1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106 
107     EmitIgnoredExpr(cast<Expr>(S));
108 
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111 
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130 
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138 
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140 
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CoroutineBodyStmtClass:
145   case Stmt::CoreturnStmtClass:
146     CGM.ErrorUnsupported(S, "coroutine");
147     break;
148   case Stmt::CapturedStmtClass: {
149     const CapturedStmt *CS = cast<CapturedStmt>(S);
150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
151     }
152     break;
153   case Stmt::ObjCAtTryStmtClass:
154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
155     break;
156   case Stmt::ObjCAtCatchStmtClass:
157     llvm_unreachable(
158                     "@catch statements should be handled by EmitObjCAtTryStmt");
159   case Stmt::ObjCAtFinallyStmtClass:
160     llvm_unreachable(
161                   "@finally statements should be handled by EmitObjCAtTryStmt");
162   case Stmt::ObjCAtThrowStmtClass:
163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
164     break;
165   case Stmt::ObjCAtSynchronizedStmtClass:
166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
167     break;
168   case Stmt::ObjCForCollectionStmtClass:
169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
170     break;
171   case Stmt::ObjCAutoreleasePoolStmtClass:
172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
173     break;
174 
175   case Stmt::CXXTryStmtClass:
176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
177     break;
178   case Stmt::CXXForRangeStmtClass:
179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
180     break;
181   case Stmt::SEHTryStmtClass:
182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
183     break;
184   case Stmt::OMPParallelDirectiveClass:
185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
186     break;
187   case Stmt::OMPSimdDirectiveClass:
188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
189     break;
190   case Stmt::OMPForDirectiveClass:
191     EmitOMPForDirective(cast<OMPForDirective>(*S));
192     break;
193   case Stmt::OMPForSimdDirectiveClass:
194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
195     break;
196   case Stmt::OMPSectionsDirectiveClass:
197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
198     break;
199   case Stmt::OMPSectionDirectiveClass:
200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
201     break;
202   case Stmt::OMPSingleDirectiveClass:
203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
204     break;
205   case Stmt::OMPMasterDirectiveClass:
206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
207     break;
208   case Stmt::OMPCriticalDirectiveClass:
209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
210     break;
211   case Stmt::OMPParallelForDirectiveClass:
212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
213     break;
214   case Stmt::OMPParallelForSimdDirectiveClass:
215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
216     break;
217   case Stmt::OMPParallelSectionsDirectiveClass:
218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
219     break;
220   case Stmt::OMPTaskDirectiveClass:
221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
222     break;
223   case Stmt::OMPTaskyieldDirectiveClass:
224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
225     break;
226   case Stmt::OMPBarrierDirectiveClass:
227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
228     break;
229   case Stmt::OMPTaskwaitDirectiveClass:
230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
231     break;
232   case Stmt::OMPTaskgroupDirectiveClass:
233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
234     break;
235   case Stmt::OMPFlushDirectiveClass:
236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
237     break;
238   case Stmt::OMPOrderedDirectiveClass:
239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
240     break;
241   case Stmt::OMPAtomicDirectiveClass:
242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
243     break;
244   case Stmt::OMPTargetDirectiveClass:
245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
246     break;
247   case Stmt::OMPTeamsDirectiveClass:
248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
249     break;
250   case Stmt::OMPCancellationPointDirectiveClass:
251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
252     break;
253   case Stmt::OMPCancelDirectiveClass:
254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
255     break;
256   case Stmt::OMPTargetDataDirectiveClass:
257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
258     break;
259   case Stmt::OMPTargetEnterDataDirectiveClass:
260     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
261     break;
262   case Stmt::OMPTargetExitDataDirectiveClass:
263     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
264     break;
265   case Stmt::OMPTargetParallelDirectiveClass:
266     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
267     break;
268   case Stmt::OMPTargetParallelForDirectiveClass:
269     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
270     break;
271   case Stmt::OMPTaskLoopDirectiveClass:
272     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
273     break;
274   case Stmt::OMPTaskLoopSimdDirectiveClass:
275     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
276     break;
277   case Stmt::OMPDistributeDirectiveClass:
278     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
279     break;
280   case Stmt::OMPTargetUpdateDirectiveClass:
281     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
282     break;
283   case Stmt::OMPDistributeParallelForDirectiveClass:
284     EmitOMPDistributeParallelForDirective(
285         cast<OMPDistributeParallelForDirective>(*S));
286     break;
287   }
288 }
289 
290 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
291   switch (S->getStmtClass()) {
292   default: return false;
293   case Stmt::NullStmtClass: break;
294   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
295   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
296   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
297   case Stmt::AttributedStmtClass:
298                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
299   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
300   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
301   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
302   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
303   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
304   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
305   }
306 
307   return true;
308 }
309 
310 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
311 /// this captures the expression result of the last sub-statement and returns it
312 /// (for use by the statement expression extension).
313 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
314                                           AggValueSlot AggSlot) {
315   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
316                              "LLVM IR generation of compound statement ('{}')");
317 
318   // Keep track of the current cleanup stack depth, including debug scopes.
319   LexicalScope Scope(*this, S.getSourceRange());
320 
321   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
322 }
323 
324 Address
325 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
326                                               bool GetLast,
327                                               AggValueSlot AggSlot) {
328 
329   for (CompoundStmt::const_body_iterator I = S.body_begin(),
330        E = S.body_end()-GetLast; I != E; ++I)
331     EmitStmt(*I);
332 
333   Address RetAlloca = Address::invalid();
334   if (GetLast) {
335     // We have to special case labels here.  They are statements, but when put
336     // at the end of a statement expression, they yield the value of their
337     // subexpression.  Handle this by walking through all labels we encounter,
338     // emitting them before we evaluate the subexpr.
339     const Stmt *LastStmt = S.body_back();
340     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
341       EmitLabel(LS->getDecl());
342       LastStmt = LS->getSubStmt();
343     }
344 
345     EnsureInsertPoint();
346 
347     QualType ExprTy = cast<Expr>(LastStmt)->getType();
348     if (hasAggregateEvaluationKind(ExprTy)) {
349       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
350     } else {
351       // We can't return an RValue here because there might be cleanups at
352       // the end of the StmtExpr.  Because of that, we have to emit the result
353       // here into a temporary alloca.
354       RetAlloca = CreateMemTemp(ExprTy);
355       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
356                        /*IsInit*/false);
357     }
358 
359   }
360 
361   return RetAlloca;
362 }
363 
364 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
365   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
366 
367   // If there is a cleanup stack, then we it isn't worth trying to
368   // simplify this block (we would need to remove it from the scope map
369   // and cleanup entry).
370   if (!EHStack.empty())
371     return;
372 
373   // Can only simplify direct branches.
374   if (!BI || !BI->isUnconditional())
375     return;
376 
377   // Can only simplify empty blocks.
378   if (BI->getIterator() != BB->begin())
379     return;
380 
381   BB->replaceAllUsesWith(BI->getSuccessor(0));
382   BI->eraseFromParent();
383   BB->eraseFromParent();
384 }
385 
386 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
387   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
388 
389   // Fall out of the current block (if necessary).
390   EmitBranch(BB);
391 
392   if (IsFinished && BB->use_empty()) {
393     delete BB;
394     return;
395   }
396 
397   // Place the block after the current block, if possible, or else at
398   // the end of the function.
399   if (CurBB && CurBB->getParent())
400     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
401   else
402     CurFn->getBasicBlockList().push_back(BB);
403   Builder.SetInsertPoint(BB);
404 }
405 
406 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
407   // Emit a branch from the current block to the target one if this
408   // was a real block.  If this was just a fall-through block after a
409   // terminator, don't emit it.
410   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
411 
412   if (!CurBB || CurBB->getTerminator()) {
413     // If there is no insert point or the previous block is already
414     // terminated, don't touch it.
415   } else {
416     // Otherwise, create a fall-through branch.
417     Builder.CreateBr(Target);
418   }
419 
420   Builder.ClearInsertionPoint();
421 }
422 
423 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
424   bool inserted = false;
425   for (llvm::User *u : block->users()) {
426     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
427       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
428                                              block);
429       inserted = true;
430       break;
431     }
432   }
433 
434   if (!inserted)
435     CurFn->getBasicBlockList().push_back(block);
436 
437   Builder.SetInsertPoint(block);
438 }
439 
440 CodeGenFunction::JumpDest
441 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
442   JumpDest &Dest = LabelMap[D];
443   if (Dest.isValid()) return Dest;
444 
445   // Create, but don't insert, the new block.
446   Dest = JumpDest(createBasicBlock(D->getName()),
447                   EHScopeStack::stable_iterator::invalid(),
448                   NextCleanupDestIndex++);
449   return Dest;
450 }
451 
452 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
453   // Add this label to the current lexical scope if we're within any
454   // normal cleanups.  Jumps "in" to this label --- when permitted by
455   // the language --- may need to be routed around such cleanups.
456   if (EHStack.hasNormalCleanups() && CurLexicalScope)
457     CurLexicalScope->addLabel(D);
458 
459   JumpDest &Dest = LabelMap[D];
460 
461   // If we didn't need a forward reference to this label, just go
462   // ahead and create a destination at the current scope.
463   if (!Dest.isValid()) {
464     Dest = getJumpDestInCurrentScope(D->getName());
465 
466   // Otherwise, we need to give this label a target depth and remove
467   // it from the branch-fixups list.
468   } else {
469     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
470     Dest.setScopeDepth(EHStack.stable_begin());
471     ResolveBranchFixups(Dest.getBlock());
472   }
473 
474   EmitBlock(Dest.getBlock());
475   incrementProfileCounter(D->getStmt());
476 }
477 
478 /// Change the cleanup scope of the labels in this lexical scope to
479 /// match the scope of the enclosing context.
480 void CodeGenFunction::LexicalScope::rescopeLabels() {
481   assert(!Labels.empty());
482   EHScopeStack::stable_iterator innermostScope
483     = CGF.EHStack.getInnermostNormalCleanup();
484 
485   // Change the scope depth of all the labels.
486   for (SmallVectorImpl<const LabelDecl*>::const_iterator
487          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
488     assert(CGF.LabelMap.count(*i));
489     JumpDest &dest = CGF.LabelMap.find(*i)->second;
490     assert(dest.getScopeDepth().isValid());
491     assert(innermostScope.encloses(dest.getScopeDepth()));
492     dest.setScopeDepth(innermostScope);
493   }
494 
495   // Reparent the labels if the new scope also has cleanups.
496   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
497     ParentScope->Labels.append(Labels.begin(), Labels.end());
498   }
499 }
500 
501 
502 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
503   EmitLabel(S.getDecl());
504   EmitStmt(S.getSubStmt());
505 }
506 
507 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
508   const Stmt *SubStmt = S.getSubStmt();
509   switch (SubStmt->getStmtClass()) {
510   case Stmt::DoStmtClass:
511     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
512     break;
513   case Stmt::ForStmtClass:
514     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
515     break;
516   case Stmt::WhileStmtClass:
517     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
518     break;
519   case Stmt::CXXForRangeStmtClass:
520     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
521     break;
522   default:
523     EmitStmt(SubStmt);
524   }
525 }
526 
527 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
528   // If this code is reachable then emit a stop point (if generating
529   // debug info). We have to do this ourselves because we are on the
530   // "simple" statement path.
531   if (HaveInsertPoint())
532     EmitStopPoint(&S);
533 
534   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
535 }
536 
537 
538 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
539   if (const LabelDecl *Target = S.getConstantTarget()) {
540     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
541     return;
542   }
543 
544   // Ensure that we have an i8* for our PHI node.
545   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
546                                          Int8PtrTy, "addr");
547   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
548 
549   // Get the basic block for the indirect goto.
550   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
551 
552   // The first instruction in the block has to be the PHI for the switch dest,
553   // add an entry for this branch.
554   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
555 
556   EmitBranch(IndGotoBB);
557 }
558 
559 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
560   // C99 6.8.4.1: The first substatement is executed if the expression compares
561   // unequal to 0.  The condition must be a scalar type.
562   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
563 
564   if (S.getConditionVariable())
565     EmitAutoVarDecl(*S.getConditionVariable());
566 
567   // If the condition constant folds and can be elided, try to avoid emitting
568   // the condition and the dead arm of the if/else.
569   bool CondConstant;
570   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
571                                    S.isConstexpr())) {
572     // Figure out which block (then or else) is executed.
573     const Stmt *Executed = S.getThen();
574     const Stmt *Skipped  = S.getElse();
575     if (!CondConstant)  // Condition false?
576       std::swap(Executed, Skipped);
577 
578     // If the skipped block has no labels in it, just emit the executed block.
579     // This avoids emitting dead code and simplifies the CFG substantially.
580     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
581       if (CondConstant)
582         incrementProfileCounter(&S);
583       if (Executed) {
584         RunCleanupsScope ExecutedScope(*this);
585         EmitStmt(Executed);
586       }
587       return;
588     }
589   }
590 
591   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
592   // the conditional branch.
593   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
594   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
595   llvm::BasicBlock *ElseBlock = ContBlock;
596   if (S.getElse())
597     ElseBlock = createBasicBlock("if.else");
598 
599   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
600                        getProfileCount(S.getThen()));
601 
602   // Emit the 'then' code.
603   EmitBlock(ThenBlock);
604   incrementProfileCounter(&S);
605   {
606     RunCleanupsScope ThenScope(*this);
607     EmitStmt(S.getThen());
608   }
609   EmitBranch(ContBlock);
610 
611   // Emit the 'else' code if present.
612   if (const Stmt *Else = S.getElse()) {
613     {
614       // There is no need to emit line number for an unconditional branch.
615       auto NL = ApplyDebugLocation::CreateEmpty(*this);
616       EmitBlock(ElseBlock);
617     }
618     {
619       RunCleanupsScope ElseScope(*this);
620       EmitStmt(Else);
621     }
622     {
623       // There is no need to emit line number for an unconditional branch.
624       auto NL = ApplyDebugLocation::CreateEmpty(*this);
625       EmitBranch(ContBlock);
626     }
627   }
628 
629   // Emit the continuation block for code after the if.
630   EmitBlock(ContBlock, true);
631 }
632 
633 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
634                                     ArrayRef<const Attr *> WhileAttrs) {
635   // Emit the header for the loop, which will also become
636   // the continue target.
637   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
638   EmitBlock(LoopHeader.getBlock());
639 
640   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
641                  Builder.getCurrentDebugLocation());
642 
643   // Create an exit block for when the condition fails, which will
644   // also become the break target.
645   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
646 
647   // Store the blocks to use for break and continue.
648   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
649 
650   // C++ [stmt.while]p2:
651   //   When the condition of a while statement is a declaration, the
652   //   scope of the variable that is declared extends from its point
653   //   of declaration (3.3.2) to the end of the while statement.
654   //   [...]
655   //   The object created in a condition is destroyed and created
656   //   with each iteration of the loop.
657   RunCleanupsScope ConditionScope(*this);
658 
659   if (S.getConditionVariable())
660     EmitAutoVarDecl(*S.getConditionVariable());
661 
662   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
663   // evaluation of the controlling expression takes place before each
664   // execution of the loop body.
665   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
666 
667   // while(1) is common, avoid extra exit blocks.  Be sure
668   // to correctly handle break/continue though.
669   bool EmitBoolCondBranch = true;
670   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
671     if (C->isOne())
672       EmitBoolCondBranch = false;
673 
674   // As long as the condition is true, go to the loop body.
675   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
676   if (EmitBoolCondBranch) {
677     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
678     if (ConditionScope.requiresCleanups())
679       ExitBlock = createBasicBlock("while.exit");
680     Builder.CreateCondBr(
681         BoolCondVal, LoopBody, ExitBlock,
682         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
683 
684     if (ExitBlock != LoopExit.getBlock()) {
685       EmitBlock(ExitBlock);
686       EmitBranchThroughCleanup(LoopExit);
687     }
688   }
689 
690   // Emit the loop body.  We have to emit this in a cleanup scope
691   // because it might be a singleton DeclStmt.
692   {
693     RunCleanupsScope BodyScope(*this);
694     EmitBlock(LoopBody);
695     incrementProfileCounter(&S);
696     EmitStmt(S.getBody());
697   }
698 
699   BreakContinueStack.pop_back();
700 
701   // Immediately force cleanup.
702   ConditionScope.ForceCleanup();
703 
704   EmitStopPoint(&S);
705   // Branch to the loop header again.
706   EmitBranch(LoopHeader.getBlock());
707 
708   LoopStack.pop();
709 
710   // Emit the exit block.
711   EmitBlock(LoopExit.getBlock(), true);
712 
713   // The LoopHeader typically is just a branch if we skipped emitting
714   // a branch, try to erase it.
715   if (!EmitBoolCondBranch)
716     SimplifyForwardingBlocks(LoopHeader.getBlock());
717 }
718 
719 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
720                                  ArrayRef<const Attr *> DoAttrs) {
721   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
722   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
723 
724   uint64_t ParentCount = getCurrentProfileCount();
725 
726   // Store the blocks to use for break and continue.
727   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
728 
729   // Emit the body of the loop.
730   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
731 
732   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
733                  Builder.getCurrentDebugLocation());
734 
735   EmitBlockWithFallThrough(LoopBody, &S);
736   {
737     RunCleanupsScope BodyScope(*this);
738     EmitStmt(S.getBody());
739   }
740 
741   EmitBlock(LoopCond.getBlock());
742 
743   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
744   // after each execution of the loop body."
745 
746   // Evaluate the conditional in the while header.
747   // C99 6.8.5p2/p4: The first substatement is executed if the expression
748   // compares unequal to 0.  The condition must be a scalar type.
749   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
750 
751   BreakContinueStack.pop_back();
752 
753   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
754   // to correctly handle break/continue though.
755   bool EmitBoolCondBranch = true;
756   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
757     if (C->isZero())
758       EmitBoolCondBranch = false;
759 
760   // As long as the condition is true, iterate the loop.
761   if (EmitBoolCondBranch) {
762     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
763     Builder.CreateCondBr(
764         BoolCondVal, LoopBody, LoopExit.getBlock(),
765         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
766   }
767 
768   LoopStack.pop();
769 
770   // Emit the exit block.
771   EmitBlock(LoopExit.getBlock());
772 
773   // The DoCond block typically is just a branch if we skipped
774   // emitting a branch, try to erase it.
775   if (!EmitBoolCondBranch)
776     SimplifyForwardingBlocks(LoopCond.getBlock());
777 }
778 
779 void CodeGenFunction::EmitForStmt(const ForStmt &S,
780                                   ArrayRef<const Attr *> ForAttrs) {
781   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
782 
783   LexicalScope ForScope(*this, S.getSourceRange());
784 
785   llvm::DebugLoc DL = Builder.getCurrentDebugLocation();
786 
787   // Evaluate the first part before the loop.
788   if (S.getInit())
789     EmitStmt(S.getInit());
790 
791   // Start the loop with a block that tests the condition.
792   // If there's an increment, the continue scope will be overwritten
793   // later.
794   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
795   llvm::BasicBlock *CondBlock = Continue.getBlock();
796   EmitBlock(CondBlock);
797 
798   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL);
799 
800   // If the for loop doesn't have an increment we can just use the
801   // condition as the continue block.  Otherwise we'll need to create
802   // a block for it (in the current scope, i.e. in the scope of the
803   // condition), and that we will become our continue block.
804   if (S.getInc())
805     Continue = getJumpDestInCurrentScope("for.inc");
806 
807   // Store the blocks to use for break and continue.
808   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
809 
810   // Create a cleanup scope for the condition variable cleanups.
811   LexicalScope ConditionScope(*this, S.getSourceRange());
812 
813   if (S.getCond()) {
814     // If the for statement has a condition scope, emit the local variable
815     // declaration.
816     if (S.getConditionVariable()) {
817       EmitAutoVarDecl(*S.getConditionVariable());
818     }
819 
820     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
821     // If there are any cleanups between here and the loop-exit scope,
822     // create a block to stage a loop exit along.
823     if (ForScope.requiresCleanups())
824       ExitBlock = createBasicBlock("for.cond.cleanup");
825 
826     // As long as the condition is true, iterate the loop.
827     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
828 
829     // C99 6.8.5p2/p4: The first substatement is executed if the expression
830     // compares unequal to 0.  The condition must be a scalar type.
831     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
832     Builder.CreateCondBr(
833         BoolCondVal, ForBody, ExitBlock,
834         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
835 
836     if (ExitBlock != LoopExit.getBlock()) {
837       EmitBlock(ExitBlock);
838       EmitBranchThroughCleanup(LoopExit);
839     }
840 
841     EmitBlock(ForBody);
842   } else {
843     // Treat it as a non-zero constant.  Don't even create a new block for the
844     // body, just fall into it.
845   }
846   incrementProfileCounter(&S);
847 
848   {
849     // Create a separate cleanup scope for the body, in case it is not
850     // a compound statement.
851     RunCleanupsScope BodyScope(*this);
852     EmitStmt(S.getBody());
853   }
854 
855   // If there is an increment, emit it next.
856   if (S.getInc()) {
857     EmitBlock(Continue.getBlock());
858     EmitStmt(S.getInc());
859   }
860 
861   BreakContinueStack.pop_back();
862 
863   ConditionScope.ForceCleanup();
864 
865   EmitStopPoint(&S);
866   EmitBranch(CondBlock);
867 
868   ForScope.ForceCleanup();
869 
870   LoopStack.pop();
871 
872   // Emit the fall-through block.
873   EmitBlock(LoopExit.getBlock(), true);
874 }
875 
876 void
877 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
878                                      ArrayRef<const Attr *> ForAttrs) {
879   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
880 
881   LexicalScope ForScope(*this, S.getSourceRange());
882 
883   llvm::DebugLoc DL = Builder.getCurrentDebugLocation();
884 
885   // Evaluate the first pieces before the loop.
886   EmitStmt(S.getRangeStmt());
887   EmitStmt(S.getBeginStmt());
888   EmitStmt(S.getEndStmt());
889 
890   // Start the loop with a block that tests the condition.
891   // If there's an increment, the continue scope will be overwritten
892   // later.
893   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
894   EmitBlock(CondBlock);
895 
896   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL);
897 
898   // If there are any cleanups between here and the loop-exit scope,
899   // create a block to stage a loop exit along.
900   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
901   if (ForScope.requiresCleanups())
902     ExitBlock = createBasicBlock("for.cond.cleanup");
903 
904   // The loop body, consisting of the specified body and the loop variable.
905   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
906 
907   // The body is executed if the expression, contextually converted
908   // to bool, is true.
909   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
910   Builder.CreateCondBr(
911       BoolCondVal, ForBody, ExitBlock,
912       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
913 
914   if (ExitBlock != LoopExit.getBlock()) {
915     EmitBlock(ExitBlock);
916     EmitBranchThroughCleanup(LoopExit);
917   }
918 
919   EmitBlock(ForBody);
920   incrementProfileCounter(&S);
921 
922   // Create a block for the increment. In case of a 'continue', we jump there.
923   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
924 
925   // Store the blocks to use for break and continue.
926   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
927 
928   {
929     // Create a separate cleanup scope for the loop variable and body.
930     LexicalScope BodyScope(*this, S.getSourceRange());
931     EmitStmt(S.getLoopVarStmt());
932     EmitStmt(S.getBody());
933   }
934 
935   EmitStopPoint(&S);
936   // If there is an increment, emit it next.
937   EmitBlock(Continue.getBlock());
938   EmitStmt(S.getInc());
939 
940   BreakContinueStack.pop_back();
941 
942   EmitBranch(CondBlock);
943 
944   ForScope.ForceCleanup();
945 
946   LoopStack.pop();
947 
948   // Emit the fall-through block.
949   EmitBlock(LoopExit.getBlock(), true);
950 }
951 
952 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
953   if (RV.isScalar()) {
954     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
955   } else if (RV.isAggregate()) {
956     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
957   } else {
958     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
959                        /*init*/ true);
960   }
961   EmitBranchThroughCleanup(ReturnBlock);
962 }
963 
964 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
965 /// if the function returns void, or may be missing one if the function returns
966 /// non-void.  Fun stuff :).
967 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
968   // Returning from an outlined SEH helper is UB, and we already warn on it.
969   if (IsOutlinedSEHHelper) {
970     Builder.CreateUnreachable();
971     Builder.ClearInsertionPoint();
972   }
973 
974   // Emit the result value, even if unused, to evalute the side effects.
975   const Expr *RV = S.getRetValue();
976 
977   // Treat block literals in a return expression as if they appeared
978   // in their own scope.  This permits a small, easily-implemented
979   // exception to our over-conservative rules about not jumping to
980   // statements following block literals with non-trivial cleanups.
981   RunCleanupsScope cleanupScope(*this);
982   if (const ExprWithCleanups *cleanups =
983         dyn_cast_or_null<ExprWithCleanups>(RV)) {
984     enterFullExpression(cleanups);
985     RV = cleanups->getSubExpr();
986   }
987 
988   // FIXME: Clean this up by using an LValue for ReturnTemp,
989   // EmitStoreThroughLValue, and EmitAnyExpr.
990   if (getLangOpts().ElideConstructors &&
991       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
992     // Apply the named return value optimization for this return statement,
993     // which means doing nothing: the appropriate result has already been
994     // constructed into the NRVO variable.
995 
996     // If there is an NRVO flag for this variable, set it to 1 into indicate
997     // that the cleanup code should not destroy the variable.
998     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
999       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1000   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1001     // Make sure not to return anything, but evaluate the expression
1002     // for side effects.
1003     if (RV)
1004       EmitAnyExpr(RV);
1005   } else if (!RV) {
1006     // Do nothing (return value is left uninitialized)
1007   } else if (FnRetTy->isReferenceType()) {
1008     // If this function returns a reference, take the address of the expression
1009     // rather than the value.
1010     RValue Result = EmitReferenceBindingToExpr(RV);
1011     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1012   } else {
1013     switch (getEvaluationKind(RV->getType())) {
1014     case TEK_Scalar:
1015       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1016       break;
1017     case TEK_Complex:
1018       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1019                                 /*isInit*/ true);
1020       break;
1021     case TEK_Aggregate:
1022       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
1023                                             Qualifiers(),
1024                                             AggValueSlot::IsDestructed,
1025                                             AggValueSlot::DoesNotNeedGCBarriers,
1026                                             AggValueSlot::IsNotAliased));
1027       break;
1028     }
1029   }
1030 
1031   ++NumReturnExprs;
1032   if (!RV || RV->isEvaluatable(getContext()))
1033     ++NumSimpleReturnExprs;
1034 
1035   cleanupScope.ForceCleanup();
1036   EmitBranchThroughCleanup(ReturnBlock);
1037 }
1038 
1039 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1040   // As long as debug info is modeled with instructions, we have to ensure we
1041   // have a place to insert here and write the stop point here.
1042   if (HaveInsertPoint())
1043     EmitStopPoint(&S);
1044 
1045   for (const auto *I : S.decls())
1046     EmitDecl(*I);
1047 }
1048 
1049 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1050   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1051 
1052   // If this code is reachable then emit a stop point (if generating
1053   // debug info). We have to do this ourselves because we are on the
1054   // "simple" statement path.
1055   if (HaveInsertPoint())
1056     EmitStopPoint(&S);
1057 
1058   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1059 }
1060 
1061 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1062   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1063 
1064   // If this code is reachable then emit a stop point (if generating
1065   // debug info). We have to do this ourselves because we are on the
1066   // "simple" statement path.
1067   if (HaveInsertPoint())
1068     EmitStopPoint(&S);
1069 
1070   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1071 }
1072 
1073 /// EmitCaseStmtRange - If case statement range is not too big then
1074 /// add multiple cases to switch instruction, one for each value within
1075 /// the range. If range is too big then emit "if" condition check.
1076 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1077   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1078 
1079   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1080   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1081 
1082   // Emit the code for this case. We do this first to make sure it is
1083   // properly chained from our predecessor before generating the
1084   // switch machinery to enter this block.
1085   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1086   EmitBlockWithFallThrough(CaseDest, &S);
1087   EmitStmt(S.getSubStmt());
1088 
1089   // If range is empty, do nothing.
1090   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1091     return;
1092 
1093   llvm::APInt Range = RHS - LHS;
1094   // FIXME: parameters such as this should not be hardcoded.
1095   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1096     // Range is small enough to add multiple switch instruction cases.
1097     uint64_t Total = getProfileCount(&S);
1098     unsigned NCases = Range.getZExtValue() + 1;
1099     // We only have one region counter for the entire set of cases here, so we
1100     // need to divide the weights evenly between the generated cases, ensuring
1101     // that the total weight is preserved. E.g., a weight of 5 over three cases
1102     // will be distributed as weights of 2, 2, and 1.
1103     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1104     for (unsigned I = 0; I != NCases; ++I) {
1105       if (SwitchWeights)
1106         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1107       if (Rem)
1108         Rem--;
1109       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1110       LHS++;
1111     }
1112     return;
1113   }
1114 
1115   // The range is too big. Emit "if" condition into a new block,
1116   // making sure to save and restore the current insertion point.
1117   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1118 
1119   // Push this test onto the chain of range checks (which terminates
1120   // in the default basic block). The switch's default will be changed
1121   // to the top of this chain after switch emission is complete.
1122   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1123   CaseRangeBlock = createBasicBlock("sw.caserange");
1124 
1125   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1126   Builder.SetInsertPoint(CaseRangeBlock);
1127 
1128   // Emit range check.
1129   llvm::Value *Diff =
1130     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1131   llvm::Value *Cond =
1132     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1133 
1134   llvm::MDNode *Weights = nullptr;
1135   if (SwitchWeights) {
1136     uint64_t ThisCount = getProfileCount(&S);
1137     uint64_t DefaultCount = (*SwitchWeights)[0];
1138     Weights = createProfileWeights(ThisCount, DefaultCount);
1139 
1140     // Since we're chaining the switch default through each large case range, we
1141     // need to update the weight for the default, ie, the first case, to include
1142     // this case.
1143     (*SwitchWeights)[0] += ThisCount;
1144   }
1145   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1146 
1147   // Restore the appropriate insertion point.
1148   if (RestoreBB)
1149     Builder.SetInsertPoint(RestoreBB);
1150   else
1151     Builder.ClearInsertionPoint();
1152 }
1153 
1154 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1155   // If there is no enclosing switch instance that we're aware of, then this
1156   // case statement and its block can be elided.  This situation only happens
1157   // when we've constant-folded the switch, are emitting the constant case,
1158   // and part of the constant case includes another case statement.  For
1159   // instance: switch (4) { case 4: do { case 5: } while (1); }
1160   if (!SwitchInsn) {
1161     EmitStmt(S.getSubStmt());
1162     return;
1163   }
1164 
1165   // Handle case ranges.
1166   if (S.getRHS()) {
1167     EmitCaseStmtRange(S);
1168     return;
1169   }
1170 
1171   llvm::ConstantInt *CaseVal =
1172     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1173 
1174   // If the body of the case is just a 'break', try to not emit an empty block.
1175   // If we're profiling or we're not optimizing, leave the block in for better
1176   // debug and coverage analysis.
1177   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1178       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1179       isa<BreakStmt>(S.getSubStmt())) {
1180     JumpDest Block = BreakContinueStack.back().BreakBlock;
1181 
1182     // Only do this optimization if there are no cleanups that need emitting.
1183     if (isObviouslyBranchWithoutCleanups(Block)) {
1184       if (SwitchWeights)
1185         SwitchWeights->push_back(getProfileCount(&S));
1186       SwitchInsn->addCase(CaseVal, Block.getBlock());
1187 
1188       // If there was a fallthrough into this case, make sure to redirect it to
1189       // the end of the switch as well.
1190       if (Builder.GetInsertBlock()) {
1191         Builder.CreateBr(Block.getBlock());
1192         Builder.ClearInsertionPoint();
1193       }
1194       return;
1195     }
1196   }
1197 
1198   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1199   EmitBlockWithFallThrough(CaseDest, &S);
1200   if (SwitchWeights)
1201     SwitchWeights->push_back(getProfileCount(&S));
1202   SwitchInsn->addCase(CaseVal, CaseDest);
1203 
1204   // Recursively emitting the statement is acceptable, but is not wonderful for
1205   // code where we have many case statements nested together, i.e.:
1206   //  case 1:
1207   //    case 2:
1208   //      case 3: etc.
1209   // Handling this recursively will create a new block for each case statement
1210   // that falls through to the next case which is IR intensive.  It also causes
1211   // deep recursion which can run into stack depth limitations.  Handle
1212   // sequential non-range case statements specially.
1213   const CaseStmt *CurCase = &S;
1214   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1215 
1216   // Otherwise, iteratively add consecutive cases to this switch stmt.
1217   while (NextCase && NextCase->getRHS() == nullptr) {
1218     CurCase = NextCase;
1219     llvm::ConstantInt *CaseVal =
1220       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1221 
1222     if (SwitchWeights)
1223       SwitchWeights->push_back(getProfileCount(NextCase));
1224     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1225       CaseDest = createBasicBlock("sw.bb");
1226       EmitBlockWithFallThrough(CaseDest, &S);
1227     }
1228 
1229     SwitchInsn->addCase(CaseVal, CaseDest);
1230     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1231   }
1232 
1233   // Normal default recursion for non-cases.
1234   EmitStmt(CurCase->getSubStmt());
1235 }
1236 
1237 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1238   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1239   assert(DefaultBlock->empty() &&
1240          "EmitDefaultStmt: Default block already defined?");
1241 
1242   EmitBlockWithFallThrough(DefaultBlock, &S);
1243 
1244   EmitStmt(S.getSubStmt());
1245 }
1246 
1247 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1248 /// constant value that is being switched on, see if we can dead code eliminate
1249 /// the body of the switch to a simple series of statements to emit.  Basically,
1250 /// on a switch (5) we want to find these statements:
1251 ///    case 5:
1252 ///      printf(...);    <--
1253 ///      ++i;            <--
1254 ///      break;
1255 ///
1256 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1257 /// transformation (for example, one of the elided statements contains a label
1258 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1259 /// should include statements after it (e.g. the printf() line is a substmt of
1260 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1261 /// statement, then return CSFC_Success.
1262 ///
1263 /// If Case is non-null, then we are looking for the specified case, checking
1264 /// that nothing we jump over contains labels.  If Case is null, then we found
1265 /// the case and are looking for the break.
1266 ///
1267 /// If the recursive walk actually finds our Case, then we set FoundCase to
1268 /// true.
1269 ///
1270 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1271 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1272                                             const SwitchCase *Case,
1273                                             bool &FoundCase,
1274                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1275   // If this is a null statement, just succeed.
1276   if (!S)
1277     return Case ? CSFC_Success : CSFC_FallThrough;
1278 
1279   // If this is the switchcase (case 4: or default) that we're looking for, then
1280   // we're in business.  Just add the substatement.
1281   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1282     if (S == Case) {
1283       FoundCase = true;
1284       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1285                                       ResultStmts);
1286     }
1287 
1288     // Otherwise, this is some other case or default statement, just ignore it.
1289     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1290                                     ResultStmts);
1291   }
1292 
1293   // If we are in the live part of the code and we found our break statement,
1294   // return a success!
1295   if (!Case && isa<BreakStmt>(S))
1296     return CSFC_Success;
1297 
1298   // If this is a switch statement, then it might contain the SwitchCase, the
1299   // break, or neither.
1300   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1301     // Handle this as two cases: we might be looking for the SwitchCase (if so
1302     // the skipped statements must be skippable) or we might already have it.
1303     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1304     if (Case) {
1305       // Keep track of whether we see a skipped declaration.  The code could be
1306       // using the declaration even if it is skipped, so we can't optimize out
1307       // the decl if the kept statements might refer to it.
1308       bool HadSkippedDecl = false;
1309 
1310       // If we're looking for the case, just see if we can skip each of the
1311       // substatements.
1312       for (; Case && I != E; ++I) {
1313         HadSkippedDecl |= isa<DeclStmt>(*I);
1314 
1315         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1316         case CSFC_Failure: return CSFC_Failure;
1317         case CSFC_Success:
1318           // A successful result means that either 1) that the statement doesn't
1319           // have the case and is skippable, or 2) does contain the case value
1320           // and also contains the break to exit the switch.  In the later case,
1321           // we just verify the rest of the statements are elidable.
1322           if (FoundCase) {
1323             // If we found the case and skipped declarations, we can't do the
1324             // optimization.
1325             if (HadSkippedDecl)
1326               return CSFC_Failure;
1327 
1328             for (++I; I != E; ++I)
1329               if (CodeGenFunction::ContainsLabel(*I, true))
1330                 return CSFC_Failure;
1331             return CSFC_Success;
1332           }
1333           break;
1334         case CSFC_FallThrough:
1335           // If we have a fallthrough condition, then we must have found the
1336           // case started to include statements.  Consider the rest of the
1337           // statements in the compound statement as candidates for inclusion.
1338           assert(FoundCase && "Didn't find case but returned fallthrough?");
1339           // We recursively found Case, so we're not looking for it anymore.
1340           Case = nullptr;
1341 
1342           // If we found the case and skipped declarations, we can't do the
1343           // optimization.
1344           if (HadSkippedDecl)
1345             return CSFC_Failure;
1346           break;
1347         }
1348       }
1349     }
1350 
1351     // If we have statements in our range, then we know that the statements are
1352     // live and need to be added to the set of statements we're tracking.
1353     for (; I != E; ++I) {
1354       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1355       case CSFC_Failure: return CSFC_Failure;
1356       case CSFC_FallThrough:
1357         // A fallthrough result means that the statement was simple and just
1358         // included in ResultStmt, keep adding them afterwards.
1359         break;
1360       case CSFC_Success:
1361         // A successful result means that we found the break statement and
1362         // stopped statement inclusion.  We just ensure that any leftover stmts
1363         // are skippable and return success ourselves.
1364         for (++I; I != E; ++I)
1365           if (CodeGenFunction::ContainsLabel(*I, true))
1366             return CSFC_Failure;
1367         return CSFC_Success;
1368       }
1369     }
1370 
1371     return Case ? CSFC_Success : CSFC_FallThrough;
1372   }
1373 
1374   // Okay, this is some other statement that we don't handle explicitly, like a
1375   // for statement or increment etc.  If we are skipping over this statement,
1376   // just verify it doesn't have labels, which would make it invalid to elide.
1377   if (Case) {
1378     if (CodeGenFunction::ContainsLabel(S, true))
1379       return CSFC_Failure;
1380     return CSFC_Success;
1381   }
1382 
1383   // Otherwise, we want to include this statement.  Everything is cool with that
1384   // so long as it doesn't contain a break out of the switch we're in.
1385   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1386 
1387   // Otherwise, everything is great.  Include the statement and tell the caller
1388   // that we fall through and include the next statement as well.
1389   ResultStmts.push_back(S);
1390   return CSFC_FallThrough;
1391 }
1392 
1393 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1394 /// then invoke CollectStatementsForCase to find the list of statements to emit
1395 /// for a switch on constant.  See the comment above CollectStatementsForCase
1396 /// for more details.
1397 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1398                                        const llvm::APSInt &ConstantCondValue,
1399                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1400                                        ASTContext &C,
1401                                        const SwitchCase *&ResultCase) {
1402   // First step, find the switch case that is being branched to.  We can do this
1403   // efficiently by scanning the SwitchCase list.
1404   const SwitchCase *Case = S.getSwitchCaseList();
1405   const DefaultStmt *DefaultCase = nullptr;
1406 
1407   for (; Case; Case = Case->getNextSwitchCase()) {
1408     // It's either a default or case.  Just remember the default statement in
1409     // case we're not jumping to any numbered cases.
1410     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1411       DefaultCase = DS;
1412       continue;
1413     }
1414 
1415     // Check to see if this case is the one we're looking for.
1416     const CaseStmt *CS = cast<CaseStmt>(Case);
1417     // Don't handle case ranges yet.
1418     if (CS->getRHS()) return false;
1419 
1420     // If we found our case, remember it as 'case'.
1421     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1422       break;
1423   }
1424 
1425   // If we didn't find a matching case, we use a default if it exists, or we
1426   // elide the whole switch body!
1427   if (!Case) {
1428     // It is safe to elide the body of the switch if it doesn't contain labels
1429     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1430     if (!DefaultCase)
1431       return !CodeGenFunction::ContainsLabel(&S);
1432     Case = DefaultCase;
1433   }
1434 
1435   // Ok, we know which case is being jumped to, try to collect all the
1436   // statements that follow it.  This can fail for a variety of reasons.  Also,
1437   // check to see that the recursive walk actually found our case statement.
1438   // Insane cases like this can fail to find it in the recursive walk since we
1439   // don't handle every stmt kind:
1440   // switch (4) {
1441   //   while (1) {
1442   //     case 4: ...
1443   bool FoundCase = false;
1444   ResultCase = Case;
1445   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1446                                   ResultStmts) != CSFC_Failure &&
1447          FoundCase;
1448 }
1449 
1450 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1451   // Handle nested switch statements.
1452   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1453   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1454   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1455 
1456   // See if we can constant fold the condition of the switch and therefore only
1457   // emit the live case statement (if any) of the switch.
1458   llvm::APSInt ConstantCondValue;
1459   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1460     SmallVector<const Stmt*, 4> CaseStmts;
1461     const SwitchCase *Case = nullptr;
1462     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1463                                    getContext(), Case)) {
1464       if (Case)
1465         incrementProfileCounter(Case);
1466       RunCleanupsScope ExecutedScope(*this);
1467 
1468       // Emit the condition variable if needed inside the entire cleanup scope
1469       // used by this special case for constant folded switches.
1470       if (S.getConditionVariable())
1471         EmitAutoVarDecl(*S.getConditionVariable());
1472 
1473       // At this point, we are no longer "within" a switch instance, so
1474       // we can temporarily enforce this to ensure that any embedded case
1475       // statements are not emitted.
1476       SwitchInsn = nullptr;
1477 
1478       // Okay, we can dead code eliminate everything except this case.  Emit the
1479       // specified series of statements and we're good.
1480       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1481         EmitStmt(CaseStmts[i]);
1482       incrementProfileCounter(&S);
1483 
1484       // Now we want to restore the saved switch instance so that nested
1485       // switches continue to function properly
1486       SwitchInsn = SavedSwitchInsn;
1487 
1488       return;
1489     }
1490   }
1491 
1492   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1493 
1494   RunCleanupsScope ConditionScope(*this);
1495   if (S.getConditionVariable())
1496     EmitAutoVarDecl(*S.getConditionVariable());
1497   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1498 
1499   // Create basic block to hold stuff that comes after switch
1500   // statement. We also need to create a default block now so that
1501   // explicit case ranges tests can have a place to jump to on
1502   // failure.
1503   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1504   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1505   if (PGO.haveRegionCounts()) {
1506     // Walk the SwitchCase list to find how many there are.
1507     uint64_t DefaultCount = 0;
1508     unsigned NumCases = 0;
1509     for (const SwitchCase *Case = S.getSwitchCaseList();
1510          Case;
1511          Case = Case->getNextSwitchCase()) {
1512       if (isa<DefaultStmt>(Case))
1513         DefaultCount = getProfileCount(Case);
1514       NumCases += 1;
1515     }
1516     SwitchWeights = new SmallVector<uint64_t, 16>();
1517     SwitchWeights->reserve(NumCases);
1518     // The default needs to be first. We store the edge count, so we already
1519     // know the right weight.
1520     SwitchWeights->push_back(DefaultCount);
1521   }
1522   CaseRangeBlock = DefaultBlock;
1523 
1524   // Clear the insertion point to indicate we are in unreachable code.
1525   Builder.ClearInsertionPoint();
1526 
1527   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1528   // then reuse last ContinueBlock.
1529   JumpDest OuterContinue;
1530   if (!BreakContinueStack.empty())
1531     OuterContinue = BreakContinueStack.back().ContinueBlock;
1532 
1533   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1534 
1535   // Emit switch body.
1536   EmitStmt(S.getBody());
1537 
1538   BreakContinueStack.pop_back();
1539 
1540   // Update the default block in case explicit case range tests have
1541   // been chained on top.
1542   SwitchInsn->setDefaultDest(CaseRangeBlock);
1543 
1544   // If a default was never emitted:
1545   if (!DefaultBlock->getParent()) {
1546     // If we have cleanups, emit the default block so that there's a
1547     // place to jump through the cleanups from.
1548     if (ConditionScope.requiresCleanups()) {
1549       EmitBlock(DefaultBlock);
1550 
1551     // Otherwise, just forward the default block to the switch end.
1552     } else {
1553       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1554       delete DefaultBlock;
1555     }
1556   }
1557 
1558   ConditionScope.ForceCleanup();
1559 
1560   // Emit continuation.
1561   EmitBlock(SwitchExit.getBlock(), true);
1562   incrementProfileCounter(&S);
1563 
1564   // If the switch has a condition wrapped by __builtin_unpredictable,
1565   // create metadata that specifies that the switch is unpredictable.
1566   // Don't bother if not optimizing because that metadata would not be used.
1567   auto *Call = dyn_cast<CallExpr>(S.getCond());
1568   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1569     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1570     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1571       llvm::MDBuilder MDHelper(getLLVMContext());
1572       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1573                               MDHelper.createUnpredictable());
1574     }
1575   }
1576 
1577   if (SwitchWeights) {
1578     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1579            "switch weights do not match switch cases");
1580     // If there's only one jump destination there's no sense weighting it.
1581     if (SwitchWeights->size() > 1)
1582       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1583                               createProfileWeights(*SwitchWeights));
1584     delete SwitchWeights;
1585   }
1586   SwitchInsn = SavedSwitchInsn;
1587   SwitchWeights = SavedSwitchWeights;
1588   CaseRangeBlock = SavedCRBlock;
1589 }
1590 
1591 static std::string
1592 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1593                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1594   std::string Result;
1595 
1596   while (*Constraint) {
1597     switch (*Constraint) {
1598     default:
1599       Result += Target.convertConstraint(Constraint);
1600       break;
1601     // Ignore these
1602     case '*':
1603     case '?':
1604     case '!':
1605     case '=': // Will see this and the following in mult-alt constraints.
1606     case '+':
1607       break;
1608     case '#': // Ignore the rest of the constraint alternative.
1609       while (Constraint[1] && Constraint[1] != ',')
1610         Constraint++;
1611       break;
1612     case '&':
1613     case '%':
1614       Result += *Constraint;
1615       while (Constraint[1] && Constraint[1] == *Constraint)
1616         Constraint++;
1617       break;
1618     case ',':
1619       Result += "|";
1620       break;
1621     case 'g':
1622       Result += "imr";
1623       break;
1624     case '[': {
1625       assert(OutCons &&
1626              "Must pass output names to constraints with a symbolic name");
1627       unsigned Index;
1628       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1629       assert(result && "Could not resolve symbolic name"); (void)result;
1630       Result += llvm::utostr(Index);
1631       break;
1632     }
1633     }
1634 
1635     Constraint++;
1636   }
1637 
1638   return Result;
1639 }
1640 
1641 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1642 /// as using a particular register add that as a constraint that will be used
1643 /// in this asm stmt.
1644 static std::string
1645 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1646                        const TargetInfo &Target, CodeGenModule &CGM,
1647                        const AsmStmt &Stmt, const bool EarlyClobber) {
1648   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1649   if (!AsmDeclRef)
1650     return Constraint;
1651   const ValueDecl &Value = *AsmDeclRef->getDecl();
1652   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1653   if (!Variable)
1654     return Constraint;
1655   if (Variable->getStorageClass() != SC_Register)
1656     return Constraint;
1657   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1658   if (!Attr)
1659     return Constraint;
1660   StringRef Register = Attr->getLabel();
1661   assert(Target.isValidGCCRegisterName(Register));
1662   // We're using validateOutputConstraint here because we only care if
1663   // this is a register constraint.
1664   TargetInfo::ConstraintInfo Info(Constraint, "");
1665   if (Target.validateOutputConstraint(Info) &&
1666       !Info.allowsRegister()) {
1667     CGM.ErrorUnsupported(&Stmt, "__asm__");
1668     return Constraint;
1669   }
1670   // Canonicalize the register here before returning it.
1671   Register = Target.getNormalizedGCCRegisterName(Register);
1672   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1673 }
1674 
1675 llvm::Value*
1676 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1677                                     LValue InputValue, QualType InputType,
1678                                     std::string &ConstraintStr,
1679                                     SourceLocation Loc) {
1680   llvm::Value *Arg;
1681   if (Info.allowsRegister() || !Info.allowsMemory()) {
1682     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1683       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1684     } else {
1685       llvm::Type *Ty = ConvertType(InputType);
1686       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1687       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1688         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1689         Ty = llvm::PointerType::getUnqual(Ty);
1690 
1691         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1692                                                        Ty));
1693       } else {
1694         Arg = InputValue.getPointer();
1695         ConstraintStr += '*';
1696       }
1697     }
1698   } else {
1699     Arg = InputValue.getPointer();
1700     ConstraintStr += '*';
1701   }
1702 
1703   return Arg;
1704 }
1705 
1706 llvm::Value* CodeGenFunction::EmitAsmInput(
1707                                          const TargetInfo::ConstraintInfo &Info,
1708                                            const Expr *InputExpr,
1709                                            std::string &ConstraintStr) {
1710   // If this can't be a register or memory, i.e., has to be a constant
1711   // (immediate or symbolic), try to emit it as such.
1712   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1713     llvm::APSInt Result;
1714     if (InputExpr->EvaluateAsInt(Result, getContext()))
1715       return llvm::ConstantInt::get(getLLVMContext(), Result);
1716     assert(!Info.requiresImmediateConstant() &&
1717            "Required-immediate inlineasm arg isn't constant?");
1718   }
1719 
1720   if (Info.allowsRegister() || !Info.allowsMemory())
1721     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1722       return EmitScalarExpr(InputExpr);
1723   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1724     return EmitScalarExpr(InputExpr);
1725   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1726   LValue Dest = EmitLValue(InputExpr);
1727   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1728                             InputExpr->getExprLoc());
1729 }
1730 
1731 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1732 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1733 /// integers which are the source locations of the start of each line in the
1734 /// asm.
1735 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1736                                       CodeGenFunction &CGF) {
1737   SmallVector<llvm::Metadata *, 8> Locs;
1738   // Add the location of the first line to the MDNode.
1739   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1740       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1741   StringRef StrVal = Str->getString();
1742   if (!StrVal.empty()) {
1743     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1744     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1745     unsigned StartToken = 0;
1746     unsigned ByteOffset = 0;
1747 
1748     // Add the location of the start of each subsequent line of the asm to the
1749     // MDNode.
1750     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1751       if (StrVal[i] != '\n') continue;
1752       SourceLocation LineLoc = Str->getLocationOfByte(
1753           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1754       Locs.push_back(llvm::ConstantAsMetadata::get(
1755           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1756     }
1757   }
1758 
1759   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1760 }
1761 
1762 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1763   // Assemble the final asm string.
1764   std::string AsmString = S.generateAsmString(getContext());
1765 
1766   // Get all the output and input constraints together.
1767   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1768   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1769 
1770   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1771     StringRef Name;
1772     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1773       Name = GAS->getOutputName(i);
1774     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1775     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1776     assert(IsValid && "Failed to parse output constraint");
1777     OutputConstraintInfos.push_back(Info);
1778   }
1779 
1780   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1781     StringRef Name;
1782     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1783       Name = GAS->getInputName(i);
1784     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1785     bool IsValid =
1786       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1787     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1788     InputConstraintInfos.push_back(Info);
1789   }
1790 
1791   std::string Constraints;
1792 
1793   std::vector<LValue> ResultRegDests;
1794   std::vector<QualType> ResultRegQualTys;
1795   std::vector<llvm::Type *> ResultRegTypes;
1796   std::vector<llvm::Type *> ResultTruncRegTypes;
1797   std::vector<llvm::Type *> ArgTypes;
1798   std::vector<llvm::Value*> Args;
1799 
1800   // Keep track of inout constraints.
1801   std::string InOutConstraints;
1802   std::vector<llvm::Value*> InOutArgs;
1803   std::vector<llvm::Type*> InOutArgTypes;
1804 
1805   // An inline asm can be marked readonly if it meets the following conditions:
1806   //  - it doesn't have any sideeffects
1807   //  - it doesn't clobber memory
1808   //  - it doesn't return a value by-reference
1809   // It can be marked readnone if it doesn't have any input memory constraints
1810   // in addition to meeting the conditions listed above.
1811   bool ReadOnly = true, ReadNone = true;
1812 
1813   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1814     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1815 
1816     // Simplify the output constraint.
1817     std::string OutputConstraint(S.getOutputConstraint(i));
1818     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1819                                           getTarget());
1820 
1821     const Expr *OutExpr = S.getOutputExpr(i);
1822     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1823 
1824     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1825                                               getTarget(), CGM, S,
1826                                               Info.earlyClobber());
1827 
1828     LValue Dest = EmitLValue(OutExpr);
1829     if (!Constraints.empty())
1830       Constraints += ',';
1831 
1832     // If this is a register output, then make the inline asm return it
1833     // by-value.  If this is a memory result, return the value by-reference.
1834     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1835       Constraints += "=" + OutputConstraint;
1836       ResultRegQualTys.push_back(OutExpr->getType());
1837       ResultRegDests.push_back(Dest);
1838       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1839       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1840 
1841       // If this output is tied to an input, and if the input is larger, then
1842       // we need to set the actual result type of the inline asm node to be the
1843       // same as the input type.
1844       if (Info.hasMatchingInput()) {
1845         unsigned InputNo;
1846         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1847           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1848           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1849             break;
1850         }
1851         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1852 
1853         QualType InputTy = S.getInputExpr(InputNo)->getType();
1854         QualType OutputType = OutExpr->getType();
1855 
1856         uint64_t InputSize = getContext().getTypeSize(InputTy);
1857         if (getContext().getTypeSize(OutputType) < InputSize) {
1858           // Form the asm to return the value as a larger integer or fp type.
1859           ResultRegTypes.back() = ConvertType(InputTy);
1860         }
1861       }
1862       if (llvm::Type* AdjTy =
1863             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1864                                                  ResultRegTypes.back()))
1865         ResultRegTypes.back() = AdjTy;
1866       else {
1867         CGM.getDiags().Report(S.getAsmLoc(),
1868                               diag::err_asm_invalid_type_in_input)
1869             << OutExpr->getType() << OutputConstraint;
1870       }
1871     } else {
1872       ArgTypes.push_back(Dest.getAddress().getType());
1873       Args.push_back(Dest.getPointer());
1874       Constraints += "=*";
1875       Constraints += OutputConstraint;
1876       ReadOnly = ReadNone = false;
1877     }
1878 
1879     if (Info.isReadWrite()) {
1880       InOutConstraints += ',';
1881 
1882       const Expr *InputExpr = S.getOutputExpr(i);
1883       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1884                                             InOutConstraints,
1885                                             InputExpr->getExprLoc());
1886 
1887       if (llvm::Type* AdjTy =
1888           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1889                                                Arg->getType()))
1890         Arg = Builder.CreateBitCast(Arg, AdjTy);
1891 
1892       if (Info.allowsRegister())
1893         InOutConstraints += llvm::utostr(i);
1894       else
1895         InOutConstraints += OutputConstraint;
1896 
1897       InOutArgTypes.push_back(Arg->getType());
1898       InOutArgs.push_back(Arg);
1899     }
1900   }
1901 
1902   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1903   // to the return value slot. Only do this when returning in registers.
1904   if (isa<MSAsmStmt>(&S)) {
1905     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1906     if (RetAI.isDirect() || RetAI.isExtend()) {
1907       // Make a fake lvalue for the return value slot.
1908       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1909       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1910           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1911           ResultRegDests, AsmString, S.getNumOutputs());
1912       SawAsmBlock = true;
1913     }
1914   }
1915 
1916   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1917     const Expr *InputExpr = S.getInputExpr(i);
1918 
1919     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1920 
1921     if (Info.allowsMemory())
1922       ReadNone = false;
1923 
1924     if (!Constraints.empty())
1925       Constraints += ',';
1926 
1927     // Simplify the input constraint.
1928     std::string InputConstraint(S.getInputConstraint(i));
1929     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1930                                          &OutputConstraintInfos);
1931 
1932     InputConstraint = AddVariableConstraints(
1933         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1934         getTarget(), CGM, S, false /* No EarlyClobber */);
1935 
1936     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1937 
1938     // If this input argument is tied to a larger output result, extend the
1939     // input to be the same size as the output.  The LLVM backend wants to see
1940     // the input and output of a matching constraint be the same size.  Note
1941     // that GCC does not define what the top bits are here.  We use zext because
1942     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1943     if (Info.hasTiedOperand()) {
1944       unsigned Output = Info.getTiedOperand();
1945       QualType OutputType = S.getOutputExpr(Output)->getType();
1946       QualType InputTy = InputExpr->getType();
1947 
1948       if (getContext().getTypeSize(OutputType) >
1949           getContext().getTypeSize(InputTy)) {
1950         // Use ptrtoint as appropriate so that we can do our extension.
1951         if (isa<llvm::PointerType>(Arg->getType()))
1952           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1953         llvm::Type *OutputTy = ConvertType(OutputType);
1954         if (isa<llvm::IntegerType>(OutputTy))
1955           Arg = Builder.CreateZExt(Arg, OutputTy);
1956         else if (isa<llvm::PointerType>(OutputTy))
1957           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1958         else {
1959           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1960           Arg = Builder.CreateFPExt(Arg, OutputTy);
1961         }
1962       }
1963     }
1964     if (llvm::Type* AdjTy =
1965               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1966                                                    Arg->getType()))
1967       Arg = Builder.CreateBitCast(Arg, AdjTy);
1968     else
1969       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1970           << InputExpr->getType() << InputConstraint;
1971 
1972     ArgTypes.push_back(Arg->getType());
1973     Args.push_back(Arg);
1974     Constraints += InputConstraint;
1975   }
1976 
1977   // Append the "input" part of inout constraints last.
1978   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1979     ArgTypes.push_back(InOutArgTypes[i]);
1980     Args.push_back(InOutArgs[i]);
1981   }
1982   Constraints += InOutConstraints;
1983 
1984   // Clobbers
1985   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1986     StringRef Clobber = S.getClobber(i);
1987 
1988     if (Clobber == "memory")
1989       ReadOnly = ReadNone = false;
1990     else if (Clobber != "cc")
1991       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1992 
1993     if (!Constraints.empty())
1994       Constraints += ',';
1995 
1996     Constraints += "~{";
1997     Constraints += Clobber;
1998     Constraints += '}';
1999   }
2000 
2001   // Add machine specific clobbers
2002   std::string MachineClobbers = getTarget().getClobbers();
2003   if (!MachineClobbers.empty()) {
2004     if (!Constraints.empty())
2005       Constraints += ',';
2006     Constraints += MachineClobbers;
2007   }
2008 
2009   llvm::Type *ResultType;
2010   if (ResultRegTypes.empty())
2011     ResultType = VoidTy;
2012   else if (ResultRegTypes.size() == 1)
2013     ResultType = ResultRegTypes[0];
2014   else
2015     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2016 
2017   llvm::FunctionType *FTy =
2018     llvm::FunctionType::get(ResultType, ArgTypes, false);
2019 
2020   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2021   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2022     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2023   llvm::InlineAsm *IA =
2024     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2025                          /* IsAlignStack */ false, AsmDialect);
2026   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2027   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2028                        llvm::Attribute::NoUnwind);
2029 
2030   if (isa<MSAsmStmt>(&S)) {
2031     // If the assembly contains any labels, mark the call noduplicate to prevent
2032     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
2033     // works.
2034     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
2035       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2036                            llvm::Attribute::NoDuplicate);
2037   }
2038 
2039   // Attach readnone and readonly attributes.
2040   if (!HasSideEffect) {
2041     if (ReadNone)
2042       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2043                            llvm::Attribute::ReadNone);
2044     else if (ReadOnly)
2045       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2046                            llvm::Attribute::ReadOnly);
2047   }
2048 
2049   // Slap the source location of the inline asm into a !srcloc metadata on the
2050   // call.
2051   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2052     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2053                                                    *this));
2054   } else {
2055     // At least put the line number on MS inline asm blobs.
2056     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2057     Result->setMetadata("srcloc",
2058                         llvm::MDNode::get(getLLVMContext(),
2059                                           llvm::ConstantAsMetadata::get(Loc)));
2060   }
2061 
2062   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
2063     // Conservatively, mark all inline asm blocks in CUDA as convergent
2064     // (meaning, they may call an intrinsically convergent op, such as bar.sync,
2065     // and so can't have certain optimizations applied around them).
2066     Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2067                          llvm::Attribute::Convergent);
2068   }
2069 
2070   // Extract all of the register value results from the asm.
2071   std::vector<llvm::Value*> RegResults;
2072   if (ResultRegTypes.size() == 1) {
2073     RegResults.push_back(Result);
2074   } else {
2075     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2076       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2077       RegResults.push_back(Tmp);
2078     }
2079   }
2080 
2081   assert(RegResults.size() == ResultRegTypes.size());
2082   assert(RegResults.size() == ResultTruncRegTypes.size());
2083   assert(RegResults.size() == ResultRegDests.size());
2084   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2085     llvm::Value *Tmp = RegResults[i];
2086 
2087     // If the result type of the LLVM IR asm doesn't match the result type of
2088     // the expression, do the conversion.
2089     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2090       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2091 
2092       // Truncate the integer result to the right size, note that TruncTy can be
2093       // a pointer.
2094       if (TruncTy->isFloatingPointTy())
2095         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2096       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2097         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2098         Tmp = Builder.CreateTrunc(Tmp,
2099                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2100         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2101       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2102         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2103         Tmp = Builder.CreatePtrToInt(Tmp,
2104                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2105         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2106       } else if (TruncTy->isIntegerTy()) {
2107         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2108       } else if (TruncTy->isVectorTy()) {
2109         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2110       }
2111     }
2112 
2113     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2114   }
2115 }
2116 
2117 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2118   const RecordDecl *RD = S.getCapturedRecordDecl();
2119   QualType RecordTy = getContext().getRecordType(RD);
2120 
2121   // Initialize the captured struct.
2122   LValue SlotLV =
2123     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2124 
2125   RecordDecl::field_iterator CurField = RD->field_begin();
2126   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2127                                                  E = S.capture_init_end();
2128        I != E; ++I, ++CurField) {
2129     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2130     if (CurField->hasCapturedVLAType()) {
2131       auto VAT = CurField->getCapturedVLAType();
2132       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2133     } else {
2134       EmitInitializerForField(*CurField, LV, *I, None);
2135     }
2136   }
2137 
2138   return SlotLV;
2139 }
2140 
2141 /// Generate an outlined function for the body of a CapturedStmt, store any
2142 /// captured variables into the captured struct, and call the outlined function.
2143 llvm::Function *
2144 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2145   LValue CapStruct = InitCapturedStruct(S);
2146 
2147   // Emit the CapturedDecl
2148   CodeGenFunction CGF(CGM, true);
2149   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2150   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2151   delete CGF.CapturedStmtInfo;
2152 
2153   // Emit call to the helper function.
2154   EmitCallOrInvoke(F, CapStruct.getPointer());
2155 
2156   return F;
2157 }
2158 
2159 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2160   LValue CapStruct = InitCapturedStruct(S);
2161   return CapStruct.getAddress();
2162 }
2163 
2164 /// Creates the outlined function for a CapturedStmt.
2165 llvm::Function *
2166 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2167   assert(CapturedStmtInfo &&
2168     "CapturedStmtInfo should be set when generating the captured function");
2169   const CapturedDecl *CD = S.getCapturedDecl();
2170   const RecordDecl *RD = S.getCapturedRecordDecl();
2171   SourceLocation Loc = S.getLocStart();
2172   assert(CD->hasBody() && "missing CapturedDecl body");
2173 
2174   // Build the argument list.
2175   ASTContext &Ctx = CGM.getContext();
2176   FunctionArgList Args;
2177   Args.append(CD->param_begin(), CD->param_end());
2178 
2179   // Create the function declaration.
2180   FunctionType::ExtInfo ExtInfo;
2181   const CGFunctionInfo &FuncInfo =
2182     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2183   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2184 
2185   llvm::Function *F =
2186     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2187                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2188   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2189   if (CD->isNothrow())
2190     F->addFnAttr(llvm::Attribute::NoUnwind);
2191 
2192   // Generate the function.
2193   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2194                 CD->getLocation(),
2195                 CD->getBody()->getLocStart());
2196   // Set the context parameter in CapturedStmtInfo.
2197   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2198   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2199 
2200   // Initialize variable-length arrays.
2201   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2202                                            Ctx.getTagDeclType(RD));
2203   for (auto *FD : RD->fields()) {
2204     if (FD->hasCapturedVLAType()) {
2205       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2206                                        S.getLocStart()).getScalarVal();
2207       auto VAT = FD->getCapturedVLAType();
2208       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2209     }
2210   }
2211 
2212   // If 'this' is captured, load it into CXXThisValue.
2213   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2214     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2215     LValue ThisLValue = EmitLValueForField(Base, FD);
2216     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2217   }
2218 
2219   PGO.assignRegionCounters(GlobalDecl(CD), F);
2220   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2221   FinishFunction(CD->getBodyRBrace());
2222 
2223   return F;
2224 }
2225