1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 78 // enabled. 79 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 80 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 81 EmitSimpleOMPExecutableDirective(*D); 82 return; 83 } 84 } 85 86 switch (S->getStmtClass()) { 87 case Stmt::NoStmtClass: 88 case Stmt::CXXCatchStmtClass: 89 case Stmt::SEHExceptStmtClass: 90 case Stmt::SEHFinallyStmtClass: 91 case Stmt::MSDependentExistsStmtClass: 92 llvm_unreachable("invalid statement class to emit generically"); 93 case Stmt::NullStmtClass: 94 case Stmt::CompoundStmtClass: 95 case Stmt::DeclStmtClass: 96 case Stmt::LabelStmtClass: 97 case Stmt::AttributedStmtClass: 98 case Stmt::GotoStmtClass: 99 case Stmt::BreakStmtClass: 100 case Stmt::ContinueStmtClass: 101 case Stmt::DefaultStmtClass: 102 case Stmt::CaseStmtClass: 103 case Stmt::SEHLeaveStmtClass: 104 llvm_unreachable("should have emitted these statements as simple"); 105 106 #define STMT(Type, Base) 107 #define ABSTRACT_STMT(Op) 108 #define EXPR(Type, Base) \ 109 case Stmt::Type##Class: 110 #include "clang/AST/StmtNodes.inc" 111 { 112 // Remember the block we came in on. 113 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 114 assert(incoming && "expression emission must have an insertion point"); 115 116 EmitIgnoredExpr(cast<Expr>(S)); 117 118 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 119 assert(outgoing && "expression emission cleared block!"); 120 121 // The expression emitters assume (reasonably!) that the insertion 122 // point is always set. To maintain that, the call-emission code 123 // for noreturn functions has to enter a new block with no 124 // predecessors. We want to kill that block and mark the current 125 // insertion point unreachable in the common case of a call like 126 // "exit();". Since expression emission doesn't otherwise create 127 // blocks with no predecessors, we can just test for that. 128 // However, we must be careful not to do this to our incoming 129 // block, because *statement* emission does sometimes create 130 // reachable blocks which will have no predecessors until later in 131 // the function. This occurs with, e.g., labels that are not 132 // reachable by fallthrough. 133 if (incoming != outgoing && outgoing->use_empty()) { 134 outgoing->eraseFromParent(); 135 Builder.ClearInsertionPoint(); 136 } 137 break; 138 } 139 140 case Stmt::IndirectGotoStmtClass: 141 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 142 143 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 144 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 145 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 146 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 147 148 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 149 150 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 151 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 152 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 153 case Stmt::CoroutineBodyStmtClass: 154 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 155 break; 156 case Stmt::CoreturnStmtClass: 157 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 158 break; 159 case Stmt::CapturedStmtClass: { 160 const CapturedStmt *CS = cast<CapturedStmt>(S); 161 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 162 } 163 break; 164 case Stmt::ObjCAtTryStmtClass: 165 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 166 break; 167 case Stmt::ObjCAtCatchStmtClass: 168 llvm_unreachable( 169 "@catch statements should be handled by EmitObjCAtTryStmt"); 170 case Stmt::ObjCAtFinallyStmtClass: 171 llvm_unreachable( 172 "@finally statements should be handled by EmitObjCAtTryStmt"); 173 case Stmt::ObjCAtThrowStmtClass: 174 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 175 break; 176 case Stmt::ObjCAtSynchronizedStmtClass: 177 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 178 break; 179 case Stmt::ObjCForCollectionStmtClass: 180 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 181 break; 182 case Stmt::ObjCAutoreleasePoolStmtClass: 183 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 184 break; 185 186 case Stmt::CXXTryStmtClass: 187 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 188 break; 189 case Stmt::CXXForRangeStmtClass: 190 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 191 break; 192 case Stmt::SEHTryStmtClass: 193 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 194 break; 195 case Stmt::OMPParallelDirectiveClass: 196 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 197 break; 198 case Stmt::OMPSimdDirectiveClass: 199 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 200 break; 201 case Stmt::OMPForDirectiveClass: 202 EmitOMPForDirective(cast<OMPForDirective>(*S)); 203 break; 204 case Stmt::OMPForSimdDirectiveClass: 205 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 206 break; 207 case Stmt::OMPSectionsDirectiveClass: 208 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 209 break; 210 case Stmt::OMPSectionDirectiveClass: 211 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 212 break; 213 case Stmt::OMPSingleDirectiveClass: 214 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 215 break; 216 case Stmt::OMPMasterDirectiveClass: 217 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 218 break; 219 case Stmt::OMPCriticalDirectiveClass: 220 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 221 break; 222 case Stmt::OMPParallelForDirectiveClass: 223 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 224 break; 225 case Stmt::OMPParallelForSimdDirectiveClass: 226 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 227 break; 228 case Stmt::OMPParallelSectionsDirectiveClass: 229 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 230 break; 231 case Stmt::OMPTaskDirectiveClass: 232 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 233 break; 234 case Stmt::OMPTaskyieldDirectiveClass: 235 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 236 break; 237 case Stmt::OMPBarrierDirectiveClass: 238 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 239 break; 240 case Stmt::OMPTaskwaitDirectiveClass: 241 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 242 break; 243 case Stmt::OMPTaskgroupDirectiveClass: 244 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 245 break; 246 case Stmt::OMPFlushDirectiveClass: 247 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 248 break; 249 case Stmt::OMPOrderedDirectiveClass: 250 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 251 break; 252 case Stmt::OMPAtomicDirectiveClass: 253 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 254 break; 255 case Stmt::OMPTargetDirectiveClass: 256 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 257 break; 258 case Stmt::OMPTeamsDirectiveClass: 259 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 260 break; 261 case Stmt::OMPCancellationPointDirectiveClass: 262 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 263 break; 264 case Stmt::OMPCancelDirectiveClass: 265 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 266 break; 267 case Stmt::OMPTargetDataDirectiveClass: 268 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 269 break; 270 case Stmt::OMPTargetEnterDataDirectiveClass: 271 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 272 break; 273 case Stmt::OMPTargetExitDataDirectiveClass: 274 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 275 break; 276 case Stmt::OMPTargetParallelDirectiveClass: 277 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 278 break; 279 case Stmt::OMPTargetParallelForDirectiveClass: 280 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 281 break; 282 case Stmt::OMPTaskLoopDirectiveClass: 283 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 284 break; 285 case Stmt::OMPTaskLoopSimdDirectiveClass: 286 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 287 break; 288 case Stmt::OMPDistributeDirectiveClass: 289 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 290 break; 291 case Stmt::OMPTargetUpdateDirectiveClass: 292 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 293 break; 294 case Stmt::OMPDistributeParallelForDirectiveClass: 295 EmitOMPDistributeParallelForDirective( 296 cast<OMPDistributeParallelForDirective>(*S)); 297 break; 298 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 299 EmitOMPDistributeParallelForSimdDirective( 300 cast<OMPDistributeParallelForSimdDirective>(*S)); 301 break; 302 case Stmt::OMPDistributeSimdDirectiveClass: 303 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 304 break; 305 case Stmt::OMPTargetParallelForSimdDirectiveClass: 306 EmitOMPTargetParallelForSimdDirective( 307 cast<OMPTargetParallelForSimdDirective>(*S)); 308 break; 309 case Stmt::OMPTargetSimdDirectiveClass: 310 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 311 break; 312 case Stmt::OMPTeamsDistributeDirectiveClass: 313 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 314 break; 315 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 316 EmitOMPTeamsDistributeSimdDirective( 317 cast<OMPTeamsDistributeSimdDirective>(*S)); 318 break; 319 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 320 EmitOMPTeamsDistributeParallelForSimdDirective( 321 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 322 break; 323 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 324 EmitOMPTeamsDistributeParallelForDirective( 325 cast<OMPTeamsDistributeParallelForDirective>(*S)); 326 break; 327 case Stmt::OMPTargetTeamsDirectiveClass: 328 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 329 break; 330 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 331 EmitOMPTargetTeamsDistributeDirective( 332 cast<OMPTargetTeamsDistributeDirective>(*S)); 333 break; 334 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 335 EmitOMPTargetTeamsDistributeParallelForDirective( 336 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 337 break; 338 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 339 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 340 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 341 break; 342 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 343 EmitOMPTargetTeamsDistributeSimdDirective( 344 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 345 break; 346 } 347 } 348 349 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 350 switch (S->getStmtClass()) { 351 default: return false; 352 case Stmt::NullStmtClass: break; 353 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 354 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 355 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 356 case Stmt::AttributedStmtClass: 357 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 358 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 359 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 360 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 361 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 362 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 363 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 364 } 365 366 return true; 367 } 368 369 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 370 /// this captures the expression result of the last sub-statement and returns it 371 /// (for use by the statement expression extension). 372 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 373 AggValueSlot AggSlot) { 374 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 375 "LLVM IR generation of compound statement ('{}')"); 376 377 // Keep track of the current cleanup stack depth, including debug scopes. 378 LexicalScope Scope(*this, S.getSourceRange()); 379 380 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 381 } 382 383 Address 384 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 385 bool GetLast, 386 AggValueSlot AggSlot) { 387 388 for (CompoundStmt::const_body_iterator I = S.body_begin(), 389 E = S.body_end()-GetLast; I != E; ++I) 390 EmitStmt(*I); 391 392 Address RetAlloca = Address::invalid(); 393 if (GetLast) { 394 // We have to special case labels here. They are statements, but when put 395 // at the end of a statement expression, they yield the value of their 396 // subexpression. Handle this by walking through all labels we encounter, 397 // emitting them before we evaluate the subexpr. 398 const Stmt *LastStmt = S.body_back(); 399 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 400 EmitLabel(LS->getDecl()); 401 LastStmt = LS->getSubStmt(); 402 } 403 404 EnsureInsertPoint(); 405 406 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 407 if (hasAggregateEvaluationKind(ExprTy)) { 408 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 409 } else { 410 // We can't return an RValue here because there might be cleanups at 411 // the end of the StmtExpr. Because of that, we have to emit the result 412 // here into a temporary alloca. 413 RetAlloca = CreateMemTemp(ExprTy); 414 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 415 /*IsInit*/false); 416 } 417 418 } 419 420 return RetAlloca; 421 } 422 423 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 424 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 425 426 // If there is a cleanup stack, then we it isn't worth trying to 427 // simplify this block (we would need to remove it from the scope map 428 // and cleanup entry). 429 if (!EHStack.empty()) 430 return; 431 432 // Can only simplify direct branches. 433 if (!BI || !BI->isUnconditional()) 434 return; 435 436 // Can only simplify empty blocks. 437 if (BI->getIterator() != BB->begin()) 438 return; 439 440 BB->replaceAllUsesWith(BI->getSuccessor(0)); 441 BI->eraseFromParent(); 442 BB->eraseFromParent(); 443 } 444 445 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 446 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 447 448 // Fall out of the current block (if necessary). 449 EmitBranch(BB); 450 451 if (IsFinished && BB->use_empty()) { 452 delete BB; 453 return; 454 } 455 456 // Place the block after the current block, if possible, or else at 457 // the end of the function. 458 if (CurBB && CurBB->getParent()) 459 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 460 else 461 CurFn->getBasicBlockList().push_back(BB); 462 Builder.SetInsertPoint(BB); 463 } 464 465 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 466 // Emit a branch from the current block to the target one if this 467 // was a real block. If this was just a fall-through block after a 468 // terminator, don't emit it. 469 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 470 471 if (!CurBB || CurBB->getTerminator()) { 472 // If there is no insert point or the previous block is already 473 // terminated, don't touch it. 474 } else { 475 // Otherwise, create a fall-through branch. 476 Builder.CreateBr(Target); 477 } 478 479 Builder.ClearInsertionPoint(); 480 } 481 482 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 483 bool inserted = false; 484 for (llvm::User *u : block->users()) { 485 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 486 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 487 block); 488 inserted = true; 489 break; 490 } 491 } 492 493 if (!inserted) 494 CurFn->getBasicBlockList().push_back(block); 495 496 Builder.SetInsertPoint(block); 497 } 498 499 CodeGenFunction::JumpDest 500 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 501 JumpDest &Dest = LabelMap[D]; 502 if (Dest.isValid()) return Dest; 503 504 // Create, but don't insert, the new block. 505 Dest = JumpDest(createBasicBlock(D->getName()), 506 EHScopeStack::stable_iterator::invalid(), 507 NextCleanupDestIndex++); 508 return Dest; 509 } 510 511 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 512 // Add this label to the current lexical scope if we're within any 513 // normal cleanups. Jumps "in" to this label --- when permitted by 514 // the language --- may need to be routed around such cleanups. 515 if (EHStack.hasNormalCleanups() && CurLexicalScope) 516 CurLexicalScope->addLabel(D); 517 518 JumpDest &Dest = LabelMap[D]; 519 520 // If we didn't need a forward reference to this label, just go 521 // ahead and create a destination at the current scope. 522 if (!Dest.isValid()) { 523 Dest = getJumpDestInCurrentScope(D->getName()); 524 525 // Otherwise, we need to give this label a target depth and remove 526 // it from the branch-fixups list. 527 } else { 528 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 529 Dest.setScopeDepth(EHStack.stable_begin()); 530 ResolveBranchFixups(Dest.getBlock()); 531 } 532 533 EmitBlock(Dest.getBlock()); 534 incrementProfileCounter(D->getStmt()); 535 } 536 537 /// Change the cleanup scope of the labels in this lexical scope to 538 /// match the scope of the enclosing context. 539 void CodeGenFunction::LexicalScope::rescopeLabels() { 540 assert(!Labels.empty()); 541 EHScopeStack::stable_iterator innermostScope 542 = CGF.EHStack.getInnermostNormalCleanup(); 543 544 // Change the scope depth of all the labels. 545 for (SmallVectorImpl<const LabelDecl*>::const_iterator 546 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 547 assert(CGF.LabelMap.count(*i)); 548 JumpDest &dest = CGF.LabelMap.find(*i)->second; 549 assert(dest.getScopeDepth().isValid()); 550 assert(innermostScope.encloses(dest.getScopeDepth())); 551 dest.setScopeDepth(innermostScope); 552 } 553 554 // Reparent the labels if the new scope also has cleanups. 555 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 556 ParentScope->Labels.append(Labels.begin(), Labels.end()); 557 } 558 } 559 560 561 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 562 EmitLabel(S.getDecl()); 563 EmitStmt(S.getSubStmt()); 564 } 565 566 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 567 EmitStmt(S.getSubStmt(), S.getAttrs()); 568 } 569 570 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 571 // If this code is reachable then emit a stop point (if generating 572 // debug info). We have to do this ourselves because we are on the 573 // "simple" statement path. 574 if (HaveInsertPoint()) 575 EmitStopPoint(&S); 576 577 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 578 } 579 580 581 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 582 if (const LabelDecl *Target = S.getConstantTarget()) { 583 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 584 return; 585 } 586 587 // Ensure that we have an i8* for our PHI node. 588 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 589 Int8PtrTy, "addr"); 590 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 591 592 // Get the basic block for the indirect goto. 593 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 594 595 // The first instruction in the block has to be the PHI for the switch dest, 596 // add an entry for this branch. 597 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 598 599 EmitBranch(IndGotoBB); 600 } 601 602 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 603 // C99 6.8.4.1: The first substatement is executed if the expression compares 604 // unequal to 0. The condition must be a scalar type. 605 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 606 607 if (S.getInit()) 608 EmitStmt(S.getInit()); 609 610 if (S.getConditionVariable()) 611 EmitAutoVarDecl(*S.getConditionVariable()); 612 613 // If the condition constant folds and can be elided, try to avoid emitting 614 // the condition and the dead arm of the if/else. 615 bool CondConstant; 616 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 617 S.isConstexpr())) { 618 // Figure out which block (then or else) is executed. 619 const Stmt *Executed = S.getThen(); 620 const Stmt *Skipped = S.getElse(); 621 if (!CondConstant) // Condition false? 622 std::swap(Executed, Skipped); 623 624 // If the skipped block has no labels in it, just emit the executed block. 625 // This avoids emitting dead code and simplifies the CFG substantially. 626 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 627 if (CondConstant) 628 incrementProfileCounter(&S); 629 if (Executed) { 630 RunCleanupsScope ExecutedScope(*this); 631 EmitStmt(Executed); 632 } 633 return; 634 } 635 } 636 637 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 638 // the conditional branch. 639 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 640 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 641 llvm::BasicBlock *ElseBlock = ContBlock; 642 if (S.getElse()) 643 ElseBlock = createBasicBlock("if.else"); 644 645 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 646 getProfileCount(S.getThen())); 647 648 // Emit the 'then' code. 649 EmitBlock(ThenBlock); 650 incrementProfileCounter(&S); 651 { 652 RunCleanupsScope ThenScope(*this); 653 EmitStmt(S.getThen()); 654 } 655 EmitBranch(ContBlock); 656 657 // Emit the 'else' code if present. 658 if (const Stmt *Else = S.getElse()) { 659 { 660 // There is no need to emit line number for an unconditional branch. 661 auto NL = ApplyDebugLocation::CreateEmpty(*this); 662 EmitBlock(ElseBlock); 663 } 664 { 665 RunCleanupsScope ElseScope(*this); 666 EmitStmt(Else); 667 } 668 { 669 // There is no need to emit line number for an unconditional branch. 670 auto NL = ApplyDebugLocation::CreateEmpty(*this); 671 EmitBranch(ContBlock); 672 } 673 } 674 675 // Emit the continuation block for code after the if. 676 EmitBlock(ContBlock, true); 677 } 678 679 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 680 ArrayRef<const Attr *> WhileAttrs) { 681 // Emit the header for the loop, which will also become 682 // the continue target. 683 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 684 EmitBlock(LoopHeader.getBlock()); 685 686 const SourceRange &R = S.getSourceRange(); 687 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 688 SourceLocToDebugLoc(R.getBegin()), 689 SourceLocToDebugLoc(R.getEnd())); 690 691 // Create an exit block for when the condition fails, which will 692 // also become the break target. 693 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 694 695 // Store the blocks to use for break and continue. 696 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 697 698 // C++ [stmt.while]p2: 699 // When the condition of a while statement is a declaration, the 700 // scope of the variable that is declared extends from its point 701 // of declaration (3.3.2) to the end of the while statement. 702 // [...] 703 // The object created in a condition is destroyed and created 704 // with each iteration of the loop. 705 RunCleanupsScope ConditionScope(*this); 706 707 if (S.getConditionVariable()) 708 EmitAutoVarDecl(*S.getConditionVariable()); 709 710 // Evaluate the conditional in the while header. C99 6.8.5.1: The 711 // evaluation of the controlling expression takes place before each 712 // execution of the loop body. 713 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 714 715 // while(1) is common, avoid extra exit blocks. Be sure 716 // to correctly handle break/continue though. 717 bool EmitBoolCondBranch = true; 718 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 719 if (C->isOne()) 720 EmitBoolCondBranch = false; 721 722 // As long as the condition is true, go to the loop body. 723 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 724 if (EmitBoolCondBranch) { 725 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 726 if (ConditionScope.requiresCleanups()) 727 ExitBlock = createBasicBlock("while.exit"); 728 Builder.CreateCondBr( 729 BoolCondVal, LoopBody, ExitBlock, 730 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 731 732 if (ExitBlock != LoopExit.getBlock()) { 733 EmitBlock(ExitBlock); 734 EmitBranchThroughCleanup(LoopExit); 735 } 736 } 737 738 // Emit the loop body. We have to emit this in a cleanup scope 739 // because it might be a singleton DeclStmt. 740 { 741 RunCleanupsScope BodyScope(*this); 742 EmitBlock(LoopBody); 743 incrementProfileCounter(&S); 744 EmitStmt(S.getBody()); 745 } 746 747 BreakContinueStack.pop_back(); 748 749 // Immediately force cleanup. 750 ConditionScope.ForceCleanup(); 751 752 EmitStopPoint(&S); 753 // Branch to the loop header again. 754 EmitBranch(LoopHeader.getBlock()); 755 756 LoopStack.pop(); 757 758 // Emit the exit block. 759 EmitBlock(LoopExit.getBlock(), true); 760 761 // The LoopHeader typically is just a branch if we skipped emitting 762 // a branch, try to erase it. 763 if (!EmitBoolCondBranch) 764 SimplifyForwardingBlocks(LoopHeader.getBlock()); 765 } 766 767 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 768 ArrayRef<const Attr *> DoAttrs) { 769 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 770 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 771 772 uint64_t ParentCount = getCurrentProfileCount(); 773 774 // Store the blocks to use for break and continue. 775 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 776 777 // Emit the body of the loop. 778 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 779 780 const SourceRange &R = S.getSourceRange(); 781 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 782 SourceLocToDebugLoc(R.getBegin()), 783 SourceLocToDebugLoc(R.getEnd())); 784 785 EmitBlockWithFallThrough(LoopBody, &S); 786 { 787 RunCleanupsScope BodyScope(*this); 788 EmitStmt(S.getBody()); 789 } 790 791 EmitBlock(LoopCond.getBlock()); 792 793 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 794 // after each execution of the loop body." 795 796 // Evaluate the conditional in the while header. 797 // C99 6.8.5p2/p4: The first substatement is executed if the expression 798 // compares unequal to 0. The condition must be a scalar type. 799 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 800 801 BreakContinueStack.pop_back(); 802 803 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 804 // to correctly handle break/continue though. 805 bool EmitBoolCondBranch = true; 806 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 807 if (C->isZero()) 808 EmitBoolCondBranch = false; 809 810 // As long as the condition is true, iterate the loop. 811 if (EmitBoolCondBranch) { 812 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 813 Builder.CreateCondBr( 814 BoolCondVal, LoopBody, LoopExit.getBlock(), 815 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 816 } 817 818 LoopStack.pop(); 819 820 // Emit the exit block. 821 EmitBlock(LoopExit.getBlock()); 822 823 // The DoCond block typically is just a branch if we skipped 824 // emitting a branch, try to erase it. 825 if (!EmitBoolCondBranch) 826 SimplifyForwardingBlocks(LoopCond.getBlock()); 827 } 828 829 void CodeGenFunction::EmitForStmt(const ForStmt &S, 830 ArrayRef<const Attr *> ForAttrs) { 831 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 832 833 LexicalScope ForScope(*this, S.getSourceRange()); 834 835 // Evaluate the first part before the loop. 836 if (S.getInit()) 837 EmitStmt(S.getInit()); 838 839 // Start the loop with a block that tests the condition. 840 // If there's an increment, the continue scope will be overwritten 841 // later. 842 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 843 llvm::BasicBlock *CondBlock = Continue.getBlock(); 844 EmitBlock(CondBlock); 845 846 const SourceRange &R = S.getSourceRange(); 847 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 848 SourceLocToDebugLoc(R.getBegin()), 849 SourceLocToDebugLoc(R.getEnd())); 850 851 // If the for loop doesn't have an increment we can just use the 852 // condition as the continue block. Otherwise we'll need to create 853 // a block for it (in the current scope, i.e. in the scope of the 854 // condition), and that we will become our continue block. 855 if (S.getInc()) 856 Continue = getJumpDestInCurrentScope("for.inc"); 857 858 // Store the blocks to use for break and continue. 859 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 860 861 // Create a cleanup scope for the condition variable cleanups. 862 LexicalScope ConditionScope(*this, S.getSourceRange()); 863 864 if (S.getCond()) { 865 // If the for statement has a condition scope, emit the local variable 866 // declaration. 867 if (S.getConditionVariable()) { 868 EmitAutoVarDecl(*S.getConditionVariable()); 869 } 870 871 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 872 // If there are any cleanups between here and the loop-exit scope, 873 // create a block to stage a loop exit along. 874 if (ForScope.requiresCleanups()) 875 ExitBlock = createBasicBlock("for.cond.cleanup"); 876 877 // As long as the condition is true, iterate the loop. 878 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 879 880 // C99 6.8.5p2/p4: The first substatement is executed if the expression 881 // compares unequal to 0. The condition must be a scalar type. 882 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 883 Builder.CreateCondBr( 884 BoolCondVal, ForBody, ExitBlock, 885 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 886 887 if (ExitBlock != LoopExit.getBlock()) { 888 EmitBlock(ExitBlock); 889 EmitBranchThroughCleanup(LoopExit); 890 } 891 892 EmitBlock(ForBody); 893 } else { 894 // Treat it as a non-zero constant. Don't even create a new block for the 895 // body, just fall into it. 896 } 897 incrementProfileCounter(&S); 898 899 { 900 // Create a separate cleanup scope for the body, in case it is not 901 // a compound statement. 902 RunCleanupsScope BodyScope(*this); 903 EmitStmt(S.getBody()); 904 } 905 906 // If there is an increment, emit it next. 907 if (S.getInc()) { 908 EmitBlock(Continue.getBlock()); 909 EmitStmt(S.getInc()); 910 } 911 912 BreakContinueStack.pop_back(); 913 914 ConditionScope.ForceCleanup(); 915 916 EmitStopPoint(&S); 917 EmitBranch(CondBlock); 918 919 ForScope.ForceCleanup(); 920 921 LoopStack.pop(); 922 923 // Emit the fall-through block. 924 EmitBlock(LoopExit.getBlock(), true); 925 } 926 927 void 928 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 929 ArrayRef<const Attr *> ForAttrs) { 930 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 931 932 LexicalScope ForScope(*this, S.getSourceRange()); 933 934 // Evaluate the first pieces before the loop. 935 EmitStmt(S.getRangeStmt()); 936 EmitStmt(S.getBeginStmt()); 937 EmitStmt(S.getEndStmt()); 938 939 // Start the loop with a block that tests the condition. 940 // If there's an increment, the continue scope will be overwritten 941 // later. 942 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 943 EmitBlock(CondBlock); 944 945 const SourceRange &R = S.getSourceRange(); 946 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 947 SourceLocToDebugLoc(R.getBegin()), 948 SourceLocToDebugLoc(R.getEnd())); 949 950 // If there are any cleanups between here and the loop-exit scope, 951 // create a block to stage a loop exit along. 952 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 953 if (ForScope.requiresCleanups()) 954 ExitBlock = createBasicBlock("for.cond.cleanup"); 955 956 // The loop body, consisting of the specified body and the loop variable. 957 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 958 959 // The body is executed if the expression, contextually converted 960 // to bool, is true. 961 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 962 Builder.CreateCondBr( 963 BoolCondVal, ForBody, ExitBlock, 964 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 965 966 if (ExitBlock != LoopExit.getBlock()) { 967 EmitBlock(ExitBlock); 968 EmitBranchThroughCleanup(LoopExit); 969 } 970 971 EmitBlock(ForBody); 972 incrementProfileCounter(&S); 973 974 // Create a block for the increment. In case of a 'continue', we jump there. 975 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 976 977 // Store the blocks to use for break and continue. 978 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 979 980 { 981 // Create a separate cleanup scope for the loop variable and body. 982 LexicalScope BodyScope(*this, S.getSourceRange()); 983 EmitStmt(S.getLoopVarStmt()); 984 EmitStmt(S.getBody()); 985 } 986 987 EmitStopPoint(&S); 988 // If there is an increment, emit it next. 989 EmitBlock(Continue.getBlock()); 990 EmitStmt(S.getInc()); 991 992 BreakContinueStack.pop_back(); 993 994 EmitBranch(CondBlock); 995 996 ForScope.ForceCleanup(); 997 998 LoopStack.pop(); 999 1000 // Emit the fall-through block. 1001 EmitBlock(LoopExit.getBlock(), true); 1002 } 1003 1004 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1005 if (RV.isScalar()) { 1006 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1007 } else if (RV.isAggregate()) { 1008 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 1009 } else { 1010 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1011 /*init*/ true); 1012 } 1013 EmitBranchThroughCleanup(ReturnBlock); 1014 } 1015 1016 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1017 /// if the function returns void, or may be missing one if the function returns 1018 /// non-void. Fun stuff :). 1019 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1020 if (requiresReturnValueCheck()) { 1021 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getLocStart()); 1022 auto *SLocPtr = 1023 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1024 llvm::GlobalVariable::PrivateLinkage, SLoc); 1025 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1026 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1027 assert(ReturnLocation.isValid() && "No valid return location"); 1028 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1029 ReturnLocation); 1030 } 1031 1032 // Returning from an outlined SEH helper is UB, and we already warn on it. 1033 if (IsOutlinedSEHHelper) { 1034 Builder.CreateUnreachable(); 1035 Builder.ClearInsertionPoint(); 1036 } 1037 1038 // Emit the result value, even if unused, to evalute the side effects. 1039 const Expr *RV = S.getRetValue(); 1040 1041 // Treat block literals in a return expression as if they appeared 1042 // in their own scope. This permits a small, easily-implemented 1043 // exception to our over-conservative rules about not jumping to 1044 // statements following block literals with non-trivial cleanups. 1045 RunCleanupsScope cleanupScope(*this); 1046 if (const ExprWithCleanups *cleanups = 1047 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1048 enterFullExpression(cleanups); 1049 RV = cleanups->getSubExpr(); 1050 } 1051 1052 // FIXME: Clean this up by using an LValue for ReturnTemp, 1053 // EmitStoreThroughLValue, and EmitAnyExpr. 1054 if (getLangOpts().ElideConstructors && 1055 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1056 // Apply the named return value optimization for this return statement, 1057 // which means doing nothing: the appropriate result has already been 1058 // constructed into the NRVO variable. 1059 1060 // If there is an NRVO flag for this variable, set it to 1 into indicate 1061 // that the cleanup code should not destroy the variable. 1062 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1063 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1064 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1065 // Make sure not to return anything, but evaluate the expression 1066 // for side effects. 1067 if (RV) 1068 EmitAnyExpr(RV); 1069 } else if (!RV) { 1070 // Do nothing (return value is left uninitialized) 1071 } else if (FnRetTy->isReferenceType()) { 1072 // If this function returns a reference, take the address of the expression 1073 // rather than the value. 1074 RValue Result = EmitReferenceBindingToExpr(RV); 1075 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1076 } else { 1077 switch (getEvaluationKind(RV->getType())) { 1078 case TEK_Scalar: 1079 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1080 break; 1081 case TEK_Complex: 1082 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1083 /*isInit*/ true); 1084 break; 1085 case TEK_Aggregate: 1086 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 1087 Qualifiers(), 1088 AggValueSlot::IsDestructed, 1089 AggValueSlot::DoesNotNeedGCBarriers, 1090 AggValueSlot::IsNotAliased)); 1091 break; 1092 } 1093 } 1094 1095 ++NumReturnExprs; 1096 if (!RV || RV->isEvaluatable(getContext())) 1097 ++NumSimpleReturnExprs; 1098 1099 cleanupScope.ForceCleanup(); 1100 EmitBranchThroughCleanup(ReturnBlock); 1101 } 1102 1103 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1104 // As long as debug info is modeled with instructions, we have to ensure we 1105 // have a place to insert here and write the stop point here. 1106 if (HaveInsertPoint()) 1107 EmitStopPoint(&S); 1108 1109 for (const auto *I : S.decls()) 1110 EmitDecl(*I); 1111 } 1112 1113 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1114 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1115 1116 // If this code is reachable then emit a stop point (if generating 1117 // debug info). We have to do this ourselves because we are on the 1118 // "simple" statement path. 1119 if (HaveInsertPoint()) 1120 EmitStopPoint(&S); 1121 1122 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1123 } 1124 1125 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1126 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1127 1128 // If this code is reachable then emit a stop point (if generating 1129 // debug info). We have to do this ourselves because we are on the 1130 // "simple" statement path. 1131 if (HaveInsertPoint()) 1132 EmitStopPoint(&S); 1133 1134 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1135 } 1136 1137 /// EmitCaseStmtRange - If case statement range is not too big then 1138 /// add multiple cases to switch instruction, one for each value within 1139 /// the range. If range is too big then emit "if" condition check. 1140 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1141 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1142 1143 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1144 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1145 1146 // Emit the code for this case. We do this first to make sure it is 1147 // properly chained from our predecessor before generating the 1148 // switch machinery to enter this block. 1149 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1150 EmitBlockWithFallThrough(CaseDest, &S); 1151 EmitStmt(S.getSubStmt()); 1152 1153 // If range is empty, do nothing. 1154 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1155 return; 1156 1157 llvm::APInt Range = RHS - LHS; 1158 // FIXME: parameters such as this should not be hardcoded. 1159 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1160 // Range is small enough to add multiple switch instruction cases. 1161 uint64_t Total = getProfileCount(&S); 1162 unsigned NCases = Range.getZExtValue() + 1; 1163 // We only have one region counter for the entire set of cases here, so we 1164 // need to divide the weights evenly between the generated cases, ensuring 1165 // that the total weight is preserved. E.g., a weight of 5 over three cases 1166 // will be distributed as weights of 2, 2, and 1. 1167 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1168 for (unsigned I = 0; I != NCases; ++I) { 1169 if (SwitchWeights) 1170 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1171 if (Rem) 1172 Rem--; 1173 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1174 ++LHS; 1175 } 1176 return; 1177 } 1178 1179 // The range is too big. Emit "if" condition into a new block, 1180 // making sure to save and restore the current insertion point. 1181 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1182 1183 // Push this test onto the chain of range checks (which terminates 1184 // in the default basic block). The switch's default will be changed 1185 // to the top of this chain after switch emission is complete. 1186 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1187 CaseRangeBlock = createBasicBlock("sw.caserange"); 1188 1189 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1190 Builder.SetInsertPoint(CaseRangeBlock); 1191 1192 // Emit range check. 1193 llvm::Value *Diff = 1194 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1195 llvm::Value *Cond = 1196 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1197 1198 llvm::MDNode *Weights = nullptr; 1199 if (SwitchWeights) { 1200 uint64_t ThisCount = getProfileCount(&S); 1201 uint64_t DefaultCount = (*SwitchWeights)[0]; 1202 Weights = createProfileWeights(ThisCount, DefaultCount); 1203 1204 // Since we're chaining the switch default through each large case range, we 1205 // need to update the weight for the default, ie, the first case, to include 1206 // this case. 1207 (*SwitchWeights)[0] += ThisCount; 1208 } 1209 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1210 1211 // Restore the appropriate insertion point. 1212 if (RestoreBB) 1213 Builder.SetInsertPoint(RestoreBB); 1214 else 1215 Builder.ClearInsertionPoint(); 1216 } 1217 1218 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1219 // If there is no enclosing switch instance that we're aware of, then this 1220 // case statement and its block can be elided. This situation only happens 1221 // when we've constant-folded the switch, are emitting the constant case, 1222 // and part of the constant case includes another case statement. For 1223 // instance: switch (4) { case 4: do { case 5: } while (1); } 1224 if (!SwitchInsn) { 1225 EmitStmt(S.getSubStmt()); 1226 return; 1227 } 1228 1229 // Handle case ranges. 1230 if (S.getRHS()) { 1231 EmitCaseStmtRange(S); 1232 return; 1233 } 1234 1235 llvm::ConstantInt *CaseVal = 1236 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1237 1238 // If the body of the case is just a 'break', try to not emit an empty block. 1239 // If we're profiling or we're not optimizing, leave the block in for better 1240 // debug and coverage analysis. 1241 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1242 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1243 isa<BreakStmt>(S.getSubStmt())) { 1244 JumpDest Block = BreakContinueStack.back().BreakBlock; 1245 1246 // Only do this optimization if there are no cleanups that need emitting. 1247 if (isObviouslyBranchWithoutCleanups(Block)) { 1248 if (SwitchWeights) 1249 SwitchWeights->push_back(getProfileCount(&S)); 1250 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1251 1252 // If there was a fallthrough into this case, make sure to redirect it to 1253 // the end of the switch as well. 1254 if (Builder.GetInsertBlock()) { 1255 Builder.CreateBr(Block.getBlock()); 1256 Builder.ClearInsertionPoint(); 1257 } 1258 return; 1259 } 1260 } 1261 1262 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1263 EmitBlockWithFallThrough(CaseDest, &S); 1264 if (SwitchWeights) 1265 SwitchWeights->push_back(getProfileCount(&S)); 1266 SwitchInsn->addCase(CaseVal, CaseDest); 1267 1268 // Recursively emitting the statement is acceptable, but is not wonderful for 1269 // code where we have many case statements nested together, i.e.: 1270 // case 1: 1271 // case 2: 1272 // case 3: etc. 1273 // Handling this recursively will create a new block for each case statement 1274 // that falls through to the next case which is IR intensive. It also causes 1275 // deep recursion which can run into stack depth limitations. Handle 1276 // sequential non-range case statements specially. 1277 const CaseStmt *CurCase = &S; 1278 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1279 1280 // Otherwise, iteratively add consecutive cases to this switch stmt. 1281 while (NextCase && NextCase->getRHS() == nullptr) { 1282 CurCase = NextCase; 1283 llvm::ConstantInt *CaseVal = 1284 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1285 1286 if (SwitchWeights) 1287 SwitchWeights->push_back(getProfileCount(NextCase)); 1288 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1289 CaseDest = createBasicBlock("sw.bb"); 1290 EmitBlockWithFallThrough(CaseDest, &S); 1291 } 1292 1293 SwitchInsn->addCase(CaseVal, CaseDest); 1294 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1295 } 1296 1297 // Normal default recursion for non-cases. 1298 EmitStmt(CurCase->getSubStmt()); 1299 } 1300 1301 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1302 // If there is no enclosing switch instance that we're aware of, then this 1303 // default statement can be elided. This situation only happens when we've 1304 // constant-folded the switch. 1305 if (!SwitchInsn) { 1306 EmitStmt(S.getSubStmt()); 1307 return; 1308 } 1309 1310 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1311 assert(DefaultBlock->empty() && 1312 "EmitDefaultStmt: Default block already defined?"); 1313 1314 EmitBlockWithFallThrough(DefaultBlock, &S); 1315 1316 EmitStmt(S.getSubStmt()); 1317 } 1318 1319 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1320 /// constant value that is being switched on, see if we can dead code eliminate 1321 /// the body of the switch to a simple series of statements to emit. Basically, 1322 /// on a switch (5) we want to find these statements: 1323 /// case 5: 1324 /// printf(...); <-- 1325 /// ++i; <-- 1326 /// break; 1327 /// 1328 /// and add them to the ResultStmts vector. If it is unsafe to do this 1329 /// transformation (for example, one of the elided statements contains a label 1330 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1331 /// should include statements after it (e.g. the printf() line is a substmt of 1332 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1333 /// statement, then return CSFC_Success. 1334 /// 1335 /// If Case is non-null, then we are looking for the specified case, checking 1336 /// that nothing we jump over contains labels. If Case is null, then we found 1337 /// the case and are looking for the break. 1338 /// 1339 /// If the recursive walk actually finds our Case, then we set FoundCase to 1340 /// true. 1341 /// 1342 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1343 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1344 const SwitchCase *Case, 1345 bool &FoundCase, 1346 SmallVectorImpl<const Stmt*> &ResultStmts) { 1347 // If this is a null statement, just succeed. 1348 if (!S) 1349 return Case ? CSFC_Success : CSFC_FallThrough; 1350 1351 // If this is the switchcase (case 4: or default) that we're looking for, then 1352 // we're in business. Just add the substatement. 1353 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1354 if (S == Case) { 1355 FoundCase = true; 1356 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1357 ResultStmts); 1358 } 1359 1360 // Otherwise, this is some other case or default statement, just ignore it. 1361 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1362 ResultStmts); 1363 } 1364 1365 // If we are in the live part of the code and we found our break statement, 1366 // return a success! 1367 if (!Case && isa<BreakStmt>(S)) 1368 return CSFC_Success; 1369 1370 // If this is a switch statement, then it might contain the SwitchCase, the 1371 // break, or neither. 1372 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1373 // Handle this as two cases: we might be looking for the SwitchCase (if so 1374 // the skipped statements must be skippable) or we might already have it. 1375 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1376 bool StartedInLiveCode = FoundCase; 1377 unsigned StartSize = ResultStmts.size(); 1378 1379 // If we've not found the case yet, scan through looking for it. 1380 if (Case) { 1381 // Keep track of whether we see a skipped declaration. The code could be 1382 // using the declaration even if it is skipped, so we can't optimize out 1383 // the decl if the kept statements might refer to it. 1384 bool HadSkippedDecl = false; 1385 1386 // If we're looking for the case, just see if we can skip each of the 1387 // substatements. 1388 for (; Case && I != E; ++I) { 1389 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1390 1391 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1392 case CSFC_Failure: return CSFC_Failure; 1393 case CSFC_Success: 1394 // A successful result means that either 1) that the statement doesn't 1395 // have the case and is skippable, or 2) does contain the case value 1396 // and also contains the break to exit the switch. In the later case, 1397 // we just verify the rest of the statements are elidable. 1398 if (FoundCase) { 1399 // If we found the case and skipped declarations, we can't do the 1400 // optimization. 1401 if (HadSkippedDecl) 1402 return CSFC_Failure; 1403 1404 for (++I; I != E; ++I) 1405 if (CodeGenFunction::ContainsLabel(*I, true)) 1406 return CSFC_Failure; 1407 return CSFC_Success; 1408 } 1409 break; 1410 case CSFC_FallThrough: 1411 // If we have a fallthrough condition, then we must have found the 1412 // case started to include statements. Consider the rest of the 1413 // statements in the compound statement as candidates for inclusion. 1414 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1415 // We recursively found Case, so we're not looking for it anymore. 1416 Case = nullptr; 1417 1418 // If we found the case and skipped declarations, we can't do the 1419 // optimization. 1420 if (HadSkippedDecl) 1421 return CSFC_Failure; 1422 break; 1423 } 1424 } 1425 1426 if (!FoundCase) 1427 return CSFC_Success; 1428 1429 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1430 } 1431 1432 // If we have statements in our range, then we know that the statements are 1433 // live and need to be added to the set of statements we're tracking. 1434 bool AnyDecls = false; 1435 for (; I != E; ++I) { 1436 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1437 1438 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1439 case CSFC_Failure: return CSFC_Failure; 1440 case CSFC_FallThrough: 1441 // A fallthrough result means that the statement was simple and just 1442 // included in ResultStmt, keep adding them afterwards. 1443 break; 1444 case CSFC_Success: 1445 // A successful result means that we found the break statement and 1446 // stopped statement inclusion. We just ensure that any leftover stmts 1447 // are skippable and return success ourselves. 1448 for (++I; I != E; ++I) 1449 if (CodeGenFunction::ContainsLabel(*I, true)) 1450 return CSFC_Failure; 1451 return CSFC_Success; 1452 } 1453 } 1454 1455 // If we're about to fall out of a scope without hitting a 'break;', we 1456 // can't perform the optimization if there were any decls in that scope 1457 // (we'd lose their end-of-lifetime). 1458 if (AnyDecls) { 1459 // If the entire compound statement was live, there's one more thing we 1460 // can try before giving up: emit the whole thing as a single statement. 1461 // We can do that unless the statement contains a 'break;'. 1462 // FIXME: Such a break must be at the end of a construct within this one. 1463 // We could emit this by just ignoring the BreakStmts entirely. 1464 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1465 ResultStmts.resize(StartSize); 1466 ResultStmts.push_back(S); 1467 } else { 1468 return CSFC_Failure; 1469 } 1470 } 1471 1472 return CSFC_FallThrough; 1473 } 1474 1475 // Okay, this is some other statement that we don't handle explicitly, like a 1476 // for statement or increment etc. If we are skipping over this statement, 1477 // just verify it doesn't have labels, which would make it invalid to elide. 1478 if (Case) { 1479 if (CodeGenFunction::ContainsLabel(S, true)) 1480 return CSFC_Failure; 1481 return CSFC_Success; 1482 } 1483 1484 // Otherwise, we want to include this statement. Everything is cool with that 1485 // so long as it doesn't contain a break out of the switch we're in. 1486 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1487 1488 // Otherwise, everything is great. Include the statement and tell the caller 1489 // that we fall through and include the next statement as well. 1490 ResultStmts.push_back(S); 1491 return CSFC_FallThrough; 1492 } 1493 1494 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1495 /// then invoke CollectStatementsForCase to find the list of statements to emit 1496 /// for a switch on constant. See the comment above CollectStatementsForCase 1497 /// for more details. 1498 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1499 const llvm::APSInt &ConstantCondValue, 1500 SmallVectorImpl<const Stmt*> &ResultStmts, 1501 ASTContext &C, 1502 const SwitchCase *&ResultCase) { 1503 // First step, find the switch case that is being branched to. We can do this 1504 // efficiently by scanning the SwitchCase list. 1505 const SwitchCase *Case = S.getSwitchCaseList(); 1506 const DefaultStmt *DefaultCase = nullptr; 1507 1508 for (; Case; Case = Case->getNextSwitchCase()) { 1509 // It's either a default or case. Just remember the default statement in 1510 // case we're not jumping to any numbered cases. 1511 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1512 DefaultCase = DS; 1513 continue; 1514 } 1515 1516 // Check to see if this case is the one we're looking for. 1517 const CaseStmt *CS = cast<CaseStmt>(Case); 1518 // Don't handle case ranges yet. 1519 if (CS->getRHS()) return false; 1520 1521 // If we found our case, remember it as 'case'. 1522 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1523 break; 1524 } 1525 1526 // If we didn't find a matching case, we use a default if it exists, or we 1527 // elide the whole switch body! 1528 if (!Case) { 1529 // It is safe to elide the body of the switch if it doesn't contain labels 1530 // etc. If it is safe, return successfully with an empty ResultStmts list. 1531 if (!DefaultCase) 1532 return !CodeGenFunction::ContainsLabel(&S); 1533 Case = DefaultCase; 1534 } 1535 1536 // Ok, we know which case is being jumped to, try to collect all the 1537 // statements that follow it. This can fail for a variety of reasons. Also, 1538 // check to see that the recursive walk actually found our case statement. 1539 // Insane cases like this can fail to find it in the recursive walk since we 1540 // don't handle every stmt kind: 1541 // switch (4) { 1542 // while (1) { 1543 // case 4: ... 1544 bool FoundCase = false; 1545 ResultCase = Case; 1546 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1547 ResultStmts) != CSFC_Failure && 1548 FoundCase; 1549 } 1550 1551 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1552 // Handle nested switch statements. 1553 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1554 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1555 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1556 1557 // See if we can constant fold the condition of the switch and therefore only 1558 // emit the live case statement (if any) of the switch. 1559 llvm::APSInt ConstantCondValue; 1560 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1561 SmallVector<const Stmt*, 4> CaseStmts; 1562 const SwitchCase *Case = nullptr; 1563 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1564 getContext(), Case)) { 1565 if (Case) 1566 incrementProfileCounter(Case); 1567 RunCleanupsScope ExecutedScope(*this); 1568 1569 if (S.getInit()) 1570 EmitStmt(S.getInit()); 1571 1572 // Emit the condition variable if needed inside the entire cleanup scope 1573 // used by this special case for constant folded switches. 1574 if (S.getConditionVariable()) 1575 EmitAutoVarDecl(*S.getConditionVariable()); 1576 1577 // At this point, we are no longer "within" a switch instance, so 1578 // we can temporarily enforce this to ensure that any embedded case 1579 // statements are not emitted. 1580 SwitchInsn = nullptr; 1581 1582 // Okay, we can dead code eliminate everything except this case. Emit the 1583 // specified series of statements and we're good. 1584 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1585 EmitStmt(CaseStmts[i]); 1586 incrementProfileCounter(&S); 1587 1588 // Now we want to restore the saved switch instance so that nested 1589 // switches continue to function properly 1590 SwitchInsn = SavedSwitchInsn; 1591 1592 return; 1593 } 1594 } 1595 1596 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1597 1598 RunCleanupsScope ConditionScope(*this); 1599 1600 if (S.getInit()) 1601 EmitStmt(S.getInit()); 1602 1603 if (S.getConditionVariable()) 1604 EmitAutoVarDecl(*S.getConditionVariable()); 1605 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1606 1607 // Create basic block to hold stuff that comes after switch 1608 // statement. We also need to create a default block now so that 1609 // explicit case ranges tests can have a place to jump to on 1610 // failure. 1611 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1612 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1613 if (PGO.haveRegionCounts()) { 1614 // Walk the SwitchCase list to find how many there are. 1615 uint64_t DefaultCount = 0; 1616 unsigned NumCases = 0; 1617 for (const SwitchCase *Case = S.getSwitchCaseList(); 1618 Case; 1619 Case = Case->getNextSwitchCase()) { 1620 if (isa<DefaultStmt>(Case)) 1621 DefaultCount = getProfileCount(Case); 1622 NumCases += 1; 1623 } 1624 SwitchWeights = new SmallVector<uint64_t, 16>(); 1625 SwitchWeights->reserve(NumCases); 1626 // The default needs to be first. We store the edge count, so we already 1627 // know the right weight. 1628 SwitchWeights->push_back(DefaultCount); 1629 } 1630 CaseRangeBlock = DefaultBlock; 1631 1632 // Clear the insertion point to indicate we are in unreachable code. 1633 Builder.ClearInsertionPoint(); 1634 1635 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1636 // then reuse last ContinueBlock. 1637 JumpDest OuterContinue; 1638 if (!BreakContinueStack.empty()) 1639 OuterContinue = BreakContinueStack.back().ContinueBlock; 1640 1641 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1642 1643 // Emit switch body. 1644 EmitStmt(S.getBody()); 1645 1646 BreakContinueStack.pop_back(); 1647 1648 // Update the default block in case explicit case range tests have 1649 // been chained on top. 1650 SwitchInsn->setDefaultDest(CaseRangeBlock); 1651 1652 // If a default was never emitted: 1653 if (!DefaultBlock->getParent()) { 1654 // If we have cleanups, emit the default block so that there's a 1655 // place to jump through the cleanups from. 1656 if (ConditionScope.requiresCleanups()) { 1657 EmitBlock(DefaultBlock); 1658 1659 // Otherwise, just forward the default block to the switch end. 1660 } else { 1661 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1662 delete DefaultBlock; 1663 } 1664 } 1665 1666 ConditionScope.ForceCleanup(); 1667 1668 // Emit continuation. 1669 EmitBlock(SwitchExit.getBlock(), true); 1670 incrementProfileCounter(&S); 1671 1672 // If the switch has a condition wrapped by __builtin_unpredictable, 1673 // create metadata that specifies that the switch is unpredictable. 1674 // Don't bother if not optimizing because that metadata would not be used. 1675 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1676 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1677 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1678 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1679 llvm::MDBuilder MDHelper(getLLVMContext()); 1680 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1681 MDHelper.createUnpredictable()); 1682 } 1683 } 1684 1685 if (SwitchWeights) { 1686 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1687 "switch weights do not match switch cases"); 1688 // If there's only one jump destination there's no sense weighting it. 1689 if (SwitchWeights->size() > 1) 1690 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1691 createProfileWeights(*SwitchWeights)); 1692 delete SwitchWeights; 1693 } 1694 SwitchInsn = SavedSwitchInsn; 1695 SwitchWeights = SavedSwitchWeights; 1696 CaseRangeBlock = SavedCRBlock; 1697 } 1698 1699 static std::string 1700 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1701 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1702 std::string Result; 1703 1704 while (*Constraint) { 1705 switch (*Constraint) { 1706 default: 1707 Result += Target.convertConstraint(Constraint); 1708 break; 1709 // Ignore these 1710 case '*': 1711 case '?': 1712 case '!': 1713 case '=': // Will see this and the following in mult-alt constraints. 1714 case '+': 1715 break; 1716 case '#': // Ignore the rest of the constraint alternative. 1717 while (Constraint[1] && Constraint[1] != ',') 1718 Constraint++; 1719 break; 1720 case '&': 1721 case '%': 1722 Result += *Constraint; 1723 while (Constraint[1] && Constraint[1] == *Constraint) 1724 Constraint++; 1725 break; 1726 case ',': 1727 Result += "|"; 1728 break; 1729 case 'g': 1730 Result += "imr"; 1731 break; 1732 case '[': { 1733 assert(OutCons && 1734 "Must pass output names to constraints with a symbolic name"); 1735 unsigned Index; 1736 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1737 assert(result && "Could not resolve symbolic name"); (void)result; 1738 Result += llvm::utostr(Index); 1739 break; 1740 } 1741 } 1742 1743 Constraint++; 1744 } 1745 1746 return Result; 1747 } 1748 1749 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1750 /// as using a particular register add that as a constraint that will be used 1751 /// in this asm stmt. 1752 static std::string 1753 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1754 const TargetInfo &Target, CodeGenModule &CGM, 1755 const AsmStmt &Stmt, const bool EarlyClobber) { 1756 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1757 if (!AsmDeclRef) 1758 return Constraint; 1759 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1760 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1761 if (!Variable) 1762 return Constraint; 1763 if (Variable->getStorageClass() != SC_Register) 1764 return Constraint; 1765 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1766 if (!Attr) 1767 return Constraint; 1768 StringRef Register = Attr->getLabel(); 1769 assert(Target.isValidGCCRegisterName(Register)); 1770 // We're using validateOutputConstraint here because we only care if 1771 // this is a register constraint. 1772 TargetInfo::ConstraintInfo Info(Constraint, ""); 1773 if (Target.validateOutputConstraint(Info) && 1774 !Info.allowsRegister()) { 1775 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1776 return Constraint; 1777 } 1778 // Canonicalize the register here before returning it. 1779 Register = Target.getNormalizedGCCRegisterName(Register); 1780 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1781 } 1782 1783 llvm::Value* 1784 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1785 LValue InputValue, QualType InputType, 1786 std::string &ConstraintStr, 1787 SourceLocation Loc) { 1788 llvm::Value *Arg; 1789 if (Info.allowsRegister() || !Info.allowsMemory()) { 1790 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1791 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1792 } else { 1793 llvm::Type *Ty = ConvertType(InputType); 1794 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1795 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1796 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1797 Ty = llvm::PointerType::getUnqual(Ty); 1798 1799 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1800 Ty)); 1801 } else { 1802 Arg = InputValue.getPointer(); 1803 ConstraintStr += '*'; 1804 } 1805 } 1806 } else { 1807 Arg = InputValue.getPointer(); 1808 ConstraintStr += '*'; 1809 } 1810 1811 return Arg; 1812 } 1813 1814 llvm::Value* CodeGenFunction::EmitAsmInput( 1815 const TargetInfo::ConstraintInfo &Info, 1816 const Expr *InputExpr, 1817 std::string &ConstraintStr) { 1818 // If this can't be a register or memory, i.e., has to be a constant 1819 // (immediate or symbolic), try to emit it as such. 1820 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1821 llvm::APSInt Result; 1822 if (InputExpr->EvaluateAsInt(Result, getContext())) 1823 return llvm::ConstantInt::get(getLLVMContext(), Result); 1824 assert(!Info.requiresImmediateConstant() && 1825 "Required-immediate inlineasm arg isn't constant?"); 1826 } 1827 1828 if (Info.allowsRegister() || !Info.allowsMemory()) 1829 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1830 return EmitScalarExpr(InputExpr); 1831 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1832 return EmitScalarExpr(InputExpr); 1833 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1834 LValue Dest = EmitLValue(InputExpr); 1835 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1836 InputExpr->getExprLoc()); 1837 } 1838 1839 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1840 /// asm call instruction. The !srcloc MDNode contains a list of constant 1841 /// integers which are the source locations of the start of each line in the 1842 /// asm. 1843 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1844 CodeGenFunction &CGF) { 1845 SmallVector<llvm::Metadata *, 8> Locs; 1846 // Add the location of the first line to the MDNode. 1847 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1848 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1849 StringRef StrVal = Str->getString(); 1850 if (!StrVal.empty()) { 1851 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1852 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1853 unsigned StartToken = 0; 1854 unsigned ByteOffset = 0; 1855 1856 // Add the location of the start of each subsequent line of the asm to the 1857 // MDNode. 1858 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1859 if (StrVal[i] != '\n') continue; 1860 SourceLocation LineLoc = Str->getLocationOfByte( 1861 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1862 Locs.push_back(llvm::ConstantAsMetadata::get( 1863 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1864 } 1865 } 1866 1867 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1868 } 1869 1870 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1871 // Assemble the final asm string. 1872 std::string AsmString = S.generateAsmString(getContext()); 1873 1874 // Get all the output and input constraints together. 1875 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1876 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1877 1878 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1879 StringRef Name; 1880 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1881 Name = GAS->getOutputName(i); 1882 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1883 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1884 assert(IsValid && "Failed to parse output constraint"); 1885 OutputConstraintInfos.push_back(Info); 1886 } 1887 1888 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1889 StringRef Name; 1890 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1891 Name = GAS->getInputName(i); 1892 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1893 bool IsValid = 1894 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1895 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1896 InputConstraintInfos.push_back(Info); 1897 } 1898 1899 std::string Constraints; 1900 1901 std::vector<LValue> ResultRegDests; 1902 std::vector<QualType> ResultRegQualTys; 1903 std::vector<llvm::Type *> ResultRegTypes; 1904 std::vector<llvm::Type *> ResultTruncRegTypes; 1905 std::vector<llvm::Type *> ArgTypes; 1906 std::vector<llvm::Value*> Args; 1907 1908 // Keep track of inout constraints. 1909 std::string InOutConstraints; 1910 std::vector<llvm::Value*> InOutArgs; 1911 std::vector<llvm::Type*> InOutArgTypes; 1912 1913 // An inline asm can be marked readonly if it meets the following conditions: 1914 // - it doesn't have any sideeffects 1915 // - it doesn't clobber memory 1916 // - it doesn't return a value by-reference 1917 // It can be marked readnone if it doesn't have any input memory constraints 1918 // in addition to meeting the conditions listed above. 1919 bool ReadOnly = true, ReadNone = true; 1920 1921 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1922 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1923 1924 // Simplify the output constraint. 1925 std::string OutputConstraint(S.getOutputConstraint(i)); 1926 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1927 getTarget()); 1928 1929 const Expr *OutExpr = S.getOutputExpr(i); 1930 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1931 1932 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1933 getTarget(), CGM, S, 1934 Info.earlyClobber()); 1935 1936 LValue Dest = EmitLValue(OutExpr); 1937 if (!Constraints.empty()) 1938 Constraints += ','; 1939 1940 // If this is a register output, then make the inline asm return it 1941 // by-value. If this is a memory result, return the value by-reference. 1942 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1943 Constraints += "=" + OutputConstraint; 1944 ResultRegQualTys.push_back(OutExpr->getType()); 1945 ResultRegDests.push_back(Dest); 1946 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1947 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1948 1949 // If this output is tied to an input, and if the input is larger, then 1950 // we need to set the actual result type of the inline asm node to be the 1951 // same as the input type. 1952 if (Info.hasMatchingInput()) { 1953 unsigned InputNo; 1954 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1955 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1956 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1957 break; 1958 } 1959 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1960 1961 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1962 QualType OutputType = OutExpr->getType(); 1963 1964 uint64_t InputSize = getContext().getTypeSize(InputTy); 1965 if (getContext().getTypeSize(OutputType) < InputSize) { 1966 // Form the asm to return the value as a larger integer or fp type. 1967 ResultRegTypes.back() = ConvertType(InputTy); 1968 } 1969 } 1970 if (llvm::Type* AdjTy = 1971 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1972 ResultRegTypes.back())) 1973 ResultRegTypes.back() = AdjTy; 1974 else { 1975 CGM.getDiags().Report(S.getAsmLoc(), 1976 diag::err_asm_invalid_type_in_input) 1977 << OutExpr->getType() << OutputConstraint; 1978 } 1979 } else { 1980 ArgTypes.push_back(Dest.getAddress().getType()); 1981 Args.push_back(Dest.getPointer()); 1982 Constraints += "=*"; 1983 Constraints += OutputConstraint; 1984 ReadOnly = ReadNone = false; 1985 } 1986 1987 if (Info.isReadWrite()) { 1988 InOutConstraints += ','; 1989 1990 const Expr *InputExpr = S.getOutputExpr(i); 1991 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1992 InOutConstraints, 1993 InputExpr->getExprLoc()); 1994 1995 if (llvm::Type* AdjTy = 1996 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1997 Arg->getType())) 1998 Arg = Builder.CreateBitCast(Arg, AdjTy); 1999 2000 if (Info.allowsRegister()) 2001 InOutConstraints += llvm::utostr(i); 2002 else 2003 InOutConstraints += OutputConstraint; 2004 2005 InOutArgTypes.push_back(Arg->getType()); 2006 InOutArgs.push_back(Arg); 2007 } 2008 } 2009 2010 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2011 // to the return value slot. Only do this when returning in registers. 2012 if (isa<MSAsmStmt>(&S)) { 2013 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2014 if (RetAI.isDirect() || RetAI.isExtend()) { 2015 // Make a fake lvalue for the return value slot. 2016 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2017 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2018 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2019 ResultRegDests, AsmString, S.getNumOutputs()); 2020 SawAsmBlock = true; 2021 } 2022 } 2023 2024 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2025 const Expr *InputExpr = S.getInputExpr(i); 2026 2027 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2028 2029 if (Info.allowsMemory()) 2030 ReadNone = false; 2031 2032 if (!Constraints.empty()) 2033 Constraints += ','; 2034 2035 // Simplify the input constraint. 2036 std::string InputConstraint(S.getInputConstraint(i)); 2037 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2038 &OutputConstraintInfos); 2039 2040 InputConstraint = AddVariableConstraints( 2041 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2042 getTarget(), CGM, S, false /* No EarlyClobber */); 2043 2044 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2045 2046 // If this input argument is tied to a larger output result, extend the 2047 // input to be the same size as the output. The LLVM backend wants to see 2048 // the input and output of a matching constraint be the same size. Note 2049 // that GCC does not define what the top bits are here. We use zext because 2050 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2051 if (Info.hasTiedOperand()) { 2052 unsigned Output = Info.getTiedOperand(); 2053 QualType OutputType = S.getOutputExpr(Output)->getType(); 2054 QualType InputTy = InputExpr->getType(); 2055 2056 if (getContext().getTypeSize(OutputType) > 2057 getContext().getTypeSize(InputTy)) { 2058 // Use ptrtoint as appropriate so that we can do our extension. 2059 if (isa<llvm::PointerType>(Arg->getType())) 2060 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2061 llvm::Type *OutputTy = ConvertType(OutputType); 2062 if (isa<llvm::IntegerType>(OutputTy)) 2063 Arg = Builder.CreateZExt(Arg, OutputTy); 2064 else if (isa<llvm::PointerType>(OutputTy)) 2065 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2066 else { 2067 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2068 Arg = Builder.CreateFPExt(Arg, OutputTy); 2069 } 2070 } 2071 } 2072 if (llvm::Type* AdjTy = 2073 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2074 Arg->getType())) 2075 Arg = Builder.CreateBitCast(Arg, AdjTy); 2076 else 2077 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2078 << InputExpr->getType() << InputConstraint; 2079 2080 ArgTypes.push_back(Arg->getType()); 2081 Args.push_back(Arg); 2082 Constraints += InputConstraint; 2083 } 2084 2085 // Append the "input" part of inout constraints last. 2086 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2087 ArgTypes.push_back(InOutArgTypes[i]); 2088 Args.push_back(InOutArgs[i]); 2089 } 2090 Constraints += InOutConstraints; 2091 2092 // Clobbers 2093 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2094 StringRef Clobber = S.getClobber(i); 2095 2096 if (Clobber == "memory") 2097 ReadOnly = ReadNone = false; 2098 else if (Clobber != "cc") 2099 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2100 2101 if (!Constraints.empty()) 2102 Constraints += ','; 2103 2104 Constraints += "~{"; 2105 Constraints += Clobber; 2106 Constraints += '}'; 2107 } 2108 2109 // Add machine specific clobbers 2110 std::string MachineClobbers = getTarget().getClobbers(); 2111 if (!MachineClobbers.empty()) { 2112 if (!Constraints.empty()) 2113 Constraints += ','; 2114 Constraints += MachineClobbers; 2115 } 2116 2117 llvm::Type *ResultType; 2118 if (ResultRegTypes.empty()) 2119 ResultType = VoidTy; 2120 else if (ResultRegTypes.size() == 1) 2121 ResultType = ResultRegTypes[0]; 2122 else 2123 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2124 2125 llvm::FunctionType *FTy = 2126 llvm::FunctionType::get(ResultType, ArgTypes, false); 2127 2128 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2129 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2130 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2131 llvm::InlineAsm *IA = 2132 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2133 /* IsAlignStack */ false, AsmDialect); 2134 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2135 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2136 llvm::Attribute::NoUnwind); 2137 2138 // Attach readnone and readonly attributes. 2139 if (!HasSideEffect) { 2140 if (ReadNone) 2141 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2142 llvm::Attribute::ReadNone); 2143 else if (ReadOnly) 2144 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2145 llvm::Attribute::ReadOnly); 2146 } 2147 2148 // Slap the source location of the inline asm into a !srcloc metadata on the 2149 // call. 2150 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2151 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2152 *this)); 2153 } else { 2154 // At least put the line number on MS inline asm blobs. 2155 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2156 Result->setMetadata("srcloc", 2157 llvm::MDNode::get(getLLVMContext(), 2158 llvm::ConstantAsMetadata::get(Loc))); 2159 } 2160 2161 if (getLangOpts().assumeFunctionsAreConvergent()) { 2162 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2163 // convergent (meaning, they may call an intrinsically convergent op, such 2164 // as bar.sync, and so can't have certain optimizations applied around 2165 // them). 2166 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2167 llvm::Attribute::Convergent); 2168 } 2169 2170 // Extract all of the register value results from the asm. 2171 std::vector<llvm::Value*> RegResults; 2172 if (ResultRegTypes.size() == 1) { 2173 RegResults.push_back(Result); 2174 } else { 2175 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2176 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2177 RegResults.push_back(Tmp); 2178 } 2179 } 2180 2181 assert(RegResults.size() == ResultRegTypes.size()); 2182 assert(RegResults.size() == ResultTruncRegTypes.size()); 2183 assert(RegResults.size() == ResultRegDests.size()); 2184 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2185 llvm::Value *Tmp = RegResults[i]; 2186 2187 // If the result type of the LLVM IR asm doesn't match the result type of 2188 // the expression, do the conversion. 2189 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2190 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2191 2192 // Truncate the integer result to the right size, note that TruncTy can be 2193 // a pointer. 2194 if (TruncTy->isFloatingPointTy()) 2195 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2196 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2197 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2198 Tmp = Builder.CreateTrunc(Tmp, 2199 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2200 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2201 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2202 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2203 Tmp = Builder.CreatePtrToInt(Tmp, 2204 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2205 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2206 } else if (TruncTy->isIntegerTy()) { 2207 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2208 } else if (TruncTy->isVectorTy()) { 2209 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2210 } 2211 } 2212 2213 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2214 } 2215 } 2216 2217 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2218 const RecordDecl *RD = S.getCapturedRecordDecl(); 2219 QualType RecordTy = getContext().getRecordType(RD); 2220 2221 // Initialize the captured struct. 2222 LValue SlotLV = 2223 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2224 2225 RecordDecl::field_iterator CurField = RD->field_begin(); 2226 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2227 E = S.capture_init_end(); 2228 I != E; ++I, ++CurField) { 2229 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2230 if (CurField->hasCapturedVLAType()) { 2231 auto VAT = CurField->getCapturedVLAType(); 2232 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2233 } else { 2234 EmitInitializerForField(*CurField, LV, *I); 2235 } 2236 } 2237 2238 return SlotLV; 2239 } 2240 2241 /// Generate an outlined function for the body of a CapturedStmt, store any 2242 /// captured variables into the captured struct, and call the outlined function. 2243 llvm::Function * 2244 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2245 LValue CapStruct = InitCapturedStruct(S); 2246 2247 // Emit the CapturedDecl 2248 CodeGenFunction CGF(CGM, true); 2249 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2250 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2251 delete CGF.CapturedStmtInfo; 2252 2253 // Emit call to the helper function. 2254 EmitCallOrInvoke(F, CapStruct.getPointer()); 2255 2256 return F; 2257 } 2258 2259 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2260 LValue CapStruct = InitCapturedStruct(S); 2261 return CapStruct.getAddress(); 2262 } 2263 2264 /// Creates the outlined function for a CapturedStmt. 2265 llvm::Function * 2266 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2267 assert(CapturedStmtInfo && 2268 "CapturedStmtInfo should be set when generating the captured function"); 2269 const CapturedDecl *CD = S.getCapturedDecl(); 2270 const RecordDecl *RD = S.getCapturedRecordDecl(); 2271 SourceLocation Loc = S.getLocStart(); 2272 assert(CD->hasBody() && "missing CapturedDecl body"); 2273 2274 // Build the argument list. 2275 ASTContext &Ctx = CGM.getContext(); 2276 FunctionArgList Args; 2277 Args.append(CD->param_begin(), CD->param_end()); 2278 2279 // Create the function declaration. 2280 const CGFunctionInfo &FuncInfo = 2281 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2282 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2283 2284 llvm::Function *F = 2285 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2286 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2287 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2288 if (CD->isNothrow()) 2289 F->addFnAttr(llvm::Attribute::NoUnwind); 2290 2291 // Generate the function. 2292 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2293 CD->getLocation(), 2294 CD->getBody()->getLocStart()); 2295 // Set the context parameter in CapturedStmtInfo. 2296 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2297 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2298 2299 // Initialize variable-length arrays. 2300 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2301 Ctx.getTagDeclType(RD)); 2302 for (auto *FD : RD->fields()) { 2303 if (FD->hasCapturedVLAType()) { 2304 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2305 S.getLocStart()).getScalarVal(); 2306 auto VAT = FD->getCapturedVLAType(); 2307 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2308 } 2309 } 2310 2311 // If 'this' is captured, load it into CXXThisValue. 2312 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2313 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2314 LValue ThisLValue = EmitLValueForField(Base, FD); 2315 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2316 } 2317 2318 PGO.assignRegionCounters(GlobalDecl(CD), F); 2319 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2320 FinishFunction(CD->getBodyRBrace()); 2321 2322 return F; 2323 } 2324