1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Assumptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 //===----------------------------------------------------------------------===// 40 // Statement Emission 41 //===----------------------------------------------------------------------===// 42 43 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 44 if (CGDebugInfo *DI = getDebugInfo()) { 45 SourceLocation Loc; 46 Loc = S->getBeginLoc(); 47 DI->EmitLocation(Builder, Loc); 48 49 LastStopPoint = Loc; 50 } 51 } 52 53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 54 assert(S && "Null statement?"); 55 PGO.setCurrentStmt(S); 56 57 // These statements have their own debug info handling. 58 if (EmitSimpleStmt(S, Attrs)) 59 return; 60 61 // Check if we are generating unreachable code. 62 if (!HaveInsertPoint()) { 63 // If so, and the statement doesn't contain a label, then we do not need to 64 // generate actual code. This is safe because (1) the current point is 65 // unreachable, so we don't need to execute the code, and (2) we've already 66 // handled the statements which update internal data structures (like the 67 // local variable map) which could be used by subsequent statements. 68 if (!ContainsLabel(S)) { 69 // Verify that any decl statements were handled as simple, they may be in 70 // scope of subsequent reachable statements. 71 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 72 return; 73 } 74 75 // Otherwise, make a new block to hold the code. 76 EnsureInsertPoint(); 77 } 78 79 // Generate a stoppoint if we are emitting debug info. 80 EmitStopPoint(S); 81 82 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 83 // enabled. 84 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 85 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 86 EmitSimpleOMPExecutableDirective(*D); 87 return; 88 } 89 } 90 91 switch (S->getStmtClass()) { 92 case Stmt::NoStmtClass: 93 case Stmt::CXXCatchStmtClass: 94 case Stmt::SEHExceptStmtClass: 95 case Stmt::SEHFinallyStmtClass: 96 case Stmt::MSDependentExistsStmtClass: 97 llvm_unreachable("invalid statement class to emit generically"); 98 case Stmt::NullStmtClass: 99 case Stmt::CompoundStmtClass: 100 case Stmt::DeclStmtClass: 101 case Stmt::LabelStmtClass: 102 case Stmt::AttributedStmtClass: 103 case Stmt::GotoStmtClass: 104 case Stmt::BreakStmtClass: 105 case Stmt::ContinueStmtClass: 106 case Stmt::DefaultStmtClass: 107 case Stmt::CaseStmtClass: 108 case Stmt::SEHLeaveStmtClass: 109 llvm_unreachable("should have emitted these statements as simple"); 110 111 #define STMT(Type, Base) 112 #define ABSTRACT_STMT(Op) 113 #define EXPR(Type, Base) \ 114 case Stmt::Type##Class: 115 #include "clang/AST/StmtNodes.inc" 116 { 117 // Remember the block we came in on. 118 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 119 assert(incoming && "expression emission must have an insertion point"); 120 121 EmitIgnoredExpr(cast<Expr>(S)); 122 123 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 124 assert(outgoing && "expression emission cleared block!"); 125 126 // The expression emitters assume (reasonably!) that the insertion 127 // point is always set. To maintain that, the call-emission code 128 // for noreturn functions has to enter a new block with no 129 // predecessors. We want to kill that block and mark the current 130 // insertion point unreachable in the common case of a call like 131 // "exit();". Since expression emission doesn't otherwise create 132 // blocks with no predecessors, we can just test for that. 133 // However, we must be careful not to do this to our incoming 134 // block, because *statement* emission does sometimes create 135 // reachable blocks which will have no predecessors until later in 136 // the function. This occurs with, e.g., labels that are not 137 // reachable by fallthrough. 138 if (incoming != outgoing && outgoing->use_empty()) { 139 outgoing->eraseFromParent(); 140 Builder.ClearInsertionPoint(); 141 } 142 break; 143 } 144 145 case Stmt::IndirectGotoStmtClass: 146 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 147 148 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 149 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 150 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 151 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 152 153 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 154 155 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 156 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 157 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 158 case Stmt::CoroutineBodyStmtClass: 159 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 160 break; 161 case Stmt::CoreturnStmtClass: 162 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 163 break; 164 case Stmt::CapturedStmtClass: { 165 const CapturedStmt *CS = cast<CapturedStmt>(S); 166 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 167 } 168 break; 169 case Stmt::ObjCAtTryStmtClass: 170 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 171 break; 172 case Stmt::ObjCAtCatchStmtClass: 173 llvm_unreachable( 174 "@catch statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtFinallyStmtClass: 176 llvm_unreachable( 177 "@finally statements should be handled by EmitObjCAtTryStmt"); 178 case Stmt::ObjCAtThrowStmtClass: 179 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 180 break; 181 case Stmt::ObjCAtSynchronizedStmtClass: 182 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 183 break; 184 case Stmt::ObjCForCollectionStmtClass: 185 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 186 break; 187 case Stmt::ObjCAutoreleasePoolStmtClass: 188 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 189 break; 190 191 case Stmt::CXXTryStmtClass: 192 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 193 break; 194 case Stmt::CXXForRangeStmtClass: 195 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 196 break; 197 case Stmt::SEHTryStmtClass: 198 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 199 break; 200 case Stmt::OMPMetaDirectiveClass: 201 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S)); 202 break; 203 case Stmt::OMPCanonicalLoopClass: 204 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 205 break; 206 case Stmt::OMPParallelDirectiveClass: 207 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 208 break; 209 case Stmt::OMPSimdDirectiveClass: 210 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 211 break; 212 case Stmt::OMPTileDirectiveClass: 213 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 214 break; 215 case Stmt::OMPUnrollDirectiveClass: 216 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); 217 break; 218 case Stmt::OMPForDirectiveClass: 219 EmitOMPForDirective(cast<OMPForDirective>(*S)); 220 break; 221 case Stmt::OMPForSimdDirectiveClass: 222 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 223 break; 224 case Stmt::OMPSectionsDirectiveClass: 225 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 226 break; 227 case Stmt::OMPSectionDirectiveClass: 228 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 229 break; 230 case Stmt::OMPSingleDirectiveClass: 231 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 232 break; 233 case Stmt::OMPMasterDirectiveClass: 234 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 235 break; 236 case Stmt::OMPCriticalDirectiveClass: 237 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 238 break; 239 case Stmt::OMPParallelForDirectiveClass: 240 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 241 break; 242 case Stmt::OMPParallelForSimdDirectiveClass: 243 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 244 break; 245 case Stmt::OMPParallelMasterDirectiveClass: 246 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 247 break; 248 case Stmt::OMPParallelSectionsDirectiveClass: 249 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 250 break; 251 case Stmt::OMPTaskDirectiveClass: 252 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 253 break; 254 case Stmt::OMPTaskyieldDirectiveClass: 255 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 256 break; 257 case Stmt::OMPBarrierDirectiveClass: 258 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 259 break; 260 case Stmt::OMPTaskwaitDirectiveClass: 261 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 262 break; 263 case Stmt::OMPTaskgroupDirectiveClass: 264 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 265 break; 266 case Stmt::OMPFlushDirectiveClass: 267 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 268 break; 269 case Stmt::OMPDepobjDirectiveClass: 270 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 271 break; 272 case Stmt::OMPScanDirectiveClass: 273 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 274 break; 275 case Stmt::OMPOrderedDirectiveClass: 276 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 277 break; 278 case Stmt::OMPAtomicDirectiveClass: 279 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 280 break; 281 case Stmt::OMPTargetDirectiveClass: 282 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 283 break; 284 case Stmt::OMPTeamsDirectiveClass: 285 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 286 break; 287 case Stmt::OMPCancellationPointDirectiveClass: 288 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 289 break; 290 case Stmt::OMPCancelDirectiveClass: 291 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 292 break; 293 case Stmt::OMPTargetDataDirectiveClass: 294 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 295 break; 296 case Stmt::OMPTargetEnterDataDirectiveClass: 297 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 298 break; 299 case Stmt::OMPTargetExitDataDirectiveClass: 300 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 301 break; 302 case Stmt::OMPTargetParallelDirectiveClass: 303 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 304 break; 305 case Stmt::OMPTargetParallelForDirectiveClass: 306 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 307 break; 308 case Stmt::OMPTaskLoopDirectiveClass: 309 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 310 break; 311 case Stmt::OMPTaskLoopSimdDirectiveClass: 312 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPMasterTaskLoopDirectiveClass: 315 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 316 break; 317 case Stmt::OMPMaskedTaskLoopDirectiveClass: 318 llvm_unreachable("masked taskloop directive not supported yet."); 319 break; 320 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 321 EmitOMPMasterTaskLoopSimdDirective( 322 cast<OMPMasterTaskLoopSimdDirective>(*S)); 323 break; 324 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass: 325 llvm_unreachable("masked taskloop simd directive not supported yet."); 326 break; 327 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 328 EmitOMPParallelMasterTaskLoopDirective( 329 cast<OMPParallelMasterTaskLoopDirective>(*S)); 330 break; 331 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass: 332 llvm_unreachable("parallel masked taskloop directive not supported yet."); 333 break; 334 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 335 EmitOMPParallelMasterTaskLoopSimdDirective( 336 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 337 break; 338 case Stmt::OMPDistributeDirectiveClass: 339 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 340 break; 341 case Stmt::OMPTargetUpdateDirectiveClass: 342 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 343 break; 344 case Stmt::OMPDistributeParallelForDirectiveClass: 345 EmitOMPDistributeParallelForDirective( 346 cast<OMPDistributeParallelForDirective>(*S)); 347 break; 348 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 349 EmitOMPDistributeParallelForSimdDirective( 350 cast<OMPDistributeParallelForSimdDirective>(*S)); 351 break; 352 case Stmt::OMPDistributeSimdDirectiveClass: 353 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 354 break; 355 case Stmt::OMPTargetParallelForSimdDirectiveClass: 356 EmitOMPTargetParallelForSimdDirective( 357 cast<OMPTargetParallelForSimdDirective>(*S)); 358 break; 359 case Stmt::OMPTargetSimdDirectiveClass: 360 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 361 break; 362 case Stmt::OMPTeamsDistributeDirectiveClass: 363 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 364 break; 365 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 366 EmitOMPTeamsDistributeSimdDirective( 367 cast<OMPTeamsDistributeSimdDirective>(*S)); 368 break; 369 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 370 EmitOMPTeamsDistributeParallelForSimdDirective( 371 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 372 break; 373 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 374 EmitOMPTeamsDistributeParallelForDirective( 375 cast<OMPTeamsDistributeParallelForDirective>(*S)); 376 break; 377 case Stmt::OMPTargetTeamsDirectiveClass: 378 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 379 break; 380 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 381 EmitOMPTargetTeamsDistributeDirective( 382 cast<OMPTargetTeamsDistributeDirective>(*S)); 383 break; 384 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 385 EmitOMPTargetTeamsDistributeParallelForDirective( 386 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 387 break; 388 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 389 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 390 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 391 break; 392 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 393 EmitOMPTargetTeamsDistributeSimdDirective( 394 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 395 break; 396 case Stmt::OMPInteropDirectiveClass: 397 EmitOMPInteropDirective(cast<OMPInteropDirective>(*S)); 398 break; 399 case Stmt::OMPDispatchDirectiveClass: 400 llvm_unreachable("Dispatch directive not supported yet."); 401 break; 402 case Stmt::OMPMaskedDirectiveClass: 403 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 404 break; 405 case Stmt::OMPGenericLoopDirectiveClass: 406 EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S)); 407 break; 408 case Stmt::OMPTeamsGenericLoopDirectiveClass: 409 llvm_unreachable("teams loop directive not supported yet."); 410 break; 411 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: 412 llvm_unreachable("target teams loop directive not supported yet."); 413 break; 414 case Stmt::OMPParallelGenericLoopDirectiveClass: 415 llvm_unreachable("parallel loop directive not supported yet."); 416 break; 417 case Stmt::OMPTargetParallelGenericLoopDirectiveClass: 418 llvm_unreachable("target parallel loop directive not supported yet."); 419 break; 420 case Stmt::OMPParallelMaskedDirectiveClass: 421 llvm_unreachable("parallel masked directive not supported yet."); 422 break; 423 } 424 } 425 426 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 427 ArrayRef<const Attr *> Attrs) { 428 switch (S->getStmtClass()) { 429 default: 430 return false; 431 case Stmt::NullStmtClass: 432 break; 433 case Stmt::CompoundStmtClass: 434 EmitCompoundStmt(cast<CompoundStmt>(*S)); 435 break; 436 case Stmt::DeclStmtClass: 437 EmitDeclStmt(cast<DeclStmt>(*S)); 438 break; 439 case Stmt::LabelStmtClass: 440 EmitLabelStmt(cast<LabelStmt>(*S)); 441 break; 442 case Stmt::AttributedStmtClass: 443 EmitAttributedStmt(cast<AttributedStmt>(*S)); 444 break; 445 case Stmt::GotoStmtClass: 446 EmitGotoStmt(cast<GotoStmt>(*S)); 447 break; 448 case Stmt::BreakStmtClass: 449 EmitBreakStmt(cast<BreakStmt>(*S)); 450 break; 451 case Stmt::ContinueStmtClass: 452 EmitContinueStmt(cast<ContinueStmt>(*S)); 453 break; 454 case Stmt::DefaultStmtClass: 455 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 456 break; 457 case Stmt::CaseStmtClass: 458 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 459 break; 460 case Stmt::SEHLeaveStmtClass: 461 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 462 break; 463 } 464 return true; 465 } 466 467 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 468 /// this captures the expression result of the last sub-statement and returns it 469 /// (for use by the statement expression extension). 470 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 471 AggValueSlot AggSlot) { 472 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 473 "LLVM IR generation of compound statement ('{}')"); 474 475 // Keep track of the current cleanup stack depth, including debug scopes. 476 LexicalScope Scope(*this, S.getSourceRange()); 477 478 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 479 } 480 481 Address 482 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 483 bool GetLast, 484 AggValueSlot AggSlot) { 485 486 const Stmt *ExprResult = S.getStmtExprResult(); 487 assert((!GetLast || (GetLast && ExprResult)) && 488 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 489 490 Address RetAlloca = Address::invalid(); 491 492 for (auto *CurStmt : S.body()) { 493 if (GetLast && ExprResult == CurStmt) { 494 // We have to special case labels here. They are statements, but when put 495 // at the end of a statement expression, they yield the value of their 496 // subexpression. Handle this by walking through all labels we encounter, 497 // emitting them before we evaluate the subexpr. 498 // Similar issues arise for attributed statements. 499 while (!isa<Expr>(ExprResult)) { 500 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 501 EmitLabel(LS->getDecl()); 502 ExprResult = LS->getSubStmt(); 503 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 504 // FIXME: Update this if we ever have attributes that affect the 505 // semantics of an expression. 506 ExprResult = AS->getSubStmt(); 507 } else { 508 llvm_unreachable("unknown value statement"); 509 } 510 } 511 512 EnsureInsertPoint(); 513 514 const Expr *E = cast<Expr>(ExprResult); 515 QualType ExprTy = E->getType(); 516 if (hasAggregateEvaluationKind(ExprTy)) { 517 EmitAggExpr(E, AggSlot); 518 } else { 519 // We can't return an RValue here because there might be cleanups at 520 // the end of the StmtExpr. Because of that, we have to emit the result 521 // here into a temporary alloca. 522 RetAlloca = CreateMemTemp(ExprTy); 523 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 524 /*IsInit*/ false); 525 } 526 } else { 527 EmitStmt(CurStmt); 528 } 529 } 530 531 return RetAlloca; 532 } 533 534 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 535 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 536 537 // If there is a cleanup stack, then we it isn't worth trying to 538 // simplify this block (we would need to remove it from the scope map 539 // and cleanup entry). 540 if (!EHStack.empty()) 541 return; 542 543 // Can only simplify direct branches. 544 if (!BI || !BI->isUnconditional()) 545 return; 546 547 // Can only simplify empty blocks. 548 if (BI->getIterator() != BB->begin()) 549 return; 550 551 BB->replaceAllUsesWith(BI->getSuccessor(0)); 552 BI->eraseFromParent(); 553 BB->eraseFromParent(); 554 } 555 556 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 557 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 558 559 // Fall out of the current block (if necessary). 560 EmitBranch(BB); 561 562 if (IsFinished && BB->use_empty()) { 563 delete BB; 564 return; 565 } 566 567 // Place the block after the current block, if possible, or else at 568 // the end of the function. 569 if (CurBB && CurBB->getParent()) 570 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 571 else 572 CurFn->getBasicBlockList().push_back(BB); 573 Builder.SetInsertPoint(BB); 574 } 575 576 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 577 // Emit a branch from the current block to the target one if this 578 // was a real block. If this was just a fall-through block after a 579 // terminator, don't emit it. 580 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 581 582 if (!CurBB || CurBB->getTerminator()) { 583 // If there is no insert point or the previous block is already 584 // terminated, don't touch it. 585 } else { 586 // Otherwise, create a fall-through branch. 587 Builder.CreateBr(Target); 588 } 589 590 Builder.ClearInsertionPoint(); 591 } 592 593 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 594 bool inserted = false; 595 for (llvm::User *u : block->users()) { 596 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 597 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 598 block); 599 inserted = true; 600 break; 601 } 602 } 603 604 if (!inserted) 605 CurFn->getBasicBlockList().push_back(block); 606 607 Builder.SetInsertPoint(block); 608 } 609 610 CodeGenFunction::JumpDest 611 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 612 JumpDest &Dest = LabelMap[D]; 613 if (Dest.isValid()) return Dest; 614 615 // Create, but don't insert, the new block. 616 Dest = JumpDest(createBasicBlock(D->getName()), 617 EHScopeStack::stable_iterator::invalid(), 618 NextCleanupDestIndex++); 619 return Dest; 620 } 621 622 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 623 // Add this label to the current lexical scope if we're within any 624 // normal cleanups. Jumps "in" to this label --- when permitted by 625 // the language --- may need to be routed around such cleanups. 626 if (EHStack.hasNormalCleanups() && CurLexicalScope) 627 CurLexicalScope->addLabel(D); 628 629 JumpDest &Dest = LabelMap[D]; 630 631 // If we didn't need a forward reference to this label, just go 632 // ahead and create a destination at the current scope. 633 if (!Dest.isValid()) { 634 Dest = getJumpDestInCurrentScope(D->getName()); 635 636 // Otherwise, we need to give this label a target depth and remove 637 // it from the branch-fixups list. 638 } else { 639 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 640 Dest.setScopeDepth(EHStack.stable_begin()); 641 ResolveBranchFixups(Dest.getBlock()); 642 } 643 644 EmitBlock(Dest.getBlock()); 645 646 // Emit debug info for labels. 647 if (CGDebugInfo *DI = getDebugInfo()) { 648 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 649 DI->setLocation(D->getLocation()); 650 DI->EmitLabel(D, Builder); 651 } 652 } 653 654 incrementProfileCounter(D->getStmt()); 655 } 656 657 /// Change the cleanup scope of the labels in this lexical scope to 658 /// match the scope of the enclosing context. 659 void CodeGenFunction::LexicalScope::rescopeLabels() { 660 assert(!Labels.empty()); 661 EHScopeStack::stable_iterator innermostScope 662 = CGF.EHStack.getInnermostNormalCleanup(); 663 664 // Change the scope depth of all the labels. 665 for (SmallVectorImpl<const LabelDecl*>::const_iterator 666 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 667 assert(CGF.LabelMap.count(*i)); 668 JumpDest &dest = CGF.LabelMap.find(*i)->second; 669 assert(dest.getScopeDepth().isValid()); 670 assert(innermostScope.encloses(dest.getScopeDepth())); 671 dest.setScopeDepth(innermostScope); 672 } 673 674 // Reparent the labels if the new scope also has cleanups. 675 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 676 ParentScope->Labels.append(Labels.begin(), Labels.end()); 677 } 678 } 679 680 681 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 682 EmitLabel(S.getDecl()); 683 684 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 685 if (getLangOpts().EHAsynch && S.isSideEntry()) 686 EmitSehCppScopeBegin(); 687 688 EmitStmt(S.getSubStmt()); 689 } 690 691 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 692 bool nomerge = false; 693 bool noinline = false; 694 bool alwaysinline = false; 695 const CallExpr *musttail = nullptr; 696 697 for (const auto *A : S.getAttrs()) { 698 switch (A->getKind()) { 699 default: 700 break; 701 case attr::NoMerge: 702 nomerge = true; 703 break; 704 case attr::NoInline: 705 noinline = true; 706 break; 707 case attr::AlwaysInline: 708 alwaysinline = true; 709 break; 710 case attr::MustTail: 711 const Stmt *Sub = S.getSubStmt(); 712 const ReturnStmt *R = cast<ReturnStmt>(Sub); 713 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 714 break; 715 } 716 } 717 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 718 SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline); 719 SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt, 720 alwaysinline); 721 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 722 EmitStmt(S.getSubStmt(), S.getAttrs()); 723 } 724 725 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 726 // If this code is reachable then emit a stop point (if generating 727 // debug info). We have to do this ourselves because we are on the 728 // "simple" statement path. 729 if (HaveInsertPoint()) 730 EmitStopPoint(&S); 731 732 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 733 } 734 735 736 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 737 if (const LabelDecl *Target = S.getConstantTarget()) { 738 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 739 return; 740 } 741 742 // Ensure that we have an i8* for our PHI node. 743 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 744 Int8PtrTy, "addr"); 745 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 746 747 // Get the basic block for the indirect goto. 748 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 749 750 // The first instruction in the block has to be the PHI for the switch dest, 751 // add an entry for this branch. 752 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 753 754 EmitBranch(IndGotoBB); 755 } 756 757 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 758 // The else branch of a consteval if statement is always the only branch that 759 // can be runtime evaluated. 760 if (S.isConsteval()) { 761 const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse(); 762 if (Executed) { 763 RunCleanupsScope ExecutedScope(*this); 764 EmitStmt(Executed); 765 } 766 return; 767 } 768 769 // C99 6.8.4.1: The first substatement is executed if the expression compares 770 // unequal to 0. The condition must be a scalar type. 771 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 772 773 if (S.getInit()) 774 EmitStmt(S.getInit()); 775 776 if (S.getConditionVariable()) 777 EmitDecl(*S.getConditionVariable()); 778 779 // If the condition constant folds and can be elided, try to avoid emitting 780 // the condition and the dead arm of the if/else. 781 bool CondConstant; 782 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 783 S.isConstexpr())) { 784 // Figure out which block (then or else) is executed. 785 const Stmt *Executed = S.getThen(); 786 const Stmt *Skipped = S.getElse(); 787 if (!CondConstant) // Condition false? 788 std::swap(Executed, Skipped); 789 790 // If the skipped block has no labels in it, just emit the executed block. 791 // This avoids emitting dead code and simplifies the CFG substantially. 792 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 793 if (CondConstant) 794 incrementProfileCounter(&S); 795 if (Executed) { 796 RunCleanupsScope ExecutedScope(*this); 797 EmitStmt(Executed); 798 } 799 return; 800 } 801 } 802 803 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 804 // the conditional branch. 805 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 806 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 807 llvm::BasicBlock *ElseBlock = ContBlock; 808 if (S.getElse()) 809 ElseBlock = createBasicBlock("if.else"); 810 811 // Prefer the PGO based weights over the likelihood attribute. 812 // When the build isn't optimized the metadata isn't used, so don't generate 813 // it. 814 Stmt::Likelihood LH = Stmt::LH_None; 815 uint64_t Count = getProfileCount(S.getThen()); 816 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 817 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 818 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 819 820 // Emit the 'then' code. 821 EmitBlock(ThenBlock); 822 incrementProfileCounter(&S); 823 { 824 RunCleanupsScope ThenScope(*this); 825 EmitStmt(S.getThen()); 826 } 827 EmitBranch(ContBlock); 828 829 // Emit the 'else' code if present. 830 if (const Stmt *Else = S.getElse()) { 831 { 832 // There is no need to emit line number for an unconditional branch. 833 auto NL = ApplyDebugLocation::CreateEmpty(*this); 834 EmitBlock(ElseBlock); 835 } 836 { 837 RunCleanupsScope ElseScope(*this); 838 EmitStmt(Else); 839 } 840 { 841 // There is no need to emit line number for an unconditional branch. 842 auto NL = ApplyDebugLocation::CreateEmpty(*this); 843 EmitBranch(ContBlock); 844 } 845 } 846 847 // Emit the continuation block for code after the if. 848 EmitBlock(ContBlock, true); 849 } 850 851 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 852 ArrayRef<const Attr *> WhileAttrs) { 853 // Emit the header for the loop, which will also become 854 // the continue target. 855 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 856 EmitBlock(LoopHeader.getBlock()); 857 858 // Create an exit block for when the condition fails, which will 859 // also become the break target. 860 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 861 862 // Store the blocks to use for break and continue. 863 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 864 865 // C++ [stmt.while]p2: 866 // When the condition of a while statement is a declaration, the 867 // scope of the variable that is declared extends from its point 868 // of declaration (3.3.2) to the end of the while statement. 869 // [...] 870 // The object created in a condition is destroyed and created 871 // with each iteration of the loop. 872 RunCleanupsScope ConditionScope(*this); 873 874 if (S.getConditionVariable()) 875 EmitDecl(*S.getConditionVariable()); 876 877 // Evaluate the conditional in the while header. C99 6.8.5.1: The 878 // evaluation of the controlling expression takes place before each 879 // execution of the loop body. 880 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 881 882 // while(1) is common, avoid extra exit blocks. Be sure 883 // to correctly handle break/continue though. 884 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 885 bool CondIsConstInt = C != nullptr; 886 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 887 const SourceRange &R = S.getSourceRange(); 888 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 889 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 890 SourceLocToDebugLoc(R.getEnd()), 891 checkIfLoopMustProgress(CondIsConstInt)); 892 893 // As long as the condition is true, go to the loop body. 894 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 895 if (EmitBoolCondBranch) { 896 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 897 if (ConditionScope.requiresCleanups()) 898 ExitBlock = createBasicBlock("while.exit"); 899 llvm::MDNode *Weights = 900 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 901 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 902 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 903 BoolCondVal, Stmt::getLikelihood(S.getBody())); 904 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 905 906 if (ExitBlock != LoopExit.getBlock()) { 907 EmitBlock(ExitBlock); 908 EmitBranchThroughCleanup(LoopExit); 909 } 910 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 911 CGM.getDiags().Report(A->getLocation(), 912 diag::warn_attribute_has_no_effect_on_infinite_loop) 913 << A << A->getRange(); 914 CGM.getDiags().Report( 915 S.getWhileLoc(), 916 diag::note_attribute_has_no_effect_on_infinite_loop_here) 917 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 918 } 919 920 // Emit the loop body. We have to emit this in a cleanup scope 921 // because it might be a singleton DeclStmt. 922 { 923 RunCleanupsScope BodyScope(*this); 924 EmitBlock(LoopBody); 925 incrementProfileCounter(&S); 926 EmitStmt(S.getBody()); 927 } 928 929 BreakContinueStack.pop_back(); 930 931 // Immediately force cleanup. 932 ConditionScope.ForceCleanup(); 933 934 EmitStopPoint(&S); 935 // Branch to the loop header again. 936 EmitBranch(LoopHeader.getBlock()); 937 938 LoopStack.pop(); 939 940 // Emit the exit block. 941 EmitBlock(LoopExit.getBlock(), true); 942 943 // The LoopHeader typically is just a branch if we skipped emitting 944 // a branch, try to erase it. 945 if (!EmitBoolCondBranch) 946 SimplifyForwardingBlocks(LoopHeader.getBlock()); 947 } 948 949 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 950 ArrayRef<const Attr *> DoAttrs) { 951 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 952 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 953 954 uint64_t ParentCount = getCurrentProfileCount(); 955 956 // Store the blocks to use for break and continue. 957 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 958 959 // Emit the body of the loop. 960 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 961 962 EmitBlockWithFallThrough(LoopBody, &S); 963 { 964 RunCleanupsScope BodyScope(*this); 965 EmitStmt(S.getBody()); 966 } 967 968 EmitBlock(LoopCond.getBlock()); 969 970 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 971 // after each execution of the loop body." 972 973 // Evaluate the conditional in the while header. 974 // C99 6.8.5p2/p4: The first substatement is executed if the expression 975 // compares unequal to 0. The condition must be a scalar type. 976 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 977 978 BreakContinueStack.pop_back(); 979 980 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 981 // to correctly handle break/continue though. 982 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 983 bool CondIsConstInt = C; 984 bool EmitBoolCondBranch = !C || !C->isZero(); 985 986 const SourceRange &R = S.getSourceRange(); 987 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 988 SourceLocToDebugLoc(R.getBegin()), 989 SourceLocToDebugLoc(R.getEnd()), 990 checkIfLoopMustProgress(CondIsConstInt)); 991 992 // As long as the condition is true, iterate the loop. 993 if (EmitBoolCondBranch) { 994 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 995 Builder.CreateCondBr( 996 BoolCondVal, LoopBody, LoopExit.getBlock(), 997 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 998 } 999 1000 LoopStack.pop(); 1001 1002 // Emit the exit block. 1003 EmitBlock(LoopExit.getBlock()); 1004 1005 // The DoCond block typically is just a branch if we skipped 1006 // emitting a branch, try to erase it. 1007 if (!EmitBoolCondBranch) 1008 SimplifyForwardingBlocks(LoopCond.getBlock()); 1009 } 1010 1011 void CodeGenFunction::EmitForStmt(const ForStmt &S, 1012 ArrayRef<const Attr *> ForAttrs) { 1013 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1014 1015 LexicalScope ForScope(*this, S.getSourceRange()); 1016 1017 // Evaluate the first part before the loop. 1018 if (S.getInit()) 1019 EmitStmt(S.getInit()); 1020 1021 // Start the loop with a block that tests the condition. 1022 // If there's an increment, the continue scope will be overwritten 1023 // later. 1024 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 1025 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 1026 EmitBlock(CondBlock); 1027 1028 Expr::EvalResult Result; 1029 bool CondIsConstInt = 1030 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 1031 1032 const SourceRange &R = S.getSourceRange(); 1033 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1034 SourceLocToDebugLoc(R.getBegin()), 1035 SourceLocToDebugLoc(R.getEnd()), 1036 checkIfLoopMustProgress(CondIsConstInt)); 1037 1038 // Create a cleanup scope for the condition variable cleanups. 1039 LexicalScope ConditionScope(*this, S.getSourceRange()); 1040 1041 // If the for loop doesn't have an increment we can just use the condition as 1042 // the continue block. Otherwise, if there is no condition variable, we can 1043 // form the continue block now. If there is a condition variable, we can't 1044 // form the continue block until after we've emitted the condition, because 1045 // the condition is in scope in the increment, but Sema's jump diagnostics 1046 // ensure that there are no continues from the condition variable that jump 1047 // to the loop increment. 1048 JumpDest Continue; 1049 if (!S.getInc()) 1050 Continue = CondDest; 1051 else if (!S.getConditionVariable()) 1052 Continue = getJumpDestInCurrentScope("for.inc"); 1053 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1054 1055 if (S.getCond()) { 1056 // If the for statement has a condition scope, emit the local variable 1057 // declaration. 1058 if (S.getConditionVariable()) { 1059 EmitDecl(*S.getConditionVariable()); 1060 1061 // We have entered the condition variable's scope, so we're now able to 1062 // jump to the continue block. 1063 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1064 BreakContinueStack.back().ContinueBlock = Continue; 1065 } 1066 1067 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1068 // If there are any cleanups between here and the loop-exit scope, 1069 // create a block to stage a loop exit along. 1070 if (ForScope.requiresCleanups()) 1071 ExitBlock = createBasicBlock("for.cond.cleanup"); 1072 1073 // As long as the condition is true, iterate the loop. 1074 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1075 1076 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1077 // compares unequal to 0. The condition must be a scalar type. 1078 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1079 llvm::MDNode *Weights = 1080 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1081 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1082 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1083 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1084 1085 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1086 1087 if (ExitBlock != LoopExit.getBlock()) { 1088 EmitBlock(ExitBlock); 1089 EmitBranchThroughCleanup(LoopExit); 1090 } 1091 1092 EmitBlock(ForBody); 1093 } else { 1094 // Treat it as a non-zero constant. Don't even create a new block for the 1095 // body, just fall into it. 1096 } 1097 incrementProfileCounter(&S); 1098 1099 { 1100 // Create a separate cleanup scope for the body, in case it is not 1101 // a compound statement. 1102 RunCleanupsScope BodyScope(*this); 1103 EmitStmt(S.getBody()); 1104 } 1105 1106 // If there is an increment, emit it next. 1107 if (S.getInc()) { 1108 EmitBlock(Continue.getBlock()); 1109 EmitStmt(S.getInc()); 1110 } 1111 1112 BreakContinueStack.pop_back(); 1113 1114 ConditionScope.ForceCleanup(); 1115 1116 EmitStopPoint(&S); 1117 EmitBranch(CondBlock); 1118 1119 ForScope.ForceCleanup(); 1120 1121 LoopStack.pop(); 1122 1123 // Emit the fall-through block. 1124 EmitBlock(LoopExit.getBlock(), true); 1125 } 1126 1127 void 1128 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1129 ArrayRef<const Attr *> ForAttrs) { 1130 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1131 1132 LexicalScope ForScope(*this, S.getSourceRange()); 1133 1134 // Evaluate the first pieces before the loop. 1135 if (S.getInit()) 1136 EmitStmt(S.getInit()); 1137 EmitStmt(S.getRangeStmt()); 1138 EmitStmt(S.getBeginStmt()); 1139 EmitStmt(S.getEndStmt()); 1140 1141 // Start the loop with a block that tests the condition. 1142 // If there's an increment, the continue scope will be overwritten 1143 // later. 1144 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1145 EmitBlock(CondBlock); 1146 1147 const SourceRange &R = S.getSourceRange(); 1148 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1149 SourceLocToDebugLoc(R.getBegin()), 1150 SourceLocToDebugLoc(R.getEnd())); 1151 1152 // If there are any cleanups between here and the loop-exit scope, 1153 // create a block to stage a loop exit along. 1154 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1155 if (ForScope.requiresCleanups()) 1156 ExitBlock = createBasicBlock("for.cond.cleanup"); 1157 1158 // The loop body, consisting of the specified body and the loop variable. 1159 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1160 1161 // The body is executed if the expression, contextually converted 1162 // to bool, is true. 1163 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1164 llvm::MDNode *Weights = 1165 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1166 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1167 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1168 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1169 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1170 1171 if (ExitBlock != LoopExit.getBlock()) { 1172 EmitBlock(ExitBlock); 1173 EmitBranchThroughCleanup(LoopExit); 1174 } 1175 1176 EmitBlock(ForBody); 1177 incrementProfileCounter(&S); 1178 1179 // Create a block for the increment. In case of a 'continue', we jump there. 1180 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1181 1182 // Store the blocks to use for break and continue. 1183 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1184 1185 { 1186 // Create a separate cleanup scope for the loop variable and body. 1187 LexicalScope BodyScope(*this, S.getSourceRange()); 1188 EmitStmt(S.getLoopVarStmt()); 1189 EmitStmt(S.getBody()); 1190 } 1191 1192 EmitStopPoint(&S); 1193 // If there is an increment, emit it next. 1194 EmitBlock(Continue.getBlock()); 1195 EmitStmt(S.getInc()); 1196 1197 BreakContinueStack.pop_back(); 1198 1199 EmitBranch(CondBlock); 1200 1201 ForScope.ForceCleanup(); 1202 1203 LoopStack.pop(); 1204 1205 // Emit the fall-through block. 1206 EmitBlock(LoopExit.getBlock(), true); 1207 } 1208 1209 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1210 if (RV.isScalar()) { 1211 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1212 } else if (RV.isAggregate()) { 1213 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1214 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1215 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1216 } else { 1217 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1218 /*init*/ true); 1219 } 1220 EmitBranchThroughCleanup(ReturnBlock); 1221 } 1222 1223 namespace { 1224 // RAII struct used to save and restore a return statment's result expression. 1225 struct SaveRetExprRAII { 1226 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1227 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1228 CGF.RetExpr = RetExpr; 1229 } 1230 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1231 const Expr *OldRetExpr; 1232 CodeGenFunction &CGF; 1233 }; 1234 } // namespace 1235 1236 /// If we have 'return f(...);', where both caller and callee are SwiftAsync, 1237 /// codegen it as 'tail call ...; ret void;'. 1238 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, 1239 const CGFunctionInfo *CurFnInfo) { 1240 auto calleeQualType = CE->getCallee()->getType(); 1241 const FunctionType *calleeType = nullptr; 1242 if (calleeQualType->isFunctionPointerType() || 1243 calleeQualType->isFunctionReferenceType() || 1244 calleeQualType->isBlockPointerType() || 1245 calleeQualType->isMemberFunctionPointerType()) { 1246 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); 1247 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { 1248 calleeType = ty; 1249 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 1250 if (auto methodDecl = CMCE->getMethodDecl()) { 1251 // getMethodDecl() doesn't handle member pointers at the moment. 1252 calleeType = methodDecl->getType()->castAs<FunctionType>(); 1253 } else { 1254 return; 1255 } 1256 } else { 1257 return; 1258 } 1259 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && 1260 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { 1261 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); 1262 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 1263 Builder.CreateRetVoid(); 1264 Builder.ClearInsertionPoint(); 1265 } 1266 } 1267 1268 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1269 /// if the function returns void, or may be missing one if the function returns 1270 /// non-void. Fun stuff :). 1271 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1272 if (requiresReturnValueCheck()) { 1273 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1274 auto *SLocPtr = 1275 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1276 llvm::GlobalVariable::PrivateLinkage, SLoc); 1277 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1278 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1279 assert(ReturnLocation.isValid() && "No valid return location"); 1280 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1281 ReturnLocation); 1282 } 1283 1284 // Returning from an outlined SEH helper is UB, and we already warn on it. 1285 if (IsOutlinedSEHHelper) { 1286 Builder.CreateUnreachable(); 1287 Builder.ClearInsertionPoint(); 1288 } 1289 1290 // Emit the result value, even if unused, to evaluate the side effects. 1291 const Expr *RV = S.getRetValue(); 1292 1293 // Record the result expression of the return statement. The recorded 1294 // expression is used to determine whether a block capture's lifetime should 1295 // end at the end of the full expression as opposed to the end of the scope 1296 // enclosing the block expression. 1297 // 1298 // This permits a small, easily-implemented exception to our over-conservative 1299 // rules about not jumping to statements following block literals with 1300 // non-trivial cleanups. 1301 SaveRetExprRAII SaveRetExpr(RV, *this); 1302 1303 RunCleanupsScope cleanupScope(*this); 1304 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1305 RV = EWC->getSubExpr(); 1306 // FIXME: Clean this up by using an LValue for ReturnTemp, 1307 // EmitStoreThroughLValue, and EmitAnyExpr. 1308 // Check if the NRVO candidate was not globalized in OpenMP mode. 1309 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1310 S.getNRVOCandidate()->isNRVOVariable() && 1311 (!getLangOpts().OpenMP || 1312 !CGM.getOpenMPRuntime() 1313 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1314 .isValid())) { 1315 // Apply the named return value optimization for this return statement, 1316 // which means doing nothing: the appropriate result has already been 1317 // constructed into the NRVO variable. 1318 1319 // If there is an NRVO flag for this variable, set it to 1 into indicate 1320 // that the cleanup code should not destroy the variable. 1321 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1322 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1323 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1324 // Make sure not to return anything, but evaluate the expression 1325 // for side effects. 1326 if (RV) { 1327 EmitAnyExpr(RV); 1328 if (auto *CE = dyn_cast<CallExpr>(RV)) 1329 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); 1330 } 1331 } else if (!RV) { 1332 // Do nothing (return value is left uninitialized) 1333 } else if (FnRetTy->isReferenceType()) { 1334 // If this function returns a reference, take the address of the expression 1335 // rather than the value. 1336 RValue Result = EmitReferenceBindingToExpr(RV); 1337 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1338 } else { 1339 switch (getEvaluationKind(RV->getType())) { 1340 case TEK_Scalar: 1341 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1342 break; 1343 case TEK_Complex: 1344 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1345 /*isInit*/ true); 1346 break; 1347 case TEK_Aggregate: 1348 EmitAggExpr(RV, AggValueSlot::forAddr( 1349 ReturnValue, Qualifiers(), 1350 AggValueSlot::IsDestructed, 1351 AggValueSlot::DoesNotNeedGCBarriers, 1352 AggValueSlot::IsNotAliased, 1353 getOverlapForReturnValue())); 1354 break; 1355 } 1356 } 1357 1358 ++NumReturnExprs; 1359 if (!RV || RV->isEvaluatable(getContext())) 1360 ++NumSimpleReturnExprs; 1361 1362 cleanupScope.ForceCleanup(); 1363 EmitBranchThroughCleanup(ReturnBlock); 1364 } 1365 1366 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1367 // As long as debug info is modeled with instructions, we have to ensure we 1368 // have a place to insert here and write the stop point here. 1369 if (HaveInsertPoint()) 1370 EmitStopPoint(&S); 1371 1372 for (const auto *I : S.decls()) 1373 EmitDecl(*I); 1374 } 1375 1376 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1377 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1378 1379 // If this code is reachable then emit a stop point (if generating 1380 // debug info). We have to do this ourselves because we are on the 1381 // "simple" statement path. 1382 if (HaveInsertPoint()) 1383 EmitStopPoint(&S); 1384 1385 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1386 } 1387 1388 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1389 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1390 1391 // If this code is reachable then emit a stop point (if generating 1392 // debug info). We have to do this ourselves because we are on the 1393 // "simple" statement path. 1394 if (HaveInsertPoint()) 1395 EmitStopPoint(&S); 1396 1397 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1398 } 1399 1400 /// EmitCaseStmtRange - If case statement range is not too big then 1401 /// add multiple cases to switch instruction, one for each value within 1402 /// the range. If range is too big then emit "if" condition check. 1403 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1404 ArrayRef<const Attr *> Attrs) { 1405 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1406 1407 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1408 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1409 1410 // Emit the code for this case. We do this first to make sure it is 1411 // properly chained from our predecessor before generating the 1412 // switch machinery to enter this block. 1413 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1414 EmitBlockWithFallThrough(CaseDest, &S); 1415 EmitStmt(S.getSubStmt()); 1416 1417 // If range is empty, do nothing. 1418 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1419 return; 1420 1421 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1422 llvm::APInt Range = RHS - LHS; 1423 // FIXME: parameters such as this should not be hardcoded. 1424 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1425 // Range is small enough to add multiple switch instruction cases. 1426 uint64_t Total = getProfileCount(&S); 1427 unsigned NCases = Range.getZExtValue() + 1; 1428 // We only have one region counter for the entire set of cases here, so we 1429 // need to divide the weights evenly between the generated cases, ensuring 1430 // that the total weight is preserved. E.g., a weight of 5 over three cases 1431 // will be distributed as weights of 2, 2, and 1. 1432 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1433 for (unsigned I = 0; I != NCases; ++I) { 1434 if (SwitchWeights) 1435 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1436 else if (SwitchLikelihood) 1437 SwitchLikelihood->push_back(LH); 1438 1439 if (Rem) 1440 Rem--; 1441 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1442 ++LHS; 1443 } 1444 return; 1445 } 1446 1447 // The range is too big. Emit "if" condition into a new block, 1448 // making sure to save and restore the current insertion point. 1449 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1450 1451 // Push this test onto the chain of range checks (which terminates 1452 // in the default basic block). The switch's default will be changed 1453 // to the top of this chain after switch emission is complete. 1454 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1455 CaseRangeBlock = createBasicBlock("sw.caserange"); 1456 1457 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1458 Builder.SetInsertPoint(CaseRangeBlock); 1459 1460 // Emit range check. 1461 llvm::Value *Diff = 1462 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1463 llvm::Value *Cond = 1464 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1465 1466 llvm::MDNode *Weights = nullptr; 1467 if (SwitchWeights) { 1468 uint64_t ThisCount = getProfileCount(&S); 1469 uint64_t DefaultCount = (*SwitchWeights)[0]; 1470 Weights = createProfileWeights(ThisCount, DefaultCount); 1471 1472 // Since we're chaining the switch default through each large case range, we 1473 // need to update the weight for the default, ie, the first case, to include 1474 // this case. 1475 (*SwitchWeights)[0] += ThisCount; 1476 } else if (SwitchLikelihood) 1477 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1478 1479 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1480 1481 // Restore the appropriate insertion point. 1482 if (RestoreBB) 1483 Builder.SetInsertPoint(RestoreBB); 1484 else 1485 Builder.ClearInsertionPoint(); 1486 } 1487 1488 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1489 ArrayRef<const Attr *> Attrs) { 1490 // If there is no enclosing switch instance that we're aware of, then this 1491 // case statement and its block can be elided. This situation only happens 1492 // when we've constant-folded the switch, are emitting the constant case, 1493 // and part of the constant case includes another case statement. For 1494 // instance: switch (4) { case 4: do { case 5: } while (1); } 1495 if (!SwitchInsn) { 1496 EmitStmt(S.getSubStmt()); 1497 return; 1498 } 1499 1500 // Handle case ranges. 1501 if (S.getRHS()) { 1502 EmitCaseStmtRange(S, Attrs); 1503 return; 1504 } 1505 1506 llvm::ConstantInt *CaseVal = 1507 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1508 if (SwitchLikelihood) 1509 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1510 1511 // If the body of the case is just a 'break', try to not emit an empty block. 1512 // If we're profiling or we're not optimizing, leave the block in for better 1513 // debug and coverage analysis. 1514 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1515 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1516 isa<BreakStmt>(S.getSubStmt())) { 1517 JumpDest Block = BreakContinueStack.back().BreakBlock; 1518 1519 // Only do this optimization if there are no cleanups that need emitting. 1520 if (isObviouslyBranchWithoutCleanups(Block)) { 1521 if (SwitchWeights) 1522 SwitchWeights->push_back(getProfileCount(&S)); 1523 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1524 1525 // If there was a fallthrough into this case, make sure to redirect it to 1526 // the end of the switch as well. 1527 if (Builder.GetInsertBlock()) { 1528 Builder.CreateBr(Block.getBlock()); 1529 Builder.ClearInsertionPoint(); 1530 } 1531 return; 1532 } 1533 } 1534 1535 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1536 EmitBlockWithFallThrough(CaseDest, &S); 1537 if (SwitchWeights) 1538 SwitchWeights->push_back(getProfileCount(&S)); 1539 SwitchInsn->addCase(CaseVal, CaseDest); 1540 1541 // Recursively emitting the statement is acceptable, but is not wonderful for 1542 // code where we have many case statements nested together, i.e.: 1543 // case 1: 1544 // case 2: 1545 // case 3: etc. 1546 // Handling this recursively will create a new block for each case statement 1547 // that falls through to the next case which is IR intensive. It also causes 1548 // deep recursion which can run into stack depth limitations. Handle 1549 // sequential non-range case statements specially. 1550 // 1551 // TODO When the next case has a likelihood attribute the code returns to the 1552 // recursive algorithm. Maybe improve this case if it becomes common practice 1553 // to use a lot of attributes. 1554 const CaseStmt *CurCase = &S; 1555 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1556 1557 // Otherwise, iteratively add consecutive cases to this switch stmt. 1558 while (NextCase && NextCase->getRHS() == nullptr) { 1559 CurCase = NextCase; 1560 llvm::ConstantInt *CaseVal = 1561 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1562 1563 if (SwitchWeights) 1564 SwitchWeights->push_back(getProfileCount(NextCase)); 1565 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1566 CaseDest = createBasicBlock("sw.bb"); 1567 EmitBlockWithFallThrough(CaseDest, CurCase); 1568 } 1569 // Since this loop is only executed when the CaseStmt has no attributes 1570 // use a hard-coded value. 1571 if (SwitchLikelihood) 1572 SwitchLikelihood->push_back(Stmt::LH_None); 1573 1574 SwitchInsn->addCase(CaseVal, CaseDest); 1575 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1576 } 1577 1578 // Generate a stop point for debug info if the case statement is 1579 // followed by a default statement. A fallthrough case before a 1580 // default case gets its own branch target. 1581 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass) 1582 EmitStopPoint(CurCase); 1583 1584 // Normal default recursion for non-cases. 1585 EmitStmt(CurCase->getSubStmt()); 1586 } 1587 1588 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1589 ArrayRef<const Attr *> Attrs) { 1590 // If there is no enclosing switch instance that we're aware of, then this 1591 // default statement can be elided. This situation only happens when we've 1592 // constant-folded the switch. 1593 if (!SwitchInsn) { 1594 EmitStmt(S.getSubStmt()); 1595 return; 1596 } 1597 1598 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1599 assert(DefaultBlock->empty() && 1600 "EmitDefaultStmt: Default block already defined?"); 1601 1602 if (SwitchLikelihood) 1603 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1604 1605 EmitBlockWithFallThrough(DefaultBlock, &S); 1606 1607 EmitStmt(S.getSubStmt()); 1608 } 1609 1610 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1611 /// constant value that is being switched on, see if we can dead code eliminate 1612 /// the body of the switch to a simple series of statements to emit. Basically, 1613 /// on a switch (5) we want to find these statements: 1614 /// case 5: 1615 /// printf(...); <-- 1616 /// ++i; <-- 1617 /// break; 1618 /// 1619 /// and add them to the ResultStmts vector. If it is unsafe to do this 1620 /// transformation (for example, one of the elided statements contains a label 1621 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1622 /// should include statements after it (e.g. the printf() line is a substmt of 1623 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1624 /// statement, then return CSFC_Success. 1625 /// 1626 /// If Case is non-null, then we are looking for the specified case, checking 1627 /// that nothing we jump over contains labels. If Case is null, then we found 1628 /// the case and are looking for the break. 1629 /// 1630 /// If the recursive walk actually finds our Case, then we set FoundCase to 1631 /// true. 1632 /// 1633 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1634 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1635 const SwitchCase *Case, 1636 bool &FoundCase, 1637 SmallVectorImpl<const Stmt*> &ResultStmts) { 1638 // If this is a null statement, just succeed. 1639 if (!S) 1640 return Case ? CSFC_Success : CSFC_FallThrough; 1641 1642 // If this is the switchcase (case 4: or default) that we're looking for, then 1643 // we're in business. Just add the substatement. 1644 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1645 if (S == Case) { 1646 FoundCase = true; 1647 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1648 ResultStmts); 1649 } 1650 1651 // Otherwise, this is some other case or default statement, just ignore it. 1652 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1653 ResultStmts); 1654 } 1655 1656 // If we are in the live part of the code and we found our break statement, 1657 // return a success! 1658 if (!Case && isa<BreakStmt>(S)) 1659 return CSFC_Success; 1660 1661 // If this is a switch statement, then it might contain the SwitchCase, the 1662 // break, or neither. 1663 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1664 // Handle this as two cases: we might be looking for the SwitchCase (if so 1665 // the skipped statements must be skippable) or we might already have it. 1666 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1667 bool StartedInLiveCode = FoundCase; 1668 unsigned StartSize = ResultStmts.size(); 1669 1670 // If we've not found the case yet, scan through looking for it. 1671 if (Case) { 1672 // Keep track of whether we see a skipped declaration. The code could be 1673 // using the declaration even if it is skipped, so we can't optimize out 1674 // the decl if the kept statements might refer to it. 1675 bool HadSkippedDecl = false; 1676 1677 // If we're looking for the case, just see if we can skip each of the 1678 // substatements. 1679 for (; Case && I != E; ++I) { 1680 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1681 1682 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1683 case CSFC_Failure: return CSFC_Failure; 1684 case CSFC_Success: 1685 // A successful result means that either 1) that the statement doesn't 1686 // have the case and is skippable, or 2) does contain the case value 1687 // and also contains the break to exit the switch. In the later case, 1688 // we just verify the rest of the statements are elidable. 1689 if (FoundCase) { 1690 // If we found the case and skipped declarations, we can't do the 1691 // optimization. 1692 if (HadSkippedDecl) 1693 return CSFC_Failure; 1694 1695 for (++I; I != E; ++I) 1696 if (CodeGenFunction::ContainsLabel(*I, true)) 1697 return CSFC_Failure; 1698 return CSFC_Success; 1699 } 1700 break; 1701 case CSFC_FallThrough: 1702 // If we have a fallthrough condition, then we must have found the 1703 // case started to include statements. Consider the rest of the 1704 // statements in the compound statement as candidates for inclusion. 1705 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1706 // We recursively found Case, so we're not looking for it anymore. 1707 Case = nullptr; 1708 1709 // If we found the case and skipped declarations, we can't do the 1710 // optimization. 1711 if (HadSkippedDecl) 1712 return CSFC_Failure; 1713 break; 1714 } 1715 } 1716 1717 if (!FoundCase) 1718 return CSFC_Success; 1719 1720 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1721 } 1722 1723 // If we have statements in our range, then we know that the statements are 1724 // live and need to be added to the set of statements we're tracking. 1725 bool AnyDecls = false; 1726 for (; I != E; ++I) { 1727 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1728 1729 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1730 case CSFC_Failure: return CSFC_Failure; 1731 case CSFC_FallThrough: 1732 // A fallthrough result means that the statement was simple and just 1733 // included in ResultStmt, keep adding them afterwards. 1734 break; 1735 case CSFC_Success: 1736 // A successful result means that we found the break statement and 1737 // stopped statement inclusion. We just ensure that any leftover stmts 1738 // are skippable and return success ourselves. 1739 for (++I; I != E; ++I) 1740 if (CodeGenFunction::ContainsLabel(*I, true)) 1741 return CSFC_Failure; 1742 return CSFC_Success; 1743 } 1744 } 1745 1746 // If we're about to fall out of a scope without hitting a 'break;', we 1747 // can't perform the optimization if there were any decls in that scope 1748 // (we'd lose their end-of-lifetime). 1749 if (AnyDecls) { 1750 // If the entire compound statement was live, there's one more thing we 1751 // can try before giving up: emit the whole thing as a single statement. 1752 // We can do that unless the statement contains a 'break;'. 1753 // FIXME: Such a break must be at the end of a construct within this one. 1754 // We could emit this by just ignoring the BreakStmts entirely. 1755 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1756 ResultStmts.resize(StartSize); 1757 ResultStmts.push_back(S); 1758 } else { 1759 return CSFC_Failure; 1760 } 1761 } 1762 1763 return CSFC_FallThrough; 1764 } 1765 1766 // Okay, this is some other statement that we don't handle explicitly, like a 1767 // for statement or increment etc. If we are skipping over this statement, 1768 // just verify it doesn't have labels, which would make it invalid to elide. 1769 if (Case) { 1770 if (CodeGenFunction::ContainsLabel(S, true)) 1771 return CSFC_Failure; 1772 return CSFC_Success; 1773 } 1774 1775 // Otherwise, we want to include this statement. Everything is cool with that 1776 // so long as it doesn't contain a break out of the switch we're in. 1777 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1778 1779 // Otherwise, everything is great. Include the statement and tell the caller 1780 // that we fall through and include the next statement as well. 1781 ResultStmts.push_back(S); 1782 return CSFC_FallThrough; 1783 } 1784 1785 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1786 /// then invoke CollectStatementsForCase to find the list of statements to emit 1787 /// for a switch on constant. See the comment above CollectStatementsForCase 1788 /// for more details. 1789 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1790 const llvm::APSInt &ConstantCondValue, 1791 SmallVectorImpl<const Stmt*> &ResultStmts, 1792 ASTContext &C, 1793 const SwitchCase *&ResultCase) { 1794 // First step, find the switch case that is being branched to. We can do this 1795 // efficiently by scanning the SwitchCase list. 1796 const SwitchCase *Case = S.getSwitchCaseList(); 1797 const DefaultStmt *DefaultCase = nullptr; 1798 1799 for (; Case; Case = Case->getNextSwitchCase()) { 1800 // It's either a default or case. Just remember the default statement in 1801 // case we're not jumping to any numbered cases. 1802 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1803 DefaultCase = DS; 1804 continue; 1805 } 1806 1807 // Check to see if this case is the one we're looking for. 1808 const CaseStmt *CS = cast<CaseStmt>(Case); 1809 // Don't handle case ranges yet. 1810 if (CS->getRHS()) return false; 1811 1812 // If we found our case, remember it as 'case'. 1813 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1814 break; 1815 } 1816 1817 // If we didn't find a matching case, we use a default if it exists, or we 1818 // elide the whole switch body! 1819 if (!Case) { 1820 // It is safe to elide the body of the switch if it doesn't contain labels 1821 // etc. If it is safe, return successfully with an empty ResultStmts list. 1822 if (!DefaultCase) 1823 return !CodeGenFunction::ContainsLabel(&S); 1824 Case = DefaultCase; 1825 } 1826 1827 // Ok, we know which case is being jumped to, try to collect all the 1828 // statements that follow it. This can fail for a variety of reasons. Also, 1829 // check to see that the recursive walk actually found our case statement. 1830 // Insane cases like this can fail to find it in the recursive walk since we 1831 // don't handle every stmt kind: 1832 // switch (4) { 1833 // while (1) { 1834 // case 4: ... 1835 bool FoundCase = false; 1836 ResultCase = Case; 1837 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1838 ResultStmts) != CSFC_Failure && 1839 FoundCase; 1840 } 1841 1842 static Optional<SmallVector<uint64_t, 16>> 1843 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1844 // Are there enough branches to weight them? 1845 if (Likelihoods.size() <= 1) 1846 return None; 1847 1848 uint64_t NumUnlikely = 0; 1849 uint64_t NumNone = 0; 1850 uint64_t NumLikely = 0; 1851 for (const auto LH : Likelihoods) { 1852 switch (LH) { 1853 case Stmt::LH_Unlikely: 1854 ++NumUnlikely; 1855 break; 1856 case Stmt::LH_None: 1857 ++NumNone; 1858 break; 1859 case Stmt::LH_Likely: 1860 ++NumLikely; 1861 break; 1862 } 1863 } 1864 1865 // Is there a likelihood attribute used? 1866 if (NumUnlikely == 0 && NumLikely == 0) 1867 return None; 1868 1869 // When multiple cases share the same code they can be combined during 1870 // optimization. In that case the weights of the branch will be the sum of 1871 // the individual weights. Make sure the combined sum of all neutral cases 1872 // doesn't exceed the value of a single likely attribute. 1873 // The additions both avoid divisions by 0 and make sure the weights of None 1874 // don't exceed the weight of Likely. 1875 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1876 const uint64_t None = Likely / (NumNone + 1); 1877 const uint64_t Unlikely = 0; 1878 1879 SmallVector<uint64_t, 16> Result; 1880 Result.reserve(Likelihoods.size()); 1881 for (const auto LH : Likelihoods) { 1882 switch (LH) { 1883 case Stmt::LH_Unlikely: 1884 Result.push_back(Unlikely); 1885 break; 1886 case Stmt::LH_None: 1887 Result.push_back(None); 1888 break; 1889 case Stmt::LH_Likely: 1890 Result.push_back(Likely); 1891 break; 1892 } 1893 } 1894 1895 return Result; 1896 } 1897 1898 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1899 // Handle nested switch statements. 1900 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1901 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1902 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1903 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1904 1905 // See if we can constant fold the condition of the switch and therefore only 1906 // emit the live case statement (if any) of the switch. 1907 llvm::APSInt ConstantCondValue; 1908 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1909 SmallVector<const Stmt*, 4> CaseStmts; 1910 const SwitchCase *Case = nullptr; 1911 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1912 getContext(), Case)) { 1913 if (Case) 1914 incrementProfileCounter(Case); 1915 RunCleanupsScope ExecutedScope(*this); 1916 1917 if (S.getInit()) 1918 EmitStmt(S.getInit()); 1919 1920 // Emit the condition variable if needed inside the entire cleanup scope 1921 // used by this special case for constant folded switches. 1922 if (S.getConditionVariable()) 1923 EmitDecl(*S.getConditionVariable()); 1924 1925 // At this point, we are no longer "within" a switch instance, so 1926 // we can temporarily enforce this to ensure that any embedded case 1927 // statements are not emitted. 1928 SwitchInsn = nullptr; 1929 1930 // Okay, we can dead code eliminate everything except this case. Emit the 1931 // specified series of statements and we're good. 1932 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1933 EmitStmt(CaseStmts[i]); 1934 incrementProfileCounter(&S); 1935 1936 // Now we want to restore the saved switch instance so that nested 1937 // switches continue to function properly 1938 SwitchInsn = SavedSwitchInsn; 1939 1940 return; 1941 } 1942 } 1943 1944 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1945 1946 RunCleanupsScope ConditionScope(*this); 1947 1948 if (S.getInit()) 1949 EmitStmt(S.getInit()); 1950 1951 if (S.getConditionVariable()) 1952 EmitDecl(*S.getConditionVariable()); 1953 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1954 1955 // Create basic block to hold stuff that comes after switch 1956 // statement. We also need to create a default block now so that 1957 // explicit case ranges tests can have a place to jump to on 1958 // failure. 1959 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1960 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1961 if (PGO.haveRegionCounts()) { 1962 // Walk the SwitchCase list to find how many there are. 1963 uint64_t DefaultCount = 0; 1964 unsigned NumCases = 0; 1965 for (const SwitchCase *Case = S.getSwitchCaseList(); 1966 Case; 1967 Case = Case->getNextSwitchCase()) { 1968 if (isa<DefaultStmt>(Case)) 1969 DefaultCount = getProfileCount(Case); 1970 NumCases += 1; 1971 } 1972 SwitchWeights = new SmallVector<uint64_t, 16>(); 1973 SwitchWeights->reserve(NumCases); 1974 // The default needs to be first. We store the edge count, so we already 1975 // know the right weight. 1976 SwitchWeights->push_back(DefaultCount); 1977 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1978 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1979 // Initialize the default case. 1980 SwitchLikelihood->push_back(Stmt::LH_None); 1981 } 1982 1983 CaseRangeBlock = DefaultBlock; 1984 1985 // Clear the insertion point to indicate we are in unreachable code. 1986 Builder.ClearInsertionPoint(); 1987 1988 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1989 // then reuse last ContinueBlock. 1990 JumpDest OuterContinue; 1991 if (!BreakContinueStack.empty()) 1992 OuterContinue = BreakContinueStack.back().ContinueBlock; 1993 1994 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1995 1996 // Emit switch body. 1997 EmitStmt(S.getBody()); 1998 1999 BreakContinueStack.pop_back(); 2000 2001 // Update the default block in case explicit case range tests have 2002 // been chained on top. 2003 SwitchInsn->setDefaultDest(CaseRangeBlock); 2004 2005 // If a default was never emitted: 2006 if (!DefaultBlock->getParent()) { 2007 // If we have cleanups, emit the default block so that there's a 2008 // place to jump through the cleanups from. 2009 if (ConditionScope.requiresCleanups()) { 2010 EmitBlock(DefaultBlock); 2011 2012 // Otherwise, just forward the default block to the switch end. 2013 } else { 2014 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 2015 delete DefaultBlock; 2016 } 2017 } 2018 2019 ConditionScope.ForceCleanup(); 2020 2021 // Emit continuation. 2022 EmitBlock(SwitchExit.getBlock(), true); 2023 incrementProfileCounter(&S); 2024 2025 // If the switch has a condition wrapped by __builtin_unpredictable, 2026 // create metadata that specifies that the switch is unpredictable. 2027 // Don't bother if not optimizing because that metadata would not be used. 2028 auto *Call = dyn_cast<CallExpr>(S.getCond()); 2029 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2030 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2031 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2032 llvm::MDBuilder MDHelper(getLLVMContext()); 2033 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 2034 MDHelper.createUnpredictable()); 2035 } 2036 } 2037 2038 if (SwitchWeights) { 2039 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 2040 "switch weights do not match switch cases"); 2041 // If there's only one jump destination there's no sense weighting it. 2042 if (SwitchWeights->size() > 1) 2043 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2044 createProfileWeights(*SwitchWeights)); 2045 delete SwitchWeights; 2046 } else if (SwitchLikelihood) { 2047 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 2048 "switch likelihoods do not match switch cases"); 2049 Optional<SmallVector<uint64_t, 16>> LHW = 2050 getLikelihoodWeights(*SwitchLikelihood); 2051 if (LHW) { 2052 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2053 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2054 createProfileWeights(*LHW)); 2055 } 2056 delete SwitchLikelihood; 2057 } 2058 SwitchInsn = SavedSwitchInsn; 2059 SwitchWeights = SavedSwitchWeights; 2060 SwitchLikelihood = SavedSwitchLikelihood; 2061 CaseRangeBlock = SavedCRBlock; 2062 } 2063 2064 static std::string 2065 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 2066 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 2067 std::string Result; 2068 2069 while (*Constraint) { 2070 switch (*Constraint) { 2071 default: 2072 Result += Target.convertConstraint(Constraint); 2073 break; 2074 // Ignore these 2075 case '*': 2076 case '?': 2077 case '!': 2078 case '=': // Will see this and the following in mult-alt constraints. 2079 case '+': 2080 break; 2081 case '#': // Ignore the rest of the constraint alternative. 2082 while (Constraint[1] && Constraint[1] != ',') 2083 Constraint++; 2084 break; 2085 case '&': 2086 case '%': 2087 Result += *Constraint; 2088 while (Constraint[1] && Constraint[1] == *Constraint) 2089 Constraint++; 2090 break; 2091 case ',': 2092 Result += "|"; 2093 break; 2094 case 'g': 2095 Result += "imr"; 2096 break; 2097 case '[': { 2098 assert(OutCons && 2099 "Must pass output names to constraints with a symbolic name"); 2100 unsigned Index; 2101 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2102 assert(result && "Could not resolve symbolic name"); (void)result; 2103 Result += llvm::utostr(Index); 2104 break; 2105 } 2106 } 2107 2108 Constraint++; 2109 } 2110 2111 return Result; 2112 } 2113 2114 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2115 /// as using a particular register add that as a constraint that will be used 2116 /// in this asm stmt. 2117 static std::string 2118 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2119 const TargetInfo &Target, CodeGenModule &CGM, 2120 const AsmStmt &Stmt, const bool EarlyClobber, 2121 std::string *GCCReg = nullptr) { 2122 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2123 if (!AsmDeclRef) 2124 return Constraint; 2125 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2126 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2127 if (!Variable) 2128 return Constraint; 2129 if (Variable->getStorageClass() != SC_Register) 2130 return Constraint; 2131 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2132 if (!Attr) 2133 return Constraint; 2134 StringRef Register = Attr->getLabel(); 2135 assert(Target.isValidGCCRegisterName(Register)); 2136 // We're using validateOutputConstraint here because we only care if 2137 // this is a register constraint. 2138 TargetInfo::ConstraintInfo Info(Constraint, ""); 2139 if (Target.validateOutputConstraint(Info) && 2140 !Info.allowsRegister()) { 2141 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2142 return Constraint; 2143 } 2144 // Canonicalize the register here before returning it. 2145 Register = Target.getNormalizedGCCRegisterName(Register); 2146 if (GCCReg != nullptr) 2147 *GCCReg = Register.str(); 2148 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2149 } 2150 2151 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue( 2152 const TargetInfo::ConstraintInfo &Info, LValue InputValue, 2153 QualType InputType, std::string &ConstraintStr, SourceLocation Loc) { 2154 if (Info.allowsRegister() || !Info.allowsMemory()) { 2155 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) 2156 return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr}; 2157 2158 llvm::Type *Ty = ConvertType(InputType); 2159 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2160 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || 2161 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { 2162 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2163 2164 return {Builder.CreateLoad(Builder.CreateElementBitCast( 2165 InputValue.getAddress(*this), Ty)), 2166 nullptr}; 2167 } 2168 } 2169 2170 Address Addr = InputValue.getAddress(*this); 2171 ConstraintStr += '*'; 2172 return {Addr.getPointer(), Addr.getElementType()}; 2173 } 2174 2175 std::pair<llvm::Value *, llvm::Type *> 2176 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2177 const Expr *InputExpr, 2178 std::string &ConstraintStr) { 2179 // If this can't be a register or memory, i.e., has to be a constant 2180 // (immediate or symbolic), try to emit it as such. 2181 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2182 if (Info.requiresImmediateConstant()) { 2183 Expr::EvalResult EVResult; 2184 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2185 2186 llvm::APSInt IntResult; 2187 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2188 getContext())) 2189 return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr}; 2190 } 2191 2192 Expr::EvalResult Result; 2193 if (InputExpr->EvaluateAsInt(Result, getContext())) 2194 return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()), 2195 nullptr}; 2196 } 2197 2198 if (Info.allowsRegister() || !Info.allowsMemory()) 2199 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2200 return {EmitScalarExpr(InputExpr), nullptr}; 2201 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2202 return {EmitScalarExpr(InputExpr), nullptr}; 2203 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2204 LValue Dest = EmitLValue(InputExpr); 2205 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2206 InputExpr->getExprLoc()); 2207 } 2208 2209 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2210 /// asm call instruction. The !srcloc MDNode contains a list of constant 2211 /// integers which are the source locations of the start of each line in the 2212 /// asm. 2213 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2214 CodeGenFunction &CGF) { 2215 SmallVector<llvm::Metadata *, 8> Locs; 2216 // Add the location of the first line to the MDNode. 2217 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2218 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); 2219 StringRef StrVal = Str->getString(); 2220 if (!StrVal.empty()) { 2221 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2222 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2223 unsigned StartToken = 0; 2224 unsigned ByteOffset = 0; 2225 2226 // Add the location of the start of each subsequent line of the asm to the 2227 // MDNode. 2228 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2229 if (StrVal[i] != '\n') continue; 2230 SourceLocation LineLoc = Str->getLocationOfByte( 2231 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2232 Locs.push_back(llvm::ConstantAsMetadata::get( 2233 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); 2234 } 2235 } 2236 2237 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2238 } 2239 2240 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2241 bool HasUnwindClobber, bool ReadOnly, 2242 bool ReadNone, bool NoMerge, const AsmStmt &S, 2243 const std::vector<llvm::Type *> &ResultRegTypes, 2244 const std::vector<llvm::Type *> &ArgElemTypes, 2245 CodeGenFunction &CGF, 2246 std::vector<llvm::Value *> &RegResults) { 2247 if (!HasUnwindClobber) 2248 Result.addFnAttr(llvm::Attribute::NoUnwind); 2249 2250 if (NoMerge) 2251 Result.addFnAttr(llvm::Attribute::NoMerge); 2252 // Attach readnone and readonly attributes. 2253 if (!HasSideEffect) { 2254 if (ReadNone) 2255 Result.addFnAttr(llvm::Attribute::ReadNone); 2256 else if (ReadOnly) 2257 Result.addFnAttr(llvm::Attribute::ReadOnly); 2258 } 2259 2260 // Add elementtype attribute for indirect constraints. 2261 for (auto Pair : llvm::enumerate(ArgElemTypes)) { 2262 if (Pair.value()) { 2263 auto Attr = llvm::Attribute::get( 2264 CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value()); 2265 Result.addParamAttr(Pair.index(), Attr); 2266 } 2267 } 2268 2269 // Slap the source location of the inline asm into a !srcloc metadata on the 2270 // call. 2271 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2272 Result.setMetadata("srcloc", 2273 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2274 else { 2275 // At least put the line number on MS inline asm blobs. 2276 llvm::Constant *Loc = 2277 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); 2278 Result.setMetadata("srcloc", 2279 llvm::MDNode::get(CGF.getLLVMContext(), 2280 llvm::ConstantAsMetadata::get(Loc))); 2281 } 2282 2283 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2284 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2285 // convergent (meaning, they may call an intrinsically convergent op, such 2286 // as bar.sync, and so can't have certain optimizations applied around 2287 // them). 2288 Result.addFnAttr(llvm::Attribute::Convergent); 2289 // Extract all of the register value results from the asm. 2290 if (ResultRegTypes.size() == 1) { 2291 RegResults.push_back(&Result); 2292 } else { 2293 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2294 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2295 RegResults.push_back(Tmp); 2296 } 2297 } 2298 } 2299 2300 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2301 // Pop all cleanup blocks at the end of the asm statement. 2302 CodeGenFunction::RunCleanupsScope Cleanups(*this); 2303 2304 // Assemble the final asm string. 2305 std::string AsmString = S.generateAsmString(getContext()); 2306 2307 // Get all the output and input constraints together. 2308 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2309 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2310 2311 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2312 StringRef Name; 2313 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2314 Name = GAS->getOutputName(i); 2315 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2316 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2317 assert(IsValid && "Failed to parse output constraint"); 2318 OutputConstraintInfos.push_back(Info); 2319 } 2320 2321 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2322 StringRef Name; 2323 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2324 Name = GAS->getInputName(i); 2325 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2326 bool IsValid = 2327 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2328 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2329 InputConstraintInfos.push_back(Info); 2330 } 2331 2332 std::string Constraints; 2333 2334 std::vector<LValue> ResultRegDests; 2335 std::vector<QualType> ResultRegQualTys; 2336 std::vector<llvm::Type *> ResultRegTypes; 2337 std::vector<llvm::Type *> ResultTruncRegTypes; 2338 std::vector<llvm::Type *> ArgTypes; 2339 std::vector<llvm::Type *> ArgElemTypes; 2340 std::vector<llvm::Value*> Args; 2341 llvm::BitVector ResultTypeRequiresCast; 2342 2343 // Keep track of inout constraints. 2344 std::string InOutConstraints; 2345 std::vector<llvm::Value*> InOutArgs; 2346 std::vector<llvm::Type*> InOutArgTypes; 2347 std::vector<llvm::Type*> InOutArgElemTypes; 2348 2349 // Keep track of out constraints for tied input operand. 2350 std::vector<std::string> OutputConstraints; 2351 2352 // Keep track of defined physregs. 2353 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2354 2355 // An inline asm can be marked readonly if it meets the following conditions: 2356 // - it doesn't have any sideeffects 2357 // - it doesn't clobber memory 2358 // - it doesn't return a value by-reference 2359 // It can be marked readnone if it doesn't have any input memory constraints 2360 // in addition to meeting the conditions listed above. 2361 bool ReadOnly = true, ReadNone = true; 2362 2363 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2364 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2365 2366 // Simplify the output constraint. 2367 std::string OutputConstraint(S.getOutputConstraint(i)); 2368 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2369 getTarget(), &OutputConstraintInfos); 2370 2371 const Expr *OutExpr = S.getOutputExpr(i); 2372 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2373 2374 std::string GCCReg; 2375 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2376 getTarget(), CGM, S, 2377 Info.earlyClobber(), 2378 &GCCReg); 2379 // Give an error on multiple outputs to same physreg. 2380 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2381 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2382 2383 OutputConstraints.push_back(OutputConstraint); 2384 LValue Dest = EmitLValue(OutExpr); 2385 if (!Constraints.empty()) 2386 Constraints += ','; 2387 2388 // If this is a register output, then make the inline asm return it 2389 // by-value. If this is a memory result, return the value by-reference. 2390 QualType QTy = OutExpr->getType(); 2391 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || 2392 hasAggregateEvaluationKind(QTy); 2393 if (!Info.allowsMemory() && IsScalarOrAggregate) { 2394 2395 Constraints += "=" + OutputConstraint; 2396 ResultRegQualTys.push_back(QTy); 2397 ResultRegDests.push_back(Dest); 2398 2399 llvm::Type *Ty = ConvertTypeForMem(QTy); 2400 const bool RequiresCast = Info.allowsRegister() && 2401 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || 2402 Ty->isAggregateType()); 2403 2404 ResultTruncRegTypes.push_back(Ty); 2405 ResultTypeRequiresCast.push_back(RequiresCast); 2406 2407 if (RequiresCast) { 2408 unsigned Size = getContext().getTypeSize(QTy); 2409 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2410 } 2411 ResultRegTypes.push_back(Ty); 2412 // If this output is tied to an input, and if the input is larger, then 2413 // we need to set the actual result type of the inline asm node to be the 2414 // same as the input type. 2415 if (Info.hasMatchingInput()) { 2416 unsigned InputNo; 2417 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2418 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2419 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2420 break; 2421 } 2422 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2423 2424 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2425 QualType OutputType = OutExpr->getType(); 2426 2427 uint64_t InputSize = getContext().getTypeSize(InputTy); 2428 if (getContext().getTypeSize(OutputType) < InputSize) { 2429 // Form the asm to return the value as a larger integer or fp type. 2430 ResultRegTypes.back() = ConvertType(InputTy); 2431 } 2432 } 2433 if (llvm::Type* AdjTy = 2434 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2435 ResultRegTypes.back())) 2436 ResultRegTypes.back() = AdjTy; 2437 else { 2438 CGM.getDiags().Report(S.getAsmLoc(), 2439 diag::err_asm_invalid_type_in_input) 2440 << OutExpr->getType() << OutputConstraint; 2441 } 2442 2443 // Update largest vector width for any vector types. 2444 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2445 LargestVectorWidth = 2446 std::max((uint64_t)LargestVectorWidth, 2447 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2448 } else { 2449 Address DestAddr = Dest.getAddress(*this); 2450 // Matrix types in memory are represented by arrays, but accessed through 2451 // vector pointers, with the alignment specified on the access operation. 2452 // For inline assembly, update pointer arguments to use vector pointers. 2453 // Otherwise there will be a mis-match if the matrix is also an 2454 // input-argument which is represented as vector. 2455 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) 2456 DestAddr = Builder.CreateElementBitCast( 2457 DestAddr, ConvertType(OutExpr->getType())); 2458 2459 ArgTypes.push_back(DestAddr.getType()); 2460 ArgElemTypes.push_back(DestAddr.getElementType()); 2461 Args.push_back(DestAddr.getPointer()); 2462 Constraints += "=*"; 2463 Constraints += OutputConstraint; 2464 ReadOnly = ReadNone = false; 2465 } 2466 2467 if (Info.isReadWrite()) { 2468 InOutConstraints += ','; 2469 2470 const Expr *InputExpr = S.getOutputExpr(i); 2471 llvm::Value *Arg; 2472 llvm::Type *ArgElemType; 2473 std::tie(Arg, ArgElemType) = EmitAsmInputLValue( 2474 Info, Dest, InputExpr->getType(), InOutConstraints, 2475 InputExpr->getExprLoc()); 2476 2477 if (llvm::Type* AdjTy = 2478 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2479 Arg->getType())) 2480 Arg = Builder.CreateBitCast(Arg, AdjTy); 2481 2482 // Update largest vector width for any vector types. 2483 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2484 LargestVectorWidth = 2485 std::max((uint64_t)LargestVectorWidth, 2486 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2487 // Only tie earlyclobber physregs. 2488 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2489 InOutConstraints += llvm::utostr(i); 2490 else 2491 InOutConstraints += OutputConstraint; 2492 2493 InOutArgTypes.push_back(Arg->getType()); 2494 InOutArgElemTypes.push_back(ArgElemType); 2495 InOutArgs.push_back(Arg); 2496 } 2497 } 2498 2499 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2500 // to the return value slot. Only do this when returning in registers. 2501 if (isa<MSAsmStmt>(&S)) { 2502 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2503 if (RetAI.isDirect() || RetAI.isExtend()) { 2504 // Make a fake lvalue for the return value slot. 2505 LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy); 2506 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2507 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2508 ResultRegDests, AsmString, S.getNumOutputs()); 2509 SawAsmBlock = true; 2510 } 2511 } 2512 2513 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2514 const Expr *InputExpr = S.getInputExpr(i); 2515 2516 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2517 2518 if (Info.allowsMemory()) 2519 ReadNone = false; 2520 2521 if (!Constraints.empty()) 2522 Constraints += ','; 2523 2524 // Simplify the input constraint. 2525 std::string InputConstraint(S.getInputConstraint(i)); 2526 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2527 &OutputConstraintInfos); 2528 2529 InputConstraint = AddVariableConstraints( 2530 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2531 getTarget(), CGM, S, false /* No EarlyClobber */); 2532 2533 std::string ReplaceConstraint (InputConstraint); 2534 llvm::Value *Arg; 2535 llvm::Type *ArgElemType; 2536 std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints); 2537 2538 // If this input argument is tied to a larger output result, extend the 2539 // input to be the same size as the output. The LLVM backend wants to see 2540 // the input and output of a matching constraint be the same size. Note 2541 // that GCC does not define what the top bits are here. We use zext because 2542 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2543 if (Info.hasTiedOperand()) { 2544 unsigned Output = Info.getTiedOperand(); 2545 QualType OutputType = S.getOutputExpr(Output)->getType(); 2546 QualType InputTy = InputExpr->getType(); 2547 2548 if (getContext().getTypeSize(OutputType) > 2549 getContext().getTypeSize(InputTy)) { 2550 // Use ptrtoint as appropriate so that we can do our extension. 2551 if (isa<llvm::PointerType>(Arg->getType())) 2552 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2553 llvm::Type *OutputTy = ConvertType(OutputType); 2554 if (isa<llvm::IntegerType>(OutputTy)) 2555 Arg = Builder.CreateZExt(Arg, OutputTy); 2556 else if (isa<llvm::PointerType>(OutputTy)) 2557 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2558 else if (OutputTy->isFloatingPointTy()) 2559 Arg = Builder.CreateFPExt(Arg, OutputTy); 2560 } 2561 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2562 ReplaceConstraint = OutputConstraints[Output]; 2563 } 2564 if (llvm::Type* AdjTy = 2565 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2566 Arg->getType())) 2567 Arg = Builder.CreateBitCast(Arg, AdjTy); 2568 else 2569 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2570 << InputExpr->getType() << InputConstraint; 2571 2572 // Update largest vector width for any vector types. 2573 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2574 LargestVectorWidth = 2575 std::max((uint64_t)LargestVectorWidth, 2576 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2577 2578 ArgTypes.push_back(Arg->getType()); 2579 ArgElemTypes.push_back(ArgElemType); 2580 Args.push_back(Arg); 2581 Constraints += InputConstraint; 2582 } 2583 2584 // Append the "input" part of inout constraints. 2585 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2586 ArgTypes.push_back(InOutArgTypes[i]); 2587 ArgElemTypes.push_back(InOutArgElemTypes[i]); 2588 Args.push_back(InOutArgs[i]); 2589 } 2590 Constraints += InOutConstraints; 2591 2592 // Labels 2593 SmallVector<llvm::BasicBlock *, 16> Transfer; 2594 llvm::BasicBlock *Fallthrough = nullptr; 2595 bool IsGCCAsmGoto = false; 2596 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2597 IsGCCAsmGoto = GS->isAsmGoto(); 2598 if (IsGCCAsmGoto) { 2599 for (const auto *E : GS->labels()) { 2600 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2601 Transfer.push_back(Dest.getBlock()); 2602 llvm::BlockAddress *BA = 2603 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2604 Args.push_back(BA); 2605 ArgTypes.push_back(BA->getType()); 2606 ArgElemTypes.push_back(nullptr); 2607 if (!Constraints.empty()) 2608 Constraints += ','; 2609 Constraints += 'i'; 2610 } 2611 Fallthrough = createBasicBlock("asm.fallthrough"); 2612 } 2613 } 2614 2615 bool HasUnwindClobber = false; 2616 2617 // Clobbers 2618 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2619 StringRef Clobber = S.getClobber(i); 2620 2621 if (Clobber == "memory") 2622 ReadOnly = ReadNone = false; 2623 else if (Clobber == "unwind") { 2624 HasUnwindClobber = true; 2625 continue; 2626 } else if (Clobber != "cc") { 2627 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2628 if (CGM.getCodeGenOpts().StackClashProtector && 2629 getTarget().isSPRegName(Clobber)) { 2630 CGM.getDiags().Report(S.getAsmLoc(), 2631 diag::warn_stack_clash_protection_inline_asm); 2632 } 2633 } 2634 2635 if (isa<MSAsmStmt>(&S)) { 2636 if (Clobber == "eax" || Clobber == "edx") { 2637 if (Constraints.find("=&A") != std::string::npos) 2638 continue; 2639 std::string::size_type position1 = 2640 Constraints.find("={" + Clobber.str() + "}"); 2641 if (position1 != std::string::npos) { 2642 Constraints.insert(position1 + 1, "&"); 2643 continue; 2644 } 2645 std::string::size_type position2 = Constraints.find("=A"); 2646 if (position2 != std::string::npos) { 2647 Constraints.insert(position2 + 1, "&"); 2648 continue; 2649 } 2650 } 2651 } 2652 if (!Constraints.empty()) 2653 Constraints += ','; 2654 2655 Constraints += "~{"; 2656 Constraints += Clobber; 2657 Constraints += '}'; 2658 } 2659 2660 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2661 "unwind clobber can't be used with asm goto"); 2662 2663 // Add machine specific clobbers 2664 std::string MachineClobbers = getTarget().getClobbers(); 2665 if (!MachineClobbers.empty()) { 2666 if (!Constraints.empty()) 2667 Constraints += ','; 2668 Constraints += MachineClobbers; 2669 } 2670 2671 llvm::Type *ResultType; 2672 if (ResultRegTypes.empty()) 2673 ResultType = VoidTy; 2674 else if (ResultRegTypes.size() == 1) 2675 ResultType = ResultRegTypes[0]; 2676 else 2677 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2678 2679 llvm::FunctionType *FTy = 2680 llvm::FunctionType::get(ResultType, ArgTypes, false); 2681 2682 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2683 2684 llvm::InlineAsm::AsmDialect GnuAsmDialect = 2685 CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT 2686 ? llvm::InlineAsm::AD_ATT 2687 : llvm::InlineAsm::AD_Intel; 2688 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2689 llvm::InlineAsm::AD_Intel : GnuAsmDialect; 2690 2691 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2692 FTy, AsmString, Constraints, HasSideEffect, 2693 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2694 std::vector<llvm::Value*> RegResults; 2695 if (IsGCCAsmGoto) { 2696 llvm::CallBrInst *Result = 2697 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2698 EmitBlock(Fallthrough); 2699 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2700 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2701 ResultRegTypes, ArgElemTypes, *this, RegResults); 2702 } else if (HasUnwindClobber) { 2703 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2704 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2705 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes, 2706 *this, RegResults); 2707 } else { 2708 llvm::CallInst *Result = 2709 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2710 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2711 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2712 ResultRegTypes, ArgElemTypes, *this, RegResults); 2713 } 2714 2715 assert(RegResults.size() == ResultRegTypes.size()); 2716 assert(RegResults.size() == ResultTruncRegTypes.size()); 2717 assert(RegResults.size() == ResultRegDests.size()); 2718 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2719 // in which case its size may grow. 2720 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2721 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2722 llvm::Value *Tmp = RegResults[i]; 2723 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2724 2725 // If the result type of the LLVM IR asm doesn't match the result type of 2726 // the expression, do the conversion. 2727 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2728 2729 // Truncate the integer result to the right size, note that TruncTy can be 2730 // a pointer. 2731 if (TruncTy->isFloatingPointTy()) 2732 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2733 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2734 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2735 Tmp = Builder.CreateTrunc(Tmp, 2736 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2737 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2738 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2739 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2740 Tmp = Builder.CreatePtrToInt(Tmp, 2741 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2742 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2743 } else if (TruncTy->isIntegerTy()) { 2744 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2745 } else if (TruncTy->isVectorTy()) { 2746 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2747 } 2748 } 2749 2750 LValue Dest = ResultRegDests[i]; 2751 // ResultTypeRequiresCast elements correspond to the first 2752 // ResultTypeRequiresCast.size() elements of RegResults. 2753 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2754 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2755 Address A = Builder.CreateElementBitCast(Dest.getAddress(*this), 2756 ResultRegTypes[i]); 2757 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { 2758 Builder.CreateStore(Tmp, A); 2759 continue; 2760 } 2761 2762 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2763 if (Ty.isNull()) { 2764 const Expr *OutExpr = S.getOutputExpr(i); 2765 CGM.getDiags().Report(OutExpr->getExprLoc(), 2766 diag::err_store_value_to_reg); 2767 return; 2768 } 2769 Dest = MakeAddrLValue(A, Ty); 2770 } 2771 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2772 } 2773 } 2774 2775 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2776 const RecordDecl *RD = S.getCapturedRecordDecl(); 2777 QualType RecordTy = getContext().getRecordType(RD); 2778 2779 // Initialize the captured struct. 2780 LValue SlotLV = 2781 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2782 2783 RecordDecl::field_iterator CurField = RD->field_begin(); 2784 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2785 E = S.capture_init_end(); 2786 I != E; ++I, ++CurField) { 2787 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2788 if (CurField->hasCapturedVLAType()) { 2789 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2790 } else { 2791 EmitInitializerForField(*CurField, LV, *I); 2792 } 2793 } 2794 2795 return SlotLV; 2796 } 2797 2798 /// Generate an outlined function for the body of a CapturedStmt, store any 2799 /// captured variables into the captured struct, and call the outlined function. 2800 llvm::Function * 2801 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2802 LValue CapStruct = InitCapturedStruct(S); 2803 2804 // Emit the CapturedDecl 2805 CodeGenFunction CGF(CGM, true); 2806 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2807 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2808 delete CGF.CapturedStmtInfo; 2809 2810 // Emit call to the helper function. 2811 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2812 2813 return F; 2814 } 2815 2816 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2817 LValue CapStruct = InitCapturedStruct(S); 2818 return CapStruct.getAddress(*this); 2819 } 2820 2821 /// Creates the outlined function for a CapturedStmt. 2822 llvm::Function * 2823 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2824 assert(CapturedStmtInfo && 2825 "CapturedStmtInfo should be set when generating the captured function"); 2826 const CapturedDecl *CD = S.getCapturedDecl(); 2827 const RecordDecl *RD = S.getCapturedRecordDecl(); 2828 SourceLocation Loc = S.getBeginLoc(); 2829 assert(CD->hasBody() && "missing CapturedDecl body"); 2830 2831 // Build the argument list. 2832 ASTContext &Ctx = CGM.getContext(); 2833 FunctionArgList Args; 2834 Args.append(CD->param_begin(), CD->param_end()); 2835 2836 // Create the function declaration. 2837 const CGFunctionInfo &FuncInfo = 2838 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2839 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2840 2841 llvm::Function *F = 2842 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2843 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2844 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2845 if (CD->isNothrow()) 2846 F->addFnAttr(llvm::Attribute::NoUnwind); 2847 2848 // Generate the function. 2849 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2850 CD->getBody()->getBeginLoc()); 2851 // Set the context parameter in CapturedStmtInfo. 2852 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2853 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2854 2855 // Initialize variable-length arrays. 2856 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2857 Ctx.getTagDeclType(RD)); 2858 for (auto *FD : RD->fields()) { 2859 if (FD->hasCapturedVLAType()) { 2860 auto *ExprArg = 2861 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2862 .getScalarVal(); 2863 auto VAT = FD->getCapturedVLAType(); 2864 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2865 } 2866 } 2867 2868 // If 'this' is captured, load it into CXXThisValue. 2869 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2870 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2871 LValue ThisLValue = EmitLValueForField(Base, FD); 2872 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2873 } 2874 2875 PGO.assignRegionCounters(GlobalDecl(CD), F); 2876 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2877 FinishFunction(CD->getBodyRBrace()); 2878 2879 return F; 2880 } 2881