1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "TargetInfo.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "clang/Basic/Builtins.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/MDBuilder.h" 26 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Statement Emission 32 //===----------------------------------------------------------------------===// 33 34 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 35 if (CGDebugInfo *DI = getDebugInfo()) { 36 SourceLocation Loc; 37 Loc = S->getBeginLoc(); 38 DI->EmitLocation(Builder, Loc); 39 40 LastStopPoint = Loc; 41 } 42 } 43 44 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 45 assert(S && "Null statement?"); 46 PGO.setCurrentStmt(S); 47 48 // These statements have their own debug info handling. 49 if (EmitSimpleStmt(S)) 50 return; 51 52 // Check if we are generating unreachable code. 53 if (!HaveInsertPoint()) { 54 // If so, and the statement doesn't contain a label, then we do not need to 55 // generate actual code. This is safe because (1) the current point is 56 // unreachable, so we don't need to execute the code, and (2) we've already 57 // handled the statements which update internal data structures (like the 58 // local variable map) which could be used by subsequent statements. 59 if (!ContainsLabel(S)) { 60 // Verify that any decl statements were handled as simple, they may be in 61 // scope of subsequent reachable statements. 62 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 63 return; 64 } 65 66 // Otherwise, make a new block to hold the code. 67 EnsureInsertPoint(); 68 } 69 70 // Generate a stoppoint if we are emitting debug info. 71 EmitStopPoint(S); 72 73 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 74 // enabled. 75 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 76 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 77 EmitSimpleOMPExecutableDirective(*D); 78 return; 79 } 80 } 81 82 switch (S->getStmtClass()) { 83 case Stmt::NoStmtClass: 84 case Stmt::CXXCatchStmtClass: 85 case Stmt::SEHExceptStmtClass: 86 case Stmt::SEHFinallyStmtClass: 87 case Stmt::MSDependentExistsStmtClass: 88 llvm_unreachable("invalid statement class to emit generically"); 89 case Stmt::NullStmtClass: 90 case Stmt::CompoundStmtClass: 91 case Stmt::DeclStmtClass: 92 case Stmt::LabelStmtClass: 93 case Stmt::AttributedStmtClass: 94 case Stmt::GotoStmtClass: 95 case Stmt::BreakStmtClass: 96 case Stmt::ContinueStmtClass: 97 case Stmt::DefaultStmtClass: 98 case Stmt::CaseStmtClass: 99 case Stmt::SEHLeaveStmtClass: 100 llvm_unreachable("should have emitted these statements as simple"); 101 102 #define STMT(Type, Base) 103 #define ABSTRACT_STMT(Op) 104 #define EXPR(Type, Base) \ 105 case Stmt::Type##Class: 106 #include "clang/AST/StmtNodes.inc" 107 { 108 // Remember the block we came in on. 109 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 110 assert(incoming && "expression emission must have an insertion point"); 111 112 EmitIgnoredExpr(cast<Expr>(S)); 113 114 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 115 assert(outgoing && "expression emission cleared block!"); 116 117 // The expression emitters assume (reasonably!) that the insertion 118 // point is always set. To maintain that, the call-emission code 119 // for noreturn functions has to enter a new block with no 120 // predecessors. We want to kill that block and mark the current 121 // insertion point unreachable in the common case of a call like 122 // "exit();". Since expression emission doesn't otherwise create 123 // blocks with no predecessors, we can just test for that. 124 // However, we must be careful not to do this to our incoming 125 // block, because *statement* emission does sometimes create 126 // reachable blocks which will have no predecessors until later in 127 // the function. This occurs with, e.g., labels that are not 128 // reachable by fallthrough. 129 if (incoming != outgoing && outgoing->use_empty()) { 130 outgoing->eraseFromParent(); 131 Builder.ClearInsertionPoint(); 132 } 133 break; 134 } 135 136 case Stmt::IndirectGotoStmtClass: 137 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 138 139 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 140 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 141 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 142 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 143 144 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 145 146 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 147 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 148 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 149 case Stmt::CoroutineBodyStmtClass: 150 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 151 break; 152 case Stmt::CoreturnStmtClass: 153 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 154 break; 155 case Stmt::CapturedStmtClass: { 156 const CapturedStmt *CS = cast<CapturedStmt>(S); 157 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 158 } 159 break; 160 case Stmt::ObjCAtTryStmtClass: 161 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 162 break; 163 case Stmt::ObjCAtCatchStmtClass: 164 llvm_unreachable( 165 "@catch statements should be handled by EmitObjCAtTryStmt"); 166 case Stmt::ObjCAtFinallyStmtClass: 167 llvm_unreachable( 168 "@finally statements should be handled by EmitObjCAtTryStmt"); 169 case Stmt::ObjCAtThrowStmtClass: 170 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 171 break; 172 case Stmt::ObjCAtSynchronizedStmtClass: 173 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 174 break; 175 case Stmt::ObjCForCollectionStmtClass: 176 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 177 break; 178 case Stmt::ObjCAutoreleasePoolStmtClass: 179 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 180 break; 181 182 case Stmt::CXXTryStmtClass: 183 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 184 break; 185 case Stmt::CXXForRangeStmtClass: 186 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 187 break; 188 case Stmt::SEHTryStmtClass: 189 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 190 break; 191 case Stmt::OMPParallelDirectiveClass: 192 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 193 break; 194 case Stmt::OMPSimdDirectiveClass: 195 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 196 break; 197 case Stmt::OMPForDirectiveClass: 198 EmitOMPForDirective(cast<OMPForDirective>(*S)); 199 break; 200 case Stmt::OMPForSimdDirectiveClass: 201 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 202 break; 203 case Stmt::OMPSectionsDirectiveClass: 204 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 205 break; 206 case Stmt::OMPSectionDirectiveClass: 207 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 208 break; 209 case Stmt::OMPSingleDirectiveClass: 210 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 211 break; 212 case Stmt::OMPMasterDirectiveClass: 213 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 214 break; 215 case Stmt::OMPCriticalDirectiveClass: 216 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 217 break; 218 case Stmt::OMPParallelForDirectiveClass: 219 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 220 break; 221 case Stmt::OMPParallelForSimdDirectiveClass: 222 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 223 break; 224 case Stmt::OMPParallelSectionsDirectiveClass: 225 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 226 break; 227 case Stmt::OMPTaskDirectiveClass: 228 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 229 break; 230 case Stmt::OMPTaskyieldDirectiveClass: 231 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 232 break; 233 case Stmt::OMPBarrierDirectiveClass: 234 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 235 break; 236 case Stmt::OMPTaskwaitDirectiveClass: 237 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 238 break; 239 case Stmt::OMPTaskgroupDirectiveClass: 240 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 241 break; 242 case Stmt::OMPFlushDirectiveClass: 243 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 244 break; 245 case Stmt::OMPOrderedDirectiveClass: 246 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 247 break; 248 case Stmt::OMPAtomicDirectiveClass: 249 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 250 break; 251 case Stmt::OMPTargetDirectiveClass: 252 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 253 break; 254 case Stmt::OMPTeamsDirectiveClass: 255 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 256 break; 257 case Stmt::OMPCancellationPointDirectiveClass: 258 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 259 break; 260 case Stmt::OMPCancelDirectiveClass: 261 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 262 break; 263 case Stmt::OMPTargetDataDirectiveClass: 264 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 265 break; 266 case Stmt::OMPTargetEnterDataDirectiveClass: 267 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 268 break; 269 case Stmt::OMPTargetExitDataDirectiveClass: 270 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 271 break; 272 case Stmt::OMPTargetParallelDirectiveClass: 273 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 274 break; 275 case Stmt::OMPTargetParallelForDirectiveClass: 276 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 277 break; 278 case Stmt::OMPTaskLoopDirectiveClass: 279 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 280 break; 281 case Stmt::OMPTaskLoopSimdDirectiveClass: 282 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 283 break; 284 case Stmt::OMPDistributeDirectiveClass: 285 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 286 break; 287 case Stmt::OMPTargetUpdateDirectiveClass: 288 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 289 break; 290 case Stmt::OMPDistributeParallelForDirectiveClass: 291 EmitOMPDistributeParallelForDirective( 292 cast<OMPDistributeParallelForDirective>(*S)); 293 break; 294 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 295 EmitOMPDistributeParallelForSimdDirective( 296 cast<OMPDistributeParallelForSimdDirective>(*S)); 297 break; 298 case Stmt::OMPDistributeSimdDirectiveClass: 299 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 300 break; 301 case Stmt::OMPTargetParallelForSimdDirectiveClass: 302 EmitOMPTargetParallelForSimdDirective( 303 cast<OMPTargetParallelForSimdDirective>(*S)); 304 break; 305 case Stmt::OMPTargetSimdDirectiveClass: 306 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 307 break; 308 case Stmt::OMPTeamsDistributeDirectiveClass: 309 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 310 break; 311 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 312 EmitOMPTeamsDistributeSimdDirective( 313 cast<OMPTeamsDistributeSimdDirective>(*S)); 314 break; 315 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 316 EmitOMPTeamsDistributeParallelForSimdDirective( 317 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 318 break; 319 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 320 EmitOMPTeamsDistributeParallelForDirective( 321 cast<OMPTeamsDistributeParallelForDirective>(*S)); 322 break; 323 case Stmt::OMPTargetTeamsDirectiveClass: 324 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 325 break; 326 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 327 EmitOMPTargetTeamsDistributeDirective( 328 cast<OMPTargetTeamsDistributeDirective>(*S)); 329 break; 330 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 331 EmitOMPTargetTeamsDistributeParallelForDirective( 332 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 333 break; 334 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 335 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 336 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 337 break; 338 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 339 EmitOMPTargetTeamsDistributeSimdDirective( 340 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 341 break; 342 } 343 } 344 345 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 346 switch (S->getStmtClass()) { 347 default: return false; 348 case Stmt::NullStmtClass: break; 349 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 350 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 351 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 352 case Stmt::AttributedStmtClass: 353 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 354 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 355 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 356 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 357 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 358 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 359 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 360 } 361 362 return true; 363 } 364 365 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 366 /// this captures the expression result of the last sub-statement and returns it 367 /// (for use by the statement expression extension). 368 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 369 AggValueSlot AggSlot) { 370 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 371 "LLVM IR generation of compound statement ('{}')"); 372 373 // Keep track of the current cleanup stack depth, including debug scopes. 374 LexicalScope Scope(*this, S.getSourceRange()); 375 376 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 377 } 378 379 Address 380 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 381 bool GetLast, 382 AggValueSlot AggSlot) { 383 384 for (CompoundStmt::const_body_iterator I = S.body_begin(), 385 E = S.body_end()-GetLast; I != E; ++I) 386 EmitStmt(*I); 387 388 Address RetAlloca = Address::invalid(); 389 if (GetLast) { 390 // We have to special case labels here. They are statements, but when put 391 // at the end of a statement expression, they yield the value of their 392 // subexpression. Handle this by walking through all labels we encounter, 393 // emitting them before we evaluate the subexpr. 394 // Similar issues arise for attributed statements. 395 const Stmt *LastStmt = S.body_back(); 396 while (!isa<Expr>(LastStmt)) { 397 if (const auto *LS = dyn_cast<LabelStmt>(LastStmt)) { 398 EmitLabel(LS->getDecl()); 399 LastStmt = LS->getSubStmt(); 400 } else if (const auto *AS = dyn_cast<AttributedStmt>(LastStmt)) { 401 // FIXME: Update this if we ever have attributes that affect the 402 // semantics of an expression. 403 LastStmt = AS->getSubStmt(); 404 } else { 405 llvm_unreachable("unknown value statement"); 406 } 407 } 408 409 EnsureInsertPoint(); 410 411 const Expr *E = cast<Expr>(LastStmt); 412 QualType ExprTy = E->getType(); 413 if (hasAggregateEvaluationKind(ExprTy)) { 414 EmitAggExpr(E, AggSlot); 415 } else { 416 // We can't return an RValue here because there might be cleanups at 417 // the end of the StmtExpr. Because of that, we have to emit the result 418 // here into a temporary alloca. 419 RetAlloca = CreateMemTemp(ExprTy); 420 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 421 /*IsInit*/ false); 422 } 423 } 424 425 return RetAlloca; 426 } 427 428 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 429 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 430 431 // If there is a cleanup stack, then we it isn't worth trying to 432 // simplify this block (we would need to remove it from the scope map 433 // and cleanup entry). 434 if (!EHStack.empty()) 435 return; 436 437 // Can only simplify direct branches. 438 if (!BI || !BI->isUnconditional()) 439 return; 440 441 // Can only simplify empty blocks. 442 if (BI->getIterator() != BB->begin()) 443 return; 444 445 BB->replaceAllUsesWith(BI->getSuccessor(0)); 446 BI->eraseFromParent(); 447 BB->eraseFromParent(); 448 } 449 450 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 451 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 452 453 // Fall out of the current block (if necessary). 454 EmitBranch(BB); 455 456 if (IsFinished && BB->use_empty()) { 457 delete BB; 458 return; 459 } 460 461 // Place the block after the current block, if possible, or else at 462 // the end of the function. 463 if (CurBB && CurBB->getParent()) 464 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 465 else 466 CurFn->getBasicBlockList().push_back(BB); 467 Builder.SetInsertPoint(BB); 468 } 469 470 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 471 // Emit a branch from the current block to the target one if this 472 // was a real block. If this was just a fall-through block after a 473 // terminator, don't emit it. 474 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 475 476 if (!CurBB || CurBB->getTerminator()) { 477 // If there is no insert point or the previous block is already 478 // terminated, don't touch it. 479 } else { 480 // Otherwise, create a fall-through branch. 481 Builder.CreateBr(Target); 482 } 483 484 Builder.ClearInsertionPoint(); 485 } 486 487 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 488 bool inserted = false; 489 for (llvm::User *u : block->users()) { 490 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 491 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 492 block); 493 inserted = true; 494 break; 495 } 496 } 497 498 if (!inserted) 499 CurFn->getBasicBlockList().push_back(block); 500 501 Builder.SetInsertPoint(block); 502 } 503 504 CodeGenFunction::JumpDest 505 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 506 JumpDest &Dest = LabelMap[D]; 507 if (Dest.isValid()) return Dest; 508 509 // Create, but don't insert, the new block. 510 Dest = JumpDest(createBasicBlock(D->getName()), 511 EHScopeStack::stable_iterator::invalid(), 512 NextCleanupDestIndex++); 513 return Dest; 514 } 515 516 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 517 // Add this label to the current lexical scope if we're within any 518 // normal cleanups. Jumps "in" to this label --- when permitted by 519 // the language --- may need to be routed around such cleanups. 520 if (EHStack.hasNormalCleanups() && CurLexicalScope) 521 CurLexicalScope->addLabel(D); 522 523 JumpDest &Dest = LabelMap[D]; 524 525 // If we didn't need a forward reference to this label, just go 526 // ahead and create a destination at the current scope. 527 if (!Dest.isValid()) { 528 Dest = getJumpDestInCurrentScope(D->getName()); 529 530 // Otherwise, we need to give this label a target depth and remove 531 // it from the branch-fixups list. 532 } else { 533 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 534 Dest.setScopeDepth(EHStack.stable_begin()); 535 ResolveBranchFixups(Dest.getBlock()); 536 } 537 538 EmitBlock(Dest.getBlock()); 539 540 // Emit debug info for labels. 541 if (CGDebugInfo *DI = getDebugInfo()) { 542 if (CGM.getCodeGenOpts().getDebugInfo() >= 543 codegenoptions::LimitedDebugInfo) { 544 DI->setLocation(D->getLocation()); 545 DI->EmitLabel(D, Builder); 546 } 547 } 548 549 incrementProfileCounter(D->getStmt()); 550 } 551 552 /// Change the cleanup scope of the labels in this lexical scope to 553 /// match the scope of the enclosing context. 554 void CodeGenFunction::LexicalScope::rescopeLabels() { 555 assert(!Labels.empty()); 556 EHScopeStack::stable_iterator innermostScope 557 = CGF.EHStack.getInnermostNormalCleanup(); 558 559 // Change the scope depth of all the labels. 560 for (SmallVectorImpl<const LabelDecl*>::const_iterator 561 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 562 assert(CGF.LabelMap.count(*i)); 563 JumpDest &dest = CGF.LabelMap.find(*i)->second; 564 assert(dest.getScopeDepth().isValid()); 565 assert(innermostScope.encloses(dest.getScopeDepth())); 566 dest.setScopeDepth(innermostScope); 567 } 568 569 // Reparent the labels if the new scope also has cleanups. 570 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 571 ParentScope->Labels.append(Labels.begin(), Labels.end()); 572 } 573 } 574 575 576 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 577 EmitLabel(S.getDecl()); 578 EmitStmt(S.getSubStmt()); 579 } 580 581 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 582 EmitStmt(S.getSubStmt(), S.getAttrs()); 583 } 584 585 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 586 // If this code is reachable then emit a stop point (if generating 587 // debug info). We have to do this ourselves because we are on the 588 // "simple" statement path. 589 if (HaveInsertPoint()) 590 EmitStopPoint(&S); 591 592 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 593 } 594 595 596 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 597 if (const LabelDecl *Target = S.getConstantTarget()) { 598 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 599 return; 600 } 601 602 // Ensure that we have an i8* for our PHI node. 603 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 604 Int8PtrTy, "addr"); 605 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 606 607 // Get the basic block for the indirect goto. 608 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 609 610 // The first instruction in the block has to be the PHI for the switch dest, 611 // add an entry for this branch. 612 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 613 614 EmitBranch(IndGotoBB); 615 } 616 617 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 618 // C99 6.8.4.1: The first substatement is executed if the expression compares 619 // unequal to 0. The condition must be a scalar type. 620 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 621 622 if (S.getInit()) 623 EmitStmt(S.getInit()); 624 625 if (S.getConditionVariable()) 626 EmitDecl(*S.getConditionVariable()); 627 628 // If the condition constant folds and can be elided, try to avoid emitting 629 // the condition and the dead arm of the if/else. 630 bool CondConstant; 631 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 632 S.isConstexpr())) { 633 // Figure out which block (then or else) is executed. 634 const Stmt *Executed = S.getThen(); 635 const Stmt *Skipped = S.getElse(); 636 if (!CondConstant) // Condition false? 637 std::swap(Executed, Skipped); 638 639 // If the skipped block has no labels in it, just emit the executed block. 640 // This avoids emitting dead code and simplifies the CFG substantially. 641 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 642 if (CondConstant) 643 incrementProfileCounter(&S); 644 if (Executed) { 645 RunCleanupsScope ExecutedScope(*this); 646 EmitStmt(Executed); 647 } 648 return; 649 } 650 } 651 652 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 653 // the conditional branch. 654 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 655 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 656 llvm::BasicBlock *ElseBlock = ContBlock; 657 if (S.getElse()) 658 ElseBlock = createBasicBlock("if.else"); 659 660 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 661 getProfileCount(S.getThen())); 662 663 // Emit the 'then' code. 664 EmitBlock(ThenBlock); 665 incrementProfileCounter(&S); 666 { 667 RunCleanupsScope ThenScope(*this); 668 EmitStmt(S.getThen()); 669 } 670 EmitBranch(ContBlock); 671 672 // Emit the 'else' code if present. 673 if (const Stmt *Else = S.getElse()) { 674 { 675 // There is no need to emit line number for an unconditional branch. 676 auto NL = ApplyDebugLocation::CreateEmpty(*this); 677 EmitBlock(ElseBlock); 678 } 679 { 680 RunCleanupsScope ElseScope(*this); 681 EmitStmt(Else); 682 } 683 { 684 // There is no need to emit line number for an unconditional branch. 685 auto NL = ApplyDebugLocation::CreateEmpty(*this); 686 EmitBranch(ContBlock); 687 } 688 } 689 690 // Emit the continuation block for code after the if. 691 EmitBlock(ContBlock, true); 692 } 693 694 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 695 ArrayRef<const Attr *> WhileAttrs) { 696 // Emit the header for the loop, which will also become 697 // the continue target. 698 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 699 EmitBlock(LoopHeader.getBlock()); 700 701 const SourceRange &R = S.getSourceRange(); 702 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 703 SourceLocToDebugLoc(R.getBegin()), 704 SourceLocToDebugLoc(R.getEnd())); 705 706 // Create an exit block for when the condition fails, which will 707 // also become the break target. 708 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 709 710 // Store the blocks to use for break and continue. 711 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 712 713 // C++ [stmt.while]p2: 714 // When the condition of a while statement is a declaration, the 715 // scope of the variable that is declared extends from its point 716 // of declaration (3.3.2) to the end of the while statement. 717 // [...] 718 // The object created in a condition is destroyed and created 719 // with each iteration of the loop. 720 RunCleanupsScope ConditionScope(*this); 721 722 if (S.getConditionVariable()) 723 EmitDecl(*S.getConditionVariable()); 724 725 // Evaluate the conditional in the while header. C99 6.8.5.1: The 726 // evaluation of the controlling expression takes place before each 727 // execution of the loop body. 728 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 729 730 // while(1) is common, avoid extra exit blocks. Be sure 731 // to correctly handle break/continue though. 732 bool EmitBoolCondBranch = true; 733 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 734 if (C->isOne()) 735 EmitBoolCondBranch = false; 736 737 // As long as the condition is true, go to the loop body. 738 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 739 if (EmitBoolCondBranch) { 740 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 741 if (ConditionScope.requiresCleanups()) 742 ExitBlock = createBasicBlock("while.exit"); 743 Builder.CreateCondBr( 744 BoolCondVal, LoopBody, ExitBlock, 745 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 746 747 if (ExitBlock != LoopExit.getBlock()) { 748 EmitBlock(ExitBlock); 749 EmitBranchThroughCleanup(LoopExit); 750 } 751 } 752 753 // Emit the loop body. We have to emit this in a cleanup scope 754 // because it might be a singleton DeclStmt. 755 { 756 RunCleanupsScope BodyScope(*this); 757 EmitBlock(LoopBody); 758 incrementProfileCounter(&S); 759 EmitStmt(S.getBody()); 760 } 761 762 BreakContinueStack.pop_back(); 763 764 // Immediately force cleanup. 765 ConditionScope.ForceCleanup(); 766 767 EmitStopPoint(&S); 768 // Branch to the loop header again. 769 EmitBranch(LoopHeader.getBlock()); 770 771 LoopStack.pop(); 772 773 // Emit the exit block. 774 EmitBlock(LoopExit.getBlock(), true); 775 776 // The LoopHeader typically is just a branch if we skipped emitting 777 // a branch, try to erase it. 778 if (!EmitBoolCondBranch) 779 SimplifyForwardingBlocks(LoopHeader.getBlock()); 780 } 781 782 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 783 ArrayRef<const Attr *> DoAttrs) { 784 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 785 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 786 787 uint64_t ParentCount = getCurrentProfileCount(); 788 789 // Store the blocks to use for break and continue. 790 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 791 792 // Emit the body of the loop. 793 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 794 795 EmitBlockWithFallThrough(LoopBody, &S); 796 { 797 RunCleanupsScope BodyScope(*this); 798 EmitStmt(S.getBody()); 799 } 800 801 EmitBlock(LoopCond.getBlock()); 802 803 const SourceRange &R = S.getSourceRange(); 804 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 805 SourceLocToDebugLoc(R.getBegin()), 806 SourceLocToDebugLoc(R.getEnd())); 807 808 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 809 // after each execution of the loop body." 810 811 // Evaluate the conditional in the while header. 812 // C99 6.8.5p2/p4: The first substatement is executed if the expression 813 // compares unequal to 0. The condition must be a scalar type. 814 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 815 816 BreakContinueStack.pop_back(); 817 818 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 819 // to correctly handle break/continue though. 820 bool EmitBoolCondBranch = true; 821 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 822 if (C->isZero()) 823 EmitBoolCondBranch = false; 824 825 // As long as the condition is true, iterate the loop. 826 if (EmitBoolCondBranch) { 827 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 828 Builder.CreateCondBr( 829 BoolCondVal, LoopBody, LoopExit.getBlock(), 830 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 831 } 832 833 LoopStack.pop(); 834 835 // Emit the exit block. 836 EmitBlock(LoopExit.getBlock()); 837 838 // The DoCond block typically is just a branch if we skipped 839 // emitting a branch, try to erase it. 840 if (!EmitBoolCondBranch) 841 SimplifyForwardingBlocks(LoopCond.getBlock()); 842 } 843 844 void CodeGenFunction::EmitForStmt(const ForStmt &S, 845 ArrayRef<const Attr *> ForAttrs) { 846 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 847 848 LexicalScope ForScope(*this, S.getSourceRange()); 849 850 // Evaluate the first part before the loop. 851 if (S.getInit()) 852 EmitStmt(S.getInit()); 853 854 // Start the loop with a block that tests the condition. 855 // If there's an increment, the continue scope will be overwritten 856 // later. 857 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 858 llvm::BasicBlock *CondBlock = Continue.getBlock(); 859 EmitBlock(CondBlock); 860 861 const SourceRange &R = S.getSourceRange(); 862 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 863 SourceLocToDebugLoc(R.getBegin()), 864 SourceLocToDebugLoc(R.getEnd())); 865 866 // If the for loop doesn't have an increment we can just use the 867 // condition as the continue block. Otherwise we'll need to create 868 // a block for it (in the current scope, i.e. in the scope of the 869 // condition), and that we will become our continue block. 870 if (S.getInc()) 871 Continue = getJumpDestInCurrentScope("for.inc"); 872 873 // Store the blocks to use for break and continue. 874 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 875 876 // Create a cleanup scope for the condition variable cleanups. 877 LexicalScope ConditionScope(*this, S.getSourceRange()); 878 879 if (S.getCond()) { 880 // If the for statement has a condition scope, emit the local variable 881 // declaration. 882 if (S.getConditionVariable()) { 883 EmitDecl(*S.getConditionVariable()); 884 } 885 886 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 887 // If there are any cleanups between here and the loop-exit scope, 888 // create a block to stage a loop exit along. 889 if (ForScope.requiresCleanups()) 890 ExitBlock = createBasicBlock("for.cond.cleanup"); 891 892 // As long as the condition is true, iterate the loop. 893 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 894 895 // C99 6.8.5p2/p4: The first substatement is executed if the expression 896 // compares unequal to 0. The condition must be a scalar type. 897 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 898 Builder.CreateCondBr( 899 BoolCondVal, ForBody, ExitBlock, 900 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 901 902 if (ExitBlock != LoopExit.getBlock()) { 903 EmitBlock(ExitBlock); 904 EmitBranchThroughCleanup(LoopExit); 905 } 906 907 EmitBlock(ForBody); 908 } else { 909 // Treat it as a non-zero constant. Don't even create a new block for the 910 // body, just fall into it. 911 } 912 incrementProfileCounter(&S); 913 914 { 915 // Create a separate cleanup scope for the body, in case it is not 916 // a compound statement. 917 RunCleanupsScope BodyScope(*this); 918 EmitStmt(S.getBody()); 919 } 920 921 // If there is an increment, emit it next. 922 if (S.getInc()) { 923 EmitBlock(Continue.getBlock()); 924 EmitStmt(S.getInc()); 925 } 926 927 BreakContinueStack.pop_back(); 928 929 ConditionScope.ForceCleanup(); 930 931 EmitStopPoint(&S); 932 EmitBranch(CondBlock); 933 934 ForScope.ForceCleanup(); 935 936 LoopStack.pop(); 937 938 // Emit the fall-through block. 939 EmitBlock(LoopExit.getBlock(), true); 940 } 941 942 void 943 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 944 ArrayRef<const Attr *> ForAttrs) { 945 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 946 947 LexicalScope ForScope(*this, S.getSourceRange()); 948 949 // Evaluate the first pieces before the loop. 950 if (S.getInit()) 951 EmitStmt(S.getInit()); 952 EmitStmt(S.getRangeStmt()); 953 EmitStmt(S.getBeginStmt()); 954 EmitStmt(S.getEndStmt()); 955 956 // Start the loop with a block that tests the condition. 957 // If there's an increment, the continue scope will be overwritten 958 // later. 959 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 960 EmitBlock(CondBlock); 961 962 const SourceRange &R = S.getSourceRange(); 963 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 964 SourceLocToDebugLoc(R.getBegin()), 965 SourceLocToDebugLoc(R.getEnd())); 966 967 // If there are any cleanups between here and the loop-exit scope, 968 // create a block to stage a loop exit along. 969 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 970 if (ForScope.requiresCleanups()) 971 ExitBlock = createBasicBlock("for.cond.cleanup"); 972 973 // The loop body, consisting of the specified body and the loop variable. 974 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 975 976 // The body is executed if the expression, contextually converted 977 // to bool, is true. 978 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 979 Builder.CreateCondBr( 980 BoolCondVal, ForBody, ExitBlock, 981 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 982 983 if (ExitBlock != LoopExit.getBlock()) { 984 EmitBlock(ExitBlock); 985 EmitBranchThroughCleanup(LoopExit); 986 } 987 988 EmitBlock(ForBody); 989 incrementProfileCounter(&S); 990 991 // Create a block for the increment. In case of a 'continue', we jump there. 992 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 993 994 // Store the blocks to use for break and continue. 995 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 996 997 { 998 // Create a separate cleanup scope for the loop variable and body. 999 LexicalScope BodyScope(*this, S.getSourceRange()); 1000 EmitStmt(S.getLoopVarStmt()); 1001 EmitStmt(S.getBody()); 1002 } 1003 1004 EmitStopPoint(&S); 1005 // If there is an increment, emit it next. 1006 EmitBlock(Continue.getBlock()); 1007 EmitStmt(S.getInc()); 1008 1009 BreakContinueStack.pop_back(); 1010 1011 EmitBranch(CondBlock); 1012 1013 ForScope.ForceCleanup(); 1014 1015 LoopStack.pop(); 1016 1017 // Emit the fall-through block. 1018 EmitBlock(LoopExit.getBlock(), true); 1019 } 1020 1021 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1022 if (RV.isScalar()) { 1023 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1024 } else if (RV.isAggregate()) { 1025 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1026 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1027 EmitAggregateCopy(Dest, Src, Ty, overlapForReturnValue()); 1028 } else { 1029 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1030 /*init*/ true); 1031 } 1032 EmitBranchThroughCleanup(ReturnBlock); 1033 } 1034 1035 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1036 /// if the function returns void, or may be missing one if the function returns 1037 /// non-void. Fun stuff :). 1038 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1039 if (requiresReturnValueCheck()) { 1040 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1041 auto *SLocPtr = 1042 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1043 llvm::GlobalVariable::PrivateLinkage, SLoc); 1044 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1045 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1046 assert(ReturnLocation.isValid() && "No valid return location"); 1047 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1048 ReturnLocation); 1049 } 1050 1051 // Returning from an outlined SEH helper is UB, and we already warn on it. 1052 if (IsOutlinedSEHHelper) { 1053 Builder.CreateUnreachable(); 1054 Builder.ClearInsertionPoint(); 1055 } 1056 1057 // Emit the result value, even if unused, to evaluate the side effects. 1058 const Expr *RV = S.getRetValue(); 1059 1060 // Treat block literals in a return expression as if they appeared 1061 // in their own scope. This permits a small, easily-implemented 1062 // exception to our over-conservative rules about not jumping to 1063 // statements following block literals with non-trivial cleanups. 1064 RunCleanupsScope cleanupScope(*this); 1065 if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) { 1066 enterFullExpression(fe); 1067 RV = fe->getSubExpr(); 1068 } 1069 1070 // FIXME: Clean this up by using an LValue for ReturnTemp, 1071 // EmitStoreThroughLValue, and EmitAnyExpr. 1072 if (getLangOpts().ElideConstructors && 1073 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1074 // Apply the named return value optimization for this return statement, 1075 // which means doing nothing: the appropriate result has already been 1076 // constructed into the NRVO variable. 1077 1078 // If there is an NRVO flag for this variable, set it to 1 into indicate 1079 // that the cleanup code should not destroy the variable. 1080 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1081 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1082 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1083 // Make sure not to return anything, but evaluate the expression 1084 // for side effects. 1085 if (RV) 1086 EmitAnyExpr(RV); 1087 } else if (!RV) { 1088 // Do nothing (return value is left uninitialized) 1089 } else if (FnRetTy->isReferenceType()) { 1090 // If this function returns a reference, take the address of the expression 1091 // rather than the value. 1092 RValue Result = EmitReferenceBindingToExpr(RV); 1093 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1094 } else { 1095 switch (getEvaluationKind(RV->getType())) { 1096 case TEK_Scalar: 1097 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1098 break; 1099 case TEK_Complex: 1100 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1101 /*isInit*/ true); 1102 break; 1103 case TEK_Aggregate: 1104 EmitAggExpr(RV, AggValueSlot::forAddr( 1105 ReturnValue, Qualifiers(), 1106 AggValueSlot::IsDestructed, 1107 AggValueSlot::DoesNotNeedGCBarriers, 1108 AggValueSlot::IsNotAliased, 1109 overlapForReturnValue())); 1110 break; 1111 } 1112 } 1113 1114 ++NumReturnExprs; 1115 if (!RV || RV->isEvaluatable(getContext())) 1116 ++NumSimpleReturnExprs; 1117 1118 cleanupScope.ForceCleanup(); 1119 EmitBranchThroughCleanup(ReturnBlock); 1120 } 1121 1122 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1123 // As long as debug info is modeled with instructions, we have to ensure we 1124 // have a place to insert here and write the stop point here. 1125 if (HaveInsertPoint()) 1126 EmitStopPoint(&S); 1127 1128 for (const auto *I : S.decls()) 1129 EmitDecl(*I); 1130 } 1131 1132 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1133 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1134 1135 // If this code is reachable then emit a stop point (if generating 1136 // debug info). We have to do this ourselves because we are on the 1137 // "simple" statement path. 1138 if (HaveInsertPoint()) 1139 EmitStopPoint(&S); 1140 1141 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1142 } 1143 1144 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1145 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1146 1147 // If this code is reachable then emit a stop point (if generating 1148 // debug info). We have to do this ourselves because we are on the 1149 // "simple" statement path. 1150 if (HaveInsertPoint()) 1151 EmitStopPoint(&S); 1152 1153 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1154 } 1155 1156 /// EmitCaseStmtRange - If case statement range is not too big then 1157 /// add multiple cases to switch instruction, one for each value within 1158 /// the range. If range is too big then emit "if" condition check. 1159 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1160 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1161 1162 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1163 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1164 1165 // Emit the code for this case. We do this first to make sure it is 1166 // properly chained from our predecessor before generating the 1167 // switch machinery to enter this block. 1168 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1169 EmitBlockWithFallThrough(CaseDest, &S); 1170 EmitStmt(S.getSubStmt()); 1171 1172 // If range is empty, do nothing. 1173 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1174 return; 1175 1176 llvm::APInt Range = RHS - LHS; 1177 // FIXME: parameters such as this should not be hardcoded. 1178 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1179 // Range is small enough to add multiple switch instruction cases. 1180 uint64_t Total = getProfileCount(&S); 1181 unsigned NCases = Range.getZExtValue() + 1; 1182 // We only have one region counter for the entire set of cases here, so we 1183 // need to divide the weights evenly between the generated cases, ensuring 1184 // that the total weight is preserved. E.g., a weight of 5 over three cases 1185 // will be distributed as weights of 2, 2, and 1. 1186 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1187 for (unsigned I = 0; I != NCases; ++I) { 1188 if (SwitchWeights) 1189 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1190 if (Rem) 1191 Rem--; 1192 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1193 ++LHS; 1194 } 1195 return; 1196 } 1197 1198 // The range is too big. Emit "if" condition into a new block, 1199 // making sure to save and restore the current insertion point. 1200 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1201 1202 // Push this test onto the chain of range checks (which terminates 1203 // in the default basic block). The switch's default will be changed 1204 // to the top of this chain after switch emission is complete. 1205 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1206 CaseRangeBlock = createBasicBlock("sw.caserange"); 1207 1208 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1209 Builder.SetInsertPoint(CaseRangeBlock); 1210 1211 // Emit range check. 1212 llvm::Value *Diff = 1213 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1214 llvm::Value *Cond = 1215 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1216 1217 llvm::MDNode *Weights = nullptr; 1218 if (SwitchWeights) { 1219 uint64_t ThisCount = getProfileCount(&S); 1220 uint64_t DefaultCount = (*SwitchWeights)[0]; 1221 Weights = createProfileWeights(ThisCount, DefaultCount); 1222 1223 // Since we're chaining the switch default through each large case range, we 1224 // need to update the weight for the default, ie, the first case, to include 1225 // this case. 1226 (*SwitchWeights)[0] += ThisCount; 1227 } 1228 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1229 1230 // Restore the appropriate insertion point. 1231 if (RestoreBB) 1232 Builder.SetInsertPoint(RestoreBB); 1233 else 1234 Builder.ClearInsertionPoint(); 1235 } 1236 1237 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1238 // If there is no enclosing switch instance that we're aware of, then this 1239 // case statement and its block can be elided. This situation only happens 1240 // when we've constant-folded the switch, are emitting the constant case, 1241 // and part of the constant case includes another case statement. For 1242 // instance: switch (4) { case 4: do { case 5: } while (1); } 1243 if (!SwitchInsn) { 1244 EmitStmt(S.getSubStmt()); 1245 return; 1246 } 1247 1248 // Handle case ranges. 1249 if (S.getRHS()) { 1250 EmitCaseStmtRange(S); 1251 return; 1252 } 1253 1254 llvm::ConstantInt *CaseVal = 1255 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1256 1257 // If the body of the case is just a 'break', try to not emit an empty block. 1258 // If we're profiling or we're not optimizing, leave the block in for better 1259 // debug and coverage analysis. 1260 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1261 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1262 isa<BreakStmt>(S.getSubStmt())) { 1263 JumpDest Block = BreakContinueStack.back().BreakBlock; 1264 1265 // Only do this optimization if there are no cleanups that need emitting. 1266 if (isObviouslyBranchWithoutCleanups(Block)) { 1267 if (SwitchWeights) 1268 SwitchWeights->push_back(getProfileCount(&S)); 1269 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1270 1271 // If there was a fallthrough into this case, make sure to redirect it to 1272 // the end of the switch as well. 1273 if (Builder.GetInsertBlock()) { 1274 Builder.CreateBr(Block.getBlock()); 1275 Builder.ClearInsertionPoint(); 1276 } 1277 return; 1278 } 1279 } 1280 1281 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1282 EmitBlockWithFallThrough(CaseDest, &S); 1283 if (SwitchWeights) 1284 SwitchWeights->push_back(getProfileCount(&S)); 1285 SwitchInsn->addCase(CaseVal, CaseDest); 1286 1287 // Recursively emitting the statement is acceptable, but is not wonderful for 1288 // code where we have many case statements nested together, i.e.: 1289 // case 1: 1290 // case 2: 1291 // case 3: etc. 1292 // Handling this recursively will create a new block for each case statement 1293 // that falls through to the next case which is IR intensive. It also causes 1294 // deep recursion which can run into stack depth limitations. Handle 1295 // sequential non-range case statements specially. 1296 const CaseStmt *CurCase = &S; 1297 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1298 1299 // Otherwise, iteratively add consecutive cases to this switch stmt. 1300 while (NextCase && NextCase->getRHS() == nullptr) { 1301 CurCase = NextCase; 1302 llvm::ConstantInt *CaseVal = 1303 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1304 1305 if (SwitchWeights) 1306 SwitchWeights->push_back(getProfileCount(NextCase)); 1307 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1308 CaseDest = createBasicBlock("sw.bb"); 1309 EmitBlockWithFallThrough(CaseDest, &S); 1310 } 1311 1312 SwitchInsn->addCase(CaseVal, CaseDest); 1313 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1314 } 1315 1316 // Normal default recursion for non-cases. 1317 EmitStmt(CurCase->getSubStmt()); 1318 } 1319 1320 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1321 // If there is no enclosing switch instance that we're aware of, then this 1322 // default statement can be elided. This situation only happens when we've 1323 // constant-folded the switch. 1324 if (!SwitchInsn) { 1325 EmitStmt(S.getSubStmt()); 1326 return; 1327 } 1328 1329 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1330 assert(DefaultBlock->empty() && 1331 "EmitDefaultStmt: Default block already defined?"); 1332 1333 EmitBlockWithFallThrough(DefaultBlock, &S); 1334 1335 EmitStmt(S.getSubStmt()); 1336 } 1337 1338 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1339 /// constant value that is being switched on, see if we can dead code eliminate 1340 /// the body of the switch to a simple series of statements to emit. Basically, 1341 /// on a switch (5) we want to find these statements: 1342 /// case 5: 1343 /// printf(...); <-- 1344 /// ++i; <-- 1345 /// break; 1346 /// 1347 /// and add them to the ResultStmts vector. If it is unsafe to do this 1348 /// transformation (for example, one of the elided statements contains a label 1349 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1350 /// should include statements after it (e.g. the printf() line is a substmt of 1351 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1352 /// statement, then return CSFC_Success. 1353 /// 1354 /// If Case is non-null, then we are looking for the specified case, checking 1355 /// that nothing we jump over contains labels. If Case is null, then we found 1356 /// the case and are looking for the break. 1357 /// 1358 /// If the recursive walk actually finds our Case, then we set FoundCase to 1359 /// true. 1360 /// 1361 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1362 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1363 const SwitchCase *Case, 1364 bool &FoundCase, 1365 SmallVectorImpl<const Stmt*> &ResultStmts) { 1366 // If this is a null statement, just succeed. 1367 if (!S) 1368 return Case ? CSFC_Success : CSFC_FallThrough; 1369 1370 // If this is the switchcase (case 4: or default) that we're looking for, then 1371 // we're in business. Just add the substatement. 1372 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1373 if (S == Case) { 1374 FoundCase = true; 1375 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1376 ResultStmts); 1377 } 1378 1379 // Otherwise, this is some other case or default statement, just ignore it. 1380 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1381 ResultStmts); 1382 } 1383 1384 // If we are in the live part of the code and we found our break statement, 1385 // return a success! 1386 if (!Case && isa<BreakStmt>(S)) 1387 return CSFC_Success; 1388 1389 // If this is a switch statement, then it might contain the SwitchCase, the 1390 // break, or neither. 1391 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1392 // Handle this as two cases: we might be looking for the SwitchCase (if so 1393 // the skipped statements must be skippable) or we might already have it. 1394 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1395 bool StartedInLiveCode = FoundCase; 1396 unsigned StartSize = ResultStmts.size(); 1397 1398 // If we've not found the case yet, scan through looking for it. 1399 if (Case) { 1400 // Keep track of whether we see a skipped declaration. The code could be 1401 // using the declaration even if it is skipped, so we can't optimize out 1402 // the decl if the kept statements might refer to it. 1403 bool HadSkippedDecl = false; 1404 1405 // If we're looking for the case, just see if we can skip each of the 1406 // substatements. 1407 for (; Case && I != E; ++I) { 1408 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1409 1410 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1411 case CSFC_Failure: return CSFC_Failure; 1412 case CSFC_Success: 1413 // A successful result means that either 1) that the statement doesn't 1414 // have the case and is skippable, or 2) does contain the case value 1415 // and also contains the break to exit the switch. In the later case, 1416 // we just verify the rest of the statements are elidable. 1417 if (FoundCase) { 1418 // If we found the case and skipped declarations, we can't do the 1419 // optimization. 1420 if (HadSkippedDecl) 1421 return CSFC_Failure; 1422 1423 for (++I; I != E; ++I) 1424 if (CodeGenFunction::ContainsLabel(*I, true)) 1425 return CSFC_Failure; 1426 return CSFC_Success; 1427 } 1428 break; 1429 case CSFC_FallThrough: 1430 // If we have a fallthrough condition, then we must have found the 1431 // case started to include statements. Consider the rest of the 1432 // statements in the compound statement as candidates for inclusion. 1433 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1434 // We recursively found Case, so we're not looking for it anymore. 1435 Case = nullptr; 1436 1437 // If we found the case and skipped declarations, we can't do the 1438 // optimization. 1439 if (HadSkippedDecl) 1440 return CSFC_Failure; 1441 break; 1442 } 1443 } 1444 1445 if (!FoundCase) 1446 return CSFC_Success; 1447 1448 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1449 } 1450 1451 // If we have statements in our range, then we know that the statements are 1452 // live and need to be added to the set of statements we're tracking. 1453 bool AnyDecls = false; 1454 for (; I != E; ++I) { 1455 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1456 1457 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1458 case CSFC_Failure: return CSFC_Failure; 1459 case CSFC_FallThrough: 1460 // A fallthrough result means that the statement was simple and just 1461 // included in ResultStmt, keep adding them afterwards. 1462 break; 1463 case CSFC_Success: 1464 // A successful result means that we found the break statement and 1465 // stopped statement inclusion. We just ensure that any leftover stmts 1466 // are skippable and return success ourselves. 1467 for (++I; I != E; ++I) 1468 if (CodeGenFunction::ContainsLabel(*I, true)) 1469 return CSFC_Failure; 1470 return CSFC_Success; 1471 } 1472 } 1473 1474 // If we're about to fall out of a scope without hitting a 'break;', we 1475 // can't perform the optimization if there were any decls in that scope 1476 // (we'd lose their end-of-lifetime). 1477 if (AnyDecls) { 1478 // If the entire compound statement was live, there's one more thing we 1479 // can try before giving up: emit the whole thing as a single statement. 1480 // We can do that unless the statement contains a 'break;'. 1481 // FIXME: Such a break must be at the end of a construct within this one. 1482 // We could emit this by just ignoring the BreakStmts entirely. 1483 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1484 ResultStmts.resize(StartSize); 1485 ResultStmts.push_back(S); 1486 } else { 1487 return CSFC_Failure; 1488 } 1489 } 1490 1491 return CSFC_FallThrough; 1492 } 1493 1494 // Okay, this is some other statement that we don't handle explicitly, like a 1495 // for statement or increment etc. If we are skipping over this statement, 1496 // just verify it doesn't have labels, which would make it invalid to elide. 1497 if (Case) { 1498 if (CodeGenFunction::ContainsLabel(S, true)) 1499 return CSFC_Failure; 1500 return CSFC_Success; 1501 } 1502 1503 // Otherwise, we want to include this statement. Everything is cool with that 1504 // so long as it doesn't contain a break out of the switch we're in. 1505 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1506 1507 // Otherwise, everything is great. Include the statement and tell the caller 1508 // that we fall through and include the next statement as well. 1509 ResultStmts.push_back(S); 1510 return CSFC_FallThrough; 1511 } 1512 1513 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1514 /// then invoke CollectStatementsForCase to find the list of statements to emit 1515 /// for a switch on constant. See the comment above CollectStatementsForCase 1516 /// for more details. 1517 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1518 const llvm::APSInt &ConstantCondValue, 1519 SmallVectorImpl<const Stmt*> &ResultStmts, 1520 ASTContext &C, 1521 const SwitchCase *&ResultCase) { 1522 // First step, find the switch case that is being branched to. We can do this 1523 // efficiently by scanning the SwitchCase list. 1524 const SwitchCase *Case = S.getSwitchCaseList(); 1525 const DefaultStmt *DefaultCase = nullptr; 1526 1527 for (; Case; Case = Case->getNextSwitchCase()) { 1528 // It's either a default or case. Just remember the default statement in 1529 // case we're not jumping to any numbered cases. 1530 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1531 DefaultCase = DS; 1532 continue; 1533 } 1534 1535 // Check to see if this case is the one we're looking for. 1536 const CaseStmt *CS = cast<CaseStmt>(Case); 1537 // Don't handle case ranges yet. 1538 if (CS->getRHS()) return false; 1539 1540 // If we found our case, remember it as 'case'. 1541 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1542 break; 1543 } 1544 1545 // If we didn't find a matching case, we use a default if it exists, or we 1546 // elide the whole switch body! 1547 if (!Case) { 1548 // It is safe to elide the body of the switch if it doesn't contain labels 1549 // etc. If it is safe, return successfully with an empty ResultStmts list. 1550 if (!DefaultCase) 1551 return !CodeGenFunction::ContainsLabel(&S); 1552 Case = DefaultCase; 1553 } 1554 1555 // Ok, we know which case is being jumped to, try to collect all the 1556 // statements that follow it. This can fail for a variety of reasons. Also, 1557 // check to see that the recursive walk actually found our case statement. 1558 // Insane cases like this can fail to find it in the recursive walk since we 1559 // don't handle every stmt kind: 1560 // switch (4) { 1561 // while (1) { 1562 // case 4: ... 1563 bool FoundCase = false; 1564 ResultCase = Case; 1565 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1566 ResultStmts) != CSFC_Failure && 1567 FoundCase; 1568 } 1569 1570 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1571 // Handle nested switch statements. 1572 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1573 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1574 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1575 1576 // See if we can constant fold the condition of the switch and therefore only 1577 // emit the live case statement (if any) of the switch. 1578 llvm::APSInt ConstantCondValue; 1579 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1580 SmallVector<const Stmt*, 4> CaseStmts; 1581 const SwitchCase *Case = nullptr; 1582 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1583 getContext(), Case)) { 1584 if (Case) 1585 incrementProfileCounter(Case); 1586 RunCleanupsScope ExecutedScope(*this); 1587 1588 if (S.getInit()) 1589 EmitStmt(S.getInit()); 1590 1591 // Emit the condition variable if needed inside the entire cleanup scope 1592 // used by this special case for constant folded switches. 1593 if (S.getConditionVariable()) 1594 EmitDecl(*S.getConditionVariable()); 1595 1596 // At this point, we are no longer "within" a switch instance, so 1597 // we can temporarily enforce this to ensure that any embedded case 1598 // statements are not emitted. 1599 SwitchInsn = nullptr; 1600 1601 // Okay, we can dead code eliminate everything except this case. Emit the 1602 // specified series of statements and we're good. 1603 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1604 EmitStmt(CaseStmts[i]); 1605 incrementProfileCounter(&S); 1606 1607 // Now we want to restore the saved switch instance so that nested 1608 // switches continue to function properly 1609 SwitchInsn = SavedSwitchInsn; 1610 1611 return; 1612 } 1613 } 1614 1615 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1616 1617 RunCleanupsScope ConditionScope(*this); 1618 1619 if (S.getInit()) 1620 EmitStmt(S.getInit()); 1621 1622 if (S.getConditionVariable()) 1623 EmitDecl(*S.getConditionVariable()); 1624 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1625 1626 // Create basic block to hold stuff that comes after switch 1627 // statement. We also need to create a default block now so that 1628 // explicit case ranges tests can have a place to jump to on 1629 // failure. 1630 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1631 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1632 if (PGO.haveRegionCounts()) { 1633 // Walk the SwitchCase list to find how many there are. 1634 uint64_t DefaultCount = 0; 1635 unsigned NumCases = 0; 1636 for (const SwitchCase *Case = S.getSwitchCaseList(); 1637 Case; 1638 Case = Case->getNextSwitchCase()) { 1639 if (isa<DefaultStmt>(Case)) 1640 DefaultCount = getProfileCount(Case); 1641 NumCases += 1; 1642 } 1643 SwitchWeights = new SmallVector<uint64_t, 16>(); 1644 SwitchWeights->reserve(NumCases); 1645 // The default needs to be first. We store the edge count, so we already 1646 // know the right weight. 1647 SwitchWeights->push_back(DefaultCount); 1648 } 1649 CaseRangeBlock = DefaultBlock; 1650 1651 // Clear the insertion point to indicate we are in unreachable code. 1652 Builder.ClearInsertionPoint(); 1653 1654 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1655 // then reuse last ContinueBlock. 1656 JumpDest OuterContinue; 1657 if (!BreakContinueStack.empty()) 1658 OuterContinue = BreakContinueStack.back().ContinueBlock; 1659 1660 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1661 1662 // Emit switch body. 1663 EmitStmt(S.getBody()); 1664 1665 BreakContinueStack.pop_back(); 1666 1667 // Update the default block in case explicit case range tests have 1668 // been chained on top. 1669 SwitchInsn->setDefaultDest(CaseRangeBlock); 1670 1671 // If a default was never emitted: 1672 if (!DefaultBlock->getParent()) { 1673 // If we have cleanups, emit the default block so that there's a 1674 // place to jump through the cleanups from. 1675 if (ConditionScope.requiresCleanups()) { 1676 EmitBlock(DefaultBlock); 1677 1678 // Otherwise, just forward the default block to the switch end. 1679 } else { 1680 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1681 delete DefaultBlock; 1682 } 1683 } 1684 1685 ConditionScope.ForceCleanup(); 1686 1687 // Emit continuation. 1688 EmitBlock(SwitchExit.getBlock(), true); 1689 incrementProfileCounter(&S); 1690 1691 // If the switch has a condition wrapped by __builtin_unpredictable, 1692 // create metadata that specifies that the switch is unpredictable. 1693 // Don't bother if not optimizing because that metadata would not be used. 1694 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1695 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1696 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1697 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1698 llvm::MDBuilder MDHelper(getLLVMContext()); 1699 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1700 MDHelper.createUnpredictable()); 1701 } 1702 } 1703 1704 if (SwitchWeights) { 1705 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1706 "switch weights do not match switch cases"); 1707 // If there's only one jump destination there's no sense weighting it. 1708 if (SwitchWeights->size() > 1) 1709 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1710 createProfileWeights(*SwitchWeights)); 1711 delete SwitchWeights; 1712 } 1713 SwitchInsn = SavedSwitchInsn; 1714 SwitchWeights = SavedSwitchWeights; 1715 CaseRangeBlock = SavedCRBlock; 1716 } 1717 1718 static std::string 1719 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1720 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1721 std::string Result; 1722 1723 while (*Constraint) { 1724 switch (*Constraint) { 1725 default: 1726 Result += Target.convertConstraint(Constraint); 1727 break; 1728 // Ignore these 1729 case '*': 1730 case '?': 1731 case '!': 1732 case '=': // Will see this and the following in mult-alt constraints. 1733 case '+': 1734 break; 1735 case '#': // Ignore the rest of the constraint alternative. 1736 while (Constraint[1] && Constraint[1] != ',') 1737 Constraint++; 1738 break; 1739 case '&': 1740 case '%': 1741 Result += *Constraint; 1742 while (Constraint[1] && Constraint[1] == *Constraint) 1743 Constraint++; 1744 break; 1745 case ',': 1746 Result += "|"; 1747 break; 1748 case 'g': 1749 Result += "imr"; 1750 break; 1751 case '[': { 1752 assert(OutCons && 1753 "Must pass output names to constraints with a symbolic name"); 1754 unsigned Index; 1755 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1756 assert(result && "Could not resolve symbolic name"); (void)result; 1757 Result += llvm::utostr(Index); 1758 break; 1759 } 1760 } 1761 1762 Constraint++; 1763 } 1764 1765 return Result; 1766 } 1767 1768 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1769 /// as using a particular register add that as a constraint that will be used 1770 /// in this asm stmt. 1771 static std::string 1772 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1773 const TargetInfo &Target, CodeGenModule &CGM, 1774 const AsmStmt &Stmt, const bool EarlyClobber) { 1775 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1776 if (!AsmDeclRef) 1777 return Constraint; 1778 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1779 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1780 if (!Variable) 1781 return Constraint; 1782 if (Variable->getStorageClass() != SC_Register) 1783 return Constraint; 1784 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1785 if (!Attr) 1786 return Constraint; 1787 StringRef Register = Attr->getLabel(); 1788 assert(Target.isValidGCCRegisterName(Register)); 1789 // We're using validateOutputConstraint here because we only care if 1790 // this is a register constraint. 1791 TargetInfo::ConstraintInfo Info(Constraint, ""); 1792 if (Target.validateOutputConstraint(Info) && 1793 !Info.allowsRegister()) { 1794 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1795 return Constraint; 1796 } 1797 // Canonicalize the register here before returning it. 1798 Register = Target.getNormalizedGCCRegisterName(Register); 1799 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1800 } 1801 1802 llvm::Value* 1803 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1804 LValue InputValue, QualType InputType, 1805 std::string &ConstraintStr, 1806 SourceLocation Loc) { 1807 llvm::Value *Arg; 1808 if (Info.allowsRegister() || !Info.allowsMemory()) { 1809 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1810 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1811 } else { 1812 llvm::Type *Ty = ConvertType(InputType); 1813 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1814 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1815 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1816 Ty = llvm::PointerType::getUnqual(Ty); 1817 1818 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1819 Ty)); 1820 } else { 1821 Arg = InputValue.getPointer(); 1822 ConstraintStr += '*'; 1823 } 1824 } 1825 } else { 1826 Arg = InputValue.getPointer(); 1827 ConstraintStr += '*'; 1828 } 1829 1830 return Arg; 1831 } 1832 1833 llvm::Value* CodeGenFunction::EmitAsmInput( 1834 const TargetInfo::ConstraintInfo &Info, 1835 const Expr *InputExpr, 1836 std::string &ConstraintStr) { 1837 // If this can't be a register or memory, i.e., has to be a constant 1838 // (immediate or symbolic), try to emit it as such. 1839 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1840 if (Info.requiresImmediateConstant()) { 1841 Expr::EvalResult EVResult; 1842 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 1843 1844 llvm::APSInt IntResult; 1845 if (!EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 1846 getContext())) 1847 llvm_unreachable("Invalid immediate constant!"); 1848 1849 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 1850 } 1851 1852 Expr::EvalResult Result; 1853 if (InputExpr->EvaluateAsInt(Result, getContext())) 1854 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 1855 } 1856 1857 if (Info.allowsRegister() || !Info.allowsMemory()) 1858 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1859 return EmitScalarExpr(InputExpr); 1860 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1861 return EmitScalarExpr(InputExpr); 1862 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1863 LValue Dest = EmitLValue(InputExpr); 1864 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1865 InputExpr->getExprLoc()); 1866 } 1867 1868 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1869 /// asm call instruction. The !srcloc MDNode contains a list of constant 1870 /// integers which are the source locations of the start of each line in the 1871 /// asm. 1872 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1873 CodeGenFunction &CGF) { 1874 SmallVector<llvm::Metadata *, 8> Locs; 1875 // Add the location of the first line to the MDNode. 1876 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1877 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 1878 StringRef StrVal = Str->getString(); 1879 if (!StrVal.empty()) { 1880 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1881 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1882 unsigned StartToken = 0; 1883 unsigned ByteOffset = 0; 1884 1885 // Add the location of the start of each subsequent line of the asm to the 1886 // MDNode. 1887 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1888 if (StrVal[i] != '\n') continue; 1889 SourceLocation LineLoc = Str->getLocationOfByte( 1890 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1891 Locs.push_back(llvm::ConstantAsMetadata::get( 1892 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1893 } 1894 } 1895 1896 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1897 } 1898 1899 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1900 // Assemble the final asm string. 1901 std::string AsmString = S.generateAsmString(getContext()); 1902 1903 // Get all the output and input constraints together. 1904 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1905 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1906 1907 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1908 StringRef Name; 1909 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1910 Name = GAS->getOutputName(i); 1911 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1912 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1913 assert(IsValid && "Failed to parse output constraint"); 1914 OutputConstraintInfos.push_back(Info); 1915 } 1916 1917 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1918 StringRef Name; 1919 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1920 Name = GAS->getInputName(i); 1921 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1922 bool IsValid = 1923 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1924 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1925 InputConstraintInfos.push_back(Info); 1926 } 1927 1928 std::string Constraints; 1929 1930 std::vector<LValue> ResultRegDests; 1931 std::vector<QualType> ResultRegQualTys; 1932 std::vector<llvm::Type *> ResultRegTypes; 1933 std::vector<llvm::Type *> ResultTruncRegTypes; 1934 std::vector<llvm::Type *> ArgTypes; 1935 std::vector<llvm::Value*> Args; 1936 1937 // Keep track of inout constraints. 1938 std::string InOutConstraints; 1939 std::vector<llvm::Value*> InOutArgs; 1940 std::vector<llvm::Type*> InOutArgTypes; 1941 1942 // Keep track of out constraints for tied input operand. 1943 std::vector<std::string> OutputConstraints; 1944 1945 // An inline asm can be marked readonly if it meets the following conditions: 1946 // - it doesn't have any sideeffects 1947 // - it doesn't clobber memory 1948 // - it doesn't return a value by-reference 1949 // It can be marked readnone if it doesn't have any input memory constraints 1950 // in addition to meeting the conditions listed above. 1951 bool ReadOnly = true, ReadNone = true; 1952 1953 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1954 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1955 1956 // Simplify the output constraint. 1957 std::string OutputConstraint(S.getOutputConstraint(i)); 1958 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1959 getTarget(), &OutputConstraintInfos); 1960 1961 const Expr *OutExpr = S.getOutputExpr(i); 1962 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1963 1964 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1965 getTarget(), CGM, S, 1966 Info.earlyClobber()); 1967 OutputConstraints.push_back(OutputConstraint); 1968 LValue Dest = EmitLValue(OutExpr); 1969 if (!Constraints.empty()) 1970 Constraints += ','; 1971 1972 // If this is a register output, then make the inline asm return it 1973 // by-value. If this is a memory result, return the value by-reference. 1974 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1975 Constraints += "=" + OutputConstraint; 1976 ResultRegQualTys.push_back(OutExpr->getType()); 1977 ResultRegDests.push_back(Dest); 1978 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1979 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1980 1981 // If this output is tied to an input, and if the input is larger, then 1982 // we need to set the actual result type of the inline asm node to be the 1983 // same as the input type. 1984 if (Info.hasMatchingInput()) { 1985 unsigned InputNo; 1986 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1987 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1988 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1989 break; 1990 } 1991 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1992 1993 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1994 QualType OutputType = OutExpr->getType(); 1995 1996 uint64_t InputSize = getContext().getTypeSize(InputTy); 1997 if (getContext().getTypeSize(OutputType) < InputSize) { 1998 // Form the asm to return the value as a larger integer or fp type. 1999 ResultRegTypes.back() = ConvertType(InputTy); 2000 } 2001 } 2002 if (llvm::Type* AdjTy = 2003 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2004 ResultRegTypes.back())) 2005 ResultRegTypes.back() = AdjTy; 2006 else { 2007 CGM.getDiags().Report(S.getAsmLoc(), 2008 diag::err_asm_invalid_type_in_input) 2009 << OutExpr->getType() << OutputConstraint; 2010 } 2011 2012 // Update largest vector width for any vector types. 2013 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2014 LargestVectorWidth = std::max(LargestVectorWidth, 2015 VT->getPrimitiveSizeInBits()); 2016 } else { 2017 ArgTypes.push_back(Dest.getAddress().getType()); 2018 Args.push_back(Dest.getPointer()); 2019 Constraints += "=*"; 2020 Constraints += OutputConstraint; 2021 ReadOnly = ReadNone = false; 2022 } 2023 2024 if (Info.isReadWrite()) { 2025 InOutConstraints += ','; 2026 2027 const Expr *InputExpr = S.getOutputExpr(i); 2028 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2029 InOutConstraints, 2030 InputExpr->getExprLoc()); 2031 2032 if (llvm::Type* AdjTy = 2033 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2034 Arg->getType())) 2035 Arg = Builder.CreateBitCast(Arg, AdjTy); 2036 2037 // Update largest vector width for any vector types. 2038 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2039 LargestVectorWidth = std::max(LargestVectorWidth, 2040 VT->getPrimitiveSizeInBits()); 2041 if (Info.allowsRegister()) 2042 InOutConstraints += llvm::utostr(i); 2043 else 2044 InOutConstraints += OutputConstraint; 2045 2046 InOutArgTypes.push_back(Arg->getType()); 2047 InOutArgs.push_back(Arg); 2048 } 2049 } 2050 2051 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2052 // to the return value slot. Only do this when returning in registers. 2053 if (isa<MSAsmStmt>(&S)) { 2054 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2055 if (RetAI.isDirect() || RetAI.isExtend()) { 2056 // Make a fake lvalue for the return value slot. 2057 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2058 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2059 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2060 ResultRegDests, AsmString, S.getNumOutputs()); 2061 SawAsmBlock = true; 2062 } 2063 } 2064 2065 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2066 const Expr *InputExpr = S.getInputExpr(i); 2067 2068 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2069 2070 if (Info.allowsMemory()) 2071 ReadNone = false; 2072 2073 if (!Constraints.empty()) 2074 Constraints += ','; 2075 2076 // Simplify the input constraint. 2077 std::string InputConstraint(S.getInputConstraint(i)); 2078 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2079 &OutputConstraintInfos); 2080 2081 InputConstraint = AddVariableConstraints( 2082 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2083 getTarget(), CGM, S, false /* No EarlyClobber */); 2084 2085 std::string ReplaceConstraint (InputConstraint); 2086 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2087 2088 // If this input argument is tied to a larger output result, extend the 2089 // input to be the same size as the output. The LLVM backend wants to see 2090 // the input and output of a matching constraint be the same size. Note 2091 // that GCC does not define what the top bits are here. We use zext because 2092 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2093 if (Info.hasTiedOperand()) { 2094 unsigned Output = Info.getTiedOperand(); 2095 QualType OutputType = S.getOutputExpr(Output)->getType(); 2096 QualType InputTy = InputExpr->getType(); 2097 2098 if (getContext().getTypeSize(OutputType) > 2099 getContext().getTypeSize(InputTy)) { 2100 // Use ptrtoint as appropriate so that we can do our extension. 2101 if (isa<llvm::PointerType>(Arg->getType())) 2102 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2103 llvm::Type *OutputTy = ConvertType(OutputType); 2104 if (isa<llvm::IntegerType>(OutputTy)) 2105 Arg = Builder.CreateZExt(Arg, OutputTy); 2106 else if (isa<llvm::PointerType>(OutputTy)) 2107 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2108 else { 2109 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2110 Arg = Builder.CreateFPExt(Arg, OutputTy); 2111 } 2112 } 2113 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2114 ReplaceConstraint = OutputConstraints[Output]; 2115 } 2116 if (llvm::Type* AdjTy = 2117 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2118 Arg->getType())) 2119 Arg = Builder.CreateBitCast(Arg, AdjTy); 2120 else 2121 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2122 << InputExpr->getType() << InputConstraint; 2123 2124 // Update largest vector width for any vector types. 2125 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2126 LargestVectorWidth = std::max(LargestVectorWidth, 2127 VT->getPrimitiveSizeInBits()); 2128 2129 ArgTypes.push_back(Arg->getType()); 2130 Args.push_back(Arg); 2131 Constraints += InputConstraint; 2132 } 2133 2134 // Append the "input" part of inout constraints last. 2135 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2136 ArgTypes.push_back(InOutArgTypes[i]); 2137 Args.push_back(InOutArgs[i]); 2138 } 2139 Constraints += InOutConstraints; 2140 2141 // Clobbers 2142 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2143 StringRef Clobber = S.getClobber(i); 2144 2145 if (Clobber == "memory") 2146 ReadOnly = ReadNone = false; 2147 else if (Clobber != "cc") 2148 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2149 2150 if (!Constraints.empty()) 2151 Constraints += ','; 2152 2153 Constraints += "~{"; 2154 Constraints += Clobber; 2155 Constraints += '}'; 2156 } 2157 2158 // Add machine specific clobbers 2159 std::string MachineClobbers = getTarget().getClobbers(); 2160 if (!MachineClobbers.empty()) { 2161 if (!Constraints.empty()) 2162 Constraints += ','; 2163 Constraints += MachineClobbers; 2164 } 2165 2166 llvm::Type *ResultType; 2167 if (ResultRegTypes.empty()) 2168 ResultType = VoidTy; 2169 else if (ResultRegTypes.size() == 1) 2170 ResultType = ResultRegTypes[0]; 2171 else 2172 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2173 2174 llvm::FunctionType *FTy = 2175 llvm::FunctionType::get(ResultType, ArgTypes, false); 2176 2177 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2178 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2179 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2180 llvm::InlineAsm *IA = 2181 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2182 /* IsAlignStack */ false, AsmDialect); 2183 llvm::CallInst *Result = 2184 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2185 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2186 llvm::Attribute::NoUnwind); 2187 2188 // Attach readnone and readonly attributes. 2189 if (!HasSideEffect) { 2190 if (ReadNone) 2191 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2192 llvm::Attribute::ReadNone); 2193 else if (ReadOnly) 2194 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2195 llvm::Attribute::ReadOnly); 2196 } 2197 2198 // Slap the source location of the inline asm into a !srcloc metadata on the 2199 // call. 2200 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2201 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2202 *this)); 2203 } else { 2204 // At least put the line number on MS inline asm blobs. 2205 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2206 Result->setMetadata("srcloc", 2207 llvm::MDNode::get(getLLVMContext(), 2208 llvm::ConstantAsMetadata::get(Loc))); 2209 } 2210 2211 if (getLangOpts().assumeFunctionsAreConvergent()) { 2212 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2213 // convergent (meaning, they may call an intrinsically convergent op, such 2214 // as bar.sync, and so can't have certain optimizations applied around 2215 // them). 2216 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2217 llvm::Attribute::Convergent); 2218 } 2219 2220 // Extract all of the register value results from the asm. 2221 std::vector<llvm::Value*> RegResults; 2222 if (ResultRegTypes.size() == 1) { 2223 RegResults.push_back(Result); 2224 } else { 2225 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2226 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2227 RegResults.push_back(Tmp); 2228 } 2229 } 2230 2231 assert(RegResults.size() == ResultRegTypes.size()); 2232 assert(RegResults.size() == ResultTruncRegTypes.size()); 2233 assert(RegResults.size() == ResultRegDests.size()); 2234 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2235 llvm::Value *Tmp = RegResults[i]; 2236 2237 // If the result type of the LLVM IR asm doesn't match the result type of 2238 // the expression, do the conversion. 2239 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2240 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2241 2242 // Truncate the integer result to the right size, note that TruncTy can be 2243 // a pointer. 2244 if (TruncTy->isFloatingPointTy()) 2245 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2246 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2247 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2248 Tmp = Builder.CreateTrunc(Tmp, 2249 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2250 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2251 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2252 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2253 Tmp = Builder.CreatePtrToInt(Tmp, 2254 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2255 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2256 } else if (TruncTy->isIntegerTy()) { 2257 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2258 } else if (TruncTy->isVectorTy()) { 2259 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2260 } 2261 } 2262 2263 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2264 } 2265 } 2266 2267 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2268 const RecordDecl *RD = S.getCapturedRecordDecl(); 2269 QualType RecordTy = getContext().getRecordType(RD); 2270 2271 // Initialize the captured struct. 2272 LValue SlotLV = 2273 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2274 2275 RecordDecl::field_iterator CurField = RD->field_begin(); 2276 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2277 E = S.capture_init_end(); 2278 I != E; ++I, ++CurField) { 2279 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2280 if (CurField->hasCapturedVLAType()) { 2281 auto VAT = CurField->getCapturedVLAType(); 2282 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2283 } else { 2284 EmitInitializerForField(*CurField, LV, *I); 2285 } 2286 } 2287 2288 return SlotLV; 2289 } 2290 2291 /// Generate an outlined function for the body of a CapturedStmt, store any 2292 /// captured variables into the captured struct, and call the outlined function. 2293 llvm::Function * 2294 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2295 LValue CapStruct = InitCapturedStruct(S); 2296 2297 // Emit the CapturedDecl 2298 CodeGenFunction CGF(CGM, true); 2299 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2300 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2301 delete CGF.CapturedStmtInfo; 2302 2303 // Emit call to the helper function. 2304 EmitCallOrInvoke(F, CapStruct.getPointer()); 2305 2306 return F; 2307 } 2308 2309 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2310 LValue CapStruct = InitCapturedStruct(S); 2311 return CapStruct.getAddress(); 2312 } 2313 2314 /// Creates the outlined function for a CapturedStmt. 2315 llvm::Function * 2316 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2317 assert(CapturedStmtInfo && 2318 "CapturedStmtInfo should be set when generating the captured function"); 2319 const CapturedDecl *CD = S.getCapturedDecl(); 2320 const RecordDecl *RD = S.getCapturedRecordDecl(); 2321 SourceLocation Loc = S.getBeginLoc(); 2322 assert(CD->hasBody() && "missing CapturedDecl body"); 2323 2324 // Build the argument list. 2325 ASTContext &Ctx = CGM.getContext(); 2326 FunctionArgList Args; 2327 Args.append(CD->param_begin(), CD->param_end()); 2328 2329 // Create the function declaration. 2330 const CGFunctionInfo &FuncInfo = 2331 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2332 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2333 2334 llvm::Function *F = 2335 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2336 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2337 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2338 if (CD->isNothrow()) 2339 F->addFnAttr(llvm::Attribute::NoUnwind); 2340 2341 // Generate the function. 2342 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2343 CD->getBody()->getBeginLoc()); 2344 // Set the context parameter in CapturedStmtInfo. 2345 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2346 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2347 2348 // Initialize variable-length arrays. 2349 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2350 Ctx.getTagDeclType(RD)); 2351 for (auto *FD : RD->fields()) { 2352 if (FD->hasCapturedVLAType()) { 2353 auto *ExprArg = 2354 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2355 .getScalarVal(); 2356 auto VAT = FD->getCapturedVLAType(); 2357 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2358 } 2359 } 2360 2361 // If 'this' is captured, load it into CXXThisValue. 2362 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2363 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2364 LValue ThisLValue = EmitLValueForField(Base, FD); 2365 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2366 } 2367 2368 PGO.assignRegionCounters(GlobalDecl(CD), F); 2369 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2370 FinishFunction(CD->getBodyRBrace()); 2371 2372 return F; 2373 } 2374