1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/Support/CallSite.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                              Statement Emission
32 //===----------------------------------------------------------------------===//
33 
34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35   if (CGDebugInfo *DI = getDebugInfo()) {
36     SourceLocation Loc;
37     Loc = S->getLocStart();
38     DI->EmitLocation(Builder, Loc);
39 
40     LastStopPoint = Loc;
41   }
42 }
43 
44 void CodeGenFunction::EmitStmt(const Stmt *S) {
45   assert(S && "Null statement?");
46 
47   // These statements have their own debug info handling.
48   if (EmitSimpleStmt(S))
49     return;
50 
51   // Check if we are generating unreachable code.
52   if (!HaveInsertPoint()) {
53     // If so, and the statement doesn't contain a label, then we do not need to
54     // generate actual code. This is safe because (1) the current point is
55     // unreachable, so we don't need to execute the code, and (2) we've already
56     // handled the statements which update internal data structures (like the
57     // local variable map) which could be used by subsequent statements.
58     if (!ContainsLabel(S)) {
59       // Verify that any decl statements were handled as simple, they may be in
60       // scope of subsequent reachable statements.
61       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
62       return;
63     }
64 
65     // Otherwise, make a new block to hold the code.
66     EnsureInsertPoint();
67   }
68 
69   // Generate a stoppoint if we are emitting debug info.
70   EmitStopPoint(S);
71 
72   switch (S->getStmtClass()) {
73   case Stmt::NoStmtClass:
74   case Stmt::CXXCatchStmtClass:
75   case Stmt::SEHExceptStmtClass:
76   case Stmt::SEHFinallyStmtClass:
77   case Stmt::MSDependentExistsStmtClass:
78     llvm_unreachable("invalid statement class to emit generically");
79   case Stmt::NullStmtClass:
80   case Stmt::CompoundStmtClass:
81   case Stmt::DeclStmtClass:
82   case Stmt::LabelStmtClass:
83   case Stmt::AttributedStmtClass:
84   case Stmt::GotoStmtClass:
85   case Stmt::BreakStmtClass:
86   case Stmt::ContinueStmtClass:
87   case Stmt::DefaultStmtClass:
88   case Stmt::CaseStmtClass:
89     llvm_unreachable("should have emitted these statements as simple");
90 
91 #define STMT(Type, Base)
92 #define ABSTRACT_STMT(Op)
93 #define EXPR(Type, Base) \
94   case Stmt::Type##Class:
95 #include "clang/AST/StmtNodes.inc"
96   {
97     // Remember the block we came in on.
98     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
99     assert(incoming && "expression emission must have an insertion point");
100 
101     EmitIgnoredExpr(cast<Expr>(S));
102 
103     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
104     assert(outgoing && "expression emission cleared block!");
105 
106     // The expression emitters assume (reasonably!) that the insertion
107     // point is always set.  To maintain that, the call-emission code
108     // for noreturn functions has to enter a new block with no
109     // predecessors.  We want to kill that block and mark the current
110     // insertion point unreachable in the common case of a call like
111     // "exit();".  Since expression emission doesn't otherwise create
112     // blocks with no predecessors, we can just test for that.
113     // However, we must be careful not to do this to our incoming
114     // block, because *statement* emission does sometimes create
115     // reachable blocks which will have no predecessors until later in
116     // the function.  This occurs with, e.g., labels that are not
117     // reachable by fallthrough.
118     if (incoming != outgoing && outgoing->use_empty()) {
119       outgoing->eraseFromParent();
120       Builder.ClearInsertionPoint();
121     }
122     break;
123   }
124 
125   case Stmt::IndirectGotoStmtClass:
126     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
127 
128   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
129   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
130   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
131   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
132 
133   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
134 
135   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
136   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
137   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
138   case Stmt::CapturedStmtClass:
139     EmitCapturedStmt(cast<CapturedStmt>(*S), CR_Default);
140     break;
141   case Stmt::ObjCAtTryStmtClass:
142     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
143     break;
144   case Stmt::ObjCAtCatchStmtClass:
145     llvm_unreachable(
146                     "@catch statements should be handled by EmitObjCAtTryStmt");
147   case Stmt::ObjCAtFinallyStmtClass:
148     llvm_unreachable(
149                   "@finally statements should be handled by EmitObjCAtTryStmt");
150   case Stmt::ObjCAtThrowStmtClass:
151     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
152     break;
153   case Stmt::ObjCAtSynchronizedStmtClass:
154     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
155     break;
156   case Stmt::ObjCForCollectionStmtClass:
157     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
158     break;
159   case Stmt::ObjCAutoreleasePoolStmtClass:
160     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
161     break;
162 
163   case Stmt::CXXTryStmtClass:
164     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
165     break;
166   case Stmt::CXXForRangeStmtClass:
167     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
168   case Stmt::SEHTryStmtClass:
169     // FIXME Not yet implemented
170     break;
171   }
172 }
173 
174 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
175   switch (S->getStmtClass()) {
176   default: return false;
177   case Stmt::NullStmtClass: break;
178   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
179   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
180   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
181   case Stmt::AttributedStmtClass:
182                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
183   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
184   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
185   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
186   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
187   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
188   }
189 
190   return true;
191 }
192 
193 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
194 /// this captures the expression result of the last sub-statement and returns it
195 /// (for use by the statement expression extension).
196 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
197                                                AggValueSlot AggSlot) {
198   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
199                              "LLVM IR generation of compound statement ('{}')");
200 
201   // Keep track of the current cleanup stack depth, including debug scopes.
202   LexicalScope Scope(*this, S.getSourceRange());
203 
204   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
205 }
206 
207 llvm::Value*
208 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
209                                               bool GetLast,
210                                               AggValueSlot AggSlot) {
211 
212   for (CompoundStmt::const_body_iterator I = S.body_begin(),
213        E = S.body_end()-GetLast; I != E; ++I)
214     EmitStmt(*I);
215 
216   llvm::Value *RetAlloca = 0;
217   if (GetLast) {
218     // We have to special case labels here.  They are statements, but when put
219     // at the end of a statement expression, they yield the value of their
220     // subexpression.  Handle this by walking through all labels we encounter,
221     // emitting them before we evaluate the subexpr.
222     const Stmt *LastStmt = S.body_back();
223     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
224       EmitLabel(LS->getDecl());
225       LastStmt = LS->getSubStmt();
226     }
227 
228     EnsureInsertPoint();
229 
230     QualType ExprTy = cast<Expr>(LastStmt)->getType();
231     if (hasAggregateEvaluationKind(ExprTy)) {
232       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
233     } else {
234       // We can't return an RValue here because there might be cleanups at
235       // the end of the StmtExpr.  Because of that, we have to emit the result
236       // here into a temporary alloca.
237       RetAlloca = CreateMemTemp(ExprTy);
238       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
239                        /*IsInit*/false);
240     }
241 
242   }
243 
244   return RetAlloca;
245 }
246 
247 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
248   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
249 
250   // If there is a cleanup stack, then we it isn't worth trying to
251   // simplify this block (we would need to remove it from the scope map
252   // and cleanup entry).
253   if (!EHStack.empty())
254     return;
255 
256   // Can only simplify direct branches.
257   if (!BI || !BI->isUnconditional())
258     return;
259 
260   // Can only simplify empty blocks.
261   if (BI != BB->begin())
262     return;
263 
264   BB->replaceAllUsesWith(BI->getSuccessor(0));
265   BI->eraseFromParent();
266   BB->eraseFromParent();
267 }
268 
269 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
270   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
271 
272   // Fall out of the current block (if necessary).
273   EmitBranch(BB);
274 
275   if (IsFinished && BB->use_empty()) {
276     delete BB;
277     return;
278   }
279 
280   // Place the block after the current block, if possible, or else at
281   // the end of the function.
282   if (CurBB && CurBB->getParent())
283     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
284   else
285     CurFn->getBasicBlockList().push_back(BB);
286   Builder.SetInsertPoint(BB);
287 }
288 
289 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
290   // Emit a branch from the current block to the target one if this
291   // was a real block.  If this was just a fall-through block after a
292   // terminator, don't emit it.
293   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
294 
295   if (!CurBB || CurBB->getTerminator()) {
296     // If there is no insert point or the previous block is already
297     // terminated, don't touch it.
298   } else {
299     // Otherwise, create a fall-through branch.
300     Builder.CreateBr(Target);
301   }
302 
303   Builder.ClearInsertionPoint();
304 }
305 
306 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
307   bool inserted = false;
308   for (llvm::BasicBlock::use_iterator
309          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
310     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
311       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
312       inserted = true;
313       break;
314     }
315   }
316 
317   if (!inserted)
318     CurFn->getBasicBlockList().push_back(block);
319 
320   Builder.SetInsertPoint(block);
321 }
322 
323 CodeGenFunction::JumpDest
324 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
325   JumpDest &Dest = LabelMap[D];
326   if (Dest.isValid()) return Dest;
327 
328   // Create, but don't insert, the new block.
329   Dest = JumpDest(createBasicBlock(D->getName()),
330                   EHScopeStack::stable_iterator::invalid(),
331                   NextCleanupDestIndex++);
332   return Dest;
333 }
334 
335 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
336   // Add this label to the current lexical scope if we're within any
337   // normal cleanups.  Jumps "in" to this label --- when permitted by
338   // the language --- may need to be routed around such cleanups.
339   if (EHStack.hasNormalCleanups() && CurLexicalScope)
340     CurLexicalScope->addLabel(D);
341 
342   JumpDest &Dest = LabelMap[D];
343 
344   // If we didn't need a forward reference to this label, just go
345   // ahead and create a destination at the current scope.
346   if (!Dest.isValid()) {
347     Dest = getJumpDestInCurrentScope(D->getName());
348 
349   // Otherwise, we need to give this label a target depth and remove
350   // it from the branch-fixups list.
351   } else {
352     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
353     Dest.setScopeDepth(EHStack.stable_begin());
354     ResolveBranchFixups(Dest.getBlock());
355   }
356 
357   EmitBlock(Dest.getBlock());
358 }
359 
360 /// Change the cleanup scope of the labels in this lexical scope to
361 /// match the scope of the enclosing context.
362 void CodeGenFunction::LexicalScope::rescopeLabels() {
363   assert(!Labels.empty());
364   EHScopeStack::stable_iterator innermostScope
365     = CGF.EHStack.getInnermostNormalCleanup();
366 
367   // Change the scope depth of all the labels.
368   for (SmallVectorImpl<const LabelDecl*>::const_iterator
369          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
370     assert(CGF.LabelMap.count(*i));
371     JumpDest &dest = CGF.LabelMap.find(*i)->second;
372     assert(dest.getScopeDepth().isValid());
373     assert(innermostScope.encloses(dest.getScopeDepth()));
374     dest.setScopeDepth(innermostScope);
375   }
376 
377   // Reparent the labels if the new scope also has cleanups.
378   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
379     ParentScope->Labels.append(Labels.begin(), Labels.end());
380   }
381 }
382 
383 
384 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
385   EmitLabel(S.getDecl());
386   EmitStmt(S.getSubStmt());
387 }
388 
389 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
390   EmitStmt(S.getSubStmt());
391 }
392 
393 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
394   // If this code is reachable then emit a stop point (if generating
395   // debug info). We have to do this ourselves because we are on the
396   // "simple" statement path.
397   if (HaveInsertPoint())
398     EmitStopPoint(&S);
399 
400   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
401 }
402 
403 
404 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
405   if (const LabelDecl *Target = S.getConstantTarget()) {
406     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
407     return;
408   }
409 
410   // Ensure that we have an i8* for our PHI node.
411   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
412                                          Int8PtrTy, "addr");
413   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
414 
415   // Get the basic block for the indirect goto.
416   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
417 
418   // The first instruction in the block has to be the PHI for the switch dest,
419   // add an entry for this branch.
420   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
421 
422   EmitBranch(IndGotoBB);
423 }
424 
425 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
426   // C99 6.8.4.1: The first substatement is executed if the expression compares
427   // unequal to 0.  The condition must be a scalar type.
428   LexicalScope ConditionScope(*this, S.getSourceRange());
429 
430   if (S.getConditionVariable())
431     EmitAutoVarDecl(*S.getConditionVariable());
432 
433   // If the condition constant folds and can be elided, try to avoid emitting
434   // the condition and the dead arm of the if/else.
435   bool CondConstant;
436   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
437     // Figure out which block (then or else) is executed.
438     const Stmt *Executed = S.getThen();
439     const Stmt *Skipped  = S.getElse();
440     if (!CondConstant)  // Condition false?
441       std::swap(Executed, Skipped);
442 
443     // If the skipped block has no labels in it, just emit the executed block.
444     // This avoids emitting dead code and simplifies the CFG substantially.
445     if (!ContainsLabel(Skipped)) {
446       if (Executed) {
447         RunCleanupsScope ExecutedScope(*this);
448         EmitStmt(Executed);
449       }
450       return;
451     }
452   }
453 
454   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
455   // the conditional branch.
456   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
457   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
458   llvm::BasicBlock *ElseBlock = ContBlock;
459   if (S.getElse())
460     ElseBlock = createBasicBlock("if.else");
461   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
462 
463   // Emit the 'then' code.
464   EmitBlock(ThenBlock);
465   {
466     RunCleanupsScope ThenScope(*this);
467     EmitStmt(S.getThen());
468   }
469   EmitBranch(ContBlock);
470 
471   // Emit the 'else' code if present.
472   if (const Stmt *Else = S.getElse()) {
473     // There is no need to emit line number for unconditional branch.
474     if (getDebugInfo())
475       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
476     EmitBlock(ElseBlock);
477     {
478       RunCleanupsScope ElseScope(*this);
479       EmitStmt(Else);
480     }
481     // There is no need to emit line number for unconditional branch.
482     if (getDebugInfo())
483       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
484     EmitBranch(ContBlock);
485   }
486 
487   // Emit the continuation block for code after the if.
488   EmitBlock(ContBlock, true);
489 }
490 
491 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
492   // Emit the header for the loop, which will also become
493   // the continue target.
494   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
495   EmitBlock(LoopHeader.getBlock());
496 
497   // Create an exit block for when the condition fails, which will
498   // also become the break target.
499   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
500 
501   // Store the blocks to use for break and continue.
502   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
503 
504   // C++ [stmt.while]p2:
505   //   When the condition of a while statement is a declaration, the
506   //   scope of the variable that is declared extends from its point
507   //   of declaration (3.3.2) to the end of the while statement.
508   //   [...]
509   //   The object created in a condition is destroyed and created
510   //   with each iteration of the loop.
511   RunCleanupsScope ConditionScope(*this);
512 
513   if (S.getConditionVariable())
514     EmitAutoVarDecl(*S.getConditionVariable());
515 
516   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
517   // evaluation of the controlling expression takes place before each
518   // execution of the loop body.
519   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
520 
521   // while(1) is common, avoid extra exit blocks.  Be sure
522   // to correctly handle break/continue though.
523   bool EmitBoolCondBranch = true;
524   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
525     if (C->isOne())
526       EmitBoolCondBranch = false;
527 
528   // As long as the condition is true, go to the loop body.
529   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
530   if (EmitBoolCondBranch) {
531     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
532     if (ConditionScope.requiresCleanups())
533       ExitBlock = createBasicBlock("while.exit");
534 
535     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
536 
537     if (ExitBlock != LoopExit.getBlock()) {
538       EmitBlock(ExitBlock);
539       EmitBranchThroughCleanup(LoopExit);
540     }
541   }
542 
543   // Emit the loop body.  We have to emit this in a cleanup scope
544   // because it might be a singleton DeclStmt.
545   {
546     RunCleanupsScope BodyScope(*this);
547     EmitBlock(LoopBody);
548     EmitStmt(S.getBody());
549   }
550 
551   BreakContinueStack.pop_back();
552 
553   // Immediately force cleanup.
554   ConditionScope.ForceCleanup();
555 
556   // Branch to the loop header again.
557   EmitBranch(LoopHeader.getBlock());
558 
559   // Emit the exit block.
560   EmitBlock(LoopExit.getBlock(), true);
561 
562   // The LoopHeader typically is just a branch if we skipped emitting
563   // a branch, try to erase it.
564   if (!EmitBoolCondBranch)
565     SimplifyForwardingBlocks(LoopHeader.getBlock());
566 }
567 
568 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
569   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
570   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
571 
572   // Store the blocks to use for break and continue.
573   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
574 
575   // Emit the body of the loop.
576   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
577   EmitBlock(LoopBody);
578   {
579     RunCleanupsScope BodyScope(*this);
580     EmitStmt(S.getBody());
581   }
582 
583   BreakContinueStack.pop_back();
584 
585   EmitBlock(LoopCond.getBlock());
586 
587   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
588   // after each execution of the loop body."
589 
590   // Evaluate the conditional in the while header.
591   // C99 6.8.5p2/p4: The first substatement is executed if the expression
592   // compares unequal to 0.  The condition must be a scalar type.
593   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
594 
595   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
596   // to correctly handle break/continue though.
597   bool EmitBoolCondBranch = true;
598   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
599     if (C->isZero())
600       EmitBoolCondBranch = false;
601 
602   // As long as the condition is true, iterate the loop.
603   if (EmitBoolCondBranch)
604     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
605 
606   // Emit the exit block.
607   EmitBlock(LoopExit.getBlock());
608 
609   // The DoCond block typically is just a branch if we skipped
610   // emitting a branch, try to erase it.
611   if (!EmitBoolCondBranch)
612     SimplifyForwardingBlocks(LoopCond.getBlock());
613 }
614 
615 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
616   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
617 
618   RunCleanupsScope ForScope(*this);
619 
620   CGDebugInfo *DI = getDebugInfo();
621   if (DI)
622     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
623 
624   // Evaluate the first part before the loop.
625   if (S.getInit())
626     EmitStmt(S.getInit());
627 
628   // Start the loop with a block that tests the condition.
629   // If there's an increment, the continue scope will be overwritten
630   // later.
631   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
632   llvm::BasicBlock *CondBlock = Continue.getBlock();
633   EmitBlock(CondBlock);
634 
635   // Create a cleanup scope for the condition variable cleanups.
636   RunCleanupsScope ConditionScope(*this);
637 
638   llvm::Value *BoolCondVal = 0;
639   if (S.getCond()) {
640     // If the for statement has a condition scope, emit the local variable
641     // declaration.
642     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
643     if (S.getConditionVariable()) {
644       EmitAutoVarDecl(*S.getConditionVariable());
645     }
646 
647     // If there are any cleanups between here and the loop-exit scope,
648     // create a block to stage a loop exit along.
649     if (ForScope.requiresCleanups())
650       ExitBlock = createBasicBlock("for.cond.cleanup");
651 
652     // As long as the condition is true, iterate the loop.
653     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
654 
655     // C99 6.8.5p2/p4: The first substatement is executed if the expression
656     // compares unequal to 0.  The condition must be a scalar type.
657     BoolCondVal = EvaluateExprAsBool(S.getCond());
658     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
659 
660     if (ExitBlock != LoopExit.getBlock()) {
661       EmitBlock(ExitBlock);
662       EmitBranchThroughCleanup(LoopExit);
663     }
664 
665     EmitBlock(ForBody);
666   } else {
667     // Treat it as a non-zero constant.  Don't even create a new block for the
668     // body, just fall into it.
669   }
670 
671   // If the for loop doesn't have an increment we can just use the
672   // condition as the continue block.  Otherwise we'll need to create
673   // a block for it (in the current scope, i.e. in the scope of the
674   // condition), and that we will become our continue block.
675   if (S.getInc())
676     Continue = getJumpDestInCurrentScope("for.inc");
677 
678   // Store the blocks to use for break and continue.
679   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
680 
681   {
682     // Create a separate cleanup scope for the body, in case it is not
683     // a compound statement.
684     RunCleanupsScope BodyScope(*this);
685     EmitStmt(S.getBody());
686   }
687 
688   // If there is an increment, emit it next.
689   if (S.getInc()) {
690     EmitBlock(Continue.getBlock());
691     EmitStmt(S.getInc());
692   }
693 
694   BreakContinueStack.pop_back();
695 
696   ConditionScope.ForceCleanup();
697   EmitBranch(CondBlock);
698 
699   ForScope.ForceCleanup();
700 
701   if (DI)
702     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
703 
704   // Emit the fall-through block.
705   EmitBlock(LoopExit.getBlock(), true);
706 }
707 
708 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
709   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
710 
711   RunCleanupsScope ForScope(*this);
712 
713   CGDebugInfo *DI = getDebugInfo();
714   if (DI)
715     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
716 
717   // Evaluate the first pieces before the loop.
718   EmitStmt(S.getRangeStmt());
719   EmitStmt(S.getBeginEndStmt());
720 
721   // Start the loop with a block that tests the condition.
722   // If there's an increment, the continue scope will be overwritten
723   // later.
724   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
725   EmitBlock(CondBlock);
726 
727   // If there are any cleanups between here and the loop-exit scope,
728   // create a block to stage a loop exit along.
729   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
730   if (ForScope.requiresCleanups())
731     ExitBlock = createBasicBlock("for.cond.cleanup");
732 
733   // The loop body, consisting of the specified body and the loop variable.
734   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
735 
736   // The body is executed if the expression, contextually converted
737   // to bool, is true.
738   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
739   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
740 
741   if (ExitBlock != LoopExit.getBlock()) {
742     EmitBlock(ExitBlock);
743     EmitBranchThroughCleanup(LoopExit);
744   }
745 
746   EmitBlock(ForBody);
747 
748   // Create a block for the increment. In case of a 'continue', we jump there.
749   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
750 
751   // Store the blocks to use for break and continue.
752   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
753 
754   {
755     // Create a separate cleanup scope for the loop variable and body.
756     RunCleanupsScope BodyScope(*this);
757     EmitStmt(S.getLoopVarStmt());
758     EmitStmt(S.getBody());
759   }
760 
761   // If there is an increment, emit it next.
762   EmitBlock(Continue.getBlock());
763   EmitStmt(S.getInc());
764 
765   BreakContinueStack.pop_back();
766 
767   EmitBranch(CondBlock);
768 
769   ForScope.ForceCleanup();
770 
771   if (DI)
772     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
773 
774   // Emit the fall-through block.
775   EmitBlock(LoopExit.getBlock(), true);
776 }
777 
778 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
779   if (RV.isScalar()) {
780     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
781   } else if (RV.isAggregate()) {
782     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
783   } else {
784     EmitStoreOfComplex(RV.getComplexVal(),
785                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
786                        /*init*/ true);
787   }
788   EmitBranchThroughCleanup(ReturnBlock);
789 }
790 
791 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
792 /// if the function returns void, or may be missing one if the function returns
793 /// non-void.  Fun stuff :).
794 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
795   // Emit the result value, even if unused, to evalute the side effects.
796   const Expr *RV = S.getRetValue();
797 
798   // Treat block literals in a return expression as if they appeared
799   // in their own scope.  This permits a small, easily-implemented
800   // exception to our over-conservative rules about not jumping to
801   // statements following block literals with non-trivial cleanups.
802   RunCleanupsScope cleanupScope(*this);
803   if (const ExprWithCleanups *cleanups =
804         dyn_cast_or_null<ExprWithCleanups>(RV)) {
805     enterFullExpression(cleanups);
806     RV = cleanups->getSubExpr();
807   }
808 
809   // FIXME: Clean this up by using an LValue for ReturnTemp,
810   // EmitStoreThroughLValue, and EmitAnyExpr.
811   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
812     // Apply the named return value optimization for this return statement,
813     // which means doing nothing: the appropriate result has already been
814     // constructed into the NRVO variable.
815 
816     // If there is an NRVO flag for this variable, set it to 1 into indicate
817     // that the cleanup code should not destroy the variable.
818     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
819       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
820   } else if (!ReturnValue) {
821     // Make sure not to return anything, but evaluate the expression
822     // for side effects.
823     if (RV)
824       EmitAnyExpr(RV);
825   } else if (RV == 0) {
826     // Do nothing (return value is left uninitialized)
827   } else if (FnRetTy->isReferenceType()) {
828     // If this function returns a reference, take the address of the expression
829     // rather than the value.
830     RValue Result = EmitReferenceBindingToExpr(RV);
831     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
832   } else {
833     switch (getEvaluationKind(RV->getType())) {
834     case TEK_Scalar:
835       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
836       break;
837     case TEK_Complex:
838       EmitComplexExprIntoLValue(RV,
839                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
840                                 /*isInit*/ true);
841       break;
842     case TEK_Aggregate: {
843       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
844       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
845                                             Qualifiers(),
846                                             AggValueSlot::IsDestructed,
847                                             AggValueSlot::DoesNotNeedGCBarriers,
848                                             AggValueSlot::IsNotAliased));
849       break;
850     }
851     }
852   }
853 
854   ++NumReturnExprs;
855   if (RV == 0 || RV->isEvaluatable(getContext()))
856     ++NumSimpleReturnExprs;
857 
858   cleanupScope.ForceCleanup();
859   EmitBranchThroughCleanup(ReturnBlock);
860 }
861 
862 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
863   // As long as debug info is modeled with instructions, we have to ensure we
864   // have a place to insert here and write the stop point here.
865   if (HaveInsertPoint())
866     EmitStopPoint(&S);
867 
868   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
869        I != E; ++I)
870     EmitDecl(**I);
871 }
872 
873 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
874   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
875 
876   // If this code is reachable then emit a stop point (if generating
877   // debug info). We have to do this ourselves because we are on the
878   // "simple" statement path.
879   if (HaveInsertPoint())
880     EmitStopPoint(&S);
881 
882   JumpDest Block = BreakContinueStack.back().BreakBlock;
883   EmitBranchThroughCleanup(Block);
884 }
885 
886 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
887   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
888 
889   // If this code is reachable then emit a stop point (if generating
890   // debug info). We have to do this ourselves because we are on the
891   // "simple" statement path.
892   if (HaveInsertPoint())
893     EmitStopPoint(&S);
894 
895   JumpDest Block = BreakContinueStack.back().ContinueBlock;
896   EmitBranchThroughCleanup(Block);
897 }
898 
899 /// EmitCaseStmtRange - If case statement range is not too big then
900 /// add multiple cases to switch instruction, one for each value within
901 /// the range. If range is too big then emit "if" condition check.
902 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
903   assert(S.getRHS() && "Expected RHS value in CaseStmt");
904 
905   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
906   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
907 
908   // Emit the code for this case. We do this first to make sure it is
909   // properly chained from our predecessor before generating the
910   // switch machinery to enter this block.
911   EmitBlock(createBasicBlock("sw.bb"));
912   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
913   EmitStmt(S.getSubStmt());
914 
915   // If range is empty, do nothing.
916   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
917     return;
918 
919   llvm::APInt Range = RHS - LHS;
920   // FIXME: parameters such as this should not be hardcoded.
921   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
922     // Range is small enough to add multiple switch instruction cases.
923     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
924       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
925       LHS++;
926     }
927     return;
928   }
929 
930   // The range is too big. Emit "if" condition into a new block,
931   // making sure to save and restore the current insertion point.
932   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
933 
934   // Push this test onto the chain of range checks (which terminates
935   // in the default basic block). The switch's default will be changed
936   // to the top of this chain after switch emission is complete.
937   llvm::BasicBlock *FalseDest = CaseRangeBlock;
938   CaseRangeBlock = createBasicBlock("sw.caserange");
939 
940   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
941   Builder.SetInsertPoint(CaseRangeBlock);
942 
943   // Emit range check.
944   llvm::Value *Diff =
945     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
946   llvm::Value *Cond =
947     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
948   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
949 
950   // Restore the appropriate insertion point.
951   if (RestoreBB)
952     Builder.SetInsertPoint(RestoreBB);
953   else
954     Builder.ClearInsertionPoint();
955 }
956 
957 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
958   // If there is no enclosing switch instance that we're aware of, then this
959   // case statement and its block can be elided.  This situation only happens
960   // when we've constant-folded the switch, are emitting the constant case,
961   // and part of the constant case includes another case statement.  For
962   // instance: switch (4) { case 4: do { case 5: } while (1); }
963   if (!SwitchInsn) {
964     EmitStmt(S.getSubStmt());
965     return;
966   }
967 
968   // Handle case ranges.
969   if (S.getRHS()) {
970     EmitCaseStmtRange(S);
971     return;
972   }
973 
974   llvm::ConstantInt *CaseVal =
975     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
976 
977   // If the body of the case is just a 'break', and if there was no fallthrough,
978   // try to not emit an empty block.
979   if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
980       isa<BreakStmt>(S.getSubStmt())) {
981     JumpDest Block = BreakContinueStack.back().BreakBlock;
982 
983     // Only do this optimization if there are no cleanups that need emitting.
984     if (isObviouslyBranchWithoutCleanups(Block)) {
985       SwitchInsn->addCase(CaseVal, Block.getBlock());
986 
987       // If there was a fallthrough into this case, make sure to redirect it to
988       // the end of the switch as well.
989       if (Builder.GetInsertBlock()) {
990         Builder.CreateBr(Block.getBlock());
991         Builder.ClearInsertionPoint();
992       }
993       return;
994     }
995   }
996 
997   EmitBlock(createBasicBlock("sw.bb"));
998   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
999   SwitchInsn->addCase(CaseVal, CaseDest);
1000 
1001   // Recursively emitting the statement is acceptable, but is not wonderful for
1002   // code where we have many case statements nested together, i.e.:
1003   //  case 1:
1004   //    case 2:
1005   //      case 3: etc.
1006   // Handling this recursively will create a new block for each case statement
1007   // that falls through to the next case which is IR intensive.  It also causes
1008   // deep recursion which can run into stack depth limitations.  Handle
1009   // sequential non-range case statements specially.
1010   const CaseStmt *CurCase = &S;
1011   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1012 
1013   // Otherwise, iteratively add consecutive cases to this switch stmt.
1014   while (NextCase && NextCase->getRHS() == 0) {
1015     CurCase = NextCase;
1016     llvm::ConstantInt *CaseVal =
1017       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1018     SwitchInsn->addCase(CaseVal, CaseDest);
1019     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1020   }
1021 
1022   // Normal default recursion for non-cases.
1023   EmitStmt(CurCase->getSubStmt());
1024 }
1025 
1026 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1027   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1028   assert(DefaultBlock->empty() &&
1029          "EmitDefaultStmt: Default block already defined?");
1030   EmitBlock(DefaultBlock);
1031   EmitStmt(S.getSubStmt());
1032 }
1033 
1034 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1035 /// constant value that is being switched on, see if we can dead code eliminate
1036 /// the body of the switch to a simple series of statements to emit.  Basically,
1037 /// on a switch (5) we want to find these statements:
1038 ///    case 5:
1039 ///      printf(...);    <--
1040 ///      ++i;            <--
1041 ///      break;
1042 ///
1043 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1044 /// transformation (for example, one of the elided statements contains a label
1045 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1046 /// should include statements after it (e.g. the printf() line is a substmt of
1047 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1048 /// statement, then return CSFC_Success.
1049 ///
1050 /// If Case is non-null, then we are looking for the specified case, checking
1051 /// that nothing we jump over contains labels.  If Case is null, then we found
1052 /// the case and are looking for the break.
1053 ///
1054 /// If the recursive walk actually finds our Case, then we set FoundCase to
1055 /// true.
1056 ///
1057 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1058 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1059                                             const SwitchCase *Case,
1060                                             bool &FoundCase,
1061                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1062   // If this is a null statement, just succeed.
1063   if (S == 0)
1064     return Case ? CSFC_Success : CSFC_FallThrough;
1065 
1066   // If this is the switchcase (case 4: or default) that we're looking for, then
1067   // we're in business.  Just add the substatement.
1068   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1069     if (S == Case) {
1070       FoundCase = true;
1071       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
1072                                       ResultStmts);
1073     }
1074 
1075     // Otherwise, this is some other case or default statement, just ignore it.
1076     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1077                                     ResultStmts);
1078   }
1079 
1080   // If we are in the live part of the code and we found our break statement,
1081   // return a success!
1082   if (Case == 0 && isa<BreakStmt>(S))
1083     return CSFC_Success;
1084 
1085   // If this is a switch statement, then it might contain the SwitchCase, the
1086   // break, or neither.
1087   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1088     // Handle this as two cases: we might be looking for the SwitchCase (if so
1089     // the skipped statements must be skippable) or we might already have it.
1090     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1091     if (Case) {
1092       // Keep track of whether we see a skipped declaration.  The code could be
1093       // using the declaration even if it is skipped, so we can't optimize out
1094       // the decl if the kept statements might refer to it.
1095       bool HadSkippedDecl = false;
1096 
1097       // If we're looking for the case, just see if we can skip each of the
1098       // substatements.
1099       for (; Case && I != E; ++I) {
1100         HadSkippedDecl |= isa<DeclStmt>(*I);
1101 
1102         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1103         case CSFC_Failure: return CSFC_Failure;
1104         case CSFC_Success:
1105           // A successful result means that either 1) that the statement doesn't
1106           // have the case and is skippable, or 2) does contain the case value
1107           // and also contains the break to exit the switch.  In the later case,
1108           // we just verify the rest of the statements are elidable.
1109           if (FoundCase) {
1110             // If we found the case and skipped declarations, we can't do the
1111             // optimization.
1112             if (HadSkippedDecl)
1113               return CSFC_Failure;
1114 
1115             for (++I; I != E; ++I)
1116               if (CodeGenFunction::ContainsLabel(*I, true))
1117                 return CSFC_Failure;
1118             return CSFC_Success;
1119           }
1120           break;
1121         case CSFC_FallThrough:
1122           // If we have a fallthrough condition, then we must have found the
1123           // case started to include statements.  Consider the rest of the
1124           // statements in the compound statement as candidates for inclusion.
1125           assert(FoundCase && "Didn't find case but returned fallthrough?");
1126           // We recursively found Case, so we're not looking for it anymore.
1127           Case = 0;
1128 
1129           // If we found the case and skipped declarations, we can't do the
1130           // optimization.
1131           if (HadSkippedDecl)
1132             return CSFC_Failure;
1133           break;
1134         }
1135       }
1136     }
1137 
1138     // If we have statements in our range, then we know that the statements are
1139     // live and need to be added to the set of statements we're tracking.
1140     for (; I != E; ++I) {
1141       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1142       case CSFC_Failure: return CSFC_Failure;
1143       case CSFC_FallThrough:
1144         // A fallthrough result means that the statement was simple and just
1145         // included in ResultStmt, keep adding them afterwards.
1146         break;
1147       case CSFC_Success:
1148         // A successful result means that we found the break statement and
1149         // stopped statement inclusion.  We just ensure that any leftover stmts
1150         // are skippable and return success ourselves.
1151         for (++I; I != E; ++I)
1152           if (CodeGenFunction::ContainsLabel(*I, true))
1153             return CSFC_Failure;
1154         return CSFC_Success;
1155       }
1156     }
1157 
1158     return Case ? CSFC_Success : CSFC_FallThrough;
1159   }
1160 
1161   // Okay, this is some other statement that we don't handle explicitly, like a
1162   // for statement or increment etc.  If we are skipping over this statement,
1163   // just verify it doesn't have labels, which would make it invalid to elide.
1164   if (Case) {
1165     if (CodeGenFunction::ContainsLabel(S, true))
1166       return CSFC_Failure;
1167     return CSFC_Success;
1168   }
1169 
1170   // Otherwise, we want to include this statement.  Everything is cool with that
1171   // so long as it doesn't contain a break out of the switch we're in.
1172   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1173 
1174   // Otherwise, everything is great.  Include the statement and tell the caller
1175   // that we fall through and include the next statement as well.
1176   ResultStmts.push_back(S);
1177   return CSFC_FallThrough;
1178 }
1179 
1180 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1181 /// then invoke CollectStatementsForCase to find the list of statements to emit
1182 /// for a switch on constant.  See the comment above CollectStatementsForCase
1183 /// for more details.
1184 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1185                                        const llvm::APSInt &ConstantCondValue,
1186                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1187                                        ASTContext &C) {
1188   // First step, find the switch case that is being branched to.  We can do this
1189   // efficiently by scanning the SwitchCase list.
1190   const SwitchCase *Case = S.getSwitchCaseList();
1191   const DefaultStmt *DefaultCase = 0;
1192 
1193   for (; Case; Case = Case->getNextSwitchCase()) {
1194     // It's either a default or case.  Just remember the default statement in
1195     // case we're not jumping to any numbered cases.
1196     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1197       DefaultCase = DS;
1198       continue;
1199     }
1200 
1201     // Check to see if this case is the one we're looking for.
1202     const CaseStmt *CS = cast<CaseStmt>(Case);
1203     // Don't handle case ranges yet.
1204     if (CS->getRHS()) return false;
1205 
1206     // If we found our case, remember it as 'case'.
1207     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1208       break;
1209   }
1210 
1211   // If we didn't find a matching case, we use a default if it exists, or we
1212   // elide the whole switch body!
1213   if (Case == 0) {
1214     // It is safe to elide the body of the switch if it doesn't contain labels
1215     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1216     if (DefaultCase == 0)
1217       return !CodeGenFunction::ContainsLabel(&S);
1218     Case = DefaultCase;
1219   }
1220 
1221   // Ok, we know which case is being jumped to, try to collect all the
1222   // statements that follow it.  This can fail for a variety of reasons.  Also,
1223   // check to see that the recursive walk actually found our case statement.
1224   // Insane cases like this can fail to find it in the recursive walk since we
1225   // don't handle every stmt kind:
1226   // switch (4) {
1227   //   while (1) {
1228   //     case 4: ...
1229   bool FoundCase = false;
1230   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1231                                   ResultStmts) != CSFC_Failure &&
1232          FoundCase;
1233 }
1234 
1235 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1236   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1237 
1238   RunCleanupsScope ConditionScope(*this);
1239 
1240   if (S.getConditionVariable())
1241     EmitAutoVarDecl(*S.getConditionVariable());
1242 
1243   // Handle nested switch statements.
1244   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1245   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1246 
1247   // See if we can constant fold the condition of the switch and therefore only
1248   // emit the live case statement (if any) of the switch.
1249   llvm::APSInt ConstantCondValue;
1250   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1251     SmallVector<const Stmt*, 4> CaseStmts;
1252     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1253                                    getContext())) {
1254       RunCleanupsScope ExecutedScope(*this);
1255 
1256       // At this point, we are no longer "within" a switch instance, so
1257       // we can temporarily enforce this to ensure that any embedded case
1258       // statements are not emitted.
1259       SwitchInsn = 0;
1260 
1261       // Okay, we can dead code eliminate everything except this case.  Emit the
1262       // specified series of statements and we're good.
1263       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1264         EmitStmt(CaseStmts[i]);
1265 
1266       // Now we want to restore the saved switch instance so that nested
1267       // switches continue to function properly
1268       SwitchInsn = SavedSwitchInsn;
1269 
1270       return;
1271     }
1272   }
1273 
1274   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1275 
1276   // Create basic block to hold stuff that comes after switch
1277   // statement. We also need to create a default block now so that
1278   // explicit case ranges tests can have a place to jump to on
1279   // failure.
1280   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1281   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1282   CaseRangeBlock = DefaultBlock;
1283 
1284   // Clear the insertion point to indicate we are in unreachable code.
1285   Builder.ClearInsertionPoint();
1286 
1287   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1288   // then reuse last ContinueBlock.
1289   JumpDest OuterContinue;
1290   if (!BreakContinueStack.empty())
1291     OuterContinue = BreakContinueStack.back().ContinueBlock;
1292 
1293   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1294 
1295   // Emit switch body.
1296   EmitStmt(S.getBody());
1297 
1298   BreakContinueStack.pop_back();
1299 
1300   // Update the default block in case explicit case range tests have
1301   // been chained on top.
1302   SwitchInsn->setDefaultDest(CaseRangeBlock);
1303 
1304   // If a default was never emitted:
1305   if (!DefaultBlock->getParent()) {
1306     // If we have cleanups, emit the default block so that there's a
1307     // place to jump through the cleanups from.
1308     if (ConditionScope.requiresCleanups()) {
1309       EmitBlock(DefaultBlock);
1310 
1311     // Otherwise, just forward the default block to the switch end.
1312     } else {
1313       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1314       delete DefaultBlock;
1315     }
1316   }
1317 
1318   ConditionScope.ForceCleanup();
1319 
1320   // Emit continuation.
1321   EmitBlock(SwitchExit.getBlock(), true);
1322 
1323   SwitchInsn = SavedSwitchInsn;
1324   CaseRangeBlock = SavedCRBlock;
1325 }
1326 
1327 static std::string
1328 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1329                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1330   std::string Result;
1331 
1332   while (*Constraint) {
1333     switch (*Constraint) {
1334     default:
1335       Result += Target.convertConstraint(Constraint);
1336       break;
1337     // Ignore these
1338     case '*':
1339     case '?':
1340     case '!':
1341     case '=': // Will see this and the following in mult-alt constraints.
1342     case '+':
1343       break;
1344     case '#': // Ignore the rest of the constraint alternative.
1345       while (Constraint[1] && Constraint[1] != ',')
1346         Constraint++;
1347       break;
1348     case ',':
1349       Result += "|";
1350       break;
1351     case 'g':
1352       Result += "imr";
1353       break;
1354     case '[': {
1355       assert(OutCons &&
1356              "Must pass output names to constraints with a symbolic name");
1357       unsigned Index;
1358       bool result = Target.resolveSymbolicName(Constraint,
1359                                                &(*OutCons)[0],
1360                                                OutCons->size(), Index);
1361       assert(result && "Could not resolve symbolic name"); (void)result;
1362       Result += llvm::utostr(Index);
1363       break;
1364     }
1365     }
1366 
1367     Constraint++;
1368   }
1369 
1370   return Result;
1371 }
1372 
1373 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1374 /// as using a particular register add that as a constraint that will be used
1375 /// in this asm stmt.
1376 static std::string
1377 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1378                        const TargetInfo &Target, CodeGenModule &CGM,
1379                        const AsmStmt &Stmt) {
1380   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1381   if (!AsmDeclRef)
1382     return Constraint;
1383   const ValueDecl &Value = *AsmDeclRef->getDecl();
1384   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1385   if (!Variable)
1386     return Constraint;
1387   if (Variable->getStorageClass() != SC_Register)
1388     return Constraint;
1389   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1390   if (!Attr)
1391     return Constraint;
1392   StringRef Register = Attr->getLabel();
1393   assert(Target.isValidGCCRegisterName(Register));
1394   // We're using validateOutputConstraint here because we only care if
1395   // this is a register constraint.
1396   TargetInfo::ConstraintInfo Info(Constraint, "");
1397   if (Target.validateOutputConstraint(Info) &&
1398       !Info.allowsRegister()) {
1399     CGM.ErrorUnsupported(&Stmt, "__asm__");
1400     return Constraint;
1401   }
1402   // Canonicalize the register here before returning it.
1403   Register = Target.getNormalizedGCCRegisterName(Register);
1404   return "{" + Register.str() + "}";
1405 }
1406 
1407 llvm::Value*
1408 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1409                                     LValue InputValue, QualType InputType,
1410                                     std::string &ConstraintStr) {
1411   llvm::Value *Arg;
1412   if (Info.allowsRegister() || !Info.allowsMemory()) {
1413     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1414       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1415     } else {
1416       llvm::Type *Ty = ConvertType(InputType);
1417       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1418       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1419         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1420         Ty = llvm::PointerType::getUnqual(Ty);
1421 
1422         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1423                                                        Ty));
1424       } else {
1425         Arg = InputValue.getAddress();
1426         ConstraintStr += '*';
1427       }
1428     }
1429   } else {
1430     Arg = InputValue.getAddress();
1431     ConstraintStr += '*';
1432   }
1433 
1434   return Arg;
1435 }
1436 
1437 llvm::Value* CodeGenFunction::EmitAsmInput(
1438                                          const TargetInfo::ConstraintInfo &Info,
1439                                            const Expr *InputExpr,
1440                                            std::string &ConstraintStr) {
1441   if (Info.allowsRegister() || !Info.allowsMemory())
1442     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1443       return EmitScalarExpr(InputExpr);
1444 
1445   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1446   LValue Dest = EmitLValue(InputExpr);
1447   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr);
1448 }
1449 
1450 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1451 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1452 /// integers which are the source locations of the start of each line in the
1453 /// asm.
1454 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1455                                       CodeGenFunction &CGF) {
1456   SmallVector<llvm::Value *, 8> Locs;
1457   // Add the location of the first line to the MDNode.
1458   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1459                                         Str->getLocStart().getRawEncoding()));
1460   StringRef StrVal = Str->getString();
1461   if (!StrVal.empty()) {
1462     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1463     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1464 
1465     // Add the location of the start of each subsequent line of the asm to the
1466     // MDNode.
1467     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1468       if (StrVal[i] != '\n') continue;
1469       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1470                                                       CGF.getTarget());
1471       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1472                                             LineLoc.getRawEncoding()));
1473     }
1474   }
1475 
1476   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1477 }
1478 
1479 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1480   // Assemble the final asm string.
1481   std::string AsmString = S.generateAsmString(getContext());
1482 
1483   // Get all the output and input constraints together.
1484   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1485   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1486 
1487   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1488     StringRef Name;
1489     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1490       Name = GAS->getOutputName(i);
1491     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1492     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1493     assert(IsValid && "Failed to parse output constraint");
1494     OutputConstraintInfos.push_back(Info);
1495   }
1496 
1497   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1498     StringRef Name;
1499     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1500       Name = GAS->getInputName(i);
1501     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1502     bool IsValid =
1503       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1504                                           S.getNumOutputs(), Info);
1505     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1506     InputConstraintInfos.push_back(Info);
1507   }
1508 
1509   std::string Constraints;
1510 
1511   std::vector<LValue> ResultRegDests;
1512   std::vector<QualType> ResultRegQualTys;
1513   std::vector<llvm::Type *> ResultRegTypes;
1514   std::vector<llvm::Type *> ResultTruncRegTypes;
1515   std::vector<llvm::Type *> ArgTypes;
1516   std::vector<llvm::Value*> Args;
1517 
1518   // Keep track of inout constraints.
1519   std::string InOutConstraints;
1520   std::vector<llvm::Value*> InOutArgs;
1521   std::vector<llvm::Type*> InOutArgTypes;
1522 
1523   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1524     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1525 
1526     // Simplify the output constraint.
1527     std::string OutputConstraint(S.getOutputConstraint(i));
1528     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1529                                           getTarget());
1530 
1531     const Expr *OutExpr = S.getOutputExpr(i);
1532     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1533 
1534     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1535                                               getTarget(), CGM, S);
1536 
1537     LValue Dest = EmitLValue(OutExpr);
1538     if (!Constraints.empty())
1539       Constraints += ',';
1540 
1541     // If this is a register output, then make the inline asm return it
1542     // by-value.  If this is a memory result, return the value by-reference.
1543     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1544       Constraints += "=" + OutputConstraint;
1545       ResultRegQualTys.push_back(OutExpr->getType());
1546       ResultRegDests.push_back(Dest);
1547       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1548       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1549 
1550       // If this output is tied to an input, and if the input is larger, then
1551       // we need to set the actual result type of the inline asm node to be the
1552       // same as the input type.
1553       if (Info.hasMatchingInput()) {
1554         unsigned InputNo;
1555         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1556           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1557           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1558             break;
1559         }
1560         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1561 
1562         QualType InputTy = S.getInputExpr(InputNo)->getType();
1563         QualType OutputType = OutExpr->getType();
1564 
1565         uint64_t InputSize = getContext().getTypeSize(InputTy);
1566         if (getContext().getTypeSize(OutputType) < InputSize) {
1567           // Form the asm to return the value as a larger integer or fp type.
1568           ResultRegTypes.back() = ConvertType(InputTy);
1569         }
1570       }
1571       if (llvm::Type* AdjTy =
1572             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1573                                                  ResultRegTypes.back()))
1574         ResultRegTypes.back() = AdjTy;
1575       else {
1576         CGM.getDiags().Report(S.getAsmLoc(),
1577                               diag::err_asm_invalid_type_in_input)
1578             << OutExpr->getType() << OutputConstraint;
1579       }
1580     } else {
1581       ArgTypes.push_back(Dest.getAddress()->getType());
1582       Args.push_back(Dest.getAddress());
1583       Constraints += "=*";
1584       Constraints += OutputConstraint;
1585     }
1586 
1587     if (Info.isReadWrite()) {
1588       InOutConstraints += ',';
1589 
1590       const Expr *InputExpr = S.getOutputExpr(i);
1591       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1592                                             InOutConstraints);
1593 
1594       if (llvm::Type* AdjTy =
1595           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1596                                                Arg->getType()))
1597         Arg = Builder.CreateBitCast(Arg, AdjTy);
1598 
1599       if (Info.allowsRegister())
1600         InOutConstraints += llvm::utostr(i);
1601       else
1602         InOutConstraints += OutputConstraint;
1603 
1604       InOutArgTypes.push_back(Arg->getType());
1605       InOutArgs.push_back(Arg);
1606     }
1607   }
1608 
1609   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1610 
1611   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1612     const Expr *InputExpr = S.getInputExpr(i);
1613 
1614     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1615 
1616     if (!Constraints.empty())
1617       Constraints += ',';
1618 
1619     // Simplify the input constraint.
1620     std::string InputConstraint(S.getInputConstraint(i));
1621     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1622                                          &OutputConstraintInfos);
1623 
1624     InputConstraint =
1625       AddVariableConstraints(InputConstraint,
1626                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1627                             getTarget(), CGM, S);
1628 
1629     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1630 
1631     // If this input argument is tied to a larger output result, extend the
1632     // input to be the same size as the output.  The LLVM backend wants to see
1633     // the input and output of a matching constraint be the same size.  Note
1634     // that GCC does not define what the top bits are here.  We use zext because
1635     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1636     if (Info.hasTiedOperand()) {
1637       unsigned Output = Info.getTiedOperand();
1638       QualType OutputType = S.getOutputExpr(Output)->getType();
1639       QualType InputTy = InputExpr->getType();
1640 
1641       if (getContext().getTypeSize(OutputType) >
1642           getContext().getTypeSize(InputTy)) {
1643         // Use ptrtoint as appropriate so that we can do our extension.
1644         if (isa<llvm::PointerType>(Arg->getType()))
1645           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1646         llvm::Type *OutputTy = ConvertType(OutputType);
1647         if (isa<llvm::IntegerType>(OutputTy))
1648           Arg = Builder.CreateZExt(Arg, OutputTy);
1649         else if (isa<llvm::PointerType>(OutputTy))
1650           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1651         else {
1652           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1653           Arg = Builder.CreateFPExt(Arg, OutputTy);
1654         }
1655       }
1656     }
1657     if (llvm::Type* AdjTy =
1658               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1659                                                    Arg->getType()))
1660       Arg = Builder.CreateBitCast(Arg, AdjTy);
1661     else
1662       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1663           << InputExpr->getType() << InputConstraint;
1664 
1665     ArgTypes.push_back(Arg->getType());
1666     Args.push_back(Arg);
1667     Constraints += InputConstraint;
1668   }
1669 
1670   // Append the "input" part of inout constraints last.
1671   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1672     ArgTypes.push_back(InOutArgTypes[i]);
1673     Args.push_back(InOutArgs[i]);
1674   }
1675   Constraints += InOutConstraints;
1676 
1677   // Clobbers
1678   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1679     StringRef Clobber = S.getClobber(i);
1680 
1681     if (Clobber != "memory" && Clobber != "cc")
1682     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1683 
1684     if (i != 0 || NumConstraints != 0)
1685       Constraints += ',';
1686 
1687     Constraints += "~{";
1688     Constraints += Clobber;
1689     Constraints += '}';
1690   }
1691 
1692   // Add machine specific clobbers
1693   std::string MachineClobbers = getTarget().getClobbers();
1694   if (!MachineClobbers.empty()) {
1695     if (!Constraints.empty())
1696       Constraints += ',';
1697     Constraints += MachineClobbers;
1698   }
1699 
1700   llvm::Type *ResultType;
1701   if (ResultRegTypes.empty())
1702     ResultType = VoidTy;
1703   else if (ResultRegTypes.size() == 1)
1704     ResultType = ResultRegTypes[0];
1705   else
1706     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1707 
1708   llvm::FunctionType *FTy =
1709     llvm::FunctionType::get(ResultType, ArgTypes, false);
1710 
1711   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1712   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1713     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1714   llvm::InlineAsm *IA =
1715     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1716                          /* IsAlignStack */ false, AsmDialect);
1717   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1718   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1719                        llvm::Attribute::NoUnwind);
1720 
1721   // Slap the source location of the inline asm into a !srcloc metadata on the
1722   // call.  FIXME: Handle metadata for MS-style inline asms.
1723   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1724     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1725                                                    *this));
1726 
1727   // Extract all of the register value results from the asm.
1728   std::vector<llvm::Value*> RegResults;
1729   if (ResultRegTypes.size() == 1) {
1730     RegResults.push_back(Result);
1731   } else {
1732     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1733       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1734       RegResults.push_back(Tmp);
1735     }
1736   }
1737 
1738   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1739     llvm::Value *Tmp = RegResults[i];
1740 
1741     // If the result type of the LLVM IR asm doesn't match the result type of
1742     // the expression, do the conversion.
1743     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1744       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1745 
1746       // Truncate the integer result to the right size, note that TruncTy can be
1747       // a pointer.
1748       if (TruncTy->isFloatingPointTy())
1749         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1750       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1751         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1752         Tmp = Builder.CreateTrunc(Tmp,
1753                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1754         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1755       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1756         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1757         Tmp = Builder.CreatePtrToInt(Tmp,
1758                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1759         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1760       } else if (TruncTy->isIntegerTy()) {
1761         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1762       } else if (TruncTy->isVectorTy()) {
1763         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1764       }
1765     }
1766 
1767     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1768   }
1769 }
1770 
1771 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
1772   const RecordDecl *RD = S.getCapturedRecordDecl();
1773   QualType RecordTy = CGF.getContext().getRecordType(RD);
1774 
1775   // Initialize the captured struct.
1776   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
1777                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
1778 
1779   RecordDecl::field_iterator CurField = RD->field_begin();
1780   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
1781                                            E = S.capture_init_end();
1782        I != E; ++I, ++CurField) {
1783     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1784     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
1785   }
1786 
1787   return SlotLV;
1788 }
1789 
1790 /// Generate an outlined function for the body of a CapturedStmt, store any
1791 /// captured variables into the captured struct, and call the outlined function.
1792 llvm::Function *
1793 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
1794   const CapturedDecl *CD = S.getCapturedDecl();
1795   const RecordDecl *RD = S.getCapturedRecordDecl();
1796   assert(CD->hasBody() && "missing CapturedDecl body");
1797 
1798   LValue CapStruct = InitCapturedStruct(*this, S);
1799 
1800   // Emit the CapturedDecl
1801   CodeGenFunction CGF(CGM, true);
1802   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
1803   llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD);
1804   delete CGF.CapturedStmtInfo;
1805 
1806   // Emit call to the helper function.
1807   EmitCallOrInvoke(F, CapStruct.getAddress());
1808 
1809   return F;
1810 }
1811 
1812 /// Creates the outlined function for a CapturedStmt.
1813 llvm::Function *
1814 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
1815                                               const RecordDecl *RD) {
1816   assert(CapturedStmtInfo &&
1817     "CapturedStmtInfo should be set when generating the captured function");
1818 
1819   // Check if we should generate debug info for this function.
1820   maybeInitializeDebugInfo();
1821 
1822   // Build the argument list.
1823   ASTContext &Ctx = CGM.getContext();
1824   FunctionArgList Args;
1825   Args.append(CD->param_begin(), CD->param_end());
1826 
1827   // Create the function declaration.
1828   FunctionType::ExtInfo ExtInfo;
1829   const CGFunctionInfo &FuncInfo =
1830     CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
1831                                               /*IsVariadic=*/false);
1832   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
1833 
1834   llvm::Function *F =
1835     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
1836                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
1837   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
1838 
1839   // Generate the function.
1840   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart());
1841 
1842   // Set the context parameter in CapturedStmtInfo.
1843   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
1844   assert(DeclPtr && "missing context parameter for CapturedStmt");
1845   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
1846 
1847   // If 'this' is captured, load it into CXXThisValue.
1848   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
1849     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
1850     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
1851                                            Ctx.getTagDeclType(RD));
1852     LValue ThisLValue = EmitLValueForField(LV, FD);
1853 
1854     CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
1855   }
1856 
1857   CapturedStmtInfo->EmitBody(*this, CD->getBody());
1858   FinishFunction(CD->getBodyRBrace());
1859 
1860   return F;
1861 }
1862