1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "CodeGenFunction.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/InlineAsm.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/Target/TargetData.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Statement Emission 30 //===----------------------------------------------------------------------===// 31 32 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 33 if (CGDebugInfo *DI = getDebugInfo()) { 34 if (isa<DeclStmt>(S)) 35 DI->setLocation(S->getLocEnd()); 36 else 37 DI->setLocation(S->getLocStart()); 38 DI->UpdateLineDirectiveRegion(Builder); 39 DI->EmitStopPoint(Builder); 40 } 41 } 42 43 void CodeGenFunction::EmitStmt(const Stmt *S) { 44 assert(S && "Null statement?"); 45 46 // Check if we can handle this without bothering to generate an 47 // insert point or debug info. 48 if (EmitSimpleStmt(S)) 49 return; 50 51 // Check if we are generating unreachable code. 52 if (!HaveInsertPoint()) { 53 // If so, and the statement doesn't contain a label, then we do not need to 54 // generate actual code. This is safe because (1) the current point is 55 // unreachable, so we don't need to execute the code, and (2) we've already 56 // handled the statements which update internal data structures (like the 57 // local variable map) which could be used by subsequent statements. 58 if (!ContainsLabel(S)) { 59 // Verify that any decl statements were handled as simple, they may be in 60 // scope of subsequent reachable statements. 61 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 62 return; 63 } 64 65 // Otherwise, make a new block to hold the code. 66 EnsureInsertPoint(); 67 } 68 69 // Generate a stoppoint if we are emitting debug info. 70 EmitStopPoint(S); 71 72 switch (S->getStmtClass()) { 73 case Stmt::NoStmtClass: 74 case Stmt::CXXCatchStmtClass: 75 case Stmt::SEHExceptStmtClass: 76 case Stmt::SEHFinallyStmtClass: 77 llvm_unreachable("invalid statement class to emit generically"); 78 case Stmt::NullStmtClass: 79 case Stmt::CompoundStmtClass: 80 case Stmt::DeclStmtClass: 81 case Stmt::LabelStmtClass: 82 case Stmt::GotoStmtClass: 83 case Stmt::BreakStmtClass: 84 case Stmt::ContinueStmtClass: 85 case Stmt::DefaultStmtClass: 86 case Stmt::CaseStmtClass: 87 llvm_unreachable("should have emitted these statements as simple"); 88 89 #define STMT(Type, Base) 90 #define ABSTRACT_STMT(Op) 91 #define EXPR(Type, Base) \ 92 case Stmt::Type##Class: 93 #include "clang/AST/StmtNodes.inc" 94 { 95 // Remember the block we came in on. 96 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 97 assert(incoming && "expression emission must have an insertion point"); 98 99 EmitIgnoredExpr(cast<Expr>(S)); 100 101 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 102 assert(outgoing && "expression emission cleared block!"); 103 104 // The expression emitters assume (reasonably!) that the insertion 105 // point is always set. To maintain that, the call-emission code 106 // for noreturn functions has to enter a new block with no 107 // predecessors. We want to kill that block and mark the current 108 // insertion point unreachable in the common case of a call like 109 // "exit();". Since expression emission doesn't otherwise create 110 // blocks with no predecessors, we can just test for that. 111 // However, we must be careful not to do this to our incoming 112 // block, because *statement* emission does sometimes create 113 // reachable blocks which will have no predecessors until later in 114 // the function. This occurs with, e.g., labels that are not 115 // reachable by fallthrough. 116 if (incoming != outgoing && outgoing->use_empty()) { 117 outgoing->eraseFromParent(); 118 Builder.ClearInsertionPoint(); 119 } 120 break; 121 } 122 123 case Stmt::IndirectGotoStmtClass: 124 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 125 126 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 127 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 128 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 129 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 130 131 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 132 133 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 134 case Stmt::AsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 135 136 case Stmt::ObjCAtTryStmtClass: 137 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 138 break; 139 case Stmt::ObjCAtCatchStmtClass: 140 assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt"); 141 break; 142 case Stmt::ObjCAtFinallyStmtClass: 143 assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt"); 144 break; 145 case Stmt::ObjCAtThrowStmtClass: 146 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 147 break; 148 case Stmt::ObjCAtSynchronizedStmtClass: 149 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 150 break; 151 case Stmt::ObjCForCollectionStmtClass: 152 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 153 break; 154 case Stmt::ObjCAutoreleasePoolStmtClass: 155 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 156 break; 157 158 case Stmt::CXXTryStmtClass: 159 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 160 break; 161 case Stmt::CXXForRangeStmtClass: 162 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 163 case Stmt::SEHTryStmtClass: 164 // FIXME Not yet implemented 165 break; 166 } 167 } 168 169 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 170 switch (S->getStmtClass()) { 171 default: return false; 172 case Stmt::NullStmtClass: break; 173 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 174 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 175 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 176 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 177 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 178 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 179 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 180 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 181 } 182 183 return true; 184 } 185 186 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 187 /// this captures the expression result of the last sub-statement and returns it 188 /// (for use by the statement expression extension). 189 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 190 AggValueSlot AggSlot) { 191 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 192 "LLVM IR generation of compound statement ('{}')"); 193 194 CGDebugInfo *DI = getDebugInfo(); 195 if (DI) { 196 DI->setLocation(S.getLBracLoc()); 197 DI->EmitRegionStart(Builder); 198 } 199 200 // Keep track of the current cleanup stack depth. 201 RunCleanupsScope Scope(*this); 202 203 for (CompoundStmt::const_body_iterator I = S.body_begin(), 204 E = S.body_end()-GetLast; I != E; ++I) 205 EmitStmt(*I); 206 207 if (DI) { 208 DI->setLocation(S.getRBracLoc()); 209 DI->EmitRegionEnd(Builder); 210 } 211 212 RValue RV; 213 if (!GetLast) 214 RV = RValue::get(0); 215 else { 216 // We have to special case labels here. They are statements, but when put 217 // at the end of a statement expression, they yield the value of their 218 // subexpression. Handle this by walking through all labels we encounter, 219 // emitting them before we evaluate the subexpr. 220 const Stmt *LastStmt = S.body_back(); 221 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 222 EmitLabel(LS->getDecl()); 223 LastStmt = LS->getSubStmt(); 224 } 225 226 EnsureInsertPoint(); 227 228 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot); 229 } 230 231 return RV; 232 } 233 234 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 235 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 236 237 // If there is a cleanup stack, then we it isn't worth trying to 238 // simplify this block (we would need to remove it from the scope map 239 // and cleanup entry). 240 if (!EHStack.empty()) 241 return; 242 243 // Can only simplify direct branches. 244 if (!BI || !BI->isUnconditional()) 245 return; 246 247 BB->replaceAllUsesWith(BI->getSuccessor(0)); 248 BI->eraseFromParent(); 249 BB->eraseFromParent(); 250 } 251 252 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 253 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 254 255 // Fall out of the current block (if necessary). 256 EmitBranch(BB); 257 258 if (IsFinished && BB->use_empty()) { 259 delete BB; 260 return; 261 } 262 263 // Place the block after the current block, if possible, or else at 264 // the end of the function. 265 if (CurBB && CurBB->getParent()) 266 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 267 else 268 CurFn->getBasicBlockList().push_back(BB); 269 Builder.SetInsertPoint(BB); 270 } 271 272 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 273 // Emit a branch from the current block to the target one if this 274 // was a real block. If this was just a fall-through block after a 275 // terminator, don't emit it. 276 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 277 278 if (!CurBB || CurBB->getTerminator()) { 279 // If there is no insert point or the previous block is already 280 // terminated, don't touch it. 281 } else { 282 // Otherwise, create a fall-through branch. 283 Builder.CreateBr(Target); 284 } 285 286 Builder.ClearInsertionPoint(); 287 } 288 289 CodeGenFunction::JumpDest 290 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 291 JumpDest &Dest = LabelMap[D]; 292 if (Dest.isValid()) return Dest; 293 294 // Create, but don't insert, the new block. 295 Dest = JumpDest(createBasicBlock(D->getName()), 296 EHScopeStack::stable_iterator::invalid(), 297 NextCleanupDestIndex++); 298 return Dest; 299 } 300 301 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 302 JumpDest &Dest = LabelMap[D]; 303 304 // If we didn't need a forward reference to this label, just go 305 // ahead and create a destination at the current scope. 306 if (!Dest.isValid()) { 307 Dest = getJumpDestInCurrentScope(D->getName()); 308 309 // Otherwise, we need to give this label a target depth and remove 310 // it from the branch-fixups list. 311 } else { 312 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 313 Dest = JumpDest(Dest.getBlock(), 314 EHStack.stable_begin(), 315 Dest.getDestIndex()); 316 317 ResolveBranchFixups(Dest.getBlock()); 318 } 319 320 EmitBlock(Dest.getBlock()); 321 } 322 323 324 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 325 EmitLabel(S.getDecl()); 326 EmitStmt(S.getSubStmt()); 327 } 328 329 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 330 // If this code is reachable then emit a stop point (if generating 331 // debug info). We have to do this ourselves because we are on the 332 // "simple" statement path. 333 if (HaveInsertPoint()) 334 EmitStopPoint(&S); 335 336 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 337 } 338 339 340 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 341 if (const LabelDecl *Target = S.getConstantTarget()) { 342 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 343 return; 344 } 345 346 // Ensure that we have an i8* for our PHI node. 347 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 348 Int8PtrTy, "addr"); 349 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 350 351 352 // Get the basic block for the indirect goto. 353 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 354 355 // The first instruction in the block has to be the PHI for the switch dest, 356 // add an entry for this branch. 357 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 358 359 EmitBranch(IndGotoBB); 360 } 361 362 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 363 // C99 6.8.4.1: The first substatement is executed if the expression compares 364 // unequal to 0. The condition must be a scalar type. 365 RunCleanupsScope ConditionScope(*this); 366 367 if (S.getConditionVariable()) 368 EmitAutoVarDecl(*S.getConditionVariable()); 369 370 // If the condition constant folds and can be elided, try to avoid emitting 371 // the condition and the dead arm of the if/else. 372 bool CondConstant; 373 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 374 // Figure out which block (then or else) is executed. 375 const Stmt *Executed = S.getThen(); 376 const Stmt *Skipped = S.getElse(); 377 if (!CondConstant) // Condition false? 378 std::swap(Executed, Skipped); 379 380 // If the skipped block has no labels in it, just emit the executed block. 381 // This avoids emitting dead code and simplifies the CFG substantially. 382 if (!ContainsLabel(Skipped)) { 383 if (Executed) { 384 RunCleanupsScope ExecutedScope(*this); 385 EmitStmt(Executed); 386 } 387 return; 388 } 389 } 390 391 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 392 // the conditional branch. 393 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 394 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 395 llvm::BasicBlock *ElseBlock = ContBlock; 396 if (S.getElse()) 397 ElseBlock = createBasicBlock("if.else"); 398 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); 399 400 // Emit the 'then' code. 401 EmitBlock(ThenBlock); 402 { 403 RunCleanupsScope ThenScope(*this); 404 EmitStmt(S.getThen()); 405 } 406 EmitBranch(ContBlock); 407 408 // Emit the 'else' code if present. 409 if (const Stmt *Else = S.getElse()) { 410 // There is no need to emit line number for unconditional branch. 411 if (getDebugInfo()) 412 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 413 EmitBlock(ElseBlock); 414 { 415 RunCleanupsScope ElseScope(*this); 416 EmitStmt(Else); 417 } 418 // There is no need to emit line number for unconditional branch. 419 if (getDebugInfo()) 420 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 421 EmitBranch(ContBlock); 422 } 423 424 // Emit the continuation block for code after the if. 425 EmitBlock(ContBlock, true); 426 } 427 428 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 429 // Emit the header for the loop, which will also become 430 // the continue target. 431 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 432 EmitBlock(LoopHeader.getBlock()); 433 434 // Create an exit block for when the condition fails, which will 435 // also become the break target. 436 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 437 438 // Store the blocks to use for break and continue. 439 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 440 441 // C++ [stmt.while]p2: 442 // When the condition of a while statement is a declaration, the 443 // scope of the variable that is declared extends from its point 444 // of declaration (3.3.2) to the end of the while statement. 445 // [...] 446 // The object created in a condition is destroyed and created 447 // with each iteration of the loop. 448 RunCleanupsScope ConditionScope(*this); 449 450 if (S.getConditionVariable()) 451 EmitAutoVarDecl(*S.getConditionVariable()); 452 453 // Evaluate the conditional in the while header. C99 6.8.5.1: The 454 // evaluation of the controlling expression takes place before each 455 // execution of the loop body. 456 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 457 458 // while(1) is common, avoid extra exit blocks. Be sure 459 // to correctly handle break/continue though. 460 bool EmitBoolCondBranch = true; 461 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 462 if (C->isOne()) 463 EmitBoolCondBranch = false; 464 465 // As long as the condition is true, go to the loop body. 466 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 467 if (EmitBoolCondBranch) { 468 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 469 if (ConditionScope.requiresCleanups()) 470 ExitBlock = createBasicBlock("while.exit"); 471 472 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 473 474 if (ExitBlock != LoopExit.getBlock()) { 475 EmitBlock(ExitBlock); 476 EmitBranchThroughCleanup(LoopExit); 477 } 478 } 479 480 // Emit the loop body. We have to emit this in a cleanup scope 481 // because it might be a singleton DeclStmt. 482 { 483 RunCleanupsScope BodyScope(*this); 484 EmitBlock(LoopBody); 485 EmitStmt(S.getBody()); 486 } 487 488 BreakContinueStack.pop_back(); 489 490 // Immediately force cleanup. 491 ConditionScope.ForceCleanup(); 492 493 // Branch to the loop header again. 494 EmitBranch(LoopHeader.getBlock()); 495 496 // Emit the exit block. 497 EmitBlock(LoopExit.getBlock(), true); 498 499 // The LoopHeader typically is just a branch if we skipped emitting 500 // a branch, try to erase it. 501 if (!EmitBoolCondBranch) 502 SimplifyForwardingBlocks(LoopHeader.getBlock()); 503 } 504 505 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 506 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 507 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 508 509 // Store the blocks to use for break and continue. 510 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 511 512 // Emit the body of the loop. 513 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 514 EmitBlock(LoopBody); 515 { 516 RunCleanupsScope BodyScope(*this); 517 EmitStmt(S.getBody()); 518 } 519 520 BreakContinueStack.pop_back(); 521 522 EmitBlock(LoopCond.getBlock()); 523 524 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 525 // after each execution of the loop body." 526 527 // Evaluate the conditional in the while header. 528 // C99 6.8.5p2/p4: The first substatement is executed if the expression 529 // compares unequal to 0. The condition must be a scalar type. 530 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 531 532 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 533 // to correctly handle break/continue though. 534 bool EmitBoolCondBranch = true; 535 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 536 if (C->isZero()) 537 EmitBoolCondBranch = false; 538 539 // As long as the condition is true, iterate the loop. 540 if (EmitBoolCondBranch) 541 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); 542 543 // Emit the exit block. 544 EmitBlock(LoopExit.getBlock()); 545 546 // The DoCond block typically is just a branch if we skipped 547 // emitting a branch, try to erase it. 548 if (!EmitBoolCondBranch) 549 SimplifyForwardingBlocks(LoopCond.getBlock()); 550 } 551 552 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 553 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 554 555 RunCleanupsScope ForScope(*this); 556 557 CGDebugInfo *DI = getDebugInfo(); 558 if (DI) { 559 DI->setLocation(S.getSourceRange().getBegin()); 560 DI->EmitRegionStart(Builder); 561 } 562 563 // Evaluate the first part before the loop. 564 if (S.getInit()) 565 EmitStmt(S.getInit()); 566 567 // Start the loop with a block that tests the condition. 568 // If there's an increment, the continue scope will be overwritten 569 // later. 570 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 571 llvm::BasicBlock *CondBlock = Continue.getBlock(); 572 EmitBlock(CondBlock); 573 574 // Create a cleanup scope for the condition variable cleanups. 575 RunCleanupsScope ConditionScope(*this); 576 577 llvm::Value *BoolCondVal = 0; 578 if (S.getCond()) { 579 // If the for statement has a condition scope, emit the local variable 580 // declaration. 581 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 582 if (S.getConditionVariable()) { 583 EmitAutoVarDecl(*S.getConditionVariable()); 584 } 585 586 // If there are any cleanups between here and the loop-exit scope, 587 // create a block to stage a loop exit along. 588 if (ForScope.requiresCleanups()) 589 ExitBlock = createBasicBlock("for.cond.cleanup"); 590 591 // As long as the condition is true, iterate the loop. 592 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 593 594 // C99 6.8.5p2/p4: The first substatement is executed if the expression 595 // compares unequal to 0. The condition must be a scalar type. 596 BoolCondVal = EvaluateExprAsBool(S.getCond()); 597 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 598 599 if (ExitBlock != LoopExit.getBlock()) { 600 EmitBlock(ExitBlock); 601 EmitBranchThroughCleanup(LoopExit); 602 } 603 604 EmitBlock(ForBody); 605 } else { 606 // Treat it as a non-zero constant. Don't even create a new block for the 607 // body, just fall into it. 608 } 609 610 // If the for loop doesn't have an increment we can just use the 611 // condition as the continue block. Otherwise we'll need to create 612 // a block for it (in the current scope, i.e. in the scope of the 613 // condition), and that we will become our continue block. 614 if (S.getInc()) 615 Continue = getJumpDestInCurrentScope("for.inc"); 616 617 // Store the blocks to use for break and continue. 618 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 619 620 { 621 // Create a separate cleanup scope for the body, in case it is not 622 // a compound statement. 623 RunCleanupsScope BodyScope(*this); 624 EmitStmt(S.getBody()); 625 } 626 627 // If there is an increment, emit it next. 628 if (S.getInc()) { 629 EmitBlock(Continue.getBlock()); 630 EmitStmt(S.getInc()); 631 } 632 633 BreakContinueStack.pop_back(); 634 635 ConditionScope.ForceCleanup(); 636 EmitBranch(CondBlock); 637 638 ForScope.ForceCleanup(); 639 640 if (DI) { 641 DI->setLocation(S.getSourceRange().getEnd()); 642 DI->EmitRegionEnd(Builder); 643 } 644 645 // Emit the fall-through block. 646 EmitBlock(LoopExit.getBlock(), true); 647 } 648 649 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 650 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 651 652 RunCleanupsScope ForScope(*this); 653 654 CGDebugInfo *DI = getDebugInfo(); 655 if (DI) { 656 DI->setLocation(S.getSourceRange().getBegin()); 657 DI->EmitRegionStart(Builder); 658 } 659 660 // Evaluate the first pieces before the loop. 661 EmitStmt(S.getRangeStmt()); 662 EmitStmt(S.getBeginEndStmt()); 663 664 // Start the loop with a block that tests the condition. 665 // If there's an increment, the continue scope will be overwritten 666 // later. 667 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 668 EmitBlock(CondBlock); 669 670 // If there are any cleanups between here and the loop-exit scope, 671 // create a block to stage a loop exit along. 672 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 673 if (ForScope.requiresCleanups()) 674 ExitBlock = createBasicBlock("for.cond.cleanup"); 675 676 // The loop body, consisting of the specified body and the loop variable. 677 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 678 679 // The body is executed if the expression, contextually converted 680 // to bool, is true. 681 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 682 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 683 684 if (ExitBlock != LoopExit.getBlock()) { 685 EmitBlock(ExitBlock); 686 EmitBranchThroughCleanup(LoopExit); 687 } 688 689 EmitBlock(ForBody); 690 691 // Create a block for the increment. In case of a 'continue', we jump there. 692 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 693 694 // Store the blocks to use for break and continue. 695 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 696 697 { 698 // Create a separate cleanup scope for the loop variable and body. 699 RunCleanupsScope BodyScope(*this); 700 EmitStmt(S.getLoopVarStmt()); 701 EmitStmt(S.getBody()); 702 } 703 704 // If there is an increment, emit it next. 705 EmitBlock(Continue.getBlock()); 706 EmitStmt(S.getInc()); 707 708 BreakContinueStack.pop_back(); 709 710 EmitBranch(CondBlock); 711 712 ForScope.ForceCleanup(); 713 714 if (DI) { 715 DI->setLocation(S.getSourceRange().getEnd()); 716 DI->EmitRegionEnd(Builder); 717 } 718 719 // Emit the fall-through block. 720 EmitBlock(LoopExit.getBlock(), true); 721 } 722 723 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 724 if (RV.isScalar()) { 725 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 726 } else if (RV.isAggregate()) { 727 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 728 } else { 729 StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); 730 } 731 EmitBranchThroughCleanup(ReturnBlock); 732 } 733 734 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 735 /// if the function returns void, or may be missing one if the function returns 736 /// non-void. Fun stuff :). 737 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 738 // Emit the result value, even if unused, to evalute the side effects. 739 const Expr *RV = S.getRetValue(); 740 741 // FIXME: Clean this up by using an LValue for ReturnTemp, 742 // EmitStoreThroughLValue, and EmitAnyExpr. 743 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() && 744 !Target.useGlobalsForAutomaticVariables()) { 745 // Apply the named return value optimization for this return statement, 746 // which means doing nothing: the appropriate result has already been 747 // constructed into the NRVO variable. 748 749 // If there is an NRVO flag for this variable, set it to 1 into indicate 750 // that the cleanup code should not destroy the variable. 751 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 752 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 753 } else if (!ReturnValue) { 754 // Make sure not to return anything, but evaluate the expression 755 // for side effects. 756 if (RV) 757 EmitAnyExpr(RV); 758 } else if (RV == 0) { 759 // Do nothing (return value is left uninitialized) 760 } else if (FnRetTy->isReferenceType()) { 761 // If this function returns a reference, take the address of the expression 762 // rather than the value. 763 RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0); 764 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 765 } else if (!hasAggregateLLVMType(RV->getType())) { 766 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 767 } else if (RV->getType()->isAnyComplexType()) { 768 EmitComplexExprIntoAddr(RV, ReturnValue, false); 769 } else { 770 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Qualifiers(), true)); 771 } 772 773 EmitBranchThroughCleanup(ReturnBlock); 774 } 775 776 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 777 // As long as debug info is modeled with instructions, we have to ensure we 778 // have a place to insert here and write the stop point here. 779 if (getDebugInfo() && HaveInsertPoint()) 780 EmitStopPoint(&S); 781 782 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); 783 I != E; ++I) 784 EmitDecl(**I); 785 } 786 787 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 788 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 789 790 // If this code is reachable then emit a stop point (if generating 791 // debug info). We have to do this ourselves because we are on the 792 // "simple" statement path. 793 if (HaveInsertPoint()) 794 EmitStopPoint(&S); 795 796 JumpDest Block = BreakContinueStack.back().BreakBlock; 797 EmitBranchThroughCleanup(Block); 798 } 799 800 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 801 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 802 803 // If this code is reachable then emit a stop point (if generating 804 // debug info). We have to do this ourselves because we are on the 805 // "simple" statement path. 806 if (HaveInsertPoint()) 807 EmitStopPoint(&S); 808 809 JumpDest Block = BreakContinueStack.back().ContinueBlock; 810 EmitBranchThroughCleanup(Block); 811 } 812 813 /// EmitCaseStmtRange - If case statement range is not too big then 814 /// add multiple cases to switch instruction, one for each value within 815 /// the range. If range is too big then emit "if" condition check. 816 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 817 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 818 819 llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext()); 820 llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext()); 821 822 // Emit the code for this case. We do this first to make sure it is 823 // properly chained from our predecessor before generating the 824 // switch machinery to enter this block. 825 EmitBlock(createBasicBlock("sw.bb")); 826 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 827 EmitStmt(S.getSubStmt()); 828 829 // If range is empty, do nothing. 830 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 831 return; 832 833 llvm::APInt Range = RHS - LHS; 834 // FIXME: parameters such as this should not be hardcoded. 835 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 836 // Range is small enough to add multiple switch instruction cases. 837 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { 838 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 839 LHS++; 840 } 841 return; 842 } 843 844 // The range is too big. Emit "if" condition into a new block, 845 // making sure to save and restore the current insertion point. 846 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 847 848 // Push this test onto the chain of range checks (which terminates 849 // in the default basic block). The switch's default will be changed 850 // to the top of this chain after switch emission is complete. 851 llvm::BasicBlock *FalseDest = CaseRangeBlock; 852 CaseRangeBlock = createBasicBlock("sw.caserange"); 853 854 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 855 Builder.SetInsertPoint(CaseRangeBlock); 856 857 // Emit range check. 858 llvm::Value *Diff = 859 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS), "tmp"); 860 llvm::Value *Cond = 861 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 862 Builder.CreateCondBr(Cond, CaseDest, FalseDest); 863 864 // Restore the appropriate insertion point. 865 if (RestoreBB) 866 Builder.SetInsertPoint(RestoreBB); 867 else 868 Builder.ClearInsertionPoint(); 869 } 870 871 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 872 // Handle case ranges. 873 if (S.getRHS()) { 874 EmitCaseStmtRange(S); 875 return; 876 } 877 878 llvm::ConstantInt *CaseVal = 879 Builder.getInt(S.getLHS()->EvaluateAsInt(getContext())); 880 881 // If the body of the case is just a 'break', and if there was no fallthrough, 882 // try to not emit an empty block. 883 if (isa<BreakStmt>(S.getSubStmt())) { 884 JumpDest Block = BreakContinueStack.back().BreakBlock; 885 886 // Only do this optimization if there are no cleanups that need emitting. 887 if (isObviouslyBranchWithoutCleanups(Block)) { 888 SwitchInsn->addCase(CaseVal, Block.getBlock()); 889 890 // If there was a fallthrough into this case, make sure to redirect it to 891 // the end of the switch as well. 892 if (Builder.GetInsertBlock()) { 893 Builder.CreateBr(Block.getBlock()); 894 Builder.ClearInsertionPoint(); 895 } 896 return; 897 } 898 } 899 900 EmitBlock(createBasicBlock("sw.bb")); 901 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 902 SwitchInsn->addCase(CaseVal, CaseDest); 903 904 // Recursively emitting the statement is acceptable, but is not wonderful for 905 // code where we have many case statements nested together, i.e.: 906 // case 1: 907 // case 2: 908 // case 3: etc. 909 // Handling this recursively will create a new block for each case statement 910 // that falls through to the next case which is IR intensive. It also causes 911 // deep recursion which can run into stack depth limitations. Handle 912 // sequential non-range case statements specially. 913 const CaseStmt *CurCase = &S; 914 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 915 916 // Otherwise, iteratively add consecutive cases to this switch stmt. 917 while (NextCase && NextCase->getRHS() == 0) { 918 CurCase = NextCase; 919 llvm::ConstantInt *CaseVal = 920 Builder.getInt(CurCase->getLHS()->EvaluateAsInt(getContext())); 921 SwitchInsn->addCase(CaseVal, CaseDest); 922 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 923 } 924 925 // Normal default recursion for non-cases. 926 EmitStmt(CurCase->getSubStmt()); 927 } 928 929 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 930 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 931 assert(DefaultBlock->empty() && 932 "EmitDefaultStmt: Default block already defined?"); 933 EmitBlock(DefaultBlock); 934 EmitStmt(S.getSubStmt()); 935 } 936 937 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 938 /// constant value that is being switched on, see if we can dead code eliminate 939 /// the body of the switch to a simple series of statements to emit. Basically, 940 /// on a switch (5) we want to find these statements: 941 /// case 5: 942 /// printf(...); <-- 943 /// ++i; <-- 944 /// break; 945 /// 946 /// and add them to the ResultStmts vector. If it is unsafe to do this 947 /// transformation (for example, one of the elided statements contains a label 948 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 949 /// should include statements after it (e.g. the printf() line is a substmt of 950 /// the case) then return CSFC_FallThrough. If we handled it and found a break 951 /// statement, then return CSFC_Success. 952 /// 953 /// If Case is non-null, then we are looking for the specified case, checking 954 /// that nothing we jump over contains labels. If Case is null, then we found 955 /// the case and are looking for the break. 956 /// 957 /// If the recursive walk actually finds our Case, then we set FoundCase to 958 /// true. 959 /// 960 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 961 static CSFC_Result CollectStatementsForCase(const Stmt *S, 962 const SwitchCase *Case, 963 bool &FoundCase, 964 SmallVectorImpl<const Stmt*> &ResultStmts) { 965 // If this is a null statement, just succeed. 966 if (S == 0) 967 return Case ? CSFC_Success : CSFC_FallThrough; 968 969 // If this is the switchcase (case 4: or default) that we're looking for, then 970 // we're in business. Just add the substatement. 971 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 972 if (S == Case) { 973 FoundCase = true; 974 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 975 ResultStmts); 976 } 977 978 // Otherwise, this is some other case or default statement, just ignore it. 979 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 980 ResultStmts); 981 } 982 983 // If we are in the live part of the code and we found our break statement, 984 // return a success! 985 if (Case == 0 && isa<BreakStmt>(S)) 986 return CSFC_Success; 987 988 // If this is a switch statement, then it might contain the SwitchCase, the 989 // break, or neither. 990 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 991 // Handle this as two cases: we might be looking for the SwitchCase (if so 992 // the skipped statements must be skippable) or we might already have it. 993 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 994 if (Case) { 995 // Keep track of whether we see a skipped declaration. The code could be 996 // using the declaration even if it is skipped, so we can't optimize out 997 // the decl if the kept statements might refer to it. 998 bool HadSkippedDecl = false; 999 1000 // If we're looking for the case, just see if we can skip each of the 1001 // substatements. 1002 for (; Case && I != E; ++I) { 1003 HadSkippedDecl |= isa<DeclStmt>(*I); 1004 1005 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1006 case CSFC_Failure: return CSFC_Failure; 1007 case CSFC_Success: 1008 // A successful result means that either 1) that the statement doesn't 1009 // have the case and is skippable, or 2) does contain the case value 1010 // and also contains the break to exit the switch. In the later case, 1011 // we just verify the rest of the statements are elidable. 1012 if (FoundCase) { 1013 // If we found the case and skipped declarations, we can't do the 1014 // optimization. 1015 if (HadSkippedDecl) 1016 return CSFC_Failure; 1017 1018 for (++I; I != E; ++I) 1019 if (CodeGenFunction::ContainsLabel(*I, true)) 1020 return CSFC_Failure; 1021 return CSFC_Success; 1022 } 1023 break; 1024 case CSFC_FallThrough: 1025 // If we have a fallthrough condition, then we must have found the 1026 // case started to include statements. Consider the rest of the 1027 // statements in the compound statement as candidates for inclusion. 1028 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1029 // We recursively found Case, so we're not looking for it anymore. 1030 Case = 0; 1031 1032 // If we found the case and skipped declarations, we can't do the 1033 // optimization. 1034 if (HadSkippedDecl) 1035 return CSFC_Failure; 1036 break; 1037 } 1038 } 1039 } 1040 1041 // If we have statements in our range, then we know that the statements are 1042 // live and need to be added to the set of statements we're tracking. 1043 for (; I != E; ++I) { 1044 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1045 case CSFC_Failure: return CSFC_Failure; 1046 case CSFC_FallThrough: 1047 // A fallthrough result means that the statement was simple and just 1048 // included in ResultStmt, keep adding them afterwards. 1049 break; 1050 case CSFC_Success: 1051 // A successful result means that we found the break statement and 1052 // stopped statement inclusion. We just ensure that any leftover stmts 1053 // are skippable and return success ourselves. 1054 for (++I; I != E; ++I) 1055 if (CodeGenFunction::ContainsLabel(*I, true)) 1056 return CSFC_Failure; 1057 return CSFC_Success; 1058 } 1059 } 1060 1061 return Case ? CSFC_Success : CSFC_FallThrough; 1062 } 1063 1064 // Okay, this is some other statement that we don't handle explicitly, like a 1065 // for statement or increment etc. If we are skipping over this statement, 1066 // just verify it doesn't have labels, which would make it invalid to elide. 1067 if (Case) { 1068 if (CodeGenFunction::ContainsLabel(S, true)) 1069 return CSFC_Failure; 1070 return CSFC_Success; 1071 } 1072 1073 // Otherwise, we want to include this statement. Everything is cool with that 1074 // so long as it doesn't contain a break out of the switch we're in. 1075 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1076 1077 // Otherwise, everything is great. Include the statement and tell the caller 1078 // that we fall through and include the next statement as well. 1079 ResultStmts.push_back(S); 1080 return CSFC_FallThrough; 1081 } 1082 1083 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1084 /// then invoke CollectStatementsForCase to find the list of statements to emit 1085 /// for a switch on constant. See the comment above CollectStatementsForCase 1086 /// for more details. 1087 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1088 const llvm::APInt &ConstantCondValue, 1089 SmallVectorImpl<const Stmt*> &ResultStmts, 1090 ASTContext &C) { 1091 // First step, find the switch case that is being branched to. We can do this 1092 // efficiently by scanning the SwitchCase list. 1093 const SwitchCase *Case = S.getSwitchCaseList(); 1094 const DefaultStmt *DefaultCase = 0; 1095 1096 for (; Case; Case = Case->getNextSwitchCase()) { 1097 // It's either a default or case. Just remember the default statement in 1098 // case we're not jumping to any numbered cases. 1099 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1100 DefaultCase = DS; 1101 continue; 1102 } 1103 1104 // Check to see if this case is the one we're looking for. 1105 const CaseStmt *CS = cast<CaseStmt>(Case); 1106 // Don't handle case ranges yet. 1107 if (CS->getRHS()) return false; 1108 1109 // If we found our case, remember it as 'case'. 1110 if (CS->getLHS()->EvaluateAsInt(C) == ConstantCondValue) 1111 break; 1112 } 1113 1114 // If we didn't find a matching case, we use a default if it exists, or we 1115 // elide the whole switch body! 1116 if (Case == 0) { 1117 // It is safe to elide the body of the switch if it doesn't contain labels 1118 // etc. If it is safe, return successfully with an empty ResultStmts list. 1119 if (DefaultCase == 0) 1120 return !CodeGenFunction::ContainsLabel(&S); 1121 Case = DefaultCase; 1122 } 1123 1124 // Ok, we know which case is being jumped to, try to collect all the 1125 // statements that follow it. This can fail for a variety of reasons. Also, 1126 // check to see that the recursive walk actually found our case statement. 1127 // Insane cases like this can fail to find it in the recursive walk since we 1128 // don't handle every stmt kind: 1129 // switch (4) { 1130 // while (1) { 1131 // case 4: ... 1132 bool FoundCase = false; 1133 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1134 ResultStmts) != CSFC_Failure && 1135 FoundCase; 1136 } 1137 1138 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1139 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1140 1141 RunCleanupsScope ConditionScope(*this); 1142 1143 if (S.getConditionVariable()) 1144 EmitAutoVarDecl(*S.getConditionVariable()); 1145 1146 // See if we can constant fold the condition of the switch and therefore only 1147 // emit the live case statement (if any) of the switch. 1148 llvm::APInt ConstantCondValue; 1149 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1150 SmallVector<const Stmt*, 4> CaseStmts; 1151 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1152 getContext())) { 1153 RunCleanupsScope ExecutedScope(*this); 1154 1155 // Okay, we can dead code eliminate everything except this case. Emit the 1156 // specified series of statements and we're good. 1157 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1158 EmitStmt(CaseStmts[i]); 1159 return; 1160 } 1161 } 1162 1163 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1164 1165 // Handle nested switch statements. 1166 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1167 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1168 1169 // Create basic block to hold stuff that comes after switch 1170 // statement. We also need to create a default block now so that 1171 // explicit case ranges tests can have a place to jump to on 1172 // failure. 1173 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1174 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1175 CaseRangeBlock = DefaultBlock; 1176 1177 // Clear the insertion point to indicate we are in unreachable code. 1178 Builder.ClearInsertionPoint(); 1179 1180 // All break statements jump to NextBlock. If BreakContinueStack is non empty 1181 // then reuse last ContinueBlock. 1182 JumpDest OuterContinue; 1183 if (!BreakContinueStack.empty()) 1184 OuterContinue = BreakContinueStack.back().ContinueBlock; 1185 1186 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1187 1188 // Emit switch body. 1189 EmitStmt(S.getBody()); 1190 1191 BreakContinueStack.pop_back(); 1192 1193 // Update the default block in case explicit case range tests have 1194 // been chained on top. 1195 SwitchInsn->setSuccessor(0, CaseRangeBlock); 1196 1197 // If a default was never emitted: 1198 if (!DefaultBlock->getParent()) { 1199 // If we have cleanups, emit the default block so that there's a 1200 // place to jump through the cleanups from. 1201 if (ConditionScope.requiresCleanups()) { 1202 EmitBlock(DefaultBlock); 1203 1204 // Otherwise, just forward the default block to the switch end. 1205 } else { 1206 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1207 delete DefaultBlock; 1208 } 1209 } 1210 1211 ConditionScope.ForceCleanup(); 1212 1213 // Emit continuation. 1214 EmitBlock(SwitchExit.getBlock(), true); 1215 1216 SwitchInsn = SavedSwitchInsn; 1217 CaseRangeBlock = SavedCRBlock; 1218 } 1219 1220 static std::string 1221 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1222 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1223 std::string Result; 1224 1225 while (*Constraint) { 1226 switch (*Constraint) { 1227 default: 1228 Result += Target.convertConstraint(Constraint); 1229 break; 1230 // Ignore these 1231 case '*': 1232 case '?': 1233 case '!': 1234 case '=': // Will see this and the following in mult-alt constraints. 1235 case '+': 1236 break; 1237 case ',': 1238 Result += "|"; 1239 break; 1240 case 'g': 1241 Result += "imr"; 1242 break; 1243 case '[': { 1244 assert(OutCons && 1245 "Must pass output names to constraints with a symbolic name"); 1246 unsigned Index; 1247 bool result = Target.resolveSymbolicName(Constraint, 1248 &(*OutCons)[0], 1249 OutCons->size(), Index); 1250 assert(result && "Could not resolve symbolic name"); (void)result; 1251 Result += llvm::utostr(Index); 1252 break; 1253 } 1254 } 1255 1256 Constraint++; 1257 } 1258 1259 return Result; 1260 } 1261 1262 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1263 /// as using a particular register add that as a constraint that will be used 1264 /// in this asm stmt. 1265 static std::string 1266 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1267 const TargetInfo &Target, CodeGenModule &CGM, 1268 const AsmStmt &Stmt) { 1269 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1270 if (!AsmDeclRef) 1271 return Constraint; 1272 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1273 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1274 if (!Variable) 1275 return Constraint; 1276 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1277 if (!Attr) 1278 return Constraint; 1279 StringRef Register = Attr->getLabel(); 1280 assert(Target.isValidGCCRegisterName(Register)); 1281 // We're using validateOutputConstraint here because we only care if 1282 // this is a register constraint. 1283 TargetInfo::ConstraintInfo Info(Constraint, ""); 1284 if (Target.validateOutputConstraint(Info) && 1285 !Info.allowsRegister()) { 1286 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1287 return Constraint; 1288 } 1289 // Canonicalize the register here before returning it. 1290 Register = Target.getNormalizedGCCRegisterName(Register); 1291 return "{" + Register.str() + "}"; 1292 } 1293 1294 llvm::Value* 1295 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S, 1296 const TargetInfo::ConstraintInfo &Info, 1297 LValue InputValue, QualType InputType, 1298 std::string &ConstraintStr) { 1299 llvm::Value *Arg; 1300 if (Info.allowsRegister() || !Info.allowsMemory()) { 1301 if (!CodeGenFunction::hasAggregateLLVMType(InputType)) { 1302 Arg = EmitLoadOfLValue(InputValue).getScalarVal(); 1303 } else { 1304 llvm::Type *Ty = ConvertType(InputType); 1305 uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); 1306 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1307 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1308 Ty = llvm::PointerType::getUnqual(Ty); 1309 1310 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1311 Ty)); 1312 } else { 1313 Arg = InputValue.getAddress(); 1314 ConstraintStr += '*'; 1315 } 1316 } 1317 } else { 1318 Arg = InputValue.getAddress(); 1319 ConstraintStr += '*'; 1320 } 1321 1322 return Arg; 1323 } 1324 1325 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, 1326 const TargetInfo::ConstraintInfo &Info, 1327 const Expr *InputExpr, 1328 std::string &ConstraintStr) { 1329 if (Info.allowsRegister() || !Info.allowsMemory()) 1330 if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) 1331 return EmitScalarExpr(InputExpr); 1332 1333 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1334 LValue Dest = EmitLValue(InputExpr); 1335 return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr); 1336 } 1337 1338 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1339 /// asm call instruction. The !srcloc MDNode contains a list of constant 1340 /// integers which are the source locations of the start of each line in the 1341 /// asm. 1342 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1343 CodeGenFunction &CGF) { 1344 SmallVector<llvm::Value *, 8> Locs; 1345 // Add the location of the first line to the MDNode. 1346 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1347 Str->getLocStart().getRawEncoding())); 1348 StringRef StrVal = Str->getString(); 1349 if (!StrVal.empty()) { 1350 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1351 const LangOptions &LangOpts = CGF.CGM.getLangOptions(); 1352 1353 // Add the location of the start of each subsequent line of the asm to the 1354 // MDNode. 1355 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1356 if (StrVal[i] != '\n') continue; 1357 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1358 CGF.Target); 1359 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1360 LineLoc.getRawEncoding())); 1361 } 1362 } 1363 1364 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1365 } 1366 1367 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1368 // Analyze the asm string to decompose it into its pieces. We know that Sema 1369 // has already done this, so it is guaranteed to be successful. 1370 SmallVector<AsmStmt::AsmStringPiece, 4> Pieces; 1371 unsigned DiagOffs; 1372 S.AnalyzeAsmString(Pieces, getContext(), DiagOffs); 1373 1374 // Assemble the pieces into the final asm string. 1375 std::string AsmString; 1376 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 1377 if (Pieces[i].isString()) 1378 AsmString += Pieces[i].getString(); 1379 else if (Pieces[i].getModifier() == '\0') 1380 AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); 1381 else 1382 AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + 1383 Pieces[i].getModifier() + '}'; 1384 } 1385 1386 // Get all the output and input constraints together. 1387 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1388 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1389 1390 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1391 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), 1392 S.getOutputName(i)); 1393 bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid; 1394 assert(IsValid && "Failed to parse output constraint"); 1395 OutputConstraintInfos.push_back(Info); 1396 } 1397 1398 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1399 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), 1400 S.getInputName(i)); 1401 bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(), 1402 S.getNumOutputs(), Info); 1403 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1404 InputConstraintInfos.push_back(Info); 1405 } 1406 1407 std::string Constraints; 1408 1409 std::vector<LValue> ResultRegDests; 1410 std::vector<QualType> ResultRegQualTys; 1411 std::vector<llvm::Type *> ResultRegTypes; 1412 std::vector<llvm::Type *> ResultTruncRegTypes; 1413 std::vector<llvm::Type*> ArgTypes; 1414 std::vector<llvm::Value*> Args; 1415 1416 // Keep track of inout constraints. 1417 std::string InOutConstraints; 1418 std::vector<llvm::Value*> InOutArgs; 1419 std::vector<llvm::Type*> InOutArgTypes; 1420 1421 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1422 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1423 1424 // Simplify the output constraint. 1425 std::string OutputConstraint(S.getOutputConstraint(i)); 1426 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); 1427 1428 const Expr *OutExpr = S.getOutputExpr(i); 1429 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1430 1431 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1432 Target, CGM, S); 1433 1434 LValue Dest = EmitLValue(OutExpr); 1435 if (!Constraints.empty()) 1436 Constraints += ','; 1437 1438 // If this is a register output, then make the inline asm return it 1439 // by-value. If this is a memory result, return the value by-reference. 1440 if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) { 1441 Constraints += "=" + OutputConstraint; 1442 ResultRegQualTys.push_back(OutExpr->getType()); 1443 ResultRegDests.push_back(Dest); 1444 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1445 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1446 1447 // If this output is tied to an input, and if the input is larger, then 1448 // we need to set the actual result type of the inline asm node to be the 1449 // same as the input type. 1450 if (Info.hasMatchingInput()) { 1451 unsigned InputNo; 1452 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1453 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1454 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1455 break; 1456 } 1457 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1458 1459 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1460 QualType OutputType = OutExpr->getType(); 1461 1462 uint64_t InputSize = getContext().getTypeSize(InputTy); 1463 if (getContext().getTypeSize(OutputType) < InputSize) { 1464 // Form the asm to return the value as a larger integer or fp type. 1465 ResultRegTypes.back() = ConvertType(InputTy); 1466 } 1467 } 1468 if (llvm::Type* AdjTy = 1469 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1470 ResultRegTypes.back())) 1471 ResultRegTypes.back() = AdjTy; 1472 } else { 1473 ArgTypes.push_back(Dest.getAddress()->getType()); 1474 Args.push_back(Dest.getAddress()); 1475 Constraints += "=*"; 1476 Constraints += OutputConstraint; 1477 } 1478 1479 if (Info.isReadWrite()) { 1480 InOutConstraints += ','; 1481 1482 const Expr *InputExpr = S.getOutputExpr(i); 1483 llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), 1484 InOutConstraints); 1485 1486 if (Info.allowsRegister()) 1487 InOutConstraints += llvm::utostr(i); 1488 else 1489 InOutConstraints += OutputConstraint; 1490 1491 InOutArgTypes.push_back(Arg->getType()); 1492 InOutArgs.push_back(Arg); 1493 } 1494 } 1495 1496 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1497 1498 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1499 const Expr *InputExpr = S.getInputExpr(i); 1500 1501 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1502 1503 if (!Constraints.empty()) 1504 Constraints += ','; 1505 1506 // Simplify the input constraint. 1507 std::string InputConstraint(S.getInputConstraint(i)); 1508 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, 1509 &OutputConstraintInfos); 1510 1511 InputConstraint = 1512 AddVariableConstraints(InputConstraint, 1513 *InputExpr->IgnoreParenNoopCasts(getContext()), 1514 Target, CGM, S); 1515 1516 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); 1517 1518 // If this input argument is tied to a larger output result, extend the 1519 // input to be the same size as the output. The LLVM backend wants to see 1520 // the input and output of a matching constraint be the same size. Note 1521 // that GCC does not define what the top bits are here. We use zext because 1522 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1523 if (Info.hasTiedOperand()) { 1524 unsigned Output = Info.getTiedOperand(); 1525 QualType OutputType = S.getOutputExpr(Output)->getType(); 1526 QualType InputTy = InputExpr->getType(); 1527 1528 if (getContext().getTypeSize(OutputType) > 1529 getContext().getTypeSize(InputTy)) { 1530 // Use ptrtoint as appropriate so that we can do our extension. 1531 if (isa<llvm::PointerType>(Arg->getType())) 1532 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1533 llvm::Type *OutputTy = ConvertType(OutputType); 1534 if (isa<llvm::IntegerType>(OutputTy)) 1535 Arg = Builder.CreateZExt(Arg, OutputTy); 1536 else if (isa<llvm::PointerType>(OutputTy)) 1537 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1538 else { 1539 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1540 Arg = Builder.CreateFPExt(Arg, OutputTy); 1541 } 1542 } 1543 } 1544 if (llvm::Type* AdjTy = 1545 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1546 Arg->getType())) 1547 Arg = Builder.CreateBitCast(Arg, AdjTy); 1548 1549 ArgTypes.push_back(Arg->getType()); 1550 Args.push_back(Arg); 1551 Constraints += InputConstraint; 1552 } 1553 1554 // Append the "input" part of inout constraints last. 1555 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1556 ArgTypes.push_back(InOutArgTypes[i]); 1557 Args.push_back(InOutArgs[i]); 1558 } 1559 Constraints += InOutConstraints; 1560 1561 // Clobbers 1562 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1563 StringRef Clobber = S.getClobber(i)->getString(); 1564 1565 if (Clobber != "memory" && Clobber != "cc") 1566 Clobber = Target.getNormalizedGCCRegisterName(Clobber); 1567 1568 if (i != 0 || NumConstraints != 0) 1569 Constraints += ','; 1570 1571 Constraints += "~{"; 1572 Constraints += Clobber; 1573 Constraints += '}'; 1574 } 1575 1576 // Add machine specific clobbers 1577 std::string MachineClobbers = Target.getClobbers(); 1578 if (!MachineClobbers.empty()) { 1579 if (!Constraints.empty()) 1580 Constraints += ','; 1581 Constraints += MachineClobbers; 1582 } 1583 1584 llvm::Type *ResultType; 1585 if (ResultRegTypes.empty()) 1586 ResultType = llvm::Type::getVoidTy(getLLVMContext()); 1587 else if (ResultRegTypes.size() == 1) 1588 ResultType = ResultRegTypes[0]; 1589 else 1590 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1591 1592 llvm::FunctionType *FTy = 1593 llvm::FunctionType::get(ResultType, ArgTypes, false); 1594 1595 llvm::InlineAsm *IA = 1596 llvm::InlineAsm::get(FTy, AsmString, Constraints, 1597 S.isVolatile() || S.getNumOutputs() == 0); 1598 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1599 Result->addAttribute(~0, llvm::Attribute::NoUnwind); 1600 1601 // Slap the source location of the inline asm into a !srcloc metadata on the 1602 // call. 1603 Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this)); 1604 1605 // Extract all of the register value results from the asm. 1606 std::vector<llvm::Value*> RegResults; 1607 if (ResultRegTypes.size() == 1) { 1608 RegResults.push_back(Result); 1609 } else { 1610 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1611 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1612 RegResults.push_back(Tmp); 1613 } 1614 } 1615 1616 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1617 llvm::Value *Tmp = RegResults[i]; 1618 1619 // If the result type of the LLVM IR asm doesn't match the result type of 1620 // the expression, do the conversion. 1621 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1622 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1623 1624 // Truncate the integer result to the right size, note that TruncTy can be 1625 // a pointer. 1626 if (TruncTy->isFloatingPointTy()) 1627 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1628 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1629 uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy); 1630 Tmp = Builder.CreateTrunc(Tmp, 1631 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1632 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1633 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1634 uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType()); 1635 Tmp = Builder.CreatePtrToInt(Tmp, 1636 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1637 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1638 } else if (TruncTy->isIntegerTy()) { 1639 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1640 } else if (TruncTy->isVectorTy()) { 1641 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1642 } 1643 } 1644 1645 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1646 } 1647 } 1648