1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Assumptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 //===----------------------------------------------------------------------===// 40 // Statement Emission 41 //===----------------------------------------------------------------------===// 42 43 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 44 if (CGDebugInfo *DI = getDebugInfo()) { 45 SourceLocation Loc; 46 Loc = S->getBeginLoc(); 47 DI->EmitLocation(Builder, Loc); 48 49 LastStopPoint = Loc; 50 } 51 } 52 53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 54 assert(S && "Null statement?"); 55 PGO.setCurrentStmt(S); 56 57 // These statements have their own debug info handling. 58 if (EmitSimpleStmt(S, Attrs)) 59 return; 60 61 // Check if we are generating unreachable code. 62 if (!HaveInsertPoint()) { 63 // If so, and the statement doesn't contain a label, then we do not need to 64 // generate actual code. This is safe because (1) the current point is 65 // unreachable, so we don't need to execute the code, and (2) we've already 66 // handled the statements which update internal data structures (like the 67 // local variable map) which could be used by subsequent statements. 68 if (!ContainsLabel(S)) { 69 // Verify that any decl statements were handled as simple, they may be in 70 // scope of subsequent reachable statements. 71 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 72 return; 73 } 74 75 // Otherwise, make a new block to hold the code. 76 EnsureInsertPoint(); 77 } 78 79 // Generate a stoppoint if we are emitting debug info. 80 EmitStopPoint(S); 81 82 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 83 // enabled. 84 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 85 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 86 EmitSimpleOMPExecutableDirective(*D); 87 return; 88 } 89 } 90 91 switch (S->getStmtClass()) { 92 case Stmt::NoStmtClass: 93 case Stmt::CXXCatchStmtClass: 94 case Stmt::SEHExceptStmtClass: 95 case Stmt::SEHFinallyStmtClass: 96 case Stmt::MSDependentExistsStmtClass: 97 llvm_unreachable("invalid statement class to emit generically"); 98 case Stmt::NullStmtClass: 99 case Stmt::CompoundStmtClass: 100 case Stmt::DeclStmtClass: 101 case Stmt::LabelStmtClass: 102 case Stmt::AttributedStmtClass: 103 case Stmt::GotoStmtClass: 104 case Stmt::BreakStmtClass: 105 case Stmt::ContinueStmtClass: 106 case Stmt::DefaultStmtClass: 107 case Stmt::CaseStmtClass: 108 case Stmt::SEHLeaveStmtClass: 109 llvm_unreachable("should have emitted these statements as simple"); 110 111 #define STMT(Type, Base) 112 #define ABSTRACT_STMT(Op) 113 #define EXPR(Type, Base) \ 114 case Stmt::Type##Class: 115 #include "clang/AST/StmtNodes.inc" 116 { 117 // Remember the block we came in on. 118 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 119 assert(incoming && "expression emission must have an insertion point"); 120 121 EmitIgnoredExpr(cast<Expr>(S)); 122 123 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 124 assert(outgoing && "expression emission cleared block!"); 125 126 // The expression emitters assume (reasonably!) that the insertion 127 // point is always set. To maintain that, the call-emission code 128 // for noreturn functions has to enter a new block with no 129 // predecessors. We want to kill that block and mark the current 130 // insertion point unreachable in the common case of a call like 131 // "exit();". Since expression emission doesn't otherwise create 132 // blocks with no predecessors, we can just test for that. 133 // However, we must be careful not to do this to our incoming 134 // block, because *statement* emission does sometimes create 135 // reachable blocks which will have no predecessors until later in 136 // the function. This occurs with, e.g., labels that are not 137 // reachable by fallthrough. 138 if (incoming != outgoing && outgoing->use_empty()) { 139 outgoing->eraseFromParent(); 140 Builder.ClearInsertionPoint(); 141 } 142 break; 143 } 144 145 case Stmt::IndirectGotoStmtClass: 146 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 147 148 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 149 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 150 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 151 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 152 153 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 154 155 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 156 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 157 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 158 case Stmt::CoroutineBodyStmtClass: 159 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 160 break; 161 case Stmt::CoreturnStmtClass: 162 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 163 break; 164 case Stmt::CapturedStmtClass: { 165 const CapturedStmt *CS = cast<CapturedStmt>(S); 166 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 167 } 168 break; 169 case Stmt::ObjCAtTryStmtClass: 170 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 171 break; 172 case Stmt::ObjCAtCatchStmtClass: 173 llvm_unreachable( 174 "@catch statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtFinallyStmtClass: 176 llvm_unreachable( 177 "@finally statements should be handled by EmitObjCAtTryStmt"); 178 case Stmt::ObjCAtThrowStmtClass: 179 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 180 break; 181 case Stmt::ObjCAtSynchronizedStmtClass: 182 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 183 break; 184 case Stmt::ObjCForCollectionStmtClass: 185 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 186 break; 187 case Stmt::ObjCAutoreleasePoolStmtClass: 188 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 189 break; 190 191 case Stmt::CXXTryStmtClass: 192 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 193 break; 194 case Stmt::CXXForRangeStmtClass: 195 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 196 break; 197 case Stmt::SEHTryStmtClass: 198 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 199 break; 200 case Stmt::OMPMetaDirectiveClass: 201 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S)); 202 break; 203 case Stmt::OMPCanonicalLoopClass: 204 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 205 break; 206 case Stmt::OMPParallelDirectiveClass: 207 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 208 break; 209 case Stmt::OMPSimdDirectiveClass: 210 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 211 break; 212 case Stmt::OMPTileDirectiveClass: 213 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 214 break; 215 case Stmt::OMPUnrollDirectiveClass: 216 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); 217 break; 218 case Stmt::OMPForDirectiveClass: 219 EmitOMPForDirective(cast<OMPForDirective>(*S)); 220 break; 221 case Stmt::OMPForSimdDirectiveClass: 222 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 223 break; 224 case Stmt::OMPSectionsDirectiveClass: 225 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 226 break; 227 case Stmt::OMPSectionDirectiveClass: 228 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 229 break; 230 case Stmt::OMPSingleDirectiveClass: 231 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 232 break; 233 case Stmt::OMPMasterDirectiveClass: 234 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 235 break; 236 case Stmt::OMPCriticalDirectiveClass: 237 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 238 break; 239 case Stmt::OMPParallelForDirectiveClass: 240 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 241 break; 242 case Stmt::OMPParallelForSimdDirectiveClass: 243 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 244 break; 245 case Stmt::OMPParallelMasterDirectiveClass: 246 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 247 break; 248 case Stmt::OMPParallelSectionsDirectiveClass: 249 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 250 break; 251 case Stmt::OMPTaskDirectiveClass: 252 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 253 break; 254 case Stmt::OMPTaskyieldDirectiveClass: 255 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 256 break; 257 case Stmt::OMPBarrierDirectiveClass: 258 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 259 break; 260 case Stmt::OMPTaskwaitDirectiveClass: 261 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 262 break; 263 case Stmt::OMPTaskgroupDirectiveClass: 264 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 265 break; 266 case Stmt::OMPFlushDirectiveClass: 267 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 268 break; 269 case Stmt::OMPDepobjDirectiveClass: 270 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 271 break; 272 case Stmt::OMPScanDirectiveClass: 273 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 274 break; 275 case Stmt::OMPOrderedDirectiveClass: 276 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 277 break; 278 case Stmt::OMPAtomicDirectiveClass: 279 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 280 break; 281 case Stmt::OMPTargetDirectiveClass: 282 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 283 break; 284 case Stmt::OMPTeamsDirectiveClass: 285 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 286 break; 287 case Stmt::OMPCancellationPointDirectiveClass: 288 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 289 break; 290 case Stmt::OMPCancelDirectiveClass: 291 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 292 break; 293 case Stmt::OMPTargetDataDirectiveClass: 294 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 295 break; 296 case Stmt::OMPTargetEnterDataDirectiveClass: 297 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 298 break; 299 case Stmt::OMPTargetExitDataDirectiveClass: 300 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 301 break; 302 case Stmt::OMPTargetParallelDirectiveClass: 303 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 304 break; 305 case Stmt::OMPTargetParallelForDirectiveClass: 306 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 307 break; 308 case Stmt::OMPTaskLoopDirectiveClass: 309 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 310 break; 311 case Stmt::OMPTaskLoopSimdDirectiveClass: 312 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPMasterTaskLoopDirectiveClass: 315 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 316 break; 317 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 318 EmitOMPMasterTaskLoopSimdDirective( 319 cast<OMPMasterTaskLoopSimdDirective>(*S)); 320 break; 321 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 322 EmitOMPParallelMasterTaskLoopDirective( 323 cast<OMPParallelMasterTaskLoopDirective>(*S)); 324 break; 325 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 326 EmitOMPParallelMasterTaskLoopSimdDirective( 327 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 328 break; 329 case Stmt::OMPDistributeDirectiveClass: 330 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 331 break; 332 case Stmt::OMPTargetUpdateDirectiveClass: 333 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 334 break; 335 case Stmt::OMPDistributeParallelForDirectiveClass: 336 EmitOMPDistributeParallelForDirective( 337 cast<OMPDistributeParallelForDirective>(*S)); 338 break; 339 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 340 EmitOMPDistributeParallelForSimdDirective( 341 cast<OMPDistributeParallelForSimdDirective>(*S)); 342 break; 343 case Stmt::OMPDistributeSimdDirectiveClass: 344 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 345 break; 346 case Stmt::OMPTargetParallelForSimdDirectiveClass: 347 EmitOMPTargetParallelForSimdDirective( 348 cast<OMPTargetParallelForSimdDirective>(*S)); 349 break; 350 case Stmt::OMPTargetSimdDirectiveClass: 351 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 352 break; 353 case Stmt::OMPTeamsDistributeDirectiveClass: 354 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 355 break; 356 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 357 EmitOMPTeamsDistributeSimdDirective( 358 cast<OMPTeamsDistributeSimdDirective>(*S)); 359 break; 360 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 361 EmitOMPTeamsDistributeParallelForSimdDirective( 362 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 363 break; 364 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 365 EmitOMPTeamsDistributeParallelForDirective( 366 cast<OMPTeamsDistributeParallelForDirective>(*S)); 367 break; 368 case Stmt::OMPTargetTeamsDirectiveClass: 369 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 370 break; 371 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 372 EmitOMPTargetTeamsDistributeDirective( 373 cast<OMPTargetTeamsDistributeDirective>(*S)); 374 break; 375 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 376 EmitOMPTargetTeamsDistributeParallelForDirective( 377 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 378 break; 379 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 380 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 381 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 382 break; 383 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 384 EmitOMPTargetTeamsDistributeSimdDirective( 385 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 386 break; 387 case Stmt::OMPInteropDirectiveClass: 388 EmitOMPInteropDirective(cast<OMPInteropDirective>(*S)); 389 break; 390 case Stmt::OMPDispatchDirectiveClass: 391 llvm_unreachable("Dispatch directive not supported yet."); 392 break; 393 case Stmt::OMPMaskedDirectiveClass: 394 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 395 break; 396 case Stmt::OMPGenericLoopDirectiveClass: 397 EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S)); 398 break; 399 case Stmt::OMPTeamsGenericLoopDirectiveClass: 400 llvm_unreachable("teams loop directive not supported yet."); 401 break; 402 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: 403 llvm_unreachable("target teams loop directive not supported yet."); 404 break; 405 } 406 } 407 408 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 409 ArrayRef<const Attr *> Attrs) { 410 switch (S->getStmtClass()) { 411 default: 412 return false; 413 case Stmt::NullStmtClass: 414 break; 415 case Stmt::CompoundStmtClass: 416 EmitCompoundStmt(cast<CompoundStmt>(*S)); 417 break; 418 case Stmt::DeclStmtClass: 419 EmitDeclStmt(cast<DeclStmt>(*S)); 420 break; 421 case Stmt::LabelStmtClass: 422 EmitLabelStmt(cast<LabelStmt>(*S)); 423 break; 424 case Stmt::AttributedStmtClass: 425 EmitAttributedStmt(cast<AttributedStmt>(*S)); 426 break; 427 case Stmt::GotoStmtClass: 428 EmitGotoStmt(cast<GotoStmt>(*S)); 429 break; 430 case Stmt::BreakStmtClass: 431 EmitBreakStmt(cast<BreakStmt>(*S)); 432 break; 433 case Stmt::ContinueStmtClass: 434 EmitContinueStmt(cast<ContinueStmt>(*S)); 435 break; 436 case Stmt::DefaultStmtClass: 437 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 438 break; 439 case Stmt::CaseStmtClass: 440 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 441 break; 442 case Stmt::SEHLeaveStmtClass: 443 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 444 break; 445 } 446 return true; 447 } 448 449 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 450 /// this captures the expression result of the last sub-statement and returns it 451 /// (for use by the statement expression extension). 452 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 453 AggValueSlot AggSlot) { 454 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 455 "LLVM IR generation of compound statement ('{}')"); 456 457 // Keep track of the current cleanup stack depth, including debug scopes. 458 LexicalScope Scope(*this, S.getSourceRange()); 459 460 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 461 } 462 463 Address 464 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 465 bool GetLast, 466 AggValueSlot AggSlot) { 467 468 const Stmt *ExprResult = S.getStmtExprResult(); 469 assert((!GetLast || (GetLast && ExprResult)) && 470 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 471 472 Address RetAlloca = Address::invalid(); 473 474 for (auto *CurStmt : S.body()) { 475 if (GetLast && ExprResult == CurStmt) { 476 // We have to special case labels here. They are statements, but when put 477 // at the end of a statement expression, they yield the value of their 478 // subexpression. Handle this by walking through all labels we encounter, 479 // emitting them before we evaluate the subexpr. 480 // Similar issues arise for attributed statements. 481 while (!isa<Expr>(ExprResult)) { 482 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 483 EmitLabel(LS->getDecl()); 484 ExprResult = LS->getSubStmt(); 485 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 486 // FIXME: Update this if we ever have attributes that affect the 487 // semantics of an expression. 488 ExprResult = AS->getSubStmt(); 489 } else { 490 llvm_unreachable("unknown value statement"); 491 } 492 } 493 494 EnsureInsertPoint(); 495 496 const Expr *E = cast<Expr>(ExprResult); 497 QualType ExprTy = E->getType(); 498 if (hasAggregateEvaluationKind(ExprTy)) { 499 EmitAggExpr(E, AggSlot); 500 } else { 501 // We can't return an RValue here because there might be cleanups at 502 // the end of the StmtExpr. Because of that, we have to emit the result 503 // here into a temporary alloca. 504 RetAlloca = CreateMemTemp(ExprTy); 505 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 506 /*IsInit*/ false); 507 } 508 } else { 509 EmitStmt(CurStmt); 510 } 511 } 512 513 return RetAlloca; 514 } 515 516 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 517 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 518 519 // If there is a cleanup stack, then we it isn't worth trying to 520 // simplify this block (we would need to remove it from the scope map 521 // and cleanup entry). 522 if (!EHStack.empty()) 523 return; 524 525 // Can only simplify direct branches. 526 if (!BI || !BI->isUnconditional()) 527 return; 528 529 // Can only simplify empty blocks. 530 if (BI->getIterator() != BB->begin()) 531 return; 532 533 BB->replaceAllUsesWith(BI->getSuccessor(0)); 534 BI->eraseFromParent(); 535 BB->eraseFromParent(); 536 } 537 538 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 539 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 540 541 // Fall out of the current block (if necessary). 542 EmitBranch(BB); 543 544 if (IsFinished && BB->use_empty()) { 545 delete BB; 546 return; 547 } 548 549 // Place the block after the current block, if possible, or else at 550 // the end of the function. 551 if (CurBB && CurBB->getParent()) 552 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 553 else 554 CurFn->getBasicBlockList().push_back(BB); 555 Builder.SetInsertPoint(BB); 556 } 557 558 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 559 // Emit a branch from the current block to the target one if this 560 // was a real block. If this was just a fall-through block after a 561 // terminator, don't emit it. 562 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 563 564 if (!CurBB || CurBB->getTerminator()) { 565 // If there is no insert point or the previous block is already 566 // terminated, don't touch it. 567 } else { 568 // Otherwise, create a fall-through branch. 569 Builder.CreateBr(Target); 570 } 571 572 Builder.ClearInsertionPoint(); 573 } 574 575 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 576 bool inserted = false; 577 for (llvm::User *u : block->users()) { 578 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 579 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 580 block); 581 inserted = true; 582 break; 583 } 584 } 585 586 if (!inserted) 587 CurFn->getBasicBlockList().push_back(block); 588 589 Builder.SetInsertPoint(block); 590 } 591 592 CodeGenFunction::JumpDest 593 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 594 JumpDest &Dest = LabelMap[D]; 595 if (Dest.isValid()) return Dest; 596 597 // Create, but don't insert, the new block. 598 Dest = JumpDest(createBasicBlock(D->getName()), 599 EHScopeStack::stable_iterator::invalid(), 600 NextCleanupDestIndex++); 601 return Dest; 602 } 603 604 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 605 // Add this label to the current lexical scope if we're within any 606 // normal cleanups. Jumps "in" to this label --- when permitted by 607 // the language --- may need to be routed around such cleanups. 608 if (EHStack.hasNormalCleanups() && CurLexicalScope) 609 CurLexicalScope->addLabel(D); 610 611 JumpDest &Dest = LabelMap[D]; 612 613 // If we didn't need a forward reference to this label, just go 614 // ahead and create a destination at the current scope. 615 if (!Dest.isValid()) { 616 Dest = getJumpDestInCurrentScope(D->getName()); 617 618 // Otherwise, we need to give this label a target depth and remove 619 // it from the branch-fixups list. 620 } else { 621 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 622 Dest.setScopeDepth(EHStack.stable_begin()); 623 ResolveBranchFixups(Dest.getBlock()); 624 } 625 626 EmitBlock(Dest.getBlock()); 627 628 // Emit debug info for labels. 629 if (CGDebugInfo *DI = getDebugInfo()) { 630 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 631 DI->setLocation(D->getLocation()); 632 DI->EmitLabel(D, Builder); 633 } 634 } 635 636 incrementProfileCounter(D->getStmt()); 637 } 638 639 /// Change the cleanup scope of the labels in this lexical scope to 640 /// match the scope of the enclosing context. 641 void CodeGenFunction::LexicalScope::rescopeLabels() { 642 assert(!Labels.empty()); 643 EHScopeStack::stable_iterator innermostScope 644 = CGF.EHStack.getInnermostNormalCleanup(); 645 646 // Change the scope depth of all the labels. 647 for (SmallVectorImpl<const LabelDecl*>::const_iterator 648 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 649 assert(CGF.LabelMap.count(*i)); 650 JumpDest &dest = CGF.LabelMap.find(*i)->second; 651 assert(dest.getScopeDepth().isValid()); 652 assert(innermostScope.encloses(dest.getScopeDepth())); 653 dest.setScopeDepth(innermostScope); 654 } 655 656 // Reparent the labels if the new scope also has cleanups. 657 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 658 ParentScope->Labels.append(Labels.begin(), Labels.end()); 659 } 660 } 661 662 663 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 664 EmitLabel(S.getDecl()); 665 666 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 667 if (getLangOpts().EHAsynch && S.isSideEntry()) 668 EmitSehCppScopeBegin(); 669 670 EmitStmt(S.getSubStmt()); 671 } 672 673 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 674 bool nomerge = false; 675 bool noinline = false; 676 bool alwaysinline = false; 677 const CallExpr *musttail = nullptr; 678 679 for (const auto *A : S.getAttrs()) { 680 switch (A->getKind()) { 681 default: 682 break; 683 case attr::NoMerge: 684 nomerge = true; 685 break; 686 case attr::NoInline: 687 noinline = true; 688 break; 689 case attr::AlwaysInline: 690 alwaysinline = true; 691 break; 692 case attr::MustTail: 693 const Stmt *Sub = S.getSubStmt(); 694 const ReturnStmt *R = cast<ReturnStmt>(Sub); 695 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 696 break; 697 } 698 } 699 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 700 SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline); 701 SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt, 702 alwaysinline); 703 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 704 EmitStmt(S.getSubStmt(), S.getAttrs()); 705 } 706 707 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 708 // If this code is reachable then emit a stop point (if generating 709 // debug info). We have to do this ourselves because we are on the 710 // "simple" statement path. 711 if (HaveInsertPoint()) 712 EmitStopPoint(&S); 713 714 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 715 } 716 717 718 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 719 if (const LabelDecl *Target = S.getConstantTarget()) { 720 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 721 return; 722 } 723 724 // Ensure that we have an i8* for our PHI node. 725 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 726 Int8PtrTy, "addr"); 727 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 728 729 // Get the basic block for the indirect goto. 730 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 731 732 // The first instruction in the block has to be the PHI for the switch dest, 733 // add an entry for this branch. 734 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 735 736 EmitBranch(IndGotoBB); 737 } 738 739 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 740 // The else branch of a consteval if statement is always the only branch that 741 // can be runtime evaluated. 742 if (S.isConsteval()) { 743 const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse(); 744 if (Executed) { 745 RunCleanupsScope ExecutedScope(*this); 746 EmitStmt(Executed); 747 } 748 return; 749 } 750 751 // C99 6.8.4.1: The first substatement is executed if the expression compares 752 // unequal to 0. The condition must be a scalar type. 753 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 754 755 if (S.getInit()) 756 EmitStmt(S.getInit()); 757 758 if (S.getConditionVariable()) 759 EmitDecl(*S.getConditionVariable()); 760 761 // If the condition constant folds and can be elided, try to avoid emitting 762 // the condition and the dead arm of the if/else. 763 bool CondConstant; 764 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 765 S.isConstexpr())) { 766 // Figure out which block (then or else) is executed. 767 const Stmt *Executed = S.getThen(); 768 const Stmt *Skipped = S.getElse(); 769 if (!CondConstant) // Condition false? 770 std::swap(Executed, Skipped); 771 772 // If the skipped block has no labels in it, just emit the executed block. 773 // This avoids emitting dead code and simplifies the CFG substantially. 774 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 775 if (CondConstant) 776 incrementProfileCounter(&S); 777 if (Executed) { 778 RunCleanupsScope ExecutedScope(*this); 779 EmitStmt(Executed); 780 } 781 return; 782 } 783 } 784 785 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 786 // the conditional branch. 787 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 788 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 789 llvm::BasicBlock *ElseBlock = ContBlock; 790 if (S.getElse()) 791 ElseBlock = createBasicBlock("if.else"); 792 793 // Prefer the PGO based weights over the likelihood attribute. 794 // When the build isn't optimized the metadata isn't used, so don't generate 795 // it. 796 Stmt::Likelihood LH = Stmt::LH_None; 797 uint64_t Count = getProfileCount(S.getThen()); 798 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 799 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 800 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 801 802 // Emit the 'then' code. 803 EmitBlock(ThenBlock); 804 incrementProfileCounter(&S); 805 { 806 RunCleanupsScope ThenScope(*this); 807 EmitStmt(S.getThen()); 808 } 809 EmitBranch(ContBlock); 810 811 // Emit the 'else' code if present. 812 if (const Stmt *Else = S.getElse()) { 813 { 814 // There is no need to emit line number for an unconditional branch. 815 auto NL = ApplyDebugLocation::CreateEmpty(*this); 816 EmitBlock(ElseBlock); 817 } 818 { 819 RunCleanupsScope ElseScope(*this); 820 EmitStmt(Else); 821 } 822 { 823 // There is no need to emit line number for an unconditional branch. 824 auto NL = ApplyDebugLocation::CreateEmpty(*this); 825 EmitBranch(ContBlock); 826 } 827 } 828 829 // Emit the continuation block for code after the if. 830 EmitBlock(ContBlock, true); 831 } 832 833 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 834 ArrayRef<const Attr *> WhileAttrs) { 835 // Emit the header for the loop, which will also become 836 // the continue target. 837 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 838 EmitBlock(LoopHeader.getBlock()); 839 840 // Create an exit block for when the condition fails, which will 841 // also become the break target. 842 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 843 844 // Store the blocks to use for break and continue. 845 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 846 847 // C++ [stmt.while]p2: 848 // When the condition of a while statement is a declaration, the 849 // scope of the variable that is declared extends from its point 850 // of declaration (3.3.2) to the end of the while statement. 851 // [...] 852 // The object created in a condition is destroyed and created 853 // with each iteration of the loop. 854 RunCleanupsScope ConditionScope(*this); 855 856 if (S.getConditionVariable()) 857 EmitDecl(*S.getConditionVariable()); 858 859 // Evaluate the conditional in the while header. C99 6.8.5.1: The 860 // evaluation of the controlling expression takes place before each 861 // execution of the loop body. 862 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 863 864 // while(1) is common, avoid extra exit blocks. Be sure 865 // to correctly handle break/continue though. 866 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 867 bool CondIsConstInt = C != nullptr; 868 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 869 const SourceRange &R = S.getSourceRange(); 870 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 871 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 872 SourceLocToDebugLoc(R.getEnd()), 873 checkIfLoopMustProgress(CondIsConstInt)); 874 875 // As long as the condition is true, go to the loop body. 876 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 877 if (EmitBoolCondBranch) { 878 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 879 if (ConditionScope.requiresCleanups()) 880 ExitBlock = createBasicBlock("while.exit"); 881 llvm::MDNode *Weights = 882 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 883 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 884 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 885 BoolCondVal, Stmt::getLikelihood(S.getBody())); 886 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 887 888 if (ExitBlock != LoopExit.getBlock()) { 889 EmitBlock(ExitBlock); 890 EmitBranchThroughCleanup(LoopExit); 891 } 892 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 893 CGM.getDiags().Report(A->getLocation(), 894 diag::warn_attribute_has_no_effect_on_infinite_loop) 895 << A << A->getRange(); 896 CGM.getDiags().Report( 897 S.getWhileLoc(), 898 diag::note_attribute_has_no_effect_on_infinite_loop_here) 899 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 900 } 901 902 // Emit the loop body. We have to emit this in a cleanup scope 903 // because it might be a singleton DeclStmt. 904 { 905 RunCleanupsScope BodyScope(*this); 906 EmitBlock(LoopBody); 907 incrementProfileCounter(&S); 908 EmitStmt(S.getBody()); 909 } 910 911 BreakContinueStack.pop_back(); 912 913 // Immediately force cleanup. 914 ConditionScope.ForceCleanup(); 915 916 EmitStopPoint(&S); 917 // Branch to the loop header again. 918 EmitBranch(LoopHeader.getBlock()); 919 920 LoopStack.pop(); 921 922 // Emit the exit block. 923 EmitBlock(LoopExit.getBlock(), true); 924 925 // The LoopHeader typically is just a branch if we skipped emitting 926 // a branch, try to erase it. 927 if (!EmitBoolCondBranch) 928 SimplifyForwardingBlocks(LoopHeader.getBlock()); 929 } 930 931 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 932 ArrayRef<const Attr *> DoAttrs) { 933 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 934 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 935 936 uint64_t ParentCount = getCurrentProfileCount(); 937 938 // Store the blocks to use for break and continue. 939 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 940 941 // Emit the body of the loop. 942 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 943 944 EmitBlockWithFallThrough(LoopBody, &S); 945 { 946 RunCleanupsScope BodyScope(*this); 947 EmitStmt(S.getBody()); 948 } 949 950 EmitBlock(LoopCond.getBlock()); 951 952 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 953 // after each execution of the loop body." 954 955 // Evaluate the conditional in the while header. 956 // C99 6.8.5p2/p4: The first substatement is executed if the expression 957 // compares unequal to 0. The condition must be a scalar type. 958 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 959 960 BreakContinueStack.pop_back(); 961 962 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 963 // to correctly handle break/continue though. 964 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 965 bool CondIsConstInt = C; 966 bool EmitBoolCondBranch = !C || !C->isZero(); 967 968 const SourceRange &R = S.getSourceRange(); 969 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 970 SourceLocToDebugLoc(R.getBegin()), 971 SourceLocToDebugLoc(R.getEnd()), 972 checkIfLoopMustProgress(CondIsConstInt)); 973 974 // As long as the condition is true, iterate the loop. 975 if (EmitBoolCondBranch) { 976 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 977 Builder.CreateCondBr( 978 BoolCondVal, LoopBody, LoopExit.getBlock(), 979 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 980 } 981 982 LoopStack.pop(); 983 984 // Emit the exit block. 985 EmitBlock(LoopExit.getBlock()); 986 987 // The DoCond block typically is just a branch if we skipped 988 // emitting a branch, try to erase it. 989 if (!EmitBoolCondBranch) 990 SimplifyForwardingBlocks(LoopCond.getBlock()); 991 } 992 993 void CodeGenFunction::EmitForStmt(const ForStmt &S, 994 ArrayRef<const Attr *> ForAttrs) { 995 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 996 997 LexicalScope ForScope(*this, S.getSourceRange()); 998 999 // Evaluate the first part before the loop. 1000 if (S.getInit()) 1001 EmitStmt(S.getInit()); 1002 1003 // Start the loop with a block that tests the condition. 1004 // If there's an increment, the continue scope will be overwritten 1005 // later. 1006 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 1007 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 1008 EmitBlock(CondBlock); 1009 1010 Expr::EvalResult Result; 1011 bool CondIsConstInt = 1012 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 1013 1014 const SourceRange &R = S.getSourceRange(); 1015 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1016 SourceLocToDebugLoc(R.getBegin()), 1017 SourceLocToDebugLoc(R.getEnd()), 1018 checkIfLoopMustProgress(CondIsConstInt)); 1019 1020 // Create a cleanup scope for the condition variable cleanups. 1021 LexicalScope ConditionScope(*this, S.getSourceRange()); 1022 1023 // If the for loop doesn't have an increment we can just use the condition as 1024 // the continue block. Otherwise, if there is no condition variable, we can 1025 // form the continue block now. If there is a condition variable, we can't 1026 // form the continue block until after we've emitted the condition, because 1027 // the condition is in scope in the increment, but Sema's jump diagnostics 1028 // ensure that there are no continues from the condition variable that jump 1029 // to the loop increment. 1030 JumpDest Continue; 1031 if (!S.getInc()) 1032 Continue = CondDest; 1033 else if (!S.getConditionVariable()) 1034 Continue = getJumpDestInCurrentScope("for.inc"); 1035 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1036 1037 if (S.getCond()) { 1038 // If the for statement has a condition scope, emit the local variable 1039 // declaration. 1040 if (S.getConditionVariable()) { 1041 EmitDecl(*S.getConditionVariable()); 1042 1043 // We have entered the condition variable's scope, so we're now able to 1044 // jump to the continue block. 1045 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1046 BreakContinueStack.back().ContinueBlock = Continue; 1047 } 1048 1049 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1050 // If there are any cleanups between here and the loop-exit scope, 1051 // create a block to stage a loop exit along. 1052 if (ForScope.requiresCleanups()) 1053 ExitBlock = createBasicBlock("for.cond.cleanup"); 1054 1055 // As long as the condition is true, iterate the loop. 1056 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1057 1058 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1059 // compares unequal to 0. The condition must be a scalar type. 1060 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1061 llvm::MDNode *Weights = 1062 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1063 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1064 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1065 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1066 1067 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1068 1069 if (ExitBlock != LoopExit.getBlock()) { 1070 EmitBlock(ExitBlock); 1071 EmitBranchThroughCleanup(LoopExit); 1072 } 1073 1074 EmitBlock(ForBody); 1075 } else { 1076 // Treat it as a non-zero constant. Don't even create a new block for the 1077 // body, just fall into it. 1078 } 1079 incrementProfileCounter(&S); 1080 1081 { 1082 // Create a separate cleanup scope for the body, in case it is not 1083 // a compound statement. 1084 RunCleanupsScope BodyScope(*this); 1085 EmitStmt(S.getBody()); 1086 } 1087 1088 // If there is an increment, emit it next. 1089 if (S.getInc()) { 1090 EmitBlock(Continue.getBlock()); 1091 EmitStmt(S.getInc()); 1092 } 1093 1094 BreakContinueStack.pop_back(); 1095 1096 ConditionScope.ForceCleanup(); 1097 1098 EmitStopPoint(&S); 1099 EmitBranch(CondBlock); 1100 1101 ForScope.ForceCleanup(); 1102 1103 LoopStack.pop(); 1104 1105 // Emit the fall-through block. 1106 EmitBlock(LoopExit.getBlock(), true); 1107 } 1108 1109 void 1110 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1111 ArrayRef<const Attr *> ForAttrs) { 1112 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1113 1114 LexicalScope ForScope(*this, S.getSourceRange()); 1115 1116 // Evaluate the first pieces before the loop. 1117 if (S.getInit()) 1118 EmitStmt(S.getInit()); 1119 EmitStmt(S.getRangeStmt()); 1120 EmitStmt(S.getBeginStmt()); 1121 EmitStmt(S.getEndStmt()); 1122 1123 // Start the loop with a block that tests the condition. 1124 // If there's an increment, the continue scope will be overwritten 1125 // later. 1126 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1127 EmitBlock(CondBlock); 1128 1129 const SourceRange &R = S.getSourceRange(); 1130 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1131 SourceLocToDebugLoc(R.getBegin()), 1132 SourceLocToDebugLoc(R.getEnd())); 1133 1134 // If there are any cleanups between here and the loop-exit scope, 1135 // create a block to stage a loop exit along. 1136 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1137 if (ForScope.requiresCleanups()) 1138 ExitBlock = createBasicBlock("for.cond.cleanup"); 1139 1140 // The loop body, consisting of the specified body and the loop variable. 1141 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1142 1143 // The body is executed if the expression, contextually converted 1144 // to bool, is true. 1145 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1146 llvm::MDNode *Weights = 1147 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1148 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1149 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1150 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1151 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1152 1153 if (ExitBlock != LoopExit.getBlock()) { 1154 EmitBlock(ExitBlock); 1155 EmitBranchThroughCleanup(LoopExit); 1156 } 1157 1158 EmitBlock(ForBody); 1159 incrementProfileCounter(&S); 1160 1161 // Create a block for the increment. In case of a 'continue', we jump there. 1162 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1163 1164 // Store the blocks to use for break and continue. 1165 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1166 1167 { 1168 // Create a separate cleanup scope for the loop variable and body. 1169 LexicalScope BodyScope(*this, S.getSourceRange()); 1170 EmitStmt(S.getLoopVarStmt()); 1171 EmitStmt(S.getBody()); 1172 } 1173 1174 EmitStopPoint(&S); 1175 // If there is an increment, emit it next. 1176 EmitBlock(Continue.getBlock()); 1177 EmitStmt(S.getInc()); 1178 1179 BreakContinueStack.pop_back(); 1180 1181 EmitBranch(CondBlock); 1182 1183 ForScope.ForceCleanup(); 1184 1185 LoopStack.pop(); 1186 1187 // Emit the fall-through block. 1188 EmitBlock(LoopExit.getBlock(), true); 1189 } 1190 1191 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1192 if (RV.isScalar()) { 1193 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1194 } else if (RV.isAggregate()) { 1195 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1196 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1197 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1198 } else { 1199 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1200 /*init*/ true); 1201 } 1202 EmitBranchThroughCleanup(ReturnBlock); 1203 } 1204 1205 namespace { 1206 // RAII struct used to save and restore a return statment's result expression. 1207 struct SaveRetExprRAII { 1208 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1209 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1210 CGF.RetExpr = RetExpr; 1211 } 1212 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1213 const Expr *OldRetExpr; 1214 CodeGenFunction &CGF; 1215 }; 1216 } // namespace 1217 1218 /// If we have 'return f(...);', where both caller and callee are SwiftAsync, 1219 /// codegen it as 'tail call ...; ret void;'. 1220 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, 1221 const CGFunctionInfo *CurFnInfo) { 1222 auto calleeQualType = CE->getCallee()->getType(); 1223 const FunctionType *calleeType = nullptr; 1224 if (calleeQualType->isFunctionPointerType() || 1225 calleeQualType->isFunctionReferenceType() || 1226 calleeQualType->isBlockPointerType() || 1227 calleeQualType->isMemberFunctionPointerType()) { 1228 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); 1229 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { 1230 calleeType = ty; 1231 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 1232 if (auto methodDecl = CMCE->getMethodDecl()) { 1233 // getMethodDecl() doesn't handle member pointers at the moment. 1234 calleeType = methodDecl->getType()->castAs<FunctionType>(); 1235 } else { 1236 return; 1237 } 1238 } else { 1239 return; 1240 } 1241 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && 1242 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { 1243 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); 1244 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 1245 Builder.CreateRetVoid(); 1246 Builder.ClearInsertionPoint(); 1247 } 1248 } 1249 1250 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1251 /// if the function returns void, or may be missing one if the function returns 1252 /// non-void. Fun stuff :). 1253 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1254 if (requiresReturnValueCheck()) { 1255 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1256 auto *SLocPtr = 1257 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1258 llvm::GlobalVariable::PrivateLinkage, SLoc); 1259 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1260 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1261 assert(ReturnLocation.isValid() && "No valid return location"); 1262 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1263 ReturnLocation); 1264 } 1265 1266 // Returning from an outlined SEH helper is UB, and we already warn on it. 1267 if (IsOutlinedSEHHelper) { 1268 Builder.CreateUnreachable(); 1269 Builder.ClearInsertionPoint(); 1270 } 1271 1272 // Emit the result value, even if unused, to evaluate the side effects. 1273 const Expr *RV = S.getRetValue(); 1274 1275 // Record the result expression of the return statement. The recorded 1276 // expression is used to determine whether a block capture's lifetime should 1277 // end at the end of the full expression as opposed to the end of the scope 1278 // enclosing the block expression. 1279 // 1280 // This permits a small, easily-implemented exception to our over-conservative 1281 // rules about not jumping to statements following block literals with 1282 // non-trivial cleanups. 1283 SaveRetExprRAII SaveRetExpr(RV, *this); 1284 1285 RunCleanupsScope cleanupScope(*this); 1286 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1287 RV = EWC->getSubExpr(); 1288 // FIXME: Clean this up by using an LValue for ReturnTemp, 1289 // EmitStoreThroughLValue, and EmitAnyExpr. 1290 // Check if the NRVO candidate was not globalized in OpenMP mode. 1291 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1292 S.getNRVOCandidate()->isNRVOVariable() && 1293 (!getLangOpts().OpenMP || 1294 !CGM.getOpenMPRuntime() 1295 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1296 .isValid())) { 1297 // Apply the named return value optimization for this return statement, 1298 // which means doing nothing: the appropriate result has already been 1299 // constructed into the NRVO variable. 1300 1301 // If there is an NRVO flag for this variable, set it to 1 into indicate 1302 // that the cleanup code should not destroy the variable. 1303 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1304 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1305 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1306 // Make sure not to return anything, but evaluate the expression 1307 // for side effects. 1308 if (RV) { 1309 EmitAnyExpr(RV); 1310 if (auto *CE = dyn_cast<CallExpr>(RV)) 1311 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); 1312 } 1313 } else if (!RV) { 1314 // Do nothing (return value is left uninitialized) 1315 } else if (FnRetTy->isReferenceType()) { 1316 // If this function returns a reference, take the address of the expression 1317 // rather than the value. 1318 RValue Result = EmitReferenceBindingToExpr(RV); 1319 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1320 } else { 1321 switch (getEvaluationKind(RV->getType())) { 1322 case TEK_Scalar: 1323 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1324 break; 1325 case TEK_Complex: 1326 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1327 /*isInit*/ true); 1328 break; 1329 case TEK_Aggregate: 1330 EmitAggExpr(RV, AggValueSlot::forAddr( 1331 ReturnValue, Qualifiers(), 1332 AggValueSlot::IsDestructed, 1333 AggValueSlot::DoesNotNeedGCBarriers, 1334 AggValueSlot::IsNotAliased, 1335 getOverlapForReturnValue())); 1336 break; 1337 } 1338 } 1339 1340 ++NumReturnExprs; 1341 if (!RV || RV->isEvaluatable(getContext())) 1342 ++NumSimpleReturnExprs; 1343 1344 cleanupScope.ForceCleanup(); 1345 EmitBranchThroughCleanup(ReturnBlock); 1346 } 1347 1348 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1349 // As long as debug info is modeled with instructions, we have to ensure we 1350 // have a place to insert here and write the stop point here. 1351 if (HaveInsertPoint()) 1352 EmitStopPoint(&S); 1353 1354 for (const auto *I : S.decls()) 1355 EmitDecl(*I); 1356 } 1357 1358 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1359 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1360 1361 // If this code is reachable then emit a stop point (if generating 1362 // debug info). We have to do this ourselves because we are on the 1363 // "simple" statement path. 1364 if (HaveInsertPoint()) 1365 EmitStopPoint(&S); 1366 1367 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1368 } 1369 1370 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1371 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1372 1373 // If this code is reachable then emit a stop point (if generating 1374 // debug info). We have to do this ourselves because we are on the 1375 // "simple" statement path. 1376 if (HaveInsertPoint()) 1377 EmitStopPoint(&S); 1378 1379 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1380 } 1381 1382 /// EmitCaseStmtRange - If case statement range is not too big then 1383 /// add multiple cases to switch instruction, one for each value within 1384 /// the range. If range is too big then emit "if" condition check. 1385 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1386 ArrayRef<const Attr *> Attrs) { 1387 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1388 1389 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1390 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1391 1392 // Emit the code for this case. We do this first to make sure it is 1393 // properly chained from our predecessor before generating the 1394 // switch machinery to enter this block. 1395 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1396 EmitBlockWithFallThrough(CaseDest, &S); 1397 EmitStmt(S.getSubStmt()); 1398 1399 // If range is empty, do nothing. 1400 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1401 return; 1402 1403 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1404 llvm::APInt Range = RHS - LHS; 1405 // FIXME: parameters such as this should not be hardcoded. 1406 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1407 // Range is small enough to add multiple switch instruction cases. 1408 uint64_t Total = getProfileCount(&S); 1409 unsigned NCases = Range.getZExtValue() + 1; 1410 // We only have one region counter for the entire set of cases here, so we 1411 // need to divide the weights evenly between the generated cases, ensuring 1412 // that the total weight is preserved. E.g., a weight of 5 over three cases 1413 // will be distributed as weights of 2, 2, and 1. 1414 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1415 for (unsigned I = 0; I != NCases; ++I) { 1416 if (SwitchWeights) 1417 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1418 else if (SwitchLikelihood) 1419 SwitchLikelihood->push_back(LH); 1420 1421 if (Rem) 1422 Rem--; 1423 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1424 ++LHS; 1425 } 1426 return; 1427 } 1428 1429 // The range is too big. Emit "if" condition into a new block, 1430 // making sure to save and restore the current insertion point. 1431 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1432 1433 // Push this test onto the chain of range checks (which terminates 1434 // in the default basic block). The switch's default will be changed 1435 // to the top of this chain after switch emission is complete. 1436 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1437 CaseRangeBlock = createBasicBlock("sw.caserange"); 1438 1439 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1440 Builder.SetInsertPoint(CaseRangeBlock); 1441 1442 // Emit range check. 1443 llvm::Value *Diff = 1444 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1445 llvm::Value *Cond = 1446 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1447 1448 llvm::MDNode *Weights = nullptr; 1449 if (SwitchWeights) { 1450 uint64_t ThisCount = getProfileCount(&S); 1451 uint64_t DefaultCount = (*SwitchWeights)[0]; 1452 Weights = createProfileWeights(ThisCount, DefaultCount); 1453 1454 // Since we're chaining the switch default through each large case range, we 1455 // need to update the weight for the default, ie, the first case, to include 1456 // this case. 1457 (*SwitchWeights)[0] += ThisCount; 1458 } else if (SwitchLikelihood) 1459 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1460 1461 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1462 1463 // Restore the appropriate insertion point. 1464 if (RestoreBB) 1465 Builder.SetInsertPoint(RestoreBB); 1466 else 1467 Builder.ClearInsertionPoint(); 1468 } 1469 1470 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1471 ArrayRef<const Attr *> Attrs) { 1472 // If there is no enclosing switch instance that we're aware of, then this 1473 // case statement and its block can be elided. This situation only happens 1474 // when we've constant-folded the switch, are emitting the constant case, 1475 // and part of the constant case includes another case statement. For 1476 // instance: switch (4) { case 4: do { case 5: } while (1); } 1477 if (!SwitchInsn) { 1478 EmitStmt(S.getSubStmt()); 1479 return; 1480 } 1481 1482 // Handle case ranges. 1483 if (S.getRHS()) { 1484 EmitCaseStmtRange(S, Attrs); 1485 return; 1486 } 1487 1488 llvm::ConstantInt *CaseVal = 1489 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1490 if (SwitchLikelihood) 1491 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1492 1493 // If the body of the case is just a 'break', try to not emit an empty block. 1494 // If we're profiling or we're not optimizing, leave the block in for better 1495 // debug and coverage analysis. 1496 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1497 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1498 isa<BreakStmt>(S.getSubStmt())) { 1499 JumpDest Block = BreakContinueStack.back().BreakBlock; 1500 1501 // Only do this optimization if there are no cleanups that need emitting. 1502 if (isObviouslyBranchWithoutCleanups(Block)) { 1503 if (SwitchWeights) 1504 SwitchWeights->push_back(getProfileCount(&S)); 1505 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1506 1507 // If there was a fallthrough into this case, make sure to redirect it to 1508 // the end of the switch as well. 1509 if (Builder.GetInsertBlock()) { 1510 Builder.CreateBr(Block.getBlock()); 1511 Builder.ClearInsertionPoint(); 1512 } 1513 return; 1514 } 1515 } 1516 1517 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1518 EmitBlockWithFallThrough(CaseDest, &S); 1519 if (SwitchWeights) 1520 SwitchWeights->push_back(getProfileCount(&S)); 1521 SwitchInsn->addCase(CaseVal, CaseDest); 1522 1523 // Recursively emitting the statement is acceptable, but is not wonderful for 1524 // code where we have many case statements nested together, i.e.: 1525 // case 1: 1526 // case 2: 1527 // case 3: etc. 1528 // Handling this recursively will create a new block for each case statement 1529 // that falls through to the next case which is IR intensive. It also causes 1530 // deep recursion which can run into stack depth limitations. Handle 1531 // sequential non-range case statements specially. 1532 // 1533 // TODO When the next case has a likelihood attribute the code returns to the 1534 // recursive algorithm. Maybe improve this case if it becomes common practice 1535 // to use a lot of attributes. 1536 const CaseStmt *CurCase = &S; 1537 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1538 1539 // Otherwise, iteratively add consecutive cases to this switch stmt. 1540 while (NextCase && NextCase->getRHS() == nullptr) { 1541 CurCase = NextCase; 1542 llvm::ConstantInt *CaseVal = 1543 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1544 1545 if (SwitchWeights) 1546 SwitchWeights->push_back(getProfileCount(NextCase)); 1547 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1548 CaseDest = createBasicBlock("sw.bb"); 1549 EmitBlockWithFallThrough(CaseDest, CurCase); 1550 } 1551 // Since this loop is only executed when the CaseStmt has no attributes 1552 // use a hard-coded value. 1553 if (SwitchLikelihood) 1554 SwitchLikelihood->push_back(Stmt::LH_None); 1555 1556 SwitchInsn->addCase(CaseVal, CaseDest); 1557 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1558 } 1559 1560 // Generate a stop point for debug info if the case statement is 1561 // followed by a default statement. A fallthrough case before a 1562 // default case gets its own branch target. 1563 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass) 1564 EmitStopPoint(CurCase); 1565 1566 // Normal default recursion for non-cases. 1567 EmitStmt(CurCase->getSubStmt()); 1568 } 1569 1570 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1571 ArrayRef<const Attr *> Attrs) { 1572 // If there is no enclosing switch instance that we're aware of, then this 1573 // default statement can be elided. This situation only happens when we've 1574 // constant-folded the switch. 1575 if (!SwitchInsn) { 1576 EmitStmt(S.getSubStmt()); 1577 return; 1578 } 1579 1580 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1581 assert(DefaultBlock->empty() && 1582 "EmitDefaultStmt: Default block already defined?"); 1583 1584 if (SwitchLikelihood) 1585 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1586 1587 EmitBlockWithFallThrough(DefaultBlock, &S); 1588 1589 EmitStmt(S.getSubStmt()); 1590 } 1591 1592 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1593 /// constant value that is being switched on, see if we can dead code eliminate 1594 /// the body of the switch to a simple series of statements to emit. Basically, 1595 /// on a switch (5) we want to find these statements: 1596 /// case 5: 1597 /// printf(...); <-- 1598 /// ++i; <-- 1599 /// break; 1600 /// 1601 /// and add them to the ResultStmts vector. If it is unsafe to do this 1602 /// transformation (for example, one of the elided statements contains a label 1603 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1604 /// should include statements after it (e.g. the printf() line is a substmt of 1605 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1606 /// statement, then return CSFC_Success. 1607 /// 1608 /// If Case is non-null, then we are looking for the specified case, checking 1609 /// that nothing we jump over contains labels. If Case is null, then we found 1610 /// the case and are looking for the break. 1611 /// 1612 /// If the recursive walk actually finds our Case, then we set FoundCase to 1613 /// true. 1614 /// 1615 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1616 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1617 const SwitchCase *Case, 1618 bool &FoundCase, 1619 SmallVectorImpl<const Stmt*> &ResultStmts) { 1620 // If this is a null statement, just succeed. 1621 if (!S) 1622 return Case ? CSFC_Success : CSFC_FallThrough; 1623 1624 // If this is the switchcase (case 4: or default) that we're looking for, then 1625 // we're in business. Just add the substatement. 1626 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1627 if (S == Case) { 1628 FoundCase = true; 1629 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1630 ResultStmts); 1631 } 1632 1633 // Otherwise, this is some other case or default statement, just ignore it. 1634 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1635 ResultStmts); 1636 } 1637 1638 // If we are in the live part of the code and we found our break statement, 1639 // return a success! 1640 if (!Case && isa<BreakStmt>(S)) 1641 return CSFC_Success; 1642 1643 // If this is a switch statement, then it might contain the SwitchCase, the 1644 // break, or neither. 1645 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1646 // Handle this as two cases: we might be looking for the SwitchCase (if so 1647 // the skipped statements must be skippable) or we might already have it. 1648 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1649 bool StartedInLiveCode = FoundCase; 1650 unsigned StartSize = ResultStmts.size(); 1651 1652 // If we've not found the case yet, scan through looking for it. 1653 if (Case) { 1654 // Keep track of whether we see a skipped declaration. The code could be 1655 // using the declaration even if it is skipped, so we can't optimize out 1656 // the decl if the kept statements might refer to it. 1657 bool HadSkippedDecl = false; 1658 1659 // If we're looking for the case, just see if we can skip each of the 1660 // substatements. 1661 for (; Case && I != E; ++I) { 1662 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1663 1664 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1665 case CSFC_Failure: return CSFC_Failure; 1666 case CSFC_Success: 1667 // A successful result means that either 1) that the statement doesn't 1668 // have the case and is skippable, or 2) does contain the case value 1669 // and also contains the break to exit the switch. In the later case, 1670 // we just verify the rest of the statements are elidable. 1671 if (FoundCase) { 1672 // If we found the case and skipped declarations, we can't do the 1673 // optimization. 1674 if (HadSkippedDecl) 1675 return CSFC_Failure; 1676 1677 for (++I; I != E; ++I) 1678 if (CodeGenFunction::ContainsLabel(*I, true)) 1679 return CSFC_Failure; 1680 return CSFC_Success; 1681 } 1682 break; 1683 case CSFC_FallThrough: 1684 // If we have a fallthrough condition, then we must have found the 1685 // case started to include statements. Consider the rest of the 1686 // statements in the compound statement as candidates for inclusion. 1687 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1688 // We recursively found Case, so we're not looking for it anymore. 1689 Case = nullptr; 1690 1691 // If we found the case and skipped declarations, we can't do the 1692 // optimization. 1693 if (HadSkippedDecl) 1694 return CSFC_Failure; 1695 break; 1696 } 1697 } 1698 1699 if (!FoundCase) 1700 return CSFC_Success; 1701 1702 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1703 } 1704 1705 // If we have statements in our range, then we know that the statements are 1706 // live and need to be added to the set of statements we're tracking. 1707 bool AnyDecls = false; 1708 for (; I != E; ++I) { 1709 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1710 1711 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1712 case CSFC_Failure: return CSFC_Failure; 1713 case CSFC_FallThrough: 1714 // A fallthrough result means that the statement was simple and just 1715 // included in ResultStmt, keep adding them afterwards. 1716 break; 1717 case CSFC_Success: 1718 // A successful result means that we found the break statement and 1719 // stopped statement inclusion. We just ensure that any leftover stmts 1720 // are skippable and return success ourselves. 1721 for (++I; I != E; ++I) 1722 if (CodeGenFunction::ContainsLabel(*I, true)) 1723 return CSFC_Failure; 1724 return CSFC_Success; 1725 } 1726 } 1727 1728 // If we're about to fall out of a scope without hitting a 'break;', we 1729 // can't perform the optimization if there were any decls in that scope 1730 // (we'd lose their end-of-lifetime). 1731 if (AnyDecls) { 1732 // If the entire compound statement was live, there's one more thing we 1733 // can try before giving up: emit the whole thing as a single statement. 1734 // We can do that unless the statement contains a 'break;'. 1735 // FIXME: Such a break must be at the end of a construct within this one. 1736 // We could emit this by just ignoring the BreakStmts entirely. 1737 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1738 ResultStmts.resize(StartSize); 1739 ResultStmts.push_back(S); 1740 } else { 1741 return CSFC_Failure; 1742 } 1743 } 1744 1745 return CSFC_FallThrough; 1746 } 1747 1748 // Okay, this is some other statement that we don't handle explicitly, like a 1749 // for statement or increment etc. If we are skipping over this statement, 1750 // just verify it doesn't have labels, which would make it invalid to elide. 1751 if (Case) { 1752 if (CodeGenFunction::ContainsLabel(S, true)) 1753 return CSFC_Failure; 1754 return CSFC_Success; 1755 } 1756 1757 // Otherwise, we want to include this statement. Everything is cool with that 1758 // so long as it doesn't contain a break out of the switch we're in. 1759 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1760 1761 // Otherwise, everything is great. Include the statement and tell the caller 1762 // that we fall through and include the next statement as well. 1763 ResultStmts.push_back(S); 1764 return CSFC_FallThrough; 1765 } 1766 1767 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1768 /// then invoke CollectStatementsForCase to find the list of statements to emit 1769 /// for a switch on constant. See the comment above CollectStatementsForCase 1770 /// for more details. 1771 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1772 const llvm::APSInt &ConstantCondValue, 1773 SmallVectorImpl<const Stmt*> &ResultStmts, 1774 ASTContext &C, 1775 const SwitchCase *&ResultCase) { 1776 // First step, find the switch case that is being branched to. We can do this 1777 // efficiently by scanning the SwitchCase list. 1778 const SwitchCase *Case = S.getSwitchCaseList(); 1779 const DefaultStmt *DefaultCase = nullptr; 1780 1781 for (; Case; Case = Case->getNextSwitchCase()) { 1782 // It's either a default or case. Just remember the default statement in 1783 // case we're not jumping to any numbered cases. 1784 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1785 DefaultCase = DS; 1786 continue; 1787 } 1788 1789 // Check to see if this case is the one we're looking for. 1790 const CaseStmt *CS = cast<CaseStmt>(Case); 1791 // Don't handle case ranges yet. 1792 if (CS->getRHS()) return false; 1793 1794 // If we found our case, remember it as 'case'. 1795 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1796 break; 1797 } 1798 1799 // If we didn't find a matching case, we use a default if it exists, or we 1800 // elide the whole switch body! 1801 if (!Case) { 1802 // It is safe to elide the body of the switch if it doesn't contain labels 1803 // etc. If it is safe, return successfully with an empty ResultStmts list. 1804 if (!DefaultCase) 1805 return !CodeGenFunction::ContainsLabel(&S); 1806 Case = DefaultCase; 1807 } 1808 1809 // Ok, we know which case is being jumped to, try to collect all the 1810 // statements that follow it. This can fail for a variety of reasons. Also, 1811 // check to see that the recursive walk actually found our case statement. 1812 // Insane cases like this can fail to find it in the recursive walk since we 1813 // don't handle every stmt kind: 1814 // switch (4) { 1815 // while (1) { 1816 // case 4: ... 1817 bool FoundCase = false; 1818 ResultCase = Case; 1819 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1820 ResultStmts) != CSFC_Failure && 1821 FoundCase; 1822 } 1823 1824 static Optional<SmallVector<uint64_t, 16>> 1825 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1826 // Are there enough branches to weight them? 1827 if (Likelihoods.size() <= 1) 1828 return None; 1829 1830 uint64_t NumUnlikely = 0; 1831 uint64_t NumNone = 0; 1832 uint64_t NumLikely = 0; 1833 for (const auto LH : Likelihoods) { 1834 switch (LH) { 1835 case Stmt::LH_Unlikely: 1836 ++NumUnlikely; 1837 break; 1838 case Stmt::LH_None: 1839 ++NumNone; 1840 break; 1841 case Stmt::LH_Likely: 1842 ++NumLikely; 1843 break; 1844 } 1845 } 1846 1847 // Is there a likelihood attribute used? 1848 if (NumUnlikely == 0 && NumLikely == 0) 1849 return None; 1850 1851 // When multiple cases share the same code they can be combined during 1852 // optimization. In that case the weights of the branch will be the sum of 1853 // the individual weights. Make sure the combined sum of all neutral cases 1854 // doesn't exceed the value of a single likely attribute. 1855 // The additions both avoid divisions by 0 and make sure the weights of None 1856 // don't exceed the weight of Likely. 1857 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1858 const uint64_t None = Likely / (NumNone + 1); 1859 const uint64_t Unlikely = 0; 1860 1861 SmallVector<uint64_t, 16> Result; 1862 Result.reserve(Likelihoods.size()); 1863 for (const auto LH : Likelihoods) { 1864 switch (LH) { 1865 case Stmt::LH_Unlikely: 1866 Result.push_back(Unlikely); 1867 break; 1868 case Stmt::LH_None: 1869 Result.push_back(None); 1870 break; 1871 case Stmt::LH_Likely: 1872 Result.push_back(Likely); 1873 break; 1874 } 1875 } 1876 1877 return Result; 1878 } 1879 1880 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1881 // Handle nested switch statements. 1882 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1883 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1884 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1885 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1886 1887 // See if we can constant fold the condition of the switch and therefore only 1888 // emit the live case statement (if any) of the switch. 1889 llvm::APSInt ConstantCondValue; 1890 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1891 SmallVector<const Stmt*, 4> CaseStmts; 1892 const SwitchCase *Case = nullptr; 1893 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1894 getContext(), Case)) { 1895 if (Case) 1896 incrementProfileCounter(Case); 1897 RunCleanupsScope ExecutedScope(*this); 1898 1899 if (S.getInit()) 1900 EmitStmt(S.getInit()); 1901 1902 // Emit the condition variable if needed inside the entire cleanup scope 1903 // used by this special case for constant folded switches. 1904 if (S.getConditionVariable()) 1905 EmitDecl(*S.getConditionVariable()); 1906 1907 // At this point, we are no longer "within" a switch instance, so 1908 // we can temporarily enforce this to ensure that any embedded case 1909 // statements are not emitted. 1910 SwitchInsn = nullptr; 1911 1912 // Okay, we can dead code eliminate everything except this case. Emit the 1913 // specified series of statements and we're good. 1914 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1915 EmitStmt(CaseStmts[i]); 1916 incrementProfileCounter(&S); 1917 1918 // Now we want to restore the saved switch instance so that nested 1919 // switches continue to function properly 1920 SwitchInsn = SavedSwitchInsn; 1921 1922 return; 1923 } 1924 } 1925 1926 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1927 1928 RunCleanupsScope ConditionScope(*this); 1929 1930 if (S.getInit()) 1931 EmitStmt(S.getInit()); 1932 1933 if (S.getConditionVariable()) 1934 EmitDecl(*S.getConditionVariable()); 1935 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1936 1937 // Create basic block to hold stuff that comes after switch 1938 // statement. We also need to create a default block now so that 1939 // explicit case ranges tests can have a place to jump to on 1940 // failure. 1941 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1942 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1943 if (PGO.haveRegionCounts()) { 1944 // Walk the SwitchCase list to find how many there are. 1945 uint64_t DefaultCount = 0; 1946 unsigned NumCases = 0; 1947 for (const SwitchCase *Case = S.getSwitchCaseList(); 1948 Case; 1949 Case = Case->getNextSwitchCase()) { 1950 if (isa<DefaultStmt>(Case)) 1951 DefaultCount = getProfileCount(Case); 1952 NumCases += 1; 1953 } 1954 SwitchWeights = new SmallVector<uint64_t, 16>(); 1955 SwitchWeights->reserve(NumCases); 1956 // The default needs to be first. We store the edge count, so we already 1957 // know the right weight. 1958 SwitchWeights->push_back(DefaultCount); 1959 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1960 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1961 // Initialize the default case. 1962 SwitchLikelihood->push_back(Stmt::LH_None); 1963 } 1964 1965 CaseRangeBlock = DefaultBlock; 1966 1967 // Clear the insertion point to indicate we are in unreachable code. 1968 Builder.ClearInsertionPoint(); 1969 1970 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1971 // then reuse last ContinueBlock. 1972 JumpDest OuterContinue; 1973 if (!BreakContinueStack.empty()) 1974 OuterContinue = BreakContinueStack.back().ContinueBlock; 1975 1976 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1977 1978 // Emit switch body. 1979 EmitStmt(S.getBody()); 1980 1981 BreakContinueStack.pop_back(); 1982 1983 // Update the default block in case explicit case range tests have 1984 // been chained on top. 1985 SwitchInsn->setDefaultDest(CaseRangeBlock); 1986 1987 // If a default was never emitted: 1988 if (!DefaultBlock->getParent()) { 1989 // If we have cleanups, emit the default block so that there's a 1990 // place to jump through the cleanups from. 1991 if (ConditionScope.requiresCleanups()) { 1992 EmitBlock(DefaultBlock); 1993 1994 // Otherwise, just forward the default block to the switch end. 1995 } else { 1996 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1997 delete DefaultBlock; 1998 } 1999 } 2000 2001 ConditionScope.ForceCleanup(); 2002 2003 // Emit continuation. 2004 EmitBlock(SwitchExit.getBlock(), true); 2005 incrementProfileCounter(&S); 2006 2007 // If the switch has a condition wrapped by __builtin_unpredictable, 2008 // create metadata that specifies that the switch is unpredictable. 2009 // Don't bother if not optimizing because that metadata would not be used. 2010 auto *Call = dyn_cast<CallExpr>(S.getCond()); 2011 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2012 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2013 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2014 llvm::MDBuilder MDHelper(getLLVMContext()); 2015 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 2016 MDHelper.createUnpredictable()); 2017 } 2018 } 2019 2020 if (SwitchWeights) { 2021 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 2022 "switch weights do not match switch cases"); 2023 // If there's only one jump destination there's no sense weighting it. 2024 if (SwitchWeights->size() > 1) 2025 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2026 createProfileWeights(*SwitchWeights)); 2027 delete SwitchWeights; 2028 } else if (SwitchLikelihood) { 2029 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 2030 "switch likelihoods do not match switch cases"); 2031 Optional<SmallVector<uint64_t, 16>> LHW = 2032 getLikelihoodWeights(*SwitchLikelihood); 2033 if (LHW) { 2034 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2035 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2036 createProfileWeights(*LHW)); 2037 } 2038 delete SwitchLikelihood; 2039 } 2040 SwitchInsn = SavedSwitchInsn; 2041 SwitchWeights = SavedSwitchWeights; 2042 SwitchLikelihood = SavedSwitchLikelihood; 2043 CaseRangeBlock = SavedCRBlock; 2044 } 2045 2046 static std::string 2047 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 2048 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 2049 std::string Result; 2050 2051 while (*Constraint) { 2052 switch (*Constraint) { 2053 default: 2054 Result += Target.convertConstraint(Constraint); 2055 break; 2056 // Ignore these 2057 case '*': 2058 case '?': 2059 case '!': 2060 case '=': // Will see this and the following in mult-alt constraints. 2061 case '+': 2062 break; 2063 case '#': // Ignore the rest of the constraint alternative. 2064 while (Constraint[1] && Constraint[1] != ',') 2065 Constraint++; 2066 break; 2067 case '&': 2068 case '%': 2069 Result += *Constraint; 2070 while (Constraint[1] && Constraint[1] == *Constraint) 2071 Constraint++; 2072 break; 2073 case ',': 2074 Result += "|"; 2075 break; 2076 case 'g': 2077 Result += "imr"; 2078 break; 2079 case '[': { 2080 assert(OutCons && 2081 "Must pass output names to constraints with a symbolic name"); 2082 unsigned Index; 2083 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2084 assert(result && "Could not resolve symbolic name"); (void)result; 2085 Result += llvm::utostr(Index); 2086 break; 2087 } 2088 } 2089 2090 Constraint++; 2091 } 2092 2093 return Result; 2094 } 2095 2096 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2097 /// as using a particular register add that as a constraint that will be used 2098 /// in this asm stmt. 2099 static std::string 2100 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2101 const TargetInfo &Target, CodeGenModule &CGM, 2102 const AsmStmt &Stmt, const bool EarlyClobber, 2103 std::string *GCCReg = nullptr) { 2104 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2105 if (!AsmDeclRef) 2106 return Constraint; 2107 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2108 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2109 if (!Variable) 2110 return Constraint; 2111 if (Variable->getStorageClass() != SC_Register) 2112 return Constraint; 2113 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2114 if (!Attr) 2115 return Constraint; 2116 StringRef Register = Attr->getLabel(); 2117 assert(Target.isValidGCCRegisterName(Register)); 2118 // We're using validateOutputConstraint here because we only care if 2119 // this is a register constraint. 2120 TargetInfo::ConstraintInfo Info(Constraint, ""); 2121 if (Target.validateOutputConstraint(Info) && 2122 !Info.allowsRegister()) { 2123 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2124 return Constraint; 2125 } 2126 // Canonicalize the register here before returning it. 2127 Register = Target.getNormalizedGCCRegisterName(Register); 2128 if (GCCReg != nullptr) 2129 *GCCReg = Register.str(); 2130 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2131 } 2132 2133 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue( 2134 const TargetInfo::ConstraintInfo &Info, LValue InputValue, 2135 QualType InputType, std::string &ConstraintStr, SourceLocation Loc) { 2136 if (Info.allowsRegister() || !Info.allowsMemory()) { 2137 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) 2138 return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr}; 2139 2140 llvm::Type *Ty = ConvertType(InputType); 2141 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2142 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || 2143 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { 2144 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2145 2146 return {Builder.CreateLoad(Builder.CreateElementBitCast( 2147 InputValue.getAddress(*this), Ty)), 2148 nullptr}; 2149 } 2150 } 2151 2152 Address Addr = InputValue.getAddress(*this); 2153 ConstraintStr += '*'; 2154 return {Addr.getPointer(), Addr.getElementType()}; 2155 } 2156 2157 std::pair<llvm::Value *, llvm::Type *> 2158 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2159 const Expr *InputExpr, 2160 std::string &ConstraintStr) { 2161 // If this can't be a register or memory, i.e., has to be a constant 2162 // (immediate or symbolic), try to emit it as such. 2163 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2164 if (Info.requiresImmediateConstant()) { 2165 Expr::EvalResult EVResult; 2166 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2167 2168 llvm::APSInt IntResult; 2169 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2170 getContext())) 2171 return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr}; 2172 } 2173 2174 Expr::EvalResult Result; 2175 if (InputExpr->EvaluateAsInt(Result, getContext())) 2176 return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()), 2177 nullptr}; 2178 } 2179 2180 if (Info.allowsRegister() || !Info.allowsMemory()) 2181 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2182 return {EmitScalarExpr(InputExpr), nullptr}; 2183 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2184 return {EmitScalarExpr(InputExpr), nullptr}; 2185 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2186 LValue Dest = EmitLValue(InputExpr); 2187 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2188 InputExpr->getExprLoc()); 2189 } 2190 2191 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2192 /// asm call instruction. The !srcloc MDNode contains a list of constant 2193 /// integers which are the source locations of the start of each line in the 2194 /// asm. 2195 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2196 CodeGenFunction &CGF) { 2197 SmallVector<llvm::Metadata *, 8> Locs; 2198 // Add the location of the first line to the MDNode. 2199 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2200 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); 2201 StringRef StrVal = Str->getString(); 2202 if (!StrVal.empty()) { 2203 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2204 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2205 unsigned StartToken = 0; 2206 unsigned ByteOffset = 0; 2207 2208 // Add the location of the start of each subsequent line of the asm to the 2209 // MDNode. 2210 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2211 if (StrVal[i] != '\n') continue; 2212 SourceLocation LineLoc = Str->getLocationOfByte( 2213 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2214 Locs.push_back(llvm::ConstantAsMetadata::get( 2215 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); 2216 } 2217 } 2218 2219 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2220 } 2221 2222 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2223 bool HasUnwindClobber, bool ReadOnly, 2224 bool ReadNone, bool NoMerge, const AsmStmt &S, 2225 const std::vector<llvm::Type *> &ResultRegTypes, 2226 const std::vector<llvm::Type *> &ArgElemTypes, 2227 CodeGenFunction &CGF, 2228 std::vector<llvm::Value *> &RegResults) { 2229 if (!HasUnwindClobber) 2230 Result.addFnAttr(llvm::Attribute::NoUnwind); 2231 2232 if (NoMerge) 2233 Result.addFnAttr(llvm::Attribute::NoMerge); 2234 // Attach readnone and readonly attributes. 2235 if (!HasSideEffect) { 2236 if (ReadNone) 2237 Result.addFnAttr(llvm::Attribute::ReadNone); 2238 else if (ReadOnly) 2239 Result.addFnAttr(llvm::Attribute::ReadOnly); 2240 } 2241 2242 // Add elementtype attribute for indirect constraints. 2243 for (auto Pair : llvm::enumerate(ArgElemTypes)) { 2244 if (Pair.value()) { 2245 auto Attr = llvm::Attribute::get( 2246 CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value()); 2247 Result.addParamAttr(Pair.index(), Attr); 2248 } 2249 } 2250 2251 // Slap the source location of the inline asm into a !srcloc metadata on the 2252 // call. 2253 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2254 Result.setMetadata("srcloc", 2255 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2256 else { 2257 // At least put the line number on MS inline asm blobs. 2258 llvm::Constant *Loc = 2259 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); 2260 Result.setMetadata("srcloc", 2261 llvm::MDNode::get(CGF.getLLVMContext(), 2262 llvm::ConstantAsMetadata::get(Loc))); 2263 } 2264 2265 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2266 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2267 // convergent (meaning, they may call an intrinsically convergent op, such 2268 // as bar.sync, and so can't have certain optimizations applied around 2269 // them). 2270 Result.addFnAttr(llvm::Attribute::Convergent); 2271 // Extract all of the register value results from the asm. 2272 if (ResultRegTypes.size() == 1) { 2273 RegResults.push_back(&Result); 2274 } else { 2275 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2276 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2277 RegResults.push_back(Tmp); 2278 } 2279 } 2280 } 2281 2282 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2283 // Assemble the final asm string. 2284 std::string AsmString = S.generateAsmString(getContext()); 2285 2286 // Get all the output and input constraints together. 2287 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2288 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2289 2290 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2291 StringRef Name; 2292 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2293 Name = GAS->getOutputName(i); 2294 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2295 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2296 assert(IsValid && "Failed to parse output constraint"); 2297 OutputConstraintInfos.push_back(Info); 2298 } 2299 2300 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2301 StringRef Name; 2302 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2303 Name = GAS->getInputName(i); 2304 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2305 bool IsValid = 2306 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2307 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2308 InputConstraintInfos.push_back(Info); 2309 } 2310 2311 std::string Constraints; 2312 2313 std::vector<LValue> ResultRegDests; 2314 std::vector<QualType> ResultRegQualTys; 2315 std::vector<llvm::Type *> ResultRegTypes; 2316 std::vector<llvm::Type *> ResultTruncRegTypes; 2317 std::vector<llvm::Type *> ArgTypes; 2318 std::vector<llvm::Type *> ArgElemTypes; 2319 std::vector<llvm::Value*> Args; 2320 llvm::BitVector ResultTypeRequiresCast; 2321 2322 // Keep track of inout constraints. 2323 std::string InOutConstraints; 2324 std::vector<llvm::Value*> InOutArgs; 2325 std::vector<llvm::Type*> InOutArgTypes; 2326 std::vector<llvm::Type*> InOutArgElemTypes; 2327 2328 // Keep track of out constraints for tied input operand. 2329 std::vector<std::string> OutputConstraints; 2330 2331 // Keep track of defined physregs. 2332 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2333 2334 // An inline asm can be marked readonly if it meets the following conditions: 2335 // - it doesn't have any sideeffects 2336 // - it doesn't clobber memory 2337 // - it doesn't return a value by-reference 2338 // It can be marked readnone if it doesn't have any input memory constraints 2339 // in addition to meeting the conditions listed above. 2340 bool ReadOnly = true, ReadNone = true; 2341 2342 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2343 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2344 2345 // Simplify the output constraint. 2346 std::string OutputConstraint(S.getOutputConstraint(i)); 2347 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2348 getTarget(), &OutputConstraintInfos); 2349 2350 const Expr *OutExpr = S.getOutputExpr(i); 2351 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2352 2353 std::string GCCReg; 2354 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2355 getTarget(), CGM, S, 2356 Info.earlyClobber(), 2357 &GCCReg); 2358 // Give an error on multiple outputs to same physreg. 2359 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2360 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2361 2362 OutputConstraints.push_back(OutputConstraint); 2363 LValue Dest = EmitLValue(OutExpr); 2364 if (!Constraints.empty()) 2365 Constraints += ','; 2366 2367 // If this is a register output, then make the inline asm return it 2368 // by-value. If this is a memory result, return the value by-reference. 2369 QualType QTy = OutExpr->getType(); 2370 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || 2371 hasAggregateEvaluationKind(QTy); 2372 if (!Info.allowsMemory() && IsScalarOrAggregate) { 2373 2374 Constraints += "=" + OutputConstraint; 2375 ResultRegQualTys.push_back(QTy); 2376 ResultRegDests.push_back(Dest); 2377 2378 llvm::Type *Ty = ConvertTypeForMem(QTy); 2379 const bool RequiresCast = Info.allowsRegister() && 2380 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || 2381 Ty->isAggregateType()); 2382 2383 ResultTruncRegTypes.push_back(Ty); 2384 ResultTypeRequiresCast.push_back(RequiresCast); 2385 2386 if (RequiresCast) { 2387 unsigned Size = getContext().getTypeSize(QTy); 2388 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2389 } 2390 ResultRegTypes.push_back(Ty); 2391 // If this output is tied to an input, and if the input is larger, then 2392 // we need to set the actual result type of the inline asm node to be the 2393 // same as the input type. 2394 if (Info.hasMatchingInput()) { 2395 unsigned InputNo; 2396 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2397 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2398 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2399 break; 2400 } 2401 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2402 2403 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2404 QualType OutputType = OutExpr->getType(); 2405 2406 uint64_t InputSize = getContext().getTypeSize(InputTy); 2407 if (getContext().getTypeSize(OutputType) < InputSize) { 2408 // Form the asm to return the value as a larger integer or fp type. 2409 ResultRegTypes.back() = ConvertType(InputTy); 2410 } 2411 } 2412 if (llvm::Type* AdjTy = 2413 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2414 ResultRegTypes.back())) 2415 ResultRegTypes.back() = AdjTy; 2416 else { 2417 CGM.getDiags().Report(S.getAsmLoc(), 2418 diag::err_asm_invalid_type_in_input) 2419 << OutExpr->getType() << OutputConstraint; 2420 } 2421 2422 // Update largest vector width for any vector types. 2423 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2424 LargestVectorWidth = 2425 std::max((uint64_t)LargestVectorWidth, 2426 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2427 } else { 2428 Address DestAddr = Dest.getAddress(*this); 2429 // Matrix types in memory are represented by arrays, but accessed through 2430 // vector pointers, with the alignment specified on the access operation. 2431 // For inline assembly, update pointer arguments to use vector pointers. 2432 // Otherwise there will be a mis-match if the matrix is also an 2433 // input-argument which is represented as vector. 2434 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) 2435 DestAddr = Builder.CreateElementBitCast( 2436 DestAddr, ConvertType(OutExpr->getType())); 2437 2438 ArgTypes.push_back(DestAddr.getType()); 2439 ArgElemTypes.push_back(DestAddr.getElementType()); 2440 Args.push_back(DestAddr.getPointer()); 2441 Constraints += "=*"; 2442 Constraints += OutputConstraint; 2443 ReadOnly = ReadNone = false; 2444 } 2445 2446 if (Info.isReadWrite()) { 2447 InOutConstraints += ','; 2448 2449 const Expr *InputExpr = S.getOutputExpr(i); 2450 llvm::Value *Arg; 2451 llvm::Type *ArgElemType; 2452 std::tie(Arg, ArgElemType) = EmitAsmInputLValue( 2453 Info, Dest, InputExpr->getType(), InOutConstraints, 2454 InputExpr->getExprLoc()); 2455 2456 if (llvm::Type* AdjTy = 2457 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2458 Arg->getType())) 2459 Arg = Builder.CreateBitCast(Arg, AdjTy); 2460 2461 // Update largest vector width for any vector types. 2462 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2463 LargestVectorWidth = 2464 std::max((uint64_t)LargestVectorWidth, 2465 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2466 // Only tie earlyclobber physregs. 2467 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2468 InOutConstraints += llvm::utostr(i); 2469 else 2470 InOutConstraints += OutputConstraint; 2471 2472 InOutArgTypes.push_back(Arg->getType()); 2473 InOutArgElemTypes.push_back(ArgElemType); 2474 InOutArgs.push_back(Arg); 2475 } 2476 } 2477 2478 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2479 // to the return value slot. Only do this when returning in registers. 2480 if (isa<MSAsmStmt>(&S)) { 2481 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2482 if (RetAI.isDirect() || RetAI.isExtend()) { 2483 // Make a fake lvalue for the return value slot. 2484 LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy); 2485 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2486 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2487 ResultRegDests, AsmString, S.getNumOutputs()); 2488 SawAsmBlock = true; 2489 } 2490 } 2491 2492 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2493 const Expr *InputExpr = S.getInputExpr(i); 2494 2495 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2496 2497 if (Info.allowsMemory()) 2498 ReadNone = false; 2499 2500 if (!Constraints.empty()) 2501 Constraints += ','; 2502 2503 // Simplify the input constraint. 2504 std::string InputConstraint(S.getInputConstraint(i)); 2505 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2506 &OutputConstraintInfos); 2507 2508 InputConstraint = AddVariableConstraints( 2509 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2510 getTarget(), CGM, S, false /* No EarlyClobber */); 2511 2512 std::string ReplaceConstraint (InputConstraint); 2513 llvm::Value *Arg; 2514 llvm::Type *ArgElemType; 2515 std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints); 2516 2517 // If this input argument is tied to a larger output result, extend the 2518 // input to be the same size as the output. The LLVM backend wants to see 2519 // the input and output of a matching constraint be the same size. Note 2520 // that GCC does not define what the top bits are here. We use zext because 2521 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2522 if (Info.hasTiedOperand()) { 2523 unsigned Output = Info.getTiedOperand(); 2524 QualType OutputType = S.getOutputExpr(Output)->getType(); 2525 QualType InputTy = InputExpr->getType(); 2526 2527 if (getContext().getTypeSize(OutputType) > 2528 getContext().getTypeSize(InputTy)) { 2529 // Use ptrtoint as appropriate so that we can do our extension. 2530 if (isa<llvm::PointerType>(Arg->getType())) 2531 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2532 llvm::Type *OutputTy = ConvertType(OutputType); 2533 if (isa<llvm::IntegerType>(OutputTy)) 2534 Arg = Builder.CreateZExt(Arg, OutputTy); 2535 else if (isa<llvm::PointerType>(OutputTy)) 2536 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2537 else if (OutputTy->isFloatingPointTy()) 2538 Arg = Builder.CreateFPExt(Arg, OutputTy); 2539 } 2540 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2541 ReplaceConstraint = OutputConstraints[Output]; 2542 } 2543 if (llvm::Type* AdjTy = 2544 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2545 Arg->getType())) 2546 Arg = Builder.CreateBitCast(Arg, AdjTy); 2547 else 2548 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2549 << InputExpr->getType() << InputConstraint; 2550 2551 // Update largest vector width for any vector types. 2552 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2553 LargestVectorWidth = 2554 std::max((uint64_t)LargestVectorWidth, 2555 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2556 2557 ArgTypes.push_back(Arg->getType()); 2558 ArgElemTypes.push_back(ArgElemType); 2559 Args.push_back(Arg); 2560 Constraints += InputConstraint; 2561 } 2562 2563 // Append the "input" part of inout constraints. 2564 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2565 ArgTypes.push_back(InOutArgTypes[i]); 2566 ArgElemTypes.push_back(InOutArgElemTypes[i]); 2567 Args.push_back(InOutArgs[i]); 2568 } 2569 Constraints += InOutConstraints; 2570 2571 // Labels 2572 SmallVector<llvm::BasicBlock *, 16> Transfer; 2573 llvm::BasicBlock *Fallthrough = nullptr; 2574 bool IsGCCAsmGoto = false; 2575 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2576 IsGCCAsmGoto = GS->isAsmGoto(); 2577 if (IsGCCAsmGoto) { 2578 for (const auto *E : GS->labels()) { 2579 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2580 Transfer.push_back(Dest.getBlock()); 2581 llvm::BlockAddress *BA = 2582 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2583 Args.push_back(BA); 2584 ArgTypes.push_back(BA->getType()); 2585 ArgElemTypes.push_back(nullptr); 2586 if (!Constraints.empty()) 2587 Constraints += ','; 2588 Constraints += 'i'; 2589 } 2590 Fallthrough = createBasicBlock("asm.fallthrough"); 2591 } 2592 } 2593 2594 bool HasUnwindClobber = false; 2595 2596 // Clobbers 2597 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2598 StringRef Clobber = S.getClobber(i); 2599 2600 if (Clobber == "memory") 2601 ReadOnly = ReadNone = false; 2602 else if (Clobber == "unwind") { 2603 HasUnwindClobber = true; 2604 continue; 2605 } else if (Clobber != "cc") { 2606 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2607 if (CGM.getCodeGenOpts().StackClashProtector && 2608 getTarget().isSPRegName(Clobber)) { 2609 CGM.getDiags().Report(S.getAsmLoc(), 2610 diag::warn_stack_clash_protection_inline_asm); 2611 } 2612 } 2613 2614 if (isa<MSAsmStmt>(&S)) { 2615 if (Clobber == "eax" || Clobber == "edx") { 2616 if (Constraints.find("=&A") != std::string::npos) 2617 continue; 2618 std::string::size_type position1 = 2619 Constraints.find("={" + Clobber.str() + "}"); 2620 if (position1 != std::string::npos) { 2621 Constraints.insert(position1 + 1, "&"); 2622 continue; 2623 } 2624 std::string::size_type position2 = Constraints.find("=A"); 2625 if (position2 != std::string::npos) { 2626 Constraints.insert(position2 + 1, "&"); 2627 continue; 2628 } 2629 } 2630 } 2631 if (!Constraints.empty()) 2632 Constraints += ','; 2633 2634 Constraints += "~{"; 2635 Constraints += Clobber; 2636 Constraints += '}'; 2637 } 2638 2639 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2640 "unwind clobber can't be used with asm goto"); 2641 2642 // Add machine specific clobbers 2643 std::string MachineClobbers = getTarget().getClobbers(); 2644 if (!MachineClobbers.empty()) { 2645 if (!Constraints.empty()) 2646 Constraints += ','; 2647 Constraints += MachineClobbers; 2648 } 2649 2650 llvm::Type *ResultType; 2651 if (ResultRegTypes.empty()) 2652 ResultType = VoidTy; 2653 else if (ResultRegTypes.size() == 1) 2654 ResultType = ResultRegTypes[0]; 2655 else 2656 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2657 2658 llvm::FunctionType *FTy = 2659 llvm::FunctionType::get(ResultType, ArgTypes, false); 2660 2661 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2662 2663 llvm::InlineAsm::AsmDialect GnuAsmDialect = 2664 CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT 2665 ? llvm::InlineAsm::AD_ATT 2666 : llvm::InlineAsm::AD_Intel; 2667 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2668 llvm::InlineAsm::AD_Intel : GnuAsmDialect; 2669 2670 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2671 FTy, AsmString, Constraints, HasSideEffect, 2672 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2673 std::vector<llvm::Value*> RegResults; 2674 if (IsGCCAsmGoto) { 2675 llvm::CallBrInst *Result = 2676 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2677 EmitBlock(Fallthrough); 2678 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2679 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2680 ResultRegTypes, ArgElemTypes, *this, RegResults); 2681 } else if (HasUnwindClobber) { 2682 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2683 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2684 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes, 2685 *this, RegResults); 2686 } else { 2687 llvm::CallInst *Result = 2688 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2689 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2690 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2691 ResultRegTypes, ArgElemTypes, *this, RegResults); 2692 } 2693 2694 assert(RegResults.size() == ResultRegTypes.size()); 2695 assert(RegResults.size() == ResultTruncRegTypes.size()); 2696 assert(RegResults.size() == ResultRegDests.size()); 2697 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2698 // in which case its size may grow. 2699 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2700 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2701 llvm::Value *Tmp = RegResults[i]; 2702 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2703 2704 // If the result type of the LLVM IR asm doesn't match the result type of 2705 // the expression, do the conversion. 2706 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2707 2708 // Truncate the integer result to the right size, note that TruncTy can be 2709 // a pointer. 2710 if (TruncTy->isFloatingPointTy()) 2711 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2712 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2713 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2714 Tmp = Builder.CreateTrunc(Tmp, 2715 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2716 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2717 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2718 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2719 Tmp = Builder.CreatePtrToInt(Tmp, 2720 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2721 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2722 } else if (TruncTy->isIntegerTy()) { 2723 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2724 } else if (TruncTy->isVectorTy()) { 2725 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2726 } 2727 } 2728 2729 LValue Dest = ResultRegDests[i]; 2730 // ResultTypeRequiresCast elements correspond to the first 2731 // ResultTypeRequiresCast.size() elements of RegResults. 2732 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2733 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2734 Address A = Builder.CreateElementBitCast(Dest.getAddress(*this), 2735 ResultRegTypes[i]); 2736 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { 2737 Builder.CreateStore(Tmp, A); 2738 continue; 2739 } 2740 2741 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2742 if (Ty.isNull()) { 2743 const Expr *OutExpr = S.getOutputExpr(i); 2744 CGM.Error( 2745 OutExpr->getExprLoc(), 2746 "impossible constraint in asm: can't store value into a register"); 2747 return; 2748 } 2749 Dest = MakeAddrLValue(A, Ty); 2750 } 2751 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2752 } 2753 } 2754 2755 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2756 const RecordDecl *RD = S.getCapturedRecordDecl(); 2757 QualType RecordTy = getContext().getRecordType(RD); 2758 2759 // Initialize the captured struct. 2760 LValue SlotLV = 2761 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2762 2763 RecordDecl::field_iterator CurField = RD->field_begin(); 2764 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2765 E = S.capture_init_end(); 2766 I != E; ++I, ++CurField) { 2767 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2768 if (CurField->hasCapturedVLAType()) { 2769 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2770 } else { 2771 EmitInitializerForField(*CurField, LV, *I); 2772 } 2773 } 2774 2775 return SlotLV; 2776 } 2777 2778 /// Generate an outlined function for the body of a CapturedStmt, store any 2779 /// captured variables into the captured struct, and call the outlined function. 2780 llvm::Function * 2781 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2782 LValue CapStruct = InitCapturedStruct(S); 2783 2784 // Emit the CapturedDecl 2785 CodeGenFunction CGF(CGM, true); 2786 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2787 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2788 delete CGF.CapturedStmtInfo; 2789 2790 // Emit call to the helper function. 2791 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2792 2793 return F; 2794 } 2795 2796 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2797 LValue CapStruct = InitCapturedStruct(S); 2798 return CapStruct.getAddress(*this); 2799 } 2800 2801 /// Creates the outlined function for a CapturedStmt. 2802 llvm::Function * 2803 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2804 assert(CapturedStmtInfo && 2805 "CapturedStmtInfo should be set when generating the captured function"); 2806 const CapturedDecl *CD = S.getCapturedDecl(); 2807 const RecordDecl *RD = S.getCapturedRecordDecl(); 2808 SourceLocation Loc = S.getBeginLoc(); 2809 assert(CD->hasBody() && "missing CapturedDecl body"); 2810 2811 // Build the argument list. 2812 ASTContext &Ctx = CGM.getContext(); 2813 FunctionArgList Args; 2814 Args.append(CD->param_begin(), CD->param_end()); 2815 2816 // Create the function declaration. 2817 const CGFunctionInfo &FuncInfo = 2818 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2819 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2820 2821 llvm::Function *F = 2822 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2823 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2824 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2825 if (CD->isNothrow()) 2826 F->addFnAttr(llvm::Attribute::NoUnwind); 2827 2828 // Generate the function. 2829 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2830 CD->getBody()->getBeginLoc()); 2831 // Set the context parameter in CapturedStmtInfo. 2832 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2833 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2834 2835 // Initialize variable-length arrays. 2836 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2837 Ctx.getTagDeclType(RD)); 2838 for (auto *FD : RD->fields()) { 2839 if (FD->hasCapturedVLAType()) { 2840 auto *ExprArg = 2841 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2842 .getScalarVal(); 2843 auto VAT = FD->getCapturedVLAType(); 2844 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2845 } 2846 } 2847 2848 // If 'this' is captured, load it into CXXThisValue. 2849 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2850 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2851 LValue ThisLValue = EmitLValueForField(Base, FD); 2852 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2853 } 2854 2855 PGO.assignRegionCounters(GlobalDecl(CD), F); 2856 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2857 FinishFunction(CD->getBodyRBrace()); 2858 2859 return F; 2860 } 2861