1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/DiagnosticSema.h" 22 #include "clang/Basic/PrettyStackTrace.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/Support/SaveAndRestore.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 //===----------------------------------------------------------------------===// 37 // Statement Emission 38 //===----------------------------------------------------------------------===// 39 40 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 41 if (CGDebugInfo *DI = getDebugInfo()) { 42 SourceLocation Loc; 43 Loc = S->getBeginLoc(); 44 DI->EmitLocation(Builder, Loc); 45 46 LastStopPoint = Loc; 47 } 48 } 49 50 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 51 assert(S && "Null statement?"); 52 PGO.setCurrentStmt(S); 53 54 // These statements have their own debug info handling. 55 if (EmitSimpleStmt(S, Attrs)) 56 return; 57 58 // Check if we are generating unreachable code. 59 if (!HaveInsertPoint()) { 60 // If so, and the statement doesn't contain a label, then we do not need to 61 // generate actual code. This is safe because (1) the current point is 62 // unreachable, so we don't need to execute the code, and (2) we've already 63 // handled the statements which update internal data structures (like the 64 // local variable map) which could be used by subsequent statements. 65 if (!ContainsLabel(S)) { 66 // Verify that any decl statements were handled as simple, they may be in 67 // scope of subsequent reachable statements. 68 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 69 return; 70 } 71 72 // Otherwise, make a new block to hold the code. 73 EnsureInsertPoint(); 74 } 75 76 // Generate a stoppoint if we are emitting debug info. 77 EmitStopPoint(S); 78 79 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 80 // enabled. 81 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 82 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 83 EmitSimpleOMPExecutableDirective(*D); 84 return; 85 } 86 } 87 88 switch (S->getStmtClass()) { 89 case Stmt::NoStmtClass: 90 case Stmt::CXXCatchStmtClass: 91 case Stmt::SEHExceptStmtClass: 92 case Stmt::SEHFinallyStmtClass: 93 case Stmt::MSDependentExistsStmtClass: 94 llvm_unreachable("invalid statement class to emit generically"); 95 case Stmt::NullStmtClass: 96 case Stmt::CompoundStmtClass: 97 case Stmt::DeclStmtClass: 98 case Stmt::LabelStmtClass: 99 case Stmt::AttributedStmtClass: 100 case Stmt::GotoStmtClass: 101 case Stmt::BreakStmtClass: 102 case Stmt::ContinueStmtClass: 103 case Stmt::DefaultStmtClass: 104 case Stmt::CaseStmtClass: 105 case Stmt::SEHLeaveStmtClass: 106 llvm_unreachable("should have emitted these statements as simple"); 107 108 #define STMT(Type, Base) 109 #define ABSTRACT_STMT(Op) 110 #define EXPR(Type, Base) \ 111 case Stmt::Type##Class: 112 #include "clang/AST/StmtNodes.inc" 113 { 114 // Remember the block we came in on. 115 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 116 assert(incoming && "expression emission must have an insertion point"); 117 118 EmitIgnoredExpr(cast<Expr>(S)); 119 120 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 121 assert(outgoing && "expression emission cleared block!"); 122 123 // The expression emitters assume (reasonably!) that the insertion 124 // point is always set. To maintain that, the call-emission code 125 // for noreturn functions has to enter a new block with no 126 // predecessors. We want to kill that block and mark the current 127 // insertion point unreachable in the common case of a call like 128 // "exit();". Since expression emission doesn't otherwise create 129 // blocks with no predecessors, we can just test for that. 130 // However, we must be careful not to do this to our incoming 131 // block, because *statement* emission does sometimes create 132 // reachable blocks which will have no predecessors until later in 133 // the function. This occurs with, e.g., labels that are not 134 // reachable by fallthrough. 135 if (incoming != outgoing && outgoing->use_empty()) { 136 outgoing->eraseFromParent(); 137 Builder.ClearInsertionPoint(); 138 } 139 break; 140 } 141 142 case Stmt::IndirectGotoStmtClass: 143 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 144 145 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 146 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 147 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 148 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 149 150 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 151 152 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 153 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 154 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 155 case Stmt::CoroutineBodyStmtClass: 156 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 157 break; 158 case Stmt::CoreturnStmtClass: 159 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 160 break; 161 case Stmt::CapturedStmtClass: { 162 const CapturedStmt *CS = cast<CapturedStmt>(S); 163 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 164 } 165 break; 166 case Stmt::ObjCAtTryStmtClass: 167 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 168 break; 169 case Stmt::ObjCAtCatchStmtClass: 170 llvm_unreachable( 171 "@catch statements should be handled by EmitObjCAtTryStmt"); 172 case Stmt::ObjCAtFinallyStmtClass: 173 llvm_unreachable( 174 "@finally statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtThrowStmtClass: 176 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 177 break; 178 case Stmt::ObjCAtSynchronizedStmtClass: 179 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 180 break; 181 case Stmt::ObjCForCollectionStmtClass: 182 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 183 break; 184 case Stmt::ObjCAutoreleasePoolStmtClass: 185 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 186 break; 187 188 case Stmt::CXXTryStmtClass: 189 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 190 break; 191 case Stmt::CXXForRangeStmtClass: 192 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 193 break; 194 case Stmt::SEHTryStmtClass: 195 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 196 break; 197 case Stmt::OMPCanonicalLoopClass: 198 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 199 break; 200 case Stmt::OMPParallelDirectiveClass: 201 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 202 break; 203 case Stmt::OMPSimdDirectiveClass: 204 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 205 break; 206 case Stmt::OMPTileDirectiveClass: 207 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 208 break; 209 case Stmt::OMPForDirectiveClass: 210 EmitOMPForDirective(cast<OMPForDirective>(*S)); 211 break; 212 case Stmt::OMPForSimdDirectiveClass: 213 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 214 break; 215 case Stmt::OMPSectionsDirectiveClass: 216 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 217 break; 218 case Stmt::OMPSectionDirectiveClass: 219 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 220 break; 221 case Stmt::OMPSingleDirectiveClass: 222 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 223 break; 224 case Stmt::OMPMasterDirectiveClass: 225 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 226 break; 227 case Stmt::OMPCriticalDirectiveClass: 228 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 229 break; 230 case Stmt::OMPParallelForDirectiveClass: 231 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 232 break; 233 case Stmt::OMPParallelForSimdDirectiveClass: 234 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 235 break; 236 case Stmt::OMPParallelMasterDirectiveClass: 237 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 238 break; 239 case Stmt::OMPParallelSectionsDirectiveClass: 240 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 241 break; 242 case Stmt::OMPTaskDirectiveClass: 243 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 244 break; 245 case Stmt::OMPTaskyieldDirectiveClass: 246 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 247 break; 248 case Stmt::OMPBarrierDirectiveClass: 249 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 250 break; 251 case Stmt::OMPTaskwaitDirectiveClass: 252 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 253 break; 254 case Stmt::OMPTaskgroupDirectiveClass: 255 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 256 break; 257 case Stmt::OMPFlushDirectiveClass: 258 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 259 break; 260 case Stmt::OMPDepobjDirectiveClass: 261 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 262 break; 263 case Stmt::OMPScanDirectiveClass: 264 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 265 break; 266 case Stmt::OMPOrderedDirectiveClass: 267 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 268 break; 269 case Stmt::OMPAtomicDirectiveClass: 270 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 271 break; 272 case Stmt::OMPTargetDirectiveClass: 273 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 274 break; 275 case Stmt::OMPTeamsDirectiveClass: 276 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 277 break; 278 case Stmt::OMPCancellationPointDirectiveClass: 279 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 280 break; 281 case Stmt::OMPCancelDirectiveClass: 282 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 283 break; 284 case Stmt::OMPTargetDataDirectiveClass: 285 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 286 break; 287 case Stmt::OMPTargetEnterDataDirectiveClass: 288 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 289 break; 290 case Stmt::OMPTargetExitDataDirectiveClass: 291 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 292 break; 293 case Stmt::OMPTargetParallelDirectiveClass: 294 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 295 break; 296 case Stmt::OMPTargetParallelForDirectiveClass: 297 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 298 break; 299 case Stmt::OMPTaskLoopDirectiveClass: 300 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 301 break; 302 case Stmt::OMPTaskLoopSimdDirectiveClass: 303 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 304 break; 305 case Stmt::OMPMasterTaskLoopDirectiveClass: 306 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 307 break; 308 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 309 EmitOMPMasterTaskLoopSimdDirective( 310 cast<OMPMasterTaskLoopSimdDirective>(*S)); 311 break; 312 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 313 EmitOMPParallelMasterTaskLoopDirective( 314 cast<OMPParallelMasterTaskLoopDirective>(*S)); 315 break; 316 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 317 EmitOMPParallelMasterTaskLoopSimdDirective( 318 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 319 break; 320 case Stmt::OMPDistributeDirectiveClass: 321 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 322 break; 323 case Stmt::OMPTargetUpdateDirectiveClass: 324 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 325 break; 326 case Stmt::OMPDistributeParallelForDirectiveClass: 327 EmitOMPDistributeParallelForDirective( 328 cast<OMPDistributeParallelForDirective>(*S)); 329 break; 330 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 331 EmitOMPDistributeParallelForSimdDirective( 332 cast<OMPDistributeParallelForSimdDirective>(*S)); 333 break; 334 case Stmt::OMPDistributeSimdDirectiveClass: 335 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 336 break; 337 case Stmt::OMPTargetParallelForSimdDirectiveClass: 338 EmitOMPTargetParallelForSimdDirective( 339 cast<OMPTargetParallelForSimdDirective>(*S)); 340 break; 341 case Stmt::OMPTargetSimdDirectiveClass: 342 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 343 break; 344 case Stmt::OMPTeamsDistributeDirectiveClass: 345 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 346 break; 347 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 348 EmitOMPTeamsDistributeSimdDirective( 349 cast<OMPTeamsDistributeSimdDirective>(*S)); 350 break; 351 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 352 EmitOMPTeamsDistributeParallelForSimdDirective( 353 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 354 break; 355 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 356 EmitOMPTeamsDistributeParallelForDirective( 357 cast<OMPTeamsDistributeParallelForDirective>(*S)); 358 break; 359 case Stmt::OMPTargetTeamsDirectiveClass: 360 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 361 break; 362 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 363 EmitOMPTargetTeamsDistributeDirective( 364 cast<OMPTargetTeamsDistributeDirective>(*S)); 365 break; 366 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 367 EmitOMPTargetTeamsDistributeParallelForDirective( 368 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 369 break; 370 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 371 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 372 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 373 break; 374 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 375 EmitOMPTargetTeamsDistributeSimdDirective( 376 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 377 break; 378 case Stmt::OMPInteropDirectiveClass: 379 llvm_unreachable("Interop directive not supported yet."); 380 break; 381 } 382 } 383 384 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 385 ArrayRef<const Attr *> Attrs) { 386 switch (S->getStmtClass()) { 387 default: 388 return false; 389 case Stmt::NullStmtClass: 390 break; 391 case Stmt::CompoundStmtClass: 392 EmitCompoundStmt(cast<CompoundStmt>(*S)); 393 break; 394 case Stmt::DeclStmtClass: 395 EmitDeclStmt(cast<DeclStmt>(*S)); 396 break; 397 case Stmt::LabelStmtClass: 398 EmitLabelStmt(cast<LabelStmt>(*S)); 399 break; 400 case Stmt::AttributedStmtClass: 401 EmitAttributedStmt(cast<AttributedStmt>(*S)); 402 break; 403 case Stmt::GotoStmtClass: 404 EmitGotoStmt(cast<GotoStmt>(*S)); 405 break; 406 case Stmt::BreakStmtClass: 407 EmitBreakStmt(cast<BreakStmt>(*S)); 408 break; 409 case Stmt::ContinueStmtClass: 410 EmitContinueStmt(cast<ContinueStmt>(*S)); 411 break; 412 case Stmt::DefaultStmtClass: 413 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 414 break; 415 case Stmt::CaseStmtClass: 416 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 417 break; 418 case Stmt::SEHLeaveStmtClass: 419 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 420 break; 421 } 422 return true; 423 } 424 425 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 426 /// this captures the expression result of the last sub-statement and returns it 427 /// (for use by the statement expression extension). 428 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 429 AggValueSlot AggSlot) { 430 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 431 "LLVM IR generation of compound statement ('{}')"); 432 433 // Keep track of the current cleanup stack depth, including debug scopes. 434 LexicalScope Scope(*this, S.getSourceRange()); 435 436 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 437 } 438 439 Address 440 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 441 bool GetLast, 442 AggValueSlot AggSlot) { 443 444 const Stmt *ExprResult = S.getStmtExprResult(); 445 assert((!GetLast || (GetLast && ExprResult)) && 446 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 447 448 Address RetAlloca = Address::invalid(); 449 450 for (auto *CurStmt : S.body()) { 451 if (GetLast && ExprResult == CurStmt) { 452 // We have to special case labels here. They are statements, but when put 453 // at the end of a statement expression, they yield the value of their 454 // subexpression. Handle this by walking through all labels we encounter, 455 // emitting them before we evaluate the subexpr. 456 // Similar issues arise for attributed statements. 457 while (!isa<Expr>(ExprResult)) { 458 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 459 EmitLabel(LS->getDecl()); 460 ExprResult = LS->getSubStmt(); 461 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 462 // FIXME: Update this if we ever have attributes that affect the 463 // semantics of an expression. 464 ExprResult = AS->getSubStmt(); 465 } else { 466 llvm_unreachable("unknown value statement"); 467 } 468 } 469 470 EnsureInsertPoint(); 471 472 const Expr *E = cast<Expr>(ExprResult); 473 QualType ExprTy = E->getType(); 474 if (hasAggregateEvaluationKind(ExprTy)) { 475 EmitAggExpr(E, AggSlot); 476 } else { 477 // We can't return an RValue here because there might be cleanups at 478 // the end of the StmtExpr. Because of that, we have to emit the result 479 // here into a temporary alloca. 480 RetAlloca = CreateMemTemp(ExprTy); 481 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 482 /*IsInit*/ false); 483 } 484 } else { 485 EmitStmt(CurStmt); 486 } 487 } 488 489 return RetAlloca; 490 } 491 492 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 493 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 494 495 // If there is a cleanup stack, then we it isn't worth trying to 496 // simplify this block (we would need to remove it from the scope map 497 // and cleanup entry). 498 if (!EHStack.empty()) 499 return; 500 501 // Can only simplify direct branches. 502 if (!BI || !BI->isUnconditional()) 503 return; 504 505 // Can only simplify empty blocks. 506 if (BI->getIterator() != BB->begin()) 507 return; 508 509 BB->replaceAllUsesWith(BI->getSuccessor(0)); 510 BI->eraseFromParent(); 511 BB->eraseFromParent(); 512 } 513 514 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 515 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 516 517 // Fall out of the current block (if necessary). 518 EmitBranch(BB); 519 520 if (IsFinished && BB->use_empty()) { 521 delete BB; 522 return; 523 } 524 525 // Place the block after the current block, if possible, or else at 526 // the end of the function. 527 if (CurBB && CurBB->getParent()) 528 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 529 else 530 CurFn->getBasicBlockList().push_back(BB); 531 Builder.SetInsertPoint(BB); 532 } 533 534 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 535 // Emit a branch from the current block to the target one if this 536 // was a real block. If this was just a fall-through block after a 537 // terminator, don't emit it. 538 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 539 540 if (!CurBB || CurBB->getTerminator()) { 541 // If there is no insert point or the previous block is already 542 // terminated, don't touch it. 543 } else { 544 // Otherwise, create a fall-through branch. 545 Builder.CreateBr(Target); 546 } 547 548 Builder.ClearInsertionPoint(); 549 } 550 551 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 552 bool inserted = false; 553 for (llvm::User *u : block->users()) { 554 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 555 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 556 block); 557 inserted = true; 558 break; 559 } 560 } 561 562 if (!inserted) 563 CurFn->getBasicBlockList().push_back(block); 564 565 Builder.SetInsertPoint(block); 566 } 567 568 CodeGenFunction::JumpDest 569 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 570 JumpDest &Dest = LabelMap[D]; 571 if (Dest.isValid()) return Dest; 572 573 // Create, but don't insert, the new block. 574 Dest = JumpDest(createBasicBlock(D->getName()), 575 EHScopeStack::stable_iterator::invalid(), 576 NextCleanupDestIndex++); 577 return Dest; 578 } 579 580 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 581 // Add this label to the current lexical scope if we're within any 582 // normal cleanups. Jumps "in" to this label --- when permitted by 583 // the language --- may need to be routed around such cleanups. 584 if (EHStack.hasNormalCleanups() && CurLexicalScope) 585 CurLexicalScope->addLabel(D); 586 587 JumpDest &Dest = LabelMap[D]; 588 589 // If we didn't need a forward reference to this label, just go 590 // ahead and create a destination at the current scope. 591 if (!Dest.isValid()) { 592 Dest = getJumpDestInCurrentScope(D->getName()); 593 594 // Otherwise, we need to give this label a target depth and remove 595 // it from the branch-fixups list. 596 } else { 597 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 598 Dest.setScopeDepth(EHStack.stable_begin()); 599 ResolveBranchFixups(Dest.getBlock()); 600 } 601 602 EmitBlock(Dest.getBlock()); 603 604 // Emit debug info for labels. 605 if (CGDebugInfo *DI = getDebugInfo()) { 606 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 607 DI->setLocation(D->getLocation()); 608 DI->EmitLabel(D, Builder); 609 } 610 } 611 612 incrementProfileCounter(D->getStmt()); 613 } 614 615 /// Change the cleanup scope of the labels in this lexical scope to 616 /// match the scope of the enclosing context. 617 void CodeGenFunction::LexicalScope::rescopeLabels() { 618 assert(!Labels.empty()); 619 EHScopeStack::stable_iterator innermostScope 620 = CGF.EHStack.getInnermostNormalCleanup(); 621 622 // Change the scope depth of all the labels. 623 for (SmallVectorImpl<const LabelDecl*>::const_iterator 624 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 625 assert(CGF.LabelMap.count(*i)); 626 JumpDest &dest = CGF.LabelMap.find(*i)->second; 627 assert(dest.getScopeDepth().isValid()); 628 assert(innermostScope.encloses(dest.getScopeDepth())); 629 dest.setScopeDepth(innermostScope); 630 } 631 632 // Reparent the labels if the new scope also has cleanups. 633 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 634 ParentScope->Labels.append(Labels.begin(), Labels.end()); 635 } 636 } 637 638 639 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 640 EmitLabel(S.getDecl()); 641 EmitStmt(S.getSubStmt()); 642 } 643 644 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 645 bool nomerge = false; 646 for (const auto *A : S.getAttrs()) 647 if (A->getKind() == attr::NoMerge) { 648 nomerge = true; 649 break; 650 } 651 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 652 EmitStmt(S.getSubStmt(), S.getAttrs()); 653 } 654 655 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 656 // If this code is reachable then emit a stop point (if generating 657 // debug info). We have to do this ourselves because we are on the 658 // "simple" statement path. 659 if (HaveInsertPoint()) 660 EmitStopPoint(&S); 661 662 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 663 } 664 665 666 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 667 if (const LabelDecl *Target = S.getConstantTarget()) { 668 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 669 return; 670 } 671 672 // Ensure that we have an i8* for our PHI node. 673 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 674 Int8PtrTy, "addr"); 675 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 676 677 // Get the basic block for the indirect goto. 678 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 679 680 // The first instruction in the block has to be the PHI for the switch dest, 681 // add an entry for this branch. 682 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 683 684 EmitBranch(IndGotoBB); 685 } 686 687 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 688 // C99 6.8.4.1: The first substatement is executed if the expression compares 689 // unequal to 0. The condition must be a scalar type. 690 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 691 692 if (S.getInit()) 693 EmitStmt(S.getInit()); 694 695 if (S.getConditionVariable()) 696 EmitDecl(*S.getConditionVariable()); 697 698 // If the condition constant folds and can be elided, try to avoid emitting 699 // the condition and the dead arm of the if/else. 700 bool CondConstant; 701 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 702 S.isConstexpr())) { 703 // Figure out which block (then or else) is executed. 704 const Stmt *Executed = S.getThen(); 705 const Stmt *Skipped = S.getElse(); 706 if (!CondConstant) // Condition false? 707 std::swap(Executed, Skipped); 708 709 // If the skipped block has no labels in it, just emit the executed block. 710 // This avoids emitting dead code and simplifies the CFG substantially. 711 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 712 if (CondConstant) 713 incrementProfileCounter(&S); 714 if (Executed) { 715 RunCleanupsScope ExecutedScope(*this); 716 EmitStmt(Executed); 717 } 718 return; 719 } 720 } 721 722 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 723 // the conditional branch. 724 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 725 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 726 llvm::BasicBlock *ElseBlock = ContBlock; 727 if (S.getElse()) 728 ElseBlock = createBasicBlock("if.else"); 729 730 // Prefer the PGO based weights over the likelihood attribute. 731 // When the build isn't optimized the metadata isn't used, so don't generate 732 // it. 733 Stmt::Likelihood LH = Stmt::LH_None; 734 uint64_t Count = getProfileCount(S.getThen()); 735 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 736 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 737 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 738 739 // Emit the 'then' code. 740 EmitBlock(ThenBlock); 741 incrementProfileCounter(&S); 742 { 743 RunCleanupsScope ThenScope(*this); 744 EmitStmt(S.getThen()); 745 } 746 EmitBranch(ContBlock); 747 748 // Emit the 'else' code if present. 749 if (const Stmt *Else = S.getElse()) { 750 { 751 // There is no need to emit line number for an unconditional branch. 752 auto NL = ApplyDebugLocation::CreateEmpty(*this); 753 EmitBlock(ElseBlock); 754 } 755 { 756 RunCleanupsScope ElseScope(*this); 757 EmitStmt(Else); 758 } 759 { 760 // There is no need to emit line number for an unconditional branch. 761 auto NL = ApplyDebugLocation::CreateEmpty(*this); 762 EmitBranch(ContBlock); 763 } 764 } 765 766 // Emit the continuation block for code after the if. 767 EmitBlock(ContBlock, true); 768 } 769 770 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 771 ArrayRef<const Attr *> WhileAttrs) { 772 // Emit the header for the loop, which will also become 773 // the continue target. 774 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 775 EmitBlock(LoopHeader.getBlock()); 776 777 // Create an exit block for when the condition fails, which will 778 // also become the break target. 779 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 780 781 // Store the blocks to use for break and continue. 782 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 783 784 // C++ [stmt.while]p2: 785 // When the condition of a while statement is a declaration, the 786 // scope of the variable that is declared extends from its point 787 // of declaration (3.3.2) to the end of the while statement. 788 // [...] 789 // The object created in a condition is destroyed and created 790 // with each iteration of the loop. 791 RunCleanupsScope ConditionScope(*this); 792 793 if (S.getConditionVariable()) 794 EmitDecl(*S.getConditionVariable()); 795 796 // Evaluate the conditional in the while header. C99 6.8.5.1: The 797 // evaluation of the controlling expression takes place before each 798 // execution of the loop body. 799 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 800 801 // while(1) is common, avoid extra exit blocks. Be sure 802 // to correctly handle break/continue though. 803 bool EmitBoolCondBranch = true; 804 bool LoopMustProgress = false; 805 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) { 806 if (C->isOne()) { 807 EmitBoolCondBranch = false; 808 FnIsMustProgress = false; 809 } 810 } else if (LanguageRequiresProgress()) 811 LoopMustProgress = true; 812 813 const SourceRange &R = S.getSourceRange(); 814 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 815 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 816 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 817 818 // As long as the condition is true, go to the loop body. 819 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 820 if (EmitBoolCondBranch) { 821 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 822 if (ConditionScope.requiresCleanups()) 823 ExitBlock = createBasicBlock("while.exit"); 824 llvm::MDNode *Weights = 825 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 826 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 827 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 828 BoolCondVal, Stmt::getLikelihood(S.getBody())); 829 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 830 831 if (ExitBlock != LoopExit.getBlock()) { 832 EmitBlock(ExitBlock); 833 EmitBranchThroughCleanup(LoopExit); 834 } 835 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 836 CGM.getDiags().Report(A->getLocation(), 837 diag::warn_attribute_has_no_effect_on_infinite_loop) 838 << A << A->getRange(); 839 CGM.getDiags().Report( 840 S.getWhileLoc(), 841 diag::note_attribute_has_no_effect_on_infinite_loop_here) 842 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 843 } 844 845 // Emit the loop body. We have to emit this in a cleanup scope 846 // because it might be a singleton DeclStmt. 847 { 848 RunCleanupsScope BodyScope(*this); 849 EmitBlock(LoopBody); 850 incrementProfileCounter(&S); 851 EmitStmt(S.getBody()); 852 } 853 854 BreakContinueStack.pop_back(); 855 856 // Immediately force cleanup. 857 ConditionScope.ForceCleanup(); 858 859 EmitStopPoint(&S); 860 // Branch to the loop header again. 861 EmitBranch(LoopHeader.getBlock()); 862 863 LoopStack.pop(); 864 865 // Emit the exit block. 866 EmitBlock(LoopExit.getBlock(), true); 867 868 // The LoopHeader typically is just a branch if we skipped emitting 869 // a branch, try to erase it. 870 if (!EmitBoolCondBranch) 871 SimplifyForwardingBlocks(LoopHeader.getBlock()); 872 } 873 874 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 875 ArrayRef<const Attr *> DoAttrs) { 876 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 877 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 878 879 uint64_t ParentCount = getCurrentProfileCount(); 880 881 // Store the blocks to use for break and continue. 882 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 883 884 // Emit the body of the loop. 885 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 886 887 EmitBlockWithFallThrough(LoopBody, &S); 888 { 889 RunCleanupsScope BodyScope(*this); 890 EmitStmt(S.getBody()); 891 } 892 893 EmitBlock(LoopCond.getBlock()); 894 895 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 896 // after each execution of the loop body." 897 898 // Evaluate the conditional in the while header. 899 // C99 6.8.5p2/p4: The first substatement is executed if the expression 900 // compares unequal to 0. The condition must be a scalar type. 901 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 902 903 BreakContinueStack.pop_back(); 904 905 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 906 // to correctly handle break/continue though. 907 bool EmitBoolCondBranch = true; 908 bool LoopMustProgress = false; 909 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) { 910 if (C->isZero()) 911 EmitBoolCondBranch = false; 912 else if (C->isOne()) 913 FnIsMustProgress = false; 914 } else if (LanguageRequiresProgress()) 915 LoopMustProgress = true; 916 917 const SourceRange &R = S.getSourceRange(); 918 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 919 SourceLocToDebugLoc(R.getBegin()), 920 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 921 922 // As long as the condition is true, iterate the loop. 923 if (EmitBoolCondBranch) { 924 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 925 Builder.CreateCondBr( 926 BoolCondVal, LoopBody, LoopExit.getBlock(), 927 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 928 } 929 930 LoopStack.pop(); 931 932 // Emit the exit block. 933 EmitBlock(LoopExit.getBlock()); 934 935 // The DoCond block typically is just a branch if we skipped 936 // emitting a branch, try to erase it. 937 if (!EmitBoolCondBranch) 938 SimplifyForwardingBlocks(LoopCond.getBlock()); 939 } 940 941 void CodeGenFunction::EmitForStmt(const ForStmt &S, 942 ArrayRef<const Attr *> ForAttrs) { 943 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 944 945 LexicalScope ForScope(*this, S.getSourceRange()); 946 947 // Evaluate the first part before the loop. 948 if (S.getInit()) 949 EmitStmt(S.getInit()); 950 951 // Start the loop with a block that tests the condition. 952 // If there's an increment, the continue scope will be overwritten 953 // later. 954 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 955 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 956 EmitBlock(CondBlock); 957 958 bool LoopMustProgress = false; 959 Expr::EvalResult Result; 960 if (LanguageRequiresProgress()) { 961 if (!S.getCond()) { 962 FnIsMustProgress = false; 963 } else if (!S.getCond()->EvaluateAsInt(Result, getContext())) { 964 LoopMustProgress = true; 965 } 966 } 967 968 const SourceRange &R = S.getSourceRange(); 969 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 970 SourceLocToDebugLoc(R.getBegin()), 971 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 972 973 // Create a cleanup scope for the condition variable cleanups. 974 LexicalScope ConditionScope(*this, S.getSourceRange()); 975 976 // If the for loop doesn't have an increment we can just use the condition as 977 // the continue block. Otherwise, if there is no condition variable, we can 978 // form the continue block now. If there is a condition variable, we can't 979 // form the continue block until after we've emitted the condition, because 980 // the condition is in scope in the increment, but Sema's jump diagnostics 981 // ensure that there are no continues from the condition variable that jump 982 // to the loop increment. 983 JumpDest Continue; 984 if (!S.getInc()) 985 Continue = CondDest; 986 else if (!S.getConditionVariable()) 987 Continue = getJumpDestInCurrentScope("for.inc"); 988 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 989 990 if (S.getCond()) { 991 // If the for statement has a condition scope, emit the local variable 992 // declaration. 993 if (S.getConditionVariable()) { 994 EmitDecl(*S.getConditionVariable()); 995 996 // We have entered the condition variable's scope, so we're now able to 997 // jump to the continue block. 998 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 999 BreakContinueStack.back().ContinueBlock = Continue; 1000 } 1001 1002 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1003 // If there are any cleanups between here and the loop-exit scope, 1004 // create a block to stage a loop exit along. 1005 if (ForScope.requiresCleanups()) 1006 ExitBlock = createBasicBlock("for.cond.cleanup"); 1007 1008 // As long as the condition is true, iterate the loop. 1009 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1010 1011 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1012 // compares unequal to 0. The condition must be a scalar type. 1013 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1014 llvm::MDNode *Weights = 1015 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1016 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1017 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1018 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1019 1020 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 1021 if (C->isOne()) 1022 FnIsMustProgress = false; 1023 1024 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1025 1026 if (ExitBlock != LoopExit.getBlock()) { 1027 EmitBlock(ExitBlock); 1028 EmitBranchThroughCleanup(LoopExit); 1029 } 1030 1031 EmitBlock(ForBody); 1032 } else { 1033 // Treat it as a non-zero constant. Don't even create a new block for the 1034 // body, just fall into it. 1035 } 1036 incrementProfileCounter(&S); 1037 1038 { 1039 // Create a separate cleanup scope for the body, in case it is not 1040 // a compound statement. 1041 RunCleanupsScope BodyScope(*this); 1042 EmitStmt(S.getBody()); 1043 } 1044 1045 // If there is an increment, emit it next. 1046 if (S.getInc()) { 1047 EmitBlock(Continue.getBlock()); 1048 EmitStmt(S.getInc()); 1049 } 1050 1051 BreakContinueStack.pop_back(); 1052 1053 ConditionScope.ForceCleanup(); 1054 1055 EmitStopPoint(&S); 1056 EmitBranch(CondBlock); 1057 1058 ForScope.ForceCleanup(); 1059 1060 LoopStack.pop(); 1061 1062 // Emit the fall-through block. 1063 EmitBlock(LoopExit.getBlock(), true); 1064 } 1065 1066 void 1067 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1068 ArrayRef<const Attr *> ForAttrs) { 1069 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1070 1071 LexicalScope ForScope(*this, S.getSourceRange()); 1072 1073 // Evaluate the first pieces before the loop. 1074 if (S.getInit()) 1075 EmitStmt(S.getInit()); 1076 EmitStmt(S.getRangeStmt()); 1077 EmitStmt(S.getBeginStmt()); 1078 EmitStmt(S.getEndStmt()); 1079 1080 // Start the loop with a block that tests the condition. 1081 // If there's an increment, the continue scope will be overwritten 1082 // later. 1083 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1084 EmitBlock(CondBlock); 1085 1086 const SourceRange &R = S.getSourceRange(); 1087 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1088 SourceLocToDebugLoc(R.getBegin()), 1089 SourceLocToDebugLoc(R.getEnd())); 1090 1091 // If there are any cleanups between here and the loop-exit scope, 1092 // create a block to stage a loop exit along. 1093 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1094 if (ForScope.requiresCleanups()) 1095 ExitBlock = createBasicBlock("for.cond.cleanup"); 1096 1097 // The loop body, consisting of the specified body and the loop variable. 1098 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1099 1100 // The body is executed if the expression, contextually converted 1101 // to bool, is true. 1102 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1103 llvm::MDNode *Weights = 1104 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1105 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1106 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1107 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1108 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1109 1110 if (ExitBlock != LoopExit.getBlock()) { 1111 EmitBlock(ExitBlock); 1112 EmitBranchThroughCleanup(LoopExit); 1113 } 1114 1115 EmitBlock(ForBody); 1116 incrementProfileCounter(&S); 1117 1118 // Create a block for the increment. In case of a 'continue', we jump there. 1119 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1120 1121 // Store the blocks to use for break and continue. 1122 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1123 1124 { 1125 // Create a separate cleanup scope for the loop variable and body. 1126 LexicalScope BodyScope(*this, S.getSourceRange()); 1127 EmitStmt(S.getLoopVarStmt()); 1128 EmitStmt(S.getBody()); 1129 } 1130 1131 EmitStopPoint(&S); 1132 // If there is an increment, emit it next. 1133 EmitBlock(Continue.getBlock()); 1134 EmitStmt(S.getInc()); 1135 1136 BreakContinueStack.pop_back(); 1137 1138 EmitBranch(CondBlock); 1139 1140 ForScope.ForceCleanup(); 1141 1142 LoopStack.pop(); 1143 1144 // Emit the fall-through block. 1145 EmitBlock(LoopExit.getBlock(), true); 1146 } 1147 1148 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1149 if (RV.isScalar()) { 1150 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1151 } else if (RV.isAggregate()) { 1152 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1153 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1154 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1155 } else { 1156 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1157 /*init*/ true); 1158 } 1159 EmitBranchThroughCleanup(ReturnBlock); 1160 } 1161 1162 namespace { 1163 // RAII struct used to save and restore a return statment's result expression. 1164 struct SaveRetExprRAII { 1165 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1166 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1167 CGF.RetExpr = RetExpr; 1168 } 1169 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1170 const Expr *OldRetExpr; 1171 CodeGenFunction &CGF; 1172 }; 1173 } // namespace 1174 1175 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1176 /// if the function returns void, or may be missing one if the function returns 1177 /// non-void. Fun stuff :). 1178 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1179 if (requiresReturnValueCheck()) { 1180 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1181 auto *SLocPtr = 1182 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1183 llvm::GlobalVariable::PrivateLinkage, SLoc); 1184 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1185 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1186 assert(ReturnLocation.isValid() && "No valid return location"); 1187 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1188 ReturnLocation); 1189 } 1190 1191 // Returning from an outlined SEH helper is UB, and we already warn on it. 1192 if (IsOutlinedSEHHelper) { 1193 Builder.CreateUnreachable(); 1194 Builder.ClearInsertionPoint(); 1195 } 1196 1197 // Emit the result value, even if unused, to evaluate the side effects. 1198 const Expr *RV = S.getRetValue(); 1199 1200 // Record the result expression of the return statement. The recorded 1201 // expression is used to determine whether a block capture's lifetime should 1202 // end at the end of the full expression as opposed to the end of the scope 1203 // enclosing the block expression. 1204 // 1205 // This permits a small, easily-implemented exception to our over-conservative 1206 // rules about not jumping to statements following block literals with 1207 // non-trivial cleanups. 1208 SaveRetExprRAII SaveRetExpr(RV, *this); 1209 1210 RunCleanupsScope cleanupScope(*this); 1211 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1212 RV = EWC->getSubExpr(); 1213 // FIXME: Clean this up by using an LValue for ReturnTemp, 1214 // EmitStoreThroughLValue, and EmitAnyExpr. 1215 // Check if the NRVO candidate was not globalized in OpenMP mode. 1216 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1217 S.getNRVOCandidate()->isNRVOVariable() && 1218 (!getLangOpts().OpenMP || 1219 !CGM.getOpenMPRuntime() 1220 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1221 .isValid())) { 1222 // Apply the named return value optimization for this return statement, 1223 // which means doing nothing: the appropriate result has already been 1224 // constructed into the NRVO variable. 1225 1226 // If there is an NRVO flag for this variable, set it to 1 into indicate 1227 // that the cleanup code should not destroy the variable. 1228 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1229 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1230 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1231 // Make sure not to return anything, but evaluate the expression 1232 // for side effects. 1233 if (RV) 1234 EmitAnyExpr(RV); 1235 } else if (!RV) { 1236 // Do nothing (return value is left uninitialized) 1237 } else if (FnRetTy->isReferenceType()) { 1238 // If this function returns a reference, take the address of the expression 1239 // rather than the value. 1240 RValue Result = EmitReferenceBindingToExpr(RV); 1241 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1242 } else { 1243 switch (getEvaluationKind(RV->getType())) { 1244 case TEK_Scalar: 1245 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1246 break; 1247 case TEK_Complex: 1248 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1249 /*isInit*/ true); 1250 break; 1251 case TEK_Aggregate: 1252 EmitAggExpr(RV, AggValueSlot::forAddr( 1253 ReturnValue, Qualifiers(), 1254 AggValueSlot::IsDestructed, 1255 AggValueSlot::DoesNotNeedGCBarriers, 1256 AggValueSlot::IsNotAliased, 1257 getOverlapForReturnValue())); 1258 break; 1259 } 1260 } 1261 1262 ++NumReturnExprs; 1263 if (!RV || RV->isEvaluatable(getContext())) 1264 ++NumSimpleReturnExprs; 1265 1266 cleanupScope.ForceCleanup(); 1267 EmitBranchThroughCleanup(ReturnBlock); 1268 } 1269 1270 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1271 // As long as debug info is modeled with instructions, we have to ensure we 1272 // have a place to insert here and write the stop point here. 1273 if (HaveInsertPoint()) 1274 EmitStopPoint(&S); 1275 1276 for (const auto *I : S.decls()) 1277 EmitDecl(*I); 1278 } 1279 1280 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1281 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1282 1283 // If this code is reachable then emit a stop point (if generating 1284 // debug info). We have to do this ourselves because we are on the 1285 // "simple" statement path. 1286 if (HaveInsertPoint()) 1287 EmitStopPoint(&S); 1288 1289 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1290 } 1291 1292 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1293 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1294 1295 // If this code is reachable then emit a stop point (if generating 1296 // debug info). We have to do this ourselves because we are on the 1297 // "simple" statement path. 1298 if (HaveInsertPoint()) 1299 EmitStopPoint(&S); 1300 1301 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1302 } 1303 1304 /// EmitCaseStmtRange - If case statement range is not too big then 1305 /// add multiple cases to switch instruction, one for each value within 1306 /// the range. If range is too big then emit "if" condition check. 1307 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1308 ArrayRef<const Attr *> Attrs) { 1309 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1310 1311 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1312 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1313 1314 // Emit the code for this case. We do this first to make sure it is 1315 // properly chained from our predecessor before generating the 1316 // switch machinery to enter this block. 1317 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1318 EmitBlockWithFallThrough(CaseDest, &S); 1319 EmitStmt(S.getSubStmt()); 1320 1321 // If range is empty, do nothing. 1322 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1323 return; 1324 1325 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1326 llvm::APInt Range = RHS - LHS; 1327 // FIXME: parameters such as this should not be hardcoded. 1328 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1329 // Range is small enough to add multiple switch instruction cases. 1330 uint64_t Total = getProfileCount(&S); 1331 unsigned NCases = Range.getZExtValue() + 1; 1332 // We only have one region counter for the entire set of cases here, so we 1333 // need to divide the weights evenly between the generated cases, ensuring 1334 // that the total weight is preserved. E.g., a weight of 5 over three cases 1335 // will be distributed as weights of 2, 2, and 1. 1336 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1337 for (unsigned I = 0; I != NCases; ++I) { 1338 if (SwitchWeights) 1339 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1340 else if (SwitchLikelihood) 1341 SwitchLikelihood->push_back(LH); 1342 1343 if (Rem) 1344 Rem--; 1345 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1346 ++LHS; 1347 } 1348 return; 1349 } 1350 1351 // The range is too big. Emit "if" condition into a new block, 1352 // making sure to save and restore the current insertion point. 1353 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1354 1355 // Push this test onto the chain of range checks (which terminates 1356 // in the default basic block). The switch's default will be changed 1357 // to the top of this chain after switch emission is complete. 1358 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1359 CaseRangeBlock = createBasicBlock("sw.caserange"); 1360 1361 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1362 Builder.SetInsertPoint(CaseRangeBlock); 1363 1364 // Emit range check. 1365 llvm::Value *Diff = 1366 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1367 llvm::Value *Cond = 1368 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1369 1370 llvm::MDNode *Weights = nullptr; 1371 if (SwitchWeights) { 1372 uint64_t ThisCount = getProfileCount(&S); 1373 uint64_t DefaultCount = (*SwitchWeights)[0]; 1374 Weights = createProfileWeights(ThisCount, DefaultCount); 1375 1376 // Since we're chaining the switch default through each large case range, we 1377 // need to update the weight for the default, ie, the first case, to include 1378 // this case. 1379 (*SwitchWeights)[0] += ThisCount; 1380 } else if (SwitchLikelihood) 1381 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1382 1383 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1384 1385 // Restore the appropriate insertion point. 1386 if (RestoreBB) 1387 Builder.SetInsertPoint(RestoreBB); 1388 else 1389 Builder.ClearInsertionPoint(); 1390 } 1391 1392 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1393 ArrayRef<const Attr *> Attrs) { 1394 // If there is no enclosing switch instance that we're aware of, then this 1395 // case statement and its block can be elided. This situation only happens 1396 // when we've constant-folded the switch, are emitting the constant case, 1397 // and part of the constant case includes another case statement. For 1398 // instance: switch (4) { case 4: do { case 5: } while (1); } 1399 if (!SwitchInsn) { 1400 EmitStmt(S.getSubStmt()); 1401 return; 1402 } 1403 1404 // Handle case ranges. 1405 if (S.getRHS()) { 1406 EmitCaseStmtRange(S, Attrs); 1407 return; 1408 } 1409 1410 llvm::ConstantInt *CaseVal = 1411 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1412 if (SwitchLikelihood) 1413 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1414 1415 // If the body of the case is just a 'break', try to not emit an empty block. 1416 // If we're profiling or we're not optimizing, leave the block in for better 1417 // debug and coverage analysis. 1418 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1419 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1420 isa<BreakStmt>(S.getSubStmt())) { 1421 JumpDest Block = BreakContinueStack.back().BreakBlock; 1422 1423 // Only do this optimization if there are no cleanups that need emitting. 1424 if (isObviouslyBranchWithoutCleanups(Block)) { 1425 if (SwitchWeights) 1426 SwitchWeights->push_back(getProfileCount(&S)); 1427 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1428 1429 // If there was a fallthrough into this case, make sure to redirect it to 1430 // the end of the switch as well. 1431 if (Builder.GetInsertBlock()) { 1432 Builder.CreateBr(Block.getBlock()); 1433 Builder.ClearInsertionPoint(); 1434 } 1435 return; 1436 } 1437 } 1438 1439 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1440 EmitBlockWithFallThrough(CaseDest, &S); 1441 if (SwitchWeights) 1442 SwitchWeights->push_back(getProfileCount(&S)); 1443 SwitchInsn->addCase(CaseVal, CaseDest); 1444 1445 // Recursively emitting the statement is acceptable, but is not wonderful for 1446 // code where we have many case statements nested together, i.e.: 1447 // case 1: 1448 // case 2: 1449 // case 3: etc. 1450 // Handling this recursively will create a new block for each case statement 1451 // that falls through to the next case which is IR intensive. It also causes 1452 // deep recursion which can run into stack depth limitations. Handle 1453 // sequential non-range case statements specially. 1454 // 1455 // TODO When the next case has a likelihood attribute the code returns to the 1456 // recursive algorithm. Maybe improve this case if it becomes common practice 1457 // to use a lot of attributes. 1458 const CaseStmt *CurCase = &S; 1459 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1460 1461 // Otherwise, iteratively add consecutive cases to this switch stmt. 1462 while (NextCase && NextCase->getRHS() == nullptr) { 1463 CurCase = NextCase; 1464 llvm::ConstantInt *CaseVal = 1465 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1466 1467 if (SwitchWeights) 1468 SwitchWeights->push_back(getProfileCount(NextCase)); 1469 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1470 CaseDest = createBasicBlock("sw.bb"); 1471 EmitBlockWithFallThrough(CaseDest, CurCase); 1472 } 1473 // Since this loop is only executed when the CaseStmt has no attributes 1474 // use a hard-coded value. 1475 if (SwitchLikelihood) 1476 SwitchLikelihood->push_back(Stmt::LH_None); 1477 1478 SwitchInsn->addCase(CaseVal, CaseDest); 1479 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1480 } 1481 1482 // Normal default recursion for non-cases. 1483 EmitStmt(CurCase->getSubStmt()); 1484 } 1485 1486 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1487 ArrayRef<const Attr *> Attrs) { 1488 // If there is no enclosing switch instance that we're aware of, then this 1489 // default statement can be elided. This situation only happens when we've 1490 // constant-folded the switch. 1491 if (!SwitchInsn) { 1492 EmitStmt(S.getSubStmt()); 1493 return; 1494 } 1495 1496 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1497 assert(DefaultBlock->empty() && 1498 "EmitDefaultStmt: Default block already defined?"); 1499 1500 if (SwitchLikelihood) 1501 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1502 1503 EmitBlockWithFallThrough(DefaultBlock, &S); 1504 1505 EmitStmt(S.getSubStmt()); 1506 } 1507 1508 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1509 /// constant value that is being switched on, see if we can dead code eliminate 1510 /// the body of the switch to a simple series of statements to emit. Basically, 1511 /// on a switch (5) we want to find these statements: 1512 /// case 5: 1513 /// printf(...); <-- 1514 /// ++i; <-- 1515 /// break; 1516 /// 1517 /// and add them to the ResultStmts vector. If it is unsafe to do this 1518 /// transformation (for example, one of the elided statements contains a label 1519 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1520 /// should include statements after it (e.g. the printf() line is a substmt of 1521 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1522 /// statement, then return CSFC_Success. 1523 /// 1524 /// If Case is non-null, then we are looking for the specified case, checking 1525 /// that nothing we jump over contains labels. If Case is null, then we found 1526 /// the case and are looking for the break. 1527 /// 1528 /// If the recursive walk actually finds our Case, then we set FoundCase to 1529 /// true. 1530 /// 1531 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1532 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1533 const SwitchCase *Case, 1534 bool &FoundCase, 1535 SmallVectorImpl<const Stmt*> &ResultStmts) { 1536 // If this is a null statement, just succeed. 1537 if (!S) 1538 return Case ? CSFC_Success : CSFC_FallThrough; 1539 1540 // If this is the switchcase (case 4: or default) that we're looking for, then 1541 // we're in business. Just add the substatement. 1542 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1543 if (S == Case) { 1544 FoundCase = true; 1545 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1546 ResultStmts); 1547 } 1548 1549 // Otherwise, this is some other case or default statement, just ignore it. 1550 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1551 ResultStmts); 1552 } 1553 1554 // If we are in the live part of the code and we found our break statement, 1555 // return a success! 1556 if (!Case && isa<BreakStmt>(S)) 1557 return CSFC_Success; 1558 1559 // If this is a switch statement, then it might contain the SwitchCase, the 1560 // break, or neither. 1561 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1562 // Handle this as two cases: we might be looking for the SwitchCase (if so 1563 // the skipped statements must be skippable) or we might already have it. 1564 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1565 bool StartedInLiveCode = FoundCase; 1566 unsigned StartSize = ResultStmts.size(); 1567 1568 // If we've not found the case yet, scan through looking for it. 1569 if (Case) { 1570 // Keep track of whether we see a skipped declaration. The code could be 1571 // using the declaration even if it is skipped, so we can't optimize out 1572 // the decl if the kept statements might refer to it. 1573 bool HadSkippedDecl = false; 1574 1575 // If we're looking for the case, just see if we can skip each of the 1576 // substatements. 1577 for (; Case && I != E; ++I) { 1578 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1579 1580 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1581 case CSFC_Failure: return CSFC_Failure; 1582 case CSFC_Success: 1583 // A successful result means that either 1) that the statement doesn't 1584 // have the case and is skippable, or 2) does contain the case value 1585 // and also contains the break to exit the switch. In the later case, 1586 // we just verify the rest of the statements are elidable. 1587 if (FoundCase) { 1588 // If we found the case and skipped declarations, we can't do the 1589 // optimization. 1590 if (HadSkippedDecl) 1591 return CSFC_Failure; 1592 1593 for (++I; I != E; ++I) 1594 if (CodeGenFunction::ContainsLabel(*I, true)) 1595 return CSFC_Failure; 1596 return CSFC_Success; 1597 } 1598 break; 1599 case CSFC_FallThrough: 1600 // If we have a fallthrough condition, then we must have found the 1601 // case started to include statements. Consider the rest of the 1602 // statements in the compound statement as candidates for inclusion. 1603 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1604 // We recursively found Case, so we're not looking for it anymore. 1605 Case = nullptr; 1606 1607 // If we found the case and skipped declarations, we can't do the 1608 // optimization. 1609 if (HadSkippedDecl) 1610 return CSFC_Failure; 1611 break; 1612 } 1613 } 1614 1615 if (!FoundCase) 1616 return CSFC_Success; 1617 1618 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1619 } 1620 1621 // If we have statements in our range, then we know that the statements are 1622 // live and need to be added to the set of statements we're tracking. 1623 bool AnyDecls = false; 1624 for (; I != E; ++I) { 1625 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1626 1627 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1628 case CSFC_Failure: return CSFC_Failure; 1629 case CSFC_FallThrough: 1630 // A fallthrough result means that the statement was simple and just 1631 // included in ResultStmt, keep adding them afterwards. 1632 break; 1633 case CSFC_Success: 1634 // A successful result means that we found the break statement and 1635 // stopped statement inclusion. We just ensure that any leftover stmts 1636 // are skippable and return success ourselves. 1637 for (++I; I != E; ++I) 1638 if (CodeGenFunction::ContainsLabel(*I, true)) 1639 return CSFC_Failure; 1640 return CSFC_Success; 1641 } 1642 } 1643 1644 // If we're about to fall out of a scope without hitting a 'break;', we 1645 // can't perform the optimization if there were any decls in that scope 1646 // (we'd lose their end-of-lifetime). 1647 if (AnyDecls) { 1648 // If the entire compound statement was live, there's one more thing we 1649 // can try before giving up: emit the whole thing as a single statement. 1650 // We can do that unless the statement contains a 'break;'. 1651 // FIXME: Such a break must be at the end of a construct within this one. 1652 // We could emit this by just ignoring the BreakStmts entirely. 1653 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1654 ResultStmts.resize(StartSize); 1655 ResultStmts.push_back(S); 1656 } else { 1657 return CSFC_Failure; 1658 } 1659 } 1660 1661 return CSFC_FallThrough; 1662 } 1663 1664 // Okay, this is some other statement that we don't handle explicitly, like a 1665 // for statement or increment etc. If we are skipping over this statement, 1666 // just verify it doesn't have labels, which would make it invalid to elide. 1667 if (Case) { 1668 if (CodeGenFunction::ContainsLabel(S, true)) 1669 return CSFC_Failure; 1670 return CSFC_Success; 1671 } 1672 1673 // Otherwise, we want to include this statement. Everything is cool with that 1674 // so long as it doesn't contain a break out of the switch we're in. 1675 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1676 1677 // Otherwise, everything is great. Include the statement and tell the caller 1678 // that we fall through and include the next statement as well. 1679 ResultStmts.push_back(S); 1680 return CSFC_FallThrough; 1681 } 1682 1683 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1684 /// then invoke CollectStatementsForCase to find the list of statements to emit 1685 /// for a switch on constant. See the comment above CollectStatementsForCase 1686 /// for more details. 1687 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1688 const llvm::APSInt &ConstantCondValue, 1689 SmallVectorImpl<const Stmt*> &ResultStmts, 1690 ASTContext &C, 1691 const SwitchCase *&ResultCase) { 1692 // First step, find the switch case that is being branched to. We can do this 1693 // efficiently by scanning the SwitchCase list. 1694 const SwitchCase *Case = S.getSwitchCaseList(); 1695 const DefaultStmt *DefaultCase = nullptr; 1696 1697 for (; Case; Case = Case->getNextSwitchCase()) { 1698 // It's either a default or case. Just remember the default statement in 1699 // case we're not jumping to any numbered cases. 1700 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1701 DefaultCase = DS; 1702 continue; 1703 } 1704 1705 // Check to see if this case is the one we're looking for. 1706 const CaseStmt *CS = cast<CaseStmt>(Case); 1707 // Don't handle case ranges yet. 1708 if (CS->getRHS()) return false; 1709 1710 // If we found our case, remember it as 'case'. 1711 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1712 break; 1713 } 1714 1715 // If we didn't find a matching case, we use a default if it exists, or we 1716 // elide the whole switch body! 1717 if (!Case) { 1718 // It is safe to elide the body of the switch if it doesn't contain labels 1719 // etc. If it is safe, return successfully with an empty ResultStmts list. 1720 if (!DefaultCase) 1721 return !CodeGenFunction::ContainsLabel(&S); 1722 Case = DefaultCase; 1723 } 1724 1725 // Ok, we know which case is being jumped to, try to collect all the 1726 // statements that follow it. This can fail for a variety of reasons. Also, 1727 // check to see that the recursive walk actually found our case statement. 1728 // Insane cases like this can fail to find it in the recursive walk since we 1729 // don't handle every stmt kind: 1730 // switch (4) { 1731 // while (1) { 1732 // case 4: ... 1733 bool FoundCase = false; 1734 ResultCase = Case; 1735 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1736 ResultStmts) != CSFC_Failure && 1737 FoundCase; 1738 } 1739 1740 static Optional<SmallVector<uint64_t, 16>> 1741 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1742 // Are there enough branches to weight them? 1743 if (Likelihoods.size() <= 1) 1744 return None; 1745 1746 uint64_t NumUnlikely = 0; 1747 uint64_t NumNone = 0; 1748 uint64_t NumLikely = 0; 1749 for (const auto LH : Likelihoods) { 1750 switch (LH) { 1751 case Stmt::LH_Unlikely: 1752 ++NumUnlikely; 1753 break; 1754 case Stmt::LH_None: 1755 ++NumNone; 1756 break; 1757 case Stmt::LH_Likely: 1758 ++NumLikely; 1759 break; 1760 } 1761 } 1762 1763 // Is there a likelihood attribute used? 1764 if (NumUnlikely == 0 && NumLikely == 0) 1765 return None; 1766 1767 // When multiple cases share the same code they can be combined during 1768 // optimization. In that case the weights of the branch will be the sum of 1769 // the individual weights. Make sure the combined sum of all neutral cases 1770 // doesn't exceed the value of a single likely attribute. 1771 // The additions both avoid divisions by 0 and make sure the weights of None 1772 // don't exceed the weight of Likely. 1773 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1774 const uint64_t None = Likely / (NumNone + 1); 1775 const uint64_t Unlikely = 0; 1776 1777 SmallVector<uint64_t, 16> Result; 1778 Result.reserve(Likelihoods.size()); 1779 for (const auto LH : Likelihoods) { 1780 switch (LH) { 1781 case Stmt::LH_Unlikely: 1782 Result.push_back(Unlikely); 1783 break; 1784 case Stmt::LH_None: 1785 Result.push_back(None); 1786 break; 1787 case Stmt::LH_Likely: 1788 Result.push_back(Likely); 1789 break; 1790 } 1791 } 1792 1793 return Result; 1794 } 1795 1796 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1797 // Handle nested switch statements. 1798 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1799 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1800 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1801 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1802 1803 // See if we can constant fold the condition of the switch and therefore only 1804 // emit the live case statement (if any) of the switch. 1805 llvm::APSInt ConstantCondValue; 1806 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1807 SmallVector<const Stmt*, 4> CaseStmts; 1808 const SwitchCase *Case = nullptr; 1809 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1810 getContext(), Case)) { 1811 if (Case) 1812 incrementProfileCounter(Case); 1813 RunCleanupsScope ExecutedScope(*this); 1814 1815 if (S.getInit()) 1816 EmitStmt(S.getInit()); 1817 1818 // Emit the condition variable if needed inside the entire cleanup scope 1819 // used by this special case for constant folded switches. 1820 if (S.getConditionVariable()) 1821 EmitDecl(*S.getConditionVariable()); 1822 1823 // At this point, we are no longer "within" a switch instance, so 1824 // we can temporarily enforce this to ensure that any embedded case 1825 // statements are not emitted. 1826 SwitchInsn = nullptr; 1827 1828 // Okay, we can dead code eliminate everything except this case. Emit the 1829 // specified series of statements and we're good. 1830 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1831 EmitStmt(CaseStmts[i]); 1832 incrementProfileCounter(&S); 1833 1834 // Now we want to restore the saved switch instance so that nested 1835 // switches continue to function properly 1836 SwitchInsn = SavedSwitchInsn; 1837 1838 return; 1839 } 1840 } 1841 1842 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1843 1844 RunCleanupsScope ConditionScope(*this); 1845 1846 if (S.getInit()) 1847 EmitStmt(S.getInit()); 1848 1849 if (S.getConditionVariable()) 1850 EmitDecl(*S.getConditionVariable()); 1851 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1852 1853 // Create basic block to hold stuff that comes after switch 1854 // statement. We also need to create a default block now so that 1855 // explicit case ranges tests can have a place to jump to on 1856 // failure. 1857 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1858 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1859 if (PGO.haveRegionCounts()) { 1860 // Walk the SwitchCase list to find how many there are. 1861 uint64_t DefaultCount = 0; 1862 unsigned NumCases = 0; 1863 for (const SwitchCase *Case = S.getSwitchCaseList(); 1864 Case; 1865 Case = Case->getNextSwitchCase()) { 1866 if (isa<DefaultStmt>(Case)) 1867 DefaultCount = getProfileCount(Case); 1868 NumCases += 1; 1869 } 1870 SwitchWeights = new SmallVector<uint64_t, 16>(); 1871 SwitchWeights->reserve(NumCases); 1872 // The default needs to be first. We store the edge count, so we already 1873 // know the right weight. 1874 SwitchWeights->push_back(DefaultCount); 1875 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1876 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1877 // Initialize the default case. 1878 SwitchLikelihood->push_back(Stmt::LH_None); 1879 } 1880 1881 CaseRangeBlock = DefaultBlock; 1882 1883 // Clear the insertion point to indicate we are in unreachable code. 1884 Builder.ClearInsertionPoint(); 1885 1886 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1887 // then reuse last ContinueBlock. 1888 JumpDest OuterContinue; 1889 if (!BreakContinueStack.empty()) 1890 OuterContinue = BreakContinueStack.back().ContinueBlock; 1891 1892 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1893 1894 // Emit switch body. 1895 EmitStmt(S.getBody()); 1896 1897 BreakContinueStack.pop_back(); 1898 1899 // Update the default block in case explicit case range tests have 1900 // been chained on top. 1901 SwitchInsn->setDefaultDest(CaseRangeBlock); 1902 1903 // If a default was never emitted: 1904 if (!DefaultBlock->getParent()) { 1905 // If we have cleanups, emit the default block so that there's a 1906 // place to jump through the cleanups from. 1907 if (ConditionScope.requiresCleanups()) { 1908 EmitBlock(DefaultBlock); 1909 1910 // Otherwise, just forward the default block to the switch end. 1911 } else { 1912 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1913 delete DefaultBlock; 1914 } 1915 } 1916 1917 ConditionScope.ForceCleanup(); 1918 1919 // Emit continuation. 1920 EmitBlock(SwitchExit.getBlock(), true); 1921 incrementProfileCounter(&S); 1922 1923 // If the switch has a condition wrapped by __builtin_unpredictable, 1924 // create metadata that specifies that the switch is unpredictable. 1925 // Don't bother if not optimizing because that metadata would not be used. 1926 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1927 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1928 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1929 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1930 llvm::MDBuilder MDHelper(getLLVMContext()); 1931 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1932 MDHelper.createUnpredictable()); 1933 } 1934 } 1935 1936 if (SwitchWeights) { 1937 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1938 "switch weights do not match switch cases"); 1939 // If there's only one jump destination there's no sense weighting it. 1940 if (SwitchWeights->size() > 1) 1941 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1942 createProfileWeights(*SwitchWeights)); 1943 delete SwitchWeights; 1944 } else if (SwitchLikelihood) { 1945 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 1946 "switch likelihoods do not match switch cases"); 1947 Optional<SmallVector<uint64_t, 16>> LHW = 1948 getLikelihoodWeights(*SwitchLikelihood); 1949 if (LHW) { 1950 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 1951 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1952 createProfileWeights(*LHW)); 1953 } 1954 delete SwitchLikelihood; 1955 } 1956 SwitchInsn = SavedSwitchInsn; 1957 SwitchWeights = SavedSwitchWeights; 1958 SwitchLikelihood = SavedSwitchLikelihood; 1959 CaseRangeBlock = SavedCRBlock; 1960 } 1961 1962 static std::string 1963 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1964 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1965 std::string Result; 1966 1967 while (*Constraint) { 1968 switch (*Constraint) { 1969 default: 1970 Result += Target.convertConstraint(Constraint); 1971 break; 1972 // Ignore these 1973 case '*': 1974 case '?': 1975 case '!': 1976 case '=': // Will see this and the following in mult-alt constraints. 1977 case '+': 1978 break; 1979 case '#': // Ignore the rest of the constraint alternative. 1980 while (Constraint[1] && Constraint[1] != ',') 1981 Constraint++; 1982 break; 1983 case '&': 1984 case '%': 1985 Result += *Constraint; 1986 while (Constraint[1] && Constraint[1] == *Constraint) 1987 Constraint++; 1988 break; 1989 case ',': 1990 Result += "|"; 1991 break; 1992 case 'g': 1993 Result += "imr"; 1994 break; 1995 case '[': { 1996 assert(OutCons && 1997 "Must pass output names to constraints with a symbolic name"); 1998 unsigned Index; 1999 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2000 assert(result && "Could not resolve symbolic name"); (void)result; 2001 Result += llvm::utostr(Index); 2002 break; 2003 } 2004 } 2005 2006 Constraint++; 2007 } 2008 2009 return Result; 2010 } 2011 2012 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2013 /// as using a particular register add that as a constraint that will be used 2014 /// in this asm stmt. 2015 static std::string 2016 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2017 const TargetInfo &Target, CodeGenModule &CGM, 2018 const AsmStmt &Stmt, const bool EarlyClobber, 2019 std::string *GCCReg = nullptr) { 2020 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2021 if (!AsmDeclRef) 2022 return Constraint; 2023 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2024 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2025 if (!Variable) 2026 return Constraint; 2027 if (Variable->getStorageClass() != SC_Register) 2028 return Constraint; 2029 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2030 if (!Attr) 2031 return Constraint; 2032 StringRef Register = Attr->getLabel(); 2033 assert(Target.isValidGCCRegisterName(Register)); 2034 // We're using validateOutputConstraint here because we only care if 2035 // this is a register constraint. 2036 TargetInfo::ConstraintInfo Info(Constraint, ""); 2037 if (Target.validateOutputConstraint(Info) && 2038 !Info.allowsRegister()) { 2039 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2040 return Constraint; 2041 } 2042 // Canonicalize the register here before returning it. 2043 Register = Target.getNormalizedGCCRegisterName(Register); 2044 if (GCCReg != nullptr) 2045 *GCCReg = Register.str(); 2046 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2047 } 2048 2049 llvm::Value* 2050 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2051 LValue InputValue, QualType InputType, 2052 std::string &ConstraintStr, 2053 SourceLocation Loc) { 2054 llvm::Value *Arg; 2055 if (Info.allowsRegister() || !Info.allowsMemory()) { 2056 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2057 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2058 } else { 2059 llvm::Type *Ty = ConvertType(InputType); 2060 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2061 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 2062 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2063 Ty = llvm::PointerType::getUnqual(Ty); 2064 2065 Arg = Builder.CreateLoad( 2066 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2067 } else { 2068 Arg = InputValue.getPointer(*this); 2069 ConstraintStr += '*'; 2070 } 2071 } 2072 } else { 2073 Arg = InputValue.getPointer(*this); 2074 ConstraintStr += '*'; 2075 } 2076 2077 return Arg; 2078 } 2079 2080 llvm::Value* CodeGenFunction::EmitAsmInput( 2081 const TargetInfo::ConstraintInfo &Info, 2082 const Expr *InputExpr, 2083 std::string &ConstraintStr) { 2084 // If this can't be a register or memory, i.e., has to be a constant 2085 // (immediate or symbolic), try to emit it as such. 2086 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2087 if (Info.requiresImmediateConstant()) { 2088 Expr::EvalResult EVResult; 2089 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2090 2091 llvm::APSInt IntResult; 2092 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2093 getContext())) 2094 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2095 } 2096 2097 Expr::EvalResult Result; 2098 if (InputExpr->EvaluateAsInt(Result, getContext())) 2099 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2100 } 2101 2102 if (Info.allowsRegister() || !Info.allowsMemory()) 2103 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2104 return EmitScalarExpr(InputExpr); 2105 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2106 return EmitScalarExpr(InputExpr); 2107 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2108 LValue Dest = EmitLValue(InputExpr); 2109 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2110 InputExpr->getExprLoc()); 2111 } 2112 2113 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2114 /// asm call instruction. The !srcloc MDNode contains a list of constant 2115 /// integers which are the source locations of the start of each line in the 2116 /// asm. 2117 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2118 CodeGenFunction &CGF) { 2119 SmallVector<llvm::Metadata *, 8> Locs; 2120 // Add the location of the first line to the MDNode. 2121 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2122 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 2123 StringRef StrVal = Str->getString(); 2124 if (!StrVal.empty()) { 2125 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2126 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2127 unsigned StartToken = 0; 2128 unsigned ByteOffset = 0; 2129 2130 // Add the location of the start of each subsequent line of the asm to the 2131 // MDNode. 2132 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2133 if (StrVal[i] != '\n') continue; 2134 SourceLocation LineLoc = Str->getLocationOfByte( 2135 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2136 Locs.push_back(llvm::ConstantAsMetadata::get( 2137 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 2138 } 2139 } 2140 2141 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2142 } 2143 2144 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2145 bool ReadOnly, bool ReadNone, bool NoMerge, 2146 const AsmStmt &S, 2147 const std::vector<llvm::Type *> &ResultRegTypes, 2148 CodeGenFunction &CGF, 2149 std::vector<llvm::Value *> &RegResults) { 2150 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2151 llvm::Attribute::NoUnwind); 2152 if (NoMerge) 2153 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2154 llvm::Attribute::NoMerge); 2155 // Attach readnone and readonly attributes. 2156 if (!HasSideEffect) { 2157 if (ReadNone) 2158 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2159 llvm::Attribute::ReadNone); 2160 else if (ReadOnly) 2161 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2162 llvm::Attribute::ReadOnly); 2163 } 2164 2165 // Slap the source location of the inline asm into a !srcloc metadata on the 2166 // call. 2167 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2168 Result.setMetadata("srcloc", 2169 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2170 else { 2171 // At least put the line number on MS inline asm blobs. 2172 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 2173 S.getAsmLoc().getRawEncoding()); 2174 Result.setMetadata("srcloc", 2175 llvm::MDNode::get(CGF.getLLVMContext(), 2176 llvm::ConstantAsMetadata::get(Loc))); 2177 } 2178 2179 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2180 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2181 // convergent (meaning, they may call an intrinsically convergent op, such 2182 // as bar.sync, and so can't have certain optimizations applied around 2183 // them). 2184 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2185 llvm::Attribute::Convergent); 2186 // Extract all of the register value results from the asm. 2187 if (ResultRegTypes.size() == 1) { 2188 RegResults.push_back(&Result); 2189 } else { 2190 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2191 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2192 RegResults.push_back(Tmp); 2193 } 2194 } 2195 } 2196 2197 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2198 // Assemble the final asm string. 2199 std::string AsmString = S.generateAsmString(getContext()); 2200 2201 // Get all the output and input constraints together. 2202 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2203 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2204 2205 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2206 StringRef Name; 2207 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2208 Name = GAS->getOutputName(i); 2209 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2210 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2211 assert(IsValid && "Failed to parse output constraint"); 2212 OutputConstraintInfos.push_back(Info); 2213 } 2214 2215 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2216 StringRef Name; 2217 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2218 Name = GAS->getInputName(i); 2219 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2220 bool IsValid = 2221 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2222 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2223 InputConstraintInfos.push_back(Info); 2224 } 2225 2226 std::string Constraints; 2227 2228 std::vector<LValue> ResultRegDests; 2229 std::vector<QualType> ResultRegQualTys; 2230 std::vector<llvm::Type *> ResultRegTypes; 2231 std::vector<llvm::Type *> ResultTruncRegTypes; 2232 std::vector<llvm::Type *> ArgTypes; 2233 std::vector<llvm::Value*> Args; 2234 llvm::BitVector ResultTypeRequiresCast; 2235 2236 // Keep track of inout constraints. 2237 std::string InOutConstraints; 2238 std::vector<llvm::Value*> InOutArgs; 2239 std::vector<llvm::Type*> InOutArgTypes; 2240 2241 // Keep track of out constraints for tied input operand. 2242 std::vector<std::string> OutputConstraints; 2243 2244 // Keep track of defined physregs. 2245 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2246 2247 // An inline asm can be marked readonly if it meets the following conditions: 2248 // - it doesn't have any sideeffects 2249 // - it doesn't clobber memory 2250 // - it doesn't return a value by-reference 2251 // It can be marked readnone if it doesn't have any input memory constraints 2252 // in addition to meeting the conditions listed above. 2253 bool ReadOnly = true, ReadNone = true; 2254 2255 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2256 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2257 2258 // Simplify the output constraint. 2259 std::string OutputConstraint(S.getOutputConstraint(i)); 2260 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2261 getTarget(), &OutputConstraintInfos); 2262 2263 const Expr *OutExpr = S.getOutputExpr(i); 2264 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2265 2266 std::string GCCReg; 2267 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2268 getTarget(), CGM, S, 2269 Info.earlyClobber(), 2270 &GCCReg); 2271 // Give an error on multiple outputs to same physreg. 2272 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2273 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2274 2275 OutputConstraints.push_back(OutputConstraint); 2276 LValue Dest = EmitLValue(OutExpr); 2277 if (!Constraints.empty()) 2278 Constraints += ','; 2279 2280 // If this is a register output, then make the inline asm return it 2281 // by-value. If this is a memory result, return the value by-reference. 2282 bool isScalarizableAggregate = 2283 hasAggregateEvaluationKind(OutExpr->getType()); 2284 if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) || 2285 isScalarizableAggregate)) { 2286 Constraints += "=" + OutputConstraint; 2287 ResultRegQualTys.push_back(OutExpr->getType()); 2288 ResultRegDests.push_back(Dest); 2289 ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2290 if (Info.allowsRegister() && isScalarizableAggregate) { 2291 ResultTypeRequiresCast.push_back(true); 2292 unsigned Size = getContext().getTypeSize(OutExpr->getType()); 2293 llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size); 2294 ResultRegTypes.push_back(ConvTy); 2295 } else { 2296 ResultTypeRequiresCast.push_back(false); 2297 ResultRegTypes.push_back(ResultTruncRegTypes.back()); 2298 } 2299 // If this output is tied to an input, and if the input is larger, then 2300 // we need to set the actual result type of the inline asm node to be the 2301 // same as the input type. 2302 if (Info.hasMatchingInput()) { 2303 unsigned InputNo; 2304 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2305 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2306 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2307 break; 2308 } 2309 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2310 2311 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2312 QualType OutputType = OutExpr->getType(); 2313 2314 uint64_t InputSize = getContext().getTypeSize(InputTy); 2315 if (getContext().getTypeSize(OutputType) < InputSize) { 2316 // Form the asm to return the value as a larger integer or fp type. 2317 ResultRegTypes.back() = ConvertType(InputTy); 2318 } 2319 } 2320 if (llvm::Type* AdjTy = 2321 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2322 ResultRegTypes.back())) 2323 ResultRegTypes.back() = AdjTy; 2324 else { 2325 CGM.getDiags().Report(S.getAsmLoc(), 2326 diag::err_asm_invalid_type_in_input) 2327 << OutExpr->getType() << OutputConstraint; 2328 } 2329 2330 // Update largest vector width for any vector types. 2331 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2332 LargestVectorWidth = 2333 std::max((uint64_t)LargestVectorWidth, 2334 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2335 } else { 2336 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2337 llvm::Value *DestPtr = Dest.getPointer(*this); 2338 // Matrix types in memory are represented by arrays, but accessed through 2339 // vector pointers, with the alignment specified on the access operation. 2340 // For inline assembly, update pointer arguments to use vector pointers. 2341 // Otherwise there will be a mis-match if the matrix is also an 2342 // input-argument which is represented as vector. 2343 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2344 DestAddrTy = llvm::PointerType::get( 2345 ConvertType(OutExpr->getType()), 2346 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2347 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2348 } 2349 ArgTypes.push_back(DestAddrTy); 2350 Args.push_back(DestPtr); 2351 Constraints += "=*"; 2352 Constraints += OutputConstraint; 2353 ReadOnly = ReadNone = false; 2354 } 2355 2356 if (Info.isReadWrite()) { 2357 InOutConstraints += ','; 2358 2359 const Expr *InputExpr = S.getOutputExpr(i); 2360 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2361 InOutConstraints, 2362 InputExpr->getExprLoc()); 2363 2364 if (llvm::Type* AdjTy = 2365 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2366 Arg->getType())) 2367 Arg = Builder.CreateBitCast(Arg, AdjTy); 2368 2369 // Update largest vector width for any vector types. 2370 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2371 LargestVectorWidth = 2372 std::max((uint64_t)LargestVectorWidth, 2373 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2374 // Only tie earlyclobber physregs. 2375 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2376 InOutConstraints += llvm::utostr(i); 2377 else 2378 InOutConstraints += OutputConstraint; 2379 2380 InOutArgTypes.push_back(Arg->getType()); 2381 InOutArgs.push_back(Arg); 2382 } 2383 } 2384 2385 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2386 // to the return value slot. Only do this when returning in registers. 2387 if (isa<MSAsmStmt>(&S)) { 2388 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2389 if (RetAI.isDirect() || RetAI.isExtend()) { 2390 // Make a fake lvalue for the return value slot. 2391 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2392 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2393 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2394 ResultRegDests, AsmString, S.getNumOutputs()); 2395 SawAsmBlock = true; 2396 } 2397 } 2398 2399 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2400 const Expr *InputExpr = S.getInputExpr(i); 2401 2402 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2403 2404 if (Info.allowsMemory()) 2405 ReadNone = false; 2406 2407 if (!Constraints.empty()) 2408 Constraints += ','; 2409 2410 // Simplify the input constraint. 2411 std::string InputConstraint(S.getInputConstraint(i)); 2412 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2413 &OutputConstraintInfos); 2414 2415 InputConstraint = AddVariableConstraints( 2416 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2417 getTarget(), CGM, S, false /* No EarlyClobber */); 2418 2419 std::string ReplaceConstraint (InputConstraint); 2420 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2421 2422 // If this input argument is tied to a larger output result, extend the 2423 // input to be the same size as the output. The LLVM backend wants to see 2424 // the input and output of a matching constraint be the same size. Note 2425 // that GCC does not define what the top bits are here. We use zext because 2426 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2427 if (Info.hasTiedOperand()) { 2428 unsigned Output = Info.getTiedOperand(); 2429 QualType OutputType = S.getOutputExpr(Output)->getType(); 2430 QualType InputTy = InputExpr->getType(); 2431 2432 if (getContext().getTypeSize(OutputType) > 2433 getContext().getTypeSize(InputTy)) { 2434 // Use ptrtoint as appropriate so that we can do our extension. 2435 if (isa<llvm::PointerType>(Arg->getType())) 2436 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2437 llvm::Type *OutputTy = ConvertType(OutputType); 2438 if (isa<llvm::IntegerType>(OutputTy)) 2439 Arg = Builder.CreateZExt(Arg, OutputTy); 2440 else if (isa<llvm::PointerType>(OutputTy)) 2441 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2442 else { 2443 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2444 Arg = Builder.CreateFPExt(Arg, OutputTy); 2445 } 2446 } 2447 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2448 ReplaceConstraint = OutputConstraints[Output]; 2449 } 2450 if (llvm::Type* AdjTy = 2451 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2452 Arg->getType())) 2453 Arg = Builder.CreateBitCast(Arg, AdjTy); 2454 else 2455 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2456 << InputExpr->getType() << InputConstraint; 2457 2458 // Update largest vector width for any vector types. 2459 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2460 LargestVectorWidth = 2461 std::max((uint64_t)LargestVectorWidth, 2462 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2463 2464 ArgTypes.push_back(Arg->getType()); 2465 Args.push_back(Arg); 2466 Constraints += InputConstraint; 2467 } 2468 2469 // Labels 2470 SmallVector<llvm::BasicBlock *, 16> Transfer; 2471 llvm::BasicBlock *Fallthrough = nullptr; 2472 bool IsGCCAsmGoto = false; 2473 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2474 IsGCCAsmGoto = GS->isAsmGoto(); 2475 if (IsGCCAsmGoto) { 2476 for (const auto *E : GS->labels()) { 2477 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2478 Transfer.push_back(Dest.getBlock()); 2479 llvm::BlockAddress *BA = 2480 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2481 Args.push_back(BA); 2482 ArgTypes.push_back(BA->getType()); 2483 if (!Constraints.empty()) 2484 Constraints += ','; 2485 Constraints += 'X'; 2486 } 2487 Fallthrough = createBasicBlock("asm.fallthrough"); 2488 } 2489 } 2490 2491 // Append the "input" part of inout constraints last. 2492 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2493 ArgTypes.push_back(InOutArgTypes[i]); 2494 Args.push_back(InOutArgs[i]); 2495 } 2496 Constraints += InOutConstraints; 2497 2498 // Clobbers 2499 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2500 StringRef Clobber = S.getClobber(i); 2501 2502 if (Clobber == "memory") 2503 ReadOnly = ReadNone = false; 2504 else if (Clobber != "cc") { 2505 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2506 if (CGM.getCodeGenOpts().StackClashProtector && 2507 getTarget().isSPRegName(Clobber)) { 2508 CGM.getDiags().Report(S.getAsmLoc(), 2509 diag::warn_stack_clash_protection_inline_asm); 2510 } 2511 } 2512 2513 if (isa<MSAsmStmt>(&S)) { 2514 if (Clobber == "eax" || Clobber == "edx") { 2515 if (Constraints.find("=&A") != std::string::npos) 2516 continue; 2517 std::string::size_type position1 = 2518 Constraints.find("={" + Clobber.str() + "}"); 2519 if (position1 != std::string::npos) { 2520 Constraints.insert(position1 + 1, "&"); 2521 continue; 2522 } 2523 std::string::size_type position2 = Constraints.find("=A"); 2524 if (position2 != std::string::npos) { 2525 Constraints.insert(position2 + 1, "&"); 2526 continue; 2527 } 2528 } 2529 } 2530 if (!Constraints.empty()) 2531 Constraints += ','; 2532 2533 Constraints += "~{"; 2534 Constraints += Clobber; 2535 Constraints += '}'; 2536 } 2537 2538 // Add machine specific clobbers 2539 std::string MachineClobbers = getTarget().getClobbers(); 2540 if (!MachineClobbers.empty()) { 2541 if (!Constraints.empty()) 2542 Constraints += ','; 2543 Constraints += MachineClobbers; 2544 } 2545 2546 llvm::Type *ResultType; 2547 if (ResultRegTypes.empty()) 2548 ResultType = VoidTy; 2549 else if (ResultRegTypes.size() == 1) 2550 ResultType = ResultRegTypes[0]; 2551 else 2552 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2553 2554 llvm::FunctionType *FTy = 2555 llvm::FunctionType::get(ResultType, ArgTypes, false); 2556 2557 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2558 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2559 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2560 llvm::InlineAsm *IA = 2561 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2562 /* IsAlignStack */ false, AsmDialect); 2563 std::vector<llvm::Value*> RegResults; 2564 if (IsGCCAsmGoto) { 2565 llvm::CallBrInst *Result = 2566 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2567 EmitBlock(Fallthrough); 2568 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2569 ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes, 2570 *this, RegResults); 2571 } else { 2572 llvm::CallInst *Result = 2573 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2574 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2575 ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes, 2576 *this, RegResults); 2577 } 2578 2579 assert(RegResults.size() == ResultRegTypes.size()); 2580 assert(RegResults.size() == ResultTruncRegTypes.size()); 2581 assert(RegResults.size() == ResultRegDests.size()); 2582 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2583 // in which case its size may grow. 2584 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2585 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2586 llvm::Value *Tmp = RegResults[i]; 2587 2588 // If the result type of the LLVM IR asm doesn't match the result type of 2589 // the expression, do the conversion. 2590 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2591 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2592 2593 // Truncate the integer result to the right size, note that TruncTy can be 2594 // a pointer. 2595 if (TruncTy->isFloatingPointTy()) 2596 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2597 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2598 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2599 Tmp = Builder.CreateTrunc(Tmp, 2600 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2601 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2602 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2603 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2604 Tmp = Builder.CreatePtrToInt(Tmp, 2605 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2606 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2607 } else if (TruncTy->isIntegerTy()) { 2608 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2609 } else if (TruncTy->isVectorTy()) { 2610 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2611 } 2612 } 2613 2614 LValue Dest = ResultRegDests[i]; 2615 // ResultTypeRequiresCast elements correspond to the first 2616 // ResultTypeRequiresCast.size() elements of RegResults. 2617 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2618 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2619 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2620 ResultRegTypes[i]->getPointerTo()); 2621 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2622 if (Ty.isNull()) { 2623 const Expr *OutExpr = S.getOutputExpr(i); 2624 CGM.Error( 2625 OutExpr->getExprLoc(), 2626 "impossible constraint in asm: can't store value into a register"); 2627 return; 2628 } 2629 Dest = MakeAddrLValue(A, Ty); 2630 } 2631 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2632 } 2633 } 2634 2635 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2636 const RecordDecl *RD = S.getCapturedRecordDecl(); 2637 QualType RecordTy = getContext().getRecordType(RD); 2638 2639 // Initialize the captured struct. 2640 LValue SlotLV = 2641 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2642 2643 RecordDecl::field_iterator CurField = RD->field_begin(); 2644 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2645 E = S.capture_init_end(); 2646 I != E; ++I, ++CurField) { 2647 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2648 if (CurField->hasCapturedVLAType()) { 2649 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2650 } else { 2651 EmitInitializerForField(*CurField, LV, *I); 2652 } 2653 } 2654 2655 return SlotLV; 2656 } 2657 2658 /// Generate an outlined function for the body of a CapturedStmt, store any 2659 /// captured variables into the captured struct, and call the outlined function. 2660 llvm::Function * 2661 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2662 LValue CapStruct = InitCapturedStruct(S); 2663 2664 // Emit the CapturedDecl 2665 CodeGenFunction CGF(CGM, true); 2666 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2667 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2668 delete CGF.CapturedStmtInfo; 2669 2670 // Emit call to the helper function. 2671 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2672 2673 return F; 2674 } 2675 2676 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2677 LValue CapStruct = InitCapturedStruct(S); 2678 return CapStruct.getAddress(*this); 2679 } 2680 2681 /// Creates the outlined function for a CapturedStmt. 2682 llvm::Function * 2683 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2684 assert(CapturedStmtInfo && 2685 "CapturedStmtInfo should be set when generating the captured function"); 2686 const CapturedDecl *CD = S.getCapturedDecl(); 2687 const RecordDecl *RD = S.getCapturedRecordDecl(); 2688 SourceLocation Loc = S.getBeginLoc(); 2689 assert(CD->hasBody() && "missing CapturedDecl body"); 2690 2691 // Build the argument list. 2692 ASTContext &Ctx = CGM.getContext(); 2693 FunctionArgList Args; 2694 Args.append(CD->param_begin(), CD->param_end()); 2695 2696 // Create the function declaration. 2697 const CGFunctionInfo &FuncInfo = 2698 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2699 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2700 2701 llvm::Function *F = 2702 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2703 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2704 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2705 if (CD->isNothrow()) 2706 F->addFnAttr(llvm::Attribute::NoUnwind); 2707 2708 // Generate the function. 2709 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2710 CD->getBody()->getBeginLoc()); 2711 // Set the context parameter in CapturedStmtInfo. 2712 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2713 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2714 2715 // Initialize variable-length arrays. 2716 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2717 Ctx.getTagDeclType(RD)); 2718 for (auto *FD : RD->fields()) { 2719 if (FD->hasCapturedVLAType()) { 2720 auto *ExprArg = 2721 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2722 .getScalarVal(); 2723 auto VAT = FD->getCapturedVLAType(); 2724 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2725 } 2726 } 2727 2728 // If 'this' is captured, load it into CXXThisValue. 2729 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2730 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2731 LValue ThisLValue = EmitLValueForField(Base, FD); 2732 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2733 } 2734 2735 PGO.assignRegionCounters(GlobalDecl(CD), F); 2736 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2737 FinishFunction(CD->getBodyRBrace()); 2738 2739 return F; 2740 } 2741