1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106 
107     EmitIgnoredExpr(cast<Expr>(S));
108 
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111 
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130 
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138 
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140 
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CoroutineBodyStmtClass:
145   case Stmt::CoreturnStmtClass:
146     CGM.ErrorUnsupported(S, "coroutine");
147     break;
148   case Stmt::CapturedStmtClass: {
149     const CapturedStmt *CS = cast<CapturedStmt>(S);
150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
151     }
152     break;
153   case Stmt::ObjCAtTryStmtClass:
154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
155     break;
156   case Stmt::ObjCAtCatchStmtClass:
157     llvm_unreachable(
158                     "@catch statements should be handled by EmitObjCAtTryStmt");
159   case Stmt::ObjCAtFinallyStmtClass:
160     llvm_unreachable(
161                   "@finally statements should be handled by EmitObjCAtTryStmt");
162   case Stmt::ObjCAtThrowStmtClass:
163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
164     break;
165   case Stmt::ObjCAtSynchronizedStmtClass:
166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
167     break;
168   case Stmt::ObjCForCollectionStmtClass:
169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
170     break;
171   case Stmt::ObjCAutoreleasePoolStmtClass:
172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
173     break;
174 
175   case Stmt::CXXTryStmtClass:
176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
177     break;
178   case Stmt::CXXForRangeStmtClass:
179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
180     break;
181   case Stmt::SEHTryStmtClass:
182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
183     break;
184   case Stmt::OMPParallelDirectiveClass:
185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
186     break;
187   case Stmt::OMPSimdDirectiveClass:
188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
189     break;
190   case Stmt::OMPForDirectiveClass:
191     EmitOMPForDirective(cast<OMPForDirective>(*S));
192     break;
193   case Stmt::OMPForSimdDirectiveClass:
194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
195     break;
196   case Stmt::OMPSectionsDirectiveClass:
197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
198     break;
199   case Stmt::OMPSectionDirectiveClass:
200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
201     break;
202   case Stmt::OMPSingleDirectiveClass:
203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
204     break;
205   case Stmt::OMPMasterDirectiveClass:
206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
207     break;
208   case Stmt::OMPCriticalDirectiveClass:
209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
210     break;
211   case Stmt::OMPParallelForDirectiveClass:
212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
213     break;
214   case Stmt::OMPParallelForSimdDirectiveClass:
215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
216     break;
217   case Stmt::OMPParallelSectionsDirectiveClass:
218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
219     break;
220   case Stmt::OMPTaskDirectiveClass:
221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
222     break;
223   case Stmt::OMPTaskyieldDirectiveClass:
224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
225     break;
226   case Stmt::OMPBarrierDirectiveClass:
227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
228     break;
229   case Stmt::OMPTaskwaitDirectiveClass:
230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
231     break;
232   case Stmt::OMPTaskgroupDirectiveClass:
233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
234     break;
235   case Stmt::OMPFlushDirectiveClass:
236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
237     break;
238   case Stmt::OMPOrderedDirectiveClass:
239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
240     break;
241   case Stmt::OMPAtomicDirectiveClass:
242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
243     break;
244   case Stmt::OMPTargetDirectiveClass:
245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
246     break;
247   case Stmt::OMPTeamsDirectiveClass:
248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
249     break;
250   case Stmt::OMPCancellationPointDirectiveClass:
251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
252     break;
253   case Stmt::OMPCancelDirectiveClass:
254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
255     break;
256   case Stmt::OMPTargetDataDirectiveClass:
257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
258     break;
259   case Stmt::OMPTargetEnterDataDirectiveClass:
260     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
261     break;
262   case Stmt::OMPTargetExitDataDirectiveClass:
263     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
264     break;
265   case Stmt::OMPTargetParallelDirectiveClass:
266     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
267     break;
268   case Stmt::OMPTaskLoopDirectiveClass:
269     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
270     break;
271   case Stmt::OMPTaskLoopSimdDirectiveClass:
272     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
273     break;
274   case Stmt::OMPDistributeDirectiveClass:
275     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
276     break;
277   }
278 }
279 
280 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
281   switch (S->getStmtClass()) {
282   default: return false;
283   case Stmt::NullStmtClass: break;
284   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
285   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
286   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
287   case Stmt::AttributedStmtClass:
288                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
289   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
290   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
291   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
292   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
293   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
294   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
295   }
296 
297   return true;
298 }
299 
300 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
301 /// this captures the expression result of the last sub-statement and returns it
302 /// (for use by the statement expression extension).
303 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
304                                           AggValueSlot AggSlot) {
305   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
306                              "LLVM IR generation of compound statement ('{}')");
307 
308   // Keep track of the current cleanup stack depth, including debug scopes.
309   LexicalScope Scope(*this, S.getSourceRange());
310 
311   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
312 }
313 
314 Address
315 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
316                                               bool GetLast,
317                                               AggValueSlot AggSlot) {
318 
319   for (CompoundStmt::const_body_iterator I = S.body_begin(),
320        E = S.body_end()-GetLast; I != E; ++I)
321     EmitStmt(*I);
322 
323   Address RetAlloca = Address::invalid();
324   if (GetLast) {
325     // We have to special case labels here.  They are statements, but when put
326     // at the end of a statement expression, they yield the value of their
327     // subexpression.  Handle this by walking through all labels we encounter,
328     // emitting them before we evaluate the subexpr.
329     const Stmt *LastStmt = S.body_back();
330     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
331       EmitLabel(LS->getDecl());
332       LastStmt = LS->getSubStmt();
333     }
334 
335     EnsureInsertPoint();
336 
337     QualType ExprTy = cast<Expr>(LastStmt)->getType();
338     if (hasAggregateEvaluationKind(ExprTy)) {
339       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
340     } else {
341       // We can't return an RValue here because there might be cleanups at
342       // the end of the StmtExpr.  Because of that, we have to emit the result
343       // here into a temporary alloca.
344       RetAlloca = CreateMemTemp(ExprTy);
345       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
346                        /*IsInit*/false);
347     }
348 
349   }
350 
351   return RetAlloca;
352 }
353 
354 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
355   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
356 
357   // If there is a cleanup stack, then we it isn't worth trying to
358   // simplify this block (we would need to remove it from the scope map
359   // and cleanup entry).
360   if (!EHStack.empty())
361     return;
362 
363   // Can only simplify direct branches.
364   if (!BI || !BI->isUnconditional())
365     return;
366 
367   // Can only simplify empty blocks.
368   if (BI->getIterator() != BB->begin())
369     return;
370 
371   BB->replaceAllUsesWith(BI->getSuccessor(0));
372   BI->eraseFromParent();
373   BB->eraseFromParent();
374 }
375 
376 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
377   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
378 
379   // Fall out of the current block (if necessary).
380   EmitBranch(BB);
381 
382   if (IsFinished && BB->use_empty()) {
383     delete BB;
384     return;
385   }
386 
387   // Place the block after the current block, if possible, or else at
388   // the end of the function.
389   if (CurBB && CurBB->getParent())
390     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
391   else
392     CurFn->getBasicBlockList().push_back(BB);
393   Builder.SetInsertPoint(BB);
394 }
395 
396 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
397   // Emit a branch from the current block to the target one if this
398   // was a real block.  If this was just a fall-through block after a
399   // terminator, don't emit it.
400   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
401 
402   if (!CurBB || CurBB->getTerminator()) {
403     // If there is no insert point or the previous block is already
404     // terminated, don't touch it.
405   } else {
406     // Otherwise, create a fall-through branch.
407     Builder.CreateBr(Target);
408   }
409 
410   Builder.ClearInsertionPoint();
411 }
412 
413 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
414   bool inserted = false;
415   for (llvm::User *u : block->users()) {
416     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
417       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
418                                              block);
419       inserted = true;
420       break;
421     }
422   }
423 
424   if (!inserted)
425     CurFn->getBasicBlockList().push_back(block);
426 
427   Builder.SetInsertPoint(block);
428 }
429 
430 CodeGenFunction::JumpDest
431 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
432   JumpDest &Dest = LabelMap[D];
433   if (Dest.isValid()) return Dest;
434 
435   // Create, but don't insert, the new block.
436   Dest = JumpDest(createBasicBlock(D->getName()),
437                   EHScopeStack::stable_iterator::invalid(),
438                   NextCleanupDestIndex++);
439   return Dest;
440 }
441 
442 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
443   // Add this label to the current lexical scope if we're within any
444   // normal cleanups.  Jumps "in" to this label --- when permitted by
445   // the language --- may need to be routed around such cleanups.
446   if (EHStack.hasNormalCleanups() && CurLexicalScope)
447     CurLexicalScope->addLabel(D);
448 
449   JumpDest &Dest = LabelMap[D];
450 
451   // If we didn't need a forward reference to this label, just go
452   // ahead and create a destination at the current scope.
453   if (!Dest.isValid()) {
454     Dest = getJumpDestInCurrentScope(D->getName());
455 
456   // Otherwise, we need to give this label a target depth and remove
457   // it from the branch-fixups list.
458   } else {
459     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
460     Dest.setScopeDepth(EHStack.stable_begin());
461     ResolveBranchFixups(Dest.getBlock());
462   }
463 
464   EmitBlock(Dest.getBlock());
465   incrementProfileCounter(D->getStmt());
466 }
467 
468 /// Change the cleanup scope of the labels in this lexical scope to
469 /// match the scope of the enclosing context.
470 void CodeGenFunction::LexicalScope::rescopeLabels() {
471   assert(!Labels.empty());
472   EHScopeStack::stable_iterator innermostScope
473     = CGF.EHStack.getInnermostNormalCleanup();
474 
475   // Change the scope depth of all the labels.
476   for (SmallVectorImpl<const LabelDecl*>::const_iterator
477          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
478     assert(CGF.LabelMap.count(*i));
479     JumpDest &dest = CGF.LabelMap.find(*i)->second;
480     assert(dest.getScopeDepth().isValid());
481     assert(innermostScope.encloses(dest.getScopeDepth()));
482     dest.setScopeDepth(innermostScope);
483   }
484 
485   // Reparent the labels if the new scope also has cleanups.
486   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
487     ParentScope->Labels.append(Labels.begin(), Labels.end());
488   }
489 }
490 
491 
492 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
493   EmitLabel(S.getDecl());
494   EmitStmt(S.getSubStmt());
495 }
496 
497 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
498   const Stmt *SubStmt = S.getSubStmt();
499   switch (SubStmt->getStmtClass()) {
500   case Stmt::DoStmtClass:
501     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
502     break;
503   case Stmt::ForStmtClass:
504     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
505     break;
506   case Stmt::WhileStmtClass:
507     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
508     break;
509   case Stmt::CXXForRangeStmtClass:
510     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
511     break;
512   default:
513     EmitStmt(SubStmt);
514   }
515 }
516 
517 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
518   // If this code is reachable then emit a stop point (if generating
519   // debug info). We have to do this ourselves because we are on the
520   // "simple" statement path.
521   if (HaveInsertPoint())
522     EmitStopPoint(&S);
523 
524   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
525 }
526 
527 
528 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
529   if (const LabelDecl *Target = S.getConstantTarget()) {
530     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
531     return;
532   }
533 
534   // Ensure that we have an i8* for our PHI node.
535   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
536                                          Int8PtrTy, "addr");
537   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
538 
539   // Get the basic block for the indirect goto.
540   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
541 
542   // The first instruction in the block has to be the PHI for the switch dest,
543   // add an entry for this branch.
544   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
545 
546   EmitBranch(IndGotoBB);
547 }
548 
549 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
550   // C99 6.8.4.1: The first substatement is executed if the expression compares
551   // unequal to 0.  The condition must be a scalar type.
552   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
553 
554   if (S.getConditionVariable())
555     EmitAutoVarDecl(*S.getConditionVariable());
556 
557   // If the condition constant folds and can be elided, try to avoid emitting
558   // the condition and the dead arm of the if/else.
559   bool CondConstant;
560   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
561     // Figure out which block (then or else) is executed.
562     const Stmt *Executed = S.getThen();
563     const Stmt *Skipped  = S.getElse();
564     if (!CondConstant)  // Condition false?
565       std::swap(Executed, Skipped);
566 
567     // If the skipped block has no labels in it, just emit the executed block.
568     // This avoids emitting dead code and simplifies the CFG substantially.
569     if (!ContainsLabel(Skipped)) {
570       if (CondConstant)
571         incrementProfileCounter(&S);
572       if (Executed) {
573         RunCleanupsScope ExecutedScope(*this);
574         EmitStmt(Executed);
575       }
576       return;
577     }
578   }
579 
580   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
581   // the conditional branch.
582   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
583   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
584   llvm::BasicBlock *ElseBlock = ContBlock;
585   if (S.getElse())
586     ElseBlock = createBasicBlock("if.else");
587 
588   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
589                        getProfileCount(S.getThen()));
590 
591   // Emit the 'then' code.
592   EmitBlock(ThenBlock);
593   incrementProfileCounter(&S);
594   {
595     RunCleanupsScope ThenScope(*this);
596     EmitStmt(S.getThen());
597   }
598   EmitBranch(ContBlock);
599 
600   // Emit the 'else' code if present.
601   if (const Stmt *Else = S.getElse()) {
602     {
603       // There is no need to emit line number for an unconditional branch.
604       auto NL = ApplyDebugLocation::CreateEmpty(*this);
605       EmitBlock(ElseBlock);
606     }
607     {
608       RunCleanupsScope ElseScope(*this);
609       EmitStmt(Else);
610     }
611     {
612       // There is no need to emit line number for an unconditional branch.
613       auto NL = ApplyDebugLocation::CreateEmpty(*this);
614       EmitBranch(ContBlock);
615     }
616   }
617 
618   // Emit the continuation block for code after the if.
619   EmitBlock(ContBlock, true);
620 }
621 
622 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
623                                     ArrayRef<const Attr *> WhileAttrs) {
624   // Emit the header for the loop, which will also become
625   // the continue target.
626   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
627   EmitBlock(LoopHeader.getBlock());
628 
629   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs);
630 
631   // Create an exit block for when the condition fails, which will
632   // also become the break target.
633   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
634 
635   // Store the blocks to use for break and continue.
636   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
637 
638   // C++ [stmt.while]p2:
639   //   When the condition of a while statement is a declaration, the
640   //   scope of the variable that is declared extends from its point
641   //   of declaration (3.3.2) to the end of the while statement.
642   //   [...]
643   //   The object created in a condition is destroyed and created
644   //   with each iteration of the loop.
645   RunCleanupsScope ConditionScope(*this);
646 
647   if (S.getConditionVariable())
648     EmitAutoVarDecl(*S.getConditionVariable());
649 
650   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
651   // evaluation of the controlling expression takes place before each
652   // execution of the loop body.
653   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
654 
655   // while(1) is common, avoid extra exit blocks.  Be sure
656   // to correctly handle break/continue though.
657   bool EmitBoolCondBranch = true;
658   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
659     if (C->isOne())
660       EmitBoolCondBranch = false;
661 
662   // As long as the condition is true, go to the loop body.
663   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
664   if (EmitBoolCondBranch) {
665     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
666     if (ConditionScope.requiresCleanups())
667       ExitBlock = createBasicBlock("while.exit");
668     Builder.CreateCondBr(
669         BoolCondVal, LoopBody, ExitBlock,
670         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
671 
672     if (ExitBlock != LoopExit.getBlock()) {
673       EmitBlock(ExitBlock);
674       EmitBranchThroughCleanup(LoopExit);
675     }
676   }
677 
678   // Emit the loop body.  We have to emit this in a cleanup scope
679   // because it might be a singleton DeclStmt.
680   {
681     RunCleanupsScope BodyScope(*this);
682     EmitBlock(LoopBody);
683     incrementProfileCounter(&S);
684     EmitStmt(S.getBody());
685   }
686 
687   BreakContinueStack.pop_back();
688 
689   // Immediately force cleanup.
690   ConditionScope.ForceCleanup();
691 
692   EmitStopPoint(&S);
693   // Branch to the loop header again.
694   EmitBranch(LoopHeader.getBlock());
695 
696   LoopStack.pop();
697 
698   // Emit the exit block.
699   EmitBlock(LoopExit.getBlock(), true);
700 
701   // The LoopHeader typically is just a branch if we skipped emitting
702   // a branch, try to erase it.
703   if (!EmitBoolCondBranch)
704     SimplifyForwardingBlocks(LoopHeader.getBlock());
705 }
706 
707 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
708                                  ArrayRef<const Attr *> DoAttrs) {
709   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
710   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
711 
712   uint64_t ParentCount = getCurrentProfileCount();
713 
714   // Store the blocks to use for break and continue.
715   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
716 
717   // Emit the body of the loop.
718   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
719 
720   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs);
721 
722   EmitBlockWithFallThrough(LoopBody, &S);
723   {
724     RunCleanupsScope BodyScope(*this);
725     EmitStmt(S.getBody());
726   }
727 
728   EmitBlock(LoopCond.getBlock());
729 
730   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
731   // after each execution of the loop body."
732 
733   // Evaluate the conditional in the while header.
734   // C99 6.8.5p2/p4: The first substatement is executed if the expression
735   // compares unequal to 0.  The condition must be a scalar type.
736   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
737 
738   BreakContinueStack.pop_back();
739 
740   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
741   // to correctly handle break/continue though.
742   bool EmitBoolCondBranch = true;
743   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
744     if (C->isZero())
745       EmitBoolCondBranch = false;
746 
747   // As long as the condition is true, iterate the loop.
748   if (EmitBoolCondBranch) {
749     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
750     Builder.CreateCondBr(
751         BoolCondVal, LoopBody, LoopExit.getBlock(),
752         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
753   }
754 
755   LoopStack.pop();
756 
757   // Emit the exit block.
758   EmitBlock(LoopExit.getBlock());
759 
760   // The DoCond block typically is just a branch if we skipped
761   // emitting a branch, try to erase it.
762   if (!EmitBoolCondBranch)
763     SimplifyForwardingBlocks(LoopCond.getBlock());
764 }
765 
766 void CodeGenFunction::EmitForStmt(const ForStmt &S,
767                                   ArrayRef<const Attr *> ForAttrs) {
768   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
769 
770   LexicalScope ForScope(*this, S.getSourceRange());
771 
772   // Evaluate the first part before the loop.
773   if (S.getInit())
774     EmitStmt(S.getInit());
775 
776   // Start the loop with a block that tests the condition.
777   // If there's an increment, the continue scope will be overwritten
778   // later.
779   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
780   llvm::BasicBlock *CondBlock = Continue.getBlock();
781   EmitBlock(CondBlock);
782 
783   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
784 
785   // If the for loop doesn't have an increment we can just use the
786   // condition as the continue block.  Otherwise we'll need to create
787   // a block for it (in the current scope, i.e. in the scope of the
788   // condition), and that we will become our continue block.
789   if (S.getInc())
790     Continue = getJumpDestInCurrentScope("for.inc");
791 
792   // Store the blocks to use for break and continue.
793   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
794 
795   // Create a cleanup scope for the condition variable cleanups.
796   LexicalScope ConditionScope(*this, S.getSourceRange());
797 
798   if (S.getCond()) {
799     // If the for statement has a condition scope, emit the local variable
800     // declaration.
801     if (S.getConditionVariable()) {
802       EmitAutoVarDecl(*S.getConditionVariable());
803     }
804 
805     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
806     // If there are any cleanups between here and the loop-exit scope,
807     // create a block to stage a loop exit along.
808     if (ForScope.requiresCleanups())
809       ExitBlock = createBasicBlock("for.cond.cleanup");
810 
811     // As long as the condition is true, iterate the loop.
812     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
813 
814     // C99 6.8.5p2/p4: The first substatement is executed if the expression
815     // compares unequal to 0.  The condition must be a scalar type.
816     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
817     Builder.CreateCondBr(
818         BoolCondVal, ForBody, ExitBlock,
819         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
820 
821     if (ExitBlock != LoopExit.getBlock()) {
822       EmitBlock(ExitBlock);
823       EmitBranchThroughCleanup(LoopExit);
824     }
825 
826     EmitBlock(ForBody);
827   } else {
828     // Treat it as a non-zero constant.  Don't even create a new block for the
829     // body, just fall into it.
830   }
831   incrementProfileCounter(&S);
832 
833   {
834     // Create a separate cleanup scope for the body, in case it is not
835     // a compound statement.
836     RunCleanupsScope BodyScope(*this);
837     EmitStmt(S.getBody());
838   }
839 
840   // If there is an increment, emit it next.
841   if (S.getInc()) {
842     EmitBlock(Continue.getBlock());
843     EmitStmt(S.getInc());
844   }
845 
846   BreakContinueStack.pop_back();
847 
848   ConditionScope.ForceCleanup();
849 
850   EmitStopPoint(&S);
851   EmitBranch(CondBlock);
852 
853   ForScope.ForceCleanup();
854 
855   LoopStack.pop();
856 
857   // Emit the fall-through block.
858   EmitBlock(LoopExit.getBlock(), true);
859 }
860 
861 void
862 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
863                                      ArrayRef<const Attr *> ForAttrs) {
864   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
865 
866   LexicalScope ForScope(*this, S.getSourceRange());
867 
868   // Evaluate the first pieces before the loop.
869   EmitStmt(S.getRangeStmt());
870   EmitStmt(S.getBeginEndStmt());
871 
872   // Start the loop with a block that tests the condition.
873   // If there's an increment, the continue scope will be overwritten
874   // later.
875   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
876   EmitBlock(CondBlock);
877 
878   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
879 
880   // If there are any cleanups between here and the loop-exit scope,
881   // create a block to stage a loop exit along.
882   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
883   if (ForScope.requiresCleanups())
884     ExitBlock = createBasicBlock("for.cond.cleanup");
885 
886   // The loop body, consisting of the specified body and the loop variable.
887   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
888 
889   // The body is executed if the expression, contextually converted
890   // to bool, is true.
891   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
892   Builder.CreateCondBr(
893       BoolCondVal, ForBody, ExitBlock,
894       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
895 
896   if (ExitBlock != LoopExit.getBlock()) {
897     EmitBlock(ExitBlock);
898     EmitBranchThroughCleanup(LoopExit);
899   }
900 
901   EmitBlock(ForBody);
902   incrementProfileCounter(&S);
903 
904   // Create a block for the increment. In case of a 'continue', we jump there.
905   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
906 
907   // Store the blocks to use for break and continue.
908   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
909 
910   {
911     // Create a separate cleanup scope for the loop variable and body.
912     LexicalScope BodyScope(*this, S.getSourceRange());
913     EmitStmt(S.getLoopVarStmt());
914     EmitStmt(S.getBody());
915   }
916 
917   EmitStopPoint(&S);
918   // If there is an increment, emit it next.
919   EmitBlock(Continue.getBlock());
920   EmitStmt(S.getInc());
921 
922   BreakContinueStack.pop_back();
923 
924   EmitBranch(CondBlock);
925 
926   ForScope.ForceCleanup();
927 
928   LoopStack.pop();
929 
930   // Emit the fall-through block.
931   EmitBlock(LoopExit.getBlock(), true);
932 }
933 
934 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
935   if (RV.isScalar()) {
936     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
937   } else if (RV.isAggregate()) {
938     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
939   } else {
940     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
941                        /*init*/ true);
942   }
943   EmitBranchThroughCleanup(ReturnBlock);
944 }
945 
946 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
947 /// if the function returns void, or may be missing one if the function returns
948 /// non-void.  Fun stuff :).
949 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
950   // Returning from an outlined SEH helper is UB, and we already warn on it.
951   if (IsOutlinedSEHHelper) {
952     Builder.CreateUnreachable();
953     Builder.ClearInsertionPoint();
954   }
955 
956   // Emit the result value, even if unused, to evalute the side effects.
957   const Expr *RV = S.getRetValue();
958 
959   // Treat block literals in a return expression as if they appeared
960   // in their own scope.  This permits a small, easily-implemented
961   // exception to our over-conservative rules about not jumping to
962   // statements following block literals with non-trivial cleanups.
963   RunCleanupsScope cleanupScope(*this);
964   if (const ExprWithCleanups *cleanups =
965         dyn_cast_or_null<ExprWithCleanups>(RV)) {
966     enterFullExpression(cleanups);
967     RV = cleanups->getSubExpr();
968   }
969 
970   // FIXME: Clean this up by using an LValue for ReturnTemp,
971   // EmitStoreThroughLValue, and EmitAnyExpr.
972   if (getLangOpts().ElideConstructors &&
973       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
974     // Apply the named return value optimization for this return statement,
975     // which means doing nothing: the appropriate result has already been
976     // constructed into the NRVO variable.
977 
978     // If there is an NRVO flag for this variable, set it to 1 into indicate
979     // that the cleanup code should not destroy the variable.
980     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
981       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
982   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
983     // Make sure not to return anything, but evaluate the expression
984     // for side effects.
985     if (RV)
986       EmitAnyExpr(RV);
987   } else if (!RV) {
988     // Do nothing (return value is left uninitialized)
989   } else if (FnRetTy->isReferenceType()) {
990     // If this function returns a reference, take the address of the expression
991     // rather than the value.
992     RValue Result = EmitReferenceBindingToExpr(RV);
993     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
994   } else {
995     switch (getEvaluationKind(RV->getType())) {
996     case TEK_Scalar:
997       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
998       break;
999     case TEK_Complex:
1000       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1001                                 /*isInit*/ true);
1002       break;
1003     case TEK_Aggregate:
1004       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
1005                                             Qualifiers(),
1006                                             AggValueSlot::IsDestructed,
1007                                             AggValueSlot::DoesNotNeedGCBarriers,
1008                                             AggValueSlot::IsNotAliased));
1009       break;
1010     }
1011   }
1012 
1013   ++NumReturnExprs;
1014   if (!RV || RV->isEvaluatable(getContext()))
1015     ++NumSimpleReturnExprs;
1016 
1017   cleanupScope.ForceCleanup();
1018   EmitBranchThroughCleanup(ReturnBlock);
1019 }
1020 
1021 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1022   // As long as debug info is modeled with instructions, we have to ensure we
1023   // have a place to insert here and write the stop point here.
1024   if (HaveInsertPoint())
1025     EmitStopPoint(&S);
1026 
1027   for (const auto *I : S.decls())
1028     EmitDecl(*I);
1029 }
1030 
1031 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1032   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1033 
1034   // If this code is reachable then emit a stop point (if generating
1035   // debug info). We have to do this ourselves because we are on the
1036   // "simple" statement path.
1037   if (HaveInsertPoint())
1038     EmitStopPoint(&S);
1039 
1040   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1041 }
1042 
1043 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1044   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1045 
1046   // If this code is reachable then emit a stop point (if generating
1047   // debug info). We have to do this ourselves because we are on the
1048   // "simple" statement path.
1049   if (HaveInsertPoint())
1050     EmitStopPoint(&S);
1051 
1052   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1053 }
1054 
1055 /// EmitCaseStmtRange - If case statement range is not too big then
1056 /// add multiple cases to switch instruction, one for each value within
1057 /// the range. If range is too big then emit "if" condition check.
1058 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1059   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1060 
1061   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1062   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1063 
1064   // Emit the code for this case. We do this first to make sure it is
1065   // properly chained from our predecessor before generating the
1066   // switch machinery to enter this block.
1067   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1068   EmitBlockWithFallThrough(CaseDest, &S);
1069   EmitStmt(S.getSubStmt());
1070 
1071   // If range is empty, do nothing.
1072   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1073     return;
1074 
1075   llvm::APInt Range = RHS - LHS;
1076   // FIXME: parameters such as this should not be hardcoded.
1077   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1078     // Range is small enough to add multiple switch instruction cases.
1079     uint64_t Total = getProfileCount(&S);
1080     unsigned NCases = Range.getZExtValue() + 1;
1081     // We only have one region counter for the entire set of cases here, so we
1082     // need to divide the weights evenly between the generated cases, ensuring
1083     // that the total weight is preserved. E.g., a weight of 5 over three cases
1084     // will be distributed as weights of 2, 2, and 1.
1085     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1086     for (unsigned I = 0; I != NCases; ++I) {
1087       if (SwitchWeights)
1088         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1089       if (Rem)
1090         Rem--;
1091       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1092       LHS++;
1093     }
1094     return;
1095   }
1096 
1097   // The range is too big. Emit "if" condition into a new block,
1098   // making sure to save and restore the current insertion point.
1099   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1100 
1101   // Push this test onto the chain of range checks (which terminates
1102   // in the default basic block). The switch's default will be changed
1103   // to the top of this chain after switch emission is complete.
1104   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1105   CaseRangeBlock = createBasicBlock("sw.caserange");
1106 
1107   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1108   Builder.SetInsertPoint(CaseRangeBlock);
1109 
1110   // Emit range check.
1111   llvm::Value *Diff =
1112     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1113   llvm::Value *Cond =
1114     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1115 
1116   llvm::MDNode *Weights = nullptr;
1117   if (SwitchWeights) {
1118     uint64_t ThisCount = getProfileCount(&S);
1119     uint64_t DefaultCount = (*SwitchWeights)[0];
1120     Weights = createProfileWeights(ThisCount, DefaultCount);
1121 
1122     // Since we're chaining the switch default through each large case range, we
1123     // need to update the weight for the default, ie, the first case, to include
1124     // this case.
1125     (*SwitchWeights)[0] += ThisCount;
1126   }
1127   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1128 
1129   // Restore the appropriate insertion point.
1130   if (RestoreBB)
1131     Builder.SetInsertPoint(RestoreBB);
1132   else
1133     Builder.ClearInsertionPoint();
1134 }
1135 
1136 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1137   // If there is no enclosing switch instance that we're aware of, then this
1138   // case statement and its block can be elided.  This situation only happens
1139   // when we've constant-folded the switch, are emitting the constant case,
1140   // and part of the constant case includes another case statement.  For
1141   // instance: switch (4) { case 4: do { case 5: } while (1); }
1142   if (!SwitchInsn) {
1143     EmitStmt(S.getSubStmt());
1144     return;
1145   }
1146 
1147   // Handle case ranges.
1148   if (S.getRHS()) {
1149     EmitCaseStmtRange(S);
1150     return;
1151   }
1152 
1153   llvm::ConstantInt *CaseVal =
1154     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1155 
1156   // If the body of the case is just a 'break', try to not emit an empty block.
1157   // If we're profiling or we're not optimizing, leave the block in for better
1158   // debug and coverage analysis.
1159   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1160       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1161       isa<BreakStmt>(S.getSubStmt())) {
1162     JumpDest Block = BreakContinueStack.back().BreakBlock;
1163 
1164     // Only do this optimization if there are no cleanups that need emitting.
1165     if (isObviouslyBranchWithoutCleanups(Block)) {
1166       if (SwitchWeights)
1167         SwitchWeights->push_back(getProfileCount(&S));
1168       SwitchInsn->addCase(CaseVal, Block.getBlock());
1169 
1170       // If there was a fallthrough into this case, make sure to redirect it to
1171       // the end of the switch as well.
1172       if (Builder.GetInsertBlock()) {
1173         Builder.CreateBr(Block.getBlock());
1174         Builder.ClearInsertionPoint();
1175       }
1176       return;
1177     }
1178   }
1179 
1180   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1181   EmitBlockWithFallThrough(CaseDest, &S);
1182   if (SwitchWeights)
1183     SwitchWeights->push_back(getProfileCount(&S));
1184   SwitchInsn->addCase(CaseVal, CaseDest);
1185 
1186   // Recursively emitting the statement is acceptable, but is not wonderful for
1187   // code where we have many case statements nested together, i.e.:
1188   //  case 1:
1189   //    case 2:
1190   //      case 3: etc.
1191   // Handling this recursively will create a new block for each case statement
1192   // that falls through to the next case which is IR intensive.  It also causes
1193   // deep recursion which can run into stack depth limitations.  Handle
1194   // sequential non-range case statements specially.
1195   const CaseStmt *CurCase = &S;
1196   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1197 
1198   // Otherwise, iteratively add consecutive cases to this switch stmt.
1199   while (NextCase && NextCase->getRHS() == nullptr) {
1200     CurCase = NextCase;
1201     llvm::ConstantInt *CaseVal =
1202       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1203 
1204     if (SwitchWeights)
1205       SwitchWeights->push_back(getProfileCount(NextCase));
1206     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1207       CaseDest = createBasicBlock("sw.bb");
1208       EmitBlockWithFallThrough(CaseDest, &S);
1209     }
1210 
1211     SwitchInsn->addCase(CaseVal, CaseDest);
1212     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1213   }
1214 
1215   // Normal default recursion for non-cases.
1216   EmitStmt(CurCase->getSubStmt());
1217 }
1218 
1219 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1220   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1221   assert(DefaultBlock->empty() &&
1222          "EmitDefaultStmt: Default block already defined?");
1223 
1224   EmitBlockWithFallThrough(DefaultBlock, &S);
1225 
1226   EmitStmt(S.getSubStmt());
1227 }
1228 
1229 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1230 /// constant value that is being switched on, see if we can dead code eliminate
1231 /// the body of the switch to a simple series of statements to emit.  Basically,
1232 /// on a switch (5) we want to find these statements:
1233 ///    case 5:
1234 ///      printf(...);    <--
1235 ///      ++i;            <--
1236 ///      break;
1237 ///
1238 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1239 /// transformation (for example, one of the elided statements contains a label
1240 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1241 /// should include statements after it (e.g. the printf() line is a substmt of
1242 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1243 /// statement, then return CSFC_Success.
1244 ///
1245 /// If Case is non-null, then we are looking for the specified case, checking
1246 /// that nothing we jump over contains labels.  If Case is null, then we found
1247 /// the case and are looking for the break.
1248 ///
1249 /// If the recursive walk actually finds our Case, then we set FoundCase to
1250 /// true.
1251 ///
1252 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1253 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1254                                             const SwitchCase *Case,
1255                                             bool &FoundCase,
1256                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1257   // If this is a null statement, just succeed.
1258   if (!S)
1259     return Case ? CSFC_Success : CSFC_FallThrough;
1260 
1261   // If this is the switchcase (case 4: or default) that we're looking for, then
1262   // we're in business.  Just add the substatement.
1263   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1264     if (S == Case) {
1265       FoundCase = true;
1266       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1267                                       ResultStmts);
1268     }
1269 
1270     // Otherwise, this is some other case or default statement, just ignore it.
1271     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1272                                     ResultStmts);
1273   }
1274 
1275   // If we are in the live part of the code and we found our break statement,
1276   // return a success!
1277   if (!Case && isa<BreakStmt>(S))
1278     return CSFC_Success;
1279 
1280   // If this is a switch statement, then it might contain the SwitchCase, the
1281   // break, or neither.
1282   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1283     // Handle this as two cases: we might be looking for the SwitchCase (if so
1284     // the skipped statements must be skippable) or we might already have it.
1285     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1286     if (Case) {
1287       // Keep track of whether we see a skipped declaration.  The code could be
1288       // using the declaration even if it is skipped, so we can't optimize out
1289       // the decl if the kept statements might refer to it.
1290       bool HadSkippedDecl = false;
1291 
1292       // If we're looking for the case, just see if we can skip each of the
1293       // substatements.
1294       for (; Case && I != E; ++I) {
1295         HadSkippedDecl |= isa<DeclStmt>(*I);
1296 
1297         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1298         case CSFC_Failure: return CSFC_Failure;
1299         case CSFC_Success:
1300           // A successful result means that either 1) that the statement doesn't
1301           // have the case and is skippable, or 2) does contain the case value
1302           // and also contains the break to exit the switch.  In the later case,
1303           // we just verify the rest of the statements are elidable.
1304           if (FoundCase) {
1305             // If we found the case and skipped declarations, we can't do the
1306             // optimization.
1307             if (HadSkippedDecl)
1308               return CSFC_Failure;
1309 
1310             for (++I; I != E; ++I)
1311               if (CodeGenFunction::ContainsLabel(*I, true))
1312                 return CSFC_Failure;
1313             return CSFC_Success;
1314           }
1315           break;
1316         case CSFC_FallThrough:
1317           // If we have a fallthrough condition, then we must have found the
1318           // case started to include statements.  Consider the rest of the
1319           // statements in the compound statement as candidates for inclusion.
1320           assert(FoundCase && "Didn't find case but returned fallthrough?");
1321           // We recursively found Case, so we're not looking for it anymore.
1322           Case = nullptr;
1323 
1324           // If we found the case and skipped declarations, we can't do the
1325           // optimization.
1326           if (HadSkippedDecl)
1327             return CSFC_Failure;
1328           break;
1329         }
1330       }
1331     }
1332 
1333     // If we have statements in our range, then we know that the statements are
1334     // live and need to be added to the set of statements we're tracking.
1335     for (; I != E; ++I) {
1336       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1337       case CSFC_Failure: return CSFC_Failure;
1338       case CSFC_FallThrough:
1339         // A fallthrough result means that the statement was simple and just
1340         // included in ResultStmt, keep adding them afterwards.
1341         break;
1342       case CSFC_Success:
1343         // A successful result means that we found the break statement and
1344         // stopped statement inclusion.  We just ensure that any leftover stmts
1345         // are skippable and return success ourselves.
1346         for (++I; I != E; ++I)
1347           if (CodeGenFunction::ContainsLabel(*I, true))
1348             return CSFC_Failure;
1349         return CSFC_Success;
1350       }
1351     }
1352 
1353     return Case ? CSFC_Success : CSFC_FallThrough;
1354   }
1355 
1356   // Okay, this is some other statement that we don't handle explicitly, like a
1357   // for statement or increment etc.  If we are skipping over this statement,
1358   // just verify it doesn't have labels, which would make it invalid to elide.
1359   if (Case) {
1360     if (CodeGenFunction::ContainsLabel(S, true))
1361       return CSFC_Failure;
1362     return CSFC_Success;
1363   }
1364 
1365   // Otherwise, we want to include this statement.  Everything is cool with that
1366   // so long as it doesn't contain a break out of the switch we're in.
1367   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1368 
1369   // Otherwise, everything is great.  Include the statement and tell the caller
1370   // that we fall through and include the next statement as well.
1371   ResultStmts.push_back(S);
1372   return CSFC_FallThrough;
1373 }
1374 
1375 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1376 /// then invoke CollectStatementsForCase to find the list of statements to emit
1377 /// for a switch on constant.  See the comment above CollectStatementsForCase
1378 /// for more details.
1379 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1380                                        const llvm::APSInt &ConstantCondValue,
1381                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1382                                        ASTContext &C,
1383                                        const SwitchCase *&ResultCase) {
1384   // First step, find the switch case that is being branched to.  We can do this
1385   // efficiently by scanning the SwitchCase list.
1386   const SwitchCase *Case = S.getSwitchCaseList();
1387   const DefaultStmt *DefaultCase = nullptr;
1388 
1389   for (; Case; Case = Case->getNextSwitchCase()) {
1390     // It's either a default or case.  Just remember the default statement in
1391     // case we're not jumping to any numbered cases.
1392     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1393       DefaultCase = DS;
1394       continue;
1395     }
1396 
1397     // Check to see if this case is the one we're looking for.
1398     const CaseStmt *CS = cast<CaseStmt>(Case);
1399     // Don't handle case ranges yet.
1400     if (CS->getRHS()) return false;
1401 
1402     // If we found our case, remember it as 'case'.
1403     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1404       break;
1405   }
1406 
1407   // If we didn't find a matching case, we use a default if it exists, or we
1408   // elide the whole switch body!
1409   if (!Case) {
1410     // It is safe to elide the body of the switch if it doesn't contain labels
1411     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1412     if (!DefaultCase)
1413       return !CodeGenFunction::ContainsLabel(&S);
1414     Case = DefaultCase;
1415   }
1416 
1417   // Ok, we know which case is being jumped to, try to collect all the
1418   // statements that follow it.  This can fail for a variety of reasons.  Also,
1419   // check to see that the recursive walk actually found our case statement.
1420   // Insane cases like this can fail to find it in the recursive walk since we
1421   // don't handle every stmt kind:
1422   // switch (4) {
1423   //   while (1) {
1424   //     case 4: ...
1425   bool FoundCase = false;
1426   ResultCase = Case;
1427   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1428                                   ResultStmts) != CSFC_Failure &&
1429          FoundCase;
1430 }
1431 
1432 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1433   // Handle nested switch statements.
1434   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1435   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1436   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1437 
1438   // See if we can constant fold the condition of the switch and therefore only
1439   // emit the live case statement (if any) of the switch.
1440   llvm::APSInt ConstantCondValue;
1441   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1442     SmallVector<const Stmt*, 4> CaseStmts;
1443     const SwitchCase *Case = nullptr;
1444     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1445                                    getContext(), Case)) {
1446       if (Case)
1447         incrementProfileCounter(Case);
1448       RunCleanupsScope ExecutedScope(*this);
1449 
1450       // Emit the condition variable if needed inside the entire cleanup scope
1451       // used by this special case for constant folded switches.
1452       if (S.getConditionVariable())
1453         EmitAutoVarDecl(*S.getConditionVariable());
1454 
1455       // At this point, we are no longer "within" a switch instance, so
1456       // we can temporarily enforce this to ensure that any embedded case
1457       // statements are not emitted.
1458       SwitchInsn = nullptr;
1459 
1460       // Okay, we can dead code eliminate everything except this case.  Emit the
1461       // specified series of statements and we're good.
1462       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1463         EmitStmt(CaseStmts[i]);
1464       incrementProfileCounter(&S);
1465 
1466       // Now we want to restore the saved switch instance so that nested
1467       // switches continue to function properly
1468       SwitchInsn = SavedSwitchInsn;
1469 
1470       return;
1471     }
1472   }
1473 
1474   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1475 
1476   RunCleanupsScope ConditionScope(*this);
1477   if (S.getConditionVariable())
1478     EmitAutoVarDecl(*S.getConditionVariable());
1479   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1480 
1481   // Create basic block to hold stuff that comes after switch
1482   // statement. We also need to create a default block now so that
1483   // explicit case ranges tests can have a place to jump to on
1484   // failure.
1485   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1486   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1487   if (PGO.haveRegionCounts()) {
1488     // Walk the SwitchCase list to find how many there are.
1489     uint64_t DefaultCount = 0;
1490     unsigned NumCases = 0;
1491     for (const SwitchCase *Case = S.getSwitchCaseList();
1492          Case;
1493          Case = Case->getNextSwitchCase()) {
1494       if (isa<DefaultStmt>(Case))
1495         DefaultCount = getProfileCount(Case);
1496       NumCases += 1;
1497     }
1498     SwitchWeights = new SmallVector<uint64_t, 16>();
1499     SwitchWeights->reserve(NumCases);
1500     // The default needs to be first. We store the edge count, so we already
1501     // know the right weight.
1502     SwitchWeights->push_back(DefaultCount);
1503   }
1504   CaseRangeBlock = DefaultBlock;
1505 
1506   // Clear the insertion point to indicate we are in unreachable code.
1507   Builder.ClearInsertionPoint();
1508 
1509   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1510   // then reuse last ContinueBlock.
1511   JumpDest OuterContinue;
1512   if (!BreakContinueStack.empty())
1513     OuterContinue = BreakContinueStack.back().ContinueBlock;
1514 
1515   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1516 
1517   // Emit switch body.
1518   EmitStmt(S.getBody());
1519 
1520   BreakContinueStack.pop_back();
1521 
1522   // Update the default block in case explicit case range tests have
1523   // been chained on top.
1524   SwitchInsn->setDefaultDest(CaseRangeBlock);
1525 
1526   // If a default was never emitted:
1527   if (!DefaultBlock->getParent()) {
1528     // If we have cleanups, emit the default block so that there's a
1529     // place to jump through the cleanups from.
1530     if (ConditionScope.requiresCleanups()) {
1531       EmitBlock(DefaultBlock);
1532 
1533     // Otherwise, just forward the default block to the switch end.
1534     } else {
1535       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1536       delete DefaultBlock;
1537     }
1538   }
1539 
1540   ConditionScope.ForceCleanup();
1541 
1542   // Emit continuation.
1543   EmitBlock(SwitchExit.getBlock(), true);
1544   incrementProfileCounter(&S);
1545 
1546   // If the switch has a condition wrapped by __builtin_unpredictable,
1547   // create metadata that specifies that the switch is unpredictable.
1548   // Don't bother if not optimizing because that metadata would not be used.
1549   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1550     if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) {
1551       const Decl *TargetDecl = Call->getCalleeDecl();
1552       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1553         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1554           llvm::MDBuilder MDHelper(getLLVMContext());
1555           SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1556                                   MDHelper.createUnpredictable());
1557         }
1558       }
1559     }
1560   }
1561 
1562   if (SwitchWeights) {
1563     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1564            "switch weights do not match switch cases");
1565     // If there's only one jump destination there's no sense weighting it.
1566     if (SwitchWeights->size() > 1)
1567       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1568                               createProfileWeights(*SwitchWeights));
1569     delete SwitchWeights;
1570   }
1571   SwitchInsn = SavedSwitchInsn;
1572   SwitchWeights = SavedSwitchWeights;
1573   CaseRangeBlock = SavedCRBlock;
1574 }
1575 
1576 static std::string
1577 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1578                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1579   std::string Result;
1580 
1581   while (*Constraint) {
1582     switch (*Constraint) {
1583     default:
1584       Result += Target.convertConstraint(Constraint);
1585       break;
1586     // Ignore these
1587     case '*':
1588     case '?':
1589     case '!':
1590     case '=': // Will see this and the following in mult-alt constraints.
1591     case '+':
1592       break;
1593     case '#': // Ignore the rest of the constraint alternative.
1594       while (Constraint[1] && Constraint[1] != ',')
1595         Constraint++;
1596       break;
1597     case '&':
1598     case '%':
1599       Result += *Constraint;
1600       while (Constraint[1] && Constraint[1] == *Constraint)
1601         Constraint++;
1602       break;
1603     case ',':
1604       Result += "|";
1605       break;
1606     case 'g':
1607       Result += "imr";
1608       break;
1609     case '[': {
1610       assert(OutCons &&
1611              "Must pass output names to constraints with a symbolic name");
1612       unsigned Index;
1613       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1614       assert(result && "Could not resolve symbolic name"); (void)result;
1615       Result += llvm::utostr(Index);
1616       break;
1617     }
1618     }
1619 
1620     Constraint++;
1621   }
1622 
1623   return Result;
1624 }
1625 
1626 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1627 /// as using a particular register add that as a constraint that will be used
1628 /// in this asm stmt.
1629 static std::string
1630 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1631                        const TargetInfo &Target, CodeGenModule &CGM,
1632                        const AsmStmt &Stmt, const bool EarlyClobber) {
1633   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1634   if (!AsmDeclRef)
1635     return Constraint;
1636   const ValueDecl &Value = *AsmDeclRef->getDecl();
1637   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1638   if (!Variable)
1639     return Constraint;
1640   if (Variable->getStorageClass() != SC_Register)
1641     return Constraint;
1642   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1643   if (!Attr)
1644     return Constraint;
1645   StringRef Register = Attr->getLabel();
1646   assert(Target.isValidGCCRegisterName(Register));
1647   // We're using validateOutputConstraint here because we only care if
1648   // this is a register constraint.
1649   TargetInfo::ConstraintInfo Info(Constraint, "");
1650   if (Target.validateOutputConstraint(Info) &&
1651       !Info.allowsRegister()) {
1652     CGM.ErrorUnsupported(&Stmt, "__asm__");
1653     return Constraint;
1654   }
1655   // Canonicalize the register here before returning it.
1656   Register = Target.getNormalizedGCCRegisterName(Register);
1657   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1658 }
1659 
1660 llvm::Value*
1661 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1662                                     LValue InputValue, QualType InputType,
1663                                     std::string &ConstraintStr,
1664                                     SourceLocation Loc) {
1665   llvm::Value *Arg;
1666   if (Info.allowsRegister() || !Info.allowsMemory()) {
1667     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1668       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1669     } else {
1670       llvm::Type *Ty = ConvertType(InputType);
1671       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1672       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1673         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1674         Ty = llvm::PointerType::getUnqual(Ty);
1675 
1676         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1677                                                        Ty));
1678       } else {
1679         Arg = InputValue.getPointer();
1680         ConstraintStr += '*';
1681       }
1682     }
1683   } else {
1684     Arg = InputValue.getPointer();
1685     ConstraintStr += '*';
1686   }
1687 
1688   return Arg;
1689 }
1690 
1691 llvm::Value* CodeGenFunction::EmitAsmInput(
1692                                          const TargetInfo::ConstraintInfo &Info,
1693                                            const Expr *InputExpr,
1694                                            std::string &ConstraintStr) {
1695   // If this can't be a register or memory, i.e., has to be a constant
1696   // (immediate or symbolic), try to emit it as such.
1697   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1698     llvm::APSInt Result;
1699     if (InputExpr->EvaluateAsInt(Result, getContext()))
1700       return llvm::ConstantInt::get(getLLVMContext(), Result);
1701     assert(!Info.requiresImmediateConstant() &&
1702            "Required-immediate inlineasm arg isn't constant?");
1703   }
1704 
1705   if (Info.allowsRegister() || !Info.allowsMemory())
1706     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1707       return EmitScalarExpr(InputExpr);
1708   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1709     return EmitScalarExpr(InputExpr);
1710   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1711   LValue Dest = EmitLValue(InputExpr);
1712   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1713                             InputExpr->getExprLoc());
1714 }
1715 
1716 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1717 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1718 /// integers which are the source locations of the start of each line in the
1719 /// asm.
1720 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1721                                       CodeGenFunction &CGF) {
1722   SmallVector<llvm::Metadata *, 8> Locs;
1723   // Add the location of the first line to the MDNode.
1724   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1725       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1726   StringRef StrVal = Str->getString();
1727   if (!StrVal.empty()) {
1728     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1729     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1730     unsigned StartToken = 0;
1731     unsigned ByteOffset = 0;
1732 
1733     // Add the location of the start of each subsequent line of the asm to the
1734     // MDNode.
1735     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1736       if (StrVal[i] != '\n') continue;
1737       SourceLocation LineLoc = Str->getLocationOfByte(
1738           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1739       Locs.push_back(llvm::ConstantAsMetadata::get(
1740           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1741     }
1742   }
1743 
1744   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1745 }
1746 
1747 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1748   // Assemble the final asm string.
1749   std::string AsmString = S.generateAsmString(getContext());
1750 
1751   // Get all the output and input constraints together.
1752   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1753   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1754 
1755   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1756     StringRef Name;
1757     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1758       Name = GAS->getOutputName(i);
1759     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1760     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1761     assert(IsValid && "Failed to parse output constraint");
1762     OutputConstraintInfos.push_back(Info);
1763   }
1764 
1765   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1766     StringRef Name;
1767     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1768       Name = GAS->getInputName(i);
1769     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1770     bool IsValid =
1771       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1772     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1773     InputConstraintInfos.push_back(Info);
1774   }
1775 
1776   std::string Constraints;
1777 
1778   std::vector<LValue> ResultRegDests;
1779   std::vector<QualType> ResultRegQualTys;
1780   std::vector<llvm::Type *> ResultRegTypes;
1781   std::vector<llvm::Type *> ResultTruncRegTypes;
1782   std::vector<llvm::Type *> ArgTypes;
1783   std::vector<llvm::Value*> Args;
1784 
1785   // Keep track of inout constraints.
1786   std::string InOutConstraints;
1787   std::vector<llvm::Value*> InOutArgs;
1788   std::vector<llvm::Type*> InOutArgTypes;
1789 
1790   // An inline asm can be marked readonly if it meets the following conditions:
1791   //  - it doesn't have any sideeffects
1792   //  - it doesn't clobber memory
1793   //  - it doesn't return a value by-reference
1794   // It can be marked readnone if it doesn't have any input memory constraints
1795   // in addition to meeting the conditions listed above.
1796   bool ReadOnly = true, ReadNone = true;
1797 
1798   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1799     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1800 
1801     // Simplify the output constraint.
1802     std::string OutputConstraint(S.getOutputConstraint(i));
1803     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1804                                           getTarget());
1805 
1806     const Expr *OutExpr = S.getOutputExpr(i);
1807     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1808 
1809     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1810                                               getTarget(), CGM, S,
1811                                               Info.earlyClobber());
1812 
1813     LValue Dest = EmitLValue(OutExpr);
1814     if (!Constraints.empty())
1815       Constraints += ',';
1816 
1817     // If this is a register output, then make the inline asm return it
1818     // by-value.  If this is a memory result, return the value by-reference.
1819     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1820       Constraints += "=" + OutputConstraint;
1821       ResultRegQualTys.push_back(OutExpr->getType());
1822       ResultRegDests.push_back(Dest);
1823       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1824       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1825 
1826       // If this output is tied to an input, and if the input is larger, then
1827       // we need to set the actual result type of the inline asm node to be the
1828       // same as the input type.
1829       if (Info.hasMatchingInput()) {
1830         unsigned InputNo;
1831         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1832           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1833           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1834             break;
1835         }
1836         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1837 
1838         QualType InputTy = S.getInputExpr(InputNo)->getType();
1839         QualType OutputType = OutExpr->getType();
1840 
1841         uint64_t InputSize = getContext().getTypeSize(InputTy);
1842         if (getContext().getTypeSize(OutputType) < InputSize) {
1843           // Form the asm to return the value as a larger integer or fp type.
1844           ResultRegTypes.back() = ConvertType(InputTy);
1845         }
1846       }
1847       if (llvm::Type* AdjTy =
1848             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1849                                                  ResultRegTypes.back()))
1850         ResultRegTypes.back() = AdjTy;
1851       else {
1852         CGM.getDiags().Report(S.getAsmLoc(),
1853                               diag::err_asm_invalid_type_in_input)
1854             << OutExpr->getType() << OutputConstraint;
1855       }
1856     } else {
1857       ArgTypes.push_back(Dest.getAddress().getType());
1858       Args.push_back(Dest.getPointer());
1859       Constraints += "=*";
1860       Constraints += OutputConstraint;
1861       ReadOnly = ReadNone = false;
1862     }
1863 
1864     if (Info.isReadWrite()) {
1865       InOutConstraints += ',';
1866 
1867       const Expr *InputExpr = S.getOutputExpr(i);
1868       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1869                                             InOutConstraints,
1870                                             InputExpr->getExprLoc());
1871 
1872       if (llvm::Type* AdjTy =
1873           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1874                                                Arg->getType()))
1875         Arg = Builder.CreateBitCast(Arg, AdjTy);
1876 
1877       if (Info.allowsRegister())
1878         InOutConstraints += llvm::utostr(i);
1879       else
1880         InOutConstraints += OutputConstraint;
1881 
1882       InOutArgTypes.push_back(Arg->getType());
1883       InOutArgs.push_back(Arg);
1884     }
1885   }
1886 
1887   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1888   // to the return value slot. Only do this when returning in registers.
1889   if (isa<MSAsmStmt>(&S)) {
1890     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1891     if (RetAI.isDirect() || RetAI.isExtend()) {
1892       // Make a fake lvalue for the return value slot.
1893       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1894       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1895           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1896           ResultRegDests, AsmString, S.getNumOutputs());
1897       SawAsmBlock = true;
1898     }
1899   }
1900 
1901   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1902     const Expr *InputExpr = S.getInputExpr(i);
1903 
1904     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1905 
1906     if (Info.allowsMemory())
1907       ReadNone = false;
1908 
1909     if (!Constraints.empty())
1910       Constraints += ',';
1911 
1912     // Simplify the input constraint.
1913     std::string InputConstraint(S.getInputConstraint(i));
1914     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1915                                          &OutputConstraintInfos);
1916 
1917     InputConstraint = AddVariableConstraints(
1918         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1919         getTarget(), CGM, S, false /* No EarlyClobber */);
1920 
1921     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1922 
1923     // If this input argument is tied to a larger output result, extend the
1924     // input to be the same size as the output.  The LLVM backend wants to see
1925     // the input and output of a matching constraint be the same size.  Note
1926     // that GCC does not define what the top bits are here.  We use zext because
1927     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1928     if (Info.hasTiedOperand()) {
1929       unsigned Output = Info.getTiedOperand();
1930       QualType OutputType = S.getOutputExpr(Output)->getType();
1931       QualType InputTy = InputExpr->getType();
1932 
1933       if (getContext().getTypeSize(OutputType) >
1934           getContext().getTypeSize(InputTy)) {
1935         // Use ptrtoint as appropriate so that we can do our extension.
1936         if (isa<llvm::PointerType>(Arg->getType()))
1937           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1938         llvm::Type *OutputTy = ConvertType(OutputType);
1939         if (isa<llvm::IntegerType>(OutputTy))
1940           Arg = Builder.CreateZExt(Arg, OutputTy);
1941         else if (isa<llvm::PointerType>(OutputTy))
1942           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1943         else {
1944           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1945           Arg = Builder.CreateFPExt(Arg, OutputTy);
1946         }
1947       }
1948     }
1949     if (llvm::Type* AdjTy =
1950               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1951                                                    Arg->getType()))
1952       Arg = Builder.CreateBitCast(Arg, AdjTy);
1953     else
1954       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1955           << InputExpr->getType() << InputConstraint;
1956 
1957     ArgTypes.push_back(Arg->getType());
1958     Args.push_back(Arg);
1959     Constraints += InputConstraint;
1960   }
1961 
1962   // Append the "input" part of inout constraints last.
1963   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1964     ArgTypes.push_back(InOutArgTypes[i]);
1965     Args.push_back(InOutArgs[i]);
1966   }
1967   Constraints += InOutConstraints;
1968 
1969   // Clobbers
1970   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1971     StringRef Clobber = S.getClobber(i);
1972 
1973     if (Clobber == "memory")
1974       ReadOnly = ReadNone = false;
1975     else if (Clobber != "cc")
1976       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1977 
1978     if (!Constraints.empty())
1979       Constraints += ',';
1980 
1981     Constraints += "~{";
1982     Constraints += Clobber;
1983     Constraints += '}';
1984   }
1985 
1986   // Add machine specific clobbers
1987   std::string MachineClobbers = getTarget().getClobbers();
1988   if (!MachineClobbers.empty()) {
1989     if (!Constraints.empty())
1990       Constraints += ',';
1991     Constraints += MachineClobbers;
1992   }
1993 
1994   llvm::Type *ResultType;
1995   if (ResultRegTypes.empty())
1996     ResultType = VoidTy;
1997   else if (ResultRegTypes.size() == 1)
1998     ResultType = ResultRegTypes[0];
1999   else
2000     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2001 
2002   llvm::FunctionType *FTy =
2003     llvm::FunctionType::get(ResultType, ArgTypes, false);
2004 
2005   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2006   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2007     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2008   llvm::InlineAsm *IA =
2009     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2010                          /* IsAlignStack */ false, AsmDialect);
2011   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2012   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2013                        llvm::Attribute::NoUnwind);
2014 
2015   if (isa<MSAsmStmt>(&S)) {
2016     // If the assembly contains any labels, mark the call noduplicate to prevent
2017     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
2018     // works.
2019     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
2020       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2021                            llvm::Attribute::NoDuplicate);
2022   }
2023 
2024   // Attach readnone and readonly attributes.
2025   if (!HasSideEffect) {
2026     if (ReadNone)
2027       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2028                            llvm::Attribute::ReadNone);
2029     else if (ReadOnly)
2030       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2031                            llvm::Attribute::ReadOnly);
2032   }
2033 
2034   // Slap the source location of the inline asm into a !srcloc metadata on the
2035   // call.
2036   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2037     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2038                                                    *this));
2039   } else {
2040     // At least put the line number on MS inline asm blobs.
2041     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2042     Result->setMetadata("srcloc",
2043                         llvm::MDNode::get(getLLVMContext(),
2044                                           llvm::ConstantAsMetadata::get(Loc)));
2045   }
2046 
2047   // Extract all of the register value results from the asm.
2048   std::vector<llvm::Value*> RegResults;
2049   if (ResultRegTypes.size() == 1) {
2050     RegResults.push_back(Result);
2051   } else {
2052     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2053       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2054       RegResults.push_back(Tmp);
2055     }
2056   }
2057 
2058   assert(RegResults.size() == ResultRegTypes.size());
2059   assert(RegResults.size() == ResultTruncRegTypes.size());
2060   assert(RegResults.size() == ResultRegDests.size());
2061   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2062     llvm::Value *Tmp = RegResults[i];
2063 
2064     // If the result type of the LLVM IR asm doesn't match the result type of
2065     // the expression, do the conversion.
2066     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2067       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2068 
2069       // Truncate the integer result to the right size, note that TruncTy can be
2070       // a pointer.
2071       if (TruncTy->isFloatingPointTy())
2072         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2073       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2074         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2075         Tmp = Builder.CreateTrunc(Tmp,
2076                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2077         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2078       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2079         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2080         Tmp = Builder.CreatePtrToInt(Tmp,
2081                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2082         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2083       } else if (TruncTy->isIntegerTy()) {
2084         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2085       } else if (TruncTy->isVectorTy()) {
2086         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2087       }
2088     }
2089 
2090     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2091   }
2092 }
2093 
2094 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2095   const RecordDecl *RD = S.getCapturedRecordDecl();
2096   QualType RecordTy = getContext().getRecordType(RD);
2097 
2098   // Initialize the captured struct.
2099   LValue SlotLV =
2100     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2101 
2102   RecordDecl::field_iterator CurField = RD->field_begin();
2103   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2104                                                  E = S.capture_init_end();
2105        I != E; ++I, ++CurField) {
2106     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2107     if (CurField->hasCapturedVLAType()) {
2108       auto VAT = CurField->getCapturedVLAType();
2109       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2110     } else {
2111       EmitInitializerForField(*CurField, LV, *I, None);
2112     }
2113   }
2114 
2115   return SlotLV;
2116 }
2117 
2118 /// Generate an outlined function for the body of a CapturedStmt, store any
2119 /// captured variables into the captured struct, and call the outlined function.
2120 llvm::Function *
2121 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2122   LValue CapStruct = InitCapturedStruct(S);
2123 
2124   // Emit the CapturedDecl
2125   CodeGenFunction CGF(CGM, true);
2126   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2127   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2128   delete CGF.CapturedStmtInfo;
2129 
2130   // Emit call to the helper function.
2131   EmitCallOrInvoke(F, CapStruct.getPointer());
2132 
2133   return F;
2134 }
2135 
2136 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2137   LValue CapStruct = InitCapturedStruct(S);
2138   return CapStruct.getAddress();
2139 }
2140 
2141 /// Creates the outlined function for a CapturedStmt.
2142 llvm::Function *
2143 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2144   assert(CapturedStmtInfo &&
2145     "CapturedStmtInfo should be set when generating the captured function");
2146   const CapturedDecl *CD = S.getCapturedDecl();
2147   const RecordDecl *RD = S.getCapturedRecordDecl();
2148   SourceLocation Loc = S.getLocStart();
2149   assert(CD->hasBody() && "missing CapturedDecl body");
2150 
2151   // Build the argument list.
2152   ASTContext &Ctx = CGM.getContext();
2153   FunctionArgList Args;
2154   Args.append(CD->param_begin(), CD->param_end());
2155 
2156   // Create the function declaration.
2157   FunctionType::ExtInfo ExtInfo;
2158   const CGFunctionInfo &FuncInfo =
2159       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2160                                                     /*IsVariadic=*/false);
2161   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2162 
2163   llvm::Function *F =
2164     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2165                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2166   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2167   if (CD->isNothrow())
2168     F->addFnAttr(llvm::Attribute::NoUnwind);
2169 
2170   // Generate the function.
2171   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2172                 CD->getLocation(),
2173                 CD->getBody()->getLocStart());
2174   // Set the context parameter in CapturedStmtInfo.
2175   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2176   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2177 
2178   // Initialize variable-length arrays.
2179   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2180                                            Ctx.getTagDeclType(RD));
2181   for (auto *FD : RD->fields()) {
2182     if (FD->hasCapturedVLAType()) {
2183       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2184                                        S.getLocStart()).getScalarVal();
2185       auto VAT = FD->getCapturedVLAType();
2186       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2187     }
2188   }
2189 
2190   // If 'this' is captured, load it into CXXThisValue.
2191   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2192     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2193     LValue ThisLValue = EmitLValueForField(Base, FD);
2194     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2195   }
2196 
2197   PGO.assignRegionCounters(GlobalDecl(CD), F);
2198   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2199   FinishFunction(CD->getBodyRBrace());
2200 
2201   return F;
2202 }
2203