1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/LoopHint.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/IR/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                              Statement Emission
33 //===----------------------------------------------------------------------===//
34 
35 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36   if (CGDebugInfo *DI = getDebugInfo()) {
37     SourceLocation Loc;
38     Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40 
41     LastStopPoint = Loc;
42   }
43 }
44 
45 void CodeGenFunction::EmitStmt(const Stmt *S) {
46   assert(S && "Null statement?");
47   PGO.setCurrentStmt(S);
48 
49   // These statements have their own debug info handling.
50   if (EmitSimpleStmt(S))
51     return;
52 
53   // Check if we are generating unreachable code.
54   if (!HaveInsertPoint()) {
55     // If so, and the statement doesn't contain a label, then we do not need to
56     // generate actual code. This is safe because (1) the current point is
57     // unreachable, so we don't need to execute the code, and (2) we've already
58     // handled the statements which update internal data structures (like the
59     // local variable map) which could be used by subsequent statements.
60     if (!ContainsLabel(S)) {
61       // Verify that any decl statements were handled as simple, they may be in
62       // scope of subsequent reachable statements.
63       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64       return;
65     }
66 
67     // Otherwise, make a new block to hold the code.
68     EnsureInsertPoint();
69   }
70 
71   // Generate a stoppoint if we are emitting debug info.
72   EmitStopPoint(S);
73 
74   switch (S->getStmtClass()) {
75   case Stmt::NoStmtClass:
76   case Stmt::CXXCatchStmtClass:
77   case Stmt::SEHExceptStmtClass:
78   case Stmt::SEHFinallyStmtClass:
79   case Stmt::MSDependentExistsStmtClass:
80     llvm_unreachable("invalid statement class to emit generically");
81   case Stmt::NullStmtClass:
82   case Stmt::CompoundStmtClass:
83   case Stmt::DeclStmtClass:
84   case Stmt::LabelStmtClass:
85   case Stmt::AttributedStmtClass:
86   case Stmt::GotoStmtClass:
87   case Stmt::BreakStmtClass:
88   case Stmt::ContinueStmtClass:
89   case Stmt::DefaultStmtClass:
90   case Stmt::CaseStmtClass:
91   case Stmt::SEHLeaveStmtClass:
92     llvm_unreachable("should have emitted these statements as simple");
93 
94 #define STMT(Type, Base)
95 #define ABSTRACT_STMT(Op)
96 #define EXPR(Type, Base) \
97   case Stmt::Type##Class:
98 #include "clang/AST/StmtNodes.inc"
99   {
100     // Remember the block we came in on.
101     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
102     assert(incoming && "expression emission must have an insertion point");
103 
104     EmitIgnoredExpr(cast<Expr>(S));
105 
106     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
107     assert(outgoing && "expression emission cleared block!");
108 
109     // The expression emitters assume (reasonably!) that the insertion
110     // point is always set.  To maintain that, the call-emission code
111     // for noreturn functions has to enter a new block with no
112     // predecessors.  We want to kill that block and mark the current
113     // insertion point unreachable in the common case of a call like
114     // "exit();".  Since expression emission doesn't otherwise create
115     // blocks with no predecessors, we can just test for that.
116     // However, we must be careful not to do this to our incoming
117     // block, because *statement* emission does sometimes create
118     // reachable blocks which will have no predecessors until later in
119     // the function.  This occurs with, e.g., labels that are not
120     // reachable by fallthrough.
121     if (incoming != outgoing && outgoing->use_empty()) {
122       outgoing->eraseFromParent();
123       Builder.ClearInsertionPoint();
124     }
125     break;
126   }
127 
128   case Stmt::IndirectGotoStmtClass:
129     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
130 
131   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
132   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
133   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
134   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
135 
136   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
137 
138   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
139   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
140   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
141   case Stmt::CapturedStmtClass: {
142     const CapturedStmt *CS = cast<CapturedStmt>(S);
143     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
144     }
145     break;
146   case Stmt::ObjCAtTryStmtClass:
147     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
148     break;
149   case Stmt::ObjCAtCatchStmtClass:
150     llvm_unreachable(
151                     "@catch statements should be handled by EmitObjCAtTryStmt");
152   case Stmt::ObjCAtFinallyStmtClass:
153     llvm_unreachable(
154                   "@finally statements should be handled by EmitObjCAtTryStmt");
155   case Stmt::ObjCAtThrowStmtClass:
156     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
157     break;
158   case Stmt::ObjCAtSynchronizedStmtClass:
159     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
160     break;
161   case Stmt::ObjCForCollectionStmtClass:
162     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
163     break;
164   case Stmt::ObjCAutoreleasePoolStmtClass:
165     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
166     break;
167 
168   case Stmt::CXXTryStmtClass:
169     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
170     break;
171   case Stmt::CXXForRangeStmtClass:
172     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
173     break;
174   case Stmt::SEHTryStmtClass:
175     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
176     break;
177   case Stmt::OMPParallelDirectiveClass:
178     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
179     break;
180   case Stmt::OMPSimdDirectiveClass:
181     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
182     break;
183   case Stmt::OMPForDirectiveClass:
184     EmitOMPForDirective(cast<OMPForDirective>(*S));
185     break;
186   case Stmt::OMPForSimdDirectiveClass:
187     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
188     break;
189   case Stmt::OMPSectionsDirectiveClass:
190     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
191     break;
192   case Stmt::OMPSectionDirectiveClass:
193     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
194     break;
195   case Stmt::OMPSingleDirectiveClass:
196     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
197     break;
198   case Stmt::OMPMasterDirectiveClass:
199     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
200     break;
201   case Stmt::OMPCriticalDirectiveClass:
202     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
203     break;
204   case Stmt::OMPParallelForDirectiveClass:
205     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
206     break;
207   case Stmt::OMPParallelForSimdDirectiveClass:
208     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
209     break;
210   case Stmt::OMPParallelSectionsDirectiveClass:
211     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
212     break;
213   case Stmt::OMPTaskDirectiveClass:
214     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
215     break;
216   case Stmt::OMPTaskyieldDirectiveClass:
217     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
218     break;
219   case Stmt::OMPBarrierDirectiveClass:
220     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
221     break;
222   case Stmt::OMPTaskwaitDirectiveClass:
223     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
224     break;
225   case Stmt::OMPTaskgroupDirectiveClass:
226     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
227     break;
228   case Stmt::OMPFlushDirectiveClass:
229     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
230     break;
231   case Stmt::OMPOrderedDirectiveClass:
232     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
233     break;
234   case Stmt::OMPAtomicDirectiveClass:
235     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
236     break;
237   case Stmt::OMPTargetDirectiveClass:
238     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
239     break;
240   case Stmt::OMPTeamsDirectiveClass:
241     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
242     break;
243   case Stmt::OMPCancellationPointDirectiveClass:
244     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
245     break;
246   case Stmt::OMPCancelDirectiveClass:
247     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
248     break;
249   case Stmt::OMPTargetDataDirectiveClass:
250     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
251     break;
252   }
253 }
254 
255 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
256   switch (S->getStmtClass()) {
257   default: return false;
258   case Stmt::NullStmtClass: break;
259   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
260   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
261   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
262   case Stmt::AttributedStmtClass:
263                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
264   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
265   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
266   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
267   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
268   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
269   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
270   }
271 
272   return true;
273 }
274 
275 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
276 /// this captures the expression result of the last sub-statement and returns it
277 /// (for use by the statement expression extension).
278 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
279                                                AggValueSlot AggSlot) {
280   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
281                              "LLVM IR generation of compound statement ('{}')");
282 
283   // Keep track of the current cleanup stack depth, including debug scopes.
284   LexicalScope Scope(*this, S.getSourceRange());
285 
286   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
287 }
288 
289 llvm::Value*
290 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
291                                               bool GetLast,
292                                               AggValueSlot AggSlot) {
293 
294   for (CompoundStmt::const_body_iterator I = S.body_begin(),
295        E = S.body_end()-GetLast; I != E; ++I)
296     EmitStmt(*I);
297 
298   llvm::Value *RetAlloca = nullptr;
299   if (GetLast) {
300     // We have to special case labels here.  They are statements, but when put
301     // at the end of a statement expression, they yield the value of their
302     // subexpression.  Handle this by walking through all labels we encounter,
303     // emitting them before we evaluate the subexpr.
304     const Stmt *LastStmt = S.body_back();
305     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
306       EmitLabel(LS->getDecl());
307       LastStmt = LS->getSubStmt();
308     }
309 
310     EnsureInsertPoint();
311 
312     QualType ExprTy = cast<Expr>(LastStmt)->getType();
313     if (hasAggregateEvaluationKind(ExprTy)) {
314       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
315     } else {
316       // We can't return an RValue here because there might be cleanups at
317       // the end of the StmtExpr.  Because of that, we have to emit the result
318       // here into a temporary alloca.
319       RetAlloca = CreateMemTemp(ExprTy);
320       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
321                        /*IsInit*/false);
322     }
323 
324   }
325 
326   return RetAlloca;
327 }
328 
329 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
330   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
331 
332   // If there is a cleanup stack, then we it isn't worth trying to
333   // simplify this block (we would need to remove it from the scope map
334   // and cleanup entry).
335   if (!EHStack.empty())
336     return;
337 
338   // Can only simplify direct branches.
339   if (!BI || !BI->isUnconditional())
340     return;
341 
342   // Can only simplify empty blocks.
343   if (BI != BB->begin())
344     return;
345 
346   BB->replaceAllUsesWith(BI->getSuccessor(0));
347   BI->eraseFromParent();
348   BB->eraseFromParent();
349 }
350 
351 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
352   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
353 
354   // Fall out of the current block (if necessary).
355   EmitBranch(BB);
356 
357   if (IsFinished && BB->use_empty()) {
358     delete BB;
359     return;
360   }
361 
362   // Place the block after the current block, if possible, or else at
363   // the end of the function.
364   if (CurBB && CurBB->getParent())
365     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
366   else
367     CurFn->getBasicBlockList().push_back(BB);
368   Builder.SetInsertPoint(BB);
369 }
370 
371 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
372   // Emit a branch from the current block to the target one if this
373   // was a real block.  If this was just a fall-through block after a
374   // terminator, don't emit it.
375   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
376 
377   if (!CurBB || CurBB->getTerminator()) {
378     // If there is no insert point or the previous block is already
379     // terminated, don't touch it.
380   } else {
381     // Otherwise, create a fall-through branch.
382     Builder.CreateBr(Target);
383   }
384 
385   Builder.ClearInsertionPoint();
386 }
387 
388 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
389   bool inserted = false;
390   for (llvm::User *u : block->users()) {
391     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
392       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
393       inserted = true;
394       break;
395     }
396   }
397 
398   if (!inserted)
399     CurFn->getBasicBlockList().push_back(block);
400 
401   Builder.SetInsertPoint(block);
402 }
403 
404 CodeGenFunction::JumpDest
405 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
406   JumpDest &Dest = LabelMap[D];
407   if (Dest.isValid()) return Dest;
408 
409   // Create, but don't insert, the new block.
410   Dest = JumpDest(createBasicBlock(D->getName()),
411                   EHScopeStack::stable_iterator::invalid(),
412                   NextCleanupDestIndex++);
413   return Dest;
414 }
415 
416 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
417   // Add this label to the current lexical scope if we're within any
418   // normal cleanups.  Jumps "in" to this label --- when permitted by
419   // the language --- may need to be routed around such cleanups.
420   if (EHStack.hasNormalCleanups() && CurLexicalScope)
421     CurLexicalScope->addLabel(D);
422 
423   JumpDest &Dest = LabelMap[D];
424 
425   // If we didn't need a forward reference to this label, just go
426   // ahead and create a destination at the current scope.
427   if (!Dest.isValid()) {
428     Dest = getJumpDestInCurrentScope(D->getName());
429 
430   // Otherwise, we need to give this label a target depth and remove
431   // it from the branch-fixups list.
432   } else {
433     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
434     Dest.setScopeDepth(EHStack.stable_begin());
435     ResolveBranchFixups(Dest.getBlock());
436   }
437 
438   EmitBlock(Dest.getBlock());
439   incrementProfileCounter(D->getStmt());
440 }
441 
442 /// Change the cleanup scope of the labels in this lexical scope to
443 /// match the scope of the enclosing context.
444 void CodeGenFunction::LexicalScope::rescopeLabels() {
445   assert(!Labels.empty());
446   EHScopeStack::stable_iterator innermostScope
447     = CGF.EHStack.getInnermostNormalCleanup();
448 
449   // Change the scope depth of all the labels.
450   for (SmallVectorImpl<const LabelDecl*>::const_iterator
451          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
452     assert(CGF.LabelMap.count(*i));
453     JumpDest &dest = CGF.LabelMap.find(*i)->second;
454     assert(dest.getScopeDepth().isValid());
455     assert(innermostScope.encloses(dest.getScopeDepth()));
456     dest.setScopeDepth(innermostScope);
457   }
458 
459   // Reparent the labels if the new scope also has cleanups.
460   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
461     ParentScope->Labels.append(Labels.begin(), Labels.end());
462   }
463 }
464 
465 
466 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
467   EmitLabel(S.getDecl());
468   EmitStmt(S.getSubStmt());
469 }
470 
471 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
472   const Stmt *SubStmt = S.getSubStmt();
473   switch (SubStmt->getStmtClass()) {
474   case Stmt::DoStmtClass:
475     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
476     break;
477   case Stmt::ForStmtClass:
478     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
479     break;
480   case Stmt::WhileStmtClass:
481     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
482     break;
483   case Stmt::CXXForRangeStmtClass:
484     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
485     break;
486   default:
487     EmitStmt(SubStmt);
488   }
489 }
490 
491 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
492   // If this code is reachable then emit a stop point (if generating
493   // debug info). We have to do this ourselves because we are on the
494   // "simple" statement path.
495   if (HaveInsertPoint())
496     EmitStopPoint(&S);
497 
498   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
499 }
500 
501 
502 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
503   if (const LabelDecl *Target = S.getConstantTarget()) {
504     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
505     return;
506   }
507 
508   // Ensure that we have an i8* for our PHI node.
509   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
510                                          Int8PtrTy, "addr");
511   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
512 
513   // Get the basic block for the indirect goto.
514   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
515 
516   // The first instruction in the block has to be the PHI for the switch dest,
517   // add an entry for this branch.
518   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
519 
520   EmitBranch(IndGotoBB);
521 }
522 
523 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
524   // C99 6.8.4.1: The first substatement is executed if the expression compares
525   // unequal to 0.  The condition must be a scalar type.
526   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
527 
528   if (S.getConditionVariable())
529     EmitAutoVarDecl(*S.getConditionVariable());
530 
531   // If the condition constant folds and can be elided, try to avoid emitting
532   // the condition and the dead arm of the if/else.
533   bool CondConstant;
534   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
535     // Figure out which block (then or else) is executed.
536     const Stmt *Executed = S.getThen();
537     const Stmt *Skipped  = S.getElse();
538     if (!CondConstant)  // Condition false?
539       std::swap(Executed, Skipped);
540 
541     // If the skipped block has no labels in it, just emit the executed block.
542     // This avoids emitting dead code and simplifies the CFG substantially.
543     if (!ContainsLabel(Skipped)) {
544       if (CondConstant)
545         incrementProfileCounter(&S);
546       if (Executed) {
547         RunCleanupsScope ExecutedScope(*this);
548         EmitStmt(Executed);
549       }
550       return;
551     }
552   }
553 
554   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
555   // the conditional branch.
556   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
557   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
558   llvm::BasicBlock *ElseBlock = ContBlock;
559   if (S.getElse())
560     ElseBlock = createBasicBlock("if.else");
561 
562   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
563                        getProfileCount(S.getThen()));
564 
565   // Emit the 'then' code.
566   EmitBlock(ThenBlock);
567   incrementProfileCounter(&S);
568   {
569     RunCleanupsScope ThenScope(*this);
570     EmitStmt(S.getThen());
571   }
572   EmitBranch(ContBlock);
573 
574   // Emit the 'else' code if present.
575   if (const Stmt *Else = S.getElse()) {
576     {
577       // There is no need to emit line number for an unconditional branch.
578       auto NL = ApplyDebugLocation::CreateEmpty(*this);
579       EmitBlock(ElseBlock);
580     }
581     {
582       RunCleanupsScope ElseScope(*this);
583       EmitStmt(Else);
584     }
585     {
586       // There is no need to emit line number for an unconditional branch.
587       auto NL = ApplyDebugLocation::CreateEmpty(*this);
588       EmitBranch(ContBlock);
589     }
590   }
591 
592   // Emit the continuation block for code after the if.
593   EmitBlock(ContBlock, true);
594 }
595 
596 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
597                                     ArrayRef<const Attr *> WhileAttrs) {
598   // Emit the header for the loop, which will also become
599   // the continue target.
600   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
601   EmitBlock(LoopHeader.getBlock());
602 
603   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs);
604 
605   // Create an exit block for when the condition fails, which will
606   // also become the break target.
607   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
608 
609   // Store the blocks to use for break and continue.
610   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
611 
612   // C++ [stmt.while]p2:
613   //   When the condition of a while statement is a declaration, the
614   //   scope of the variable that is declared extends from its point
615   //   of declaration (3.3.2) to the end of the while statement.
616   //   [...]
617   //   The object created in a condition is destroyed and created
618   //   with each iteration of the loop.
619   RunCleanupsScope ConditionScope(*this);
620 
621   if (S.getConditionVariable())
622     EmitAutoVarDecl(*S.getConditionVariable());
623 
624   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
625   // evaluation of the controlling expression takes place before each
626   // execution of the loop body.
627   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
628 
629   // while(1) is common, avoid extra exit blocks.  Be sure
630   // to correctly handle break/continue though.
631   bool EmitBoolCondBranch = true;
632   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
633     if (C->isOne())
634       EmitBoolCondBranch = false;
635 
636   // As long as the condition is true, go to the loop body.
637   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
638   if (EmitBoolCondBranch) {
639     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
640     if (ConditionScope.requiresCleanups())
641       ExitBlock = createBasicBlock("while.exit");
642     Builder.CreateCondBr(
643         BoolCondVal, LoopBody, ExitBlock,
644         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
645 
646     if (ExitBlock != LoopExit.getBlock()) {
647       EmitBlock(ExitBlock);
648       EmitBranchThroughCleanup(LoopExit);
649     }
650   }
651 
652   // Emit the loop body.  We have to emit this in a cleanup scope
653   // because it might be a singleton DeclStmt.
654   {
655     RunCleanupsScope BodyScope(*this);
656     EmitBlock(LoopBody);
657     incrementProfileCounter(&S);
658     EmitStmt(S.getBody());
659   }
660 
661   BreakContinueStack.pop_back();
662 
663   // Immediately force cleanup.
664   ConditionScope.ForceCleanup();
665 
666   EmitStopPoint(&S);
667   // Branch to the loop header again.
668   EmitBranch(LoopHeader.getBlock());
669 
670   LoopStack.pop();
671 
672   // Emit the exit block.
673   EmitBlock(LoopExit.getBlock(), true);
674 
675   // The LoopHeader typically is just a branch if we skipped emitting
676   // a branch, try to erase it.
677   if (!EmitBoolCondBranch)
678     SimplifyForwardingBlocks(LoopHeader.getBlock());
679 }
680 
681 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
682                                  ArrayRef<const Attr *> DoAttrs) {
683   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
684   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
685 
686   uint64_t ParentCount = getCurrentProfileCount();
687 
688   // Store the blocks to use for break and continue.
689   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
690 
691   // Emit the body of the loop.
692   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
693 
694   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs);
695 
696   EmitBlockWithFallThrough(LoopBody, &S);
697   {
698     RunCleanupsScope BodyScope(*this);
699     EmitStmt(S.getBody());
700   }
701 
702   EmitBlock(LoopCond.getBlock());
703 
704   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
705   // after each execution of the loop body."
706 
707   // Evaluate the conditional in the while header.
708   // C99 6.8.5p2/p4: The first substatement is executed if the expression
709   // compares unequal to 0.  The condition must be a scalar type.
710   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
711 
712   BreakContinueStack.pop_back();
713 
714   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
715   // to correctly handle break/continue though.
716   bool EmitBoolCondBranch = true;
717   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
718     if (C->isZero())
719       EmitBoolCondBranch = false;
720 
721   // As long as the condition is true, iterate the loop.
722   if (EmitBoolCondBranch) {
723     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
724     Builder.CreateCondBr(
725         BoolCondVal, LoopBody, LoopExit.getBlock(),
726         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
727   }
728 
729   LoopStack.pop();
730 
731   // Emit the exit block.
732   EmitBlock(LoopExit.getBlock());
733 
734   // The DoCond block typically is just a branch if we skipped
735   // emitting a branch, try to erase it.
736   if (!EmitBoolCondBranch)
737     SimplifyForwardingBlocks(LoopCond.getBlock());
738 }
739 
740 void CodeGenFunction::EmitForStmt(const ForStmt &S,
741                                   ArrayRef<const Attr *> ForAttrs) {
742   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
743 
744   LexicalScope ForScope(*this, S.getSourceRange());
745 
746   // Evaluate the first part before the loop.
747   if (S.getInit())
748     EmitStmt(S.getInit());
749 
750   // Start the loop with a block that tests the condition.
751   // If there's an increment, the continue scope will be overwritten
752   // later.
753   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
754   llvm::BasicBlock *CondBlock = Continue.getBlock();
755   EmitBlock(CondBlock);
756 
757   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
758 
759   // If the for loop doesn't have an increment we can just use the
760   // condition as the continue block.  Otherwise we'll need to create
761   // a block for it (in the current scope, i.e. in the scope of the
762   // condition), and that we will become our continue block.
763   if (S.getInc())
764     Continue = getJumpDestInCurrentScope("for.inc");
765 
766   // Store the blocks to use for break and continue.
767   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
768 
769   // Create a cleanup scope for the condition variable cleanups.
770   LexicalScope ConditionScope(*this, S.getSourceRange());
771 
772   if (S.getCond()) {
773     // If the for statement has a condition scope, emit the local variable
774     // declaration.
775     if (S.getConditionVariable()) {
776       EmitAutoVarDecl(*S.getConditionVariable());
777     }
778 
779     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
780     // If there are any cleanups between here and the loop-exit scope,
781     // create a block to stage a loop exit along.
782     if (ForScope.requiresCleanups())
783       ExitBlock = createBasicBlock("for.cond.cleanup");
784 
785     // As long as the condition is true, iterate the loop.
786     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
787 
788     // C99 6.8.5p2/p4: The first substatement is executed if the expression
789     // compares unequal to 0.  The condition must be a scalar type.
790     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
791     Builder.CreateCondBr(
792         BoolCondVal, ForBody, ExitBlock,
793         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
794 
795     if (ExitBlock != LoopExit.getBlock()) {
796       EmitBlock(ExitBlock);
797       EmitBranchThroughCleanup(LoopExit);
798     }
799 
800     EmitBlock(ForBody);
801   } else {
802     // Treat it as a non-zero constant.  Don't even create a new block for the
803     // body, just fall into it.
804   }
805   incrementProfileCounter(&S);
806 
807   {
808     // Create a separate cleanup scope for the body, in case it is not
809     // a compound statement.
810     RunCleanupsScope BodyScope(*this);
811     EmitStmt(S.getBody());
812   }
813 
814   // If there is an increment, emit it next.
815   if (S.getInc()) {
816     EmitBlock(Continue.getBlock());
817     EmitStmt(S.getInc());
818   }
819 
820   BreakContinueStack.pop_back();
821 
822   ConditionScope.ForceCleanup();
823 
824   EmitStopPoint(&S);
825   EmitBranch(CondBlock);
826 
827   ForScope.ForceCleanup();
828 
829   LoopStack.pop();
830 
831   // Emit the fall-through block.
832   EmitBlock(LoopExit.getBlock(), true);
833 }
834 
835 void
836 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
837                                      ArrayRef<const Attr *> ForAttrs) {
838   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
839 
840   LexicalScope ForScope(*this, S.getSourceRange());
841 
842   // Evaluate the first pieces before the loop.
843   EmitStmt(S.getRangeStmt());
844   EmitStmt(S.getBeginEndStmt());
845 
846   // Start the loop with a block that tests the condition.
847   // If there's an increment, the continue scope will be overwritten
848   // later.
849   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
850   EmitBlock(CondBlock);
851 
852   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
853 
854   // If there are any cleanups between here and the loop-exit scope,
855   // create a block to stage a loop exit along.
856   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
857   if (ForScope.requiresCleanups())
858     ExitBlock = createBasicBlock("for.cond.cleanup");
859 
860   // The loop body, consisting of the specified body and the loop variable.
861   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
862 
863   // The body is executed if the expression, contextually converted
864   // to bool, is true.
865   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
866   Builder.CreateCondBr(
867       BoolCondVal, ForBody, ExitBlock,
868       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
869 
870   if (ExitBlock != LoopExit.getBlock()) {
871     EmitBlock(ExitBlock);
872     EmitBranchThroughCleanup(LoopExit);
873   }
874 
875   EmitBlock(ForBody);
876   incrementProfileCounter(&S);
877 
878   // Create a block for the increment. In case of a 'continue', we jump there.
879   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
880 
881   // Store the blocks to use for break and continue.
882   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
883 
884   {
885     // Create a separate cleanup scope for the loop variable and body.
886     LexicalScope BodyScope(*this, S.getSourceRange());
887     EmitStmt(S.getLoopVarStmt());
888     EmitStmt(S.getBody());
889   }
890 
891   EmitStopPoint(&S);
892   // If there is an increment, emit it next.
893   EmitBlock(Continue.getBlock());
894   EmitStmt(S.getInc());
895 
896   BreakContinueStack.pop_back();
897 
898   EmitBranch(CondBlock);
899 
900   ForScope.ForceCleanup();
901 
902   LoopStack.pop();
903 
904   // Emit the fall-through block.
905   EmitBlock(LoopExit.getBlock(), true);
906 }
907 
908 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
909   if (RV.isScalar()) {
910     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
911   } else if (RV.isAggregate()) {
912     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
913   } else {
914     EmitStoreOfComplex(RV.getComplexVal(),
915                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
916                        /*init*/ true);
917   }
918   EmitBranchThroughCleanup(ReturnBlock);
919 }
920 
921 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
922 /// if the function returns void, or may be missing one if the function returns
923 /// non-void.  Fun stuff :).
924 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
925   // Returning from an outlined SEH helper is UB, and we already warn on it.
926   if (IsOutlinedSEHHelper) {
927     Builder.CreateUnreachable();
928     Builder.ClearInsertionPoint();
929   }
930 
931   // Emit the result value, even if unused, to evalute the side effects.
932   const Expr *RV = S.getRetValue();
933 
934   // Treat block literals in a return expression as if they appeared
935   // in their own scope.  This permits a small, easily-implemented
936   // exception to our over-conservative rules about not jumping to
937   // statements following block literals with non-trivial cleanups.
938   RunCleanupsScope cleanupScope(*this);
939   if (const ExprWithCleanups *cleanups =
940         dyn_cast_or_null<ExprWithCleanups>(RV)) {
941     enterFullExpression(cleanups);
942     RV = cleanups->getSubExpr();
943   }
944 
945   // FIXME: Clean this up by using an LValue for ReturnTemp,
946   // EmitStoreThroughLValue, and EmitAnyExpr.
947   if (getLangOpts().ElideConstructors &&
948       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
949     // Apply the named return value optimization for this return statement,
950     // which means doing nothing: the appropriate result has already been
951     // constructed into the NRVO variable.
952 
953     // If there is an NRVO flag for this variable, set it to 1 into indicate
954     // that the cleanup code should not destroy the variable.
955     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
956       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
957   } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
958     // Make sure not to return anything, but evaluate the expression
959     // for side effects.
960     if (RV)
961       EmitAnyExpr(RV);
962   } else if (!RV) {
963     // Do nothing (return value is left uninitialized)
964   } else if (FnRetTy->isReferenceType()) {
965     // If this function returns a reference, take the address of the expression
966     // rather than the value.
967     RValue Result = EmitReferenceBindingToExpr(RV);
968     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
969   } else {
970     switch (getEvaluationKind(RV->getType())) {
971     case TEK_Scalar:
972       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
973       break;
974     case TEK_Complex:
975       EmitComplexExprIntoLValue(RV,
976                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
977                                 /*isInit*/ true);
978       break;
979     case TEK_Aggregate: {
980       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
981       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
982                                             Qualifiers(),
983                                             AggValueSlot::IsDestructed,
984                                             AggValueSlot::DoesNotNeedGCBarriers,
985                                             AggValueSlot::IsNotAliased));
986       break;
987     }
988     }
989   }
990 
991   ++NumReturnExprs;
992   if (!RV || RV->isEvaluatable(getContext()))
993     ++NumSimpleReturnExprs;
994 
995   cleanupScope.ForceCleanup();
996   EmitBranchThroughCleanup(ReturnBlock);
997 }
998 
999 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1000   // As long as debug info is modeled with instructions, we have to ensure we
1001   // have a place to insert here and write the stop point here.
1002   if (HaveInsertPoint())
1003     EmitStopPoint(&S);
1004 
1005   for (const auto *I : S.decls())
1006     EmitDecl(*I);
1007 }
1008 
1009 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1010   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1011 
1012   // If this code is reachable then emit a stop point (if generating
1013   // debug info). We have to do this ourselves because we are on the
1014   // "simple" statement path.
1015   if (HaveInsertPoint())
1016     EmitStopPoint(&S);
1017 
1018   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1019 }
1020 
1021 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1022   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1023 
1024   // If this code is reachable then emit a stop point (if generating
1025   // debug info). We have to do this ourselves because we are on the
1026   // "simple" statement path.
1027   if (HaveInsertPoint())
1028     EmitStopPoint(&S);
1029 
1030   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1031 }
1032 
1033 /// EmitCaseStmtRange - If case statement range is not too big then
1034 /// add multiple cases to switch instruction, one for each value within
1035 /// the range. If range is too big then emit "if" condition check.
1036 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1037   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1038 
1039   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1040   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1041 
1042   // Emit the code for this case. We do this first to make sure it is
1043   // properly chained from our predecessor before generating the
1044   // switch machinery to enter this block.
1045   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1046   EmitBlockWithFallThrough(CaseDest, &S);
1047   EmitStmt(S.getSubStmt());
1048 
1049   // If range is empty, do nothing.
1050   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1051     return;
1052 
1053   llvm::APInt Range = RHS - LHS;
1054   // FIXME: parameters such as this should not be hardcoded.
1055   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1056     // Range is small enough to add multiple switch instruction cases.
1057     uint64_t Total = getProfileCount(&S);
1058     unsigned NCases = Range.getZExtValue() + 1;
1059     // We only have one region counter for the entire set of cases here, so we
1060     // need to divide the weights evenly between the generated cases, ensuring
1061     // that the total weight is preserved. E.g., a weight of 5 over three cases
1062     // will be distributed as weights of 2, 2, and 1.
1063     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1064     for (unsigned I = 0; I != NCases; ++I) {
1065       if (SwitchWeights)
1066         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1067       if (Rem)
1068         Rem--;
1069       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1070       LHS++;
1071     }
1072     return;
1073   }
1074 
1075   // The range is too big. Emit "if" condition into a new block,
1076   // making sure to save and restore the current insertion point.
1077   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1078 
1079   // Push this test onto the chain of range checks (which terminates
1080   // in the default basic block). The switch's default will be changed
1081   // to the top of this chain after switch emission is complete.
1082   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1083   CaseRangeBlock = createBasicBlock("sw.caserange");
1084 
1085   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1086   Builder.SetInsertPoint(CaseRangeBlock);
1087 
1088   // Emit range check.
1089   llvm::Value *Diff =
1090     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1091   llvm::Value *Cond =
1092     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1093 
1094   llvm::MDNode *Weights = nullptr;
1095   if (SwitchWeights) {
1096     uint64_t ThisCount = getProfileCount(&S);
1097     uint64_t DefaultCount = (*SwitchWeights)[0];
1098     Weights = createProfileWeights(ThisCount, DefaultCount);
1099 
1100     // Since we're chaining the switch default through each large case range, we
1101     // need to update the weight for the default, ie, the first case, to include
1102     // this case.
1103     (*SwitchWeights)[0] += ThisCount;
1104   }
1105   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1106 
1107   // Restore the appropriate insertion point.
1108   if (RestoreBB)
1109     Builder.SetInsertPoint(RestoreBB);
1110   else
1111     Builder.ClearInsertionPoint();
1112 }
1113 
1114 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1115   // If there is no enclosing switch instance that we're aware of, then this
1116   // case statement and its block can be elided.  This situation only happens
1117   // when we've constant-folded the switch, are emitting the constant case,
1118   // and part of the constant case includes another case statement.  For
1119   // instance: switch (4) { case 4: do { case 5: } while (1); }
1120   if (!SwitchInsn) {
1121     EmitStmt(S.getSubStmt());
1122     return;
1123   }
1124 
1125   // Handle case ranges.
1126   if (S.getRHS()) {
1127     EmitCaseStmtRange(S);
1128     return;
1129   }
1130 
1131   llvm::ConstantInt *CaseVal =
1132     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1133 
1134   // If the body of the case is just a 'break', try to not emit an empty block.
1135   // If we're profiling or we're not optimizing, leave the block in for better
1136   // debug and coverage analysis.
1137   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1138       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1139       isa<BreakStmt>(S.getSubStmt())) {
1140     JumpDest Block = BreakContinueStack.back().BreakBlock;
1141 
1142     // Only do this optimization if there are no cleanups that need emitting.
1143     if (isObviouslyBranchWithoutCleanups(Block)) {
1144       if (SwitchWeights)
1145         SwitchWeights->push_back(getProfileCount(&S));
1146       SwitchInsn->addCase(CaseVal, Block.getBlock());
1147 
1148       // If there was a fallthrough into this case, make sure to redirect it to
1149       // the end of the switch as well.
1150       if (Builder.GetInsertBlock()) {
1151         Builder.CreateBr(Block.getBlock());
1152         Builder.ClearInsertionPoint();
1153       }
1154       return;
1155     }
1156   }
1157 
1158   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1159   EmitBlockWithFallThrough(CaseDest, &S);
1160   if (SwitchWeights)
1161     SwitchWeights->push_back(getProfileCount(&S));
1162   SwitchInsn->addCase(CaseVal, CaseDest);
1163 
1164   // Recursively emitting the statement is acceptable, but is not wonderful for
1165   // code where we have many case statements nested together, i.e.:
1166   //  case 1:
1167   //    case 2:
1168   //      case 3: etc.
1169   // Handling this recursively will create a new block for each case statement
1170   // that falls through to the next case which is IR intensive.  It also causes
1171   // deep recursion which can run into stack depth limitations.  Handle
1172   // sequential non-range case statements specially.
1173   const CaseStmt *CurCase = &S;
1174   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1175 
1176   // Otherwise, iteratively add consecutive cases to this switch stmt.
1177   while (NextCase && NextCase->getRHS() == nullptr) {
1178     CurCase = NextCase;
1179     llvm::ConstantInt *CaseVal =
1180       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1181 
1182     if (SwitchWeights)
1183       SwitchWeights->push_back(getProfileCount(NextCase));
1184     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1185       CaseDest = createBasicBlock("sw.bb");
1186       EmitBlockWithFallThrough(CaseDest, &S);
1187     }
1188 
1189     SwitchInsn->addCase(CaseVal, CaseDest);
1190     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1191   }
1192 
1193   // Normal default recursion for non-cases.
1194   EmitStmt(CurCase->getSubStmt());
1195 }
1196 
1197 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1198   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1199   assert(DefaultBlock->empty() &&
1200          "EmitDefaultStmt: Default block already defined?");
1201 
1202   EmitBlockWithFallThrough(DefaultBlock, &S);
1203 
1204   EmitStmt(S.getSubStmt());
1205 }
1206 
1207 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1208 /// constant value that is being switched on, see if we can dead code eliminate
1209 /// the body of the switch to a simple series of statements to emit.  Basically,
1210 /// on a switch (5) we want to find these statements:
1211 ///    case 5:
1212 ///      printf(...);    <--
1213 ///      ++i;            <--
1214 ///      break;
1215 ///
1216 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1217 /// transformation (for example, one of the elided statements contains a label
1218 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1219 /// should include statements after it (e.g. the printf() line is a substmt of
1220 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1221 /// statement, then return CSFC_Success.
1222 ///
1223 /// If Case is non-null, then we are looking for the specified case, checking
1224 /// that nothing we jump over contains labels.  If Case is null, then we found
1225 /// the case and are looking for the break.
1226 ///
1227 /// If the recursive walk actually finds our Case, then we set FoundCase to
1228 /// true.
1229 ///
1230 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1231 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1232                                             const SwitchCase *Case,
1233                                             bool &FoundCase,
1234                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1235   // If this is a null statement, just succeed.
1236   if (!S)
1237     return Case ? CSFC_Success : CSFC_FallThrough;
1238 
1239   // If this is the switchcase (case 4: or default) that we're looking for, then
1240   // we're in business.  Just add the substatement.
1241   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1242     if (S == Case) {
1243       FoundCase = true;
1244       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1245                                       ResultStmts);
1246     }
1247 
1248     // Otherwise, this is some other case or default statement, just ignore it.
1249     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1250                                     ResultStmts);
1251   }
1252 
1253   // If we are in the live part of the code and we found our break statement,
1254   // return a success!
1255   if (!Case && isa<BreakStmt>(S))
1256     return CSFC_Success;
1257 
1258   // If this is a switch statement, then it might contain the SwitchCase, the
1259   // break, or neither.
1260   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1261     // Handle this as two cases: we might be looking for the SwitchCase (if so
1262     // the skipped statements must be skippable) or we might already have it.
1263     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1264     if (Case) {
1265       // Keep track of whether we see a skipped declaration.  The code could be
1266       // using the declaration even if it is skipped, so we can't optimize out
1267       // the decl if the kept statements might refer to it.
1268       bool HadSkippedDecl = false;
1269 
1270       // If we're looking for the case, just see if we can skip each of the
1271       // substatements.
1272       for (; Case && I != E; ++I) {
1273         HadSkippedDecl |= isa<DeclStmt>(*I);
1274 
1275         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1276         case CSFC_Failure: return CSFC_Failure;
1277         case CSFC_Success:
1278           // A successful result means that either 1) that the statement doesn't
1279           // have the case and is skippable, or 2) does contain the case value
1280           // and also contains the break to exit the switch.  In the later case,
1281           // we just verify the rest of the statements are elidable.
1282           if (FoundCase) {
1283             // If we found the case and skipped declarations, we can't do the
1284             // optimization.
1285             if (HadSkippedDecl)
1286               return CSFC_Failure;
1287 
1288             for (++I; I != E; ++I)
1289               if (CodeGenFunction::ContainsLabel(*I, true))
1290                 return CSFC_Failure;
1291             return CSFC_Success;
1292           }
1293           break;
1294         case CSFC_FallThrough:
1295           // If we have a fallthrough condition, then we must have found the
1296           // case started to include statements.  Consider the rest of the
1297           // statements in the compound statement as candidates for inclusion.
1298           assert(FoundCase && "Didn't find case but returned fallthrough?");
1299           // We recursively found Case, so we're not looking for it anymore.
1300           Case = nullptr;
1301 
1302           // If we found the case and skipped declarations, we can't do the
1303           // optimization.
1304           if (HadSkippedDecl)
1305             return CSFC_Failure;
1306           break;
1307         }
1308       }
1309     }
1310 
1311     // If we have statements in our range, then we know that the statements are
1312     // live and need to be added to the set of statements we're tracking.
1313     for (; I != E; ++I) {
1314       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1315       case CSFC_Failure: return CSFC_Failure;
1316       case CSFC_FallThrough:
1317         // A fallthrough result means that the statement was simple and just
1318         // included in ResultStmt, keep adding them afterwards.
1319         break;
1320       case CSFC_Success:
1321         // A successful result means that we found the break statement and
1322         // stopped statement inclusion.  We just ensure that any leftover stmts
1323         // are skippable and return success ourselves.
1324         for (++I; I != E; ++I)
1325           if (CodeGenFunction::ContainsLabel(*I, true))
1326             return CSFC_Failure;
1327         return CSFC_Success;
1328       }
1329     }
1330 
1331     return Case ? CSFC_Success : CSFC_FallThrough;
1332   }
1333 
1334   // Okay, this is some other statement that we don't handle explicitly, like a
1335   // for statement or increment etc.  If we are skipping over this statement,
1336   // just verify it doesn't have labels, which would make it invalid to elide.
1337   if (Case) {
1338     if (CodeGenFunction::ContainsLabel(S, true))
1339       return CSFC_Failure;
1340     return CSFC_Success;
1341   }
1342 
1343   // Otherwise, we want to include this statement.  Everything is cool with that
1344   // so long as it doesn't contain a break out of the switch we're in.
1345   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1346 
1347   // Otherwise, everything is great.  Include the statement and tell the caller
1348   // that we fall through and include the next statement as well.
1349   ResultStmts.push_back(S);
1350   return CSFC_FallThrough;
1351 }
1352 
1353 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1354 /// then invoke CollectStatementsForCase to find the list of statements to emit
1355 /// for a switch on constant.  See the comment above CollectStatementsForCase
1356 /// for more details.
1357 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1358                                        const llvm::APSInt &ConstantCondValue,
1359                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1360                                        ASTContext &C,
1361                                        const SwitchCase *&ResultCase) {
1362   // First step, find the switch case that is being branched to.  We can do this
1363   // efficiently by scanning the SwitchCase list.
1364   const SwitchCase *Case = S.getSwitchCaseList();
1365   const DefaultStmt *DefaultCase = nullptr;
1366 
1367   for (; Case; Case = Case->getNextSwitchCase()) {
1368     // It's either a default or case.  Just remember the default statement in
1369     // case we're not jumping to any numbered cases.
1370     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1371       DefaultCase = DS;
1372       continue;
1373     }
1374 
1375     // Check to see if this case is the one we're looking for.
1376     const CaseStmt *CS = cast<CaseStmt>(Case);
1377     // Don't handle case ranges yet.
1378     if (CS->getRHS()) return false;
1379 
1380     // If we found our case, remember it as 'case'.
1381     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1382       break;
1383   }
1384 
1385   // If we didn't find a matching case, we use a default if it exists, or we
1386   // elide the whole switch body!
1387   if (!Case) {
1388     // It is safe to elide the body of the switch if it doesn't contain labels
1389     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1390     if (!DefaultCase)
1391       return !CodeGenFunction::ContainsLabel(&S);
1392     Case = DefaultCase;
1393   }
1394 
1395   // Ok, we know which case is being jumped to, try to collect all the
1396   // statements that follow it.  This can fail for a variety of reasons.  Also,
1397   // check to see that the recursive walk actually found our case statement.
1398   // Insane cases like this can fail to find it in the recursive walk since we
1399   // don't handle every stmt kind:
1400   // switch (4) {
1401   //   while (1) {
1402   //     case 4: ...
1403   bool FoundCase = false;
1404   ResultCase = Case;
1405   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1406                                   ResultStmts) != CSFC_Failure &&
1407          FoundCase;
1408 }
1409 
1410 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1411   // Handle nested switch statements.
1412   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1413   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1414   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1415 
1416   // See if we can constant fold the condition of the switch and therefore only
1417   // emit the live case statement (if any) of the switch.
1418   llvm::APSInt ConstantCondValue;
1419   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1420     SmallVector<const Stmt*, 4> CaseStmts;
1421     const SwitchCase *Case = nullptr;
1422     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1423                                    getContext(), Case)) {
1424       if (Case)
1425         incrementProfileCounter(Case);
1426       RunCleanupsScope ExecutedScope(*this);
1427 
1428       // Emit the condition variable if needed inside the entire cleanup scope
1429       // used by this special case for constant folded switches.
1430       if (S.getConditionVariable())
1431         EmitAutoVarDecl(*S.getConditionVariable());
1432 
1433       // At this point, we are no longer "within" a switch instance, so
1434       // we can temporarily enforce this to ensure that any embedded case
1435       // statements are not emitted.
1436       SwitchInsn = nullptr;
1437 
1438       // Okay, we can dead code eliminate everything except this case.  Emit the
1439       // specified series of statements and we're good.
1440       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1441         EmitStmt(CaseStmts[i]);
1442       incrementProfileCounter(&S);
1443 
1444       // Now we want to restore the saved switch instance so that nested
1445       // switches continue to function properly
1446       SwitchInsn = SavedSwitchInsn;
1447 
1448       return;
1449     }
1450   }
1451 
1452   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1453 
1454   RunCleanupsScope ConditionScope(*this);
1455   if (S.getConditionVariable())
1456     EmitAutoVarDecl(*S.getConditionVariable());
1457   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1458 
1459   // Create basic block to hold stuff that comes after switch
1460   // statement. We also need to create a default block now so that
1461   // explicit case ranges tests can have a place to jump to on
1462   // failure.
1463   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1464   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1465   if (PGO.haveRegionCounts()) {
1466     // Walk the SwitchCase list to find how many there are.
1467     uint64_t DefaultCount = 0;
1468     unsigned NumCases = 0;
1469     for (const SwitchCase *Case = S.getSwitchCaseList();
1470          Case;
1471          Case = Case->getNextSwitchCase()) {
1472       if (isa<DefaultStmt>(Case))
1473         DefaultCount = getProfileCount(Case);
1474       NumCases += 1;
1475     }
1476     SwitchWeights = new SmallVector<uint64_t, 16>();
1477     SwitchWeights->reserve(NumCases);
1478     // The default needs to be first. We store the edge count, so we already
1479     // know the right weight.
1480     SwitchWeights->push_back(DefaultCount);
1481   }
1482   CaseRangeBlock = DefaultBlock;
1483 
1484   // Clear the insertion point to indicate we are in unreachable code.
1485   Builder.ClearInsertionPoint();
1486 
1487   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1488   // then reuse last ContinueBlock.
1489   JumpDest OuterContinue;
1490   if (!BreakContinueStack.empty())
1491     OuterContinue = BreakContinueStack.back().ContinueBlock;
1492 
1493   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1494 
1495   // Emit switch body.
1496   EmitStmt(S.getBody());
1497 
1498   BreakContinueStack.pop_back();
1499 
1500   // Update the default block in case explicit case range tests have
1501   // been chained on top.
1502   SwitchInsn->setDefaultDest(CaseRangeBlock);
1503 
1504   // If a default was never emitted:
1505   if (!DefaultBlock->getParent()) {
1506     // If we have cleanups, emit the default block so that there's a
1507     // place to jump through the cleanups from.
1508     if (ConditionScope.requiresCleanups()) {
1509       EmitBlock(DefaultBlock);
1510 
1511     // Otherwise, just forward the default block to the switch end.
1512     } else {
1513       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1514       delete DefaultBlock;
1515     }
1516   }
1517 
1518   ConditionScope.ForceCleanup();
1519 
1520   // Emit continuation.
1521   EmitBlock(SwitchExit.getBlock(), true);
1522   incrementProfileCounter(&S);
1523 
1524   if (SwitchWeights) {
1525     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1526            "switch weights do not match switch cases");
1527     // If there's only one jump destination there's no sense weighting it.
1528     if (SwitchWeights->size() > 1)
1529       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1530                               createProfileWeights(*SwitchWeights));
1531     delete SwitchWeights;
1532   }
1533   SwitchInsn = SavedSwitchInsn;
1534   SwitchWeights = SavedSwitchWeights;
1535   CaseRangeBlock = SavedCRBlock;
1536 }
1537 
1538 static std::string
1539 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1540                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1541   std::string Result;
1542 
1543   while (*Constraint) {
1544     switch (*Constraint) {
1545     default:
1546       Result += Target.convertConstraint(Constraint);
1547       break;
1548     // Ignore these
1549     case '*':
1550     case '?':
1551     case '!':
1552     case '=': // Will see this and the following in mult-alt constraints.
1553     case '+':
1554       break;
1555     case '#': // Ignore the rest of the constraint alternative.
1556       while (Constraint[1] && Constraint[1] != ',')
1557         Constraint++;
1558       break;
1559     case '&':
1560     case '%':
1561       Result += *Constraint;
1562       while (Constraint[1] && Constraint[1] == *Constraint)
1563         Constraint++;
1564       break;
1565     case ',':
1566       Result += "|";
1567       break;
1568     case 'g':
1569       Result += "imr";
1570       break;
1571     case '[': {
1572       assert(OutCons &&
1573              "Must pass output names to constraints with a symbolic name");
1574       unsigned Index;
1575       bool result = Target.resolveSymbolicName(Constraint,
1576                                                &(*OutCons)[0],
1577                                                OutCons->size(), Index);
1578       assert(result && "Could not resolve symbolic name"); (void)result;
1579       Result += llvm::utostr(Index);
1580       break;
1581     }
1582     }
1583 
1584     Constraint++;
1585   }
1586 
1587   return Result;
1588 }
1589 
1590 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1591 /// as using a particular register add that as a constraint that will be used
1592 /// in this asm stmt.
1593 static std::string
1594 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1595                        const TargetInfo &Target, CodeGenModule &CGM,
1596                        const AsmStmt &Stmt, const bool EarlyClobber) {
1597   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1598   if (!AsmDeclRef)
1599     return Constraint;
1600   const ValueDecl &Value = *AsmDeclRef->getDecl();
1601   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1602   if (!Variable)
1603     return Constraint;
1604   if (Variable->getStorageClass() != SC_Register)
1605     return Constraint;
1606   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1607   if (!Attr)
1608     return Constraint;
1609   StringRef Register = Attr->getLabel();
1610   assert(Target.isValidGCCRegisterName(Register));
1611   // We're using validateOutputConstraint here because we only care if
1612   // this is a register constraint.
1613   TargetInfo::ConstraintInfo Info(Constraint, "");
1614   if (Target.validateOutputConstraint(Info) &&
1615       !Info.allowsRegister()) {
1616     CGM.ErrorUnsupported(&Stmt, "__asm__");
1617     return Constraint;
1618   }
1619   // Canonicalize the register here before returning it.
1620   Register = Target.getNormalizedGCCRegisterName(Register);
1621   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1622 }
1623 
1624 llvm::Value*
1625 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1626                                     LValue InputValue, QualType InputType,
1627                                     std::string &ConstraintStr,
1628                                     SourceLocation Loc) {
1629   llvm::Value *Arg;
1630   if (Info.allowsRegister() || !Info.allowsMemory()) {
1631     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1632       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1633     } else {
1634       llvm::Type *Ty = ConvertType(InputType);
1635       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1636       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1637         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1638         Ty = llvm::PointerType::getUnqual(Ty);
1639 
1640         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1641                                                        Ty));
1642       } else {
1643         Arg = InputValue.getAddress();
1644         ConstraintStr += '*';
1645       }
1646     }
1647   } else {
1648     Arg = InputValue.getAddress();
1649     ConstraintStr += '*';
1650   }
1651 
1652   return Arg;
1653 }
1654 
1655 llvm::Value* CodeGenFunction::EmitAsmInput(
1656                                          const TargetInfo::ConstraintInfo &Info,
1657                                            const Expr *InputExpr,
1658                                            std::string &ConstraintStr) {
1659   // If this can't be a register or memory, i.e., has to be a constant
1660   // (immediate or symbolic), try to emit it as such.
1661   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1662     llvm::APSInt Result;
1663     if (InputExpr->EvaluateAsInt(Result, getContext()))
1664       return llvm::ConstantInt::get(getLLVMContext(), Result);
1665     assert(!Info.requiresImmediateConstant() &&
1666            "Required-immediate inlineasm arg isn't constant?");
1667   }
1668 
1669   if (Info.allowsRegister() || !Info.allowsMemory())
1670     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1671       return EmitScalarExpr(InputExpr);
1672 
1673   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1674   LValue Dest = EmitLValue(InputExpr);
1675   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1676                             InputExpr->getExprLoc());
1677 }
1678 
1679 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1680 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1681 /// integers which are the source locations of the start of each line in the
1682 /// asm.
1683 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1684                                       CodeGenFunction &CGF) {
1685   SmallVector<llvm::Metadata *, 8> Locs;
1686   // Add the location of the first line to the MDNode.
1687   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1688       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1689   StringRef StrVal = Str->getString();
1690   if (!StrVal.empty()) {
1691     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1692     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1693 
1694     // Add the location of the start of each subsequent line of the asm to the
1695     // MDNode.
1696     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1697       if (StrVal[i] != '\n') continue;
1698       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1699                                                       CGF.getTarget());
1700       Locs.push_back(llvm::ConstantAsMetadata::get(
1701           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1702     }
1703   }
1704 
1705   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1706 }
1707 
1708 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1709   // Assemble the final asm string.
1710   std::string AsmString = S.generateAsmString(getContext());
1711 
1712   // Get all the output and input constraints together.
1713   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1714   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1715 
1716   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1717     StringRef Name;
1718     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1719       Name = GAS->getOutputName(i);
1720     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1721     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1722     assert(IsValid && "Failed to parse output constraint");
1723     OutputConstraintInfos.push_back(Info);
1724   }
1725 
1726   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1727     StringRef Name;
1728     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1729       Name = GAS->getInputName(i);
1730     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1731     bool IsValid =
1732       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1733                                           S.getNumOutputs(), Info);
1734     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1735     InputConstraintInfos.push_back(Info);
1736   }
1737 
1738   std::string Constraints;
1739 
1740   std::vector<LValue> ResultRegDests;
1741   std::vector<QualType> ResultRegQualTys;
1742   std::vector<llvm::Type *> ResultRegTypes;
1743   std::vector<llvm::Type *> ResultTruncRegTypes;
1744   std::vector<llvm::Type *> ArgTypes;
1745   std::vector<llvm::Value*> Args;
1746 
1747   // Keep track of inout constraints.
1748   std::string InOutConstraints;
1749   std::vector<llvm::Value*> InOutArgs;
1750   std::vector<llvm::Type*> InOutArgTypes;
1751 
1752   // An inline asm can be marked readonly if it meets the following conditions:
1753   //  - it doesn't have any sideeffects
1754   //  - it doesn't clobber memory
1755   //  - it doesn't return a value by-reference
1756   // It can be marked readnone if it doesn't have any input memory constraints
1757   // in addition to meeting the conditions listed above.
1758   bool ReadOnly = true, ReadNone = true;
1759 
1760   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1761     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1762 
1763     // Simplify the output constraint.
1764     std::string OutputConstraint(S.getOutputConstraint(i));
1765     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1766                                           getTarget());
1767 
1768     const Expr *OutExpr = S.getOutputExpr(i);
1769     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1770 
1771     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1772                                               getTarget(), CGM, S,
1773                                               Info.earlyClobber());
1774 
1775     LValue Dest = EmitLValue(OutExpr);
1776     if (!Constraints.empty())
1777       Constraints += ',';
1778 
1779     // If this is a register output, then make the inline asm return it
1780     // by-value.  If this is a memory result, return the value by-reference.
1781     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1782       Constraints += "=" + OutputConstraint;
1783       ResultRegQualTys.push_back(OutExpr->getType());
1784       ResultRegDests.push_back(Dest);
1785       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1786       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1787 
1788       // If this output is tied to an input, and if the input is larger, then
1789       // we need to set the actual result type of the inline asm node to be the
1790       // same as the input type.
1791       if (Info.hasMatchingInput()) {
1792         unsigned InputNo;
1793         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1794           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1795           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1796             break;
1797         }
1798         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1799 
1800         QualType InputTy = S.getInputExpr(InputNo)->getType();
1801         QualType OutputType = OutExpr->getType();
1802 
1803         uint64_t InputSize = getContext().getTypeSize(InputTy);
1804         if (getContext().getTypeSize(OutputType) < InputSize) {
1805           // Form the asm to return the value as a larger integer or fp type.
1806           ResultRegTypes.back() = ConvertType(InputTy);
1807         }
1808       }
1809       if (llvm::Type* AdjTy =
1810             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1811                                                  ResultRegTypes.back()))
1812         ResultRegTypes.back() = AdjTy;
1813       else {
1814         CGM.getDiags().Report(S.getAsmLoc(),
1815                               diag::err_asm_invalid_type_in_input)
1816             << OutExpr->getType() << OutputConstraint;
1817       }
1818     } else {
1819       ArgTypes.push_back(Dest.getAddress()->getType());
1820       Args.push_back(Dest.getAddress());
1821       Constraints += "=*";
1822       Constraints += OutputConstraint;
1823       ReadOnly = ReadNone = false;
1824     }
1825 
1826     if (Info.isReadWrite()) {
1827       InOutConstraints += ',';
1828 
1829       const Expr *InputExpr = S.getOutputExpr(i);
1830       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1831                                             InOutConstraints,
1832                                             InputExpr->getExprLoc());
1833 
1834       if (llvm::Type* AdjTy =
1835           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1836                                                Arg->getType()))
1837         Arg = Builder.CreateBitCast(Arg, AdjTy);
1838 
1839       if (Info.allowsRegister())
1840         InOutConstraints += llvm::utostr(i);
1841       else
1842         InOutConstraints += OutputConstraint;
1843 
1844       InOutArgTypes.push_back(Arg->getType());
1845       InOutArgs.push_back(Arg);
1846     }
1847   }
1848 
1849   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1850   // to the return value slot. Only do this when returning in registers.
1851   if (isa<MSAsmStmt>(&S)) {
1852     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1853     if (RetAI.isDirect() || RetAI.isExtend()) {
1854       // Make a fake lvalue for the return value slot.
1855       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1856       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1857           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1858           ResultRegDests, AsmString, S.getNumOutputs());
1859       SawAsmBlock = true;
1860     }
1861   }
1862 
1863   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1864     const Expr *InputExpr = S.getInputExpr(i);
1865 
1866     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1867 
1868     if (Info.allowsMemory())
1869       ReadNone = false;
1870 
1871     if (!Constraints.empty())
1872       Constraints += ',';
1873 
1874     // Simplify the input constraint.
1875     std::string InputConstraint(S.getInputConstraint(i));
1876     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1877                                          &OutputConstraintInfos);
1878 
1879     InputConstraint = AddVariableConstraints(
1880         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1881         getTarget(), CGM, S, false /* No EarlyClobber */);
1882 
1883     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1884 
1885     // If this input argument is tied to a larger output result, extend the
1886     // input to be the same size as the output.  The LLVM backend wants to see
1887     // the input and output of a matching constraint be the same size.  Note
1888     // that GCC does not define what the top bits are here.  We use zext because
1889     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1890     if (Info.hasTiedOperand()) {
1891       unsigned Output = Info.getTiedOperand();
1892       QualType OutputType = S.getOutputExpr(Output)->getType();
1893       QualType InputTy = InputExpr->getType();
1894 
1895       if (getContext().getTypeSize(OutputType) >
1896           getContext().getTypeSize(InputTy)) {
1897         // Use ptrtoint as appropriate so that we can do our extension.
1898         if (isa<llvm::PointerType>(Arg->getType()))
1899           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1900         llvm::Type *OutputTy = ConvertType(OutputType);
1901         if (isa<llvm::IntegerType>(OutputTy))
1902           Arg = Builder.CreateZExt(Arg, OutputTy);
1903         else if (isa<llvm::PointerType>(OutputTy))
1904           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1905         else {
1906           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1907           Arg = Builder.CreateFPExt(Arg, OutputTy);
1908         }
1909       }
1910     }
1911     if (llvm::Type* AdjTy =
1912               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1913                                                    Arg->getType()))
1914       Arg = Builder.CreateBitCast(Arg, AdjTy);
1915     else
1916       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1917           << InputExpr->getType() << InputConstraint;
1918 
1919     ArgTypes.push_back(Arg->getType());
1920     Args.push_back(Arg);
1921     Constraints += InputConstraint;
1922   }
1923 
1924   // Append the "input" part of inout constraints last.
1925   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1926     ArgTypes.push_back(InOutArgTypes[i]);
1927     Args.push_back(InOutArgs[i]);
1928   }
1929   Constraints += InOutConstraints;
1930 
1931   // Clobbers
1932   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1933     StringRef Clobber = S.getClobber(i);
1934 
1935     if (Clobber == "memory")
1936       ReadOnly = ReadNone = false;
1937     else if (Clobber != "cc")
1938       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1939 
1940     if (!Constraints.empty())
1941       Constraints += ',';
1942 
1943     Constraints += "~{";
1944     Constraints += Clobber;
1945     Constraints += '}';
1946   }
1947 
1948   // Add machine specific clobbers
1949   std::string MachineClobbers = getTarget().getClobbers();
1950   if (!MachineClobbers.empty()) {
1951     if (!Constraints.empty())
1952       Constraints += ',';
1953     Constraints += MachineClobbers;
1954   }
1955 
1956   llvm::Type *ResultType;
1957   if (ResultRegTypes.empty())
1958     ResultType = VoidTy;
1959   else if (ResultRegTypes.size() == 1)
1960     ResultType = ResultRegTypes[0];
1961   else
1962     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1963 
1964   llvm::FunctionType *FTy =
1965     llvm::FunctionType::get(ResultType, ArgTypes, false);
1966 
1967   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1968   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1969     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1970   llvm::InlineAsm *IA =
1971     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1972                          /* IsAlignStack */ false, AsmDialect);
1973   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1974   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1975                        llvm::Attribute::NoUnwind);
1976 
1977   // Attach readnone and readonly attributes.
1978   if (!HasSideEffect) {
1979     if (ReadNone)
1980       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1981                            llvm::Attribute::ReadNone);
1982     else if (ReadOnly)
1983       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1984                            llvm::Attribute::ReadOnly);
1985   }
1986 
1987   // Slap the source location of the inline asm into a !srcloc metadata on the
1988   // call.
1989   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
1990     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1991                                                    *this));
1992   } else {
1993     // At least put the line number on MS inline asm blobs.
1994     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
1995     Result->setMetadata("srcloc",
1996                         llvm::MDNode::get(getLLVMContext(),
1997                                           llvm::ConstantAsMetadata::get(Loc)));
1998   }
1999 
2000   // Extract all of the register value results from the asm.
2001   std::vector<llvm::Value*> RegResults;
2002   if (ResultRegTypes.size() == 1) {
2003     RegResults.push_back(Result);
2004   } else {
2005     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2006       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2007       RegResults.push_back(Tmp);
2008     }
2009   }
2010 
2011   assert(RegResults.size() == ResultRegTypes.size());
2012   assert(RegResults.size() == ResultTruncRegTypes.size());
2013   assert(RegResults.size() == ResultRegDests.size());
2014   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2015     llvm::Value *Tmp = RegResults[i];
2016 
2017     // If the result type of the LLVM IR asm doesn't match the result type of
2018     // the expression, do the conversion.
2019     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2020       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2021 
2022       // Truncate the integer result to the right size, note that TruncTy can be
2023       // a pointer.
2024       if (TruncTy->isFloatingPointTy())
2025         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2026       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2027         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2028         Tmp = Builder.CreateTrunc(Tmp,
2029                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2030         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2031       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2032         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2033         Tmp = Builder.CreatePtrToInt(Tmp,
2034                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2035         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2036       } else if (TruncTy->isIntegerTy()) {
2037         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2038       } else if (TruncTy->isVectorTy()) {
2039         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2040       }
2041     }
2042 
2043     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2044   }
2045 }
2046 
2047 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2048   const RecordDecl *RD = S.getCapturedRecordDecl();
2049   QualType RecordTy = getContext().getRecordType(RD);
2050 
2051   // Initialize the captured struct.
2052   LValue SlotLV = MakeNaturalAlignAddrLValue(
2053       CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2054 
2055   RecordDecl::field_iterator CurField = RD->field_begin();
2056   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2057                                                  E = S.capture_init_end();
2058        I != E; ++I, ++CurField) {
2059     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2060     if (CurField->hasCapturedVLAType()) {
2061       auto VAT = CurField->getCapturedVLAType();
2062       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2063     } else {
2064       EmitInitializerForField(*CurField, LV, *I, None);
2065     }
2066   }
2067 
2068   return SlotLV;
2069 }
2070 
2071 /// Generate an outlined function for the body of a CapturedStmt, store any
2072 /// captured variables into the captured struct, and call the outlined function.
2073 llvm::Function *
2074 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2075   LValue CapStruct = InitCapturedStruct(S);
2076 
2077   // Emit the CapturedDecl
2078   CodeGenFunction CGF(CGM, true);
2079   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2080   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2081   delete CGF.CapturedStmtInfo;
2082 
2083   // Emit call to the helper function.
2084   EmitCallOrInvoke(F, CapStruct.getAddress());
2085 
2086   return F;
2087 }
2088 
2089 llvm::Value *
2090 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2091   LValue CapStruct = InitCapturedStruct(S);
2092   return CapStruct.getAddress();
2093 }
2094 
2095 /// Creates the outlined function for a CapturedStmt.
2096 llvm::Function *
2097 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2098   assert(CapturedStmtInfo &&
2099     "CapturedStmtInfo should be set when generating the captured function");
2100   const CapturedDecl *CD = S.getCapturedDecl();
2101   const RecordDecl *RD = S.getCapturedRecordDecl();
2102   SourceLocation Loc = S.getLocStart();
2103   assert(CD->hasBody() && "missing CapturedDecl body");
2104 
2105   // Build the argument list.
2106   ASTContext &Ctx = CGM.getContext();
2107   FunctionArgList Args;
2108   Args.append(CD->param_begin(), CD->param_end());
2109 
2110   // Create the function declaration.
2111   FunctionType::ExtInfo ExtInfo;
2112   const CGFunctionInfo &FuncInfo =
2113       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2114                                                     /*IsVariadic=*/false);
2115   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2116 
2117   llvm::Function *F =
2118     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2119                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2120   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2121   if (CD->isNothrow())
2122     F->addFnAttr(llvm::Attribute::NoUnwind);
2123 
2124   // Generate the function.
2125   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2126                 CD->getLocation(),
2127                 CD->getBody()->getLocStart());
2128   // Set the context parameter in CapturedStmtInfo.
2129   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
2130   assert(DeclPtr && "missing context parameter for CapturedStmt");
2131   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2132 
2133   // Initialize variable-length arrays.
2134   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2135                                            Ctx.getTagDeclType(RD));
2136   for (auto *FD : RD->fields()) {
2137     if (FD->hasCapturedVLAType()) {
2138       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2139                                        S.getLocStart()).getScalarVal();
2140       auto VAT = FD->getCapturedVLAType();
2141       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2142     }
2143   }
2144 
2145   // If 'this' is captured, load it into CXXThisValue.
2146   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2147     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2148     LValue ThisLValue = EmitLValueForField(Base, FD);
2149     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2150   }
2151 
2152   PGO.assignRegionCounters(CD, F);
2153   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2154   FinishFunction(CD->getBodyRBrace());
2155 
2156   return F;
2157 }
2158