1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/SaveAndRestore.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===----------------------------------------------------------------------===// 39 // Statement Emission 40 //===----------------------------------------------------------------------===// 41 42 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 43 if (CGDebugInfo *DI = getDebugInfo()) { 44 SourceLocation Loc; 45 Loc = S->getBeginLoc(); 46 DI->EmitLocation(Builder, Loc); 47 48 LastStopPoint = Loc; 49 } 50 } 51 52 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 53 assert(S && "Null statement?"); 54 PGO.setCurrentStmt(S); 55 56 // These statements have their own debug info handling. 57 if (EmitSimpleStmt(S, Attrs)) 58 return; 59 60 // Check if we are generating unreachable code. 61 if (!HaveInsertPoint()) { 62 // If so, and the statement doesn't contain a label, then we do not need to 63 // generate actual code. This is safe because (1) the current point is 64 // unreachable, so we don't need to execute the code, and (2) we've already 65 // handled the statements which update internal data structures (like the 66 // local variable map) which could be used by subsequent statements. 67 if (!ContainsLabel(S)) { 68 // Verify that any decl statements were handled as simple, they may be in 69 // scope of subsequent reachable statements. 70 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 71 return; 72 } 73 74 // Otherwise, make a new block to hold the code. 75 EnsureInsertPoint(); 76 } 77 78 // Generate a stoppoint if we are emitting debug info. 79 EmitStopPoint(S); 80 81 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 82 // enabled. 83 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 84 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 85 EmitSimpleOMPExecutableDirective(*D); 86 return; 87 } 88 } 89 90 switch (S->getStmtClass()) { 91 case Stmt::NoStmtClass: 92 case Stmt::CXXCatchStmtClass: 93 case Stmt::SEHExceptStmtClass: 94 case Stmt::SEHFinallyStmtClass: 95 case Stmt::MSDependentExistsStmtClass: 96 llvm_unreachable("invalid statement class to emit generically"); 97 case Stmt::NullStmtClass: 98 case Stmt::CompoundStmtClass: 99 case Stmt::DeclStmtClass: 100 case Stmt::LabelStmtClass: 101 case Stmt::AttributedStmtClass: 102 case Stmt::GotoStmtClass: 103 case Stmt::BreakStmtClass: 104 case Stmt::ContinueStmtClass: 105 case Stmt::DefaultStmtClass: 106 case Stmt::CaseStmtClass: 107 case Stmt::SEHLeaveStmtClass: 108 llvm_unreachable("should have emitted these statements as simple"); 109 110 #define STMT(Type, Base) 111 #define ABSTRACT_STMT(Op) 112 #define EXPR(Type, Base) \ 113 case Stmt::Type##Class: 114 #include "clang/AST/StmtNodes.inc" 115 { 116 // Remember the block we came in on. 117 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 118 assert(incoming && "expression emission must have an insertion point"); 119 120 EmitIgnoredExpr(cast<Expr>(S)); 121 122 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 123 assert(outgoing && "expression emission cleared block!"); 124 125 // The expression emitters assume (reasonably!) that the insertion 126 // point is always set. To maintain that, the call-emission code 127 // for noreturn functions has to enter a new block with no 128 // predecessors. We want to kill that block and mark the current 129 // insertion point unreachable in the common case of a call like 130 // "exit();". Since expression emission doesn't otherwise create 131 // blocks with no predecessors, we can just test for that. 132 // However, we must be careful not to do this to our incoming 133 // block, because *statement* emission does sometimes create 134 // reachable blocks which will have no predecessors until later in 135 // the function. This occurs with, e.g., labels that are not 136 // reachable by fallthrough. 137 if (incoming != outgoing && outgoing->use_empty()) { 138 outgoing->eraseFromParent(); 139 Builder.ClearInsertionPoint(); 140 } 141 break; 142 } 143 144 case Stmt::IndirectGotoStmtClass: 145 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 146 147 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 148 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 149 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 150 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 151 152 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 153 154 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 155 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 156 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 157 case Stmt::CoroutineBodyStmtClass: 158 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 159 break; 160 case Stmt::CoreturnStmtClass: 161 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 162 break; 163 case Stmt::CapturedStmtClass: { 164 const CapturedStmt *CS = cast<CapturedStmt>(S); 165 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 166 } 167 break; 168 case Stmt::ObjCAtTryStmtClass: 169 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 170 break; 171 case Stmt::ObjCAtCatchStmtClass: 172 llvm_unreachable( 173 "@catch statements should be handled by EmitObjCAtTryStmt"); 174 case Stmt::ObjCAtFinallyStmtClass: 175 llvm_unreachable( 176 "@finally statements should be handled by EmitObjCAtTryStmt"); 177 case Stmt::ObjCAtThrowStmtClass: 178 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 179 break; 180 case Stmt::ObjCAtSynchronizedStmtClass: 181 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 182 break; 183 case Stmt::ObjCForCollectionStmtClass: 184 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 185 break; 186 case Stmt::ObjCAutoreleasePoolStmtClass: 187 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 188 break; 189 190 case Stmt::CXXTryStmtClass: 191 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 192 break; 193 case Stmt::CXXForRangeStmtClass: 194 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 195 break; 196 case Stmt::SEHTryStmtClass: 197 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 198 break; 199 case Stmt::OMPCanonicalLoopClass: 200 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 201 break; 202 case Stmt::OMPParallelDirectiveClass: 203 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 204 break; 205 case Stmt::OMPSimdDirectiveClass: 206 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 207 break; 208 case Stmt::OMPTileDirectiveClass: 209 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 210 break; 211 case Stmt::OMPForDirectiveClass: 212 EmitOMPForDirective(cast<OMPForDirective>(*S)); 213 break; 214 case Stmt::OMPForSimdDirectiveClass: 215 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 216 break; 217 case Stmt::OMPSectionsDirectiveClass: 218 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 219 break; 220 case Stmt::OMPSectionDirectiveClass: 221 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 222 break; 223 case Stmt::OMPSingleDirectiveClass: 224 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 225 break; 226 case Stmt::OMPMasterDirectiveClass: 227 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 228 break; 229 case Stmt::OMPCriticalDirectiveClass: 230 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 231 break; 232 case Stmt::OMPParallelForDirectiveClass: 233 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 234 break; 235 case Stmt::OMPParallelForSimdDirectiveClass: 236 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 237 break; 238 case Stmt::OMPParallelMasterDirectiveClass: 239 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 240 break; 241 case Stmt::OMPParallelSectionsDirectiveClass: 242 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 243 break; 244 case Stmt::OMPTaskDirectiveClass: 245 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 246 break; 247 case Stmt::OMPTaskyieldDirectiveClass: 248 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 249 break; 250 case Stmt::OMPBarrierDirectiveClass: 251 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 252 break; 253 case Stmt::OMPTaskwaitDirectiveClass: 254 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 255 break; 256 case Stmt::OMPTaskgroupDirectiveClass: 257 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 258 break; 259 case Stmt::OMPFlushDirectiveClass: 260 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 261 break; 262 case Stmt::OMPDepobjDirectiveClass: 263 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 264 break; 265 case Stmt::OMPScanDirectiveClass: 266 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 267 break; 268 case Stmt::OMPOrderedDirectiveClass: 269 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 270 break; 271 case Stmt::OMPAtomicDirectiveClass: 272 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 273 break; 274 case Stmt::OMPTargetDirectiveClass: 275 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 276 break; 277 case Stmt::OMPTeamsDirectiveClass: 278 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 279 break; 280 case Stmt::OMPCancellationPointDirectiveClass: 281 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 282 break; 283 case Stmt::OMPCancelDirectiveClass: 284 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 285 break; 286 case Stmt::OMPTargetDataDirectiveClass: 287 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 288 break; 289 case Stmt::OMPTargetEnterDataDirectiveClass: 290 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 291 break; 292 case Stmt::OMPTargetExitDataDirectiveClass: 293 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 294 break; 295 case Stmt::OMPTargetParallelDirectiveClass: 296 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 297 break; 298 case Stmt::OMPTargetParallelForDirectiveClass: 299 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 300 break; 301 case Stmt::OMPTaskLoopDirectiveClass: 302 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 303 break; 304 case Stmt::OMPTaskLoopSimdDirectiveClass: 305 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 306 break; 307 case Stmt::OMPMasterTaskLoopDirectiveClass: 308 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 309 break; 310 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 311 EmitOMPMasterTaskLoopSimdDirective( 312 cast<OMPMasterTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 315 EmitOMPParallelMasterTaskLoopDirective( 316 cast<OMPParallelMasterTaskLoopDirective>(*S)); 317 break; 318 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 319 EmitOMPParallelMasterTaskLoopSimdDirective( 320 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 321 break; 322 case Stmt::OMPDistributeDirectiveClass: 323 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 324 break; 325 case Stmt::OMPTargetUpdateDirectiveClass: 326 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 327 break; 328 case Stmt::OMPDistributeParallelForDirectiveClass: 329 EmitOMPDistributeParallelForDirective( 330 cast<OMPDistributeParallelForDirective>(*S)); 331 break; 332 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 333 EmitOMPDistributeParallelForSimdDirective( 334 cast<OMPDistributeParallelForSimdDirective>(*S)); 335 break; 336 case Stmt::OMPDistributeSimdDirectiveClass: 337 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 338 break; 339 case Stmt::OMPTargetParallelForSimdDirectiveClass: 340 EmitOMPTargetParallelForSimdDirective( 341 cast<OMPTargetParallelForSimdDirective>(*S)); 342 break; 343 case Stmt::OMPTargetSimdDirectiveClass: 344 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 345 break; 346 case Stmt::OMPTeamsDistributeDirectiveClass: 347 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 348 break; 349 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 350 EmitOMPTeamsDistributeSimdDirective( 351 cast<OMPTeamsDistributeSimdDirective>(*S)); 352 break; 353 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 354 EmitOMPTeamsDistributeParallelForSimdDirective( 355 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 356 break; 357 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 358 EmitOMPTeamsDistributeParallelForDirective( 359 cast<OMPTeamsDistributeParallelForDirective>(*S)); 360 break; 361 case Stmt::OMPTargetTeamsDirectiveClass: 362 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 363 break; 364 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 365 EmitOMPTargetTeamsDistributeDirective( 366 cast<OMPTargetTeamsDistributeDirective>(*S)); 367 break; 368 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 369 EmitOMPTargetTeamsDistributeParallelForDirective( 370 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 371 break; 372 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 373 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 374 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 375 break; 376 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 377 EmitOMPTargetTeamsDistributeSimdDirective( 378 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 379 break; 380 case Stmt::OMPInteropDirectiveClass: 381 llvm_unreachable("Interop directive not supported yet."); 382 break; 383 case Stmt::OMPDispatchDirectiveClass: 384 llvm_unreachable("Dispatch directive not supported yet."); 385 break; 386 case Stmt::OMPMaskedDirectiveClass: 387 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 388 break; 389 } 390 } 391 392 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 393 ArrayRef<const Attr *> Attrs) { 394 switch (S->getStmtClass()) { 395 default: 396 return false; 397 case Stmt::NullStmtClass: 398 break; 399 case Stmt::CompoundStmtClass: 400 EmitCompoundStmt(cast<CompoundStmt>(*S)); 401 break; 402 case Stmt::DeclStmtClass: 403 EmitDeclStmt(cast<DeclStmt>(*S)); 404 break; 405 case Stmt::LabelStmtClass: 406 EmitLabelStmt(cast<LabelStmt>(*S)); 407 break; 408 case Stmt::AttributedStmtClass: 409 EmitAttributedStmt(cast<AttributedStmt>(*S)); 410 break; 411 case Stmt::GotoStmtClass: 412 EmitGotoStmt(cast<GotoStmt>(*S)); 413 break; 414 case Stmt::BreakStmtClass: 415 EmitBreakStmt(cast<BreakStmt>(*S)); 416 break; 417 case Stmt::ContinueStmtClass: 418 EmitContinueStmt(cast<ContinueStmt>(*S)); 419 break; 420 case Stmt::DefaultStmtClass: 421 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 422 break; 423 case Stmt::CaseStmtClass: 424 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 425 break; 426 case Stmt::SEHLeaveStmtClass: 427 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 428 break; 429 } 430 return true; 431 } 432 433 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 434 /// this captures the expression result of the last sub-statement and returns it 435 /// (for use by the statement expression extension). 436 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 437 AggValueSlot AggSlot) { 438 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 439 "LLVM IR generation of compound statement ('{}')"); 440 441 // Keep track of the current cleanup stack depth, including debug scopes. 442 LexicalScope Scope(*this, S.getSourceRange()); 443 444 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 445 } 446 447 Address 448 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 449 bool GetLast, 450 AggValueSlot AggSlot) { 451 452 const Stmt *ExprResult = S.getStmtExprResult(); 453 assert((!GetLast || (GetLast && ExprResult)) && 454 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 455 456 Address RetAlloca = Address::invalid(); 457 458 for (auto *CurStmt : S.body()) { 459 if (GetLast && ExprResult == CurStmt) { 460 // We have to special case labels here. They are statements, but when put 461 // at the end of a statement expression, they yield the value of their 462 // subexpression. Handle this by walking through all labels we encounter, 463 // emitting them before we evaluate the subexpr. 464 // Similar issues arise for attributed statements. 465 while (!isa<Expr>(ExprResult)) { 466 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 467 EmitLabel(LS->getDecl()); 468 ExprResult = LS->getSubStmt(); 469 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 470 // FIXME: Update this if we ever have attributes that affect the 471 // semantics of an expression. 472 ExprResult = AS->getSubStmt(); 473 } else { 474 llvm_unreachable("unknown value statement"); 475 } 476 } 477 478 EnsureInsertPoint(); 479 480 const Expr *E = cast<Expr>(ExprResult); 481 QualType ExprTy = E->getType(); 482 if (hasAggregateEvaluationKind(ExprTy)) { 483 EmitAggExpr(E, AggSlot); 484 } else { 485 // We can't return an RValue here because there might be cleanups at 486 // the end of the StmtExpr. Because of that, we have to emit the result 487 // here into a temporary alloca. 488 RetAlloca = CreateMemTemp(ExprTy); 489 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 490 /*IsInit*/ false); 491 } 492 } else { 493 EmitStmt(CurStmt); 494 } 495 } 496 497 return RetAlloca; 498 } 499 500 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 501 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 502 503 // If there is a cleanup stack, then we it isn't worth trying to 504 // simplify this block (we would need to remove it from the scope map 505 // and cleanup entry). 506 if (!EHStack.empty()) 507 return; 508 509 // Can only simplify direct branches. 510 if (!BI || !BI->isUnconditional()) 511 return; 512 513 // Can only simplify empty blocks. 514 if (BI->getIterator() != BB->begin()) 515 return; 516 517 BB->replaceAllUsesWith(BI->getSuccessor(0)); 518 BI->eraseFromParent(); 519 BB->eraseFromParent(); 520 } 521 522 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 523 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 524 525 // Fall out of the current block (if necessary). 526 EmitBranch(BB); 527 528 if (IsFinished && BB->use_empty()) { 529 delete BB; 530 return; 531 } 532 533 // Place the block after the current block, if possible, or else at 534 // the end of the function. 535 if (CurBB && CurBB->getParent()) 536 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 537 else 538 CurFn->getBasicBlockList().push_back(BB); 539 Builder.SetInsertPoint(BB); 540 } 541 542 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 543 // Emit a branch from the current block to the target one if this 544 // was a real block. If this was just a fall-through block after a 545 // terminator, don't emit it. 546 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 547 548 if (!CurBB || CurBB->getTerminator()) { 549 // If there is no insert point or the previous block is already 550 // terminated, don't touch it. 551 } else { 552 // Otherwise, create a fall-through branch. 553 Builder.CreateBr(Target); 554 } 555 556 Builder.ClearInsertionPoint(); 557 } 558 559 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 560 bool inserted = false; 561 for (llvm::User *u : block->users()) { 562 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 563 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 564 block); 565 inserted = true; 566 break; 567 } 568 } 569 570 if (!inserted) 571 CurFn->getBasicBlockList().push_back(block); 572 573 Builder.SetInsertPoint(block); 574 } 575 576 CodeGenFunction::JumpDest 577 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 578 JumpDest &Dest = LabelMap[D]; 579 if (Dest.isValid()) return Dest; 580 581 // Create, but don't insert, the new block. 582 Dest = JumpDest(createBasicBlock(D->getName()), 583 EHScopeStack::stable_iterator::invalid(), 584 NextCleanupDestIndex++); 585 return Dest; 586 } 587 588 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 589 // Add this label to the current lexical scope if we're within any 590 // normal cleanups. Jumps "in" to this label --- when permitted by 591 // the language --- may need to be routed around such cleanups. 592 if (EHStack.hasNormalCleanups() && CurLexicalScope) 593 CurLexicalScope->addLabel(D); 594 595 JumpDest &Dest = LabelMap[D]; 596 597 // If we didn't need a forward reference to this label, just go 598 // ahead and create a destination at the current scope. 599 if (!Dest.isValid()) { 600 Dest = getJumpDestInCurrentScope(D->getName()); 601 602 // Otherwise, we need to give this label a target depth and remove 603 // it from the branch-fixups list. 604 } else { 605 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 606 Dest.setScopeDepth(EHStack.stable_begin()); 607 ResolveBranchFixups(Dest.getBlock()); 608 } 609 610 EmitBlock(Dest.getBlock()); 611 612 // Emit debug info for labels. 613 if (CGDebugInfo *DI = getDebugInfo()) { 614 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 615 DI->setLocation(D->getLocation()); 616 DI->EmitLabel(D, Builder); 617 } 618 } 619 620 incrementProfileCounter(D->getStmt()); 621 } 622 623 /// Change the cleanup scope of the labels in this lexical scope to 624 /// match the scope of the enclosing context. 625 void CodeGenFunction::LexicalScope::rescopeLabels() { 626 assert(!Labels.empty()); 627 EHScopeStack::stable_iterator innermostScope 628 = CGF.EHStack.getInnermostNormalCleanup(); 629 630 // Change the scope depth of all the labels. 631 for (SmallVectorImpl<const LabelDecl*>::const_iterator 632 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 633 assert(CGF.LabelMap.count(*i)); 634 JumpDest &dest = CGF.LabelMap.find(*i)->second; 635 assert(dest.getScopeDepth().isValid()); 636 assert(innermostScope.encloses(dest.getScopeDepth())); 637 dest.setScopeDepth(innermostScope); 638 } 639 640 // Reparent the labels if the new scope also has cleanups. 641 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 642 ParentScope->Labels.append(Labels.begin(), Labels.end()); 643 } 644 } 645 646 647 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 648 EmitLabel(S.getDecl()); 649 EmitStmt(S.getSubStmt()); 650 } 651 652 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 653 bool nomerge = false; 654 const CallExpr *musttail = nullptr; 655 656 for (const auto *A : S.getAttrs()) { 657 if (A->getKind() == attr::NoMerge) { 658 nomerge = true; 659 } 660 if (A->getKind() == attr::MustTail) { 661 const Stmt *Sub = S.getSubStmt(); 662 const ReturnStmt *R = cast<ReturnStmt>(Sub); 663 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 664 } 665 } 666 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 667 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 668 EmitStmt(S.getSubStmt(), S.getAttrs()); 669 } 670 671 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 672 // If this code is reachable then emit a stop point (if generating 673 // debug info). We have to do this ourselves because we are on the 674 // "simple" statement path. 675 if (HaveInsertPoint()) 676 EmitStopPoint(&S); 677 678 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 679 } 680 681 682 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 683 if (const LabelDecl *Target = S.getConstantTarget()) { 684 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 685 return; 686 } 687 688 // Ensure that we have an i8* for our PHI node. 689 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 690 Int8PtrTy, "addr"); 691 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 692 693 // Get the basic block for the indirect goto. 694 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 695 696 // The first instruction in the block has to be the PHI for the switch dest, 697 // add an entry for this branch. 698 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 699 700 EmitBranch(IndGotoBB); 701 } 702 703 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 704 // C99 6.8.4.1: The first substatement is executed if the expression compares 705 // unequal to 0. The condition must be a scalar type. 706 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 707 708 if (S.getInit()) 709 EmitStmt(S.getInit()); 710 711 if (S.getConditionVariable()) 712 EmitDecl(*S.getConditionVariable()); 713 714 // If the condition constant folds and can be elided, try to avoid emitting 715 // the condition and the dead arm of the if/else. 716 bool CondConstant; 717 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 718 S.isConstexpr())) { 719 // Figure out which block (then or else) is executed. 720 const Stmt *Executed = S.getThen(); 721 const Stmt *Skipped = S.getElse(); 722 if (!CondConstant) // Condition false? 723 std::swap(Executed, Skipped); 724 725 // If the skipped block has no labels in it, just emit the executed block. 726 // This avoids emitting dead code and simplifies the CFG substantially. 727 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 728 if (CondConstant) 729 incrementProfileCounter(&S); 730 if (Executed) { 731 RunCleanupsScope ExecutedScope(*this); 732 EmitStmt(Executed); 733 } 734 return; 735 } 736 } 737 738 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 739 // the conditional branch. 740 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 741 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 742 llvm::BasicBlock *ElseBlock = ContBlock; 743 if (S.getElse()) 744 ElseBlock = createBasicBlock("if.else"); 745 746 // Prefer the PGO based weights over the likelihood attribute. 747 // When the build isn't optimized the metadata isn't used, so don't generate 748 // it. 749 Stmt::Likelihood LH = Stmt::LH_None; 750 uint64_t Count = getProfileCount(S.getThen()); 751 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 752 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 753 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 754 755 // Emit the 'then' code. 756 EmitBlock(ThenBlock); 757 incrementProfileCounter(&S); 758 { 759 RunCleanupsScope ThenScope(*this); 760 EmitStmt(S.getThen()); 761 } 762 EmitBranch(ContBlock); 763 764 // Emit the 'else' code if present. 765 if (const Stmt *Else = S.getElse()) { 766 { 767 // There is no need to emit line number for an unconditional branch. 768 auto NL = ApplyDebugLocation::CreateEmpty(*this); 769 EmitBlock(ElseBlock); 770 } 771 { 772 RunCleanupsScope ElseScope(*this); 773 EmitStmt(Else); 774 } 775 { 776 // There is no need to emit line number for an unconditional branch. 777 auto NL = ApplyDebugLocation::CreateEmpty(*this); 778 EmitBranch(ContBlock); 779 } 780 } 781 782 // Emit the continuation block for code after the if. 783 EmitBlock(ContBlock, true); 784 } 785 786 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 787 ArrayRef<const Attr *> WhileAttrs) { 788 // Emit the header for the loop, which will also become 789 // the continue target. 790 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 791 EmitBlock(LoopHeader.getBlock()); 792 793 // Create an exit block for when the condition fails, which will 794 // also become the break target. 795 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 796 797 // Store the blocks to use for break and continue. 798 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 799 800 // C++ [stmt.while]p2: 801 // When the condition of a while statement is a declaration, the 802 // scope of the variable that is declared extends from its point 803 // of declaration (3.3.2) to the end of the while statement. 804 // [...] 805 // The object created in a condition is destroyed and created 806 // with each iteration of the loop. 807 RunCleanupsScope ConditionScope(*this); 808 809 if (S.getConditionVariable()) 810 EmitDecl(*S.getConditionVariable()); 811 812 // Evaluate the conditional in the while header. C99 6.8.5.1: The 813 // evaluation of the controlling expression takes place before each 814 // execution of the loop body. 815 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 816 817 // while(1) is common, avoid extra exit blocks. Be sure 818 // to correctly handle break/continue though. 819 bool EmitBoolCondBranch = true; 820 bool LoopMustProgress = false; 821 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) { 822 if (C->isOne()) { 823 EmitBoolCondBranch = false; 824 FnIsMustProgress = false; 825 } 826 } else if (LanguageRequiresProgress()) 827 LoopMustProgress = true; 828 829 const SourceRange &R = S.getSourceRange(); 830 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 831 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 832 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 833 834 // As long as the condition is true, go to the loop body. 835 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 836 if (EmitBoolCondBranch) { 837 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 838 if (ConditionScope.requiresCleanups()) 839 ExitBlock = createBasicBlock("while.exit"); 840 llvm::MDNode *Weights = 841 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 842 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 843 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 844 BoolCondVal, Stmt::getLikelihood(S.getBody())); 845 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 846 847 if (ExitBlock != LoopExit.getBlock()) { 848 EmitBlock(ExitBlock); 849 EmitBranchThroughCleanup(LoopExit); 850 } 851 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 852 CGM.getDiags().Report(A->getLocation(), 853 diag::warn_attribute_has_no_effect_on_infinite_loop) 854 << A << A->getRange(); 855 CGM.getDiags().Report( 856 S.getWhileLoc(), 857 diag::note_attribute_has_no_effect_on_infinite_loop_here) 858 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 859 } 860 861 // Emit the loop body. We have to emit this in a cleanup scope 862 // because it might be a singleton DeclStmt. 863 { 864 RunCleanupsScope BodyScope(*this); 865 EmitBlock(LoopBody); 866 incrementProfileCounter(&S); 867 EmitStmt(S.getBody()); 868 } 869 870 BreakContinueStack.pop_back(); 871 872 // Immediately force cleanup. 873 ConditionScope.ForceCleanup(); 874 875 EmitStopPoint(&S); 876 // Branch to the loop header again. 877 EmitBranch(LoopHeader.getBlock()); 878 879 LoopStack.pop(); 880 881 // Emit the exit block. 882 EmitBlock(LoopExit.getBlock(), true); 883 884 // The LoopHeader typically is just a branch if we skipped emitting 885 // a branch, try to erase it. 886 if (!EmitBoolCondBranch) 887 SimplifyForwardingBlocks(LoopHeader.getBlock()); 888 } 889 890 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 891 ArrayRef<const Attr *> DoAttrs) { 892 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 893 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 894 895 uint64_t ParentCount = getCurrentProfileCount(); 896 897 // Store the blocks to use for break and continue. 898 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 899 900 // Emit the body of the loop. 901 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 902 903 EmitBlockWithFallThrough(LoopBody, &S); 904 { 905 RunCleanupsScope BodyScope(*this); 906 EmitStmt(S.getBody()); 907 } 908 909 EmitBlock(LoopCond.getBlock()); 910 911 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 912 // after each execution of the loop body." 913 914 // Evaluate the conditional in the while header. 915 // C99 6.8.5p2/p4: The first substatement is executed if the expression 916 // compares unequal to 0. The condition must be a scalar type. 917 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 918 919 BreakContinueStack.pop_back(); 920 921 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 922 // to correctly handle break/continue though. 923 bool EmitBoolCondBranch = true; 924 bool LoopMustProgress = false; 925 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) { 926 if (C->isZero()) 927 EmitBoolCondBranch = false; 928 else if (C->isOne()) 929 FnIsMustProgress = false; 930 } else if (LanguageRequiresProgress()) 931 LoopMustProgress = true; 932 933 const SourceRange &R = S.getSourceRange(); 934 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 935 SourceLocToDebugLoc(R.getBegin()), 936 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 937 938 // As long as the condition is true, iterate the loop. 939 if (EmitBoolCondBranch) { 940 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 941 Builder.CreateCondBr( 942 BoolCondVal, LoopBody, LoopExit.getBlock(), 943 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 944 } 945 946 LoopStack.pop(); 947 948 // Emit the exit block. 949 EmitBlock(LoopExit.getBlock()); 950 951 // The DoCond block typically is just a branch if we skipped 952 // emitting a branch, try to erase it. 953 if (!EmitBoolCondBranch) 954 SimplifyForwardingBlocks(LoopCond.getBlock()); 955 } 956 957 void CodeGenFunction::EmitForStmt(const ForStmt &S, 958 ArrayRef<const Attr *> ForAttrs) { 959 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 960 961 LexicalScope ForScope(*this, S.getSourceRange()); 962 963 // Evaluate the first part before the loop. 964 if (S.getInit()) 965 EmitStmt(S.getInit()); 966 967 // Start the loop with a block that tests the condition. 968 // If there's an increment, the continue scope will be overwritten 969 // later. 970 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 971 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 972 EmitBlock(CondBlock); 973 974 bool LoopMustProgress = false; 975 Expr::EvalResult Result; 976 if (LanguageRequiresProgress()) { 977 if (!S.getCond()) { 978 FnIsMustProgress = false; 979 } else if (!S.getCond()->EvaluateAsInt(Result, getContext())) { 980 LoopMustProgress = true; 981 } 982 } 983 984 const SourceRange &R = S.getSourceRange(); 985 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 986 SourceLocToDebugLoc(R.getBegin()), 987 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 988 989 // Create a cleanup scope for the condition variable cleanups. 990 LexicalScope ConditionScope(*this, S.getSourceRange()); 991 992 // If the for loop doesn't have an increment we can just use the condition as 993 // the continue block. Otherwise, if there is no condition variable, we can 994 // form the continue block now. If there is a condition variable, we can't 995 // form the continue block until after we've emitted the condition, because 996 // the condition is in scope in the increment, but Sema's jump diagnostics 997 // ensure that there are no continues from the condition variable that jump 998 // to the loop increment. 999 JumpDest Continue; 1000 if (!S.getInc()) 1001 Continue = CondDest; 1002 else if (!S.getConditionVariable()) 1003 Continue = getJumpDestInCurrentScope("for.inc"); 1004 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1005 1006 if (S.getCond()) { 1007 // If the for statement has a condition scope, emit the local variable 1008 // declaration. 1009 if (S.getConditionVariable()) { 1010 EmitDecl(*S.getConditionVariable()); 1011 1012 // We have entered the condition variable's scope, so we're now able to 1013 // jump to the continue block. 1014 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1015 BreakContinueStack.back().ContinueBlock = Continue; 1016 } 1017 1018 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1019 // If there are any cleanups between here and the loop-exit scope, 1020 // create a block to stage a loop exit along. 1021 if (ForScope.requiresCleanups()) 1022 ExitBlock = createBasicBlock("for.cond.cleanup"); 1023 1024 // As long as the condition is true, iterate the loop. 1025 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1026 1027 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1028 // compares unequal to 0. The condition must be a scalar type. 1029 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1030 llvm::MDNode *Weights = 1031 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1032 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1033 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1034 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1035 1036 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 1037 if (C->isOne()) 1038 FnIsMustProgress = false; 1039 1040 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1041 1042 if (ExitBlock != LoopExit.getBlock()) { 1043 EmitBlock(ExitBlock); 1044 EmitBranchThroughCleanup(LoopExit); 1045 } 1046 1047 EmitBlock(ForBody); 1048 } else { 1049 // Treat it as a non-zero constant. Don't even create a new block for the 1050 // body, just fall into it. 1051 } 1052 incrementProfileCounter(&S); 1053 1054 { 1055 // Create a separate cleanup scope for the body, in case it is not 1056 // a compound statement. 1057 RunCleanupsScope BodyScope(*this); 1058 EmitStmt(S.getBody()); 1059 } 1060 1061 // If there is an increment, emit it next. 1062 if (S.getInc()) { 1063 EmitBlock(Continue.getBlock()); 1064 EmitStmt(S.getInc()); 1065 } 1066 1067 BreakContinueStack.pop_back(); 1068 1069 ConditionScope.ForceCleanup(); 1070 1071 EmitStopPoint(&S); 1072 EmitBranch(CondBlock); 1073 1074 ForScope.ForceCleanup(); 1075 1076 LoopStack.pop(); 1077 1078 // Emit the fall-through block. 1079 EmitBlock(LoopExit.getBlock(), true); 1080 } 1081 1082 void 1083 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1084 ArrayRef<const Attr *> ForAttrs) { 1085 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1086 1087 LexicalScope ForScope(*this, S.getSourceRange()); 1088 1089 // Evaluate the first pieces before the loop. 1090 if (S.getInit()) 1091 EmitStmt(S.getInit()); 1092 EmitStmt(S.getRangeStmt()); 1093 EmitStmt(S.getBeginStmt()); 1094 EmitStmt(S.getEndStmt()); 1095 1096 // Start the loop with a block that tests the condition. 1097 // If there's an increment, the continue scope will be overwritten 1098 // later. 1099 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1100 EmitBlock(CondBlock); 1101 1102 const SourceRange &R = S.getSourceRange(); 1103 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1104 SourceLocToDebugLoc(R.getBegin()), 1105 SourceLocToDebugLoc(R.getEnd())); 1106 1107 // If there are any cleanups between here and the loop-exit scope, 1108 // create a block to stage a loop exit along. 1109 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1110 if (ForScope.requiresCleanups()) 1111 ExitBlock = createBasicBlock("for.cond.cleanup"); 1112 1113 // The loop body, consisting of the specified body and the loop variable. 1114 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1115 1116 // The body is executed if the expression, contextually converted 1117 // to bool, is true. 1118 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1119 llvm::MDNode *Weights = 1120 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1121 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1122 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1123 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1124 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1125 1126 if (ExitBlock != LoopExit.getBlock()) { 1127 EmitBlock(ExitBlock); 1128 EmitBranchThroughCleanup(LoopExit); 1129 } 1130 1131 EmitBlock(ForBody); 1132 incrementProfileCounter(&S); 1133 1134 // Create a block for the increment. In case of a 'continue', we jump there. 1135 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1136 1137 // Store the blocks to use for break and continue. 1138 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1139 1140 { 1141 // Create a separate cleanup scope for the loop variable and body. 1142 LexicalScope BodyScope(*this, S.getSourceRange()); 1143 EmitStmt(S.getLoopVarStmt()); 1144 EmitStmt(S.getBody()); 1145 } 1146 1147 EmitStopPoint(&S); 1148 // If there is an increment, emit it next. 1149 EmitBlock(Continue.getBlock()); 1150 EmitStmt(S.getInc()); 1151 1152 BreakContinueStack.pop_back(); 1153 1154 EmitBranch(CondBlock); 1155 1156 ForScope.ForceCleanup(); 1157 1158 LoopStack.pop(); 1159 1160 // Emit the fall-through block. 1161 EmitBlock(LoopExit.getBlock(), true); 1162 } 1163 1164 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1165 if (RV.isScalar()) { 1166 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1167 } else if (RV.isAggregate()) { 1168 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1169 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1170 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1171 } else { 1172 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1173 /*init*/ true); 1174 } 1175 EmitBranchThroughCleanup(ReturnBlock); 1176 } 1177 1178 namespace { 1179 // RAII struct used to save and restore a return statment's result expression. 1180 struct SaveRetExprRAII { 1181 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1182 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1183 CGF.RetExpr = RetExpr; 1184 } 1185 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1186 const Expr *OldRetExpr; 1187 CodeGenFunction &CGF; 1188 }; 1189 } // namespace 1190 1191 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1192 /// if the function returns void, or may be missing one if the function returns 1193 /// non-void. Fun stuff :). 1194 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1195 if (requiresReturnValueCheck()) { 1196 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1197 auto *SLocPtr = 1198 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1199 llvm::GlobalVariable::PrivateLinkage, SLoc); 1200 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1201 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1202 assert(ReturnLocation.isValid() && "No valid return location"); 1203 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1204 ReturnLocation); 1205 } 1206 1207 // Returning from an outlined SEH helper is UB, and we already warn on it. 1208 if (IsOutlinedSEHHelper) { 1209 Builder.CreateUnreachable(); 1210 Builder.ClearInsertionPoint(); 1211 } 1212 1213 // Emit the result value, even if unused, to evaluate the side effects. 1214 const Expr *RV = S.getRetValue(); 1215 1216 // Record the result expression of the return statement. The recorded 1217 // expression is used to determine whether a block capture's lifetime should 1218 // end at the end of the full expression as opposed to the end of the scope 1219 // enclosing the block expression. 1220 // 1221 // This permits a small, easily-implemented exception to our over-conservative 1222 // rules about not jumping to statements following block literals with 1223 // non-trivial cleanups. 1224 SaveRetExprRAII SaveRetExpr(RV, *this); 1225 1226 RunCleanupsScope cleanupScope(*this); 1227 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1228 RV = EWC->getSubExpr(); 1229 // FIXME: Clean this up by using an LValue for ReturnTemp, 1230 // EmitStoreThroughLValue, and EmitAnyExpr. 1231 // Check if the NRVO candidate was not globalized in OpenMP mode. 1232 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1233 S.getNRVOCandidate()->isNRVOVariable() && 1234 (!getLangOpts().OpenMP || 1235 !CGM.getOpenMPRuntime() 1236 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1237 .isValid())) { 1238 // Apply the named return value optimization for this return statement, 1239 // which means doing nothing: the appropriate result has already been 1240 // constructed into the NRVO variable. 1241 1242 // If there is an NRVO flag for this variable, set it to 1 into indicate 1243 // that the cleanup code should not destroy the variable. 1244 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1245 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1246 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1247 // Make sure not to return anything, but evaluate the expression 1248 // for side effects. 1249 if (RV) 1250 EmitAnyExpr(RV); 1251 } else if (!RV) { 1252 // Do nothing (return value is left uninitialized) 1253 } else if (FnRetTy->isReferenceType()) { 1254 // If this function returns a reference, take the address of the expression 1255 // rather than the value. 1256 RValue Result = EmitReferenceBindingToExpr(RV); 1257 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1258 } else { 1259 switch (getEvaluationKind(RV->getType())) { 1260 case TEK_Scalar: 1261 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1262 break; 1263 case TEK_Complex: 1264 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1265 /*isInit*/ true); 1266 break; 1267 case TEK_Aggregate: 1268 EmitAggExpr(RV, AggValueSlot::forAddr( 1269 ReturnValue, Qualifiers(), 1270 AggValueSlot::IsDestructed, 1271 AggValueSlot::DoesNotNeedGCBarriers, 1272 AggValueSlot::IsNotAliased, 1273 getOverlapForReturnValue())); 1274 break; 1275 } 1276 } 1277 1278 ++NumReturnExprs; 1279 if (!RV || RV->isEvaluatable(getContext())) 1280 ++NumSimpleReturnExprs; 1281 1282 cleanupScope.ForceCleanup(); 1283 EmitBranchThroughCleanup(ReturnBlock); 1284 } 1285 1286 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1287 // As long as debug info is modeled with instructions, we have to ensure we 1288 // have a place to insert here and write the stop point here. 1289 if (HaveInsertPoint()) 1290 EmitStopPoint(&S); 1291 1292 for (const auto *I : S.decls()) 1293 EmitDecl(*I); 1294 } 1295 1296 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1297 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1298 1299 // If this code is reachable then emit a stop point (if generating 1300 // debug info). We have to do this ourselves because we are on the 1301 // "simple" statement path. 1302 if (HaveInsertPoint()) 1303 EmitStopPoint(&S); 1304 1305 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1306 } 1307 1308 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1309 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1310 1311 // If this code is reachable then emit a stop point (if generating 1312 // debug info). We have to do this ourselves because we are on the 1313 // "simple" statement path. 1314 if (HaveInsertPoint()) 1315 EmitStopPoint(&S); 1316 1317 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1318 } 1319 1320 /// EmitCaseStmtRange - If case statement range is not too big then 1321 /// add multiple cases to switch instruction, one for each value within 1322 /// the range. If range is too big then emit "if" condition check. 1323 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1324 ArrayRef<const Attr *> Attrs) { 1325 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1326 1327 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1328 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1329 1330 // Emit the code for this case. We do this first to make sure it is 1331 // properly chained from our predecessor before generating the 1332 // switch machinery to enter this block. 1333 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1334 EmitBlockWithFallThrough(CaseDest, &S); 1335 EmitStmt(S.getSubStmt()); 1336 1337 // If range is empty, do nothing. 1338 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1339 return; 1340 1341 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1342 llvm::APInt Range = RHS - LHS; 1343 // FIXME: parameters such as this should not be hardcoded. 1344 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1345 // Range is small enough to add multiple switch instruction cases. 1346 uint64_t Total = getProfileCount(&S); 1347 unsigned NCases = Range.getZExtValue() + 1; 1348 // We only have one region counter for the entire set of cases here, so we 1349 // need to divide the weights evenly between the generated cases, ensuring 1350 // that the total weight is preserved. E.g., a weight of 5 over three cases 1351 // will be distributed as weights of 2, 2, and 1. 1352 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1353 for (unsigned I = 0; I != NCases; ++I) { 1354 if (SwitchWeights) 1355 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1356 else if (SwitchLikelihood) 1357 SwitchLikelihood->push_back(LH); 1358 1359 if (Rem) 1360 Rem--; 1361 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1362 ++LHS; 1363 } 1364 return; 1365 } 1366 1367 // The range is too big. Emit "if" condition into a new block, 1368 // making sure to save and restore the current insertion point. 1369 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1370 1371 // Push this test onto the chain of range checks (which terminates 1372 // in the default basic block). The switch's default will be changed 1373 // to the top of this chain after switch emission is complete. 1374 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1375 CaseRangeBlock = createBasicBlock("sw.caserange"); 1376 1377 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1378 Builder.SetInsertPoint(CaseRangeBlock); 1379 1380 // Emit range check. 1381 llvm::Value *Diff = 1382 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1383 llvm::Value *Cond = 1384 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1385 1386 llvm::MDNode *Weights = nullptr; 1387 if (SwitchWeights) { 1388 uint64_t ThisCount = getProfileCount(&S); 1389 uint64_t DefaultCount = (*SwitchWeights)[0]; 1390 Weights = createProfileWeights(ThisCount, DefaultCount); 1391 1392 // Since we're chaining the switch default through each large case range, we 1393 // need to update the weight for the default, ie, the first case, to include 1394 // this case. 1395 (*SwitchWeights)[0] += ThisCount; 1396 } else if (SwitchLikelihood) 1397 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1398 1399 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1400 1401 // Restore the appropriate insertion point. 1402 if (RestoreBB) 1403 Builder.SetInsertPoint(RestoreBB); 1404 else 1405 Builder.ClearInsertionPoint(); 1406 } 1407 1408 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1409 ArrayRef<const Attr *> Attrs) { 1410 // If there is no enclosing switch instance that we're aware of, then this 1411 // case statement and its block can be elided. This situation only happens 1412 // when we've constant-folded the switch, are emitting the constant case, 1413 // and part of the constant case includes another case statement. For 1414 // instance: switch (4) { case 4: do { case 5: } while (1); } 1415 if (!SwitchInsn) { 1416 EmitStmt(S.getSubStmt()); 1417 return; 1418 } 1419 1420 // Handle case ranges. 1421 if (S.getRHS()) { 1422 EmitCaseStmtRange(S, Attrs); 1423 return; 1424 } 1425 1426 llvm::ConstantInt *CaseVal = 1427 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1428 if (SwitchLikelihood) 1429 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1430 1431 // If the body of the case is just a 'break', try to not emit an empty block. 1432 // If we're profiling or we're not optimizing, leave the block in for better 1433 // debug and coverage analysis. 1434 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1435 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1436 isa<BreakStmt>(S.getSubStmt())) { 1437 JumpDest Block = BreakContinueStack.back().BreakBlock; 1438 1439 // Only do this optimization if there are no cleanups that need emitting. 1440 if (isObviouslyBranchWithoutCleanups(Block)) { 1441 if (SwitchWeights) 1442 SwitchWeights->push_back(getProfileCount(&S)); 1443 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1444 1445 // If there was a fallthrough into this case, make sure to redirect it to 1446 // the end of the switch as well. 1447 if (Builder.GetInsertBlock()) { 1448 Builder.CreateBr(Block.getBlock()); 1449 Builder.ClearInsertionPoint(); 1450 } 1451 return; 1452 } 1453 } 1454 1455 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1456 EmitBlockWithFallThrough(CaseDest, &S); 1457 if (SwitchWeights) 1458 SwitchWeights->push_back(getProfileCount(&S)); 1459 SwitchInsn->addCase(CaseVal, CaseDest); 1460 1461 // Recursively emitting the statement is acceptable, but is not wonderful for 1462 // code where we have many case statements nested together, i.e.: 1463 // case 1: 1464 // case 2: 1465 // case 3: etc. 1466 // Handling this recursively will create a new block for each case statement 1467 // that falls through to the next case which is IR intensive. It also causes 1468 // deep recursion which can run into stack depth limitations. Handle 1469 // sequential non-range case statements specially. 1470 // 1471 // TODO When the next case has a likelihood attribute the code returns to the 1472 // recursive algorithm. Maybe improve this case if it becomes common practice 1473 // to use a lot of attributes. 1474 const CaseStmt *CurCase = &S; 1475 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1476 1477 // Otherwise, iteratively add consecutive cases to this switch stmt. 1478 while (NextCase && NextCase->getRHS() == nullptr) { 1479 CurCase = NextCase; 1480 llvm::ConstantInt *CaseVal = 1481 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1482 1483 if (SwitchWeights) 1484 SwitchWeights->push_back(getProfileCount(NextCase)); 1485 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1486 CaseDest = createBasicBlock("sw.bb"); 1487 EmitBlockWithFallThrough(CaseDest, CurCase); 1488 } 1489 // Since this loop is only executed when the CaseStmt has no attributes 1490 // use a hard-coded value. 1491 if (SwitchLikelihood) 1492 SwitchLikelihood->push_back(Stmt::LH_None); 1493 1494 SwitchInsn->addCase(CaseVal, CaseDest); 1495 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1496 } 1497 1498 // Normal default recursion for non-cases. 1499 EmitStmt(CurCase->getSubStmt()); 1500 } 1501 1502 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1503 ArrayRef<const Attr *> Attrs) { 1504 // If there is no enclosing switch instance that we're aware of, then this 1505 // default statement can be elided. This situation only happens when we've 1506 // constant-folded the switch. 1507 if (!SwitchInsn) { 1508 EmitStmt(S.getSubStmt()); 1509 return; 1510 } 1511 1512 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1513 assert(DefaultBlock->empty() && 1514 "EmitDefaultStmt: Default block already defined?"); 1515 1516 if (SwitchLikelihood) 1517 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1518 1519 EmitBlockWithFallThrough(DefaultBlock, &S); 1520 1521 EmitStmt(S.getSubStmt()); 1522 } 1523 1524 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1525 /// constant value that is being switched on, see if we can dead code eliminate 1526 /// the body of the switch to a simple series of statements to emit. Basically, 1527 /// on a switch (5) we want to find these statements: 1528 /// case 5: 1529 /// printf(...); <-- 1530 /// ++i; <-- 1531 /// break; 1532 /// 1533 /// and add them to the ResultStmts vector. If it is unsafe to do this 1534 /// transformation (for example, one of the elided statements contains a label 1535 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1536 /// should include statements after it (e.g. the printf() line is a substmt of 1537 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1538 /// statement, then return CSFC_Success. 1539 /// 1540 /// If Case is non-null, then we are looking for the specified case, checking 1541 /// that nothing we jump over contains labels. If Case is null, then we found 1542 /// the case and are looking for the break. 1543 /// 1544 /// If the recursive walk actually finds our Case, then we set FoundCase to 1545 /// true. 1546 /// 1547 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1548 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1549 const SwitchCase *Case, 1550 bool &FoundCase, 1551 SmallVectorImpl<const Stmt*> &ResultStmts) { 1552 // If this is a null statement, just succeed. 1553 if (!S) 1554 return Case ? CSFC_Success : CSFC_FallThrough; 1555 1556 // If this is the switchcase (case 4: or default) that we're looking for, then 1557 // we're in business. Just add the substatement. 1558 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1559 if (S == Case) { 1560 FoundCase = true; 1561 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1562 ResultStmts); 1563 } 1564 1565 // Otherwise, this is some other case or default statement, just ignore it. 1566 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1567 ResultStmts); 1568 } 1569 1570 // If we are in the live part of the code and we found our break statement, 1571 // return a success! 1572 if (!Case && isa<BreakStmt>(S)) 1573 return CSFC_Success; 1574 1575 // If this is a switch statement, then it might contain the SwitchCase, the 1576 // break, or neither. 1577 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1578 // Handle this as two cases: we might be looking for the SwitchCase (if so 1579 // the skipped statements must be skippable) or we might already have it. 1580 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1581 bool StartedInLiveCode = FoundCase; 1582 unsigned StartSize = ResultStmts.size(); 1583 1584 // If we've not found the case yet, scan through looking for it. 1585 if (Case) { 1586 // Keep track of whether we see a skipped declaration. The code could be 1587 // using the declaration even if it is skipped, so we can't optimize out 1588 // the decl if the kept statements might refer to it. 1589 bool HadSkippedDecl = false; 1590 1591 // If we're looking for the case, just see if we can skip each of the 1592 // substatements. 1593 for (; Case && I != E; ++I) { 1594 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1595 1596 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1597 case CSFC_Failure: return CSFC_Failure; 1598 case CSFC_Success: 1599 // A successful result means that either 1) that the statement doesn't 1600 // have the case and is skippable, or 2) does contain the case value 1601 // and also contains the break to exit the switch. In the later case, 1602 // we just verify the rest of the statements are elidable. 1603 if (FoundCase) { 1604 // If we found the case and skipped declarations, we can't do the 1605 // optimization. 1606 if (HadSkippedDecl) 1607 return CSFC_Failure; 1608 1609 for (++I; I != E; ++I) 1610 if (CodeGenFunction::ContainsLabel(*I, true)) 1611 return CSFC_Failure; 1612 return CSFC_Success; 1613 } 1614 break; 1615 case CSFC_FallThrough: 1616 // If we have a fallthrough condition, then we must have found the 1617 // case started to include statements. Consider the rest of the 1618 // statements in the compound statement as candidates for inclusion. 1619 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1620 // We recursively found Case, so we're not looking for it anymore. 1621 Case = nullptr; 1622 1623 // If we found the case and skipped declarations, we can't do the 1624 // optimization. 1625 if (HadSkippedDecl) 1626 return CSFC_Failure; 1627 break; 1628 } 1629 } 1630 1631 if (!FoundCase) 1632 return CSFC_Success; 1633 1634 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1635 } 1636 1637 // If we have statements in our range, then we know that the statements are 1638 // live and need to be added to the set of statements we're tracking. 1639 bool AnyDecls = false; 1640 for (; I != E; ++I) { 1641 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1642 1643 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1644 case CSFC_Failure: return CSFC_Failure; 1645 case CSFC_FallThrough: 1646 // A fallthrough result means that the statement was simple and just 1647 // included in ResultStmt, keep adding them afterwards. 1648 break; 1649 case CSFC_Success: 1650 // A successful result means that we found the break statement and 1651 // stopped statement inclusion. We just ensure that any leftover stmts 1652 // are skippable and return success ourselves. 1653 for (++I; I != E; ++I) 1654 if (CodeGenFunction::ContainsLabel(*I, true)) 1655 return CSFC_Failure; 1656 return CSFC_Success; 1657 } 1658 } 1659 1660 // If we're about to fall out of a scope without hitting a 'break;', we 1661 // can't perform the optimization if there were any decls in that scope 1662 // (we'd lose their end-of-lifetime). 1663 if (AnyDecls) { 1664 // If the entire compound statement was live, there's one more thing we 1665 // can try before giving up: emit the whole thing as a single statement. 1666 // We can do that unless the statement contains a 'break;'. 1667 // FIXME: Such a break must be at the end of a construct within this one. 1668 // We could emit this by just ignoring the BreakStmts entirely. 1669 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1670 ResultStmts.resize(StartSize); 1671 ResultStmts.push_back(S); 1672 } else { 1673 return CSFC_Failure; 1674 } 1675 } 1676 1677 return CSFC_FallThrough; 1678 } 1679 1680 // Okay, this is some other statement that we don't handle explicitly, like a 1681 // for statement or increment etc. If we are skipping over this statement, 1682 // just verify it doesn't have labels, which would make it invalid to elide. 1683 if (Case) { 1684 if (CodeGenFunction::ContainsLabel(S, true)) 1685 return CSFC_Failure; 1686 return CSFC_Success; 1687 } 1688 1689 // Otherwise, we want to include this statement. Everything is cool with that 1690 // so long as it doesn't contain a break out of the switch we're in. 1691 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1692 1693 // Otherwise, everything is great. Include the statement and tell the caller 1694 // that we fall through and include the next statement as well. 1695 ResultStmts.push_back(S); 1696 return CSFC_FallThrough; 1697 } 1698 1699 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1700 /// then invoke CollectStatementsForCase to find the list of statements to emit 1701 /// for a switch on constant. See the comment above CollectStatementsForCase 1702 /// for more details. 1703 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1704 const llvm::APSInt &ConstantCondValue, 1705 SmallVectorImpl<const Stmt*> &ResultStmts, 1706 ASTContext &C, 1707 const SwitchCase *&ResultCase) { 1708 // First step, find the switch case that is being branched to. We can do this 1709 // efficiently by scanning the SwitchCase list. 1710 const SwitchCase *Case = S.getSwitchCaseList(); 1711 const DefaultStmt *DefaultCase = nullptr; 1712 1713 for (; Case; Case = Case->getNextSwitchCase()) { 1714 // It's either a default or case. Just remember the default statement in 1715 // case we're not jumping to any numbered cases. 1716 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1717 DefaultCase = DS; 1718 continue; 1719 } 1720 1721 // Check to see if this case is the one we're looking for. 1722 const CaseStmt *CS = cast<CaseStmt>(Case); 1723 // Don't handle case ranges yet. 1724 if (CS->getRHS()) return false; 1725 1726 // If we found our case, remember it as 'case'. 1727 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1728 break; 1729 } 1730 1731 // If we didn't find a matching case, we use a default if it exists, or we 1732 // elide the whole switch body! 1733 if (!Case) { 1734 // It is safe to elide the body of the switch if it doesn't contain labels 1735 // etc. If it is safe, return successfully with an empty ResultStmts list. 1736 if (!DefaultCase) 1737 return !CodeGenFunction::ContainsLabel(&S); 1738 Case = DefaultCase; 1739 } 1740 1741 // Ok, we know which case is being jumped to, try to collect all the 1742 // statements that follow it. This can fail for a variety of reasons. Also, 1743 // check to see that the recursive walk actually found our case statement. 1744 // Insane cases like this can fail to find it in the recursive walk since we 1745 // don't handle every stmt kind: 1746 // switch (4) { 1747 // while (1) { 1748 // case 4: ... 1749 bool FoundCase = false; 1750 ResultCase = Case; 1751 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1752 ResultStmts) != CSFC_Failure && 1753 FoundCase; 1754 } 1755 1756 static Optional<SmallVector<uint64_t, 16>> 1757 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1758 // Are there enough branches to weight them? 1759 if (Likelihoods.size() <= 1) 1760 return None; 1761 1762 uint64_t NumUnlikely = 0; 1763 uint64_t NumNone = 0; 1764 uint64_t NumLikely = 0; 1765 for (const auto LH : Likelihoods) { 1766 switch (LH) { 1767 case Stmt::LH_Unlikely: 1768 ++NumUnlikely; 1769 break; 1770 case Stmt::LH_None: 1771 ++NumNone; 1772 break; 1773 case Stmt::LH_Likely: 1774 ++NumLikely; 1775 break; 1776 } 1777 } 1778 1779 // Is there a likelihood attribute used? 1780 if (NumUnlikely == 0 && NumLikely == 0) 1781 return None; 1782 1783 // When multiple cases share the same code they can be combined during 1784 // optimization. In that case the weights of the branch will be the sum of 1785 // the individual weights. Make sure the combined sum of all neutral cases 1786 // doesn't exceed the value of a single likely attribute. 1787 // The additions both avoid divisions by 0 and make sure the weights of None 1788 // don't exceed the weight of Likely. 1789 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1790 const uint64_t None = Likely / (NumNone + 1); 1791 const uint64_t Unlikely = 0; 1792 1793 SmallVector<uint64_t, 16> Result; 1794 Result.reserve(Likelihoods.size()); 1795 for (const auto LH : Likelihoods) { 1796 switch (LH) { 1797 case Stmt::LH_Unlikely: 1798 Result.push_back(Unlikely); 1799 break; 1800 case Stmt::LH_None: 1801 Result.push_back(None); 1802 break; 1803 case Stmt::LH_Likely: 1804 Result.push_back(Likely); 1805 break; 1806 } 1807 } 1808 1809 return Result; 1810 } 1811 1812 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1813 // Handle nested switch statements. 1814 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1815 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1816 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1817 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1818 1819 // See if we can constant fold the condition of the switch and therefore only 1820 // emit the live case statement (if any) of the switch. 1821 llvm::APSInt ConstantCondValue; 1822 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1823 SmallVector<const Stmt*, 4> CaseStmts; 1824 const SwitchCase *Case = nullptr; 1825 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1826 getContext(), Case)) { 1827 if (Case) 1828 incrementProfileCounter(Case); 1829 RunCleanupsScope ExecutedScope(*this); 1830 1831 if (S.getInit()) 1832 EmitStmt(S.getInit()); 1833 1834 // Emit the condition variable if needed inside the entire cleanup scope 1835 // used by this special case for constant folded switches. 1836 if (S.getConditionVariable()) 1837 EmitDecl(*S.getConditionVariable()); 1838 1839 // At this point, we are no longer "within" a switch instance, so 1840 // we can temporarily enforce this to ensure that any embedded case 1841 // statements are not emitted. 1842 SwitchInsn = nullptr; 1843 1844 // Okay, we can dead code eliminate everything except this case. Emit the 1845 // specified series of statements and we're good. 1846 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1847 EmitStmt(CaseStmts[i]); 1848 incrementProfileCounter(&S); 1849 1850 // Now we want to restore the saved switch instance so that nested 1851 // switches continue to function properly 1852 SwitchInsn = SavedSwitchInsn; 1853 1854 return; 1855 } 1856 } 1857 1858 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1859 1860 RunCleanupsScope ConditionScope(*this); 1861 1862 if (S.getInit()) 1863 EmitStmt(S.getInit()); 1864 1865 if (S.getConditionVariable()) 1866 EmitDecl(*S.getConditionVariable()); 1867 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1868 1869 // Create basic block to hold stuff that comes after switch 1870 // statement. We also need to create a default block now so that 1871 // explicit case ranges tests can have a place to jump to on 1872 // failure. 1873 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1874 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1875 if (PGO.haveRegionCounts()) { 1876 // Walk the SwitchCase list to find how many there are. 1877 uint64_t DefaultCount = 0; 1878 unsigned NumCases = 0; 1879 for (const SwitchCase *Case = S.getSwitchCaseList(); 1880 Case; 1881 Case = Case->getNextSwitchCase()) { 1882 if (isa<DefaultStmt>(Case)) 1883 DefaultCount = getProfileCount(Case); 1884 NumCases += 1; 1885 } 1886 SwitchWeights = new SmallVector<uint64_t, 16>(); 1887 SwitchWeights->reserve(NumCases); 1888 // The default needs to be first. We store the edge count, so we already 1889 // know the right weight. 1890 SwitchWeights->push_back(DefaultCount); 1891 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1892 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1893 // Initialize the default case. 1894 SwitchLikelihood->push_back(Stmt::LH_None); 1895 } 1896 1897 CaseRangeBlock = DefaultBlock; 1898 1899 // Clear the insertion point to indicate we are in unreachable code. 1900 Builder.ClearInsertionPoint(); 1901 1902 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1903 // then reuse last ContinueBlock. 1904 JumpDest OuterContinue; 1905 if (!BreakContinueStack.empty()) 1906 OuterContinue = BreakContinueStack.back().ContinueBlock; 1907 1908 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1909 1910 // Emit switch body. 1911 EmitStmt(S.getBody()); 1912 1913 BreakContinueStack.pop_back(); 1914 1915 // Update the default block in case explicit case range tests have 1916 // been chained on top. 1917 SwitchInsn->setDefaultDest(CaseRangeBlock); 1918 1919 // If a default was never emitted: 1920 if (!DefaultBlock->getParent()) { 1921 // If we have cleanups, emit the default block so that there's a 1922 // place to jump through the cleanups from. 1923 if (ConditionScope.requiresCleanups()) { 1924 EmitBlock(DefaultBlock); 1925 1926 // Otherwise, just forward the default block to the switch end. 1927 } else { 1928 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1929 delete DefaultBlock; 1930 } 1931 } 1932 1933 ConditionScope.ForceCleanup(); 1934 1935 // Emit continuation. 1936 EmitBlock(SwitchExit.getBlock(), true); 1937 incrementProfileCounter(&S); 1938 1939 // If the switch has a condition wrapped by __builtin_unpredictable, 1940 // create metadata that specifies that the switch is unpredictable. 1941 // Don't bother if not optimizing because that metadata would not be used. 1942 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1943 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1944 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1945 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1946 llvm::MDBuilder MDHelper(getLLVMContext()); 1947 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1948 MDHelper.createUnpredictable()); 1949 } 1950 } 1951 1952 if (SwitchWeights) { 1953 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1954 "switch weights do not match switch cases"); 1955 // If there's only one jump destination there's no sense weighting it. 1956 if (SwitchWeights->size() > 1) 1957 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1958 createProfileWeights(*SwitchWeights)); 1959 delete SwitchWeights; 1960 } else if (SwitchLikelihood) { 1961 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 1962 "switch likelihoods do not match switch cases"); 1963 Optional<SmallVector<uint64_t, 16>> LHW = 1964 getLikelihoodWeights(*SwitchLikelihood); 1965 if (LHW) { 1966 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 1967 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1968 createProfileWeights(*LHW)); 1969 } 1970 delete SwitchLikelihood; 1971 } 1972 SwitchInsn = SavedSwitchInsn; 1973 SwitchWeights = SavedSwitchWeights; 1974 SwitchLikelihood = SavedSwitchLikelihood; 1975 CaseRangeBlock = SavedCRBlock; 1976 } 1977 1978 static std::string 1979 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1980 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1981 std::string Result; 1982 1983 while (*Constraint) { 1984 switch (*Constraint) { 1985 default: 1986 Result += Target.convertConstraint(Constraint); 1987 break; 1988 // Ignore these 1989 case '*': 1990 case '?': 1991 case '!': 1992 case '=': // Will see this and the following in mult-alt constraints. 1993 case '+': 1994 break; 1995 case '#': // Ignore the rest of the constraint alternative. 1996 while (Constraint[1] && Constraint[1] != ',') 1997 Constraint++; 1998 break; 1999 case '&': 2000 case '%': 2001 Result += *Constraint; 2002 while (Constraint[1] && Constraint[1] == *Constraint) 2003 Constraint++; 2004 break; 2005 case ',': 2006 Result += "|"; 2007 break; 2008 case 'g': 2009 Result += "imr"; 2010 break; 2011 case '[': { 2012 assert(OutCons && 2013 "Must pass output names to constraints with a symbolic name"); 2014 unsigned Index; 2015 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2016 assert(result && "Could not resolve symbolic name"); (void)result; 2017 Result += llvm::utostr(Index); 2018 break; 2019 } 2020 } 2021 2022 Constraint++; 2023 } 2024 2025 return Result; 2026 } 2027 2028 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2029 /// as using a particular register add that as a constraint that will be used 2030 /// in this asm stmt. 2031 static std::string 2032 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2033 const TargetInfo &Target, CodeGenModule &CGM, 2034 const AsmStmt &Stmt, const bool EarlyClobber, 2035 std::string *GCCReg = nullptr) { 2036 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2037 if (!AsmDeclRef) 2038 return Constraint; 2039 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2040 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2041 if (!Variable) 2042 return Constraint; 2043 if (Variable->getStorageClass() != SC_Register) 2044 return Constraint; 2045 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2046 if (!Attr) 2047 return Constraint; 2048 StringRef Register = Attr->getLabel(); 2049 assert(Target.isValidGCCRegisterName(Register)); 2050 // We're using validateOutputConstraint here because we only care if 2051 // this is a register constraint. 2052 TargetInfo::ConstraintInfo Info(Constraint, ""); 2053 if (Target.validateOutputConstraint(Info) && 2054 !Info.allowsRegister()) { 2055 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2056 return Constraint; 2057 } 2058 // Canonicalize the register here before returning it. 2059 Register = Target.getNormalizedGCCRegisterName(Register); 2060 if (GCCReg != nullptr) 2061 *GCCReg = Register.str(); 2062 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2063 } 2064 2065 llvm::Value* 2066 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2067 LValue InputValue, QualType InputType, 2068 std::string &ConstraintStr, 2069 SourceLocation Loc) { 2070 llvm::Value *Arg; 2071 if (Info.allowsRegister() || !Info.allowsMemory()) { 2072 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2073 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2074 } else { 2075 llvm::Type *Ty = ConvertType(InputType); 2076 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2077 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 2078 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2079 Ty = llvm::PointerType::getUnqual(Ty); 2080 2081 Arg = Builder.CreateLoad( 2082 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2083 } else { 2084 Arg = InputValue.getPointer(*this); 2085 ConstraintStr += '*'; 2086 } 2087 } 2088 } else { 2089 Arg = InputValue.getPointer(*this); 2090 ConstraintStr += '*'; 2091 } 2092 2093 return Arg; 2094 } 2095 2096 llvm::Value* CodeGenFunction::EmitAsmInput( 2097 const TargetInfo::ConstraintInfo &Info, 2098 const Expr *InputExpr, 2099 std::string &ConstraintStr) { 2100 // If this can't be a register or memory, i.e., has to be a constant 2101 // (immediate or symbolic), try to emit it as such. 2102 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2103 if (Info.requiresImmediateConstant()) { 2104 Expr::EvalResult EVResult; 2105 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2106 2107 llvm::APSInt IntResult; 2108 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2109 getContext())) 2110 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2111 } 2112 2113 Expr::EvalResult Result; 2114 if (InputExpr->EvaluateAsInt(Result, getContext())) 2115 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2116 } 2117 2118 if (Info.allowsRegister() || !Info.allowsMemory()) 2119 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2120 return EmitScalarExpr(InputExpr); 2121 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2122 return EmitScalarExpr(InputExpr); 2123 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2124 LValue Dest = EmitLValue(InputExpr); 2125 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2126 InputExpr->getExprLoc()); 2127 } 2128 2129 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2130 /// asm call instruction. The !srcloc MDNode contains a list of constant 2131 /// integers which are the source locations of the start of each line in the 2132 /// asm. 2133 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2134 CodeGenFunction &CGF) { 2135 SmallVector<llvm::Metadata *, 8> Locs; 2136 // Add the location of the first line to the MDNode. 2137 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2138 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 2139 StringRef StrVal = Str->getString(); 2140 if (!StrVal.empty()) { 2141 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2142 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2143 unsigned StartToken = 0; 2144 unsigned ByteOffset = 0; 2145 2146 // Add the location of the start of each subsequent line of the asm to the 2147 // MDNode. 2148 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2149 if (StrVal[i] != '\n') continue; 2150 SourceLocation LineLoc = Str->getLocationOfByte( 2151 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2152 Locs.push_back(llvm::ConstantAsMetadata::get( 2153 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 2154 } 2155 } 2156 2157 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2158 } 2159 2160 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2161 bool ReadOnly, bool ReadNone, bool NoMerge, 2162 const AsmStmt &S, 2163 const std::vector<llvm::Type *> &ResultRegTypes, 2164 CodeGenFunction &CGF, 2165 std::vector<llvm::Value *> &RegResults) { 2166 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2167 llvm::Attribute::NoUnwind); 2168 if (NoMerge) 2169 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2170 llvm::Attribute::NoMerge); 2171 // Attach readnone and readonly attributes. 2172 if (!HasSideEffect) { 2173 if (ReadNone) 2174 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2175 llvm::Attribute::ReadNone); 2176 else if (ReadOnly) 2177 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2178 llvm::Attribute::ReadOnly); 2179 } 2180 2181 // Slap the source location of the inline asm into a !srcloc metadata on the 2182 // call. 2183 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2184 Result.setMetadata("srcloc", 2185 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2186 else { 2187 // At least put the line number on MS inline asm blobs. 2188 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 2189 S.getAsmLoc().getRawEncoding()); 2190 Result.setMetadata("srcloc", 2191 llvm::MDNode::get(CGF.getLLVMContext(), 2192 llvm::ConstantAsMetadata::get(Loc))); 2193 } 2194 2195 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2196 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2197 // convergent (meaning, they may call an intrinsically convergent op, such 2198 // as bar.sync, and so can't have certain optimizations applied around 2199 // them). 2200 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2201 llvm::Attribute::Convergent); 2202 // Extract all of the register value results from the asm. 2203 if (ResultRegTypes.size() == 1) { 2204 RegResults.push_back(&Result); 2205 } else { 2206 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2207 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2208 RegResults.push_back(Tmp); 2209 } 2210 } 2211 } 2212 2213 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2214 // Assemble the final asm string. 2215 std::string AsmString = S.generateAsmString(getContext()); 2216 2217 // Get all the output and input constraints together. 2218 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2219 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2220 2221 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2222 StringRef Name; 2223 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2224 Name = GAS->getOutputName(i); 2225 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2226 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2227 assert(IsValid && "Failed to parse output constraint"); 2228 OutputConstraintInfos.push_back(Info); 2229 } 2230 2231 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2232 StringRef Name; 2233 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2234 Name = GAS->getInputName(i); 2235 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2236 bool IsValid = 2237 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2238 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2239 InputConstraintInfos.push_back(Info); 2240 } 2241 2242 std::string Constraints; 2243 2244 std::vector<LValue> ResultRegDests; 2245 std::vector<QualType> ResultRegQualTys; 2246 std::vector<llvm::Type *> ResultRegTypes; 2247 std::vector<llvm::Type *> ResultTruncRegTypes; 2248 std::vector<llvm::Type *> ArgTypes; 2249 std::vector<llvm::Value*> Args; 2250 llvm::BitVector ResultTypeRequiresCast; 2251 2252 // Keep track of inout constraints. 2253 std::string InOutConstraints; 2254 std::vector<llvm::Value*> InOutArgs; 2255 std::vector<llvm::Type*> InOutArgTypes; 2256 2257 // Keep track of out constraints for tied input operand. 2258 std::vector<std::string> OutputConstraints; 2259 2260 // Keep track of defined physregs. 2261 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2262 2263 // An inline asm can be marked readonly if it meets the following conditions: 2264 // - it doesn't have any sideeffects 2265 // - it doesn't clobber memory 2266 // - it doesn't return a value by-reference 2267 // It can be marked readnone if it doesn't have any input memory constraints 2268 // in addition to meeting the conditions listed above. 2269 bool ReadOnly = true, ReadNone = true; 2270 2271 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2272 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2273 2274 // Simplify the output constraint. 2275 std::string OutputConstraint(S.getOutputConstraint(i)); 2276 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2277 getTarget(), &OutputConstraintInfos); 2278 2279 const Expr *OutExpr = S.getOutputExpr(i); 2280 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2281 2282 std::string GCCReg; 2283 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2284 getTarget(), CGM, S, 2285 Info.earlyClobber(), 2286 &GCCReg); 2287 // Give an error on multiple outputs to same physreg. 2288 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2289 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2290 2291 OutputConstraints.push_back(OutputConstraint); 2292 LValue Dest = EmitLValue(OutExpr); 2293 if (!Constraints.empty()) 2294 Constraints += ','; 2295 2296 // If this is a register output, then make the inline asm return it 2297 // by-value. If this is a memory result, return the value by-reference. 2298 bool isScalarizableAggregate = 2299 hasAggregateEvaluationKind(OutExpr->getType()); 2300 if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) || 2301 isScalarizableAggregate)) { 2302 Constraints += "=" + OutputConstraint; 2303 ResultRegQualTys.push_back(OutExpr->getType()); 2304 ResultRegDests.push_back(Dest); 2305 ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2306 if (Info.allowsRegister() && isScalarizableAggregate) { 2307 ResultTypeRequiresCast.push_back(true); 2308 unsigned Size = getContext().getTypeSize(OutExpr->getType()); 2309 llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size); 2310 ResultRegTypes.push_back(ConvTy); 2311 } else { 2312 ResultTypeRequiresCast.push_back(false); 2313 ResultRegTypes.push_back(ResultTruncRegTypes.back()); 2314 } 2315 // If this output is tied to an input, and if the input is larger, then 2316 // we need to set the actual result type of the inline asm node to be the 2317 // same as the input type. 2318 if (Info.hasMatchingInput()) { 2319 unsigned InputNo; 2320 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2321 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2322 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2323 break; 2324 } 2325 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2326 2327 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2328 QualType OutputType = OutExpr->getType(); 2329 2330 uint64_t InputSize = getContext().getTypeSize(InputTy); 2331 if (getContext().getTypeSize(OutputType) < InputSize) { 2332 // Form the asm to return the value as a larger integer or fp type. 2333 ResultRegTypes.back() = ConvertType(InputTy); 2334 } 2335 } 2336 if (llvm::Type* AdjTy = 2337 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2338 ResultRegTypes.back())) 2339 ResultRegTypes.back() = AdjTy; 2340 else { 2341 CGM.getDiags().Report(S.getAsmLoc(), 2342 diag::err_asm_invalid_type_in_input) 2343 << OutExpr->getType() << OutputConstraint; 2344 } 2345 2346 // Update largest vector width for any vector types. 2347 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2348 LargestVectorWidth = 2349 std::max((uint64_t)LargestVectorWidth, 2350 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2351 } else { 2352 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2353 llvm::Value *DestPtr = Dest.getPointer(*this); 2354 // Matrix types in memory are represented by arrays, but accessed through 2355 // vector pointers, with the alignment specified on the access operation. 2356 // For inline assembly, update pointer arguments to use vector pointers. 2357 // Otherwise there will be a mis-match if the matrix is also an 2358 // input-argument which is represented as vector. 2359 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2360 DestAddrTy = llvm::PointerType::get( 2361 ConvertType(OutExpr->getType()), 2362 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2363 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2364 } 2365 ArgTypes.push_back(DestAddrTy); 2366 Args.push_back(DestPtr); 2367 Constraints += "=*"; 2368 Constraints += OutputConstraint; 2369 ReadOnly = ReadNone = false; 2370 } 2371 2372 if (Info.isReadWrite()) { 2373 InOutConstraints += ','; 2374 2375 const Expr *InputExpr = S.getOutputExpr(i); 2376 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2377 InOutConstraints, 2378 InputExpr->getExprLoc()); 2379 2380 if (llvm::Type* AdjTy = 2381 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2382 Arg->getType())) 2383 Arg = Builder.CreateBitCast(Arg, AdjTy); 2384 2385 // Update largest vector width for any vector types. 2386 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2387 LargestVectorWidth = 2388 std::max((uint64_t)LargestVectorWidth, 2389 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2390 // Only tie earlyclobber physregs. 2391 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2392 InOutConstraints += llvm::utostr(i); 2393 else 2394 InOutConstraints += OutputConstraint; 2395 2396 InOutArgTypes.push_back(Arg->getType()); 2397 InOutArgs.push_back(Arg); 2398 } 2399 } 2400 2401 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2402 // to the return value slot. Only do this when returning in registers. 2403 if (isa<MSAsmStmt>(&S)) { 2404 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2405 if (RetAI.isDirect() || RetAI.isExtend()) { 2406 // Make a fake lvalue for the return value slot. 2407 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2408 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2409 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2410 ResultRegDests, AsmString, S.getNumOutputs()); 2411 SawAsmBlock = true; 2412 } 2413 } 2414 2415 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2416 const Expr *InputExpr = S.getInputExpr(i); 2417 2418 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2419 2420 if (Info.allowsMemory()) 2421 ReadNone = false; 2422 2423 if (!Constraints.empty()) 2424 Constraints += ','; 2425 2426 // Simplify the input constraint. 2427 std::string InputConstraint(S.getInputConstraint(i)); 2428 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2429 &OutputConstraintInfos); 2430 2431 InputConstraint = AddVariableConstraints( 2432 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2433 getTarget(), CGM, S, false /* No EarlyClobber */); 2434 2435 std::string ReplaceConstraint (InputConstraint); 2436 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2437 2438 // If this input argument is tied to a larger output result, extend the 2439 // input to be the same size as the output. The LLVM backend wants to see 2440 // the input and output of a matching constraint be the same size. Note 2441 // that GCC does not define what the top bits are here. We use zext because 2442 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2443 if (Info.hasTiedOperand()) { 2444 unsigned Output = Info.getTiedOperand(); 2445 QualType OutputType = S.getOutputExpr(Output)->getType(); 2446 QualType InputTy = InputExpr->getType(); 2447 2448 if (getContext().getTypeSize(OutputType) > 2449 getContext().getTypeSize(InputTy)) { 2450 // Use ptrtoint as appropriate so that we can do our extension. 2451 if (isa<llvm::PointerType>(Arg->getType())) 2452 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2453 llvm::Type *OutputTy = ConvertType(OutputType); 2454 if (isa<llvm::IntegerType>(OutputTy)) 2455 Arg = Builder.CreateZExt(Arg, OutputTy); 2456 else if (isa<llvm::PointerType>(OutputTy)) 2457 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2458 else { 2459 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2460 Arg = Builder.CreateFPExt(Arg, OutputTy); 2461 } 2462 } 2463 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2464 ReplaceConstraint = OutputConstraints[Output]; 2465 } 2466 if (llvm::Type* AdjTy = 2467 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2468 Arg->getType())) 2469 Arg = Builder.CreateBitCast(Arg, AdjTy); 2470 else 2471 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2472 << InputExpr->getType() << InputConstraint; 2473 2474 // Update largest vector width for any vector types. 2475 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2476 LargestVectorWidth = 2477 std::max((uint64_t)LargestVectorWidth, 2478 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2479 2480 ArgTypes.push_back(Arg->getType()); 2481 Args.push_back(Arg); 2482 Constraints += InputConstraint; 2483 } 2484 2485 // Labels 2486 SmallVector<llvm::BasicBlock *, 16> Transfer; 2487 llvm::BasicBlock *Fallthrough = nullptr; 2488 bool IsGCCAsmGoto = false; 2489 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2490 IsGCCAsmGoto = GS->isAsmGoto(); 2491 if (IsGCCAsmGoto) { 2492 for (const auto *E : GS->labels()) { 2493 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2494 Transfer.push_back(Dest.getBlock()); 2495 llvm::BlockAddress *BA = 2496 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2497 Args.push_back(BA); 2498 ArgTypes.push_back(BA->getType()); 2499 if (!Constraints.empty()) 2500 Constraints += ','; 2501 Constraints += 'X'; 2502 } 2503 Fallthrough = createBasicBlock("asm.fallthrough"); 2504 } 2505 } 2506 2507 // Append the "input" part of inout constraints last. 2508 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2509 ArgTypes.push_back(InOutArgTypes[i]); 2510 Args.push_back(InOutArgs[i]); 2511 } 2512 Constraints += InOutConstraints; 2513 2514 // Clobbers 2515 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2516 StringRef Clobber = S.getClobber(i); 2517 2518 if (Clobber == "memory") 2519 ReadOnly = ReadNone = false; 2520 else if (Clobber != "cc") { 2521 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2522 if (CGM.getCodeGenOpts().StackClashProtector && 2523 getTarget().isSPRegName(Clobber)) { 2524 CGM.getDiags().Report(S.getAsmLoc(), 2525 diag::warn_stack_clash_protection_inline_asm); 2526 } 2527 } 2528 2529 if (isa<MSAsmStmt>(&S)) { 2530 if (Clobber == "eax" || Clobber == "edx") { 2531 if (Constraints.find("=&A") != std::string::npos) 2532 continue; 2533 std::string::size_type position1 = 2534 Constraints.find("={" + Clobber.str() + "}"); 2535 if (position1 != std::string::npos) { 2536 Constraints.insert(position1 + 1, "&"); 2537 continue; 2538 } 2539 std::string::size_type position2 = Constraints.find("=A"); 2540 if (position2 != std::string::npos) { 2541 Constraints.insert(position2 + 1, "&"); 2542 continue; 2543 } 2544 } 2545 } 2546 if (!Constraints.empty()) 2547 Constraints += ','; 2548 2549 Constraints += "~{"; 2550 Constraints += Clobber; 2551 Constraints += '}'; 2552 } 2553 2554 // Add machine specific clobbers 2555 std::string MachineClobbers = getTarget().getClobbers(); 2556 if (!MachineClobbers.empty()) { 2557 if (!Constraints.empty()) 2558 Constraints += ','; 2559 Constraints += MachineClobbers; 2560 } 2561 2562 llvm::Type *ResultType; 2563 if (ResultRegTypes.empty()) 2564 ResultType = VoidTy; 2565 else if (ResultRegTypes.size() == 1) 2566 ResultType = ResultRegTypes[0]; 2567 else 2568 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2569 2570 llvm::FunctionType *FTy = 2571 llvm::FunctionType::get(ResultType, ArgTypes, false); 2572 2573 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2574 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2575 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2576 llvm::InlineAsm *IA = 2577 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2578 /* IsAlignStack */ false, AsmDialect); 2579 std::vector<llvm::Value*> RegResults; 2580 if (IsGCCAsmGoto) { 2581 llvm::CallBrInst *Result = 2582 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2583 EmitBlock(Fallthrough); 2584 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2585 ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes, 2586 *this, RegResults); 2587 } else { 2588 llvm::CallInst *Result = 2589 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2590 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2591 ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes, 2592 *this, RegResults); 2593 } 2594 2595 assert(RegResults.size() == ResultRegTypes.size()); 2596 assert(RegResults.size() == ResultTruncRegTypes.size()); 2597 assert(RegResults.size() == ResultRegDests.size()); 2598 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2599 // in which case its size may grow. 2600 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2601 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2602 llvm::Value *Tmp = RegResults[i]; 2603 2604 // If the result type of the LLVM IR asm doesn't match the result type of 2605 // the expression, do the conversion. 2606 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2607 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2608 2609 // Truncate the integer result to the right size, note that TruncTy can be 2610 // a pointer. 2611 if (TruncTy->isFloatingPointTy()) 2612 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2613 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2614 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2615 Tmp = Builder.CreateTrunc(Tmp, 2616 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2617 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2618 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2619 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2620 Tmp = Builder.CreatePtrToInt(Tmp, 2621 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2622 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2623 } else if (TruncTy->isIntegerTy()) { 2624 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2625 } else if (TruncTy->isVectorTy()) { 2626 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2627 } 2628 } 2629 2630 LValue Dest = ResultRegDests[i]; 2631 // ResultTypeRequiresCast elements correspond to the first 2632 // ResultTypeRequiresCast.size() elements of RegResults. 2633 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2634 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2635 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2636 ResultRegTypes[i]->getPointerTo()); 2637 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2638 if (Ty.isNull()) { 2639 const Expr *OutExpr = S.getOutputExpr(i); 2640 CGM.Error( 2641 OutExpr->getExprLoc(), 2642 "impossible constraint in asm: can't store value into a register"); 2643 return; 2644 } 2645 Dest = MakeAddrLValue(A, Ty); 2646 } 2647 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2648 } 2649 } 2650 2651 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2652 const RecordDecl *RD = S.getCapturedRecordDecl(); 2653 QualType RecordTy = getContext().getRecordType(RD); 2654 2655 // Initialize the captured struct. 2656 LValue SlotLV = 2657 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2658 2659 RecordDecl::field_iterator CurField = RD->field_begin(); 2660 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2661 E = S.capture_init_end(); 2662 I != E; ++I, ++CurField) { 2663 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2664 if (CurField->hasCapturedVLAType()) { 2665 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2666 } else { 2667 EmitInitializerForField(*CurField, LV, *I); 2668 } 2669 } 2670 2671 return SlotLV; 2672 } 2673 2674 /// Generate an outlined function for the body of a CapturedStmt, store any 2675 /// captured variables into the captured struct, and call the outlined function. 2676 llvm::Function * 2677 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2678 LValue CapStruct = InitCapturedStruct(S); 2679 2680 // Emit the CapturedDecl 2681 CodeGenFunction CGF(CGM, true); 2682 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2683 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2684 delete CGF.CapturedStmtInfo; 2685 2686 // Emit call to the helper function. 2687 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2688 2689 return F; 2690 } 2691 2692 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2693 LValue CapStruct = InitCapturedStruct(S); 2694 return CapStruct.getAddress(*this); 2695 } 2696 2697 /// Creates the outlined function for a CapturedStmt. 2698 llvm::Function * 2699 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2700 assert(CapturedStmtInfo && 2701 "CapturedStmtInfo should be set when generating the captured function"); 2702 const CapturedDecl *CD = S.getCapturedDecl(); 2703 const RecordDecl *RD = S.getCapturedRecordDecl(); 2704 SourceLocation Loc = S.getBeginLoc(); 2705 assert(CD->hasBody() && "missing CapturedDecl body"); 2706 2707 // Build the argument list. 2708 ASTContext &Ctx = CGM.getContext(); 2709 FunctionArgList Args; 2710 Args.append(CD->param_begin(), CD->param_end()); 2711 2712 // Create the function declaration. 2713 const CGFunctionInfo &FuncInfo = 2714 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2715 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2716 2717 llvm::Function *F = 2718 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2719 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2720 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2721 if (CD->isNothrow()) 2722 F->addFnAttr(llvm::Attribute::NoUnwind); 2723 2724 // Generate the function. 2725 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2726 CD->getBody()->getBeginLoc()); 2727 // Set the context parameter in CapturedStmtInfo. 2728 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2729 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2730 2731 // Initialize variable-length arrays. 2732 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2733 Ctx.getTagDeclType(RD)); 2734 for (auto *FD : RD->fields()) { 2735 if (FD->hasCapturedVLAType()) { 2736 auto *ExprArg = 2737 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2738 .getScalarVal(); 2739 auto VAT = FD->getCapturedVLAType(); 2740 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2741 } 2742 } 2743 2744 // If 'this' is captured, load it into CXXThisValue. 2745 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2746 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2747 LValue ThisLValue = EmitLValueForField(Base, FD); 2748 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2749 } 2750 2751 PGO.assignRegionCounters(GlobalDecl(CD), F); 2752 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2753 FinishFunction(CD->getBodyRBrace()); 2754 2755 return F; 2756 } 2757