1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Sema/SemaDiagnostic.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/Support/CallSite.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Statement Emission 32 //===----------------------------------------------------------------------===// 33 34 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 35 if (CGDebugInfo *DI = getDebugInfo()) { 36 SourceLocation Loc; 37 Loc = S->getLocStart(); 38 DI->EmitLocation(Builder, Loc); 39 40 LastStopPoint = Loc; 41 } 42 } 43 44 void CodeGenFunction::EmitStmt(const Stmt *S) { 45 assert(S && "Null statement?"); 46 47 // These statements have their own debug info handling. 48 if (EmitSimpleStmt(S)) 49 return; 50 51 // Check if we are generating unreachable code. 52 if (!HaveInsertPoint()) { 53 // If so, and the statement doesn't contain a label, then we do not need to 54 // generate actual code. This is safe because (1) the current point is 55 // unreachable, so we don't need to execute the code, and (2) we've already 56 // handled the statements which update internal data structures (like the 57 // local variable map) which could be used by subsequent statements. 58 if (!ContainsLabel(S)) { 59 // Verify that any decl statements were handled as simple, they may be in 60 // scope of subsequent reachable statements. 61 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 62 return; 63 } 64 65 // Otherwise, make a new block to hold the code. 66 EnsureInsertPoint(); 67 } 68 69 // Generate a stoppoint if we are emitting debug info. 70 EmitStopPoint(S); 71 72 switch (S->getStmtClass()) { 73 case Stmt::NoStmtClass: 74 case Stmt::CXXCatchStmtClass: 75 case Stmt::SEHExceptStmtClass: 76 case Stmt::SEHFinallyStmtClass: 77 case Stmt::MSDependentExistsStmtClass: 78 llvm_unreachable("invalid statement class to emit generically"); 79 case Stmt::NullStmtClass: 80 case Stmt::CompoundStmtClass: 81 case Stmt::DeclStmtClass: 82 case Stmt::LabelStmtClass: 83 case Stmt::AttributedStmtClass: 84 case Stmt::GotoStmtClass: 85 case Stmt::BreakStmtClass: 86 case Stmt::ContinueStmtClass: 87 case Stmt::DefaultStmtClass: 88 case Stmt::CaseStmtClass: 89 llvm_unreachable("should have emitted these statements as simple"); 90 91 #define STMT(Type, Base) 92 #define ABSTRACT_STMT(Op) 93 #define EXPR(Type, Base) \ 94 case Stmt::Type##Class: 95 #include "clang/AST/StmtNodes.inc" 96 { 97 // Remember the block we came in on. 98 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 99 assert(incoming && "expression emission must have an insertion point"); 100 101 EmitIgnoredExpr(cast<Expr>(S)); 102 103 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 104 assert(outgoing && "expression emission cleared block!"); 105 106 // The expression emitters assume (reasonably!) that the insertion 107 // point is always set. To maintain that, the call-emission code 108 // for noreturn functions has to enter a new block with no 109 // predecessors. We want to kill that block and mark the current 110 // insertion point unreachable in the common case of a call like 111 // "exit();". Since expression emission doesn't otherwise create 112 // blocks with no predecessors, we can just test for that. 113 // However, we must be careful not to do this to our incoming 114 // block, because *statement* emission does sometimes create 115 // reachable blocks which will have no predecessors until later in 116 // the function. This occurs with, e.g., labels that are not 117 // reachable by fallthrough. 118 if (incoming != outgoing && outgoing->use_empty()) { 119 outgoing->eraseFromParent(); 120 Builder.ClearInsertionPoint(); 121 } 122 break; 123 } 124 125 case Stmt::IndirectGotoStmtClass: 126 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 127 128 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 129 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 130 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 131 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 132 133 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 134 135 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 136 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 137 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 138 case Stmt::CapturedStmtClass: 139 EmitCapturedStmt(cast<CapturedStmt>(*S), CR_Default); 140 break; 141 case Stmt::ObjCAtTryStmtClass: 142 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 143 break; 144 case Stmt::ObjCAtCatchStmtClass: 145 llvm_unreachable( 146 "@catch statements should be handled by EmitObjCAtTryStmt"); 147 case Stmt::ObjCAtFinallyStmtClass: 148 llvm_unreachable( 149 "@finally statements should be handled by EmitObjCAtTryStmt"); 150 case Stmt::ObjCAtThrowStmtClass: 151 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 152 break; 153 case Stmt::ObjCAtSynchronizedStmtClass: 154 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 155 break; 156 case Stmt::ObjCForCollectionStmtClass: 157 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 158 break; 159 case Stmt::ObjCAutoreleasePoolStmtClass: 160 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 161 break; 162 163 case Stmt::CXXTryStmtClass: 164 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 165 break; 166 case Stmt::CXXForRangeStmtClass: 167 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 168 case Stmt::SEHTryStmtClass: 169 // FIXME Not yet implemented 170 break; 171 } 172 } 173 174 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 175 switch (S->getStmtClass()) { 176 default: return false; 177 case Stmt::NullStmtClass: break; 178 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 179 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 180 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 181 case Stmt::AttributedStmtClass: 182 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 183 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 184 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 185 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 186 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 187 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 188 } 189 190 return true; 191 } 192 193 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 194 /// this captures the expression result of the last sub-statement and returns it 195 /// (for use by the statement expression extension). 196 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 197 AggValueSlot AggSlot) { 198 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 199 "LLVM IR generation of compound statement ('{}')"); 200 201 // Keep track of the current cleanup stack depth, including debug scopes. 202 LexicalScope Scope(*this, S.getSourceRange()); 203 204 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 205 } 206 207 llvm::Value* 208 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 209 bool GetLast, 210 AggValueSlot AggSlot) { 211 212 for (CompoundStmt::const_body_iterator I = S.body_begin(), 213 E = S.body_end()-GetLast; I != E; ++I) 214 EmitStmt(*I); 215 216 llvm::Value *RetAlloca = 0; 217 if (GetLast) { 218 // We have to special case labels here. They are statements, but when put 219 // at the end of a statement expression, they yield the value of their 220 // subexpression. Handle this by walking through all labels we encounter, 221 // emitting them before we evaluate the subexpr. 222 const Stmt *LastStmt = S.body_back(); 223 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 224 EmitLabel(LS->getDecl()); 225 LastStmt = LS->getSubStmt(); 226 } 227 228 EnsureInsertPoint(); 229 230 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 231 if (hasAggregateEvaluationKind(ExprTy)) { 232 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 233 } else { 234 // We can't return an RValue here because there might be cleanups at 235 // the end of the StmtExpr. Because of that, we have to emit the result 236 // here into a temporary alloca. 237 RetAlloca = CreateMemTemp(ExprTy); 238 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 239 /*IsInit*/false); 240 } 241 242 } 243 244 return RetAlloca; 245 } 246 247 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 248 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 249 250 // If there is a cleanup stack, then we it isn't worth trying to 251 // simplify this block (we would need to remove it from the scope map 252 // and cleanup entry). 253 if (!EHStack.empty()) 254 return; 255 256 // Can only simplify direct branches. 257 if (!BI || !BI->isUnconditional()) 258 return; 259 260 // Can only simplify empty blocks. 261 if (BI != BB->begin()) 262 return; 263 264 BB->replaceAllUsesWith(BI->getSuccessor(0)); 265 BI->eraseFromParent(); 266 BB->eraseFromParent(); 267 } 268 269 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 270 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 271 272 // Fall out of the current block (if necessary). 273 EmitBranch(BB); 274 275 if (IsFinished && BB->use_empty()) { 276 delete BB; 277 return; 278 } 279 280 // Place the block after the current block, if possible, or else at 281 // the end of the function. 282 if (CurBB && CurBB->getParent()) 283 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 284 else 285 CurFn->getBasicBlockList().push_back(BB); 286 Builder.SetInsertPoint(BB); 287 } 288 289 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 290 // Emit a branch from the current block to the target one if this 291 // was a real block. If this was just a fall-through block after a 292 // terminator, don't emit it. 293 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 294 295 if (!CurBB || CurBB->getTerminator()) { 296 // If there is no insert point or the previous block is already 297 // terminated, don't touch it. 298 } else { 299 // Otherwise, create a fall-through branch. 300 Builder.CreateBr(Target); 301 } 302 303 Builder.ClearInsertionPoint(); 304 } 305 306 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 307 bool inserted = false; 308 for (llvm::BasicBlock::use_iterator 309 i = block->use_begin(), e = block->use_end(); i != e; ++i) { 310 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) { 311 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 312 inserted = true; 313 break; 314 } 315 } 316 317 if (!inserted) 318 CurFn->getBasicBlockList().push_back(block); 319 320 Builder.SetInsertPoint(block); 321 } 322 323 CodeGenFunction::JumpDest 324 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 325 JumpDest &Dest = LabelMap[D]; 326 if (Dest.isValid()) return Dest; 327 328 // Create, but don't insert, the new block. 329 Dest = JumpDest(createBasicBlock(D->getName()), 330 EHScopeStack::stable_iterator::invalid(), 331 NextCleanupDestIndex++); 332 return Dest; 333 } 334 335 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 336 // Add this label to the current lexical scope if we're within any 337 // normal cleanups. Jumps "in" to this label --- when permitted by 338 // the language --- may need to be routed around such cleanups. 339 if (EHStack.hasNormalCleanups() && CurLexicalScope) 340 CurLexicalScope->addLabel(D); 341 342 JumpDest &Dest = LabelMap[D]; 343 344 // If we didn't need a forward reference to this label, just go 345 // ahead and create a destination at the current scope. 346 if (!Dest.isValid()) { 347 Dest = getJumpDestInCurrentScope(D->getName()); 348 349 // Otherwise, we need to give this label a target depth and remove 350 // it from the branch-fixups list. 351 } else { 352 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 353 Dest.setScopeDepth(EHStack.stable_begin()); 354 ResolveBranchFixups(Dest.getBlock()); 355 } 356 357 EmitBlock(Dest.getBlock()); 358 } 359 360 /// Change the cleanup scope of the labels in this lexical scope to 361 /// match the scope of the enclosing context. 362 void CodeGenFunction::LexicalScope::rescopeLabels() { 363 assert(!Labels.empty()); 364 EHScopeStack::stable_iterator innermostScope 365 = CGF.EHStack.getInnermostNormalCleanup(); 366 367 // Change the scope depth of all the labels. 368 for (SmallVectorImpl<const LabelDecl*>::const_iterator 369 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 370 assert(CGF.LabelMap.count(*i)); 371 JumpDest &dest = CGF.LabelMap.find(*i)->second; 372 assert(dest.getScopeDepth().isValid()); 373 assert(innermostScope.encloses(dest.getScopeDepth())); 374 dest.setScopeDepth(innermostScope); 375 } 376 377 // Reparent the labels if the new scope also has cleanups. 378 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 379 ParentScope->Labels.append(Labels.begin(), Labels.end()); 380 } 381 } 382 383 384 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 385 EmitLabel(S.getDecl()); 386 EmitStmt(S.getSubStmt()); 387 } 388 389 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 390 EmitStmt(S.getSubStmt()); 391 } 392 393 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 394 // If this code is reachable then emit a stop point (if generating 395 // debug info). We have to do this ourselves because we are on the 396 // "simple" statement path. 397 if (HaveInsertPoint()) 398 EmitStopPoint(&S); 399 400 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 401 } 402 403 404 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 405 if (const LabelDecl *Target = S.getConstantTarget()) { 406 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 407 return; 408 } 409 410 // Ensure that we have an i8* for our PHI node. 411 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 412 Int8PtrTy, "addr"); 413 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 414 415 // Get the basic block for the indirect goto. 416 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 417 418 // The first instruction in the block has to be the PHI for the switch dest, 419 // add an entry for this branch. 420 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 421 422 EmitBranch(IndGotoBB); 423 } 424 425 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 426 // C99 6.8.4.1: The first substatement is executed if the expression compares 427 // unequal to 0. The condition must be a scalar type. 428 LexicalScope ConditionScope(*this, S.getSourceRange()); 429 430 if (S.getConditionVariable()) 431 EmitAutoVarDecl(*S.getConditionVariable()); 432 433 // If the condition constant folds and can be elided, try to avoid emitting 434 // the condition and the dead arm of the if/else. 435 bool CondConstant; 436 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 437 // Figure out which block (then or else) is executed. 438 const Stmt *Executed = S.getThen(); 439 const Stmt *Skipped = S.getElse(); 440 if (!CondConstant) // Condition false? 441 std::swap(Executed, Skipped); 442 443 // If the skipped block has no labels in it, just emit the executed block. 444 // This avoids emitting dead code and simplifies the CFG substantially. 445 if (!ContainsLabel(Skipped)) { 446 if (Executed) { 447 RunCleanupsScope ExecutedScope(*this); 448 EmitStmt(Executed); 449 } 450 return; 451 } 452 } 453 454 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 455 // the conditional branch. 456 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 457 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 458 llvm::BasicBlock *ElseBlock = ContBlock; 459 if (S.getElse()) 460 ElseBlock = createBasicBlock("if.else"); 461 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); 462 463 // Emit the 'then' code. 464 EmitBlock(ThenBlock); 465 { 466 RunCleanupsScope ThenScope(*this); 467 EmitStmt(S.getThen()); 468 } 469 EmitBranch(ContBlock); 470 471 // Emit the 'else' code if present. 472 if (const Stmt *Else = S.getElse()) { 473 // There is no need to emit line number for unconditional branch. 474 if (getDebugInfo()) 475 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 476 EmitBlock(ElseBlock); 477 { 478 RunCleanupsScope ElseScope(*this); 479 EmitStmt(Else); 480 } 481 // There is no need to emit line number for unconditional branch. 482 if (getDebugInfo()) 483 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 484 EmitBranch(ContBlock); 485 } 486 487 // Emit the continuation block for code after the if. 488 EmitBlock(ContBlock, true); 489 } 490 491 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 492 // Emit the header for the loop, which will also become 493 // the continue target. 494 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 495 EmitBlock(LoopHeader.getBlock()); 496 497 // Create an exit block for when the condition fails, which will 498 // also become the break target. 499 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 500 501 // Store the blocks to use for break and continue. 502 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 503 504 // C++ [stmt.while]p2: 505 // When the condition of a while statement is a declaration, the 506 // scope of the variable that is declared extends from its point 507 // of declaration (3.3.2) to the end of the while statement. 508 // [...] 509 // The object created in a condition is destroyed and created 510 // with each iteration of the loop. 511 RunCleanupsScope ConditionScope(*this); 512 513 if (S.getConditionVariable()) 514 EmitAutoVarDecl(*S.getConditionVariable()); 515 516 // Evaluate the conditional in the while header. C99 6.8.5.1: The 517 // evaluation of the controlling expression takes place before each 518 // execution of the loop body. 519 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 520 521 // while(1) is common, avoid extra exit blocks. Be sure 522 // to correctly handle break/continue though. 523 bool EmitBoolCondBranch = true; 524 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 525 if (C->isOne()) 526 EmitBoolCondBranch = false; 527 528 // As long as the condition is true, go to the loop body. 529 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 530 if (EmitBoolCondBranch) { 531 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 532 if (ConditionScope.requiresCleanups()) 533 ExitBlock = createBasicBlock("while.exit"); 534 535 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 536 537 if (ExitBlock != LoopExit.getBlock()) { 538 EmitBlock(ExitBlock); 539 EmitBranchThroughCleanup(LoopExit); 540 } 541 } 542 543 // Emit the loop body. We have to emit this in a cleanup scope 544 // because it might be a singleton DeclStmt. 545 { 546 RunCleanupsScope BodyScope(*this); 547 EmitBlock(LoopBody); 548 EmitStmt(S.getBody()); 549 } 550 551 BreakContinueStack.pop_back(); 552 553 // Immediately force cleanup. 554 ConditionScope.ForceCleanup(); 555 556 // Branch to the loop header again. 557 EmitBranch(LoopHeader.getBlock()); 558 559 // Emit the exit block. 560 EmitBlock(LoopExit.getBlock(), true); 561 562 // The LoopHeader typically is just a branch if we skipped emitting 563 // a branch, try to erase it. 564 if (!EmitBoolCondBranch) 565 SimplifyForwardingBlocks(LoopHeader.getBlock()); 566 } 567 568 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 569 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 570 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 571 572 // Store the blocks to use for break and continue. 573 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 574 575 // Emit the body of the loop. 576 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 577 EmitBlock(LoopBody); 578 { 579 RunCleanupsScope BodyScope(*this); 580 EmitStmt(S.getBody()); 581 } 582 583 BreakContinueStack.pop_back(); 584 585 EmitBlock(LoopCond.getBlock()); 586 587 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 588 // after each execution of the loop body." 589 590 // Evaluate the conditional in the while header. 591 // C99 6.8.5p2/p4: The first substatement is executed if the expression 592 // compares unequal to 0. The condition must be a scalar type. 593 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 594 595 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 596 // to correctly handle break/continue though. 597 bool EmitBoolCondBranch = true; 598 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 599 if (C->isZero()) 600 EmitBoolCondBranch = false; 601 602 // As long as the condition is true, iterate the loop. 603 if (EmitBoolCondBranch) 604 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); 605 606 // Emit the exit block. 607 EmitBlock(LoopExit.getBlock()); 608 609 // The DoCond block typically is just a branch if we skipped 610 // emitting a branch, try to erase it. 611 if (!EmitBoolCondBranch) 612 SimplifyForwardingBlocks(LoopCond.getBlock()); 613 } 614 615 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 616 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 617 618 RunCleanupsScope ForScope(*this); 619 620 CGDebugInfo *DI = getDebugInfo(); 621 if (DI) 622 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 623 624 // Evaluate the first part before the loop. 625 if (S.getInit()) 626 EmitStmt(S.getInit()); 627 628 // Start the loop with a block that tests the condition. 629 // If there's an increment, the continue scope will be overwritten 630 // later. 631 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 632 llvm::BasicBlock *CondBlock = Continue.getBlock(); 633 EmitBlock(CondBlock); 634 635 // Create a cleanup scope for the condition variable cleanups. 636 RunCleanupsScope ConditionScope(*this); 637 638 llvm::Value *BoolCondVal = 0; 639 if (S.getCond()) { 640 // If the for statement has a condition scope, emit the local variable 641 // declaration. 642 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 643 if (S.getConditionVariable()) { 644 EmitAutoVarDecl(*S.getConditionVariable()); 645 } 646 647 // If there are any cleanups between here and the loop-exit scope, 648 // create a block to stage a loop exit along. 649 if (ForScope.requiresCleanups()) 650 ExitBlock = createBasicBlock("for.cond.cleanup"); 651 652 // As long as the condition is true, iterate the loop. 653 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 654 655 // C99 6.8.5p2/p4: The first substatement is executed if the expression 656 // compares unequal to 0. The condition must be a scalar type. 657 BoolCondVal = EvaluateExprAsBool(S.getCond()); 658 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 659 660 if (ExitBlock != LoopExit.getBlock()) { 661 EmitBlock(ExitBlock); 662 EmitBranchThroughCleanup(LoopExit); 663 } 664 665 EmitBlock(ForBody); 666 } else { 667 // Treat it as a non-zero constant. Don't even create a new block for the 668 // body, just fall into it. 669 } 670 671 // If the for loop doesn't have an increment we can just use the 672 // condition as the continue block. Otherwise we'll need to create 673 // a block for it (in the current scope, i.e. in the scope of the 674 // condition), and that we will become our continue block. 675 if (S.getInc()) 676 Continue = getJumpDestInCurrentScope("for.inc"); 677 678 // Store the blocks to use for break and continue. 679 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 680 681 { 682 // Create a separate cleanup scope for the body, in case it is not 683 // a compound statement. 684 RunCleanupsScope BodyScope(*this); 685 EmitStmt(S.getBody()); 686 } 687 688 // If there is an increment, emit it next. 689 if (S.getInc()) { 690 EmitBlock(Continue.getBlock()); 691 EmitStmt(S.getInc()); 692 } 693 694 BreakContinueStack.pop_back(); 695 696 ConditionScope.ForceCleanup(); 697 EmitBranch(CondBlock); 698 699 ForScope.ForceCleanup(); 700 701 if (DI) 702 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 703 704 // Emit the fall-through block. 705 EmitBlock(LoopExit.getBlock(), true); 706 } 707 708 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 709 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 710 711 RunCleanupsScope ForScope(*this); 712 713 CGDebugInfo *DI = getDebugInfo(); 714 if (DI) 715 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 716 717 // Evaluate the first pieces before the loop. 718 EmitStmt(S.getRangeStmt()); 719 EmitStmt(S.getBeginEndStmt()); 720 721 // Start the loop with a block that tests the condition. 722 // If there's an increment, the continue scope will be overwritten 723 // later. 724 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 725 EmitBlock(CondBlock); 726 727 // If there are any cleanups between here and the loop-exit scope, 728 // create a block to stage a loop exit along. 729 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 730 if (ForScope.requiresCleanups()) 731 ExitBlock = createBasicBlock("for.cond.cleanup"); 732 733 // The loop body, consisting of the specified body and the loop variable. 734 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 735 736 // The body is executed if the expression, contextually converted 737 // to bool, is true. 738 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 739 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 740 741 if (ExitBlock != LoopExit.getBlock()) { 742 EmitBlock(ExitBlock); 743 EmitBranchThroughCleanup(LoopExit); 744 } 745 746 EmitBlock(ForBody); 747 748 // Create a block for the increment. In case of a 'continue', we jump there. 749 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 750 751 // Store the blocks to use for break and continue. 752 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 753 754 { 755 // Create a separate cleanup scope for the loop variable and body. 756 RunCleanupsScope BodyScope(*this); 757 EmitStmt(S.getLoopVarStmt()); 758 EmitStmt(S.getBody()); 759 } 760 761 // If there is an increment, emit it next. 762 EmitBlock(Continue.getBlock()); 763 EmitStmt(S.getInc()); 764 765 BreakContinueStack.pop_back(); 766 767 EmitBranch(CondBlock); 768 769 ForScope.ForceCleanup(); 770 771 if (DI) 772 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 773 774 // Emit the fall-through block. 775 EmitBlock(LoopExit.getBlock(), true); 776 } 777 778 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 779 if (RV.isScalar()) { 780 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 781 } else if (RV.isAggregate()) { 782 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 783 } else { 784 EmitStoreOfComplex(RV.getComplexVal(), 785 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 786 /*init*/ true); 787 } 788 EmitBranchThroughCleanup(ReturnBlock); 789 } 790 791 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 792 /// if the function returns void, or may be missing one if the function returns 793 /// non-void. Fun stuff :). 794 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 795 // Emit the result value, even if unused, to evalute the side effects. 796 const Expr *RV = S.getRetValue(); 797 798 // Treat block literals in a return expression as if they appeared 799 // in their own scope. This permits a small, easily-implemented 800 // exception to our over-conservative rules about not jumping to 801 // statements following block literals with non-trivial cleanups. 802 RunCleanupsScope cleanupScope(*this); 803 if (const ExprWithCleanups *cleanups = 804 dyn_cast_or_null<ExprWithCleanups>(RV)) { 805 enterFullExpression(cleanups); 806 RV = cleanups->getSubExpr(); 807 } 808 809 // FIXME: Clean this up by using an LValue for ReturnTemp, 810 // EmitStoreThroughLValue, and EmitAnyExpr. 811 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 812 // Apply the named return value optimization for this return statement, 813 // which means doing nothing: the appropriate result has already been 814 // constructed into the NRVO variable. 815 816 // If there is an NRVO flag for this variable, set it to 1 into indicate 817 // that the cleanup code should not destroy the variable. 818 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 819 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 820 } else if (!ReturnValue) { 821 // Make sure not to return anything, but evaluate the expression 822 // for side effects. 823 if (RV) 824 EmitAnyExpr(RV); 825 } else if (RV == 0) { 826 // Do nothing (return value is left uninitialized) 827 } else if (FnRetTy->isReferenceType()) { 828 // If this function returns a reference, take the address of the expression 829 // rather than the value. 830 RValue Result = EmitReferenceBindingToExpr(RV); 831 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 832 } else { 833 switch (getEvaluationKind(RV->getType())) { 834 case TEK_Scalar: 835 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 836 break; 837 case TEK_Complex: 838 EmitComplexExprIntoLValue(RV, 839 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 840 /*isInit*/ true); 841 break; 842 case TEK_Aggregate: { 843 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 844 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 845 Qualifiers(), 846 AggValueSlot::IsDestructed, 847 AggValueSlot::DoesNotNeedGCBarriers, 848 AggValueSlot::IsNotAliased)); 849 break; 850 } 851 } 852 } 853 854 ++NumReturnExprs; 855 if (RV == 0 || RV->isEvaluatable(getContext())) 856 ++NumSimpleReturnExprs; 857 858 cleanupScope.ForceCleanup(); 859 EmitBranchThroughCleanup(ReturnBlock); 860 } 861 862 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 863 // As long as debug info is modeled with instructions, we have to ensure we 864 // have a place to insert here and write the stop point here. 865 if (HaveInsertPoint()) 866 EmitStopPoint(&S); 867 868 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); 869 I != E; ++I) 870 EmitDecl(**I); 871 } 872 873 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 874 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 875 876 // If this code is reachable then emit a stop point (if generating 877 // debug info). We have to do this ourselves because we are on the 878 // "simple" statement path. 879 if (HaveInsertPoint()) 880 EmitStopPoint(&S); 881 882 JumpDest Block = BreakContinueStack.back().BreakBlock; 883 EmitBranchThroughCleanup(Block); 884 } 885 886 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 887 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 888 889 // If this code is reachable then emit a stop point (if generating 890 // debug info). We have to do this ourselves because we are on the 891 // "simple" statement path. 892 if (HaveInsertPoint()) 893 EmitStopPoint(&S); 894 895 JumpDest Block = BreakContinueStack.back().ContinueBlock; 896 EmitBranchThroughCleanup(Block); 897 } 898 899 /// EmitCaseStmtRange - If case statement range is not too big then 900 /// add multiple cases to switch instruction, one for each value within 901 /// the range. If range is too big then emit "if" condition check. 902 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 903 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 904 905 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 906 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 907 908 // Emit the code for this case. We do this first to make sure it is 909 // properly chained from our predecessor before generating the 910 // switch machinery to enter this block. 911 EmitBlock(createBasicBlock("sw.bb")); 912 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 913 EmitStmt(S.getSubStmt()); 914 915 // If range is empty, do nothing. 916 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 917 return; 918 919 llvm::APInt Range = RHS - LHS; 920 // FIXME: parameters such as this should not be hardcoded. 921 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 922 // Range is small enough to add multiple switch instruction cases. 923 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { 924 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 925 LHS++; 926 } 927 return; 928 } 929 930 // The range is too big. Emit "if" condition into a new block, 931 // making sure to save and restore the current insertion point. 932 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 933 934 // Push this test onto the chain of range checks (which terminates 935 // in the default basic block). The switch's default will be changed 936 // to the top of this chain after switch emission is complete. 937 llvm::BasicBlock *FalseDest = CaseRangeBlock; 938 CaseRangeBlock = createBasicBlock("sw.caserange"); 939 940 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 941 Builder.SetInsertPoint(CaseRangeBlock); 942 943 // Emit range check. 944 llvm::Value *Diff = 945 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 946 llvm::Value *Cond = 947 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 948 Builder.CreateCondBr(Cond, CaseDest, FalseDest); 949 950 // Restore the appropriate insertion point. 951 if (RestoreBB) 952 Builder.SetInsertPoint(RestoreBB); 953 else 954 Builder.ClearInsertionPoint(); 955 } 956 957 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 958 // If there is no enclosing switch instance that we're aware of, then this 959 // case statement and its block can be elided. This situation only happens 960 // when we've constant-folded the switch, are emitting the constant case, 961 // and part of the constant case includes another case statement. For 962 // instance: switch (4) { case 4: do { case 5: } while (1); } 963 if (!SwitchInsn) { 964 EmitStmt(S.getSubStmt()); 965 return; 966 } 967 968 // Handle case ranges. 969 if (S.getRHS()) { 970 EmitCaseStmtRange(S); 971 return; 972 } 973 974 llvm::ConstantInt *CaseVal = 975 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 976 977 // If the body of the case is just a 'break', and if there was no fallthrough, 978 // try to not emit an empty block. 979 if ((CGM.getCodeGenOpts().OptimizationLevel > 0) && 980 isa<BreakStmt>(S.getSubStmt())) { 981 JumpDest Block = BreakContinueStack.back().BreakBlock; 982 983 // Only do this optimization if there are no cleanups that need emitting. 984 if (isObviouslyBranchWithoutCleanups(Block)) { 985 SwitchInsn->addCase(CaseVal, Block.getBlock()); 986 987 // If there was a fallthrough into this case, make sure to redirect it to 988 // the end of the switch as well. 989 if (Builder.GetInsertBlock()) { 990 Builder.CreateBr(Block.getBlock()); 991 Builder.ClearInsertionPoint(); 992 } 993 return; 994 } 995 } 996 997 EmitBlock(createBasicBlock("sw.bb")); 998 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 999 SwitchInsn->addCase(CaseVal, CaseDest); 1000 1001 // Recursively emitting the statement is acceptable, but is not wonderful for 1002 // code where we have many case statements nested together, i.e.: 1003 // case 1: 1004 // case 2: 1005 // case 3: etc. 1006 // Handling this recursively will create a new block for each case statement 1007 // that falls through to the next case which is IR intensive. It also causes 1008 // deep recursion which can run into stack depth limitations. Handle 1009 // sequential non-range case statements specially. 1010 const CaseStmt *CurCase = &S; 1011 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1012 1013 // Otherwise, iteratively add consecutive cases to this switch stmt. 1014 while (NextCase && NextCase->getRHS() == 0) { 1015 CurCase = NextCase; 1016 llvm::ConstantInt *CaseVal = 1017 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1018 SwitchInsn->addCase(CaseVal, CaseDest); 1019 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1020 } 1021 1022 // Normal default recursion for non-cases. 1023 EmitStmt(CurCase->getSubStmt()); 1024 } 1025 1026 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1027 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1028 assert(DefaultBlock->empty() && 1029 "EmitDefaultStmt: Default block already defined?"); 1030 EmitBlock(DefaultBlock); 1031 EmitStmt(S.getSubStmt()); 1032 } 1033 1034 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1035 /// constant value that is being switched on, see if we can dead code eliminate 1036 /// the body of the switch to a simple series of statements to emit. Basically, 1037 /// on a switch (5) we want to find these statements: 1038 /// case 5: 1039 /// printf(...); <-- 1040 /// ++i; <-- 1041 /// break; 1042 /// 1043 /// and add them to the ResultStmts vector. If it is unsafe to do this 1044 /// transformation (for example, one of the elided statements contains a label 1045 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1046 /// should include statements after it (e.g. the printf() line is a substmt of 1047 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1048 /// statement, then return CSFC_Success. 1049 /// 1050 /// If Case is non-null, then we are looking for the specified case, checking 1051 /// that nothing we jump over contains labels. If Case is null, then we found 1052 /// the case and are looking for the break. 1053 /// 1054 /// If the recursive walk actually finds our Case, then we set FoundCase to 1055 /// true. 1056 /// 1057 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1058 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1059 const SwitchCase *Case, 1060 bool &FoundCase, 1061 SmallVectorImpl<const Stmt*> &ResultStmts) { 1062 // If this is a null statement, just succeed. 1063 if (S == 0) 1064 return Case ? CSFC_Success : CSFC_FallThrough; 1065 1066 // If this is the switchcase (case 4: or default) that we're looking for, then 1067 // we're in business. Just add the substatement. 1068 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1069 if (S == Case) { 1070 FoundCase = true; 1071 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 1072 ResultStmts); 1073 } 1074 1075 // Otherwise, this is some other case or default statement, just ignore it. 1076 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1077 ResultStmts); 1078 } 1079 1080 // If we are in the live part of the code and we found our break statement, 1081 // return a success! 1082 if (Case == 0 && isa<BreakStmt>(S)) 1083 return CSFC_Success; 1084 1085 // If this is a switch statement, then it might contain the SwitchCase, the 1086 // break, or neither. 1087 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1088 // Handle this as two cases: we might be looking for the SwitchCase (if so 1089 // the skipped statements must be skippable) or we might already have it. 1090 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1091 if (Case) { 1092 // Keep track of whether we see a skipped declaration. The code could be 1093 // using the declaration even if it is skipped, so we can't optimize out 1094 // the decl if the kept statements might refer to it. 1095 bool HadSkippedDecl = false; 1096 1097 // If we're looking for the case, just see if we can skip each of the 1098 // substatements. 1099 for (; Case && I != E; ++I) { 1100 HadSkippedDecl |= isa<DeclStmt>(*I); 1101 1102 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1103 case CSFC_Failure: return CSFC_Failure; 1104 case CSFC_Success: 1105 // A successful result means that either 1) that the statement doesn't 1106 // have the case and is skippable, or 2) does contain the case value 1107 // and also contains the break to exit the switch. In the later case, 1108 // we just verify the rest of the statements are elidable. 1109 if (FoundCase) { 1110 // If we found the case and skipped declarations, we can't do the 1111 // optimization. 1112 if (HadSkippedDecl) 1113 return CSFC_Failure; 1114 1115 for (++I; I != E; ++I) 1116 if (CodeGenFunction::ContainsLabel(*I, true)) 1117 return CSFC_Failure; 1118 return CSFC_Success; 1119 } 1120 break; 1121 case CSFC_FallThrough: 1122 // If we have a fallthrough condition, then we must have found the 1123 // case started to include statements. Consider the rest of the 1124 // statements in the compound statement as candidates for inclusion. 1125 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1126 // We recursively found Case, so we're not looking for it anymore. 1127 Case = 0; 1128 1129 // If we found the case and skipped declarations, we can't do the 1130 // optimization. 1131 if (HadSkippedDecl) 1132 return CSFC_Failure; 1133 break; 1134 } 1135 } 1136 } 1137 1138 // If we have statements in our range, then we know that the statements are 1139 // live and need to be added to the set of statements we're tracking. 1140 for (; I != E; ++I) { 1141 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1142 case CSFC_Failure: return CSFC_Failure; 1143 case CSFC_FallThrough: 1144 // A fallthrough result means that the statement was simple and just 1145 // included in ResultStmt, keep adding them afterwards. 1146 break; 1147 case CSFC_Success: 1148 // A successful result means that we found the break statement and 1149 // stopped statement inclusion. We just ensure that any leftover stmts 1150 // are skippable and return success ourselves. 1151 for (++I; I != E; ++I) 1152 if (CodeGenFunction::ContainsLabel(*I, true)) 1153 return CSFC_Failure; 1154 return CSFC_Success; 1155 } 1156 } 1157 1158 return Case ? CSFC_Success : CSFC_FallThrough; 1159 } 1160 1161 // Okay, this is some other statement that we don't handle explicitly, like a 1162 // for statement or increment etc. If we are skipping over this statement, 1163 // just verify it doesn't have labels, which would make it invalid to elide. 1164 if (Case) { 1165 if (CodeGenFunction::ContainsLabel(S, true)) 1166 return CSFC_Failure; 1167 return CSFC_Success; 1168 } 1169 1170 // Otherwise, we want to include this statement. Everything is cool with that 1171 // so long as it doesn't contain a break out of the switch we're in. 1172 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1173 1174 // Otherwise, everything is great. Include the statement and tell the caller 1175 // that we fall through and include the next statement as well. 1176 ResultStmts.push_back(S); 1177 return CSFC_FallThrough; 1178 } 1179 1180 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1181 /// then invoke CollectStatementsForCase to find the list of statements to emit 1182 /// for a switch on constant. See the comment above CollectStatementsForCase 1183 /// for more details. 1184 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1185 const llvm::APSInt &ConstantCondValue, 1186 SmallVectorImpl<const Stmt*> &ResultStmts, 1187 ASTContext &C) { 1188 // First step, find the switch case that is being branched to. We can do this 1189 // efficiently by scanning the SwitchCase list. 1190 const SwitchCase *Case = S.getSwitchCaseList(); 1191 const DefaultStmt *DefaultCase = 0; 1192 1193 for (; Case; Case = Case->getNextSwitchCase()) { 1194 // It's either a default or case. Just remember the default statement in 1195 // case we're not jumping to any numbered cases. 1196 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1197 DefaultCase = DS; 1198 continue; 1199 } 1200 1201 // Check to see if this case is the one we're looking for. 1202 const CaseStmt *CS = cast<CaseStmt>(Case); 1203 // Don't handle case ranges yet. 1204 if (CS->getRHS()) return false; 1205 1206 // If we found our case, remember it as 'case'. 1207 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1208 break; 1209 } 1210 1211 // If we didn't find a matching case, we use a default if it exists, or we 1212 // elide the whole switch body! 1213 if (Case == 0) { 1214 // It is safe to elide the body of the switch if it doesn't contain labels 1215 // etc. If it is safe, return successfully with an empty ResultStmts list. 1216 if (DefaultCase == 0) 1217 return !CodeGenFunction::ContainsLabel(&S); 1218 Case = DefaultCase; 1219 } 1220 1221 // Ok, we know which case is being jumped to, try to collect all the 1222 // statements that follow it. This can fail for a variety of reasons. Also, 1223 // check to see that the recursive walk actually found our case statement. 1224 // Insane cases like this can fail to find it in the recursive walk since we 1225 // don't handle every stmt kind: 1226 // switch (4) { 1227 // while (1) { 1228 // case 4: ... 1229 bool FoundCase = false; 1230 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1231 ResultStmts) != CSFC_Failure && 1232 FoundCase; 1233 } 1234 1235 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1236 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1237 1238 RunCleanupsScope ConditionScope(*this); 1239 1240 if (S.getConditionVariable()) 1241 EmitAutoVarDecl(*S.getConditionVariable()); 1242 1243 // Handle nested switch statements. 1244 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1245 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1246 1247 // See if we can constant fold the condition of the switch and therefore only 1248 // emit the live case statement (if any) of the switch. 1249 llvm::APSInt ConstantCondValue; 1250 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1251 SmallVector<const Stmt*, 4> CaseStmts; 1252 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1253 getContext())) { 1254 RunCleanupsScope ExecutedScope(*this); 1255 1256 // At this point, we are no longer "within" a switch instance, so 1257 // we can temporarily enforce this to ensure that any embedded case 1258 // statements are not emitted. 1259 SwitchInsn = 0; 1260 1261 // Okay, we can dead code eliminate everything except this case. Emit the 1262 // specified series of statements and we're good. 1263 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1264 EmitStmt(CaseStmts[i]); 1265 1266 // Now we want to restore the saved switch instance so that nested 1267 // switches continue to function properly 1268 SwitchInsn = SavedSwitchInsn; 1269 1270 return; 1271 } 1272 } 1273 1274 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1275 1276 // Create basic block to hold stuff that comes after switch 1277 // statement. We also need to create a default block now so that 1278 // explicit case ranges tests can have a place to jump to on 1279 // failure. 1280 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1281 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1282 CaseRangeBlock = DefaultBlock; 1283 1284 // Clear the insertion point to indicate we are in unreachable code. 1285 Builder.ClearInsertionPoint(); 1286 1287 // All break statements jump to NextBlock. If BreakContinueStack is non empty 1288 // then reuse last ContinueBlock. 1289 JumpDest OuterContinue; 1290 if (!BreakContinueStack.empty()) 1291 OuterContinue = BreakContinueStack.back().ContinueBlock; 1292 1293 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1294 1295 // Emit switch body. 1296 EmitStmt(S.getBody()); 1297 1298 BreakContinueStack.pop_back(); 1299 1300 // Update the default block in case explicit case range tests have 1301 // been chained on top. 1302 SwitchInsn->setDefaultDest(CaseRangeBlock); 1303 1304 // If a default was never emitted: 1305 if (!DefaultBlock->getParent()) { 1306 // If we have cleanups, emit the default block so that there's a 1307 // place to jump through the cleanups from. 1308 if (ConditionScope.requiresCleanups()) { 1309 EmitBlock(DefaultBlock); 1310 1311 // Otherwise, just forward the default block to the switch end. 1312 } else { 1313 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1314 delete DefaultBlock; 1315 } 1316 } 1317 1318 ConditionScope.ForceCleanup(); 1319 1320 // Emit continuation. 1321 EmitBlock(SwitchExit.getBlock(), true); 1322 1323 SwitchInsn = SavedSwitchInsn; 1324 CaseRangeBlock = SavedCRBlock; 1325 } 1326 1327 static std::string 1328 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1329 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1330 std::string Result; 1331 1332 while (*Constraint) { 1333 switch (*Constraint) { 1334 default: 1335 Result += Target.convertConstraint(Constraint); 1336 break; 1337 // Ignore these 1338 case '*': 1339 case '?': 1340 case '!': 1341 case '=': // Will see this and the following in mult-alt constraints. 1342 case '+': 1343 break; 1344 case '#': // Ignore the rest of the constraint alternative. 1345 while (Constraint[1] && Constraint[1] != ',') 1346 Constraint++; 1347 break; 1348 case ',': 1349 Result += "|"; 1350 break; 1351 case 'g': 1352 Result += "imr"; 1353 break; 1354 case '[': { 1355 assert(OutCons && 1356 "Must pass output names to constraints with a symbolic name"); 1357 unsigned Index; 1358 bool result = Target.resolveSymbolicName(Constraint, 1359 &(*OutCons)[0], 1360 OutCons->size(), Index); 1361 assert(result && "Could not resolve symbolic name"); (void)result; 1362 Result += llvm::utostr(Index); 1363 break; 1364 } 1365 } 1366 1367 Constraint++; 1368 } 1369 1370 return Result; 1371 } 1372 1373 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1374 /// as using a particular register add that as a constraint that will be used 1375 /// in this asm stmt. 1376 static std::string 1377 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1378 const TargetInfo &Target, CodeGenModule &CGM, 1379 const AsmStmt &Stmt) { 1380 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1381 if (!AsmDeclRef) 1382 return Constraint; 1383 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1384 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1385 if (!Variable) 1386 return Constraint; 1387 if (Variable->getStorageClass() != SC_Register) 1388 return Constraint; 1389 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1390 if (!Attr) 1391 return Constraint; 1392 StringRef Register = Attr->getLabel(); 1393 assert(Target.isValidGCCRegisterName(Register)); 1394 // We're using validateOutputConstraint here because we only care if 1395 // this is a register constraint. 1396 TargetInfo::ConstraintInfo Info(Constraint, ""); 1397 if (Target.validateOutputConstraint(Info) && 1398 !Info.allowsRegister()) { 1399 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1400 return Constraint; 1401 } 1402 // Canonicalize the register here before returning it. 1403 Register = Target.getNormalizedGCCRegisterName(Register); 1404 return "{" + Register.str() + "}"; 1405 } 1406 1407 llvm::Value* 1408 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1409 LValue InputValue, QualType InputType, 1410 std::string &ConstraintStr) { 1411 llvm::Value *Arg; 1412 if (Info.allowsRegister() || !Info.allowsMemory()) { 1413 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1414 Arg = EmitLoadOfLValue(InputValue).getScalarVal(); 1415 } else { 1416 llvm::Type *Ty = ConvertType(InputType); 1417 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1418 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1419 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1420 Ty = llvm::PointerType::getUnqual(Ty); 1421 1422 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1423 Ty)); 1424 } else { 1425 Arg = InputValue.getAddress(); 1426 ConstraintStr += '*'; 1427 } 1428 } 1429 } else { 1430 Arg = InputValue.getAddress(); 1431 ConstraintStr += '*'; 1432 } 1433 1434 return Arg; 1435 } 1436 1437 llvm::Value* CodeGenFunction::EmitAsmInput( 1438 const TargetInfo::ConstraintInfo &Info, 1439 const Expr *InputExpr, 1440 std::string &ConstraintStr) { 1441 if (Info.allowsRegister() || !Info.allowsMemory()) 1442 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1443 return EmitScalarExpr(InputExpr); 1444 1445 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1446 LValue Dest = EmitLValue(InputExpr); 1447 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr); 1448 } 1449 1450 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1451 /// asm call instruction. The !srcloc MDNode contains a list of constant 1452 /// integers which are the source locations of the start of each line in the 1453 /// asm. 1454 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1455 CodeGenFunction &CGF) { 1456 SmallVector<llvm::Value *, 8> Locs; 1457 // Add the location of the first line to the MDNode. 1458 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1459 Str->getLocStart().getRawEncoding())); 1460 StringRef StrVal = Str->getString(); 1461 if (!StrVal.empty()) { 1462 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1463 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1464 1465 // Add the location of the start of each subsequent line of the asm to the 1466 // MDNode. 1467 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1468 if (StrVal[i] != '\n') continue; 1469 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1470 CGF.getTarget()); 1471 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1472 LineLoc.getRawEncoding())); 1473 } 1474 } 1475 1476 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1477 } 1478 1479 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1480 // Assemble the final asm string. 1481 std::string AsmString = S.generateAsmString(getContext()); 1482 1483 // Get all the output and input constraints together. 1484 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1485 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1486 1487 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1488 StringRef Name; 1489 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1490 Name = GAS->getOutputName(i); 1491 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1492 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1493 assert(IsValid && "Failed to parse output constraint"); 1494 OutputConstraintInfos.push_back(Info); 1495 } 1496 1497 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1498 StringRef Name; 1499 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1500 Name = GAS->getInputName(i); 1501 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1502 bool IsValid = 1503 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1504 S.getNumOutputs(), Info); 1505 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1506 InputConstraintInfos.push_back(Info); 1507 } 1508 1509 std::string Constraints; 1510 1511 std::vector<LValue> ResultRegDests; 1512 std::vector<QualType> ResultRegQualTys; 1513 std::vector<llvm::Type *> ResultRegTypes; 1514 std::vector<llvm::Type *> ResultTruncRegTypes; 1515 std::vector<llvm::Type *> ArgTypes; 1516 std::vector<llvm::Value*> Args; 1517 1518 // Keep track of inout constraints. 1519 std::string InOutConstraints; 1520 std::vector<llvm::Value*> InOutArgs; 1521 std::vector<llvm::Type*> InOutArgTypes; 1522 1523 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1524 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1525 1526 // Simplify the output constraint. 1527 std::string OutputConstraint(S.getOutputConstraint(i)); 1528 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1529 getTarget()); 1530 1531 const Expr *OutExpr = S.getOutputExpr(i); 1532 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1533 1534 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1535 getTarget(), CGM, S); 1536 1537 LValue Dest = EmitLValue(OutExpr); 1538 if (!Constraints.empty()) 1539 Constraints += ','; 1540 1541 // If this is a register output, then make the inline asm return it 1542 // by-value. If this is a memory result, return the value by-reference. 1543 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1544 Constraints += "=" + OutputConstraint; 1545 ResultRegQualTys.push_back(OutExpr->getType()); 1546 ResultRegDests.push_back(Dest); 1547 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1548 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1549 1550 // If this output is tied to an input, and if the input is larger, then 1551 // we need to set the actual result type of the inline asm node to be the 1552 // same as the input type. 1553 if (Info.hasMatchingInput()) { 1554 unsigned InputNo; 1555 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1556 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1557 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1558 break; 1559 } 1560 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1561 1562 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1563 QualType OutputType = OutExpr->getType(); 1564 1565 uint64_t InputSize = getContext().getTypeSize(InputTy); 1566 if (getContext().getTypeSize(OutputType) < InputSize) { 1567 // Form the asm to return the value as a larger integer or fp type. 1568 ResultRegTypes.back() = ConvertType(InputTy); 1569 } 1570 } 1571 if (llvm::Type* AdjTy = 1572 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1573 ResultRegTypes.back())) 1574 ResultRegTypes.back() = AdjTy; 1575 else { 1576 CGM.getDiags().Report(S.getAsmLoc(), 1577 diag::err_asm_invalid_type_in_input) 1578 << OutExpr->getType() << OutputConstraint; 1579 } 1580 } else { 1581 ArgTypes.push_back(Dest.getAddress()->getType()); 1582 Args.push_back(Dest.getAddress()); 1583 Constraints += "=*"; 1584 Constraints += OutputConstraint; 1585 } 1586 1587 if (Info.isReadWrite()) { 1588 InOutConstraints += ','; 1589 1590 const Expr *InputExpr = S.getOutputExpr(i); 1591 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1592 InOutConstraints); 1593 1594 if (llvm::Type* AdjTy = 1595 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1596 Arg->getType())) 1597 Arg = Builder.CreateBitCast(Arg, AdjTy); 1598 1599 if (Info.allowsRegister()) 1600 InOutConstraints += llvm::utostr(i); 1601 else 1602 InOutConstraints += OutputConstraint; 1603 1604 InOutArgTypes.push_back(Arg->getType()); 1605 InOutArgs.push_back(Arg); 1606 } 1607 } 1608 1609 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1610 1611 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1612 const Expr *InputExpr = S.getInputExpr(i); 1613 1614 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1615 1616 if (!Constraints.empty()) 1617 Constraints += ','; 1618 1619 // Simplify the input constraint. 1620 std::string InputConstraint(S.getInputConstraint(i)); 1621 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1622 &OutputConstraintInfos); 1623 1624 InputConstraint = 1625 AddVariableConstraints(InputConstraint, 1626 *InputExpr->IgnoreParenNoopCasts(getContext()), 1627 getTarget(), CGM, S); 1628 1629 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1630 1631 // If this input argument is tied to a larger output result, extend the 1632 // input to be the same size as the output. The LLVM backend wants to see 1633 // the input and output of a matching constraint be the same size. Note 1634 // that GCC does not define what the top bits are here. We use zext because 1635 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1636 if (Info.hasTiedOperand()) { 1637 unsigned Output = Info.getTiedOperand(); 1638 QualType OutputType = S.getOutputExpr(Output)->getType(); 1639 QualType InputTy = InputExpr->getType(); 1640 1641 if (getContext().getTypeSize(OutputType) > 1642 getContext().getTypeSize(InputTy)) { 1643 // Use ptrtoint as appropriate so that we can do our extension. 1644 if (isa<llvm::PointerType>(Arg->getType())) 1645 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1646 llvm::Type *OutputTy = ConvertType(OutputType); 1647 if (isa<llvm::IntegerType>(OutputTy)) 1648 Arg = Builder.CreateZExt(Arg, OutputTy); 1649 else if (isa<llvm::PointerType>(OutputTy)) 1650 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1651 else { 1652 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1653 Arg = Builder.CreateFPExt(Arg, OutputTy); 1654 } 1655 } 1656 } 1657 if (llvm::Type* AdjTy = 1658 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1659 Arg->getType())) 1660 Arg = Builder.CreateBitCast(Arg, AdjTy); 1661 else 1662 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1663 << InputExpr->getType() << InputConstraint; 1664 1665 ArgTypes.push_back(Arg->getType()); 1666 Args.push_back(Arg); 1667 Constraints += InputConstraint; 1668 } 1669 1670 // Append the "input" part of inout constraints last. 1671 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1672 ArgTypes.push_back(InOutArgTypes[i]); 1673 Args.push_back(InOutArgs[i]); 1674 } 1675 Constraints += InOutConstraints; 1676 1677 // Clobbers 1678 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1679 StringRef Clobber = S.getClobber(i); 1680 1681 if (Clobber != "memory" && Clobber != "cc") 1682 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1683 1684 if (i != 0 || NumConstraints != 0) 1685 Constraints += ','; 1686 1687 Constraints += "~{"; 1688 Constraints += Clobber; 1689 Constraints += '}'; 1690 } 1691 1692 // Add machine specific clobbers 1693 std::string MachineClobbers = getTarget().getClobbers(); 1694 if (!MachineClobbers.empty()) { 1695 if (!Constraints.empty()) 1696 Constraints += ','; 1697 Constraints += MachineClobbers; 1698 } 1699 1700 llvm::Type *ResultType; 1701 if (ResultRegTypes.empty()) 1702 ResultType = VoidTy; 1703 else if (ResultRegTypes.size() == 1) 1704 ResultType = ResultRegTypes[0]; 1705 else 1706 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1707 1708 llvm::FunctionType *FTy = 1709 llvm::FunctionType::get(ResultType, ArgTypes, false); 1710 1711 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1712 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1713 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1714 llvm::InlineAsm *IA = 1715 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1716 /* IsAlignStack */ false, AsmDialect); 1717 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1718 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1719 llvm::Attribute::NoUnwind); 1720 1721 // Slap the source location of the inline asm into a !srcloc metadata on the 1722 // call. FIXME: Handle metadata for MS-style inline asms. 1723 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1724 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 1725 *this)); 1726 1727 // Extract all of the register value results from the asm. 1728 std::vector<llvm::Value*> RegResults; 1729 if (ResultRegTypes.size() == 1) { 1730 RegResults.push_back(Result); 1731 } else { 1732 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1733 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1734 RegResults.push_back(Tmp); 1735 } 1736 } 1737 1738 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1739 llvm::Value *Tmp = RegResults[i]; 1740 1741 // If the result type of the LLVM IR asm doesn't match the result type of 1742 // the expression, do the conversion. 1743 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1744 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1745 1746 // Truncate the integer result to the right size, note that TruncTy can be 1747 // a pointer. 1748 if (TruncTy->isFloatingPointTy()) 1749 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1750 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1751 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 1752 Tmp = Builder.CreateTrunc(Tmp, 1753 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1754 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1755 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1756 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 1757 Tmp = Builder.CreatePtrToInt(Tmp, 1758 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1759 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1760 } else if (TruncTy->isIntegerTy()) { 1761 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1762 } else if (TruncTy->isVectorTy()) { 1763 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1764 } 1765 } 1766 1767 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1768 } 1769 } 1770 1771 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 1772 const RecordDecl *RD = S.getCapturedRecordDecl(); 1773 QualType RecordTy = CGF.getContext().getRecordType(RD); 1774 1775 // Initialize the captured struct. 1776 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 1777 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 1778 1779 RecordDecl::field_iterator CurField = RD->field_begin(); 1780 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 1781 E = S.capture_init_end(); 1782 I != E; ++I, ++CurField) { 1783 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1784 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 1785 } 1786 1787 return SlotLV; 1788 } 1789 1790 /// Generate an outlined function for the body of a CapturedStmt, store any 1791 /// captured variables into the captured struct, and call the outlined function. 1792 llvm::Function * 1793 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 1794 const CapturedDecl *CD = S.getCapturedDecl(); 1795 const RecordDecl *RD = S.getCapturedRecordDecl(); 1796 assert(CD->hasBody() && "missing CapturedDecl body"); 1797 1798 LValue CapStruct = InitCapturedStruct(*this, S); 1799 1800 // Emit the CapturedDecl 1801 CodeGenFunction CGF(CGM, true); 1802 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 1803 llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD); 1804 delete CGF.CapturedStmtInfo; 1805 1806 // Emit call to the helper function. 1807 EmitCallOrInvoke(F, CapStruct.getAddress()); 1808 1809 return F; 1810 } 1811 1812 /// Creates the outlined function for a CapturedStmt. 1813 llvm::Function * 1814 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD, 1815 const RecordDecl *RD) { 1816 assert(CapturedStmtInfo && 1817 "CapturedStmtInfo should be set when generating the captured function"); 1818 1819 // Check if we should generate debug info for this function. 1820 maybeInitializeDebugInfo(); 1821 1822 // Build the argument list. 1823 ASTContext &Ctx = CGM.getContext(); 1824 FunctionArgList Args; 1825 Args.append(CD->param_begin(), CD->param_end()); 1826 1827 // Create the function declaration. 1828 FunctionType::ExtInfo ExtInfo; 1829 const CGFunctionInfo &FuncInfo = 1830 CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 1831 /*IsVariadic=*/false); 1832 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 1833 1834 llvm::Function *F = 1835 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 1836 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 1837 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 1838 1839 // Generate the function. 1840 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart()); 1841 1842 // Set the context parameter in CapturedStmtInfo. 1843 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 1844 assert(DeclPtr && "missing context parameter for CapturedStmt"); 1845 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 1846 1847 // If 'this' is captured, load it into CXXThisValue. 1848 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 1849 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 1850 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 1851 Ctx.getTagDeclType(RD)); 1852 LValue ThisLValue = EmitLValueForField(LV, FD); 1853 1854 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 1855 } 1856 1857 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 1858 FinishFunction(CD->getBodyRBrace()); 1859 1860 return F; 1861 } 1862