 static std::string
1587 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1588                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1589   std::string Result;
1590 
1591   while (*Constraint) {
1592     switch (*Constraint) {
1593     default:
1594       Result += Target.convertConstraint(Constraint);
1595       break;
1596     // Ignore these
1597     case '*':
1598     case '?':
1599     case '!':
1600     case '=': // Will see this and the following in mult-alt constraints.
1601     case '+':
1602       break;
1603     case '#': // Ignore the rest of the constraint alternative.
1604       while (Constraint[1] && Constraint[1] != ',')
1605         Constraint++;
1606       break;
1607     case '&':
1608     case '%':
1609       Result += *Constraint;
1610       while (Constraint[1] && Constraint[1] == *Constraint)
1611         Constraint++;
1612       break;
1613     case ',':
1614       Result += "|";
1615       break;
1616     case 'g':
1617       Result += "imr";
1618       break;
1619     case '[': {
1620       assert(OutCons &&
1621              "Must pass output names to constraints with a symbolic name");
1622       unsigned Index;
1623       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1624       assert(result && "Could not resolve symbolic name"); (void)result;
1625       Result += llvm::utostr(Index);
1626       break;
1627     }
1628     }
1629 
1630     Constraint++;
1631   }
1632 
1633   return Result;
1634 }
1635 
1636 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1637 /// as using a particular register add that as a constraint that will be used
1638 /// in this asm stmt.
1639 static std::string
1640 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1641                        const TargetInfo &Target, CodeGenModule &CGM,
1642                        const AsmStmt &Stmt, const bool EarlyClobber) {
1643   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1644   if (!AsmDeclRef)
1645     return Constraint;
1646   const ValueDecl &Value = *AsmDeclRef->getDecl();
1647   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1648   if (!Variable)
1649     return Constraint;
1650   if (Variable->getStorageClass() != SC_Register)
1651     return Constraint;
1652   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1653   if (!Attr)
1654     return Constraint;
1655   StringRef Register = Attr->getLabel();
1656   assert(Target.isValidGCCRegisterName(Register));
1657   // We're using validateOutputConstraint here because we only care if
1658   // this is a register constraint.
1659   TargetInfo::ConstraintInfo Info(Constraint, "");
1660   if (Target.validateOutputConstraint(Info) &&
1661       !Info.allowsRegister()) {
1662     CGM.ErrorUnsupported(&Stmt, "__asm__");
1663     return Constraint;
1664   }
1665   // Canonicalize the register here before returning it.
1666   Register = Target.getNormalizedGCCRegisterName(Register);
1667   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1668 }
1669 
1670 llvm::Value*
1671 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1672                                     LValue InputValue, QualType InputType,
1673                                     std::string &ConstraintStr,
1674                                     SourceLocation Loc) {
1675   llvm::Value *Arg;
1676   if (Info.allowsRegister() || !Info.allowsMemory()) {
1677     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1678       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1679     } else {
1680       llvm::Type *Ty = ConvertType(InputType);
1681       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1682       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1683         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1684         Ty = llvm::PointerType::getUnqual(Ty);
1685 
1686         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1687                                                        Ty));
1688       } else {
1689         Arg = InputValue.getPointer();
1690         ConstraintStr += '*';
1691       }
1692     }
1693   } else {
1694     Arg = InputValue.getPointer();
1695     ConstraintStr += '*';
1696   }
1697 
1698   return Arg;
1699 }
1700 
1701 llvm::Value* CodeGenFunction::EmitAsmInput(
1702                                          const TargetInfo::ConstraintInfo &Info,
1703                                            const Expr *InputExpr,
1704                                            std::string &ConstraintStr) {
1705   // If this can't be a register or memory, i.e., has to be a constant
1706   // (immediate or symbolic), try to emit it as such.
1707   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1708     llvm::APSInt Result;
1709     if (InputExpr->EvaluateAsInt(Result, getContext()))
1710       return llvm::ConstantInt::get(getLLVMContext(), Result);
1711     assert(!Info.requiresImmediateConstant() &&
1712            "Required-immediate inlineasm arg isn't constant?");
1713   }
1714 
1715   if (Info.allowsRegister() || !Info.allowsMemory())
1716     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1717       return EmitScalarExpr(InputExpr);
1718   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1719     return EmitScalarExpr(InputExpr);
1720   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1721   LValue Dest = EmitLValue(InputExpr);
1722   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1723                             InputExpr->getExprLoc());
1724 }
1725 
1726 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1727 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1728 /// integers which are the source locations of the start of each line in the
1729 /// asm.
1730 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1731                                       CodeGenFunction &CGF) {
1732   SmallVector<llvm::Metadata *, 8> Locs;
1733   // Add the location of the first line to the MDNode.
1734   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1735       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1736   StringRef StrVal = Str->getString();
1737   if (!StrVal.empty()) {
1738     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1739     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1740     unsigned StartToken = 0;
1741     unsigned ByteOffset = 0;
1742 
1743     // Add the location of the start of each subsequent line of the asm to the
1744     // MDNode.
1745     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1746       if (StrVal[i] != '\n') continue;
1747       SourceLocation LineLoc = Str->getLocationOfByte(
1748           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1749       Locs.push_back(llvm::ConstantAsMetadata::get(
1750           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1751     }
1752   }
1753 
1754   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1755 }
1756 
1757 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1758   // Assemble the final asm string.
1759   std::string AsmString = S.generateAsmString(getContext());
1760 
1761   // Get all the output and input constraints together.
1762   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1763   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1764 
1765   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1766     StringRef Name;
1767     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1768       Name = GAS->getOutputName(i);
1769     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1770     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1771     assert(IsValid && "Failed to parse output constraint");
1772     OutputConstraintInfos.push_back(Info);
1773   }
1774 
1775   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1776     StringRef Name;
1777     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1778       Name = GAS->getInputName(i);
1779     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1780     bool IsValid =
1781       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1782     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1783     InputConstraintInfos.push_back(Info);
1784   }
1785 
1786   std::string Constraints;
1787 
1788   std::vector<LValue> ResultRegDests;
1789   std::vector<QualType> ResultRegQualTys;
1790   std::vector<llvm::Type *> ResultRegTypes;
1791   std::vector<llvm::Type *> ResultTruncRegTypes;
1792   std::vector<llvm::Type *> ArgTypes;
1793   std::vector<llvm::Value*> Args;
1794 
1795   // Keep track of inout constraints.
1796   std::string InOutConstraints;
1797   std::vector<llvm::Value*> InOutArgs;
1798   std::vector<llvm::Type*> InOutArgTypes;
1799 
1800   // An inline asm can be marked readonly if it meets the following conditions:
1801   //  - it doesn't have any sideeffects
1802   //  - it doesn't clobber memory
1803   //  - it doesn't return a value by-reference
1804   // It can be marked readnone if it doesn't have any input memory constraints
1805   // in addition to meeting the conditions listed above.
1806   bool ReadOnly = true, ReadNone = true;
1807 
1808   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1809     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1810 
1811     // Simplify the output constraint.
1812     std::string OutputConstraint(S.getOutputConstraint(i));
1813     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1814                                           getTarget());
1815 
1816     const Expr *OutExpr = S.getOutputExpr(i);
1817     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1818 
1819     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1820                                               getTarget(), CGM, S,
1821                                               Info.earlyClobber());
1822 
1823     LValue Dest = EmitLValue(OutExpr);
1824     if (!Constraints.empty())
1825       Constraints += ',';
1826 
1827     // If this is a register output, then make the inline asm return it
1828     // by-value.  If this is a memory result, return the value by-reference.
1829     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1830       Constraints += "=" + OutputConstraint;
1831       ResultRegQualTys.push_back(OutExpr->getType());
1832       ResultRegDests.push_back(Dest);
1833       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1834       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1835 
1836       // If this output is tied to an input, and if the input is larger, then
1837       // we need to set the actual result type of the inline asm node to be the
1838       // same as the input type.
1839       if (Info.hasMatchingInput()) {
1840         unsigned InputNo;
1841         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1842           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1843           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1844             break;
1845         }
1846         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1847 
1848         QualType InputTy = S.getInputExpr(InputNo)->getType();
1849         QualType OutputType = OutExpr->getType();
1850 
1851         uint64_t InputSize = getContext().getTypeSize(InputTy);
1852         if (getContext().getTypeSize(OutputType) < InputSize) {
1853           // Form the asm to return the value as a larger integer or fp type.
1854           ResultRegTypes.back() = ConvertType(InputTy);
1855         }
1856       }
1857       if (llvm::Type* AdjTy =
1858             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1859                                                  ResultRegTypes.back()))
1860         ResultRegTypes.back() = AdjTy;
1861       else {
1862         CGM.getDiags().Report(S.getAsmLoc(),
1863                               diag::err_asm_invalid_type_in_input)
1864             << OutExpr->getType() << OutputConstraint;
1865       }
1866     } else {
1867       ArgTypes.push_back(Dest.getAddress().getType());
1868       Args.push_back(Dest.getPointer());
1869       Constraints += "=*";
1870       Constraints += OutputConstraint;
1871       ReadOnly = ReadNone = false;
1872     }
1873 
1874     if (Info.isReadWrite()) {
1875       InOutConstraints += ',';
1876 
1877       const Expr *InputExpr = S.getOutputExpr(i);
1878       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1879                                             InOutConstraints,
1880                                             InputExpr->getExprLoc());
1881 
1882       if (llvm::Type* AdjTy =
1883           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1884                                                Arg->getType()))
1885         Arg = Builder.CreateBitCast(Arg, AdjTy);
1886 
1887       if (Info.allowsRegister())
1888         InOutConstraints += llvm::utostr(i);
1889       else
1890         InOutConstraints += OutputConstraint;
1891 
1892       InOutArgTypes.push_back(Arg->getType());
1893       InOutArgs.push_back(Arg);
1894     }
1895   }
1896 
1897   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1898   // to the return value slot. Only do this when returning in registers.
1899   if (isa<MSAsmStmt>(&S)) {
1900     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1901     if (RetAI.isDirect() || RetAI.isExtend()) {
1902       // Make a fake lvalue for the return value slot.
1903       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1904       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1905           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1906           ResultRegDests, AsmString, S.getNumOutputs());
1907       SawAsmBlock = true;
1908     }
1909   }
1910 
1911   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1912     const Expr *InputExpr = S.getInputExpr(i);
1913 
1914     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1915 
1916     if (Info.allowsMemory())
1917       ReadNone = false;
1918 
1919     if (!Constraints.empty())
1920       Constraints += ',';
1921 
1922     // Simplify the input constraint.
1923     std::string InputConstraint(S.getInputConstraint(i));
1924     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1925                                          &OutputConstraintInfos);
1926 
1927     InputConstraint = AddVariableConstraints(
1928         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1929         getTarget(), CGM, S, false /* No EarlyClobber */);
1930 
1931     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1932 
1933     // If this input argument is tied to a larger output result, extend the
1934     // input to be the same size as the output.  The LLVM backend wants to see
1935     // the input and output of a matching constraint be the same size.  Note
1936     // that GCC does not define what the top bits are here.  We use zext because
1937     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1938     if (Info.hasTiedOperand()) {
1939       unsigned Output = Info.getTiedOperand();
1940       QualType OutputType = S.getOutputExpr(Output)->getType();
1941       QualType InputTy = InputExpr->getType();
1942 
1943       if (getContext().getTypeSize(OutputType) >
1944           getContext().getTypeSize(InputTy)) {
1945         // Use ptrtoint as appropriate so that we can do our extension.
1946         if (isa<llvm::PointerType>(Arg->getType()))
1947           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1948         llvm::Type *OutputTy = ConvertType(OutputType);
1949         if (isa<llvm::IntegerType>(OutputTy))
1950           Arg = Builder.CreateZExt(Arg, OutputTy);
1951         else if (isa<llvm::PointerType>(OutputTy))
1952           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1953         else {
1954           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1955           Arg = Builder.CreateFPExt(Arg, OutputTy);
1956         }
1957       }
1958     }
1959     if (llvm::Type* AdjTy =
1960               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1961                                                    Arg->getType()))
1962       Arg = Builder.CreateBitCast(Arg, AdjTy);
1963     else
1964       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1965           << InputExpr->getType() << InputConstraint;
1966 
1967     ArgTypes.push_back(Arg->getType());
1968     Args.push_back(Arg);
1969     Constraints += InputConstraint;
1970   }
1971 
1972   // Append the "input" part of inout constraints last.
1973   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1974     ArgTypes.push_back(InOutArgTypes[i]);
1975     Args.push_back(InOutArgs[i]);
1976   }
1977   Constraints += InOutConstraints;
1978 
1979   // Clobbers
1980   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1981     StringRef Clobber = S.getClobber(i);
1982 
1983     if (Clobber == "memory")
1984       ReadOnly = ReadNone = false;
1985     else if (Clobber != "cc")
1986       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1987 
1988     if (!Constraints.empty())
1989       Constraints += ',';
1990 
1991     Constraints += "~{";
1992     Constraints += Clobber;
1993     Constraints += '}';
1994   }
1995 
1996   // Add machine specific clobbers
1997   std::string MachineClobbers = getTarget().getClobbers();
1998   if (!MachineClobbers.empty()) {
1999     if (!Constraints.empty())
2000       Constraints += ',';
2001     Constraints += MachineClobbers;
2002   }
2003 
2004   llvm::Type *ResultType;
2005   if (ResultRegTypes.empty())
2006     ResultType = VoidTy;
2007   else if (ResultRegTypes.size() == 1)
2008     ResultType = ResultRegTypes[0];
2009   else
2010     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2011 
2012   llvm::FunctionType *FTy =
2013     llvm::FunctionType::get(ResultType, ArgTypes, false);
2014 
2015   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2016   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2017     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2018   llvm::InlineAsm *IA =
2019     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2020                          /* IsAlignStack */ false, AsmDialect);
2021   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2022   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2023                        llvm::Attribute::NoUnwind);
2024 
2025   if (isa<MSAsmStmt>(&S)) {
2026     // If the assembly contains any labels, mark the call noduplicate to prevent
2027     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
2028     // works.
2029     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
2030       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2031                            llvm::Attribute::NoDuplicate);
2032   }
2033 
2034   // Attach readnone and readonly attributes.
2035   if (!HasSideEffect) {
2036     if (ReadNone)
2037       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2038                            llvm::Attribute::ReadNone);
2039     else if (ReadOnly)
2040       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2041                            llvm::Attribute::ReadOnly);
2042   }
2043 
2044   // Slap the source location of the inline asm into a !srcloc metadata on the
2045   // call.
2046   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2047     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2048                                                    *this));
2049   } else {
2050     // At least put the line number on MS inline asm blobs.
2051     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2052     Result->setMetadata("srcloc",
2053                         llvm::MDNode::get(getLLVMContext(),
2054                                           llvm::ConstantAsMetadata::get(Loc)));
2055   }
2056 
2057   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
2058     // Conservatively, mark all inline asm blocks in CUDA as convergent
2059     // (meaning, they may call an intrinsically convergent op, such as bar.sync,
2060     // and so can't have certain optimizations applied around them).
2061     Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2062                          llvm::Attribute::Convergent);
2063   }
2064 
2065   // Extract all of the register value results from the asm.
2066   std::vector<llvm::Value*> RegResults;
2067   if (ResultRegTypes.size() == 1) {
2068     RegResults.push_back(Result);
2069   } else {
2070     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2071       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2072       RegResults.push_back(Tmp);
2073     }
2074   }
2075 
2076   assert(RegResults.size() == ResultRegTypes.size());
2077   assert(RegResults.size() == ResultTruncRegTypes.size());
2078   assert(RegResults.size() == ResultRegDests.size());
2079   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2080     llvm::Value *Tmp = RegResults[i];
2081 
2082     // If the result type of the LLVM IR asm doesn't match the result type of
2083     // the expression, do the conversion.
2084     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2085       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2086 
2087       // Truncate the integer result to the right size, note that TruncTy can be
2088       // a pointer.
2089       if (TruncTy->isFloatingPointTy())
2090         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2091       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2092         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2093         Tmp = Builder.CreateTrunc(Tmp,
2094                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2095         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2096       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2097         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2098         Tmp = Builder.CreatePtrToInt(Tmp,
2099                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2100         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2101       } else if (TruncTy->isIntegerTy()) {
2102         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2103       } else if (TruncTy->isVectorTy()) {
2104         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2105       }
2106     }
2107 
2108     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2109   }
2110 }
2111 
2112 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2113   const RecordDecl *RD = S.getCapturedRecordDecl();
2114   QualType RecordTy = getContext().getRecordType(RD);
2115 
2116   // Initialize the captured struct.
2117   LValue SlotLV =
2118     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2119 
2120   RecordDecl::field_iterator CurField = RD->field_begin();
2121   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2122                                                  E = S.capture_init_end();
2123        I != E; ++I, ++CurField) {
2124     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2125     if (CurField->hasCapturedVLAType()) {
2126       auto VAT = CurField->getCapturedVLAType();
2127       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2128     } else {
2129       EmitInitializerForField(*CurField, LV, *I, None);
2130     }
2131   }
2132 
2133   return SlotLV;
2134 }
2135 
2136 /// Generate an outlined function for the body of a CapturedStmt, store any
2137 /// captured variables into the captured struct, and call the outlined function.
2138 llvm::Function *
2139 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2140   LValue CapStruct = InitCapturedStruct(S);
2141 
2142   // Emit the CapturedDecl
2143   CodeGenFunction CGF(CGM, true);
2144   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2145   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2146   delete CGF.CapturedStmtInfo;
2147 
2148   // Emit call to the helper function.
2149   EmitCallOrInvoke(F, CapStruct.getPointer());
2150 
2151   return F;
2152 }
2153 
2154 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2155   LValue CapStruct = InitCapturedStruct(S);
2156   return CapStruct.getAddress();
2157 }
2158 
2159 /// Creates the outlined function for a CapturedStmt.
2160 llvm::Function *
2161 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2162   assert(CapturedStmtInfo &&
2163     "CapturedStmtInfo should be set when generating the captured function");
2164   const CapturedDecl *CD = S.getCapturedDecl();
2165   const RecordDecl *RD = S.getCapturedRecordDecl();
2166   SourceLocation Loc = S.getLocStart();
2167   assert(CD->hasBody() && "missing CapturedDecl body");
2168 
2169   // Build the argument list.
2170   ASTContext &Ctx = CGM.getContext();
2171   FunctionArgList Args;
2172   Args.append(CD->param_begin(), CD->param_end());
2173 
2174   // Create the function declaration.
2175   FunctionType::ExtInfo ExtInfo;
2176   const CGFunctionInfo &FuncInfo =
2177     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2178   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2179 
2180   llvm::Function *F =
2181     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2182                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2183   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2184   if (CD->isNothrow())
2185     F->addFnAttr(llvm::Attribute::NoUnwind);
2186 
2187   // Generate the function.
2188   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2189                 CD->getLocation(),
2190                 CD->getBody()->getLocStart());
2191   // Set the context parameter in CapturedStmtInfo.
2192   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2193   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2194 
2195   // Initialize variable-length arrays.
2196   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2197                                            Ctx.getTagDeclType(RD));
2198   for (auto *FD : RD->fields()) {
2199     if (FD->hasCapturedVLAType()) {
2200       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2201                                        S.getLocStart()).getScalarVal();
2202       auto VAT = FD->getCapturedVLAType();
2203       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2204     }
2205   }
2206 
2207   // If 'this' is captured, load it into CXXThisValue.
2208   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2209     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2210     LValue ThisLValue = EmitLValueForField(Base, FD);
2211     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2212   }
2213 
2214   PGO.assignRegionCounters(GlobalDecl(CD), F);
2215   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2216   FinishFunction(CD->getBodyRBrace());
2217 
2218   return F;
2219 }
2220