1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/DiagnosticSema.h"
22 #include "clang/Basic/PrettyStackTrace.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Statement Emission
38 //===----------------------------------------------------------------------===//
39 
40 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
41   if (CGDebugInfo *DI = getDebugInfo()) {
42     SourceLocation Loc;
43     Loc = S->getBeginLoc();
44     DI->EmitLocation(Builder, Loc);
45 
46     LastStopPoint = Loc;
47   }
48 }
49 
50 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
51   assert(S && "Null statement?");
52   PGO.setCurrentStmt(S);
53 
54   // These statements have their own debug info handling.
55   if (EmitSimpleStmt(S, Attrs))
56     return;
57 
58   // Check if we are generating unreachable code.
59   if (!HaveInsertPoint()) {
60     // If so, and the statement doesn't contain a label, then we do not need to
61     // generate actual code. This is safe because (1) the current point is
62     // unreachable, so we don't need to execute the code, and (2) we've already
63     // handled the statements which update internal data structures (like the
64     // local variable map) which could be used by subsequent statements.
65     if (!ContainsLabel(S)) {
66       // Verify that any decl statements were handled as simple, they may be in
67       // scope of subsequent reachable statements.
68       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
69       return;
70     }
71 
72     // Otherwise, make a new block to hold the code.
73     EnsureInsertPoint();
74   }
75 
76   // Generate a stoppoint if we are emitting debug info.
77   EmitStopPoint(S);
78 
79   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
80   // enabled.
81   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
82     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
83       EmitSimpleOMPExecutableDirective(*D);
84       return;
85     }
86   }
87 
88   switch (S->getStmtClass()) {
89   case Stmt::NoStmtClass:
90   case Stmt::CXXCatchStmtClass:
91   case Stmt::SEHExceptStmtClass:
92   case Stmt::SEHFinallyStmtClass:
93   case Stmt::MSDependentExistsStmtClass:
94     llvm_unreachable("invalid statement class to emit generically");
95   case Stmt::NullStmtClass:
96   case Stmt::CompoundStmtClass:
97   case Stmt::DeclStmtClass:
98   case Stmt::LabelStmtClass:
99   case Stmt::AttributedStmtClass:
100   case Stmt::GotoStmtClass:
101   case Stmt::BreakStmtClass:
102   case Stmt::ContinueStmtClass:
103   case Stmt::DefaultStmtClass:
104   case Stmt::CaseStmtClass:
105   case Stmt::SEHLeaveStmtClass:
106     llvm_unreachable("should have emitted these statements as simple");
107 
108 #define STMT(Type, Base)
109 #define ABSTRACT_STMT(Op)
110 #define EXPR(Type, Base) \
111   case Stmt::Type##Class:
112 #include "clang/AST/StmtNodes.inc"
113   {
114     // Remember the block we came in on.
115     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
116     assert(incoming && "expression emission must have an insertion point");
117 
118     EmitIgnoredExpr(cast<Expr>(S));
119 
120     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
121     assert(outgoing && "expression emission cleared block!");
122 
123     // The expression emitters assume (reasonably!) that the insertion
124     // point is always set.  To maintain that, the call-emission code
125     // for noreturn functions has to enter a new block with no
126     // predecessors.  We want to kill that block and mark the current
127     // insertion point unreachable in the common case of a call like
128     // "exit();".  Since expression emission doesn't otherwise create
129     // blocks with no predecessors, we can just test for that.
130     // However, we must be careful not to do this to our incoming
131     // block, because *statement* emission does sometimes create
132     // reachable blocks which will have no predecessors until later in
133     // the function.  This occurs with, e.g., labels that are not
134     // reachable by fallthrough.
135     if (incoming != outgoing && outgoing->use_empty()) {
136       outgoing->eraseFromParent();
137       Builder.ClearInsertionPoint();
138     }
139     break;
140   }
141 
142   case Stmt::IndirectGotoStmtClass:
143     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
144 
145   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
146   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
147   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
148   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
149 
150   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
151 
152   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
153   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
154   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
155   case Stmt::CoroutineBodyStmtClass:
156     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
157     break;
158   case Stmt::CoreturnStmtClass:
159     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
160     break;
161   case Stmt::CapturedStmtClass: {
162     const CapturedStmt *CS = cast<CapturedStmt>(S);
163     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
164     }
165     break;
166   case Stmt::ObjCAtTryStmtClass:
167     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
168     break;
169   case Stmt::ObjCAtCatchStmtClass:
170     llvm_unreachable(
171                     "@catch statements should be handled by EmitObjCAtTryStmt");
172   case Stmt::ObjCAtFinallyStmtClass:
173     llvm_unreachable(
174                   "@finally statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtThrowStmtClass:
176     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
177     break;
178   case Stmt::ObjCAtSynchronizedStmtClass:
179     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
180     break;
181   case Stmt::ObjCForCollectionStmtClass:
182     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
183     break;
184   case Stmt::ObjCAutoreleasePoolStmtClass:
185     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
186     break;
187 
188   case Stmt::CXXTryStmtClass:
189     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
190     break;
191   case Stmt::CXXForRangeStmtClass:
192     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
193     break;
194   case Stmt::SEHTryStmtClass:
195     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
196     break;
197   case Stmt::OMPCanonicalLoopClass:
198     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
199     break;
200   case Stmt::OMPParallelDirectiveClass:
201     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
202     break;
203   case Stmt::OMPSimdDirectiveClass:
204     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
205     break;
206   case Stmt::OMPTileDirectiveClass:
207     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
208     break;
209   case Stmt::OMPForDirectiveClass:
210     EmitOMPForDirective(cast<OMPForDirective>(*S));
211     break;
212   case Stmt::OMPForSimdDirectiveClass:
213     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
214     break;
215   case Stmt::OMPSectionsDirectiveClass:
216     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
217     break;
218   case Stmt::OMPSectionDirectiveClass:
219     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
220     break;
221   case Stmt::OMPSingleDirectiveClass:
222     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
223     break;
224   case Stmt::OMPMasterDirectiveClass:
225     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
226     break;
227   case Stmt::OMPCriticalDirectiveClass:
228     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
229     break;
230   case Stmt::OMPParallelForDirectiveClass:
231     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
232     break;
233   case Stmt::OMPParallelForSimdDirectiveClass:
234     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
235     break;
236   case Stmt::OMPParallelMasterDirectiveClass:
237     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
238     break;
239   case Stmt::OMPParallelSectionsDirectiveClass:
240     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
241     break;
242   case Stmt::OMPTaskDirectiveClass:
243     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
244     break;
245   case Stmt::OMPTaskyieldDirectiveClass:
246     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
247     break;
248   case Stmt::OMPBarrierDirectiveClass:
249     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
250     break;
251   case Stmt::OMPTaskwaitDirectiveClass:
252     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
253     break;
254   case Stmt::OMPTaskgroupDirectiveClass:
255     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
256     break;
257   case Stmt::OMPFlushDirectiveClass:
258     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
259     break;
260   case Stmt::OMPDepobjDirectiveClass:
261     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
262     break;
263   case Stmt::OMPScanDirectiveClass:
264     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
265     break;
266   case Stmt::OMPOrderedDirectiveClass:
267     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
268     break;
269   case Stmt::OMPAtomicDirectiveClass:
270     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
271     break;
272   case Stmt::OMPTargetDirectiveClass:
273     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
274     break;
275   case Stmt::OMPTeamsDirectiveClass:
276     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
277     break;
278   case Stmt::OMPCancellationPointDirectiveClass:
279     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
280     break;
281   case Stmt::OMPCancelDirectiveClass:
282     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
283     break;
284   case Stmt::OMPTargetDataDirectiveClass:
285     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
286     break;
287   case Stmt::OMPTargetEnterDataDirectiveClass:
288     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
289     break;
290   case Stmt::OMPTargetExitDataDirectiveClass:
291     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
292     break;
293   case Stmt::OMPTargetParallelDirectiveClass:
294     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
295     break;
296   case Stmt::OMPTargetParallelForDirectiveClass:
297     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
298     break;
299   case Stmt::OMPTaskLoopDirectiveClass:
300     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
301     break;
302   case Stmt::OMPTaskLoopSimdDirectiveClass:
303     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
304     break;
305   case Stmt::OMPMasterTaskLoopDirectiveClass:
306     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
307     break;
308   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
309     EmitOMPMasterTaskLoopSimdDirective(
310         cast<OMPMasterTaskLoopSimdDirective>(*S));
311     break;
312   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
313     EmitOMPParallelMasterTaskLoopDirective(
314         cast<OMPParallelMasterTaskLoopDirective>(*S));
315     break;
316   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
317     EmitOMPParallelMasterTaskLoopSimdDirective(
318         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
319     break;
320   case Stmt::OMPDistributeDirectiveClass:
321     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
322     break;
323   case Stmt::OMPTargetUpdateDirectiveClass:
324     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
325     break;
326   case Stmt::OMPDistributeParallelForDirectiveClass:
327     EmitOMPDistributeParallelForDirective(
328         cast<OMPDistributeParallelForDirective>(*S));
329     break;
330   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
331     EmitOMPDistributeParallelForSimdDirective(
332         cast<OMPDistributeParallelForSimdDirective>(*S));
333     break;
334   case Stmt::OMPDistributeSimdDirectiveClass:
335     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
336     break;
337   case Stmt::OMPTargetParallelForSimdDirectiveClass:
338     EmitOMPTargetParallelForSimdDirective(
339         cast<OMPTargetParallelForSimdDirective>(*S));
340     break;
341   case Stmt::OMPTargetSimdDirectiveClass:
342     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
343     break;
344   case Stmt::OMPTeamsDistributeDirectiveClass:
345     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
346     break;
347   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
348     EmitOMPTeamsDistributeSimdDirective(
349         cast<OMPTeamsDistributeSimdDirective>(*S));
350     break;
351   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
352     EmitOMPTeamsDistributeParallelForSimdDirective(
353         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
354     break;
355   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
356     EmitOMPTeamsDistributeParallelForDirective(
357         cast<OMPTeamsDistributeParallelForDirective>(*S));
358     break;
359   case Stmt::OMPTargetTeamsDirectiveClass:
360     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
361     break;
362   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
363     EmitOMPTargetTeamsDistributeDirective(
364         cast<OMPTargetTeamsDistributeDirective>(*S));
365     break;
366   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
367     EmitOMPTargetTeamsDistributeParallelForDirective(
368         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
369     break;
370   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
371     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
372         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
373     break;
374   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
375     EmitOMPTargetTeamsDistributeSimdDirective(
376         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
377     break;
378   case Stmt::OMPInteropDirectiveClass:
379     llvm_unreachable("Interop directive not supported yet.");
380     break;
381   }
382 }
383 
384 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
385                                      ArrayRef<const Attr *> Attrs) {
386   switch (S->getStmtClass()) {
387   default:
388     return false;
389   case Stmt::NullStmtClass:
390     break;
391   case Stmt::CompoundStmtClass:
392     EmitCompoundStmt(cast<CompoundStmt>(*S));
393     break;
394   case Stmt::DeclStmtClass:
395     EmitDeclStmt(cast<DeclStmt>(*S));
396     break;
397   case Stmt::LabelStmtClass:
398     EmitLabelStmt(cast<LabelStmt>(*S));
399     break;
400   case Stmt::AttributedStmtClass:
401     EmitAttributedStmt(cast<AttributedStmt>(*S));
402     break;
403   case Stmt::GotoStmtClass:
404     EmitGotoStmt(cast<GotoStmt>(*S));
405     break;
406   case Stmt::BreakStmtClass:
407     EmitBreakStmt(cast<BreakStmt>(*S));
408     break;
409   case Stmt::ContinueStmtClass:
410     EmitContinueStmt(cast<ContinueStmt>(*S));
411     break;
412   case Stmt::DefaultStmtClass:
413     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
414     break;
415   case Stmt::CaseStmtClass:
416     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
417     break;
418   case Stmt::SEHLeaveStmtClass:
419     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
420     break;
421   }
422   return true;
423 }
424 
425 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
426 /// this captures the expression result of the last sub-statement and returns it
427 /// (for use by the statement expression extension).
428 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
429                                           AggValueSlot AggSlot) {
430   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
431                              "LLVM IR generation of compound statement ('{}')");
432 
433   // Keep track of the current cleanup stack depth, including debug scopes.
434   LexicalScope Scope(*this, S.getSourceRange());
435 
436   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
437 }
438 
439 Address
440 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
441                                               bool GetLast,
442                                               AggValueSlot AggSlot) {
443 
444   const Stmt *ExprResult = S.getStmtExprResult();
445   assert((!GetLast || (GetLast && ExprResult)) &&
446          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
447 
448   Address RetAlloca = Address::invalid();
449 
450   for (auto *CurStmt : S.body()) {
451     if (GetLast && ExprResult == CurStmt) {
452       // We have to special case labels here.  They are statements, but when put
453       // at the end of a statement expression, they yield the value of their
454       // subexpression.  Handle this by walking through all labels we encounter,
455       // emitting them before we evaluate the subexpr.
456       // Similar issues arise for attributed statements.
457       while (!isa<Expr>(ExprResult)) {
458         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
459           EmitLabel(LS->getDecl());
460           ExprResult = LS->getSubStmt();
461         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
462           // FIXME: Update this if we ever have attributes that affect the
463           // semantics of an expression.
464           ExprResult = AS->getSubStmt();
465         } else {
466           llvm_unreachable("unknown value statement");
467         }
468       }
469 
470       EnsureInsertPoint();
471 
472       const Expr *E = cast<Expr>(ExprResult);
473       QualType ExprTy = E->getType();
474       if (hasAggregateEvaluationKind(ExprTy)) {
475         EmitAggExpr(E, AggSlot);
476       } else {
477         // We can't return an RValue here because there might be cleanups at
478         // the end of the StmtExpr.  Because of that, we have to emit the result
479         // here into a temporary alloca.
480         RetAlloca = CreateMemTemp(ExprTy);
481         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
482                          /*IsInit*/ false);
483       }
484     } else {
485       EmitStmt(CurStmt);
486     }
487   }
488 
489   return RetAlloca;
490 }
491 
492 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
493   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
494 
495   // If there is a cleanup stack, then we it isn't worth trying to
496   // simplify this block (we would need to remove it from the scope map
497   // and cleanup entry).
498   if (!EHStack.empty())
499     return;
500 
501   // Can only simplify direct branches.
502   if (!BI || !BI->isUnconditional())
503     return;
504 
505   // Can only simplify empty blocks.
506   if (BI->getIterator() != BB->begin())
507     return;
508 
509   BB->replaceAllUsesWith(BI->getSuccessor(0));
510   BI->eraseFromParent();
511   BB->eraseFromParent();
512 }
513 
514 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
515   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
516 
517   // Fall out of the current block (if necessary).
518   EmitBranch(BB);
519 
520   if (IsFinished && BB->use_empty()) {
521     delete BB;
522     return;
523   }
524 
525   // Place the block after the current block, if possible, or else at
526   // the end of the function.
527   if (CurBB && CurBB->getParent())
528     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
529   else
530     CurFn->getBasicBlockList().push_back(BB);
531   Builder.SetInsertPoint(BB);
532 }
533 
534 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
535   // Emit a branch from the current block to the target one if this
536   // was a real block.  If this was just a fall-through block after a
537   // terminator, don't emit it.
538   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
539 
540   if (!CurBB || CurBB->getTerminator()) {
541     // If there is no insert point or the previous block is already
542     // terminated, don't touch it.
543   } else {
544     // Otherwise, create a fall-through branch.
545     Builder.CreateBr(Target);
546   }
547 
548   Builder.ClearInsertionPoint();
549 }
550 
551 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
552   bool inserted = false;
553   for (llvm::User *u : block->users()) {
554     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
555       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
556                                              block);
557       inserted = true;
558       break;
559     }
560   }
561 
562   if (!inserted)
563     CurFn->getBasicBlockList().push_back(block);
564 
565   Builder.SetInsertPoint(block);
566 }
567 
568 CodeGenFunction::JumpDest
569 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
570   JumpDest &Dest = LabelMap[D];
571   if (Dest.isValid()) return Dest;
572 
573   // Create, but don't insert, the new block.
574   Dest = JumpDest(createBasicBlock(D->getName()),
575                   EHScopeStack::stable_iterator::invalid(),
576                   NextCleanupDestIndex++);
577   return Dest;
578 }
579 
580 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
581   // Add this label to the current lexical scope if we're within any
582   // normal cleanups.  Jumps "in" to this label --- when permitted by
583   // the language --- may need to be routed around such cleanups.
584   if (EHStack.hasNormalCleanups() && CurLexicalScope)
585     CurLexicalScope->addLabel(D);
586 
587   JumpDest &Dest = LabelMap[D];
588 
589   // If we didn't need a forward reference to this label, just go
590   // ahead and create a destination at the current scope.
591   if (!Dest.isValid()) {
592     Dest = getJumpDestInCurrentScope(D->getName());
593 
594   // Otherwise, we need to give this label a target depth and remove
595   // it from the branch-fixups list.
596   } else {
597     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
598     Dest.setScopeDepth(EHStack.stable_begin());
599     ResolveBranchFixups(Dest.getBlock());
600   }
601 
602   EmitBlock(Dest.getBlock());
603 
604   // Emit debug info for labels.
605   if (CGDebugInfo *DI = getDebugInfo()) {
606     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
607       DI->setLocation(D->getLocation());
608       DI->EmitLabel(D, Builder);
609     }
610   }
611 
612   incrementProfileCounter(D->getStmt());
613 }
614 
615 /// Change the cleanup scope of the labels in this lexical scope to
616 /// match the scope of the enclosing context.
617 void CodeGenFunction::LexicalScope::rescopeLabels() {
618   assert(!Labels.empty());
619   EHScopeStack::stable_iterator innermostScope
620     = CGF.EHStack.getInnermostNormalCleanup();
621 
622   // Change the scope depth of all the labels.
623   for (SmallVectorImpl<const LabelDecl*>::const_iterator
624          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
625     assert(CGF.LabelMap.count(*i));
626     JumpDest &dest = CGF.LabelMap.find(*i)->second;
627     assert(dest.getScopeDepth().isValid());
628     assert(innermostScope.encloses(dest.getScopeDepth()));
629     dest.setScopeDepth(innermostScope);
630   }
631 
632   // Reparent the labels if the new scope also has cleanups.
633   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
634     ParentScope->Labels.append(Labels.begin(), Labels.end());
635   }
636 }
637 
638 
639 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
640   EmitLabel(S.getDecl());
641   EmitStmt(S.getSubStmt());
642 }
643 
644 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
645   bool nomerge = false;
646   for (const auto *A : S.getAttrs())
647     if (A->getKind() == attr::NoMerge) {
648       nomerge = true;
649       break;
650     }
651   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
652   EmitStmt(S.getSubStmt(), S.getAttrs());
653 }
654 
655 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
656   // If this code is reachable then emit a stop point (if generating
657   // debug info). We have to do this ourselves because we are on the
658   // "simple" statement path.
659   if (HaveInsertPoint())
660     EmitStopPoint(&S);
661 
662   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
663 }
664 
665 
666 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
667   if (const LabelDecl *Target = S.getConstantTarget()) {
668     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
669     return;
670   }
671 
672   // Ensure that we have an i8* for our PHI node.
673   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
674                                          Int8PtrTy, "addr");
675   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
676 
677   // Get the basic block for the indirect goto.
678   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
679 
680   // The first instruction in the block has to be the PHI for the switch dest,
681   // add an entry for this branch.
682   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
683 
684   EmitBranch(IndGotoBB);
685 }
686 
687 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
688   // C99 6.8.4.1: The first substatement is executed if the expression compares
689   // unequal to 0.  The condition must be a scalar type.
690   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
691 
692   if (S.getInit())
693     EmitStmt(S.getInit());
694 
695   if (S.getConditionVariable())
696     EmitDecl(*S.getConditionVariable());
697 
698   // If the condition constant folds and can be elided, try to avoid emitting
699   // the condition and the dead arm of the if/else.
700   bool CondConstant;
701   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
702                                    S.isConstexpr())) {
703     // Figure out which block (then or else) is executed.
704     const Stmt *Executed = S.getThen();
705     const Stmt *Skipped  = S.getElse();
706     if (!CondConstant)  // Condition false?
707       std::swap(Executed, Skipped);
708 
709     // If the skipped block has no labels in it, just emit the executed block.
710     // This avoids emitting dead code and simplifies the CFG substantially.
711     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
712       if (CondConstant)
713         incrementProfileCounter(&S);
714       if (Executed) {
715         RunCleanupsScope ExecutedScope(*this);
716         EmitStmt(Executed);
717       }
718       return;
719     }
720   }
721 
722   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
723   // the conditional branch.
724   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
725   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
726   llvm::BasicBlock *ElseBlock = ContBlock;
727   if (S.getElse())
728     ElseBlock = createBasicBlock("if.else");
729 
730   // Prefer the PGO based weights over the likelihood attribute.
731   // When the build isn't optimized the metadata isn't used, so don't generate
732   // it.
733   Stmt::Likelihood LH = Stmt::LH_None;
734   uint64_t Count = getProfileCount(S.getThen());
735   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
736     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
737   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
738 
739   // Emit the 'then' code.
740   EmitBlock(ThenBlock);
741   incrementProfileCounter(&S);
742   {
743     RunCleanupsScope ThenScope(*this);
744     EmitStmt(S.getThen());
745   }
746   EmitBranch(ContBlock);
747 
748   // Emit the 'else' code if present.
749   if (const Stmt *Else = S.getElse()) {
750     {
751       // There is no need to emit line number for an unconditional branch.
752       auto NL = ApplyDebugLocation::CreateEmpty(*this);
753       EmitBlock(ElseBlock);
754     }
755     {
756       RunCleanupsScope ElseScope(*this);
757       EmitStmt(Else);
758     }
759     {
760       // There is no need to emit line number for an unconditional branch.
761       auto NL = ApplyDebugLocation::CreateEmpty(*this);
762       EmitBranch(ContBlock);
763     }
764   }
765 
766   // Emit the continuation block for code after the if.
767   EmitBlock(ContBlock, true);
768 }
769 
770 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
771                                     ArrayRef<const Attr *> WhileAttrs) {
772   // Emit the header for the loop, which will also become
773   // the continue target.
774   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
775   EmitBlock(LoopHeader.getBlock());
776 
777   // Create an exit block for when the condition fails, which will
778   // also become the break target.
779   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
780 
781   // Store the blocks to use for break and continue.
782   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
783 
784   // C++ [stmt.while]p2:
785   //   When the condition of a while statement is a declaration, the
786   //   scope of the variable that is declared extends from its point
787   //   of declaration (3.3.2) to the end of the while statement.
788   //   [...]
789   //   The object created in a condition is destroyed and created
790   //   with each iteration of the loop.
791   RunCleanupsScope ConditionScope(*this);
792 
793   if (S.getConditionVariable())
794     EmitDecl(*S.getConditionVariable());
795 
796   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
797   // evaluation of the controlling expression takes place before each
798   // execution of the loop body.
799   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
800 
801   // while(1) is common, avoid extra exit blocks.  Be sure
802   // to correctly handle break/continue though.
803   bool EmitBoolCondBranch = true;
804   bool LoopMustProgress = false;
805   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) {
806     if (C->isOne()) {
807       EmitBoolCondBranch = false;
808       FnIsMustProgress = false;
809     }
810   } else if (LanguageRequiresProgress())
811     LoopMustProgress = true;
812 
813   const SourceRange &R = S.getSourceRange();
814   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
815                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
816                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
817 
818   // As long as the condition is true, go to the loop body.
819   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
820   if (EmitBoolCondBranch) {
821     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
822     if (ConditionScope.requiresCleanups())
823       ExitBlock = createBasicBlock("while.exit");
824     llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop(
825         S.getCond(), getProfileCount(S.getBody()), S.getBody());
826     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
827 
828     if (ExitBlock != LoopExit.getBlock()) {
829       EmitBlock(ExitBlock);
830       EmitBranchThroughCleanup(LoopExit);
831     }
832   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
833     CGM.getDiags().Report(A->getLocation(),
834                           diag::warn_attribute_has_no_effect_on_infinite_loop)
835         << A << A->getRange();
836     CGM.getDiags().Report(
837         S.getWhileLoc(),
838         diag::note_attribute_has_no_effect_on_infinite_loop_here)
839         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
840   }
841 
842   // Emit the loop body.  We have to emit this in a cleanup scope
843   // because it might be a singleton DeclStmt.
844   {
845     RunCleanupsScope BodyScope(*this);
846     EmitBlock(LoopBody);
847     incrementProfileCounter(&S);
848     EmitStmt(S.getBody());
849   }
850 
851   BreakContinueStack.pop_back();
852 
853   // Immediately force cleanup.
854   ConditionScope.ForceCleanup();
855 
856   EmitStopPoint(&S);
857   // Branch to the loop header again.
858   EmitBranch(LoopHeader.getBlock());
859 
860   LoopStack.pop();
861 
862   // Emit the exit block.
863   EmitBlock(LoopExit.getBlock(), true);
864 
865   // The LoopHeader typically is just a branch if we skipped emitting
866   // a branch, try to erase it.
867   if (!EmitBoolCondBranch)
868     SimplifyForwardingBlocks(LoopHeader.getBlock());
869 }
870 
871 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
872                                  ArrayRef<const Attr *> DoAttrs) {
873   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
874   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
875 
876   uint64_t ParentCount = getCurrentProfileCount();
877 
878   // Store the blocks to use for break and continue.
879   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
880 
881   // Emit the body of the loop.
882   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
883 
884   EmitBlockWithFallThrough(LoopBody, &S);
885   {
886     RunCleanupsScope BodyScope(*this);
887     EmitStmt(S.getBody());
888   }
889 
890   EmitBlock(LoopCond.getBlock());
891 
892   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
893   // after each execution of the loop body."
894 
895   // Evaluate the conditional in the while header.
896   // C99 6.8.5p2/p4: The first substatement is executed if the expression
897   // compares unequal to 0.  The condition must be a scalar type.
898   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
899 
900   BreakContinueStack.pop_back();
901 
902   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
903   // to correctly handle break/continue though.
904   bool EmitBoolCondBranch = true;
905   bool LoopMustProgress = false;
906   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) {
907     if (C->isZero())
908       EmitBoolCondBranch = false;
909     else if (C->isOne())
910       FnIsMustProgress = false;
911   } else if (LanguageRequiresProgress())
912     LoopMustProgress = true;
913 
914   const SourceRange &R = S.getSourceRange();
915   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
916                  SourceLocToDebugLoc(R.getBegin()),
917                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
918 
919   // As long as the condition is true, iterate the loop.
920   if (EmitBoolCondBranch) {
921     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
922     Builder.CreateCondBr(
923         BoolCondVal, LoopBody, LoopExit.getBlock(),
924         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
925   }
926 
927   LoopStack.pop();
928 
929   // Emit the exit block.
930   EmitBlock(LoopExit.getBlock());
931 
932   // The DoCond block typically is just a branch if we skipped
933   // emitting a branch, try to erase it.
934   if (!EmitBoolCondBranch)
935     SimplifyForwardingBlocks(LoopCond.getBlock());
936 }
937 
938 void CodeGenFunction::EmitForStmt(const ForStmt &S,
939                                   ArrayRef<const Attr *> ForAttrs) {
940   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
941 
942   LexicalScope ForScope(*this, S.getSourceRange());
943 
944   // Evaluate the first part before the loop.
945   if (S.getInit())
946     EmitStmt(S.getInit());
947 
948   // Start the loop with a block that tests the condition.
949   // If there's an increment, the continue scope will be overwritten
950   // later.
951   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
952   llvm::BasicBlock *CondBlock = CondDest.getBlock();
953   EmitBlock(CondBlock);
954 
955   bool LoopMustProgress = false;
956   Expr::EvalResult Result;
957   if (LanguageRequiresProgress()) {
958     if (!S.getCond()) {
959       FnIsMustProgress = false;
960     } else if (!S.getCond()->EvaluateAsInt(Result, getContext())) {
961       LoopMustProgress = true;
962     }
963   }
964 
965   const SourceRange &R = S.getSourceRange();
966   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
967                  SourceLocToDebugLoc(R.getBegin()),
968                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
969 
970   // Create a cleanup scope for the condition variable cleanups.
971   LexicalScope ConditionScope(*this, S.getSourceRange());
972 
973   // If the for loop doesn't have an increment we can just use the condition as
974   // the continue block. Otherwise, if there is no condition variable, we can
975   // form the continue block now. If there is a condition variable, we can't
976   // form the continue block until after we've emitted the condition, because
977   // the condition is in scope in the increment, but Sema's jump diagnostics
978   // ensure that there are no continues from the condition variable that jump
979   // to the loop increment.
980   JumpDest Continue;
981   if (!S.getInc())
982     Continue = CondDest;
983   else if (!S.getConditionVariable())
984     Continue = getJumpDestInCurrentScope("for.inc");
985   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
986 
987   if (S.getCond()) {
988     // If the for statement has a condition scope, emit the local variable
989     // declaration.
990     if (S.getConditionVariable()) {
991       EmitDecl(*S.getConditionVariable());
992 
993       // We have entered the condition variable's scope, so we're now able to
994       // jump to the continue block.
995       Continue = getJumpDestInCurrentScope("for.inc");
996       BreakContinueStack.back().ContinueBlock = Continue;
997     }
998 
999     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1000     // If there are any cleanups between here and the loop-exit scope,
1001     // create a block to stage a loop exit along.
1002     if (ForScope.requiresCleanups())
1003       ExitBlock = createBasicBlock("for.cond.cleanup");
1004 
1005     // As long as the condition is true, iterate the loop.
1006     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1007 
1008     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1009     // compares unequal to 0.  The condition must be a scalar type.
1010     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1011     llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop(
1012         S.getCond(), getProfileCount(S.getBody()), S.getBody());
1013 
1014     if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
1015       if (C->isOne())
1016         FnIsMustProgress = false;
1017 
1018     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1019 
1020     if (ExitBlock != LoopExit.getBlock()) {
1021       EmitBlock(ExitBlock);
1022       EmitBranchThroughCleanup(LoopExit);
1023     }
1024 
1025     EmitBlock(ForBody);
1026   } else {
1027     // Treat it as a non-zero constant.  Don't even create a new block for the
1028     // body, just fall into it.
1029   }
1030   incrementProfileCounter(&S);
1031 
1032   {
1033     // Create a separate cleanup scope for the body, in case it is not
1034     // a compound statement.
1035     RunCleanupsScope BodyScope(*this);
1036     EmitStmt(S.getBody());
1037   }
1038 
1039   // If there is an increment, emit it next.
1040   if (S.getInc()) {
1041     EmitBlock(Continue.getBlock());
1042     EmitStmt(S.getInc());
1043   }
1044 
1045   BreakContinueStack.pop_back();
1046 
1047   ConditionScope.ForceCleanup();
1048 
1049   EmitStopPoint(&S);
1050   EmitBranch(CondBlock);
1051 
1052   ForScope.ForceCleanup();
1053 
1054   LoopStack.pop();
1055 
1056   // Emit the fall-through block.
1057   EmitBlock(LoopExit.getBlock(), true);
1058 }
1059 
1060 void
1061 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1062                                      ArrayRef<const Attr *> ForAttrs) {
1063   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1064 
1065   LexicalScope ForScope(*this, S.getSourceRange());
1066 
1067   // Evaluate the first pieces before the loop.
1068   if (S.getInit())
1069     EmitStmt(S.getInit());
1070   EmitStmt(S.getRangeStmt());
1071   EmitStmt(S.getBeginStmt());
1072   EmitStmt(S.getEndStmt());
1073 
1074   // Start the loop with a block that tests the condition.
1075   // If there's an increment, the continue scope will be overwritten
1076   // later.
1077   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1078   EmitBlock(CondBlock);
1079 
1080   const SourceRange &R = S.getSourceRange();
1081   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1082                  SourceLocToDebugLoc(R.getBegin()),
1083                  SourceLocToDebugLoc(R.getEnd()));
1084 
1085   // If there are any cleanups between here and the loop-exit scope,
1086   // create a block to stage a loop exit along.
1087   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1088   if (ForScope.requiresCleanups())
1089     ExitBlock = createBasicBlock("for.cond.cleanup");
1090 
1091   // The loop body, consisting of the specified body and the loop variable.
1092   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1093 
1094   // The body is executed if the expression, contextually converted
1095   // to bool, is true.
1096   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1097   llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop(
1098       S.getCond(), getProfileCount(S.getBody()), S.getBody());
1099   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1100 
1101   if (ExitBlock != LoopExit.getBlock()) {
1102     EmitBlock(ExitBlock);
1103     EmitBranchThroughCleanup(LoopExit);
1104   }
1105 
1106   EmitBlock(ForBody);
1107   incrementProfileCounter(&S);
1108 
1109   // Create a block for the increment. In case of a 'continue', we jump there.
1110   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1111 
1112   // Store the blocks to use for break and continue.
1113   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1114 
1115   {
1116     // Create a separate cleanup scope for the loop variable and body.
1117     LexicalScope BodyScope(*this, S.getSourceRange());
1118     EmitStmt(S.getLoopVarStmt());
1119     EmitStmt(S.getBody());
1120   }
1121 
1122   EmitStopPoint(&S);
1123   // If there is an increment, emit it next.
1124   EmitBlock(Continue.getBlock());
1125   EmitStmt(S.getInc());
1126 
1127   BreakContinueStack.pop_back();
1128 
1129   EmitBranch(CondBlock);
1130 
1131   ForScope.ForceCleanup();
1132 
1133   LoopStack.pop();
1134 
1135   // Emit the fall-through block.
1136   EmitBlock(LoopExit.getBlock(), true);
1137 }
1138 
1139 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1140   if (RV.isScalar()) {
1141     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1142   } else if (RV.isAggregate()) {
1143     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1144     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1145     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1146   } else {
1147     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1148                        /*init*/ true);
1149   }
1150   EmitBranchThroughCleanup(ReturnBlock);
1151 }
1152 
1153 namespace {
1154 // RAII struct used to save and restore a return statment's result expression.
1155 struct SaveRetExprRAII {
1156   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1157       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1158     CGF.RetExpr = RetExpr;
1159   }
1160   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1161   const Expr *OldRetExpr;
1162   CodeGenFunction &CGF;
1163 };
1164 } // namespace
1165 
1166 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1167 /// if the function returns void, or may be missing one if the function returns
1168 /// non-void.  Fun stuff :).
1169 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1170   if (requiresReturnValueCheck()) {
1171     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1172     auto *SLocPtr =
1173         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1174                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1175     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1176     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1177     assert(ReturnLocation.isValid() && "No valid return location");
1178     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1179                         ReturnLocation);
1180   }
1181 
1182   // Returning from an outlined SEH helper is UB, and we already warn on it.
1183   if (IsOutlinedSEHHelper) {
1184     Builder.CreateUnreachable();
1185     Builder.ClearInsertionPoint();
1186   }
1187 
1188   // Emit the result value, even if unused, to evaluate the side effects.
1189   const Expr *RV = S.getRetValue();
1190 
1191   // Record the result expression of the return statement. The recorded
1192   // expression is used to determine whether a block capture's lifetime should
1193   // end at the end of the full expression as opposed to the end of the scope
1194   // enclosing the block expression.
1195   //
1196   // This permits a small, easily-implemented exception to our over-conservative
1197   // rules about not jumping to statements following block literals with
1198   // non-trivial cleanups.
1199   SaveRetExprRAII SaveRetExpr(RV, *this);
1200 
1201   RunCleanupsScope cleanupScope(*this);
1202   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1203     RV = EWC->getSubExpr();
1204   // FIXME: Clean this up by using an LValue for ReturnTemp,
1205   // EmitStoreThroughLValue, and EmitAnyExpr.
1206   // Check if the NRVO candidate was not globalized in OpenMP mode.
1207   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1208       S.getNRVOCandidate()->isNRVOVariable() &&
1209       (!getLangOpts().OpenMP ||
1210        !CGM.getOpenMPRuntime()
1211             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1212             .isValid())) {
1213     // Apply the named return value optimization for this return statement,
1214     // which means doing nothing: the appropriate result has already been
1215     // constructed into the NRVO variable.
1216 
1217     // If there is an NRVO flag for this variable, set it to 1 into indicate
1218     // that the cleanup code should not destroy the variable.
1219     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1220       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1221   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1222     // Make sure not to return anything, but evaluate the expression
1223     // for side effects.
1224     if (RV)
1225       EmitAnyExpr(RV);
1226   } else if (!RV) {
1227     // Do nothing (return value is left uninitialized)
1228   } else if (FnRetTy->isReferenceType()) {
1229     // If this function returns a reference, take the address of the expression
1230     // rather than the value.
1231     RValue Result = EmitReferenceBindingToExpr(RV);
1232     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1233   } else {
1234     switch (getEvaluationKind(RV->getType())) {
1235     case TEK_Scalar:
1236       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1237       break;
1238     case TEK_Complex:
1239       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1240                                 /*isInit*/ true);
1241       break;
1242     case TEK_Aggregate:
1243       EmitAggExpr(RV, AggValueSlot::forAddr(
1244                           ReturnValue, Qualifiers(),
1245                           AggValueSlot::IsDestructed,
1246                           AggValueSlot::DoesNotNeedGCBarriers,
1247                           AggValueSlot::IsNotAliased,
1248                           getOverlapForReturnValue()));
1249       break;
1250     }
1251   }
1252 
1253   ++NumReturnExprs;
1254   if (!RV || RV->isEvaluatable(getContext()))
1255     ++NumSimpleReturnExprs;
1256 
1257   cleanupScope.ForceCleanup();
1258   EmitBranchThroughCleanup(ReturnBlock);
1259 }
1260 
1261 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1262   // As long as debug info is modeled with instructions, we have to ensure we
1263   // have a place to insert here and write the stop point here.
1264   if (HaveInsertPoint())
1265     EmitStopPoint(&S);
1266 
1267   for (const auto *I : S.decls())
1268     EmitDecl(*I);
1269 }
1270 
1271 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1272   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1273 
1274   // If this code is reachable then emit a stop point (if generating
1275   // debug info). We have to do this ourselves because we are on the
1276   // "simple" statement path.
1277   if (HaveInsertPoint())
1278     EmitStopPoint(&S);
1279 
1280   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1281 }
1282 
1283 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1284   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1285 
1286   // If this code is reachable then emit a stop point (if generating
1287   // debug info). We have to do this ourselves because we are on the
1288   // "simple" statement path.
1289   if (HaveInsertPoint())
1290     EmitStopPoint(&S);
1291 
1292   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1293 }
1294 
1295 /// EmitCaseStmtRange - If case statement range is not too big then
1296 /// add multiple cases to switch instruction, one for each value within
1297 /// the range. If range is too big then emit "if" condition check.
1298 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1299                                         ArrayRef<const Attr *> Attrs) {
1300   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1301 
1302   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1303   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1304 
1305   // Emit the code for this case. We do this first to make sure it is
1306   // properly chained from our predecessor before generating the
1307   // switch machinery to enter this block.
1308   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1309   EmitBlockWithFallThrough(CaseDest, &S);
1310   EmitStmt(S.getSubStmt());
1311 
1312   // If range is empty, do nothing.
1313   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1314     return;
1315 
1316   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1317   llvm::APInt Range = RHS - LHS;
1318   // FIXME: parameters such as this should not be hardcoded.
1319   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1320     // Range is small enough to add multiple switch instruction cases.
1321     uint64_t Total = getProfileCount(&S);
1322     unsigned NCases = Range.getZExtValue() + 1;
1323     // We only have one region counter for the entire set of cases here, so we
1324     // need to divide the weights evenly between the generated cases, ensuring
1325     // that the total weight is preserved. E.g., a weight of 5 over three cases
1326     // will be distributed as weights of 2, 2, and 1.
1327     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1328     for (unsigned I = 0; I != NCases; ++I) {
1329       if (SwitchWeights)
1330         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1331       else if (SwitchLikelihood)
1332         SwitchLikelihood->push_back(LH);
1333 
1334       if (Rem)
1335         Rem--;
1336       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1337       ++LHS;
1338     }
1339     return;
1340   }
1341 
1342   // The range is too big. Emit "if" condition into a new block,
1343   // making sure to save and restore the current insertion point.
1344   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1345 
1346   // Push this test onto the chain of range checks (which terminates
1347   // in the default basic block). The switch's default will be changed
1348   // to the top of this chain after switch emission is complete.
1349   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1350   CaseRangeBlock = createBasicBlock("sw.caserange");
1351 
1352   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1353   Builder.SetInsertPoint(CaseRangeBlock);
1354 
1355   // Emit range check.
1356   llvm::Value *Diff =
1357     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1358   llvm::Value *Cond =
1359     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1360 
1361   llvm::MDNode *Weights = nullptr;
1362   if (SwitchWeights) {
1363     uint64_t ThisCount = getProfileCount(&S);
1364     uint64_t DefaultCount = (*SwitchWeights)[0];
1365     Weights = createProfileWeights(ThisCount, DefaultCount);
1366 
1367     // Since we're chaining the switch default through each large case range, we
1368     // need to update the weight for the default, ie, the first case, to include
1369     // this case.
1370     (*SwitchWeights)[0] += ThisCount;
1371   } else if (SwitchLikelihood)
1372     Weights = createBranchWeights(LH);
1373 
1374   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1375 
1376   // Restore the appropriate insertion point.
1377   if (RestoreBB)
1378     Builder.SetInsertPoint(RestoreBB);
1379   else
1380     Builder.ClearInsertionPoint();
1381 }
1382 
1383 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1384                                    ArrayRef<const Attr *> Attrs) {
1385   // If there is no enclosing switch instance that we're aware of, then this
1386   // case statement and its block can be elided.  This situation only happens
1387   // when we've constant-folded the switch, are emitting the constant case,
1388   // and part of the constant case includes another case statement.  For
1389   // instance: switch (4) { case 4: do { case 5: } while (1); }
1390   if (!SwitchInsn) {
1391     EmitStmt(S.getSubStmt());
1392     return;
1393   }
1394 
1395   // Handle case ranges.
1396   if (S.getRHS()) {
1397     EmitCaseStmtRange(S, Attrs);
1398     return;
1399   }
1400 
1401   llvm::ConstantInt *CaseVal =
1402     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1403   if (SwitchLikelihood)
1404     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1405 
1406   // If the body of the case is just a 'break', try to not emit an empty block.
1407   // If we're profiling or we're not optimizing, leave the block in for better
1408   // debug and coverage analysis.
1409   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1410       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1411       isa<BreakStmt>(S.getSubStmt())) {
1412     JumpDest Block = BreakContinueStack.back().BreakBlock;
1413 
1414     // Only do this optimization if there are no cleanups that need emitting.
1415     if (isObviouslyBranchWithoutCleanups(Block)) {
1416       if (SwitchWeights)
1417         SwitchWeights->push_back(getProfileCount(&S));
1418       SwitchInsn->addCase(CaseVal, Block.getBlock());
1419 
1420       // If there was a fallthrough into this case, make sure to redirect it to
1421       // the end of the switch as well.
1422       if (Builder.GetInsertBlock()) {
1423         Builder.CreateBr(Block.getBlock());
1424         Builder.ClearInsertionPoint();
1425       }
1426       return;
1427     }
1428   }
1429 
1430   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1431   EmitBlockWithFallThrough(CaseDest, &S);
1432   if (SwitchWeights)
1433     SwitchWeights->push_back(getProfileCount(&S));
1434   SwitchInsn->addCase(CaseVal, CaseDest);
1435 
1436   // Recursively emitting the statement is acceptable, but is not wonderful for
1437   // code where we have many case statements nested together, i.e.:
1438   //  case 1:
1439   //    case 2:
1440   //      case 3: etc.
1441   // Handling this recursively will create a new block for each case statement
1442   // that falls through to the next case which is IR intensive.  It also causes
1443   // deep recursion which can run into stack depth limitations.  Handle
1444   // sequential non-range case statements specially.
1445   //
1446   // TODO When the next case has a likelihood attribute the code returns to the
1447   // recursive algorithm. Maybe improve this case if it becomes common practice
1448   // to use a lot of attributes.
1449   const CaseStmt *CurCase = &S;
1450   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1451 
1452   // Otherwise, iteratively add consecutive cases to this switch stmt.
1453   while (NextCase && NextCase->getRHS() == nullptr) {
1454     CurCase = NextCase;
1455     llvm::ConstantInt *CaseVal =
1456       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1457 
1458     if (SwitchWeights)
1459       SwitchWeights->push_back(getProfileCount(NextCase));
1460     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1461       CaseDest = createBasicBlock("sw.bb");
1462       EmitBlockWithFallThrough(CaseDest, CurCase);
1463     }
1464     // Since this loop is only executed when the CaseStmt has no attributes
1465     // use a hard-coded value.
1466     if (SwitchLikelihood)
1467       SwitchLikelihood->push_back(Stmt::LH_None);
1468 
1469     SwitchInsn->addCase(CaseVal, CaseDest);
1470     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1471   }
1472 
1473   // Normal default recursion for non-cases.
1474   EmitStmt(CurCase->getSubStmt());
1475 }
1476 
1477 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1478                                       ArrayRef<const Attr *> Attrs) {
1479   // If there is no enclosing switch instance that we're aware of, then this
1480   // default statement can be elided. This situation only happens when we've
1481   // constant-folded the switch.
1482   if (!SwitchInsn) {
1483     EmitStmt(S.getSubStmt());
1484     return;
1485   }
1486 
1487   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1488   assert(DefaultBlock->empty() &&
1489          "EmitDefaultStmt: Default block already defined?");
1490 
1491   if (SwitchLikelihood)
1492     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1493 
1494   EmitBlockWithFallThrough(DefaultBlock, &S);
1495 
1496   EmitStmt(S.getSubStmt());
1497 }
1498 
1499 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1500 /// constant value that is being switched on, see if we can dead code eliminate
1501 /// the body of the switch to a simple series of statements to emit.  Basically,
1502 /// on a switch (5) we want to find these statements:
1503 ///    case 5:
1504 ///      printf(...);    <--
1505 ///      ++i;            <--
1506 ///      break;
1507 ///
1508 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1509 /// transformation (for example, one of the elided statements contains a label
1510 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1511 /// should include statements after it (e.g. the printf() line is a substmt of
1512 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1513 /// statement, then return CSFC_Success.
1514 ///
1515 /// If Case is non-null, then we are looking for the specified case, checking
1516 /// that nothing we jump over contains labels.  If Case is null, then we found
1517 /// the case and are looking for the break.
1518 ///
1519 /// If the recursive walk actually finds our Case, then we set FoundCase to
1520 /// true.
1521 ///
1522 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1523 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1524                                             const SwitchCase *Case,
1525                                             bool &FoundCase,
1526                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1527   // If this is a null statement, just succeed.
1528   if (!S)
1529     return Case ? CSFC_Success : CSFC_FallThrough;
1530 
1531   // If this is the switchcase (case 4: or default) that we're looking for, then
1532   // we're in business.  Just add the substatement.
1533   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1534     if (S == Case) {
1535       FoundCase = true;
1536       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1537                                       ResultStmts);
1538     }
1539 
1540     // Otherwise, this is some other case or default statement, just ignore it.
1541     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1542                                     ResultStmts);
1543   }
1544 
1545   // If we are in the live part of the code and we found our break statement,
1546   // return a success!
1547   if (!Case && isa<BreakStmt>(S))
1548     return CSFC_Success;
1549 
1550   // If this is a switch statement, then it might contain the SwitchCase, the
1551   // break, or neither.
1552   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1553     // Handle this as two cases: we might be looking for the SwitchCase (if so
1554     // the skipped statements must be skippable) or we might already have it.
1555     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1556     bool StartedInLiveCode = FoundCase;
1557     unsigned StartSize = ResultStmts.size();
1558 
1559     // If we've not found the case yet, scan through looking for it.
1560     if (Case) {
1561       // Keep track of whether we see a skipped declaration.  The code could be
1562       // using the declaration even if it is skipped, so we can't optimize out
1563       // the decl if the kept statements might refer to it.
1564       bool HadSkippedDecl = false;
1565 
1566       // If we're looking for the case, just see if we can skip each of the
1567       // substatements.
1568       for (; Case && I != E; ++I) {
1569         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1570 
1571         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1572         case CSFC_Failure: return CSFC_Failure;
1573         case CSFC_Success:
1574           // A successful result means that either 1) that the statement doesn't
1575           // have the case and is skippable, or 2) does contain the case value
1576           // and also contains the break to exit the switch.  In the later case,
1577           // we just verify the rest of the statements are elidable.
1578           if (FoundCase) {
1579             // If we found the case and skipped declarations, we can't do the
1580             // optimization.
1581             if (HadSkippedDecl)
1582               return CSFC_Failure;
1583 
1584             for (++I; I != E; ++I)
1585               if (CodeGenFunction::ContainsLabel(*I, true))
1586                 return CSFC_Failure;
1587             return CSFC_Success;
1588           }
1589           break;
1590         case CSFC_FallThrough:
1591           // If we have a fallthrough condition, then we must have found the
1592           // case started to include statements.  Consider the rest of the
1593           // statements in the compound statement as candidates for inclusion.
1594           assert(FoundCase && "Didn't find case but returned fallthrough?");
1595           // We recursively found Case, so we're not looking for it anymore.
1596           Case = nullptr;
1597 
1598           // If we found the case and skipped declarations, we can't do the
1599           // optimization.
1600           if (HadSkippedDecl)
1601             return CSFC_Failure;
1602           break;
1603         }
1604       }
1605 
1606       if (!FoundCase)
1607         return CSFC_Success;
1608 
1609       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1610     }
1611 
1612     // If we have statements in our range, then we know that the statements are
1613     // live and need to be added to the set of statements we're tracking.
1614     bool AnyDecls = false;
1615     for (; I != E; ++I) {
1616       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1617 
1618       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1619       case CSFC_Failure: return CSFC_Failure;
1620       case CSFC_FallThrough:
1621         // A fallthrough result means that the statement was simple and just
1622         // included in ResultStmt, keep adding them afterwards.
1623         break;
1624       case CSFC_Success:
1625         // A successful result means that we found the break statement and
1626         // stopped statement inclusion.  We just ensure that any leftover stmts
1627         // are skippable and return success ourselves.
1628         for (++I; I != E; ++I)
1629           if (CodeGenFunction::ContainsLabel(*I, true))
1630             return CSFC_Failure;
1631         return CSFC_Success;
1632       }
1633     }
1634 
1635     // If we're about to fall out of a scope without hitting a 'break;', we
1636     // can't perform the optimization if there were any decls in that scope
1637     // (we'd lose their end-of-lifetime).
1638     if (AnyDecls) {
1639       // If the entire compound statement was live, there's one more thing we
1640       // can try before giving up: emit the whole thing as a single statement.
1641       // We can do that unless the statement contains a 'break;'.
1642       // FIXME: Such a break must be at the end of a construct within this one.
1643       // We could emit this by just ignoring the BreakStmts entirely.
1644       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1645         ResultStmts.resize(StartSize);
1646         ResultStmts.push_back(S);
1647       } else {
1648         return CSFC_Failure;
1649       }
1650     }
1651 
1652     return CSFC_FallThrough;
1653   }
1654 
1655   // Okay, this is some other statement that we don't handle explicitly, like a
1656   // for statement or increment etc.  If we are skipping over this statement,
1657   // just verify it doesn't have labels, which would make it invalid to elide.
1658   if (Case) {
1659     if (CodeGenFunction::ContainsLabel(S, true))
1660       return CSFC_Failure;
1661     return CSFC_Success;
1662   }
1663 
1664   // Otherwise, we want to include this statement.  Everything is cool with that
1665   // so long as it doesn't contain a break out of the switch we're in.
1666   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1667 
1668   // Otherwise, everything is great.  Include the statement and tell the caller
1669   // that we fall through and include the next statement as well.
1670   ResultStmts.push_back(S);
1671   return CSFC_FallThrough;
1672 }
1673 
1674 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1675 /// then invoke CollectStatementsForCase to find the list of statements to emit
1676 /// for a switch on constant.  See the comment above CollectStatementsForCase
1677 /// for more details.
1678 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1679                                        const llvm::APSInt &ConstantCondValue,
1680                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1681                                        ASTContext &C,
1682                                        const SwitchCase *&ResultCase) {
1683   // First step, find the switch case that is being branched to.  We can do this
1684   // efficiently by scanning the SwitchCase list.
1685   const SwitchCase *Case = S.getSwitchCaseList();
1686   const DefaultStmt *DefaultCase = nullptr;
1687 
1688   for (; Case; Case = Case->getNextSwitchCase()) {
1689     // It's either a default or case.  Just remember the default statement in
1690     // case we're not jumping to any numbered cases.
1691     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1692       DefaultCase = DS;
1693       continue;
1694     }
1695 
1696     // Check to see if this case is the one we're looking for.
1697     const CaseStmt *CS = cast<CaseStmt>(Case);
1698     // Don't handle case ranges yet.
1699     if (CS->getRHS()) return false;
1700 
1701     // If we found our case, remember it as 'case'.
1702     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1703       break;
1704   }
1705 
1706   // If we didn't find a matching case, we use a default if it exists, or we
1707   // elide the whole switch body!
1708   if (!Case) {
1709     // It is safe to elide the body of the switch if it doesn't contain labels
1710     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1711     if (!DefaultCase)
1712       return !CodeGenFunction::ContainsLabel(&S);
1713     Case = DefaultCase;
1714   }
1715 
1716   // Ok, we know which case is being jumped to, try to collect all the
1717   // statements that follow it.  This can fail for a variety of reasons.  Also,
1718   // check to see that the recursive walk actually found our case statement.
1719   // Insane cases like this can fail to find it in the recursive walk since we
1720   // don't handle every stmt kind:
1721   // switch (4) {
1722   //   while (1) {
1723   //     case 4: ...
1724   bool FoundCase = false;
1725   ResultCase = Case;
1726   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1727                                   ResultStmts) != CSFC_Failure &&
1728          FoundCase;
1729 }
1730 
1731 static Optional<SmallVector<uint64_t, 16>>
1732 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1733   // Are there enough branches to weight them?
1734   if (Likelihoods.size() <= 1)
1735     return None;
1736 
1737   uint64_t NumUnlikely = 0;
1738   uint64_t NumNone = 0;
1739   uint64_t NumLikely = 0;
1740   for (const auto LH : Likelihoods) {
1741     switch (LH) {
1742     case Stmt::LH_Unlikely:
1743       ++NumUnlikely;
1744       break;
1745     case Stmt::LH_None:
1746       ++NumNone;
1747       break;
1748     case Stmt::LH_Likely:
1749       ++NumLikely;
1750       break;
1751     }
1752   }
1753 
1754   // Is there a likelihood attribute used?
1755   if (NumUnlikely == 0 && NumLikely == 0)
1756     return None;
1757 
1758   // When multiple cases share the same code they can be combined during
1759   // optimization. In that case the weights of the branch will be the sum of
1760   // the individual weights. Make sure the combined sum of all neutral cases
1761   // doesn't exceed the value of a single likely attribute.
1762   // The additions both avoid divisions by 0 and make sure the weights of None
1763   // don't exceed the weight of Likely.
1764   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1765   const uint64_t None = Likely / (NumNone + 1);
1766   const uint64_t Unlikely = 0;
1767 
1768   SmallVector<uint64_t, 16> Result;
1769   Result.reserve(Likelihoods.size());
1770   for (const auto LH : Likelihoods) {
1771     switch (LH) {
1772     case Stmt::LH_Unlikely:
1773       Result.push_back(Unlikely);
1774       break;
1775     case Stmt::LH_None:
1776       Result.push_back(None);
1777       break;
1778     case Stmt::LH_Likely:
1779       Result.push_back(Likely);
1780       break;
1781     }
1782   }
1783 
1784   return Result;
1785 }
1786 
1787 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1788   // Handle nested switch statements.
1789   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1790   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1791   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1792   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1793 
1794   // See if we can constant fold the condition of the switch and therefore only
1795   // emit the live case statement (if any) of the switch.
1796   llvm::APSInt ConstantCondValue;
1797   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1798     SmallVector<const Stmt*, 4> CaseStmts;
1799     const SwitchCase *Case = nullptr;
1800     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1801                                    getContext(), Case)) {
1802       if (Case)
1803         incrementProfileCounter(Case);
1804       RunCleanupsScope ExecutedScope(*this);
1805 
1806       if (S.getInit())
1807         EmitStmt(S.getInit());
1808 
1809       // Emit the condition variable if needed inside the entire cleanup scope
1810       // used by this special case for constant folded switches.
1811       if (S.getConditionVariable())
1812         EmitDecl(*S.getConditionVariable());
1813 
1814       // At this point, we are no longer "within" a switch instance, so
1815       // we can temporarily enforce this to ensure that any embedded case
1816       // statements are not emitted.
1817       SwitchInsn = nullptr;
1818 
1819       // Okay, we can dead code eliminate everything except this case.  Emit the
1820       // specified series of statements and we're good.
1821       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1822         EmitStmt(CaseStmts[i]);
1823       incrementProfileCounter(&S);
1824 
1825       // Now we want to restore the saved switch instance so that nested
1826       // switches continue to function properly
1827       SwitchInsn = SavedSwitchInsn;
1828 
1829       return;
1830     }
1831   }
1832 
1833   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1834 
1835   RunCleanupsScope ConditionScope(*this);
1836 
1837   if (S.getInit())
1838     EmitStmt(S.getInit());
1839 
1840   if (S.getConditionVariable())
1841     EmitDecl(*S.getConditionVariable());
1842   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1843 
1844   // Create basic block to hold stuff that comes after switch
1845   // statement. We also need to create a default block now so that
1846   // explicit case ranges tests can have a place to jump to on
1847   // failure.
1848   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1849   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1850   if (PGO.haveRegionCounts()) {
1851     // Walk the SwitchCase list to find how many there are.
1852     uint64_t DefaultCount = 0;
1853     unsigned NumCases = 0;
1854     for (const SwitchCase *Case = S.getSwitchCaseList();
1855          Case;
1856          Case = Case->getNextSwitchCase()) {
1857       if (isa<DefaultStmt>(Case))
1858         DefaultCount = getProfileCount(Case);
1859       NumCases += 1;
1860     }
1861     SwitchWeights = new SmallVector<uint64_t, 16>();
1862     SwitchWeights->reserve(NumCases);
1863     // The default needs to be first. We store the edge count, so we already
1864     // know the right weight.
1865     SwitchWeights->push_back(DefaultCount);
1866   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1867     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1868     // Initialize the default case.
1869     SwitchLikelihood->push_back(Stmt::LH_None);
1870   }
1871 
1872   CaseRangeBlock = DefaultBlock;
1873 
1874   // Clear the insertion point to indicate we are in unreachable code.
1875   Builder.ClearInsertionPoint();
1876 
1877   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1878   // then reuse last ContinueBlock.
1879   JumpDest OuterContinue;
1880   if (!BreakContinueStack.empty())
1881     OuterContinue = BreakContinueStack.back().ContinueBlock;
1882 
1883   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1884 
1885   // Emit switch body.
1886   EmitStmt(S.getBody());
1887 
1888   BreakContinueStack.pop_back();
1889 
1890   // Update the default block in case explicit case range tests have
1891   // been chained on top.
1892   SwitchInsn->setDefaultDest(CaseRangeBlock);
1893 
1894   // If a default was never emitted:
1895   if (!DefaultBlock->getParent()) {
1896     // If we have cleanups, emit the default block so that there's a
1897     // place to jump through the cleanups from.
1898     if (ConditionScope.requiresCleanups()) {
1899       EmitBlock(DefaultBlock);
1900 
1901     // Otherwise, just forward the default block to the switch end.
1902     } else {
1903       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1904       delete DefaultBlock;
1905     }
1906   }
1907 
1908   ConditionScope.ForceCleanup();
1909 
1910   // Emit continuation.
1911   EmitBlock(SwitchExit.getBlock(), true);
1912   incrementProfileCounter(&S);
1913 
1914   // If the switch has a condition wrapped by __builtin_unpredictable,
1915   // create metadata that specifies that the switch is unpredictable.
1916   // Don't bother if not optimizing because that metadata would not be used.
1917   auto *Call = dyn_cast<CallExpr>(S.getCond());
1918   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1919     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1920     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1921       llvm::MDBuilder MDHelper(getLLVMContext());
1922       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1923                               MDHelper.createUnpredictable());
1924     }
1925   }
1926 
1927   if (SwitchWeights) {
1928     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1929            "switch weights do not match switch cases");
1930     // If there's only one jump destination there's no sense weighting it.
1931     if (SwitchWeights->size() > 1)
1932       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1933                               createProfileWeights(*SwitchWeights));
1934     delete SwitchWeights;
1935   } else if (SwitchLikelihood) {
1936     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
1937            "switch likelihoods do not match switch cases");
1938     Optional<SmallVector<uint64_t, 16>> LHW =
1939         getLikelihoodWeights(*SwitchLikelihood);
1940     if (LHW) {
1941       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
1942       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1943                               createProfileWeights(*LHW));
1944     }
1945     delete SwitchLikelihood;
1946   }
1947   SwitchInsn = SavedSwitchInsn;
1948   SwitchWeights = SavedSwitchWeights;
1949   SwitchLikelihood = SavedSwitchLikelihood;
1950   CaseRangeBlock = SavedCRBlock;
1951 }
1952 
1953 static std::string
1954 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1955                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1956   std::string Result;
1957 
1958   while (*Constraint) {
1959     switch (*Constraint) {
1960     default:
1961       Result += Target.convertConstraint(Constraint);
1962       break;
1963     // Ignore these
1964     case '*':
1965     case '?':
1966     case '!':
1967     case '=': // Will see this and the following in mult-alt constraints.
1968     case '+':
1969       break;
1970     case '#': // Ignore the rest of the constraint alternative.
1971       while (Constraint[1] && Constraint[1] != ',')
1972         Constraint++;
1973       break;
1974     case '&':
1975     case '%':
1976       Result += *Constraint;
1977       while (Constraint[1] && Constraint[1] == *Constraint)
1978         Constraint++;
1979       break;
1980     case ',':
1981       Result += "|";
1982       break;
1983     case 'g':
1984       Result += "imr";
1985       break;
1986     case '[': {
1987       assert(OutCons &&
1988              "Must pass output names to constraints with a symbolic name");
1989       unsigned Index;
1990       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1991       assert(result && "Could not resolve symbolic name"); (void)result;
1992       Result += llvm::utostr(Index);
1993       break;
1994     }
1995     }
1996 
1997     Constraint++;
1998   }
1999 
2000   return Result;
2001 }
2002 
2003 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2004 /// as using a particular register add that as a constraint that will be used
2005 /// in this asm stmt.
2006 static std::string
2007 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2008                        const TargetInfo &Target, CodeGenModule &CGM,
2009                        const AsmStmt &Stmt, const bool EarlyClobber,
2010                        std::string *GCCReg = nullptr) {
2011   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2012   if (!AsmDeclRef)
2013     return Constraint;
2014   const ValueDecl &Value = *AsmDeclRef->getDecl();
2015   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2016   if (!Variable)
2017     return Constraint;
2018   if (Variable->getStorageClass() != SC_Register)
2019     return Constraint;
2020   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2021   if (!Attr)
2022     return Constraint;
2023   StringRef Register = Attr->getLabel();
2024   assert(Target.isValidGCCRegisterName(Register));
2025   // We're using validateOutputConstraint here because we only care if
2026   // this is a register constraint.
2027   TargetInfo::ConstraintInfo Info(Constraint, "");
2028   if (Target.validateOutputConstraint(Info) &&
2029       !Info.allowsRegister()) {
2030     CGM.ErrorUnsupported(&Stmt, "__asm__");
2031     return Constraint;
2032   }
2033   // Canonicalize the register here before returning it.
2034   Register = Target.getNormalizedGCCRegisterName(Register);
2035   if (GCCReg != nullptr)
2036     *GCCReg = Register.str();
2037   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2038 }
2039 
2040 llvm::Value*
2041 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2042                                     LValue InputValue, QualType InputType,
2043                                     std::string &ConstraintStr,
2044                                     SourceLocation Loc) {
2045   llvm::Value *Arg;
2046   if (Info.allowsRegister() || !Info.allowsMemory()) {
2047     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
2048       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
2049     } else {
2050       llvm::Type *Ty = ConvertType(InputType);
2051       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2052       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
2053         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2054         Ty = llvm::PointerType::getUnqual(Ty);
2055 
2056         Arg = Builder.CreateLoad(
2057             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
2058       } else {
2059         Arg = InputValue.getPointer(*this);
2060         ConstraintStr += '*';
2061       }
2062     }
2063   } else {
2064     Arg = InputValue.getPointer(*this);
2065     ConstraintStr += '*';
2066   }
2067 
2068   return Arg;
2069 }
2070 
2071 llvm::Value* CodeGenFunction::EmitAsmInput(
2072                                          const TargetInfo::ConstraintInfo &Info,
2073                                            const Expr *InputExpr,
2074                                            std::string &ConstraintStr) {
2075   // If this can't be a register or memory, i.e., has to be a constant
2076   // (immediate or symbolic), try to emit it as such.
2077   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2078     if (Info.requiresImmediateConstant()) {
2079       Expr::EvalResult EVResult;
2080       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2081 
2082       llvm::APSInt IntResult;
2083       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2084                                           getContext()))
2085         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
2086     }
2087 
2088     Expr::EvalResult Result;
2089     if (InputExpr->EvaluateAsInt(Result, getContext()))
2090       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
2091   }
2092 
2093   if (Info.allowsRegister() || !Info.allowsMemory())
2094     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2095       return EmitScalarExpr(InputExpr);
2096   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2097     return EmitScalarExpr(InputExpr);
2098   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2099   LValue Dest = EmitLValue(InputExpr);
2100   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2101                             InputExpr->getExprLoc());
2102 }
2103 
2104 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2105 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2106 /// integers which are the source locations of the start of each line in the
2107 /// asm.
2108 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2109                                       CodeGenFunction &CGF) {
2110   SmallVector<llvm::Metadata *, 8> Locs;
2111   // Add the location of the first line to the MDNode.
2112   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2113       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
2114   StringRef StrVal = Str->getString();
2115   if (!StrVal.empty()) {
2116     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2117     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2118     unsigned StartToken = 0;
2119     unsigned ByteOffset = 0;
2120 
2121     // Add the location of the start of each subsequent line of the asm to the
2122     // MDNode.
2123     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2124       if (StrVal[i] != '\n') continue;
2125       SourceLocation LineLoc = Str->getLocationOfByte(
2126           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2127       Locs.push_back(llvm::ConstantAsMetadata::get(
2128           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
2129     }
2130   }
2131 
2132   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2133 }
2134 
2135 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2136                               bool ReadOnly, bool ReadNone, bool NoMerge,
2137                               const AsmStmt &S,
2138                               const std::vector<llvm::Type *> &ResultRegTypes,
2139                               CodeGenFunction &CGF,
2140                               std::vector<llvm::Value *> &RegResults) {
2141   Result.addAttribute(llvm::AttributeList::FunctionIndex,
2142                       llvm::Attribute::NoUnwind);
2143   if (NoMerge)
2144     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2145                         llvm::Attribute::NoMerge);
2146   // Attach readnone and readonly attributes.
2147   if (!HasSideEffect) {
2148     if (ReadNone)
2149       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2150                           llvm::Attribute::ReadNone);
2151     else if (ReadOnly)
2152       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2153                           llvm::Attribute::ReadOnly);
2154   }
2155 
2156   // Slap the source location of the inline asm into a !srcloc metadata on the
2157   // call.
2158   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2159     Result.setMetadata("srcloc",
2160                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2161   else {
2162     // At least put the line number on MS inline asm blobs.
2163     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
2164                                         S.getAsmLoc().getRawEncoding());
2165     Result.setMetadata("srcloc",
2166                        llvm::MDNode::get(CGF.getLLVMContext(),
2167                                          llvm::ConstantAsMetadata::get(Loc)));
2168   }
2169 
2170   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2171     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2172     // convergent (meaning, they may call an intrinsically convergent op, such
2173     // as bar.sync, and so can't have certain optimizations applied around
2174     // them).
2175     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2176                         llvm::Attribute::Convergent);
2177   // Extract all of the register value results from the asm.
2178   if (ResultRegTypes.size() == 1) {
2179     RegResults.push_back(&Result);
2180   } else {
2181     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2182       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2183       RegResults.push_back(Tmp);
2184     }
2185   }
2186 }
2187 
2188 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2189   // Assemble the final asm string.
2190   std::string AsmString = S.generateAsmString(getContext());
2191 
2192   // Get all the output and input constraints together.
2193   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2194   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2195 
2196   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2197     StringRef Name;
2198     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2199       Name = GAS->getOutputName(i);
2200     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2201     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2202     assert(IsValid && "Failed to parse output constraint");
2203     OutputConstraintInfos.push_back(Info);
2204   }
2205 
2206   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2207     StringRef Name;
2208     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2209       Name = GAS->getInputName(i);
2210     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2211     bool IsValid =
2212       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2213     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2214     InputConstraintInfos.push_back(Info);
2215   }
2216 
2217   std::string Constraints;
2218 
2219   std::vector<LValue> ResultRegDests;
2220   std::vector<QualType> ResultRegQualTys;
2221   std::vector<llvm::Type *> ResultRegTypes;
2222   std::vector<llvm::Type *> ResultTruncRegTypes;
2223   std::vector<llvm::Type *> ArgTypes;
2224   std::vector<llvm::Value*> Args;
2225   llvm::BitVector ResultTypeRequiresCast;
2226 
2227   // Keep track of inout constraints.
2228   std::string InOutConstraints;
2229   std::vector<llvm::Value*> InOutArgs;
2230   std::vector<llvm::Type*> InOutArgTypes;
2231 
2232   // Keep track of out constraints for tied input operand.
2233   std::vector<std::string> OutputConstraints;
2234 
2235   // Keep track of defined physregs.
2236   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2237 
2238   // An inline asm can be marked readonly if it meets the following conditions:
2239   //  - it doesn't have any sideeffects
2240   //  - it doesn't clobber memory
2241   //  - it doesn't return a value by-reference
2242   // It can be marked readnone if it doesn't have any input memory constraints
2243   // in addition to meeting the conditions listed above.
2244   bool ReadOnly = true, ReadNone = true;
2245 
2246   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2247     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2248 
2249     // Simplify the output constraint.
2250     std::string OutputConstraint(S.getOutputConstraint(i));
2251     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2252                                           getTarget(), &OutputConstraintInfos);
2253 
2254     const Expr *OutExpr = S.getOutputExpr(i);
2255     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2256 
2257     std::string GCCReg;
2258     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2259                                               getTarget(), CGM, S,
2260                                               Info.earlyClobber(),
2261                                               &GCCReg);
2262     // Give an error on multiple outputs to same physreg.
2263     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2264       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2265 
2266     OutputConstraints.push_back(OutputConstraint);
2267     LValue Dest = EmitLValue(OutExpr);
2268     if (!Constraints.empty())
2269       Constraints += ',';
2270 
2271     // If this is a register output, then make the inline asm return it
2272     // by-value.  If this is a memory result, return the value by-reference.
2273     bool isScalarizableAggregate =
2274         hasAggregateEvaluationKind(OutExpr->getType());
2275     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2276                                  isScalarizableAggregate)) {
2277       Constraints += "=" + OutputConstraint;
2278       ResultRegQualTys.push_back(OutExpr->getType());
2279       ResultRegDests.push_back(Dest);
2280       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2281       if (Info.allowsRegister() && isScalarizableAggregate) {
2282         ResultTypeRequiresCast.push_back(true);
2283         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2284         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2285         ResultRegTypes.push_back(ConvTy);
2286       } else {
2287         ResultTypeRequiresCast.push_back(false);
2288         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2289       }
2290       // If this output is tied to an input, and if the input is larger, then
2291       // we need to set the actual result type of the inline asm node to be the
2292       // same as the input type.
2293       if (Info.hasMatchingInput()) {
2294         unsigned InputNo;
2295         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2296           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2297           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2298             break;
2299         }
2300         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2301 
2302         QualType InputTy = S.getInputExpr(InputNo)->getType();
2303         QualType OutputType = OutExpr->getType();
2304 
2305         uint64_t InputSize = getContext().getTypeSize(InputTy);
2306         if (getContext().getTypeSize(OutputType) < InputSize) {
2307           // Form the asm to return the value as a larger integer or fp type.
2308           ResultRegTypes.back() = ConvertType(InputTy);
2309         }
2310       }
2311       if (llvm::Type* AdjTy =
2312             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2313                                                  ResultRegTypes.back()))
2314         ResultRegTypes.back() = AdjTy;
2315       else {
2316         CGM.getDiags().Report(S.getAsmLoc(),
2317                               diag::err_asm_invalid_type_in_input)
2318             << OutExpr->getType() << OutputConstraint;
2319       }
2320 
2321       // Update largest vector width for any vector types.
2322       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2323         LargestVectorWidth =
2324             std::max((uint64_t)LargestVectorWidth,
2325                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2326     } else {
2327       llvm::Type *DestAddrTy = Dest.getAddress(*this).getType();
2328       llvm::Value *DestPtr = Dest.getPointer(*this);
2329       // Matrix types in memory are represented by arrays, but accessed through
2330       // vector pointers, with the alignment specified on the access operation.
2331       // For inline assembly, update pointer arguments to use vector pointers.
2332       // Otherwise there will be a mis-match if the matrix is also an
2333       // input-argument which is represented as vector.
2334       if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) {
2335         DestAddrTy = llvm::PointerType::get(
2336             ConvertType(OutExpr->getType()),
2337             cast<llvm::PointerType>(DestAddrTy)->getAddressSpace());
2338         DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy);
2339       }
2340       ArgTypes.push_back(DestAddrTy);
2341       Args.push_back(DestPtr);
2342       Constraints += "=*";
2343       Constraints += OutputConstraint;
2344       ReadOnly = ReadNone = false;
2345     }
2346 
2347     if (Info.isReadWrite()) {
2348       InOutConstraints += ',';
2349 
2350       const Expr *InputExpr = S.getOutputExpr(i);
2351       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2352                                             InOutConstraints,
2353                                             InputExpr->getExprLoc());
2354 
2355       if (llvm::Type* AdjTy =
2356           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2357                                                Arg->getType()))
2358         Arg = Builder.CreateBitCast(Arg, AdjTy);
2359 
2360       // Update largest vector width for any vector types.
2361       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2362         LargestVectorWidth =
2363             std::max((uint64_t)LargestVectorWidth,
2364                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2365       // Only tie earlyclobber physregs.
2366       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2367         InOutConstraints += llvm::utostr(i);
2368       else
2369         InOutConstraints += OutputConstraint;
2370 
2371       InOutArgTypes.push_back(Arg->getType());
2372       InOutArgs.push_back(Arg);
2373     }
2374   }
2375 
2376   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2377   // to the return value slot. Only do this when returning in registers.
2378   if (isa<MSAsmStmt>(&S)) {
2379     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2380     if (RetAI.isDirect() || RetAI.isExtend()) {
2381       // Make a fake lvalue for the return value slot.
2382       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2383       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2384           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2385           ResultRegDests, AsmString, S.getNumOutputs());
2386       SawAsmBlock = true;
2387     }
2388   }
2389 
2390   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2391     const Expr *InputExpr = S.getInputExpr(i);
2392 
2393     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2394 
2395     if (Info.allowsMemory())
2396       ReadNone = false;
2397 
2398     if (!Constraints.empty())
2399       Constraints += ',';
2400 
2401     // Simplify the input constraint.
2402     std::string InputConstraint(S.getInputConstraint(i));
2403     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2404                                          &OutputConstraintInfos);
2405 
2406     InputConstraint = AddVariableConstraints(
2407         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2408         getTarget(), CGM, S, false /* No EarlyClobber */);
2409 
2410     std::string ReplaceConstraint (InputConstraint);
2411     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2412 
2413     // If this input argument is tied to a larger output result, extend the
2414     // input to be the same size as the output.  The LLVM backend wants to see
2415     // the input and output of a matching constraint be the same size.  Note
2416     // that GCC does not define what the top bits are here.  We use zext because
2417     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2418     if (Info.hasTiedOperand()) {
2419       unsigned Output = Info.getTiedOperand();
2420       QualType OutputType = S.getOutputExpr(Output)->getType();
2421       QualType InputTy = InputExpr->getType();
2422 
2423       if (getContext().getTypeSize(OutputType) >
2424           getContext().getTypeSize(InputTy)) {
2425         // Use ptrtoint as appropriate so that we can do our extension.
2426         if (isa<llvm::PointerType>(Arg->getType()))
2427           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2428         llvm::Type *OutputTy = ConvertType(OutputType);
2429         if (isa<llvm::IntegerType>(OutputTy))
2430           Arg = Builder.CreateZExt(Arg, OutputTy);
2431         else if (isa<llvm::PointerType>(OutputTy))
2432           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2433         else {
2434           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2435           Arg = Builder.CreateFPExt(Arg, OutputTy);
2436         }
2437       }
2438       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2439       ReplaceConstraint = OutputConstraints[Output];
2440     }
2441     if (llvm::Type* AdjTy =
2442           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2443                                                    Arg->getType()))
2444       Arg = Builder.CreateBitCast(Arg, AdjTy);
2445     else
2446       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2447           << InputExpr->getType() << InputConstraint;
2448 
2449     // Update largest vector width for any vector types.
2450     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2451       LargestVectorWidth =
2452           std::max((uint64_t)LargestVectorWidth,
2453                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2454 
2455     ArgTypes.push_back(Arg->getType());
2456     Args.push_back(Arg);
2457     Constraints += InputConstraint;
2458   }
2459 
2460   // Labels
2461   SmallVector<llvm::BasicBlock *, 16> Transfer;
2462   llvm::BasicBlock *Fallthrough = nullptr;
2463   bool IsGCCAsmGoto = false;
2464   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2465     IsGCCAsmGoto = GS->isAsmGoto();
2466     if (IsGCCAsmGoto) {
2467       for (const auto *E : GS->labels()) {
2468         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2469         Transfer.push_back(Dest.getBlock());
2470         llvm::BlockAddress *BA =
2471             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2472         Args.push_back(BA);
2473         ArgTypes.push_back(BA->getType());
2474         if (!Constraints.empty())
2475           Constraints += ',';
2476         Constraints += 'X';
2477       }
2478       Fallthrough = createBasicBlock("asm.fallthrough");
2479     }
2480   }
2481 
2482   // Append the "input" part of inout constraints last.
2483   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2484     ArgTypes.push_back(InOutArgTypes[i]);
2485     Args.push_back(InOutArgs[i]);
2486   }
2487   Constraints += InOutConstraints;
2488 
2489   // Clobbers
2490   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2491     StringRef Clobber = S.getClobber(i);
2492 
2493     if (Clobber == "memory")
2494       ReadOnly = ReadNone = false;
2495     else if (Clobber != "cc") {
2496       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2497       if (CGM.getCodeGenOpts().StackClashProtector &&
2498           getTarget().isSPRegName(Clobber)) {
2499         CGM.getDiags().Report(S.getAsmLoc(),
2500                               diag::warn_stack_clash_protection_inline_asm);
2501       }
2502     }
2503 
2504     if (isa<MSAsmStmt>(&S)) {
2505       if (Clobber == "eax" || Clobber == "edx") {
2506         if (Constraints.find("=&A") != std::string::npos)
2507           continue;
2508         std::string::size_type position1 =
2509             Constraints.find("={" + Clobber.str() + "}");
2510         if (position1 != std::string::npos) {
2511           Constraints.insert(position1 + 1, "&");
2512           continue;
2513         }
2514         std::string::size_type position2 = Constraints.find("=A");
2515         if (position2 != std::string::npos) {
2516           Constraints.insert(position2 + 1, "&");
2517           continue;
2518         }
2519       }
2520     }
2521     if (!Constraints.empty())
2522       Constraints += ',';
2523 
2524     Constraints += "~{";
2525     Constraints += Clobber;
2526     Constraints += '}';
2527   }
2528 
2529   // Add machine specific clobbers
2530   std::string MachineClobbers = getTarget().getClobbers();
2531   if (!MachineClobbers.empty()) {
2532     if (!Constraints.empty())
2533       Constraints += ',';
2534     Constraints += MachineClobbers;
2535   }
2536 
2537   llvm::Type *ResultType;
2538   if (ResultRegTypes.empty())
2539     ResultType = VoidTy;
2540   else if (ResultRegTypes.size() == 1)
2541     ResultType = ResultRegTypes[0];
2542   else
2543     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2544 
2545   llvm::FunctionType *FTy =
2546     llvm::FunctionType::get(ResultType, ArgTypes, false);
2547 
2548   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2549   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2550     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2551   llvm::InlineAsm *IA =
2552     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2553                          /* IsAlignStack */ false, AsmDialect);
2554   std::vector<llvm::Value*> RegResults;
2555   if (IsGCCAsmGoto) {
2556     llvm::CallBrInst *Result =
2557         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2558     EmitBlock(Fallthrough);
2559     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2560                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2561                       *this, RegResults);
2562   } else {
2563     llvm::CallInst *Result =
2564         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2565     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2566                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2567                       *this, RegResults);
2568   }
2569 
2570   assert(RegResults.size() == ResultRegTypes.size());
2571   assert(RegResults.size() == ResultTruncRegTypes.size());
2572   assert(RegResults.size() == ResultRegDests.size());
2573   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2574   // in which case its size may grow.
2575   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2576   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2577     llvm::Value *Tmp = RegResults[i];
2578 
2579     // If the result type of the LLVM IR asm doesn't match the result type of
2580     // the expression, do the conversion.
2581     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2582       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2583 
2584       // Truncate the integer result to the right size, note that TruncTy can be
2585       // a pointer.
2586       if (TruncTy->isFloatingPointTy())
2587         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2588       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2589         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2590         Tmp = Builder.CreateTrunc(Tmp,
2591                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2592         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2593       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2594         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2595         Tmp = Builder.CreatePtrToInt(Tmp,
2596                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2597         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2598       } else if (TruncTy->isIntegerTy()) {
2599         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2600       } else if (TruncTy->isVectorTy()) {
2601         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2602       }
2603     }
2604 
2605     LValue Dest = ResultRegDests[i];
2606     // ResultTypeRequiresCast elements correspond to the first
2607     // ResultTypeRequiresCast.size() elements of RegResults.
2608     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2609       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2610       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2611                                         ResultRegTypes[i]->getPointerTo());
2612       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2613       if (Ty.isNull()) {
2614         const Expr *OutExpr = S.getOutputExpr(i);
2615         CGM.Error(
2616             OutExpr->getExprLoc(),
2617             "impossible constraint in asm: can't store value into a register");
2618         return;
2619       }
2620       Dest = MakeAddrLValue(A, Ty);
2621     }
2622     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2623   }
2624 }
2625 
2626 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2627   const RecordDecl *RD = S.getCapturedRecordDecl();
2628   QualType RecordTy = getContext().getRecordType(RD);
2629 
2630   // Initialize the captured struct.
2631   LValue SlotLV =
2632     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2633 
2634   RecordDecl::field_iterator CurField = RD->field_begin();
2635   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2636                                                  E = S.capture_init_end();
2637        I != E; ++I, ++CurField) {
2638     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2639     if (CurField->hasCapturedVLAType()) {
2640       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2641     } else {
2642       EmitInitializerForField(*CurField, LV, *I);
2643     }
2644   }
2645 
2646   return SlotLV;
2647 }
2648 
2649 /// Generate an outlined function for the body of a CapturedStmt, store any
2650 /// captured variables into the captured struct, and call the outlined function.
2651 llvm::Function *
2652 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2653   LValue CapStruct = InitCapturedStruct(S);
2654 
2655   // Emit the CapturedDecl
2656   CodeGenFunction CGF(CGM, true);
2657   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2658   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2659   delete CGF.CapturedStmtInfo;
2660 
2661   // Emit call to the helper function.
2662   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2663 
2664   return F;
2665 }
2666 
2667 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2668   LValue CapStruct = InitCapturedStruct(S);
2669   return CapStruct.getAddress(*this);
2670 }
2671 
2672 /// Creates the outlined function for a CapturedStmt.
2673 llvm::Function *
2674 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2675   assert(CapturedStmtInfo &&
2676     "CapturedStmtInfo should be set when generating the captured function");
2677   const CapturedDecl *CD = S.getCapturedDecl();
2678   const RecordDecl *RD = S.getCapturedRecordDecl();
2679   SourceLocation Loc = S.getBeginLoc();
2680   assert(CD->hasBody() && "missing CapturedDecl body");
2681 
2682   // Build the argument list.
2683   ASTContext &Ctx = CGM.getContext();
2684   FunctionArgList Args;
2685   Args.append(CD->param_begin(), CD->param_end());
2686 
2687   // Create the function declaration.
2688   const CGFunctionInfo &FuncInfo =
2689     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2690   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2691 
2692   llvm::Function *F =
2693     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2694                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2695   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2696   if (CD->isNothrow())
2697     F->addFnAttr(llvm::Attribute::NoUnwind);
2698 
2699   // Generate the function.
2700   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2701                 CD->getBody()->getBeginLoc());
2702   // Set the context parameter in CapturedStmtInfo.
2703   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2704   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2705 
2706   // Initialize variable-length arrays.
2707   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2708                                            Ctx.getTagDeclType(RD));
2709   for (auto *FD : RD->fields()) {
2710     if (FD->hasCapturedVLAType()) {
2711       auto *ExprArg =
2712           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2713               .getScalarVal();
2714       auto VAT = FD->getCapturedVLAType();
2715       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2716     }
2717   }
2718 
2719   // If 'this' is captured, load it into CXXThisValue.
2720   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2721     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2722     LValue ThisLValue = EmitLValueForField(Base, FD);
2723     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2724   }
2725 
2726   PGO.assignRegionCounters(GlobalDecl(CD), F);
2727   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2728   FinishFunction(CD->getBodyRBrace());
2729 
2730   return F;
2731 }
2732