1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/InlineAsm.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                              Statement Emission
30 //===----------------------------------------------------------------------===//
31 
32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33   if (CGDebugInfo *DI = getDebugInfo()) {
34     SourceLocation Loc;
35     if (isa<DeclStmt>(S))
36       Loc = S->getLocEnd();
37     else
38       Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40   }
41 }
42 
43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44   assert(S && "Null statement?");
45 
46   // These statements have their own debug info handling.
47   if (EmitSimpleStmt(S))
48     return;
49 
50   // Check if we are generating unreachable code.
51   if (!HaveInsertPoint()) {
52     // If so, and the statement doesn't contain a label, then we do not need to
53     // generate actual code. This is safe because (1) the current point is
54     // unreachable, so we don't need to execute the code, and (2) we've already
55     // handled the statements which update internal data structures (like the
56     // local variable map) which could be used by subsequent statements.
57     if (!ContainsLabel(S)) {
58       // Verify that any decl statements were handled as simple, they may be in
59       // scope of subsequent reachable statements.
60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61       return;
62     }
63 
64     // Otherwise, make a new block to hold the code.
65     EnsureInsertPoint();
66   }
67 
68   // Generate a stoppoint if we are emitting debug info.
69   EmitStopPoint(S);
70 
71   switch (S->getStmtClass()) {
72   case Stmt::NoStmtClass:
73   case Stmt::CXXCatchStmtClass:
74   case Stmt::SEHExceptStmtClass:
75   case Stmt::SEHFinallyStmtClass:
76   case Stmt::MSDependentExistsStmtClass:
77     llvm_unreachable("invalid statement class to emit generically");
78   case Stmt::NullStmtClass:
79   case Stmt::CompoundStmtClass:
80   case Stmt::DeclStmtClass:
81   case Stmt::LabelStmtClass:
82   case Stmt::GotoStmtClass:
83   case Stmt::BreakStmtClass:
84   case Stmt::ContinueStmtClass:
85   case Stmt::DefaultStmtClass:
86   case Stmt::CaseStmtClass:
87     llvm_unreachable("should have emitted these statements as simple");
88 
89 #define STMT(Type, Base)
90 #define ABSTRACT_STMT(Op)
91 #define EXPR(Type, Base) \
92   case Stmt::Type##Class:
93 #include "clang/AST/StmtNodes.inc"
94   {
95     // Remember the block we came in on.
96     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
97     assert(incoming && "expression emission must have an insertion point");
98 
99     EmitIgnoredExpr(cast<Expr>(S));
100 
101     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
102     assert(outgoing && "expression emission cleared block!");
103 
104     // The expression emitters assume (reasonably!) that the insertion
105     // point is always set.  To maintain that, the call-emission code
106     // for noreturn functions has to enter a new block with no
107     // predecessors.  We want to kill that block and mark the current
108     // insertion point unreachable in the common case of a call like
109     // "exit();".  Since expression emission doesn't otherwise create
110     // blocks with no predecessors, we can just test for that.
111     // However, we must be careful not to do this to our incoming
112     // block, because *statement* emission does sometimes create
113     // reachable blocks which will have no predecessors until later in
114     // the function.  This occurs with, e.g., labels that are not
115     // reachable by fallthrough.
116     if (incoming != outgoing && outgoing->use_empty()) {
117       outgoing->eraseFromParent();
118       Builder.ClearInsertionPoint();
119     }
120     break;
121   }
122 
123   case Stmt::IndirectGotoStmtClass:
124     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
125 
126   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
127   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
128   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
129   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
130 
131   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
132 
133   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
134   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
135 
136   case Stmt::ObjCAtTryStmtClass:
137     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
138     break;
139   case Stmt::ObjCAtCatchStmtClass:
140     llvm_unreachable(
141                     "@catch statements should be handled by EmitObjCAtTryStmt");
142   case Stmt::ObjCAtFinallyStmtClass:
143     llvm_unreachable(
144                   "@finally statements should be handled by EmitObjCAtTryStmt");
145   case Stmt::ObjCAtThrowStmtClass:
146     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
147     break;
148   case Stmt::ObjCAtSynchronizedStmtClass:
149     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
150     break;
151   case Stmt::ObjCForCollectionStmtClass:
152     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
153     break;
154   case Stmt::ObjCAutoreleasePoolStmtClass:
155     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
156     break;
157 
158   case Stmt::CXXTryStmtClass:
159     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
160     break;
161   case Stmt::CXXForRangeStmtClass:
162     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
163   case Stmt::SEHTryStmtClass:
164     // FIXME Not yet implemented
165     break;
166   }
167 }
168 
169 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
170   switch (S->getStmtClass()) {
171   default: return false;
172   case Stmt::NullStmtClass: break;
173   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
174   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
175   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
176   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
177   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
178   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
179   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
180   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
181   }
182 
183   return true;
184 }
185 
186 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
187 /// this captures the expression result of the last sub-statement and returns it
188 /// (for use by the statement expression extension).
189 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
190                                          AggValueSlot AggSlot) {
191   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
192                              "LLVM IR generation of compound statement ('{}')");
193 
194   CGDebugInfo *DI = getDebugInfo();
195   if (DI)
196     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
197 
198   // Keep track of the current cleanup stack depth.
199   RunCleanupsScope Scope(*this);
200 
201   for (CompoundStmt::const_body_iterator I = S.body_begin(),
202        E = S.body_end()-GetLast; I != E; ++I)
203     EmitStmt(*I);
204 
205   if (DI)
206     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
207 
208   RValue RV;
209   if (!GetLast)
210     RV = RValue::get(0);
211   else {
212     // We have to special case labels here.  They are statements, but when put
213     // at the end of a statement expression, they yield the value of their
214     // subexpression.  Handle this by walking through all labels we encounter,
215     // emitting them before we evaluate the subexpr.
216     const Stmt *LastStmt = S.body_back();
217     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
218       EmitLabel(LS->getDecl());
219       LastStmt = LS->getSubStmt();
220     }
221 
222     EnsureInsertPoint();
223 
224     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
225   }
226 
227   return RV;
228 }
229 
230 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
231   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
232 
233   // If there is a cleanup stack, then we it isn't worth trying to
234   // simplify this block (we would need to remove it from the scope map
235   // and cleanup entry).
236   if (!EHStack.empty())
237     return;
238 
239   // Can only simplify direct branches.
240   if (!BI || !BI->isUnconditional())
241     return;
242 
243   BB->replaceAllUsesWith(BI->getSuccessor(0));
244   BI->eraseFromParent();
245   BB->eraseFromParent();
246 }
247 
248 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
249   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250 
251   // Fall out of the current block (if necessary).
252   EmitBranch(BB);
253 
254   if (IsFinished && BB->use_empty()) {
255     delete BB;
256     return;
257   }
258 
259   // Place the block after the current block, if possible, or else at
260   // the end of the function.
261   if (CurBB && CurBB->getParent())
262     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
263   else
264     CurFn->getBasicBlockList().push_back(BB);
265   Builder.SetInsertPoint(BB);
266 }
267 
268 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
269   // Emit a branch from the current block to the target one if this
270   // was a real block.  If this was just a fall-through block after a
271   // terminator, don't emit it.
272   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
273 
274   if (!CurBB || CurBB->getTerminator()) {
275     // If there is no insert point or the previous block is already
276     // terminated, don't touch it.
277   } else {
278     // Otherwise, create a fall-through branch.
279     Builder.CreateBr(Target);
280   }
281 
282   Builder.ClearInsertionPoint();
283 }
284 
285 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
286   bool inserted = false;
287   for (llvm::BasicBlock::use_iterator
288          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
289     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
290       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
291       inserted = true;
292       break;
293     }
294   }
295 
296   if (!inserted)
297     CurFn->getBasicBlockList().push_back(block);
298 
299   Builder.SetInsertPoint(block);
300 }
301 
302 CodeGenFunction::JumpDest
303 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
304   JumpDest &Dest = LabelMap[D];
305   if (Dest.isValid()) return Dest;
306 
307   // Create, but don't insert, the new block.
308   Dest = JumpDest(createBasicBlock(D->getName()),
309                   EHScopeStack::stable_iterator::invalid(),
310                   NextCleanupDestIndex++);
311   return Dest;
312 }
313 
314 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
315   JumpDest &Dest = LabelMap[D];
316 
317   // If we didn't need a forward reference to this label, just go
318   // ahead and create a destination at the current scope.
319   if (!Dest.isValid()) {
320     Dest = getJumpDestInCurrentScope(D->getName());
321 
322   // Otherwise, we need to give this label a target depth and remove
323   // it from the branch-fixups list.
324   } else {
325     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
326     Dest = JumpDest(Dest.getBlock(),
327                     EHStack.stable_begin(),
328                     Dest.getDestIndex());
329 
330     ResolveBranchFixups(Dest.getBlock());
331   }
332 
333   EmitBlock(Dest.getBlock());
334 }
335 
336 
337 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
338   EmitLabel(S.getDecl());
339   EmitStmt(S.getSubStmt());
340 }
341 
342 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
343   // If this code is reachable then emit a stop point (if generating
344   // debug info). We have to do this ourselves because we are on the
345   // "simple" statement path.
346   if (HaveInsertPoint())
347     EmitStopPoint(&S);
348 
349   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
350 }
351 
352 
353 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
354   if (const LabelDecl *Target = S.getConstantTarget()) {
355     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
356     return;
357   }
358 
359   // Ensure that we have an i8* for our PHI node.
360   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
361                                          Int8PtrTy, "addr");
362   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
363 
364 
365   // Get the basic block for the indirect goto.
366   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
367 
368   // The first instruction in the block has to be the PHI for the switch dest,
369   // add an entry for this branch.
370   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
371 
372   EmitBranch(IndGotoBB);
373 }
374 
375 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
376   // C99 6.8.4.1: The first substatement is executed if the expression compares
377   // unequal to 0.  The condition must be a scalar type.
378   RunCleanupsScope ConditionScope(*this);
379 
380   if (S.getConditionVariable())
381     EmitAutoVarDecl(*S.getConditionVariable());
382 
383   // If the condition constant folds and can be elided, try to avoid emitting
384   // the condition and the dead arm of the if/else.
385   bool CondConstant;
386   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
387     // Figure out which block (then or else) is executed.
388     const Stmt *Executed = S.getThen();
389     const Stmt *Skipped  = S.getElse();
390     if (!CondConstant)  // Condition false?
391       std::swap(Executed, Skipped);
392 
393     // If the skipped block has no labels in it, just emit the executed block.
394     // This avoids emitting dead code and simplifies the CFG substantially.
395     if (!ContainsLabel(Skipped)) {
396       if (Executed) {
397         RunCleanupsScope ExecutedScope(*this);
398         EmitStmt(Executed);
399       }
400       return;
401     }
402   }
403 
404   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
405   // the conditional branch.
406   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
407   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
408   llvm::BasicBlock *ElseBlock = ContBlock;
409   if (S.getElse())
410     ElseBlock = createBasicBlock("if.else");
411   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
412 
413   // Emit the 'then' code.
414   EmitBlock(ThenBlock);
415   {
416     RunCleanupsScope ThenScope(*this);
417     EmitStmt(S.getThen());
418   }
419   EmitBranch(ContBlock);
420 
421   // Emit the 'else' code if present.
422   if (const Stmt *Else = S.getElse()) {
423     // There is no need to emit line number for unconditional branch.
424     if (getDebugInfo())
425       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
426     EmitBlock(ElseBlock);
427     {
428       RunCleanupsScope ElseScope(*this);
429       EmitStmt(Else);
430     }
431     // There is no need to emit line number for unconditional branch.
432     if (getDebugInfo())
433       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
434     EmitBranch(ContBlock);
435   }
436 
437   // Emit the continuation block for code after the if.
438   EmitBlock(ContBlock, true);
439 }
440 
441 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
442   // Emit the header for the loop, which will also become
443   // the continue target.
444   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
445   EmitBlock(LoopHeader.getBlock());
446 
447   // Create an exit block for when the condition fails, which will
448   // also become the break target.
449   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
450 
451   // Store the blocks to use for break and continue.
452   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
453 
454   // C++ [stmt.while]p2:
455   //   When the condition of a while statement is a declaration, the
456   //   scope of the variable that is declared extends from its point
457   //   of declaration (3.3.2) to the end of the while statement.
458   //   [...]
459   //   The object created in a condition is destroyed and created
460   //   with each iteration of the loop.
461   RunCleanupsScope ConditionScope(*this);
462 
463   if (S.getConditionVariable())
464     EmitAutoVarDecl(*S.getConditionVariable());
465 
466   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
467   // evaluation of the controlling expression takes place before each
468   // execution of the loop body.
469   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
470 
471   // while(1) is common, avoid extra exit blocks.  Be sure
472   // to correctly handle break/continue though.
473   bool EmitBoolCondBranch = true;
474   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
475     if (C->isOne())
476       EmitBoolCondBranch = false;
477 
478   // As long as the condition is true, go to the loop body.
479   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
480   if (EmitBoolCondBranch) {
481     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
482     if (ConditionScope.requiresCleanups())
483       ExitBlock = createBasicBlock("while.exit");
484 
485     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
486 
487     if (ExitBlock != LoopExit.getBlock()) {
488       EmitBlock(ExitBlock);
489       EmitBranchThroughCleanup(LoopExit);
490     }
491   }
492 
493   // Emit the loop body.  We have to emit this in a cleanup scope
494   // because it might be a singleton DeclStmt.
495   {
496     RunCleanupsScope BodyScope(*this);
497     EmitBlock(LoopBody);
498     EmitStmt(S.getBody());
499   }
500 
501   BreakContinueStack.pop_back();
502 
503   // Immediately force cleanup.
504   ConditionScope.ForceCleanup();
505 
506   // Branch to the loop header again.
507   EmitBranch(LoopHeader.getBlock());
508 
509   // Emit the exit block.
510   EmitBlock(LoopExit.getBlock(), true);
511 
512   // The LoopHeader typically is just a branch if we skipped emitting
513   // a branch, try to erase it.
514   if (!EmitBoolCondBranch)
515     SimplifyForwardingBlocks(LoopHeader.getBlock());
516 }
517 
518 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
519   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
520   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
521 
522   // Store the blocks to use for break and continue.
523   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
524 
525   // Emit the body of the loop.
526   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
527   EmitBlock(LoopBody);
528   {
529     RunCleanupsScope BodyScope(*this);
530     EmitStmt(S.getBody());
531   }
532 
533   BreakContinueStack.pop_back();
534 
535   EmitBlock(LoopCond.getBlock());
536 
537   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
538   // after each execution of the loop body."
539 
540   // Evaluate the conditional in the while header.
541   // C99 6.8.5p2/p4: The first substatement is executed if the expression
542   // compares unequal to 0.  The condition must be a scalar type.
543   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
544 
545   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
546   // to correctly handle break/continue though.
547   bool EmitBoolCondBranch = true;
548   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
549     if (C->isZero())
550       EmitBoolCondBranch = false;
551 
552   // As long as the condition is true, iterate the loop.
553   if (EmitBoolCondBranch)
554     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
555 
556   // Emit the exit block.
557   EmitBlock(LoopExit.getBlock());
558 
559   // The DoCond block typically is just a branch if we skipped
560   // emitting a branch, try to erase it.
561   if (!EmitBoolCondBranch)
562     SimplifyForwardingBlocks(LoopCond.getBlock());
563 }
564 
565 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
566   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
567 
568   RunCleanupsScope ForScope(*this);
569 
570   CGDebugInfo *DI = getDebugInfo();
571   if (DI)
572     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
573 
574   // Evaluate the first part before the loop.
575   if (S.getInit())
576     EmitStmt(S.getInit());
577 
578   // Start the loop with a block that tests the condition.
579   // If there's an increment, the continue scope will be overwritten
580   // later.
581   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
582   llvm::BasicBlock *CondBlock = Continue.getBlock();
583   EmitBlock(CondBlock);
584 
585   // Create a cleanup scope for the condition variable cleanups.
586   RunCleanupsScope ConditionScope(*this);
587 
588   llvm::Value *BoolCondVal = 0;
589   if (S.getCond()) {
590     // If the for statement has a condition scope, emit the local variable
591     // declaration.
592     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
593     if (S.getConditionVariable()) {
594       EmitAutoVarDecl(*S.getConditionVariable());
595     }
596 
597     // If there are any cleanups between here and the loop-exit scope,
598     // create a block to stage a loop exit along.
599     if (ForScope.requiresCleanups())
600       ExitBlock = createBasicBlock("for.cond.cleanup");
601 
602     // As long as the condition is true, iterate the loop.
603     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
604 
605     // C99 6.8.5p2/p4: The first substatement is executed if the expression
606     // compares unequal to 0.  The condition must be a scalar type.
607     BoolCondVal = EvaluateExprAsBool(S.getCond());
608     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
609 
610     if (ExitBlock != LoopExit.getBlock()) {
611       EmitBlock(ExitBlock);
612       EmitBranchThroughCleanup(LoopExit);
613     }
614 
615     EmitBlock(ForBody);
616   } else {
617     // Treat it as a non-zero constant.  Don't even create a new block for the
618     // body, just fall into it.
619   }
620 
621   // If the for loop doesn't have an increment we can just use the
622   // condition as the continue block.  Otherwise we'll need to create
623   // a block for it (in the current scope, i.e. in the scope of the
624   // condition), and that we will become our continue block.
625   if (S.getInc())
626     Continue = getJumpDestInCurrentScope("for.inc");
627 
628   // Store the blocks to use for break and continue.
629   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
630 
631   {
632     // Create a separate cleanup scope for the body, in case it is not
633     // a compound statement.
634     RunCleanupsScope BodyScope(*this);
635     EmitStmt(S.getBody());
636   }
637 
638   // If there is an increment, emit it next.
639   if (S.getInc()) {
640     EmitBlock(Continue.getBlock());
641     EmitStmt(S.getInc());
642   }
643 
644   BreakContinueStack.pop_back();
645 
646   ConditionScope.ForceCleanup();
647   EmitBranch(CondBlock);
648 
649   ForScope.ForceCleanup();
650 
651   if (DI)
652     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
653 
654   // Emit the fall-through block.
655   EmitBlock(LoopExit.getBlock(), true);
656 }
657 
658 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
659   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
660 
661   RunCleanupsScope ForScope(*this);
662 
663   CGDebugInfo *DI = getDebugInfo();
664   if (DI)
665     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
666 
667   // Evaluate the first pieces before the loop.
668   EmitStmt(S.getRangeStmt());
669   EmitStmt(S.getBeginEndStmt());
670 
671   // Start the loop with a block that tests the condition.
672   // If there's an increment, the continue scope will be overwritten
673   // later.
674   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
675   EmitBlock(CondBlock);
676 
677   // If there are any cleanups between here and the loop-exit scope,
678   // create a block to stage a loop exit along.
679   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
680   if (ForScope.requiresCleanups())
681     ExitBlock = createBasicBlock("for.cond.cleanup");
682 
683   // The loop body, consisting of the specified body and the loop variable.
684   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
685 
686   // The body is executed if the expression, contextually converted
687   // to bool, is true.
688   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
689   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
690 
691   if (ExitBlock != LoopExit.getBlock()) {
692     EmitBlock(ExitBlock);
693     EmitBranchThroughCleanup(LoopExit);
694   }
695 
696   EmitBlock(ForBody);
697 
698   // Create a block for the increment. In case of a 'continue', we jump there.
699   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
700 
701   // Store the blocks to use for break and continue.
702   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
703 
704   {
705     // Create a separate cleanup scope for the loop variable and body.
706     RunCleanupsScope BodyScope(*this);
707     EmitStmt(S.getLoopVarStmt());
708     EmitStmt(S.getBody());
709   }
710 
711   // If there is an increment, emit it next.
712   EmitBlock(Continue.getBlock());
713   EmitStmt(S.getInc());
714 
715   BreakContinueStack.pop_back();
716 
717   EmitBranch(CondBlock);
718 
719   ForScope.ForceCleanup();
720 
721   if (DI)
722     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
723 
724   // Emit the fall-through block.
725   EmitBlock(LoopExit.getBlock(), true);
726 }
727 
728 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
729   if (RV.isScalar()) {
730     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
731   } else if (RV.isAggregate()) {
732     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
733   } else {
734     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
735   }
736   EmitBranchThroughCleanup(ReturnBlock);
737 }
738 
739 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
740 /// if the function returns void, or may be missing one if the function returns
741 /// non-void.  Fun stuff :).
742 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
743   // Emit the result value, even if unused, to evalute the side effects.
744   const Expr *RV = S.getRetValue();
745 
746   // FIXME: Clean this up by using an LValue for ReturnTemp,
747   // EmitStoreThroughLValue, and EmitAnyExpr.
748   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
749       !Target.useGlobalsForAutomaticVariables()) {
750     // Apply the named return value optimization for this return statement,
751     // which means doing nothing: the appropriate result has already been
752     // constructed into the NRVO variable.
753 
754     // If there is an NRVO flag for this variable, set it to 1 into indicate
755     // that the cleanup code should not destroy the variable.
756     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
757       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
758   } else if (!ReturnValue) {
759     // Make sure not to return anything, but evaluate the expression
760     // for side effects.
761     if (RV)
762       EmitAnyExpr(RV);
763   } else if (RV == 0) {
764     // Do nothing (return value is left uninitialized)
765   } else if (FnRetTy->isReferenceType()) {
766     // If this function returns a reference, take the address of the expression
767     // rather than the value.
768     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
769     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
770   } else if (!hasAggregateLLVMType(RV->getType())) {
771     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
772   } else if (RV->getType()->isAnyComplexType()) {
773     EmitComplexExprIntoAddr(RV, ReturnValue, false);
774   } else {
775     CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
776     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, Qualifiers(),
777                                           AggValueSlot::IsDestructed,
778                                           AggValueSlot::DoesNotNeedGCBarriers,
779                                           AggValueSlot::IsNotAliased));
780   }
781 
782   EmitBranchThroughCleanup(ReturnBlock);
783 }
784 
785 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
786   // As long as debug info is modeled with instructions, we have to ensure we
787   // have a place to insert here and write the stop point here.
788   if (getDebugInfo() && HaveInsertPoint())
789     EmitStopPoint(&S);
790 
791   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
792        I != E; ++I)
793     EmitDecl(**I);
794 }
795 
796 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
797   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
798 
799   // If this code is reachable then emit a stop point (if generating
800   // debug info). We have to do this ourselves because we are on the
801   // "simple" statement path.
802   if (HaveInsertPoint())
803     EmitStopPoint(&S);
804 
805   JumpDest Block = BreakContinueStack.back().BreakBlock;
806   EmitBranchThroughCleanup(Block);
807 }
808 
809 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
810   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
811 
812   // If this code is reachable then emit a stop point (if generating
813   // debug info). We have to do this ourselves because we are on the
814   // "simple" statement path.
815   if (HaveInsertPoint())
816     EmitStopPoint(&S);
817 
818   JumpDest Block = BreakContinueStack.back().ContinueBlock;
819   EmitBranchThroughCleanup(Block);
820 }
821 
822 /// EmitCaseStmtRange - If case statement range is not too big then
823 /// add multiple cases to switch instruction, one for each value within
824 /// the range. If range is too big then emit "if" condition check.
825 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
826   assert(S.getRHS() && "Expected RHS value in CaseStmt");
827 
828   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
829   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
830 
831   // Emit the code for this case. We do this first to make sure it is
832   // properly chained from our predecessor before generating the
833   // switch machinery to enter this block.
834   EmitBlock(createBasicBlock("sw.bb"));
835   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
836   EmitStmt(S.getSubStmt());
837 
838   // If range is empty, do nothing.
839   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
840     return;
841 
842   llvm::APInt Range = RHS - LHS;
843   // FIXME: parameters such as this should not be hardcoded.
844   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
845     // Range is small enough to add multiple switch instruction cases.
846     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
847       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
848       LHS++;
849     }
850     return;
851   }
852 
853   // The range is too big. Emit "if" condition into a new block,
854   // making sure to save and restore the current insertion point.
855   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
856 
857   // Push this test onto the chain of range checks (which terminates
858   // in the default basic block). The switch's default will be changed
859   // to the top of this chain after switch emission is complete.
860   llvm::BasicBlock *FalseDest = CaseRangeBlock;
861   CaseRangeBlock = createBasicBlock("sw.caserange");
862 
863   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
864   Builder.SetInsertPoint(CaseRangeBlock);
865 
866   // Emit range check.
867   llvm::Value *Diff =
868     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
869   llvm::Value *Cond =
870     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
871   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
872 
873   // Restore the appropriate insertion point.
874   if (RestoreBB)
875     Builder.SetInsertPoint(RestoreBB);
876   else
877     Builder.ClearInsertionPoint();
878 }
879 
880 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
881   // Handle case ranges.
882   if (S.getRHS()) {
883     EmitCaseStmtRange(S);
884     return;
885   }
886 
887   llvm::ConstantInt *CaseVal =
888     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
889 
890   // If the body of the case is just a 'break', and if there was no fallthrough,
891   // try to not emit an empty block.
892   if (isa<BreakStmt>(S.getSubStmt())) {
893     JumpDest Block = BreakContinueStack.back().BreakBlock;
894 
895     // Only do this optimization if there are no cleanups that need emitting.
896     if (isObviouslyBranchWithoutCleanups(Block)) {
897       SwitchInsn->addCase(CaseVal, Block.getBlock());
898 
899       // If there was a fallthrough into this case, make sure to redirect it to
900       // the end of the switch as well.
901       if (Builder.GetInsertBlock()) {
902         Builder.CreateBr(Block.getBlock());
903         Builder.ClearInsertionPoint();
904       }
905       return;
906     }
907   }
908 
909   EmitBlock(createBasicBlock("sw.bb"));
910   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
911   SwitchInsn->addCase(CaseVal, CaseDest);
912 
913   // Recursively emitting the statement is acceptable, but is not wonderful for
914   // code where we have many case statements nested together, i.e.:
915   //  case 1:
916   //    case 2:
917   //      case 3: etc.
918   // Handling this recursively will create a new block for each case statement
919   // that falls through to the next case which is IR intensive.  It also causes
920   // deep recursion which can run into stack depth limitations.  Handle
921   // sequential non-range case statements specially.
922   const CaseStmt *CurCase = &S;
923   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
924 
925   // Otherwise, iteratively add consecutive cases to this switch stmt.
926   while (NextCase && NextCase->getRHS() == 0) {
927     CurCase = NextCase;
928     llvm::ConstantInt *CaseVal =
929       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
930     SwitchInsn->addCase(CaseVal, CaseDest);
931     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
932   }
933 
934   // Normal default recursion for non-cases.
935   EmitStmt(CurCase->getSubStmt());
936 }
937 
938 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
939   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
940   assert(DefaultBlock->empty() &&
941          "EmitDefaultStmt: Default block already defined?");
942   EmitBlock(DefaultBlock);
943   EmitStmt(S.getSubStmt());
944 }
945 
946 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
947 /// constant value that is being switched on, see if we can dead code eliminate
948 /// the body of the switch to a simple series of statements to emit.  Basically,
949 /// on a switch (5) we want to find these statements:
950 ///    case 5:
951 ///      printf(...);    <--
952 ///      ++i;            <--
953 ///      break;
954 ///
955 /// and add them to the ResultStmts vector.  If it is unsafe to do this
956 /// transformation (for example, one of the elided statements contains a label
957 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
958 /// should include statements after it (e.g. the printf() line is a substmt of
959 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
960 /// statement, then return CSFC_Success.
961 ///
962 /// If Case is non-null, then we are looking for the specified case, checking
963 /// that nothing we jump over contains labels.  If Case is null, then we found
964 /// the case and are looking for the break.
965 ///
966 /// If the recursive walk actually finds our Case, then we set FoundCase to
967 /// true.
968 ///
969 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
970 static CSFC_Result CollectStatementsForCase(const Stmt *S,
971                                             const SwitchCase *Case,
972                                             bool &FoundCase,
973                               SmallVectorImpl<const Stmt*> &ResultStmts) {
974   // If this is a null statement, just succeed.
975   if (S == 0)
976     return Case ? CSFC_Success : CSFC_FallThrough;
977 
978   // If this is the switchcase (case 4: or default) that we're looking for, then
979   // we're in business.  Just add the substatement.
980   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
981     if (S == Case) {
982       FoundCase = true;
983       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
984                                       ResultStmts);
985     }
986 
987     // Otherwise, this is some other case or default statement, just ignore it.
988     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
989                                     ResultStmts);
990   }
991 
992   // If we are in the live part of the code and we found our break statement,
993   // return a success!
994   if (Case == 0 && isa<BreakStmt>(S))
995     return CSFC_Success;
996 
997   // If this is a switch statement, then it might contain the SwitchCase, the
998   // break, or neither.
999   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1000     // Handle this as two cases: we might be looking for the SwitchCase (if so
1001     // the skipped statements must be skippable) or we might already have it.
1002     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1003     if (Case) {
1004       // Keep track of whether we see a skipped declaration.  The code could be
1005       // using the declaration even if it is skipped, so we can't optimize out
1006       // the decl if the kept statements might refer to it.
1007       bool HadSkippedDecl = false;
1008 
1009       // If we're looking for the case, just see if we can skip each of the
1010       // substatements.
1011       for (; Case && I != E; ++I) {
1012         HadSkippedDecl |= isa<DeclStmt>(*I);
1013 
1014         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1015         case CSFC_Failure: return CSFC_Failure;
1016         case CSFC_Success:
1017           // A successful result means that either 1) that the statement doesn't
1018           // have the case and is skippable, or 2) does contain the case value
1019           // and also contains the break to exit the switch.  In the later case,
1020           // we just verify the rest of the statements are elidable.
1021           if (FoundCase) {
1022             // If we found the case and skipped declarations, we can't do the
1023             // optimization.
1024             if (HadSkippedDecl)
1025               return CSFC_Failure;
1026 
1027             for (++I; I != E; ++I)
1028               if (CodeGenFunction::ContainsLabel(*I, true))
1029                 return CSFC_Failure;
1030             return CSFC_Success;
1031           }
1032           break;
1033         case CSFC_FallThrough:
1034           // If we have a fallthrough condition, then we must have found the
1035           // case started to include statements.  Consider the rest of the
1036           // statements in the compound statement as candidates for inclusion.
1037           assert(FoundCase && "Didn't find case but returned fallthrough?");
1038           // We recursively found Case, so we're not looking for it anymore.
1039           Case = 0;
1040 
1041           // If we found the case and skipped declarations, we can't do the
1042           // optimization.
1043           if (HadSkippedDecl)
1044             return CSFC_Failure;
1045           break;
1046         }
1047       }
1048     }
1049 
1050     // If we have statements in our range, then we know that the statements are
1051     // live and need to be added to the set of statements we're tracking.
1052     for (; I != E; ++I) {
1053       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1054       case CSFC_Failure: return CSFC_Failure;
1055       case CSFC_FallThrough:
1056         // A fallthrough result means that the statement was simple and just
1057         // included in ResultStmt, keep adding them afterwards.
1058         break;
1059       case CSFC_Success:
1060         // A successful result means that we found the break statement and
1061         // stopped statement inclusion.  We just ensure that any leftover stmts
1062         // are skippable and return success ourselves.
1063         for (++I; I != E; ++I)
1064           if (CodeGenFunction::ContainsLabel(*I, true))
1065             return CSFC_Failure;
1066         return CSFC_Success;
1067       }
1068     }
1069 
1070     return Case ? CSFC_Success : CSFC_FallThrough;
1071   }
1072 
1073   // Okay, this is some other statement that we don't handle explicitly, like a
1074   // for statement or increment etc.  If we are skipping over this statement,
1075   // just verify it doesn't have labels, which would make it invalid to elide.
1076   if (Case) {
1077     if (CodeGenFunction::ContainsLabel(S, true))
1078       return CSFC_Failure;
1079     return CSFC_Success;
1080   }
1081 
1082   // Otherwise, we want to include this statement.  Everything is cool with that
1083   // so long as it doesn't contain a break out of the switch we're in.
1084   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1085 
1086   // Otherwise, everything is great.  Include the statement and tell the caller
1087   // that we fall through and include the next statement as well.
1088   ResultStmts.push_back(S);
1089   return CSFC_FallThrough;
1090 }
1091 
1092 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1093 /// then invoke CollectStatementsForCase to find the list of statements to emit
1094 /// for a switch on constant.  See the comment above CollectStatementsForCase
1095 /// for more details.
1096 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1097                                        const llvm::APInt &ConstantCondValue,
1098                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1099                                        ASTContext &C) {
1100   // First step, find the switch case that is being branched to.  We can do this
1101   // efficiently by scanning the SwitchCase list.
1102   const SwitchCase *Case = S.getSwitchCaseList();
1103   const DefaultStmt *DefaultCase = 0;
1104 
1105   for (; Case; Case = Case->getNextSwitchCase()) {
1106     // It's either a default or case.  Just remember the default statement in
1107     // case we're not jumping to any numbered cases.
1108     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1109       DefaultCase = DS;
1110       continue;
1111     }
1112 
1113     // Check to see if this case is the one we're looking for.
1114     const CaseStmt *CS = cast<CaseStmt>(Case);
1115     // Don't handle case ranges yet.
1116     if (CS->getRHS()) return false;
1117 
1118     // If we found our case, remember it as 'case'.
1119     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1120       break;
1121   }
1122 
1123   // If we didn't find a matching case, we use a default if it exists, or we
1124   // elide the whole switch body!
1125   if (Case == 0) {
1126     // It is safe to elide the body of the switch if it doesn't contain labels
1127     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1128     if (DefaultCase == 0)
1129       return !CodeGenFunction::ContainsLabel(&S);
1130     Case = DefaultCase;
1131   }
1132 
1133   // Ok, we know which case is being jumped to, try to collect all the
1134   // statements that follow it.  This can fail for a variety of reasons.  Also,
1135   // check to see that the recursive walk actually found our case statement.
1136   // Insane cases like this can fail to find it in the recursive walk since we
1137   // don't handle every stmt kind:
1138   // switch (4) {
1139   //   while (1) {
1140   //     case 4: ...
1141   bool FoundCase = false;
1142   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1143                                   ResultStmts) != CSFC_Failure &&
1144          FoundCase;
1145 }
1146 
1147 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1148   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1149 
1150   RunCleanupsScope ConditionScope(*this);
1151 
1152   if (S.getConditionVariable())
1153     EmitAutoVarDecl(*S.getConditionVariable());
1154 
1155   // See if we can constant fold the condition of the switch and therefore only
1156   // emit the live case statement (if any) of the switch.
1157   llvm::APInt ConstantCondValue;
1158   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1159     SmallVector<const Stmt*, 4> CaseStmts;
1160     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1161                                    getContext())) {
1162       RunCleanupsScope ExecutedScope(*this);
1163 
1164       // Okay, we can dead code eliminate everything except this case.  Emit the
1165       // specified series of statements and we're good.
1166       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1167         EmitStmt(CaseStmts[i]);
1168       return;
1169     }
1170   }
1171 
1172   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1173 
1174   // Handle nested switch statements.
1175   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1176   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1177 
1178   // Create basic block to hold stuff that comes after switch
1179   // statement. We also need to create a default block now so that
1180   // explicit case ranges tests can have a place to jump to on
1181   // failure.
1182   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1183   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1184   CaseRangeBlock = DefaultBlock;
1185 
1186   // Clear the insertion point to indicate we are in unreachable code.
1187   Builder.ClearInsertionPoint();
1188 
1189   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1190   // then reuse last ContinueBlock.
1191   JumpDest OuterContinue;
1192   if (!BreakContinueStack.empty())
1193     OuterContinue = BreakContinueStack.back().ContinueBlock;
1194 
1195   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1196 
1197   // Emit switch body.
1198   EmitStmt(S.getBody());
1199 
1200   BreakContinueStack.pop_back();
1201 
1202   // Update the default block in case explicit case range tests have
1203   // been chained on top.
1204   SwitchInsn->setSuccessor(0, CaseRangeBlock);
1205 
1206   // If a default was never emitted:
1207   if (!DefaultBlock->getParent()) {
1208     // If we have cleanups, emit the default block so that there's a
1209     // place to jump through the cleanups from.
1210     if (ConditionScope.requiresCleanups()) {
1211       EmitBlock(DefaultBlock);
1212 
1213     // Otherwise, just forward the default block to the switch end.
1214     } else {
1215       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1216       delete DefaultBlock;
1217     }
1218   }
1219 
1220   ConditionScope.ForceCleanup();
1221 
1222   // Emit continuation.
1223   EmitBlock(SwitchExit.getBlock(), true);
1224 
1225   SwitchInsn = SavedSwitchInsn;
1226   CaseRangeBlock = SavedCRBlock;
1227 }
1228 
1229 static std::string
1230 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1231                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1232   std::string Result;
1233 
1234   while (*Constraint) {
1235     switch (*Constraint) {
1236     default:
1237       Result += Target.convertConstraint(Constraint);
1238       break;
1239     // Ignore these
1240     case '*':
1241     case '?':
1242     case '!':
1243     case '=': // Will see this and the following in mult-alt constraints.
1244     case '+':
1245       break;
1246     case ',':
1247       Result += "|";
1248       break;
1249     case 'g':
1250       Result += "imr";
1251       break;
1252     case '[': {
1253       assert(OutCons &&
1254              "Must pass output names to constraints with a symbolic name");
1255       unsigned Index;
1256       bool result = Target.resolveSymbolicName(Constraint,
1257                                                &(*OutCons)[0],
1258                                                OutCons->size(), Index);
1259       assert(result && "Could not resolve symbolic name"); (void)result;
1260       Result += llvm::utostr(Index);
1261       break;
1262     }
1263     }
1264 
1265     Constraint++;
1266   }
1267 
1268   return Result;
1269 }
1270 
1271 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1272 /// as using a particular register add that as a constraint that will be used
1273 /// in this asm stmt.
1274 static std::string
1275 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1276                        const TargetInfo &Target, CodeGenModule &CGM,
1277                        const AsmStmt &Stmt) {
1278   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1279   if (!AsmDeclRef)
1280     return Constraint;
1281   const ValueDecl &Value = *AsmDeclRef->getDecl();
1282   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1283   if (!Variable)
1284     return Constraint;
1285   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1286   if (!Attr)
1287     return Constraint;
1288   StringRef Register = Attr->getLabel();
1289   assert(Target.isValidGCCRegisterName(Register));
1290   // We're using validateOutputConstraint here because we only care if
1291   // this is a register constraint.
1292   TargetInfo::ConstraintInfo Info(Constraint, "");
1293   if (Target.validateOutputConstraint(Info) &&
1294       !Info.allowsRegister()) {
1295     CGM.ErrorUnsupported(&Stmt, "__asm__");
1296     return Constraint;
1297   }
1298   // Canonicalize the register here before returning it.
1299   Register = Target.getNormalizedGCCRegisterName(Register);
1300   return "{" + Register.str() + "}";
1301 }
1302 
1303 llvm::Value*
1304 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1305                                     const TargetInfo::ConstraintInfo &Info,
1306                                     LValue InputValue, QualType InputType,
1307                                     std::string &ConstraintStr) {
1308   llvm::Value *Arg;
1309   if (Info.allowsRegister() || !Info.allowsMemory()) {
1310     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1311       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1312     } else {
1313       llvm::Type *Ty = ConvertType(InputType);
1314       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1315       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1316         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1317         Ty = llvm::PointerType::getUnqual(Ty);
1318 
1319         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1320                                                        Ty));
1321       } else {
1322         Arg = InputValue.getAddress();
1323         ConstraintStr += '*';
1324       }
1325     }
1326   } else {
1327     Arg = InputValue.getAddress();
1328     ConstraintStr += '*';
1329   }
1330 
1331   return Arg;
1332 }
1333 
1334 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1335                                          const TargetInfo::ConstraintInfo &Info,
1336                                            const Expr *InputExpr,
1337                                            std::string &ConstraintStr) {
1338   if (Info.allowsRegister() || !Info.allowsMemory())
1339     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1340       return EmitScalarExpr(InputExpr);
1341 
1342   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1343   LValue Dest = EmitLValue(InputExpr);
1344   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1345 }
1346 
1347 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1348 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1349 /// integers which are the source locations of the start of each line in the
1350 /// asm.
1351 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1352                                       CodeGenFunction &CGF) {
1353   SmallVector<llvm::Value *, 8> Locs;
1354   // Add the location of the first line to the MDNode.
1355   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1356                                         Str->getLocStart().getRawEncoding()));
1357   StringRef StrVal = Str->getString();
1358   if (!StrVal.empty()) {
1359     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1360     const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1361 
1362     // Add the location of the start of each subsequent line of the asm to the
1363     // MDNode.
1364     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1365       if (StrVal[i] != '\n') continue;
1366       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1367                                                       CGF.Target);
1368       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1369                                             LineLoc.getRawEncoding()));
1370     }
1371   }
1372 
1373   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1374 }
1375 
1376 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1377   // Analyze the asm string to decompose it into its pieces.  We know that Sema
1378   // has already done this, so it is guaranteed to be successful.
1379   SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1380   unsigned DiagOffs;
1381   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1382 
1383   // Assemble the pieces into the final asm string.
1384   std::string AsmString;
1385   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1386     if (Pieces[i].isString())
1387       AsmString += Pieces[i].getString();
1388     else if (Pieces[i].getModifier() == '\0')
1389       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1390     else
1391       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1392                    Pieces[i].getModifier() + '}';
1393   }
1394 
1395   // Get all the output and input constraints together.
1396   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1397   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1398 
1399   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1400     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1401                                     S.getOutputName(i));
1402     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1403     assert(IsValid && "Failed to parse output constraint");
1404     OutputConstraintInfos.push_back(Info);
1405   }
1406 
1407   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1408     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1409                                     S.getInputName(i));
1410     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1411                                                   S.getNumOutputs(), Info);
1412     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1413     InputConstraintInfos.push_back(Info);
1414   }
1415 
1416   std::string Constraints;
1417 
1418   std::vector<LValue> ResultRegDests;
1419   std::vector<QualType> ResultRegQualTys;
1420   std::vector<llvm::Type *> ResultRegTypes;
1421   std::vector<llvm::Type *> ResultTruncRegTypes;
1422   std::vector<llvm::Type*> ArgTypes;
1423   std::vector<llvm::Value*> Args;
1424 
1425   // Keep track of inout constraints.
1426   std::string InOutConstraints;
1427   std::vector<llvm::Value*> InOutArgs;
1428   std::vector<llvm::Type*> InOutArgTypes;
1429 
1430   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1431     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1432 
1433     // Simplify the output constraint.
1434     std::string OutputConstraint(S.getOutputConstraint(i));
1435     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1436 
1437     const Expr *OutExpr = S.getOutputExpr(i);
1438     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1439 
1440     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1441                                               Target, CGM, S);
1442 
1443     LValue Dest = EmitLValue(OutExpr);
1444     if (!Constraints.empty())
1445       Constraints += ',';
1446 
1447     // If this is a register output, then make the inline asm return it
1448     // by-value.  If this is a memory result, return the value by-reference.
1449     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1450       Constraints += "=" + OutputConstraint;
1451       ResultRegQualTys.push_back(OutExpr->getType());
1452       ResultRegDests.push_back(Dest);
1453       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1454       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1455 
1456       // If this output is tied to an input, and if the input is larger, then
1457       // we need to set the actual result type of the inline asm node to be the
1458       // same as the input type.
1459       if (Info.hasMatchingInput()) {
1460         unsigned InputNo;
1461         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1462           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1463           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1464             break;
1465         }
1466         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1467 
1468         QualType InputTy = S.getInputExpr(InputNo)->getType();
1469         QualType OutputType = OutExpr->getType();
1470 
1471         uint64_t InputSize = getContext().getTypeSize(InputTy);
1472         if (getContext().getTypeSize(OutputType) < InputSize) {
1473           // Form the asm to return the value as a larger integer or fp type.
1474           ResultRegTypes.back() = ConvertType(InputTy);
1475         }
1476       }
1477       if (llvm::Type* AdjTy =
1478             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1479                                                  ResultRegTypes.back()))
1480         ResultRegTypes.back() = AdjTy;
1481     } else {
1482       ArgTypes.push_back(Dest.getAddress()->getType());
1483       Args.push_back(Dest.getAddress());
1484       Constraints += "=*";
1485       Constraints += OutputConstraint;
1486     }
1487 
1488     if (Info.isReadWrite()) {
1489       InOutConstraints += ',';
1490 
1491       const Expr *InputExpr = S.getOutputExpr(i);
1492       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1493                                             InOutConstraints);
1494 
1495       if (Info.allowsRegister())
1496         InOutConstraints += llvm::utostr(i);
1497       else
1498         InOutConstraints += OutputConstraint;
1499 
1500       InOutArgTypes.push_back(Arg->getType());
1501       InOutArgs.push_back(Arg);
1502     }
1503   }
1504 
1505   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1506 
1507   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1508     const Expr *InputExpr = S.getInputExpr(i);
1509 
1510     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1511 
1512     if (!Constraints.empty())
1513       Constraints += ',';
1514 
1515     // Simplify the input constraint.
1516     std::string InputConstraint(S.getInputConstraint(i));
1517     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1518                                          &OutputConstraintInfos);
1519 
1520     InputConstraint =
1521       AddVariableConstraints(InputConstraint,
1522                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1523                             Target, CGM, S);
1524 
1525     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1526 
1527     // If this input argument is tied to a larger output result, extend the
1528     // input to be the same size as the output.  The LLVM backend wants to see
1529     // the input and output of a matching constraint be the same size.  Note
1530     // that GCC does not define what the top bits are here.  We use zext because
1531     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1532     if (Info.hasTiedOperand()) {
1533       unsigned Output = Info.getTiedOperand();
1534       QualType OutputType = S.getOutputExpr(Output)->getType();
1535       QualType InputTy = InputExpr->getType();
1536 
1537       if (getContext().getTypeSize(OutputType) >
1538           getContext().getTypeSize(InputTy)) {
1539         // Use ptrtoint as appropriate so that we can do our extension.
1540         if (isa<llvm::PointerType>(Arg->getType()))
1541           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1542         llvm::Type *OutputTy = ConvertType(OutputType);
1543         if (isa<llvm::IntegerType>(OutputTy))
1544           Arg = Builder.CreateZExt(Arg, OutputTy);
1545         else if (isa<llvm::PointerType>(OutputTy))
1546           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1547         else {
1548           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1549           Arg = Builder.CreateFPExt(Arg, OutputTy);
1550         }
1551       }
1552     }
1553     if (llvm::Type* AdjTy =
1554               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1555                                                    Arg->getType()))
1556       Arg = Builder.CreateBitCast(Arg, AdjTy);
1557 
1558     ArgTypes.push_back(Arg->getType());
1559     Args.push_back(Arg);
1560     Constraints += InputConstraint;
1561   }
1562 
1563   // Append the "input" part of inout constraints last.
1564   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1565     ArgTypes.push_back(InOutArgTypes[i]);
1566     Args.push_back(InOutArgs[i]);
1567   }
1568   Constraints += InOutConstraints;
1569 
1570   // Clobbers
1571   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1572     StringRef Clobber = S.getClobber(i)->getString();
1573 
1574     if (Clobber != "memory" && Clobber != "cc")
1575     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1576 
1577     if (i != 0 || NumConstraints != 0)
1578       Constraints += ',';
1579 
1580     Constraints += "~{";
1581     Constraints += Clobber;
1582     Constraints += '}';
1583   }
1584 
1585   // Add machine specific clobbers
1586   std::string MachineClobbers = Target.getClobbers();
1587   if (!MachineClobbers.empty()) {
1588     if (!Constraints.empty())
1589       Constraints += ',';
1590     Constraints += MachineClobbers;
1591   }
1592 
1593   llvm::Type *ResultType;
1594   if (ResultRegTypes.empty())
1595     ResultType = llvm::Type::getVoidTy(getLLVMContext());
1596   else if (ResultRegTypes.size() == 1)
1597     ResultType = ResultRegTypes[0];
1598   else
1599     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1600 
1601   llvm::FunctionType *FTy =
1602     llvm::FunctionType::get(ResultType, ArgTypes, false);
1603 
1604   llvm::InlineAsm *IA =
1605     llvm::InlineAsm::get(FTy, AsmString, Constraints,
1606                          S.isVolatile() || S.getNumOutputs() == 0);
1607   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1608   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1609 
1610   // Slap the source location of the inline asm into a !srcloc metadata on the
1611   // call.
1612   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1613 
1614   // Extract all of the register value results from the asm.
1615   std::vector<llvm::Value*> RegResults;
1616   if (ResultRegTypes.size() == 1) {
1617     RegResults.push_back(Result);
1618   } else {
1619     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1620       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1621       RegResults.push_back(Tmp);
1622     }
1623   }
1624 
1625   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1626     llvm::Value *Tmp = RegResults[i];
1627 
1628     // If the result type of the LLVM IR asm doesn't match the result type of
1629     // the expression, do the conversion.
1630     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1631       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1632 
1633       // Truncate the integer result to the right size, note that TruncTy can be
1634       // a pointer.
1635       if (TruncTy->isFloatingPointTy())
1636         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1637       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1638         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1639         Tmp = Builder.CreateTrunc(Tmp,
1640                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1641         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1642       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1643         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1644         Tmp = Builder.CreatePtrToInt(Tmp,
1645                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1646         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1647       } else if (TruncTy->isIntegerTy()) {
1648         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1649       } else if (TruncTy->isVectorTy()) {
1650         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1651       }
1652     }
1653 
1654     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1655   }
1656 }
1657