1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 case Stmt::CoreturnStmtClass: 146 CGM.ErrorUnsupported(S, "coroutine"); 147 break; 148 case Stmt::CapturedStmtClass: { 149 const CapturedStmt *CS = cast<CapturedStmt>(S); 150 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 151 } 152 break; 153 case Stmt::ObjCAtTryStmtClass: 154 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 155 break; 156 case Stmt::ObjCAtCatchStmtClass: 157 llvm_unreachable( 158 "@catch statements should be handled by EmitObjCAtTryStmt"); 159 case Stmt::ObjCAtFinallyStmtClass: 160 llvm_unreachable( 161 "@finally statements should be handled by EmitObjCAtTryStmt"); 162 case Stmt::ObjCAtThrowStmtClass: 163 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 164 break; 165 case Stmt::ObjCAtSynchronizedStmtClass: 166 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 167 break; 168 case Stmt::ObjCForCollectionStmtClass: 169 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 170 break; 171 case Stmt::ObjCAutoreleasePoolStmtClass: 172 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 173 break; 174 175 case Stmt::CXXTryStmtClass: 176 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 177 break; 178 case Stmt::CXXForRangeStmtClass: 179 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 180 break; 181 case Stmt::SEHTryStmtClass: 182 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 183 break; 184 case Stmt::OMPParallelDirectiveClass: 185 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 186 break; 187 case Stmt::OMPSimdDirectiveClass: 188 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 189 break; 190 case Stmt::OMPForDirectiveClass: 191 EmitOMPForDirective(cast<OMPForDirective>(*S)); 192 break; 193 case Stmt::OMPForSimdDirectiveClass: 194 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 195 break; 196 case Stmt::OMPSectionsDirectiveClass: 197 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 198 break; 199 case Stmt::OMPSectionDirectiveClass: 200 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 201 break; 202 case Stmt::OMPSingleDirectiveClass: 203 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 204 break; 205 case Stmt::OMPMasterDirectiveClass: 206 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 207 break; 208 case Stmt::OMPCriticalDirectiveClass: 209 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 210 break; 211 case Stmt::OMPParallelForDirectiveClass: 212 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 213 break; 214 case Stmt::OMPParallelForSimdDirectiveClass: 215 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 216 break; 217 case Stmt::OMPParallelSectionsDirectiveClass: 218 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 219 break; 220 case Stmt::OMPTaskDirectiveClass: 221 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 222 break; 223 case Stmt::OMPTaskyieldDirectiveClass: 224 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 225 break; 226 case Stmt::OMPBarrierDirectiveClass: 227 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 228 break; 229 case Stmt::OMPTaskwaitDirectiveClass: 230 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 231 break; 232 case Stmt::OMPTaskgroupDirectiveClass: 233 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 234 break; 235 case Stmt::OMPFlushDirectiveClass: 236 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 237 break; 238 case Stmt::OMPOrderedDirectiveClass: 239 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 240 break; 241 case Stmt::OMPAtomicDirectiveClass: 242 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 243 break; 244 case Stmt::OMPTargetDirectiveClass: 245 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 246 break; 247 case Stmt::OMPTeamsDirectiveClass: 248 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 249 break; 250 case Stmt::OMPCancellationPointDirectiveClass: 251 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 252 break; 253 case Stmt::OMPCancelDirectiveClass: 254 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 255 break; 256 case Stmt::OMPTargetDataDirectiveClass: 257 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 258 break; 259 } 260 } 261 262 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 263 switch (S->getStmtClass()) { 264 default: return false; 265 case Stmt::NullStmtClass: break; 266 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 267 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 268 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 269 case Stmt::AttributedStmtClass: 270 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 271 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 272 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 273 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 274 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 275 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 276 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 277 } 278 279 return true; 280 } 281 282 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 283 /// this captures the expression result of the last sub-statement and returns it 284 /// (for use by the statement expression extension). 285 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 286 AggValueSlot AggSlot) { 287 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 288 "LLVM IR generation of compound statement ('{}')"); 289 290 // Keep track of the current cleanup stack depth, including debug scopes. 291 LexicalScope Scope(*this, S.getSourceRange()); 292 293 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 294 } 295 296 Address 297 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 298 bool GetLast, 299 AggValueSlot AggSlot) { 300 301 for (CompoundStmt::const_body_iterator I = S.body_begin(), 302 E = S.body_end()-GetLast; I != E; ++I) 303 EmitStmt(*I); 304 305 Address RetAlloca = Address::invalid(); 306 if (GetLast) { 307 // We have to special case labels here. They are statements, but when put 308 // at the end of a statement expression, they yield the value of their 309 // subexpression. Handle this by walking through all labels we encounter, 310 // emitting them before we evaluate the subexpr. 311 const Stmt *LastStmt = S.body_back(); 312 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 313 EmitLabel(LS->getDecl()); 314 LastStmt = LS->getSubStmt(); 315 } 316 317 EnsureInsertPoint(); 318 319 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 320 if (hasAggregateEvaluationKind(ExprTy)) { 321 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 322 } else { 323 // We can't return an RValue here because there might be cleanups at 324 // the end of the StmtExpr. Because of that, we have to emit the result 325 // here into a temporary alloca. 326 RetAlloca = CreateMemTemp(ExprTy); 327 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 328 /*IsInit*/false); 329 } 330 331 } 332 333 return RetAlloca; 334 } 335 336 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 337 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 338 339 // If there is a cleanup stack, then we it isn't worth trying to 340 // simplify this block (we would need to remove it from the scope map 341 // and cleanup entry). 342 if (!EHStack.empty()) 343 return; 344 345 // Can only simplify direct branches. 346 if (!BI || !BI->isUnconditional()) 347 return; 348 349 // Can only simplify empty blocks. 350 if (BI->getIterator() != BB->begin()) 351 return; 352 353 BB->replaceAllUsesWith(BI->getSuccessor(0)); 354 BI->eraseFromParent(); 355 BB->eraseFromParent(); 356 } 357 358 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 359 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 360 361 // Fall out of the current block (if necessary). 362 EmitBranch(BB); 363 364 if (IsFinished && BB->use_empty()) { 365 delete BB; 366 return; 367 } 368 369 // Place the block after the current block, if possible, or else at 370 // the end of the function. 371 if (CurBB && CurBB->getParent()) 372 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 373 else 374 CurFn->getBasicBlockList().push_back(BB); 375 Builder.SetInsertPoint(BB); 376 } 377 378 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 379 // Emit a branch from the current block to the target one if this 380 // was a real block. If this was just a fall-through block after a 381 // terminator, don't emit it. 382 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 383 384 if (!CurBB || CurBB->getTerminator()) { 385 // If there is no insert point or the previous block is already 386 // terminated, don't touch it. 387 } else { 388 // Otherwise, create a fall-through branch. 389 Builder.CreateBr(Target); 390 } 391 392 Builder.ClearInsertionPoint(); 393 } 394 395 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 396 bool inserted = false; 397 for (llvm::User *u : block->users()) { 398 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 399 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 400 block); 401 inserted = true; 402 break; 403 } 404 } 405 406 if (!inserted) 407 CurFn->getBasicBlockList().push_back(block); 408 409 Builder.SetInsertPoint(block); 410 } 411 412 CodeGenFunction::JumpDest 413 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 414 JumpDest &Dest = LabelMap[D]; 415 if (Dest.isValid()) return Dest; 416 417 // Create, but don't insert, the new block. 418 Dest = JumpDest(createBasicBlock(D->getName()), 419 EHScopeStack::stable_iterator::invalid(), 420 NextCleanupDestIndex++); 421 return Dest; 422 } 423 424 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 425 // Add this label to the current lexical scope if we're within any 426 // normal cleanups. Jumps "in" to this label --- when permitted by 427 // the language --- may need to be routed around such cleanups. 428 if (EHStack.hasNormalCleanups() && CurLexicalScope) 429 CurLexicalScope->addLabel(D); 430 431 JumpDest &Dest = LabelMap[D]; 432 433 // If we didn't need a forward reference to this label, just go 434 // ahead and create a destination at the current scope. 435 if (!Dest.isValid()) { 436 Dest = getJumpDestInCurrentScope(D->getName()); 437 438 // Otherwise, we need to give this label a target depth and remove 439 // it from the branch-fixups list. 440 } else { 441 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 442 Dest.setScopeDepth(EHStack.stable_begin()); 443 ResolveBranchFixups(Dest.getBlock()); 444 } 445 446 EmitBlock(Dest.getBlock()); 447 incrementProfileCounter(D->getStmt()); 448 } 449 450 /// Change the cleanup scope of the labels in this lexical scope to 451 /// match the scope of the enclosing context. 452 void CodeGenFunction::LexicalScope::rescopeLabels() { 453 assert(!Labels.empty()); 454 EHScopeStack::stable_iterator innermostScope 455 = CGF.EHStack.getInnermostNormalCleanup(); 456 457 // Change the scope depth of all the labels. 458 for (SmallVectorImpl<const LabelDecl*>::const_iterator 459 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 460 assert(CGF.LabelMap.count(*i)); 461 JumpDest &dest = CGF.LabelMap.find(*i)->second; 462 assert(dest.getScopeDepth().isValid()); 463 assert(innermostScope.encloses(dest.getScopeDepth())); 464 dest.setScopeDepth(innermostScope); 465 } 466 467 // Reparent the labels if the new scope also has cleanups. 468 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 469 ParentScope->Labels.append(Labels.begin(), Labels.end()); 470 } 471 } 472 473 474 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 475 EmitLabel(S.getDecl()); 476 EmitStmt(S.getSubStmt()); 477 } 478 479 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 480 const Stmt *SubStmt = S.getSubStmt(); 481 switch (SubStmt->getStmtClass()) { 482 case Stmt::DoStmtClass: 483 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 484 break; 485 case Stmt::ForStmtClass: 486 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 487 break; 488 case Stmt::WhileStmtClass: 489 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 490 break; 491 case Stmt::CXXForRangeStmtClass: 492 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 493 break; 494 default: 495 EmitStmt(SubStmt); 496 } 497 } 498 499 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 500 // If this code is reachable then emit a stop point (if generating 501 // debug info). We have to do this ourselves because we are on the 502 // "simple" statement path. 503 if (HaveInsertPoint()) 504 EmitStopPoint(&S); 505 506 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 507 } 508 509 510 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 511 if (const LabelDecl *Target = S.getConstantTarget()) { 512 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 513 return; 514 } 515 516 // Ensure that we have an i8* for our PHI node. 517 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 518 Int8PtrTy, "addr"); 519 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 520 521 // Get the basic block for the indirect goto. 522 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 523 524 // The first instruction in the block has to be the PHI for the switch dest, 525 // add an entry for this branch. 526 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 527 528 EmitBranch(IndGotoBB); 529 } 530 531 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 532 // C99 6.8.4.1: The first substatement is executed if the expression compares 533 // unequal to 0. The condition must be a scalar type. 534 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 535 536 if (S.getConditionVariable()) 537 EmitAutoVarDecl(*S.getConditionVariable()); 538 539 // If the condition constant folds and can be elided, try to avoid emitting 540 // the condition and the dead arm of the if/else. 541 bool CondConstant; 542 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 543 // Figure out which block (then or else) is executed. 544 const Stmt *Executed = S.getThen(); 545 const Stmt *Skipped = S.getElse(); 546 if (!CondConstant) // Condition false? 547 std::swap(Executed, Skipped); 548 549 // If the skipped block has no labels in it, just emit the executed block. 550 // This avoids emitting dead code and simplifies the CFG substantially. 551 if (!ContainsLabel(Skipped)) { 552 if (CondConstant) 553 incrementProfileCounter(&S); 554 if (Executed) { 555 RunCleanupsScope ExecutedScope(*this); 556 EmitStmt(Executed); 557 } 558 return; 559 } 560 } 561 562 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 563 // the conditional branch. 564 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 565 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 566 llvm::BasicBlock *ElseBlock = ContBlock; 567 if (S.getElse()) 568 ElseBlock = createBasicBlock("if.else"); 569 570 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 571 getProfileCount(S.getThen())); 572 573 // Emit the 'then' code. 574 EmitBlock(ThenBlock); 575 incrementProfileCounter(&S); 576 { 577 RunCleanupsScope ThenScope(*this); 578 EmitStmt(S.getThen()); 579 } 580 EmitBranch(ContBlock); 581 582 // Emit the 'else' code if present. 583 if (const Stmt *Else = S.getElse()) { 584 { 585 // There is no need to emit line number for an unconditional branch. 586 auto NL = ApplyDebugLocation::CreateEmpty(*this); 587 EmitBlock(ElseBlock); 588 } 589 { 590 RunCleanupsScope ElseScope(*this); 591 EmitStmt(Else); 592 } 593 { 594 // There is no need to emit line number for an unconditional branch. 595 auto NL = ApplyDebugLocation::CreateEmpty(*this); 596 EmitBranch(ContBlock); 597 } 598 } 599 600 // Emit the continuation block for code after the if. 601 EmitBlock(ContBlock, true); 602 } 603 604 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 605 ArrayRef<const Attr *> WhileAttrs) { 606 // Emit the header for the loop, which will also become 607 // the continue target. 608 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 609 EmitBlock(LoopHeader.getBlock()); 610 611 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs); 612 613 // Create an exit block for when the condition fails, which will 614 // also become the break target. 615 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 616 617 // Store the blocks to use for break and continue. 618 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 619 620 // C++ [stmt.while]p2: 621 // When the condition of a while statement is a declaration, the 622 // scope of the variable that is declared extends from its point 623 // of declaration (3.3.2) to the end of the while statement. 624 // [...] 625 // The object created in a condition is destroyed and created 626 // with each iteration of the loop. 627 RunCleanupsScope ConditionScope(*this); 628 629 if (S.getConditionVariable()) 630 EmitAutoVarDecl(*S.getConditionVariable()); 631 632 // Evaluate the conditional in the while header. C99 6.8.5.1: The 633 // evaluation of the controlling expression takes place before each 634 // execution of the loop body. 635 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 636 637 // while(1) is common, avoid extra exit blocks. Be sure 638 // to correctly handle break/continue though. 639 bool EmitBoolCondBranch = true; 640 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 641 if (C->isOne()) 642 EmitBoolCondBranch = false; 643 644 // As long as the condition is true, go to the loop body. 645 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 646 if (EmitBoolCondBranch) { 647 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 648 if (ConditionScope.requiresCleanups()) 649 ExitBlock = createBasicBlock("while.exit"); 650 Builder.CreateCondBr( 651 BoolCondVal, LoopBody, ExitBlock, 652 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 653 654 if (ExitBlock != LoopExit.getBlock()) { 655 EmitBlock(ExitBlock); 656 EmitBranchThroughCleanup(LoopExit); 657 } 658 } 659 660 // Emit the loop body. We have to emit this in a cleanup scope 661 // because it might be a singleton DeclStmt. 662 { 663 RunCleanupsScope BodyScope(*this); 664 EmitBlock(LoopBody); 665 incrementProfileCounter(&S); 666 EmitStmt(S.getBody()); 667 } 668 669 BreakContinueStack.pop_back(); 670 671 // Immediately force cleanup. 672 ConditionScope.ForceCleanup(); 673 674 EmitStopPoint(&S); 675 // Branch to the loop header again. 676 EmitBranch(LoopHeader.getBlock()); 677 678 LoopStack.pop(); 679 680 // Emit the exit block. 681 EmitBlock(LoopExit.getBlock(), true); 682 683 // The LoopHeader typically is just a branch if we skipped emitting 684 // a branch, try to erase it. 685 if (!EmitBoolCondBranch) 686 SimplifyForwardingBlocks(LoopHeader.getBlock()); 687 } 688 689 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 690 ArrayRef<const Attr *> DoAttrs) { 691 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 692 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 693 694 uint64_t ParentCount = getCurrentProfileCount(); 695 696 // Store the blocks to use for break and continue. 697 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 698 699 // Emit the body of the loop. 700 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 701 702 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs); 703 704 EmitBlockWithFallThrough(LoopBody, &S); 705 { 706 RunCleanupsScope BodyScope(*this); 707 EmitStmt(S.getBody()); 708 } 709 710 EmitBlock(LoopCond.getBlock()); 711 712 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 713 // after each execution of the loop body." 714 715 // Evaluate the conditional in the while header. 716 // C99 6.8.5p2/p4: The first substatement is executed if the expression 717 // compares unequal to 0. The condition must be a scalar type. 718 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 719 720 BreakContinueStack.pop_back(); 721 722 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 723 // to correctly handle break/continue though. 724 bool EmitBoolCondBranch = true; 725 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 726 if (C->isZero()) 727 EmitBoolCondBranch = false; 728 729 // As long as the condition is true, iterate the loop. 730 if (EmitBoolCondBranch) { 731 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 732 Builder.CreateCondBr( 733 BoolCondVal, LoopBody, LoopExit.getBlock(), 734 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 735 } 736 737 LoopStack.pop(); 738 739 // Emit the exit block. 740 EmitBlock(LoopExit.getBlock()); 741 742 // The DoCond block typically is just a branch if we skipped 743 // emitting a branch, try to erase it. 744 if (!EmitBoolCondBranch) 745 SimplifyForwardingBlocks(LoopCond.getBlock()); 746 } 747 748 void CodeGenFunction::EmitForStmt(const ForStmt &S, 749 ArrayRef<const Attr *> ForAttrs) { 750 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 751 752 LexicalScope ForScope(*this, S.getSourceRange()); 753 754 // Evaluate the first part before the loop. 755 if (S.getInit()) 756 EmitStmt(S.getInit()); 757 758 // Start the loop with a block that tests the condition. 759 // If there's an increment, the continue scope will be overwritten 760 // later. 761 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 762 llvm::BasicBlock *CondBlock = Continue.getBlock(); 763 EmitBlock(CondBlock); 764 765 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs); 766 767 // If the for loop doesn't have an increment we can just use the 768 // condition as the continue block. Otherwise we'll need to create 769 // a block for it (in the current scope, i.e. in the scope of the 770 // condition), and that we will become our continue block. 771 if (S.getInc()) 772 Continue = getJumpDestInCurrentScope("for.inc"); 773 774 // Store the blocks to use for break and continue. 775 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 776 777 // Create a cleanup scope for the condition variable cleanups. 778 LexicalScope ConditionScope(*this, S.getSourceRange()); 779 780 if (S.getCond()) { 781 // If the for statement has a condition scope, emit the local variable 782 // declaration. 783 if (S.getConditionVariable()) { 784 EmitAutoVarDecl(*S.getConditionVariable()); 785 } 786 787 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 788 // If there are any cleanups between here and the loop-exit scope, 789 // create a block to stage a loop exit along. 790 if (ForScope.requiresCleanups()) 791 ExitBlock = createBasicBlock("for.cond.cleanup"); 792 793 // As long as the condition is true, iterate the loop. 794 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 795 796 // C99 6.8.5p2/p4: The first substatement is executed if the expression 797 // compares unequal to 0. The condition must be a scalar type. 798 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 799 Builder.CreateCondBr( 800 BoolCondVal, ForBody, ExitBlock, 801 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 802 803 if (ExitBlock != LoopExit.getBlock()) { 804 EmitBlock(ExitBlock); 805 EmitBranchThroughCleanup(LoopExit); 806 } 807 808 EmitBlock(ForBody); 809 } else { 810 // Treat it as a non-zero constant. Don't even create a new block for the 811 // body, just fall into it. 812 } 813 incrementProfileCounter(&S); 814 815 { 816 // Create a separate cleanup scope for the body, in case it is not 817 // a compound statement. 818 RunCleanupsScope BodyScope(*this); 819 EmitStmt(S.getBody()); 820 } 821 822 // If there is an increment, emit it next. 823 if (S.getInc()) { 824 EmitBlock(Continue.getBlock()); 825 EmitStmt(S.getInc()); 826 } 827 828 BreakContinueStack.pop_back(); 829 830 ConditionScope.ForceCleanup(); 831 832 EmitStopPoint(&S); 833 EmitBranch(CondBlock); 834 835 ForScope.ForceCleanup(); 836 837 LoopStack.pop(); 838 839 // Emit the fall-through block. 840 EmitBlock(LoopExit.getBlock(), true); 841 } 842 843 void 844 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 845 ArrayRef<const Attr *> ForAttrs) { 846 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 847 848 LexicalScope ForScope(*this, S.getSourceRange()); 849 850 // Evaluate the first pieces before the loop. 851 EmitStmt(S.getRangeStmt()); 852 EmitStmt(S.getBeginEndStmt()); 853 854 // Start the loop with a block that tests the condition. 855 // If there's an increment, the continue scope will be overwritten 856 // later. 857 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 858 EmitBlock(CondBlock); 859 860 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs); 861 862 // If there are any cleanups between here and the loop-exit scope, 863 // create a block to stage a loop exit along. 864 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 865 if (ForScope.requiresCleanups()) 866 ExitBlock = createBasicBlock("for.cond.cleanup"); 867 868 // The loop body, consisting of the specified body and the loop variable. 869 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 870 871 // The body is executed if the expression, contextually converted 872 // to bool, is true. 873 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 874 Builder.CreateCondBr( 875 BoolCondVal, ForBody, ExitBlock, 876 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 877 878 if (ExitBlock != LoopExit.getBlock()) { 879 EmitBlock(ExitBlock); 880 EmitBranchThroughCleanup(LoopExit); 881 } 882 883 EmitBlock(ForBody); 884 incrementProfileCounter(&S); 885 886 // Create a block for the increment. In case of a 'continue', we jump there. 887 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 888 889 // Store the blocks to use for break and continue. 890 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 891 892 { 893 // Create a separate cleanup scope for the loop variable and body. 894 LexicalScope BodyScope(*this, S.getSourceRange()); 895 EmitStmt(S.getLoopVarStmt()); 896 EmitStmt(S.getBody()); 897 } 898 899 EmitStopPoint(&S); 900 // If there is an increment, emit it next. 901 EmitBlock(Continue.getBlock()); 902 EmitStmt(S.getInc()); 903 904 BreakContinueStack.pop_back(); 905 906 EmitBranch(CondBlock); 907 908 ForScope.ForceCleanup(); 909 910 LoopStack.pop(); 911 912 // Emit the fall-through block. 913 EmitBlock(LoopExit.getBlock(), true); 914 } 915 916 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 917 if (RV.isScalar()) { 918 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 919 } else if (RV.isAggregate()) { 920 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 921 } else { 922 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 923 /*init*/ true); 924 } 925 EmitBranchThroughCleanup(ReturnBlock); 926 } 927 928 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 929 /// if the function returns void, or may be missing one if the function returns 930 /// non-void. Fun stuff :). 931 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 932 // Returning from an outlined SEH helper is UB, and we already warn on it. 933 if (IsOutlinedSEHHelper) { 934 Builder.CreateUnreachable(); 935 Builder.ClearInsertionPoint(); 936 } 937 938 // Emit the result value, even if unused, to evalute the side effects. 939 const Expr *RV = S.getRetValue(); 940 941 // Treat block literals in a return expression as if they appeared 942 // in their own scope. This permits a small, easily-implemented 943 // exception to our over-conservative rules about not jumping to 944 // statements following block literals with non-trivial cleanups. 945 RunCleanupsScope cleanupScope(*this); 946 if (const ExprWithCleanups *cleanups = 947 dyn_cast_or_null<ExprWithCleanups>(RV)) { 948 enterFullExpression(cleanups); 949 RV = cleanups->getSubExpr(); 950 } 951 952 // FIXME: Clean this up by using an LValue for ReturnTemp, 953 // EmitStoreThroughLValue, and EmitAnyExpr. 954 if (getLangOpts().ElideConstructors && 955 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 956 // Apply the named return value optimization for this return statement, 957 // which means doing nothing: the appropriate result has already been 958 // constructed into the NRVO variable. 959 960 // If there is an NRVO flag for this variable, set it to 1 into indicate 961 // that the cleanup code should not destroy the variable. 962 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 963 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 964 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 965 // Make sure not to return anything, but evaluate the expression 966 // for side effects. 967 if (RV) 968 EmitAnyExpr(RV); 969 } else if (!RV) { 970 // Do nothing (return value is left uninitialized) 971 } else if (FnRetTy->isReferenceType()) { 972 // If this function returns a reference, take the address of the expression 973 // rather than the value. 974 RValue Result = EmitReferenceBindingToExpr(RV); 975 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 976 } else { 977 switch (getEvaluationKind(RV->getType())) { 978 case TEK_Scalar: 979 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 980 break; 981 case TEK_Complex: 982 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 983 /*isInit*/ true); 984 break; 985 case TEK_Aggregate: 986 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 987 Qualifiers(), 988 AggValueSlot::IsDestructed, 989 AggValueSlot::DoesNotNeedGCBarriers, 990 AggValueSlot::IsNotAliased)); 991 break; 992 } 993 } 994 995 ++NumReturnExprs; 996 if (!RV || RV->isEvaluatable(getContext())) 997 ++NumSimpleReturnExprs; 998 999 cleanupScope.ForceCleanup(); 1000 EmitBranchThroughCleanup(ReturnBlock); 1001 } 1002 1003 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1004 // As long as debug info is modeled with instructions, we have to ensure we 1005 // have a place to insert here and write the stop point here. 1006 if (HaveInsertPoint()) 1007 EmitStopPoint(&S); 1008 1009 for (const auto *I : S.decls()) 1010 EmitDecl(*I); 1011 } 1012 1013 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1014 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1015 1016 // If this code is reachable then emit a stop point (if generating 1017 // debug info). We have to do this ourselves because we are on the 1018 // "simple" statement path. 1019 if (HaveInsertPoint()) 1020 EmitStopPoint(&S); 1021 1022 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1023 } 1024 1025 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1026 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1027 1028 // If this code is reachable then emit a stop point (if generating 1029 // debug info). We have to do this ourselves because we are on the 1030 // "simple" statement path. 1031 if (HaveInsertPoint()) 1032 EmitStopPoint(&S); 1033 1034 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1035 } 1036 1037 /// EmitCaseStmtRange - If case statement range is not too big then 1038 /// add multiple cases to switch instruction, one for each value within 1039 /// the range. If range is too big then emit "if" condition check. 1040 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1041 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1042 1043 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1044 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1045 1046 // Emit the code for this case. We do this first to make sure it is 1047 // properly chained from our predecessor before generating the 1048 // switch machinery to enter this block. 1049 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1050 EmitBlockWithFallThrough(CaseDest, &S); 1051 EmitStmt(S.getSubStmt()); 1052 1053 // If range is empty, do nothing. 1054 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1055 return; 1056 1057 llvm::APInt Range = RHS - LHS; 1058 // FIXME: parameters such as this should not be hardcoded. 1059 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1060 // Range is small enough to add multiple switch instruction cases. 1061 uint64_t Total = getProfileCount(&S); 1062 unsigned NCases = Range.getZExtValue() + 1; 1063 // We only have one region counter for the entire set of cases here, so we 1064 // need to divide the weights evenly between the generated cases, ensuring 1065 // that the total weight is preserved. E.g., a weight of 5 over three cases 1066 // will be distributed as weights of 2, 2, and 1. 1067 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1068 for (unsigned I = 0; I != NCases; ++I) { 1069 if (SwitchWeights) 1070 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1071 if (Rem) 1072 Rem--; 1073 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1074 LHS++; 1075 } 1076 return; 1077 } 1078 1079 // The range is too big. Emit "if" condition into a new block, 1080 // making sure to save and restore the current insertion point. 1081 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1082 1083 // Push this test onto the chain of range checks (which terminates 1084 // in the default basic block). The switch's default will be changed 1085 // to the top of this chain after switch emission is complete. 1086 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1087 CaseRangeBlock = createBasicBlock("sw.caserange"); 1088 1089 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1090 Builder.SetInsertPoint(CaseRangeBlock); 1091 1092 // Emit range check. 1093 llvm::Value *Diff = 1094 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1095 llvm::Value *Cond = 1096 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1097 1098 llvm::MDNode *Weights = nullptr; 1099 if (SwitchWeights) { 1100 uint64_t ThisCount = getProfileCount(&S); 1101 uint64_t DefaultCount = (*SwitchWeights)[0]; 1102 Weights = createProfileWeights(ThisCount, DefaultCount); 1103 1104 // Since we're chaining the switch default through each large case range, we 1105 // need to update the weight for the default, ie, the first case, to include 1106 // this case. 1107 (*SwitchWeights)[0] += ThisCount; 1108 } 1109 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1110 1111 // Restore the appropriate insertion point. 1112 if (RestoreBB) 1113 Builder.SetInsertPoint(RestoreBB); 1114 else 1115 Builder.ClearInsertionPoint(); 1116 } 1117 1118 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1119 // If there is no enclosing switch instance that we're aware of, then this 1120 // case statement and its block can be elided. This situation only happens 1121 // when we've constant-folded the switch, are emitting the constant case, 1122 // and part of the constant case includes another case statement. For 1123 // instance: switch (4) { case 4: do { case 5: } while (1); } 1124 if (!SwitchInsn) { 1125 EmitStmt(S.getSubStmt()); 1126 return; 1127 } 1128 1129 // Handle case ranges. 1130 if (S.getRHS()) { 1131 EmitCaseStmtRange(S); 1132 return; 1133 } 1134 1135 llvm::ConstantInt *CaseVal = 1136 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1137 1138 // If the body of the case is just a 'break', try to not emit an empty block. 1139 // If we're profiling or we're not optimizing, leave the block in for better 1140 // debug and coverage analysis. 1141 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1142 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1143 isa<BreakStmt>(S.getSubStmt())) { 1144 JumpDest Block = BreakContinueStack.back().BreakBlock; 1145 1146 // Only do this optimization if there are no cleanups that need emitting. 1147 if (isObviouslyBranchWithoutCleanups(Block)) { 1148 if (SwitchWeights) 1149 SwitchWeights->push_back(getProfileCount(&S)); 1150 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1151 1152 // If there was a fallthrough into this case, make sure to redirect it to 1153 // the end of the switch as well. 1154 if (Builder.GetInsertBlock()) { 1155 Builder.CreateBr(Block.getBlock()); 1156 Builder.ClearInsertionPoint(); 1157 } 1158 return; 1159 } 1160 } 1161 1162 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1163 EmitBlockWithFallThrough(CaseDest, &S); 1164 if (SwitchWeights) 1165 SwitchWeights->push_back(getProfileCount(&S)); 1166 SwitchInsn->addCase(CaseVal, CaseDest); 1167 1168 // Recursively emitting the statement is acceptable, but is not wonderful for 1169 // code where we have many case statements nested together, i.e.: 1170 // case 1: 1171 // case 2: 1172 // case 3: etc. 1173 // Handling this recursively will create a new block for each case statement 1174 // that falls through to the next case which is IR intensive. It also causes 1175 // deep recursion which can run into stack depth limitations. Handle 1176 // sequential non-range case statements specially. 1177 const CaseStmt *CurCase = &S; 1178 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1179 1180 // Otherwise, iteratively add consecutive cases to this switch stmt. 1181 while (NextCase && NextCase->getRHS() == nullptr) { 1182 CurCase = NextCase; 1183 llvm::ConstantInt *CaseVal = 1184 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1185 1186 if (SwitchWeights) 1187 SwitchWeights->push_back(getProfileCount(NextCase)); 1188 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1189 CaseDest = createBasicBlock("sw.bb"); 1190 EmitBlockWithFallThrough(CaseDest, &S); 1191 } 1192 1193 SwitchInsn->addCase(CaseVal, CaseDest); 1194 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1195 } 1196 1197 // Normal default recursion for non-cases. 1198 EmitStmt(CurCase->getSubStmt()); 1199 } 1200 1201 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1202 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1203 assert(DefaultBlock->empty() && 1204 "EmitDefaultStmt: Default block already defined?"); 1205 1206 EmitBlockWithFallThrough(DefaultBlock, &S); 1207 1208 EmitStmt(S.getSubStmt()); 1209 } 1210 1211 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1212 /// constant value that is being switched on, see if we can dead code eliminate 1213 /// the body of the switch to a simple series of statements to emit. Basically, 1214 /// on a switch (5) we want to find these statements: 1215 /// case 5: 1216 /// printf(...); <-- 1217 /// ++i; <-- 1218 /// break; 1219 /// 1220 /// and add them to the ResultStmts vector. If it is unsafe to do this 1221 /// transformation (for example, one of the elided statements contains a label 1222 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1223 /// should include statements after it (e.g. the printf() line is a substmt of 1224 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1225 /// statement, then return CSFC_Success. 1226 /// 1227 /// If Case is non-null, then we are looking for the specified case, checking 1228 /// that nothing we jump over contains labels. If Case is null, then we found 1229 /// the case and are looking for the break. 1230 /// 1231 /// If the recursive walk actually finds our Case, then we set FoundCase to 1232 /// true. 1233 /// 1234 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1235 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1236 const SwitchCase *Case, 1237 bool &FoundCase, 1238 SmallVectorImpl<const Stmt*> &ResultStmts) { 1239 // If this is a null statement, just succeed. 1240 if (!S) 1241 return Case ? CSFC_Success : CSFC_FallThrough; 1242 1243 // If this is the switchcase (case 4: or default) that we're looking for, then 1244 // we're in business. Just add the substatement. 1245 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1246 if (S == Case) { 1247 FoundCase = true; 1248 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1249 ResultStmts); 1250 } 1251 1252 // Otherwise, this is some other case or default statement, just ignore it. 1253 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1254 ResultStmts); 1255 } 1256 1257 // If we are in the live part of the code and we found our break statement, 1258 // return a success! 1259 if (!Case && isa<BreakStmt>(S)) 1260 return CSFC_Success; 1261 1262 // If this is a switch statement, then it might contain the SwitchCase, the 1263 // break, or neither. 1264 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1265 // Handle this as two cases: we might be looking for the SwitchCase (if so 1266 // the skipped statements must be skippable) or we might already have it. 1267 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1268 if (Case) { 1269 // Keep track of whether we see a skipped declaration. The code could be 1270 // using the declaration even if it is skipped, so we can't optimize out 1271 // the decl if the kept statements might refer to it. 1272 bool HadSkippedDecl = false; 1273 1274 // If we're looking for the case, just see if we can skip each of the 1275 // substatements. 1276 for (; Case && I != E; ++I) { 1277 HadSkippedDecl |= isa<DeclStmt>(*I); 1278 1279 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1280 case CSFC_Failure: return CSFC_Failure; 1281 case CSFC_Success: 1282 // A successful result means that either 1) that the statement doesn't 1283 // have the case and is skippable, or 2) does contain the case value 1284 // and also contains the break to exit the switch. In the later case, 1285 // we just verify the rest of the statements are elidable. 1286 if (FoundCase) { 1287 // If we found the case and skipped declarations, we can't do the 1288 // optimization. 1289 if (HadSkippedDecl) 1290 return CSFC_Failure; 1291 1292 for (++I; I != E; ++I) 1293 if (CodeGenFunction::ContainsLabel(*I, true)) 1294 return CSFC_Failure; 1295 return CSFC_Success; 1296 } 1297 break; 1298 case CSFC_FallThrough: 1299 // If we have a fallthrough condition, then we must have found the 1300 // case started to include statements. Consider the rest of the 1301 // statements in the compound statement as candidates for inclusion. 1302 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1303 // We recursively found Case, so we're not looking for it anymore. 1304 Case = nullptr; 1305 1306 // If we found the case and skipped declarations, we can't do the 1307 // optimization. 1308 if (HadSkippedDecl) 1309 return CSFC_Failure; 1310 break; 1311 } 1312 } 1313 } 1314 1315 // If we have statements in our range, then we know that the statements are 1316 // live and need to be added to the set of statements we're tracking. 1317 for (; I != E; ++I) { 1318 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1319 case CSFC_Failure: return CSFC_Failure; 1320 case CSFC_FallThrough: 1321 // A fallthrough result means that the statement was simple and just 1322 // included in ResultStmt, keep adding them afterwards. 1323 break; 1324 case CSFC_Success: 1325 // A successful result means that we found the break statement and 1326 // stopped statement inclusion. We just ensure that any leftover stmts 1327 // are skippable and return success ourselves. 1328 for (++I; I != E; ++I) 1329 if (CodeGenFunction::ContainsLabel(*I, true)) 1330 return CSFC_Failure; 1331 return CSFC_Success; 1332 } 1333 } 1334 1335 return Case ? CSFC_Success : CSFC_FallThrough; 1336 } 1337 1338 // Okay, this is some other statement that we don't handle explicitly, like a 1339 // for statement or increment etc. If we are skipping over this statement, 1340 // just verify it doesn't have labels, which would make it invalid to elide. 1341 if (Case) { 1342 if (CodeGenFunction::ContainsLabel(S, true)) 1343 return CSFC_Failure; 1344 return CSFC_Success; 1345 } 1346 1347 // Otherwise, we want to include this statement. Everything is cool with that 1348 // so long as it doesn't contain a break out of the switch we're in. 1349 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1350 1351 // Otherwise, everything is great. Include the statement and tell the caller 1352 // that we fall through and include the next statement as well. 1353 ResultStmts.push_back(S); 1354 return CSFC_FallThrough; 1355 } 1356 1357 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1358 /// then invoke CollectStatementsForCase to find the list of statements to emit 1359 /// for a switch on constant. See the comment above CollectStatementsForCase 1360 /// for more details. 1361 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1362 const llvm::APSInt &ConstantCondValue, 1363 SmallVectorImpl<const Stmt*> &ResultStmts, 1364 ASTContext &C, 1365 const SwitchCase *&ResultCase) { 1366 // First step, find the switch case that is being branched to. We can do this 1367 // efficiently by scanning the SwitchCase list. 1368 const SwitchCase *Case = S.getSwitchCaseList(); 1369 const DefaultStmt *DefaultCase = nullptr; 1370 1371 for (; Case; Case = Case->getNextSwitchCase()) { 1372 // It's either a default or case. Just remember the default statement in 1373 // case we're not jumping to any numbered cases. 1374 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1375 DefaultCase = DS; 1376 continue; 1377 } 1378 1379 // Check to see if this case is the one we're looking for. 1380 const CaseStmt *CS = cast<CaseStmt>(Case); 1381 // Don't handle case ranges yet. 1382 if (CS->getRHS()) return false; 1383 1384 // If we found our case, remember it as 'case'. 1385 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1386 break; 1387 } 1388 1389 // If we didn't find a matching case, we use a default if it exists, or we 1390 // elide the whole switch body! 1391 if (!Case) { 1392 // It is safe to elide the body of the switch if it doesn't contain labels 1393 // etc. If it is safe, return successfully with an empty ResultStmts list. 1394 if (!DefaultCase) 1395 return !CodeGenFunction::ContainsLabel(&S); 1396 Case = DefaultCase; 1397 } 1398 1399 // Ok, we know which case is being jumped to, try to collect all the 1400 // statements that follow it. This can fail for a variety of reasons. Also, 1401 // check to see that the recursive walk actually found our case statement. 1402 // Insane cases like this can fail to find it in the recursive walk since we 1403 // don't handle every stmt kind: 1404 // switch (4) { 1405 // while (1) { 1406 // case 4: ... 1407 bool FoundCase = false; 1408 ResultCase = Case; 1409 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1410 ResultStmts) != CSFC_Failure && 1411 FoundCase; 1412 } 1413 1414 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1415 // Handle nested switch statements. 1416 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1417 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1418 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1419 1420 // See if we can constant fold the condition of the switch and therefore only 1421 // emit the live case statement (if any) of the switch. 1422 llvm::APSInt ConstantCondValue; 1423 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1424 SmallVector<const Stmt*, 4> CaseStmts; 1425 const SwitchCase *Case = nullptr; 1426 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1427 getContext(), Case)) { 1428 if (Case) 1429 incrementProfileCounter(Case); 1430 RunCleanupsScope ExecutedScope(*this); 1431 1432 // Emit the condition variable if needed inside the entire cleanup scope 1433 // used by this special case for constant folded switches. 1434 if (S.getConditionVariable()) 1435 EmitAutoVarDecl(*S.getConditionVariable()); 1436 1437 // At this point, we are no longer "within" a switch instance, so 1438 // we can temporarily enforce this to ensure that any embedded case 1439 // statements are not emitted. 1440 SwitchInsn = nullptr; 1441 1442 // Okay, we can dead code eliminate everything except this case. Emit the 1443 // specified series of statements and we're good. 1444 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1445 EmitStmt(CaseStmts[i]); 1446 incrementProfileCounter(&S); 1447 1448 // Now we want to restore the saved switch instance so that nested 1449 // switches continue to function properly 1450 SwitchInsn = SavedSwitchInsn; 1451 1452 return; 1453 } 1454 } 1455 1456 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1457 1458 RunCleanupsScope ConditionScope(*this); 1459 if (S.getConditionVariable()) 1460 EmitAutoVarDecl(*S.getConditionVariable()); 1461 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1462 1463 // Create basic block to hold stuff that comes after switch 1464 // statement. We also need to create a default block now so that 1465 // explicit case ranges tests can have a place to jump to on 1466 // failure. 1467 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1468 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1469 if (PGO.haveRegionCounts()) { 1470 // Walk the SwitchCase list to find how many there are. 1471 uint64_t DefaultCount = 0; 1472 unsigned NumCases = 0; 1473 for (const SwitchCase *Case = S.getSwitchCaseList(); 1474 Case; 1475 Case = Case->getNextSwitchCase()) { 1476 if (isa<DefaultStmt>(Case)) 1477 DefaultCount = getProfileCount(Case); 1478 NumCases += 1; 1479 } 1480 SwitchWeights = new SmallVector<uint64_t, 16>(); 1481 SwitchWeights->reserve(NumCases); 1482 // The default needs to be first. We store the edge count, so we already 1483 // know the right weight. 1484 SwitchWeights->push_back(DefaultCount); 1485 } 1486 CaseRangeBlock = DefaultBlock; 1487 1488 // Clear the insertion point to indicate we are in unreachable code. 1489 Builder.ClearInsertionPoint(); 1490 1491 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1492 // then reuse last ContinueBlock. 1493 JumpDest OuterContinue; 1494 if (!BreakContinueStack.empty()) 1495 OuterContinue = BreakContinueStack.back().ContinueBlock; 1496 1497 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1498 1499 // Emit switch body. 1500 EmitStmt(S.getBody()); 1501 1502 BreakContinueStack.pop_back(); 1503 1504 // Update the default block in case explicit case range tests have 1505 // been chained on top. 1506 SwitchInsn->setDefaultDest(CaseRangeBlock); 1507 1508 // If a default was never emitted: 1509 if (!DefaultBlock->getParent()) { 1510 // If we have cleanups, emit the default block so that there's a 1511 // place to jump through the cleanups from. 1512 if (ConditionScope.requiresCleanups()) { 1513 EmitBlock(DefaultBlock); 1514 1515 // Otherwise, just forward the default block to the switch end. 1516 } else { 1517 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1518 delete DefaultBlock; 1519 } 1520 } 1521 1522 ConditionScope.ForceCleanup(); 1523 1524 // Emit continuation. 1525 EmitBlock(SwitchExit.getBlock(), true); 1526 incrementProfileCounter(&S); 1527 1528 // If the switch has a condition wrapped by __builtin_unpredictable, 1529 // create metadata that specifies that the switch is unpredictable. 1530 // Don't bother if not optimizing because that metadata would not be used. 1531 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 1532 if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) { 1533 const Decl *TargetDecl = Call->getCalleeDecl(); 1534 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 1535 if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1536 llvm::MDBuilder MDHelper(getLLVMContext()); 1537 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1538 MDHelper.createUnpredictable()); 1539 } 1540 } 1541 } 1542 } 1543 1544 if (SwitchWeights) { 1545 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1546 "switch weights do not match switch cases"); 1547 // If there's only one jump destination there's no sense weighting it. 1548 if (SwitchWeights->size() > 1) 1549 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1550 createProfileWeights(*SwitchWeights)); 1551 delete SwitchWeights; 1552 } 1553 SwitchInsn = SavedSwitchInsn; 1554 SwitchWeights = SavedSwitchWeights; 1555 CaseRangeBlock = SavedCRBlock; 1556 } 1557 1558 static std::string 1559 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1560 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1561 std::string Result; 1562 1563 while (*Constraint) { 1564 switch (*Constraint) { 1565 default: 1566 Result += Target.convertConstraint(Constraint); 1567 break; 1568 // Ignore these 1569 case '*': 1570 case '?': 1571 case '!': 1572 case '=': // Will see this and the following in mult-alt constraints. 1573 case '+': 1574 break; 1575 case '#': // Ignore the rest of the constraint alternative. 1576 while (Constraint[1] && Constraint[1] != ',') 1577 Constraint++; 1578 break; 1579 case '&': 1580 case '%': 1581 Result += *Constraint; 1582 while (Constraint[1] && Constraint[1] == *Constraint) 1583 Constraint++; 1584 break; 1585 case ',': 1586 Result += "|"; 1587 break; 1588 case 'g': 1589 Result += "imr"; 1590 break; 1591 case '[': { 1592 assert(OutCons && 1593 "Must pass output names to constraints with a symbolic name"); 1594 unsigned Index; 1595 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1596 assert(result && "Could not resolve symbolic name"); (void)result; 1597 Result += llvm::utostr(Index); 1598 break; 1599 } 1600 } 1601 1602 Constraint++; 1603 } 1604 1605 return Result; 1606 } 1607 1608 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1609 /// as using a particular register add that as a constraint that will be used 1610 /// in this asm stmt. 1611 static std::string 1612 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1613 const TargetInfo &Target, CodeGenModule &CGM, 1614 const AsmStmt &Stmt, const bool EarlyClobber) { 1615 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1616 if (!AsmDeclRef) 1617 return Constraint; 1618 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1619 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1620 if (!Variable) 1621 return Constraint; 1622 if (Variable->getStorageClass() != SC_Register) 1623 return Constraint; 1624 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1625 if (!Attr) 1626 return Constraint; 1627 StringRef Register = Attr->getLabel(); 1628 assert(Target.isValidGCCRegisterName(Register)); 1629 // We're using validateOutputConstraint here because we only care if 1630 // this is a register constraint. 1631 TargetInfo::ConstraintInfo Info(Constraint, ""); 1632 if (Target.validateOutputConstraint(Info) && 1633 !Info.allowsRegister()) { 1634 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1635 return Constraint; 1636 } 1637 // Canonicalize the register here before returning it. 1638 Register = Target.getNormalizedGCCRegisterName(Register); 1639 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1640 } 1641 1642 llvm::Value* 1643 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1644 LValue InputValue, QualType InputType, 1645 std::string &ConstraintStr, 1646 SourceLocation Loc) { 1647 llvm::Value *Arg; 1648 if (Info.allowsRegister() || !Info.allowsMemory()) { 1649 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1650 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1651 } else { 1652 llvm::Type *Ty = ConvertType(InputType); 1653 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1654 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1655 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1656 Ty = llvm::PointerType::getUnqual(Ty); 1657 1658 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1659 Ty)); 1660 } else { 1661 Arg = InputValue.getPointer(); 1662 ConstraintStr += '*'; 1663 } 1664 } 1665 } else { 1666 Arg = InputValue.getPointer(); 1667 ConstraintStr += '*'; 1668 } 1669 1670 return Arg; 1671 } 1672 1673 llvm::Value* CodeGenFunction::EmitAsmInput( 1674 const TargetInfo::ConstraintInfo &Info, 1675 const Expr *InputExpr, 1676 std::string &ConstraintStr) { 1677 // If this can't be a register or memory, i.e., has to be a constant 1678 // (immediate or symbolic), try to emit it as such. 1679 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1680 llvm::APSInt Result; 1681 if (InputExpr->EvaluateAsInt(Result, getContext())) 1682 return llvm::ConstantInt::get(getLLVMContext(), Result); 1683 assert(!Info.requiresImmediateConstant() && 1684 "Required-immediate inlineasm arg isn't constant?"); 1685 } 1686 1687 if (Info.allowsRegister() || !Info.allowsMemory()) 1688 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1689 return EmitScalarExpr(InputExpr); 1690 1691 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1692 LValue Dest = EmitLValue(InputExpr); 1693 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1694 InputExpr->getExprLoc()); 1695 } 1696 1697 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1698 /// asm call instruction. The !srcloc MDNode contains a list of constant 1699 /// integers which are the source locations of the start of each line in the 1700 /// asm. 1701 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1702 CodeGenFunction &CGF) { 1703 SmallVector<llvm::Metadata *, 8> Locs; 1704 // Add the location of the first line to the MDNode. 1705 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1706 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1707 StringRef StrVal = Str->getString(); 1708 if (!StrVal.empty()) { 1709 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1710 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1711 1712 // Add the location of the start of each subsequent line of the asm to the 1713 // MDNode. 1714 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1715 if (StrVal[i] != '\n') continue; 1716 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1717 CGF.getTarget()); 1718 Locs.push_back(llvm::ConstantAsMetadata::get( 1719 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1720 } 1721 } 1722 1723 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1724 } 1725 1726 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1727 // Assemble the final asm string. 1728 std::string AsmString = S.generateAsmString(getContext()); 1729 1730 // Get all the output and input constraints together. 1731 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1732 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1733 1734 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1735 StringRef Name; 1736 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1737 Name = GAS->getOutputName(i); 1738 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1739 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1740 assert(IsValid && "Failed to parse output constraint"); 1741 OutputConstraintInfos.push_back(Info); 1742 } 1743 1744 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1745 StringRef Name; 1746 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1747 Name = GAS->getInputName(i); 1748 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1749 bool IsValid = 1750 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1751 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1752 InputConstraintInfos.push_back(Info); 1753 } 1754 1755 std::string Constraints; 1756 1757 std::vector<LValue> ResultRegDests; 1758 std::vector<QualType> ResultRegQualTys; 1759 std::vector<llvm::Type *> ResultRegTypes; 1760 std::vector<llvm::Type *> ResultTruncRegTypes; 1761 std::vector<llvm::Type *> ArgTypes; 1762 std::vector<llvm::Value*> Args; 1763 1764 // Keep track of inout constraints. 1765 std::string InOutConstraints; 1766 std::vector<llvm::Value*> InOutArgs; 1767 std::vector<llvm::Type*> InOutArgTypes; 1768 1769 // An inline asm can be marked readonly if it meets the following conditions: 1770 // - it doesn't have any sideeffects 1771 // - it doesn't clobber memory 1772 // - it doesn't return a value by-reference 1773 // It can be marked readnone if it doesn't have any input memory constraints 1774 // in addition to meeting the conditions listed above. 1775 bool ReadOnly = true, ReadNone = true; 1776 1777 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1778 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1779 1780 // Simplify the output constraint. 1781 std::string OutputConstraint(S.getOutputConstraint(i)); 1782 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1783 getTarget()); 1784 1785 const Expr *OutExpr = S.getOutputExpr(i); 1786 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1787 1788 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1789 getTarget(), CGM, S, 1790 Info.earlyClobber()); 1791 1792 LValue Dest = EmitLValue(OutExpr); 1793 if (!Constraints.empty()) 1794 Constraints += ','; 1795 1796 // If this is a register output, then make the inline asm return it 1797 // by-value. If this is a memory result, return the value by-reference. 1798 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1799 Constraints += "=" + OutputConstraint; 1800 ResultRegQualTys.push_back(OutExpr->getType()); 1801 ResultRegDests.push_back(Dest); 1802 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1803 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1804 1805 // If this output is tied to an input, and if the input is larger, then 1806 // we need to set the actual result type of the inline asm node to be the 1807 // same as the input type. 1808 if (Info.hasMatchingInput()) { 1809 unsigned InputNo; 1810 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1811 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1812 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1813 break; 1814 } 1815 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1816 1817 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1818 QualType OutputType = OutExpr->getType(); 1819 1820 uint64_t InputSize = getContext().getTypeSize(InputTy); 1821 if (getContext().getTypeSize(OutputType) < InputSize) { 1822 // Form the asm to return the value as a larger integer or fp type. 1823 ResultRegTypes.back() = ConvertType(InputTy); 1824 } 1825 } 1826 if (llvm::Type* AdjTy = 1827 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1828 ResultRegTypes.back())) 1829 ResultRegTypes.back() = AdjTy; 1830 else { 1831 CGM.getDiags().Report(S.getAsmLoc(), 1832 diag::err_asm_invalid_type_in_input) 1833 << OutExpr->getType() << OutputConstraint; 1834 } 1835 } else { 1836 ArgTypes.push_back(Dest.getAddress().getType()); 1837 Args.push_back(Dest.getPointer()); 1838 Constraints += "=*"; 1839 Constraints += OutputConstraint; 1840 ReadOnly = ReadNone = false; 1841 } 1842 1843 if (Info.isReadWrite()) { 1844 InOutConstraints += ','; 1845 1846 const Expr *InputExpr = S.getOutputExpr(i); 1847 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1848 InOutConstraints, 1849 InputExpr->getExprLoc()); 1850 1851 if (llvm::Type* AdjTy = 1852 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1853 Arg->getType())) 1854 Arg = Builder.CreateBitCast(Arg, AdjTy); 1855 1856 if (Info.allowsRegister()) 1857 InOutConstraints += llvm::utostr(i); 1858 else 1859 InOutConstraints += OutputConstraint; 1860 1861 InOutArgTypes.push_back(Arg->getType()); 1862 InOutArgs.push_back(Arg); 1863 } 1864 } 1865 1866 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1867 // to the return value slot. Only do this when returning in registers. 1868 if (isa<MSAsmStmt>(&S)) { 1869 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1870 if (RetAI.isDirect() || RetAI.isExtend()) { 1871 // Make a fake lvalue for the return value slot. 1872 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1873 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1874 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1875 ResultRegDests, AsmString, S.getNumOutputs()); 1876 SawAsmBlock = true; 1877 } 1878 } 1879 1880 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1881 const Expr *InputExpr = S.getInputExpr(i); 1882 1883 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1884 1885 if (Info.allowsMemory()) 1886 ReadNone = false; 1887 1888 if (!Constraints.empty()) 1889 Constraints += ','; 1890 1891 // Simplify the input constraint. 1892 std::string InputConstraint(S.getInputConstraint(i)); 1893 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1894 &OutputConstraintInfos); 1895 1896 InputConstraint = AddVariableConstraints( 1897 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 1898 getTarget(), CGM, S, false /* No EarlyClobber */); 1899 1900 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1901 1902 // If this input argument is tied to a larger output result, extend the 1903 // input to be the same size as the output. The LLVM backend wants to see 1904 // the input and output of a matching constraint be the same size. Note 1905 // that GCC does not define what the top bits are here. We use zext because 1906 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1907 if (Info.hasTiedOperand()) { 1908 unsigned Output = Info.getTiedOperand(); 1909 QualType OutputType = S.getOutputExpr(Output)->getType(); 1910 QualType InputTy = InputExpr->getType(); 1911 1912 if (getContext().getTypeSize(OutputType) > 1913 getContext().getTypeSize(InputTy)) { 1914 // Use ptrtoint as appropriate so that we can do our extension. 1915 if (isa<llvm::PointerType>(Arg->getType())) 1916 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1917 llvm::Type *OutputTy = ConvertType(OutputType); 1918 if (isa<llvm::IntegerType>(OutputTy)) 1919 Arg = Builder.CreateZExt(Arg, OutputTy); 1920 else if (isa<llvm::PointerType>(OutputTy)) 1921 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1922 else { 1923 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1924 Arg = Builder.CreateFPExt(Arg, OutputTy); 1925 } 1926 } 1927 } 1928 if (llvm::Type* AdjTy = 1929 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1930 Arg->getType())) 1931 Arg = Builder.CreateBitCast(Arg, AdjTy); 1932 else 1933 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1934 << InputExpr->getType() << InputConstraint; 1935 1936 ArgTypes.push_back(Arg->getType()); 1937 Args.push_back(Arg); 1938 Constraints += InputConstraint; 1939 } 1940 1941 // Append the "input" part of inout constraints last. 1942 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1943 ArgTypes.push_back(InOutArgTypes[i]); 1944 Args.push_back(InOutArgs[i]); 1945 } 1946 Constraints += InOutConstraints; 1947 1948 // Clobbers 1949 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1950 StringRef Clobber = S.getClobber(i); 1951 1952 if (Clobber == "memory") 1953 ReadOnly = ReadNone = false; 1954 else if (Clobber != "cc") 1955 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1956 1957 if (!Constraints.empty()) 1958 Constraints += ','; 1959 1960 Constraints += "~{"; 1961 Constraints += Clobber; 1962 Constraints += '}'; 1963 } 1964 1965 // Add machine specific clobbers 1966 std::string MachineClobbers = getTarget().getClobbers(); 1967 if (!MachineClobbers.empty()) { 1968 if (!Constraints.empty()) 1969 Constraints += ','; 1970 Constraints += MachineClobbers; 1971 } 1972 1973 llvm::Type *ResultType; 1974 if (ResultRegTypes.empty()) 1975 ResultType = VoidTy; 1976 else if (ResultRegTypes.size() == 1) 1977 ResultType = ResultRegTypes[0]; 1978 else 1979 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1980 1981 llvm::FunctionType *FTy = 1982 llvm::FunctionType::get(ResultType, ArgTypes, false); 1983 1984 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1985 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1986 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1987 llvm::InlineAsm *IA = 1988 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1989 /* IsAlignStack */ false, AsmDialect); 1990 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1991 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1992 llvm::Attribute::NoUnwind); 1993 1994 // Attach readnone and readonly attributes. 1995 if (!HasSideEffect) { 1996 if (ReadNone) 1997 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1998 llvm::Attribute::ReadNone); 1999 else if (ReadOnly) 2000 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2001 llvm::Attribute::ReadOnly); 2002 } 2003 2004 // Slap the source location of the inline asm into a !srcloc metadata on the 2005 // call. 2006 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2007 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2008 *this)); 2009 } else { 2010 // At least put the line number on MS inline asm blobs. 2011 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2012 Result->setMetadata("srcloc", 2013 llvm::MDNode::get(getLLVMContext(), 2014 llvm::ConstantAsMetadata::get(Loc))); 2015 } 2016 2017 // Extract all of the register value results from the asm. 2018 std::vector<llvm::Value*> RegResults; 2019 if (ResultRegTypes.size() == 1) { 2020 RegResults.push_back(Result); 2021 } else { 2022 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2023 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2024 RegResults.push_back(Tmp); 2025 } 2026 } 2027 2028 assert(RegResults.size() == ResultRegTypes.size()); 2029 assert(RegResults.size() == ResultTruncRegTypes.size()); 2030 assert(RegResults.size() == ResultRegDests.size()); 2031 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2032 llvm::Value *Tmp = RegResults[i]; 2033 2034 // If the result type of the LLVM IR asm doesn't match the result type of 2035 // the expression, do the conversion. 2036 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2037 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2038 2039 // Truncate the integer result to the right size, note that TruncTy can be 2040 // a pointer. 2041 if (TruncTy->isFloatingPointTy()) 2042 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2043 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2044 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2045 Tmp = Builder.CreateTrunc(Tmp, 2046 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2047 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2048 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2049 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2050 Tmp = Builder.CreatePtrToInt(Tmp, 2051 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2052 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2053 } else if (TruncTy->isIntegerTy()) { 2054 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2055 } else if (TruncTy->isVectorTy()) { 2056 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2057 } 2058 } 2059 2060 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2061 } 2062 } 2063 2064 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2065 const RecordDecl *RD = S.getCapturedRecordDecl(); 2066 QualType RecordTy = getContext().getRecordType(RD); 2067 2068 // Initialize the captured struct. 2069 LValue SlotLV = 2070 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2071 2072 RecordDecl::field_iterator CurField = RD->field_begin(); 2073 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2074 E = S.capture_init_end(); 2075 I != E; ++I, ++CurField) { 2076 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2077 if (CurField->hasCapturedVLAType()) { 2078 auto VAT = CurField->getCapturedVLAType(); 2079 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2080 } else { 2081 EmitInitializerForField(*CurField, LV, *I, None); 2082 } 2083 } 2084 2085 return SlotLV; 2086 } 2087 2088 /// Generate an outlined function for the body of a CapturedStmt, store any 2089 /// captured variables into the captured struct, and call the outlined function. 2090 llvm::Function * 2091 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2092 LValue CapStruct = InitCapturedStruct(S); 2093 2094 // Emit the CapturedDecl 2095 CodeGenFunction CGF(CGM, true); 2096 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2097 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2098 delete CGF.CapturedStmtInfo; 2099 2100 // Emit call to the helper function. 2101 EmitCallOrInvoke(F, CapStruct.getPointer()); 2102 2103 return F; 2104 } 2105 2106 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2107 LValue CapStruct = InitCapturedStruct(S); 2108 return CapStruct.getAddress(); 2109 } 2110 2111 /// Creates the outlined function for a CapturedStmt. 2112 llvm::Function * 2113 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2114 assert(CapturedStmtInfo && 2115 "CapturedStmtInfo should be set when generating the captured function"); 2116 const CapturedDecl *CD = S.getCapturedDecl(); 2117 const RecordDecl *RD = S.getCapturedRecordDecl(); 2118 SourceLocation Loc = S.getLocStart(); 2119 assert(CD->hasBody() && "missing CapturedDecl body"); 2120 2121 // Build the argument list. 2122 ASTContext &Ctx = CGM.getContext(); 2123 FunctionArgList Args; 2124 Args.append(CD->param_begin(), CD->param_end()); 2125 2126 // Create the function declaration. 2127 FunctionType::ExtInfo ExtInfo; 2128 const CGFunctionInfo &FuncInfo = 2129 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2130 /*IsVariadic=*/false); 2131 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2132 2133 llvm::Function *F = 2134 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2135 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2136 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2137 if (CD->isNothrow()) 2138 F->addFnAttr(llvm::Attribute::NoUnwind); 2139 2140 // Generate the function. 2141 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2142 CD->getLocation(), 2143 CD->getBody()->getLocStart()); 2144 // Set the context parameter in CapturedStmtInfo. 2145 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2146 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2147 2148 // Initialize variable-length arrays. 2149 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2150 Ctx.getTagDeclType(RD)); 2151 for (auto *FD : RD->fields()) { 2152 if (FD->hasCapturedVLAType()) { 2153 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2154 S.getLocStart()).getScalarVal(); 2155 auto VAT = FD->getCapturedVLAType(); 2156 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2157 } 2158 } 2159 2160 // If 'this' is captured, load it into CXXThisValue. 2161 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2162 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2163 LValue ThisLValue = EmitLValueForField(Base, FD); 2164 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2165 } 2166 2167 PGO.assignRegionCounters(CD, F); 2168 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2169 FinishFunction(CD->getBodyRBrace()); 2170 2171 return F; 2172 } 2173