1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Assumptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===----------------------------------------------------------------------===//
40 //                              Statement Emission
41 //===----------------------------------------------------------------------===//
42 
43 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
44   if (CGDebugInfo *DI = getDebugInfo()) {
45     SourceLocation Loc;
46     Loc = S->getBeginLoc();
47     DI->EmitLocation(Builder, Loc);
48 
49     LastStopPoint = Loc;
50   }
51 }
52 
53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
54   assert(S && "Null statement?");
55   PGO.setCurrentStmt(S);
56 
57   // These statements have their own debug info handling.
58   if (EmitSimpleStmt(S, Attrs))
59     return;
60 
61   // Check if we are generating unreachable code.
62   if (!HaveInsertPoint()) {
63     // If so, and the statement doesn't contain a label, then we do not need to
64     // generate actual code. This is safe because (1) the current point is
65     // unreachable, so we don't need to execute the code, and (2) we've already
66     // handled the statements which update internal data structures (like the
67     // local variable map) which could be used by subsequent statements.
68     if (!ContainsLabel(S)) {
69       // Verify that any decl statements were handled as simple, they may be in
70       // scope of subsequent reachable statements.
71       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
72       return;
73     }
74 
75     // Otherwise, make a new block to hold the code.
76     EnsureInsertPoint();
77   }
78 
79   // Generate a stoppoint if we are emitting debug info.
80   EmitStopPoint(S);
81 
82   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
83   // enabled.
84   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
85     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
86       EmitSimpleOMPExecutableDirective(*D);
87       return;
88     }
89   }
90 
91   switch (S->getStmtClass()) {
92   case Stmt::NoStmtClass:
93   case Stmt::CXXCatchStmtClass:
94   case Stmt::SEHExceptStmtClass:
95   case Stmt::SEHFinallyStmtClass:
96   case Stmt::MSDependentExistsStmtClass:
97     llvm_unreachable("invalid statement class to emit generically");
98   case Stmt::NullStmtClass:
99   case Stmt::CompoundStmtClass:
100   case Stmt::DeclStmtClass:
101   case Stmt::LabelStmtClass:
102   case Stmt::AttributedStmtClass:
103   case Stmt::GotoStmtClass:
104   case Stmt::BreakStmtClass:
105   case Stmt::ContinueStmtClass:
106   case Stmt::DefaultStmtClass:
107   case Stmt::CaseStmtClass:
108   case Stmt::SEHLeaveStmtClass:
109     llvm_unreachable("should have emitted these statements as simple");
110 
111 #define STMT(Type, Base)
112 #define ABSTRACT_STMT(Op)
113 #define EXPR(Type, Base) \
114   case Stmt::Type##Class:
115 #include "clang/AST/StmtNodes.inc"
116   {
117     // Remember the block we came in on.
118     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
119     assert(incoming && "expression emission must have an insertion point");
120 
121     EmitIgnoredExpr(cast<Expr>(S));
122 
123     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
124     assert(outgoing && "expression emission cleared block!");
125 
126     // The expression emitters assume (reasonably!) that the insertion
127     // point is always set.  To maintain that, the call-emission code
128     // for noreturn functions has to enter a new block with no
129     // predecessors.  We want to kill that block and mark the current
130     // insertion point unreachable in the common case of a call like
131     // "exit();".  Since expression emission doesn't otherwise create
132     // blocks with no predecessors, we can just test for that.
133     // However, we must be careful not to do this to our incoming
134     // block, because *statement* emission does sometimes create
135     // reachable blocks which will have no predecessors until later in
136     // the function.  This occurs with, e.g., labels that are not
137     // reachable by fallthrough.
138     if (incoming != outgoing && outgoing->use_empty()) {
139       outgoing->eraseFromParent();
140       Builder.ClearInsertionPoint();
141     }
142     break;
143   }
144 
145   case Stmt::IndirectGotoStmtClass:
146     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
147 
148   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
149   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
150   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
151   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
152 
153   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
154 
155   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
156   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
157   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
158   case Stmt::CoroutineBodyStmtClass:
159     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
160     break;
161   case Stmt::CoreturnStmtClass:
162     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
163     break;
164   case Stmt::CapturedStmtClass: {
165     const CapturedStmt *CS = cast<CapturedStmt>(S);
166     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
167     }
168     break;
169   case Stmt::ObjCAtTryStmtClass:
170     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
171     break;
172   case Stmt::ObjCAtCatchStmtClass:
173     llvm_unreachable(
174                     "@catch statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtFinallyStmtClass:
176     llvm_unreachable(
177                   "@finally statements should be handled by EmitObjCAtTryStmt");
178   case Stmt::ObjCAtThrowStmtClass:
179     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
180     break;
181   case Stmt::ObjCAtSynchronizedStmtClass:
182     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
183     break;
184   case Stmt::ObjCForCollectionStmtClass:
185     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
186     break;
187   case Stmt::ObjCAutoreleasePoolStmtClass:
188     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
189     break;
190 
191   case Stmt::CXXTryStmtClass:
192     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
193     break;
194   case Stmt::CXXForRangeStmtClass:
195     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
196     break;
197   case Stmt::SEHTryStmtClass:
198     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
199     break;
200   case Stmt::OMPMetaDirectiveClass:
201     EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
202     break;
203   case Stmt::OMPCanonicalLoopClass:
204     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
205     break;
206   case Stmt::OMPParallelDirectiveClass:
207     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
208     break;
209   case Stmt::OMPSimdDirectiveClass:
210     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
211     break;
212   case Stmt::OMPTileDirectiveClass:
213     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
214     break;
215   case Stmt::OMPUnrollDirectiveClass:
216     EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
217     break;
218   case Stmt::OMPForDirectiveClass:
219     EmitOMPForDirective(cast<OMPForDirective>(*S));
220     break;
221   case Stmt::OMPForSimdDirectiveClass:
222     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
223     break;
224   case Stmt::OMPSectionsDirectiveClass:
225     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
226     break;
227   case Stmt::OMPSectionDirectiveClass:
228     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
229     break;
230   case Stmt::OMPSingleDirectiveClass:
231     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
232     break;
233   case Stmt::OMPMasterDirectiveClass:
234     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
235     break;
236   case Stmt::OMPCriticalDirectiveClass:
237     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
238     break;
239   case Stmt::OMPParallelForDirectiveClass:
240     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
241     break;
242   case Stmt::OMPParallelForSimdDirectiveClass:
243     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
244     break;
245   case Stmt::OMPParallelMasterDirectiveClass:
246     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
247     break;
248   case Stmt::OMPParallelSectionsDirectiveClass:
249     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
250     break;
251   case Stmt::OMPTaskDirectiveClass:
252     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
253     break;
254   case Stmt::OMPTaskyieldDirectiveClass:
255     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
256     break;
257   case Stmt::OMPBarrierDirectiveClass:
258     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
259     break;
260   case Stmt::OMPTaskwaitDirectiveClass:
261     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
262     break;
263   case Stmt::OMPTaskgroupDirectiveClass:
264     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
265     break;
266   case Stmt::OMPFlushDirectiveClass:
267     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
268     break;
269   case Stmt::OMPDepobjDirectiveClass:
270     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
271     break;
272   case Stmt::OMPScanDirectiveClass:
273     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
274     break;
275   case Stmt::OMPOrderedDirectiveClass:
276     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
277     break;
278   case Stmt::OMPAtomicDirectiveClass:
279     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
280     break;
281   case Stmt::OMPTargetDirectiveClass:
282     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
283     break;
284   case Stmt::OMPTeamsDirectiveClass:
285     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
286     break;
287   case Stmt::OMPCancellationPointDirectiveClass:
288     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
289     break;
290   case Stmt::OMPCancelDirectiveClass:
291     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
292     break;
293   case Stmt::OMPTargetDataDirectiveClass:
294     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
295     break;
296   case Stmt::OMPTargetEnterDataDirectiveClass:
297     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
298     break;
299   case Stmt::OMPTargetExitDataDirectiveClass:
300     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
301     break;
302   case Stmt::OMPTargetParallelDirectiveClass:
303     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
304     break;
305   case Stmt::OMPTargetParallelForDirectiveClass:
306     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
307     break;
308   case Stmt::OMPTaskLoopDirectiveClass:
309     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
310     break;
311   case Stmt::OMPTaskLoopSimdDirectiveClass:
312     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
313     break;
314   case Stmt::OMPMasterTaskLoopDirectiveClass:
315     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
316     break;
317   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
318     EmitOMPMasterTaskLoopSimdDirective(
319         cast<OMPMasterTaskLoopSimdDirective>(*S));
320     break;
321   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
322     EmitOMPParallelMasterTaskLoopDirective(
323         cast<OMPParallelMasterTaskLoopDirective>(*S));
324     break;
325   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
326     EmitOMPParallelMasterTaskLoopSimdDirective(
327         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
328     break;
329   case Stmt::OMPDistributeDirectiveClass:
330     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
331     break;
332   case Stmt::OMPTargetUpdateDirectiveClass:
333     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
334     break;
335   case Stmt::OMPDistributeParallelForDirectiveClass:
336     EmitOMPDistributeParallelForDirective(
337         cast<OMPDistributeParallelForDirective>(*S));
338     break;
339   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
340     EmitOMPDistributeParallelForSimdDirective(
341         cast<OMPDistributeParallelForSimdDirective>(*S));
342     break;
343   case Stmt::OMPDistributeSimdDirectiveClass:
344     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
345     break;
346   case Stmt::OMPTargetParallelForSimdDirectiveClass:
347     EmitOMPTargetParallelForSimdDirective(
348         cast<OMPTargetParallelForSimdDirective>(*S));
349     break;
350   case Stmt::OMPTargetSimdDirectiveClass:
351     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
352     break;
353   case Stmt::OMPTeamsDistributeDirectiveClass:
354     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
355     break;
356   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
357     EmitOMPTeamsDistributeSimdDirective(
358         cast<OMPTeamsDistributeSimdDirective>(*S));
359     break;
360   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
361     EmitOMPTeamsDistributeParallelForSimdDirective(
362         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
363     break;
364   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
365     EmitOMPTeamsDistributeParallelForDirective(
366         cast<OMPTeamsDistributeParallelForDirective>(*S));
367     break;
368   case Stmt::OMPTargetTeamsDirectiveClass:
369     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
370     break;
371   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
372     EmitOMPTargetTeamsDistributeDirective(
373         cast<OMPTargetTeamsDistributeDirective>(*S));
374     break;
375   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
376     EmitOMPTargetTeamsDistributeParallelForDirective(
377         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
378     break;
379   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
380     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
381         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
382     break;
383   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
384     EmitOMPTargetTeamsDistributeSimdDirective(
385         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
386     break;
387   case Stmt::OMPInteropDirectiveClass:
388     EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
389     break;
390   case Stmt::OMPDispatchDirectiveClass:
391     llvm_unreachable("Dispatch directive not supported yet.");
392     break;
393   case Stmt::OMPMaskedDirectiveClass:
394     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
395     break;
396   case Stmt::OMPGenericLoopDirectiveClass:
397     EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
398     break;
399   }
400 }
401 
402 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
403                                      ArrayRef<const Attr *> Attrs) {
404   switch (S->getStmtClass()) {
405   default:
406     return false;
407   case Stmt::NullStmtClass:
408     break;
409   case Stmt::CompoundStmtClass:
410     EmitCompoundStmt(cast<CompoundStmt>(*S));
411     break;
412   case Stmt::DeclStmtClass:
413     EmitDeclStmt(cast<DeclStmt>(*S));
414     break;
415   case Stmt::LabelStmtClass:
416     EmitLabelStmt(cast<LabelStmt>(*S));
417     break;
418   case Stmt::AttributedStmtClass:
419     EmitAttributedStmt(cast<AttributedStmt>(*S));
420     break;
421   case Stmt::GotoStmtClass:
422     EmitGotoStmt(cast<GotoStmt>(*S));
423     break;
424   case Stmt::BreakStmtClass:
425     EmitBreakStmt(cast<BreakStmt>(*S));
426     break;
427   case Stmt::ContinueStmtClass:
428     EmitContinueStmt(cast<ContinueStmt>(*S));
429     break;
430   case Stmt::DefaultStmtClass:
431     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
432     break;
433   case Stmt::CaseStmtClass:
434     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
435     break;
436   case Stmt::SEHLeaveStmtClass:
437     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
438     break;
439   }
440   return true;
441 }
442 
443 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
444 /// this captures the expression result of the last sub-statement and returns it
445 /// (for use by the statement expression extension).
446 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
447                                           AggValueSlot AggSlot) {
448   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
449                              "LLVM IR generation of compound statement ('{}')");
450 
451   // Keep track of the current cleanup stack depth, including debug scopes.
452   LexicalScope Scope(*this, S.getSourceRange());
453 
454   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
455 }
456 
457 Address
458 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
459                                               bool GetLast,
460                                               AggValueSlot AggSlot) {
461 
462   const Stmt *ExprResult = S.getStmtExprResult();
463   assert((!GetLast || (GetLast && ExprResult)) &&
464          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
465 
466   Address RetAlloca = Address::invalid();
467 
468   for (auto *CurStmt : S.body()) {
469     if (GetLast && ExprResult == CurStmt) {
470       // We have to special case labels here.  They are statements, but when put
471       // at the end of a statement expression, they yield the value of their
472       // subexpression.  Handle this by walking through all labels we encounter,
473       // emitting them before we evaluate the subexpr.
474       // Similar issues arise for attributed statements.
475       while (!isa<Expr>(ExprResult)) {
476         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
477           EmitLabel(LS->getDecl());
478           ExprResult = LS->getSubStmt();
479         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
480           // FIXME: Update this if we ever have attributes that affect the
481           // semantics of an expression.
482           ExprResult = AS->getSubStmt();
483         } else {
484           llvm_unreachable("unknown value statement");
485         }
486       }
487 
488       EnsureInsertPoint();
489 
490       const Expr *E = cast<Expr>(ExprResult);
491       QualType ExprTy = E->getType();
492       if (hasAggregateEvaluationKind(ExprTy)) {
493         EmitAggExpr(E, AggSlot);
494       } else {
495         // We can't return an RValue here because there might be cleanups at
496         // the end of the StmtExpr.  Because of that, we have to emit the result
497         // here into a temporary alloca.
498         RetAlloca = CreateMemTemp(ExprTy);
499         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
500                          /*IsInit*/ false);
501       }
502     } else {
503       EmitStmt(CurStmt);
504     }
505   }
506 
507   return RetAlloca;
508 }
509 
510 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
511   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
512 
513   // If there is a cleanup stack, then we it isn't worth trying to
514   // simplify this block (we would need to remove it from the scope map
515   // and cleanup entry).
516   if (!EHStack.empty())
517     return;
518 
519   // Can only simplify direct branches.
520   if (!BI || !BI->isUnconditional())
521     return;
522 
523   // Can only simplify empty blocks.
524   if (BI->getIterator() != BB->begin())
525     return;
526 
527   BB->replaceAllUsesWith(BI->getSuccessor(0));
528   BI->eraseFromParent();
529   BB->eraseFromParent();
530 }
531 
532 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
533   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
534 
535   // Fall out of the current block (if necessary).
536   EmitBranch(BB);
537 
538   if (IsFinished && BB->use_empty()) {
539     delete BB;
540     return;
541   }
542 
543   // Place the block after the current block, if possible, or else at
544   // the end of the function.
545   if (CurBB && CurBB->getParent())
546     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
547   else
548     CurFn->getBasicBlockList().push_back(BB);
549   Builder.SetInsertPoint(BB);
550 }
551 
552 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
553   // Emit a branch from the current block to the target one if this
554   // was a real block.  If this was just a fall-through block after a
555   // terminator, don't emit it.
556   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
557 
558   if (!CurBB || CurBB->getTerminator()) {
559     // If there is no insert point or the previous block is already
560     // terminated, don't touch it.
561   } else {
562     // Otherwise, create a fall-through branch.
563     Builder.CreateBr(Target);
564   }
565 
566   Builder.ClearInsertionPoint();
567 }
568 
569 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
570   bool inserted = false;
571   for (llvm::User *u : block->users()) {
572     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
573       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
574                                              block);
575       inserted = true;
576       break;
577     }
578   }
579 
580   if (!inserted)
581     CurFn->getBasicBlockList().push_back(block);
582 
583   Builder.SetInsertPoint(block);
584 }
585 
586 CodeGenFunction::JumpDest
587 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
588   JumpDest &Dest = LabelMap[D];
589   if (Dest.isValid()) return Dest;
590 
591   // Create, but don't insert, the new block.
592   Dest = JumpDest(createBasicBlock(D->getName()),
593                   EHScopeStack::stable_iterator::invalid(),
594                   NextCleanupDestIndex++);
595   return Dest;
596 }
597 
598 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
599   // Add this label to the current lexical scope if we're within any
600   // normal cleanups.  Jumps "in" to this label --- when permitted by
601   // the language --- may need to be routed around such cleanups.
602   if (EHStack.hasNormalCleanups() && CurLexicalScope)
603     CurLexicalScope->addLabel(D);
604 
605   JumpDest &Dest = LabelMap[D];
606 
607   // If we didn't need a forward reference to this label, just go
608   // ahead and create a destination at the current scope.
609   if (!Dest.isValid()) {
610     Dest = getJumpDestInCurrentScope(D->getName());
611 
612   // Otherwise, we need to give this label a target depth and remove
613   // it from the branch-fixups list.
614   } else {
615     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
616     Dest.setScopeDepth(EHStack.stable_begin());
617     ResolveBranchFixups(Dest.getBlock());
618   }
619 
620   EmitBlock(Dest.getBlock());
621 
622   // Emit debug info for labels.
623   if (CGDebugInfo *DI = getDebugInfo()) {
624     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
625       DI->setLocation(D->getLocation());
626       DI->EmitLabel(D, Builder);
627     }
628   }
629 
630   incrementProfileCounter(D->getStmt());
631 }
632 
633 /// Change the cleanup scope of the labels in this lexical scope to
634 /// match the scope of the enclosing context.
635 void CodeGenFunction::LexicalScope::rescopeLabels() {
636   assert(!Labels.empty());
637   EHScopeStack::stable_iterator innermostScope
638     = CGF.EHStack.getInnermostNormalCleanup();
639 
640   // Change the scope depth of all the labels.
641   for (SmallVectorImpl<const LabelDecl*>::const_iterator
642          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
643     assert(CGF.LabelMap.count(*i));
644     JumpDest &dest = CGF.LabelMap.find(*i)->second;
645     assert(dest.getScopeDepth().isValid());
646     assert(innermostScope.encloses(dest.getScopeDepth()));
647     dest.setScopeDepth(innermostScope);
648   }
649 
650   // Reparent the labels if the new scope also has cleanups.
651   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
652     ParentScope->Labels.append(Labels.begin(), Labels.end());
653   }
654 }
655 
656 
657 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
658   EmitLabel(S.getDecl());
659 
660   // IsEHa - emit eha.scope.begin if it's a side entry of a scope
661   if (getLangOpts().EHAsynch && S.isSideEntry())
662     EmitSehCppScopeBegin();
663 
664   EmitStmt(S.getSubStmt());
665 }
666 
667 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
668   bool nomerge = false;
669   bool noinline = false;
670   const CallExpr *musttail = nullptr;
671 
672   for (const auto *A : S.getAttrs()) {
673     if (A->getKind() == attr::NoMerge) {
674       nomerge = true;
675     }
676     if (A->getKind() == attr::NoInline) {
677       noinline = true;
678     }
679     if (A->getKind() == attr::MustTail) {
680       const Stmt *Sub = S.getSubStmt();
681       const ReturnStmt *R = cast<ReturnStmt>(Sub);
682       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
683     }
684   }
685   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
686   SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline);
687   SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
688   EmitStmt(S.getSubStmt(), S.getAttrs());
689 }
690 
691 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
692   // If this code is reachable then emit a stop point (if generating
693   // debug info). We have to do this ourselves because we are on the
694   // "simple" statement path.
695   if (HaveInsertPoint())
696     EmitStopPoint(&S);
697 
698   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
699 }
700 
701 
702 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
703   if (const LabelDecl *Target = S.getConstantTarget()) {
704     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
705     return;
706   }
707 
708   // Ensure that we have an i8* for our PHI node.
709   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
710                                          Int8PtrTy, "addr");
711   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
712 
713   // Get the basic block for the indirect goto.
714   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
715 
716   // The first instruction in the block has to be the PHI for the switch dest,
717   // add an entry for this branch.
718   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
719 
720   EmitBranch(IndGotoBB);
721 }
722 
723 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
724   // The else branch of a consteval if statement is always the only branch that
725   // can be runtime evaluated.
726   if (S.isConsteval()) {
727     const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
728     if (Executed) {
729       RunCleanupsScope ExecutedScope(*this);
730       EmitStmt(Executed);
731     }
732     return;
733   }
734 
735   // C99 6.8.4.1: The first substatement is executed if the expression compares
736   // unequal to 0.  The condition must be a scalar type.
737   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
738 
739   if (S.getInit())
740     EmitStmt(S.getInit());
741 
742   if (S.getConditionVariable())
743     EmitDecl(*S.getConditionVariable());
744 
745   // If the condition constant folds and can be elided, try to avoid emitting
746   // the condition and the dead arm of the if/else.
747   bool CondConstant;
748   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
749                                    S.isConstexpr())) {
750     // Figure out which block (then or else) is executed.
751     const Stmt *Executed = S.getThen();
752     const Stmt *Skipped  = S.getElse();
753     if (!CondConstant)  // Condition false?
754       std::swap(Executed, Skipped);
755 
756     // If the skipped block has no labels in it, just emit the executed block.
757     // This avoids emitting dead code and simplifies the CFG substantially.
758     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
759       if (CondConstant)
760         incrementProfileCounter(&S);
761       if (Executed) {
762         RunCleanupsScope ExecutedScope(*this);
763         EmitStmt(Executed);
764       }
765       return;
766     }
767   }
768 
769   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
770   // the conditional branch.
771   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
772   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
773   llvm::BasicBlock *ElseBlock = ContBlock;
774   if (S.getElse())
775     ElseBlock = createBasicBlock("if.else");
776 
777   // Prefer the PGO based weights over the likelihood attribute.
778   // When the build isn't optimized the metadata isn't used, so don't generate
779   // it.
780   Stmt::Likelihood LH = Stmt::LH_None;
781   uint64_t Count = getProfileCount(S.getThen());
782   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
783     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
784   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
785 
786   // Emit the 'then' code.
787   EmitBlock(ThenBlock);
788   incrementProfileCounter(&S);
789   {
790     RunCleanupsScope ThenScope(*this);
791     EmitStmt(S.getThen());
792   }
793   EmitBranch(ContBlock);
794 
795   // Emit the 'else' code if present.
796   if (const Stmt *Else = S.getElse()) {
797     {
798       // There is no need to emit line number for an unconditional branch.
799       auto NL = ApplyDebugLocation::CreateEmpty(*this);
800       EmitBlock(ElseBlock);
801     }
802     {
803       RunCleanupsScope ElseScope(*this);
804       EmitStmt(Else);
805     }
806     {
807       // There is no need to emit line number for an unconditional branch.
808       auto NL = ApplyDebugLocation::CreateEmpty(*this);
809       EmitBranch(ContBlock);
810     }
811   }
812 
813   // Emit the continuation block for code after the if.
814   EmitBlock(ContBlock, true);
815 }
816 
817 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
818                                     ArrayRef<const Attr *> WhileAttrs) {
819   // Emit the header for the loop, which will also become
820   // the continue target.
821   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
822   EmitBlock(LoopHeader.getBlock());
823 
824   // Create an exit block for when the condition fails, which will
825   // also become the break target.
826   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
827 
828   // Store the blocks to use for break and continue.
829   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
830 
831   // C++ [stmt.while]p2:
832   //   When the condition of a while statement is a declaration, the
833   //   scope of the variable that is declared extends from its point
834   //   of declaration (3.3.2) to the end of the while statement.
835   //   [...]
836   //   The object created in a condition is destroyed and created
837   //   with each iteration of the loop.
838   RunCleanupsScope ConditionScope(*this);
839 
840   if (S.getConditionVariable())
841     EmitDecl(*S.getConditionVariable());
842 
843   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
844   // evaluation of the controlling expression takes place before each
845   // execution of the loop body.
846   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
847 
848   // while(1) is common, avoid extra exit blocks.  Be sure
849   // to correctly handle break/continue though.
850   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
851   bool CondIsConstInt = C != nullptr;
852   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
853   const SourceRange &R = S.getSourceRange();
854   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
855                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
856                  SourceLocToDebugLoc(R.getEnd()),
857                  checkIfLoopMustProgress(CondIsConstInt));
858 
859   // As long as the condition is true, go to the loop body.
860   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
861   if (EmitBoolCondBranch) {
862     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
863     if (ConditionScope.requiresCleanups())
864       ExitBlock = createBasicBlock("while.exit");
865     llvm::MDNode *Weights =
866         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
867     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
868       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
869           BoolCondVal, Stmt::getLikelihood(S.getBody()));
870     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
871 
872     if (ExitBlock != LoopExit.getBlock()) {
873       EmitBlock(ExitBlock);
874       EmitBranchThroughCleanup(LoopExit);
875     }
876   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
877     CGM.getDiags().Report(A->getLocation(),
878                           diag::warn_attribute_has_no_effect_on_infinite_loop)
879         << A << A->getRange();
880     CGM.getDiags().Report(
881         S.getWhileLoc(),
882         diag::note_attribute_has_no_effect_on_infinite_loop_here)
883         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
884   }
885 
886   // Emit the loop body.  We have to emit this in a cleanup scope
887   // because it might be a singleton DeclStmt.
888   {
889     RunCleanupsScope BodyScope(*this);
890     EmitBlock(LoopBody);
891     incrementProfileCounter(&S);
892     EmitStmt(S.getBody());
893   }
894 
895   BreakContinueStack.pop_back();
896 
897   // Immediately force cleanup.
898   ConditionScope.ForceCleanup();
899 
900   EmitStopPoint(&S);
901   // Branch to the loop header again.
902   EmitBranch(LoopHeader.getBlock());
903 
904   LoopStack.pop();
905 
906   // Emit the exit block.
907   EmitBlock(LoopExit.getBlock(), true);
908 
909   // The LoopHeader typically is just a branch if we skipped emitting
910   // a branch, try to erase it.
911   if (!EmitBoolCondBranch)
912     SimplifyForwardingBlocks(LoopHeader.getBlock());
913 }
914 
915 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
916                                  ArrayRef<const Attr *> DoAttrs) {
917   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
918   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
919 
920   uint64_t ParentCount = getCurrentProfileCount();
921 
922   // Store the blocks to use for break and continue.
923   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
924 
925   // Emit the body of the loop.
926   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
927 
928   EmitBlockWithFallThrough(LoopBody, &S);
929   {
930     RunCleanupsScope BodyScope(*this);
931     EmitStmt(S.getBody());
932   }
933 
934   EmitBlock(LoopCond.getBlock());
935 
936   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
937   // after each execution of the loop body."
938 
939   // Evaluate the conditional in the while header.
940   // C99 6.8.5p2/p4: The first substatement is executed if the expression
941   // compares unequal to 0.  The condition must be a scalar type.
942   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
943 
944   BreakContinueStack.pop_back();
945 
946   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
947   // to correctly handle break/continue though.
948   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
949   bool CondIsConstInt = C;
950   bool EmitBoolCondBranch = !C || !C->isZero();
951 
952   const SourceRange &R = S.getSourceRange();
953   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
954                  SourceLocToDebugLoc(R.getBegin()),
955                  SourceLocToDebugLoc(R.getEnd()),
956                  checkIfLoopMustProgress(CondIsConstInt));
957 
958   // As long as the condition is true, iterate the loop.
959   if (EmitBoolCondBranch) {
960     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
961     Builder.CreateCondBr(
962         BoolCondVal, LoopBody, LoopExit.getBlock(),
963         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
964   }
965 
966   LoopStack.pop();
967 
968   // Emit the exit block.
969   EmitBlock(LoopExit.getBlock());
970 
971   // The DoCond block typically is just a branch if we skipped
972   // emitting a branch, try to erase it.
973   if (!EmitBoolCondBranch)
974     SimplifyForwardingBlocks(LoopCond.getBlock());
975 }
976 
977 void CodeGenFunction::EmitForStmt(const ForStmt &S,
978                                   ArrayRef<const Attr *> ForAttrs) {
979   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
980 
981   LexicalScope ForScope(*this, S.getSourceRange());
982 
983   // Evaluate the first part before the loop.
984   if (S.getInit())
985     EmitStmt(S.getInit());
986 
987   // Start the loop with a block that tests the condition.
988   // If there's an increment, the continue scope will be overwritten
989   // later.
990   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
991   llvm::BasicBlock *CondBlock = CondDest.getBlock();
992   EmitBlock(CondBlock);
993 
994   Expr::EvalResult Result;
995   bool CondIsConstInt =
996       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
997 
998   const SourceRange &R = S.getSourceRange();
999   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1000                  SourceLocToDebugLoc(R.getBegin()),
1001                  SourceLocToDebugLoc(R.getEnd()),
1002                  checkIfLoopMustProgress(CondIsConstInt));
1003 
1004   // Create a cleanup scope for the condition variable cleanups.
1005   LexicalScope ConditionScope(*this, S.getSourceRange());
1006 
1007   // If the for loop doesn't have an increment we can just use the condition as
1008   // the continue block. Otherwise, if there is no condition variable, we can
1009   // form the continue block now. If there is a condition variable, we can't
1010   // form the continue block until after we've emitted the condition, because
1011   // the condition is in scope in the increment, but Sema's jump diagnostics
1012   // ensure that there are no continues from the condition variable that jump
1013   // to the loop increment.
1014   JumpDest Continue;
1015   if (!S.getInc())
1016     Continue = CondDest;
1017   else if (!S.getConditionVariable())
1018     Continue = getJumpDestInCurrentScope("for.inc");
1019   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1020 
1021   if (S.getCond()) {
1022     // If the for statement has a condition scope, emit the local variable
1023     // declaration.
1024     if (S.getConditionVariable()) {
1025       EmitDecl(*S.getConditionVariable());
1026 
1027       // We have entered the condition variable's scope, so we're now able to
1028       // jump to the continue block.
1029       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1030       BreakContinueStack.back().ContinueBlock = Continue;
1031     }
1032 
1033     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1034     // If there are any cleanups between here and the loop-exit scope,
1035     // create a block to stage a loop exit along.
1036     if (ForScope.requiresCleanups())
1037       ExitBlock = createBasicBlock("for.cond.cleanup");
1038 
1039     // As long as the condition is true, iterate the loop.
1040     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1041 
1042     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1043     // compares unequal to 0.  The condition must be a scalar type.
1044     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1045     llvm::MDNode *Weights =
1046         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1047     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1048       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1049           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1050 
1051     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1052 
1053     if (ExitBlock != LoopExit.getBlock()) {
1054       EmitBlock(ExitBlock);
1055       EmitBranchThroughCleanup(LoopExit);
1056     }
1057 
1058     EmitBlock(ForBody);
1059   } else {
1060     // Treat it as a non-zero constant.  Don't even create a new block for the
1061     // body, just fall into it.
1062   }
1063   incrementProfileCounter(&S);
1064 
1065   {
1066     // Create a separate cleanup scope for the body, in case it is not
1067     // a compound statement.
1068     RunCleanupsScope BodyScope(*this);
1069     EmitStmt(S.getBody());
1070   }
1071 
1072   // If there is an increment, emit it next.
1073   if (S.getInc()) {
1074     EmitBlock(Continue.getBlock());
1075     EmitStmt(S.getInc());
1076   }
1077 
1078   BreakContinueStack.pop_back();
1079 
1080   ConditionScope.ForceCleanup();
1081 
1082   EmitStopPoint(&S);
1083   EmitBranch(CondBlock);
1084 
1085   ForScope.ForceCleanup();
1086 
1087   LoopStack.pop();
1088 
1089   // Emit the fall-through block.
1090   EmitBlock(LoopExit.getBlock(), true);
1091 }
1092 
1093 void
1094 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1095                                      ArrayRef<const Attr *> ForAttrs) {
1096   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1097 
1098   LexicalScope ForScope(*this, S.getSourceRange());
1099 
1100   // Evaluate the first pieces before the loop.
1101   if (S.getInit())
1102     EmitStmt(S.getInit());
1103   EmitStmt(S.getRangeStmt());
1104   EmitStmt(S.getBeginStmt());
1105   EmitStmt(S.getEndStmt());
1106 
1107   // Start the loop with a block that tests the condition.
1108   // If there's an increment, the continue scope will be overwritten
1109   // later.
1110   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1111   EmitBlock(CondBlock);
1112 
1113   const SourceRange &R = S.getSourceRange();
1114   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1115                  SourceLocToDebugLoc(R.getBegin()),
1116                  SourceLocToDebugLoc(R.getEnd()));
1117 
1118   // If there are any cleanups between here and the loop-exit scope,
1119   // create a block to stage a loop exit along.
1120   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1121   if (ForScope.requiresCleanups())
1122     ExitBlock = createBasicBlock("for.cond.cleanup");
1123 
1124   // The loop body, consisting of the specified body and the loop variable.
1125   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1126 
1127   // The body is executed if the expression, contextually converted
1128   // to bool, is true.
1129   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1130   llvm::MDNode *Weights =
1131       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1132   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1133     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1134         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1135   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1136 
1137   if (ExitBlock != LoopExit.getBlock()) {
1138     EmitBlock(ExitBlock);
1139     EmitBranchThroughCleanup(LoopExit);
1140   }
1141 
1142   EmitBlock(ForBody);
1143   incrementProfileCounter(&S);
1144 
1145   // Create a block for the increment. In case of a 'continue', we jump there.
1146   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1147 
1148   // Store the blocks to use for break and continue.
1149   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1150 
1151   {
1152     // Create a separate cleanup scope for the loop variable and body.
1153     LexicalScope BodyScope(*this, S.getSourceRange());
1154     EmitStmt(S.getLoopVarStmt());
1155     EmitStmt(S.getBody());
1156   }
1157 
1158   EmitStopPoint(&S);
1159   // If there is an increment, emit it next.
1160   EmitBlock(Continue.getBlock());
1161   EmitStmt(S.getInc());
1162 
1163   BreakContinueStack.pop_back();
1164 
1165   EmitBranch(CondBlock);
1166 
1167   ForScope.ForceCleanup();
1168 
1169   LoopStack.pop();
1170 
1171   // Emit the fall-through block.
1172   EmitBlock(LoopExit.getBlock(), true);
1173 }
1174 
1175 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1176   if (RV.isScalar()) {
1177     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1178   } else if (RV.isAggregate()) {
1179     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1180     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1181     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1182   } else {
1183     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1184                        /*init*/ true);
1185   }
1186   EmitBranchThroughCleanup(ReturnBlock);
1187 }
1188 
1189 namespace {
1190 // RAII struct used to save and restore a return statment's result expression.
1191 struct SaveRetExprRAII {
1192   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1193       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1194     CGF.RetExpr = RetExpr;
1195   }
1196   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1197   const Expr *OldRetExpr;
1198   CodeGenFunction &CGF;
1199 };
1200 } // namespace
1201 
1202 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1203 /// codegen it as 'tail call ...; ret void;'.
1204 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1205                                      const CGFunctionInfo *CurFnInfo) {
1206   auto calleeQualType = CE->getCallee()->getType();
1207   const FunctionType *calleeType = nullptr;
1208   if (calleeQualType->isFunctionPointerType() ||
1209       calleeQualType->isFunctionReferenceType() ||
1210       calleeQualType->isBlockPointerType() ||
1211       calleeQualType->isMemberFunctionPointerType()) {
1212     calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1213   } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1214     calleeType = ty;
1215   } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1216     if (auto methodDecl = CMCE->getMethodDecl()) {
1217       // getMethodDecl() doesn't handle member pointers at the moment.
1218       calleeType = methodDecl->getType()->castAs<FunctionType>();
1219     } else {
1220       return;
1221     }
1222   } else {
1223     return;
1224   }
1225   if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1226       (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1227     auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1228     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1229     Builder.CreateRetVoid();
1230     Builder.ClearInsertionPoint();
1231   }
1232 }
1233 
1234 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1235 /// if the function returns void, or may be missing one if the function returns
1236 /// non-void.  Fun stuff :).
1237 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1238   if (requiresReturnValueCheck()) {
1239     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1240     auto *SLocPtr =
1241         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1242                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1243     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1244     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1245     assert(ReturnLocation.isValid() && "No valid return location");
1246     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1247                         ReturnLocation);
1248   }
1249 
1250   // Returning from an outlined SEH helper is UB, and we already warn on it.
1251   if (IsOutlinedSEHHelper) {
1252     Builder.CreateUnreachable();
1253     Builder.ClearInsertionPoint();
1254   }
1255 
1256   // Emit the result value, even if unused, to evaluate the side effects.
1257   const Expr *RV = S.getRetValue();
1258 
1259   // Record the result expression of the return statement. The recorded
1260   // expression is used to determine whether a block capture's lifetime should
1261   // end at the end of the full expression as opposed to the end of the scope
1262   // enclosing the block expression.
1263   //
1264   // This permits a small, easily-implemented exception to our over-conservative
1265   // rules about not jumping to statements following block literals with
1266   // non-trivial cleanups.
1267   SaveRetExprRAII SaveRetExpr(RV, *this);
1268 
1269   RunCleanupsScope cleanupScope(*this);
1270   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1271     RV = EWC->getSubExpr();
1272   // FIXME: Clean this up by using an LValue for ReturnTemp,
1273   // EmitStoreThroughLValue, and EmitAnyExpr.
1274   // Check if the NRVO candidate was not globalized in OpenMP mode.
1275   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1276       S.getNRVOCandidate()->isNRVOVariable() &&
1277       (!getLangOpts().OpenMP ||
1278        !CGM.getOpenMPRuntime()
1279             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1280             .isValid())) {
1281     // Apply the named return value optimization for this return statement,
1282     // which means doing nothing: the appropriate result has already been
1283     // constructed into the NRVO variable.
1284 
1285     // If there is an NRVO flag for this variable, set it to 1 into indicate
1286     // that the cleanup code should not destroy the variable.
1287     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1288       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1289   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1290     // Make sure not to return anything, but evaluate the expression
1291     // for side effects.
1292     if (RV) {
1293       EmitAnyExpr(RV);
1294       if (auto *CE = dyn_cast<CallExpr>(RV))
1295         makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1296     }
1297   } else if (!RV) {
1298     // Do nothing (return value is left uninitialized)
1299   } else if (FnRetTy->isReferenceType()) {
1300     // If this function returns a reference, take the address of the expression
1301     // rather than the value.
1302     RValue Result = EmitReferenceBindingToExpr(RV);
1303     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1304   } else {
1305     switch (getEvaluationKind(RV->getType())) {
1306     case TEK_Scalar:
1307       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1308       break;
1309     case TEK_Complex:
1310       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1311                                 /*isInit*/ true);
1312       break;
1313     case TEK_Aggregate:
1314       EmitAggExpr(RV, AggValueSlot::forAddr(
1315                           ReturnValue, Qualifiers(),
1316                           AggValueSlot::IsDestructed,
1317                           AggValueSlot::DoesNotNeedGCBarriers,
1318                           AggValueSlot::IsNotAliased,
1319                           getOverlapForReturnValue()));
1320       break;
1321     }
1322   }
1323 
1324   ++NumReturnExprs;
1325   if (!RV || RV->isEvaluatable(getContext()))
1326     ++NumSimpleReturnExprs;
1327 
1328   cleanupScope.ForceCleanup();
1329   EmitBranchThroughCleanup(ReturnBlock);
1330 }
1331 
1332 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1333   // As long as debug info is modeled with instructions, we have to ensure we
1334   // have a place to insert here and write the stop point here.
1335   if (HaveInsertPoint())
1336     EmitStopPoint(&S);
1337 
1338   for (const auto *I : S.decls())
1339     EmitDecl(*I);
1340 }
1341 
1342 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1343   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1344 
1345   // If this code is reachable then emit a stop point (if generating
1346   // debug info). We have to do this ourselves because we are on the
1347   // "simple" statement path.
1348   if (HaveInsertPoint())
1349     EmitStopPoint(&S);
1350 
1351   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1352 }
1353 
1354 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1355   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1356 
1357   // If this code is reachable then emit a stop point (if generating
1358   // debug info). We have to do this ourselves because we are on the
1359   // "simple" statement path.
1360   if (HaveInsertPoint())
1361     EmitStopPoint(&S);
1362 
1363   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1364 }
1365 
1366 /// EmitCaseStmtRange - If case statement range is not too big then
1367 /// add multiple cases to switch instruction, one for each value within
1368 /// the range. If range is too big then emit "if" condition check.
1369 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1370                                         ArrayRef<const Attr *> Attrs) {
1371   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1372 
1373   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1374   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1375 
1376   // Emit the code for this case. We do this first to make sure it is
1377   // properly chained from our predecessor before generating the
1378   // switch machinery to enter this block.
1379   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1380   EmitBlockWithFallThrough(CaseDest, &S);
1381   EmitStmt(S.getSubStmt());
1382 
1383   // If range is empty, do nothing.
1384   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1385     return;
1386 
1387   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1388   llvm::APInt Range = RHS - LHS;
1389   // FIXME: parameters such as this should not be hardcoded.
1390   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1391     // Range is small enough to add multiple switch instruction cases.
1392     uint64_t Total = getProfileCount(&S);
1393     unsigned NCases = Range.getZExtValue() + 1;
1394     // We only have one region counter for the entire set of cases here, so we
1395     // need to divide the weights evenly between the generated cases, ensuring
1396     // that the total weight is preserved. E.g., a weight of 5 over three cases
1397     // will be distributed as weights of 2, 2, and 1.
1398     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1399     for (unsigned I = 0; I != NCases; ++I) {
1400       if (SwitchWeights)
1401         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1402       else if (SwitchLikelihood)
1403         SwitchLikelihood->push_back(LH);
1404 
1405       if (Rem)
1406         Rem--;
1407       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1408       ++LHS;
1409     }
1410     return;
1411   }
1412 
1413   // The range is too big. Emit "if" condition into a new block,
1414   // making sure to save and restore the current insertion point.
1415   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1416 
1417   // Push this test onto the chain of range checks (which terminates
1418   // in the default basic block). The switch's default will be changed
1419   // to the top of this chain after switch emission is complete.
1420   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1421   CaseRangeBlock = createBasicBlock("sw.caserange");
1422 
1423   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1424   Builder.SetInsertPoint(CaseRangeBlock);
1425 
1426   // Emit range check.
1427   llvm::Value *Diff =
1428     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1429   llvm::Value *Cond =
1430     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1431 
1432   llvm::MDNode *Weights = nullptr;
1433   if (SwitchWeights) {
1434     uint64_t ThisCount = getProfileCount(&S);
1435     uint64_t DefaultCount = (*SwitchWeights)[0];
1436     Weights = createProfileWeights(ThisCount, DefaultCount);
1437 
1438     // Since we're chaining the switch default through each large case range, we
1439     // need to update the weight for the default, ie, the first case, to include
1440     // this case.
1441     (*SwitchWeights)[0] += ThisCount;
1442   } else if (SwitchLikelihood)
1443     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1444 
1445   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1446 
1447   // Restore the appropriate insertion point.
1448   if (RestoreBB)
1449     Builder.SetInsertPoint(RestoreBB);
1450   else
1451     Builder.ClearInsertionPoint();
1452 }
1453 
1454 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1455                                    ArrayRef<const Attr *> Attrs) {
1456   // If there is no enclosing switch instance that we're aware of, then this
1457   // case statement and its block can be elided.  This situation only happens
1458   // when we've constant-folded the switch, are emitting the constant case,
1459   // and part of the constant case includes another case statement.  For
1460   // instance: switch (4) { case 4: do { case 5: } while (1); }
1461   if (!SwitchInsn) {
1462     EmitStmt(S.getSubStmt());
1463     return;
1464   }
1465 
1466   // Handle case ranges.
1467   if (S.getRHS()) {
1468     EmitCaseStmtRange(S, Attrs);
1469     return;
1470   }
1471 
1472   llvm::ConstantInt *CaseVal =
1473     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1474   if (SwitchLikelihood)
1475     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1476 
1477   // If the body of the case is just a 'break', try to not emit an empty block.
1478   // If we're profiling or we're not optimizing, leave the block in for better
1479   // debug and coverage analysis.
1480   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1481       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1482       isa<BreakStmt>(S.getSubStmt())) {
1483     JumpDest Block = BreakContinueStack.back().BreakBlock;
1484 
1485     // Only do this optimization if there are no cleanups that need emitting.
1486     if (isObviouslyBranchWithoutCleanups(Block)) {
1487       if (SwitchWeights)
1488         SwitchWeights->push_back(getProfileCount(&S));
1489       SwitchInsn->addCase(CaseVal, Block.getBlock());
1490 
1491       // If there was a fallthrough into this case, make sure to redirect it to
1492       // the end of the switch as well.
1493       if (Builder.GetInsertBlock()) {
1494         Builder.CreateBr(Block.getBlock());
1495         Builder.ClearInsertionPoint();
1496       }
1497       return;
1498     }
1499   }
1500 
1501   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1502   EmitBlockWithFallThrough(CaseDest, &S);
1503   if (SwitchWeights)
1504     SwitchWeights->push_back(getProfileCount(&S));
1505   SwitchInsn->addCase(CaseVal, CaseDest);
1506 
1507   // Recursively emitting the statement is acceptable, but is not wonderful for
1508   // code where we have many case statements nested together, i.e.:
1509   //  case 1:
1510   //    case 2:
1511   //      case 3: etc.
1512   // Handling this recursively will create a new block for each case statement
1513   // that falls through to the next case which is IR intensive.  It also causes
1514   // deep recursion which can run into stack depth limitations.  Handle
1515   // sequential non-range case statements specially.
1516   //
1517   // TODO When the next case has a likelihood attribute the code returns to the
1518   // recursive algorithm. Maybe improve this case if it becomes common practice
1519   // to use a lot of attributes.
1520   const CaseStmt *CurCase = &S;
1521   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1522 
1523   // Otherwise, iteratively add consecutive cases to this switch stmt.
1524   while (NextCase && NextCase->getRHS() == nullptr) {
1525     CurCase = NextCase;
1526     llvm::ConstantInt *CaseVal =
1527       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1528 
1529     if (SwitchWeights)
1530       SwitchWeights->push_back(getProfileCount(NextCase));
1531     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1532       CaseDest = createBasicBlock("sw.bb");
1533       EmitBlockWithFallThrough(CaseDest, CurCase);
1534     }
1535     // Since this loop is only executed when the CaseStmt has no attributes
1536     // use a hard-coded value.
1537     if (SwitchLikelihood)
1538       SwitchLikelihood->push_back(Stmt::LH_None);
1539 
1540     SwitchInsn->addCase(CaseVal, CaseDest);
1541     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1542   }
1543 
1544   // Generate a stop point for debug info if the case statement is
1545   // followed by a default statement. A fallthrough case before a
1546   // default case gets its own branch target.
1547   if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1548     EmitStopPoint(CurCase);
1549 
1550   // Normal default recursion for non-cases.
1551   EmitStmt(CurCase->getSubStmt());
1552 }
1553 
1554 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1555                                       ArrayRef<const Attr *> Attrs) {
1556   // If there is no enclosing switch instance that we're aware of, then this
1557   // default statement can be elided. This situation only happens when we've
1558   // constant-folded the switch.
1559   if (!SwitchInsn) {
1560     EmitStmt(S.getSubStmt());
1561     return;
1562   }
1563 
1564   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1565   assert(DefaultBlock->empty() &&
1566          "EmitDefaultStmt: Default block already defined?");
1567 
1568   if (SwitchLikelihood)
1569     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1570 
1571   EmitBlockWithFallThrough(DefaultBlock, &S);
1572 
1573   EmitStmt(S.getSubStmt());
1574 }
1575 
1576 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1577 /// constant value that is being switched on, see if we can dead code eliminate
1578 /// the body of the switch to a simple series of statements to emit.  Basically,
1579 /// on a switch (5) we want to find these statements:
1580 ///    case 5:
1581 ///      printf(...);    <--
1582 ///      ++i;            <--
1583 ///      break;
1584 ///
1585 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1586 /// transformation (for example, one of the elided statements contains a label
1587 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1588 /// should include statements after it (e.g. the printf() line is a substmt of
1589 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1590 /// statement, then return CSFC_Success.
1591 ///
1592 /// If Case is non-null, then we are looking for the specified case, checking
1593 /// that nothing we jump over contains labels.  If Case is null, then we found
1594 /// the case and are looking for the break.
1595 ///
1596 /// If the recursive walk actually finds our Case, then we set FoundCase to
1597 /// true.
1598 ///
1599 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1600 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1601                                             const SwitchCase *Case,
1602                                             bool &FoundCase,
1603                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1604   // If this is a null statement, just succeed.
1605   if (!S)
1606     return Case ? CSFC_Success : CSFC_FallThrough;
1607 
1608   // If this is the switchcase (case 4: or default) that we're looking for, then
1609   // we're in business.  Just add the substatement.
1610   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1611     if (S == Case) {
1612       FoundCase = true;
1613       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1614                                       ResultStmts);
1615     }
1616 
1617     // Otherwise, this is some other case or default statement, just ignore it.
1618     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1619                                     ResultStmts);
1620   }
1621 
1622   // If we are in the live part of the code and we found our break statement,
1623   // return a success!
1624   if (!Case && isa<BreakStmt>(S))
1625     return CSFC_Success;
1626 
1627   // If this is a switch statement, then it might contain the SwitchCase, the
1628   // break, or neither.
1629   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1630     // Handle this as two cases: we might be looking for the SwitchCase (if so
1631     // the skipped statements must be skippable) or we might already have it.
1632     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1633     bool StartedInLiveCode = FoundCase;
1634     unsigned StartSize = ResultStmts.size();
1635 
1636     // If we've not found the case yet, scan through looking for it.
1637     if (Case) {
1638       // Keep track of whether we see a skipped declaration.  The code could be
1639       // using the declaration even if it is skipped, so we can't optimize out
1640       // the decl if the kept statements might refer to it.
1641       bool HadSkippedDecl = false;
1642 
1643       // If we're looking for the case, just see if we can skip each of the
1644       // substatements.
1645       for (; Case && I != E; ++I) {
1646         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1647 
1648         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1649         case CSFC_Failure: return CSFC_Failure;
1650         case CSFC_Success:
1651           // A successful result means that either 1) that the statement doesn't
1652           // have the case and is skippable, or 2) does contain the case value
1653           // and also contains the break to exit the switch.  In the later case,
1654           // we just verify the rest of the statements are elidable.
1655           if (FoundCase) {
1656             // If we found the case and skipped declarations, we can't do the
1657             // optimization.
1658             if (HadSkippedDecl)
1659               return CSFC_Failure;
1660 
1661             for (++I; I != E; ++I)
1662               if (CodeGenFunction::ContainsLabel(*I, true))
1663                 return CSFC_Failure;
1664             return CSFC_Success;
1665           }
1666           break;
1667         case CSFC_FallThrough:
1668           // If we have a fallthrough condition, then we must have found the
1669           // case started to include statements.  Consider the rest of the
1670           // statements in the compound statement as candidates for inclusion.
1671           assert(FoundCase && "Didn't find case but returned fallthrough?");
1672           // We recursively found Case, so we're not looking for it anymore.
1673           Case = nullptr;
1674 
1675           // If we found the case and skipped declarations, we can't do the
1676           // optimization.
1677           if (HadSkippedDecl)
1678             return CSFC_Failure;
1679           break;
1680         }
1681       }
1682 
1683       if (!FoundCase)
1684         return CSFC_Success;
1685 
1686       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1687     }
1688 
1689     // If we have statements in our range, then we know that the statements are
1690     // live and need to be added to the set of statements we're tracking.
1691     bool AnyDecls = false;
1692     for (; I != E; ++I) {
1693       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1694 
1695       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1696       case CSFC_Failure: return CSFC_Failure;
1697       case CSFC_FallThrough:
1698         // A fallthrough result means that the statement was simple and just
1699         // included in ResultStmt, keep adding them afterwards.
1700         break;
1701       case CSFC_Success:
1702         // A successful result means that we found the break statement and
1703         // stopped statement inclusion.  We just ensure that any leftover stmts
1704         // are skippable and return success ourselves.
1705         for (++I; I != E; ++I)
1706           if (CodeGenFunction::ContainsLabel(*I, true))
1707             return CSFC_Failure;
1708         return CSFC_Success;
1709       }
1710     }
1711 
1712     // If we're about to fall out of a scope without hitting a 'break;', we
1713     // can't perform the optimization if there were any decls in that scope
1714     // (we'd lose their end-of-lifetime).
1715     if (AnyDecls) {
1716       // If the entire compound statement was live, there's one more thing we
1717       // can try before giving up: emit the whole thing as a single statement.
1718       // We can do that unless the statement contains a 'break;'.
1719       // FIXME: Such a break must be at the end of a construct within this one.
1720       // We could emit this by just ignoring the BreakStmts entirely.
1721       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1722         ResultStmts.resize(StartSize);
1723         ResultStmts.push_back(S);
1724       } else {
1725         return CSFC_Failure;
1726       }
1727     }
1728 
1729     return CSFC_FallThrough;
1730   }
1731 
1732   // Okay, this is some other statement that we don't handle explicitly, like a
1733   // for statement or increment etc.  If we are skipping over this statement,
1734   // just verify it doesn't have labels, which would make it invalid to elide.
1735   if (Case) {
1736     if (CodeGenFunction::ContainsLabel(S, true))
1737       return CSFC_Failure;
1738     return CSFC_Success;
1739   }
1740 
1741   // Otherwise, we want to include this statement.  Everything is cool with that
1742   // so long as it doesn't contain a break out of the switch we're in.
1743   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1744 
1745   // Otherwise, everything is great.  Include the statement and tell the caller
1746   // that we fall through and include the next statement as well.
1747   ResultStmts.push_back(S);
1748   return CSFC_FallThrough;
1749 }
1750 
1751 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1752 /// then invoke CollectStatementsForCase to find the list of statements to emit
1753 /// for a switch on constant.  See the comment above CollectStatementsForCase
1754 /// for more details.
1755 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1756                                        const llvm::APSInt &ConstantCondValue,
1757                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1758                                        ASTContext &C,
1759                                        const SwitchCase *&ResultCase) {
1760   // First step, find the switch case that is being branched to.  We can do this
1761   // efficiently by scanning the SwitchCase list.
1762   const SwitchCase *Case = S.getSwitchCaseList();
1763   const DefaultStmt *DefaultCase = nullptr;
1764 
1765   for (; Case; Case = Case->getNextSwitchCase()) {
1766     // It's either a default or case.  Just remember the default statement in
1767     // case we're not jumping to any numbered cases.
1768     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1769       DefaultCase = DS;
1770       continue;
1771     }
1772 
1773     // Check to see if this case is the one we're looking for.
1774     const CaseStmt *CS = cast<CaseStmt>(Case);
1775     // Don't handle case ranges yet.
1776     if (CS->getRHS()) return false;
1777 
1778     // If we found our case, remember it as 'case'.
1779     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1780       break;
1781   }
1782 
1783   // If we didn't find a matching case, we use a default if it exists, or we
1784   // elide the whole switch body!
1785   if (!Case) {
1786     // It is safe to elide the body of the switch if it doesn't contain labels
1787     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1788     if (!DefaultCase)
1789       return !CodeGenFunction::ContainsLabel(&S);
1790     Case = DefaultCase;
1791   }
1792 
1793   // Ok, we know which case is being jumped to, try to collect all the
1794   // statements that follow it.  This can fail for a variety of reasons.  Also,
1795   // check to see that the recursive walk actually found our case statement.
1796   // Insane cases like this can fail to find it in the recursive walk since we
1797   // don't handle every stmt kind:
1798   // switch (4) {
1799   //   while (1) {
1800   //     case 4: ...
1801   bool FoundCase = false;
1802   ResultCase = Case;
1803   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1804                                   ResultStmts) != CSFC_Failure &&
1805          FoundCase;
1806 }
1807 
1808 static Optional<SmallVector<uint64_t, 16>>
1809 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1810   // Are there enough branches to weight them?
1811   if (Likelihoods.size() <= 1)
1812     return None;
1813 
1814   uint64_t NumUnlikely = 0;
1815   uint64_t NumNone = 0;
1816   uint64_t NumLikely = 0;
1817   for (const auto LH : Likelihoods) {
1818     switch (LH) {
1819     case Stmt::LH_Unlikely:
1820       ++NumUnlikely;
1821       break;
1822     case Stmt::LH_None:
1823       ++NumNone;
1824       break;
1825     case Stmt::LH_Likely:
1826       ++NumLikely;
1827       break;
1828     }
1829   }
1830 
1831   // Is there a likelihood attribute used?
1832   if (NumUnlikely == 0 && NumLikely == 0)
1833     return None;
1834 
1835   // When multiple cases share the same code they can be combined during
1836   // optimization. In that case the weights of the branch will be the sum of
1837   // the individual weights. Make sure the combined sum of all neutral cases
1838   // doesn't exceed the value of a single likely attribute.
1839   // The additions both avoid divisions by 0 and make sure the weights of None
1840   // don't exceed the weight of Likely.
1841   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1842   const uint64_t None = Likely / (NumNone + 1);
1843   const uint64_t Unlikely = 0;
1844 
1845   SmallVector<uint64_t, 16> Result;
1846   Result.reserve(Likelihoods.size());
1847   for (const auto LH : Likelihoods) {
1848     switch (LH) {
1849     case Stmt::LH_Unlikely:
1850       Result.push_back(Unlikely);
1851       break;
1852     case Stmt::LH_None:
1853       Result.push_back(None);
1854       break;
1855     case Stmt::LH_Likely:
1856       Result.push_back(Likely);
1857       break;
1858     }
1859   }
1860 
1861   return Result;
1862 }
1863 
1864 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1865   // Handle nested switch statements.
1866   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1867   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1868   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1869   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1870 
1871   // See if we can constant fold the condition of the switch and therefore only
1872   // emit the live case statement (if any) of the switch.
1873   llvm::APSInt ConstantCondValue;
1874   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1875     SmallVector<const Stmt*, 4> CaseStmts;
1876     const SwitchCase *Case = nullptr;
1877     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1878                                    getContext(), Case)) {
1879       if (Case)
1880         incrementProfileCounter(Case);
1881       RunCleanupsScope ExecutedScope(*this);
1882 
1883       if (S.getInit())
1884         EmitStmt(S.getInit());
1885 
1886       // Emit the condition variable if needed inside the entire cleanup scope
1887       // used by this special case for constant folded switches.
1888       if (S.getConditionVariable())
1889         EmitDecl(*S.getConditionVariable());
1890 
1891       // At this point, we are no longer "within" a switch instance, so
1892       // we can temporarily enforce this to ensure that any embedded case
1893       // statements are not emitted.
1894       SwitchInsn = nullptr;
1895 
1896       // Okay, we can dead code eliminate everything except this case.  Emit the
1897       // specified series of statements and we're good.
1898       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1899         EmitStmt(CaseStmts[i]);
1900       incrementProfileCounter(&S);
1901 
1902       // Now we want to restore the saved switch instance so that nested
1903       // switches continue to function properly
1904       SwitchInsn = SavedSwitchInsn;
1905 
1906       return;
1907     }
1908   }
1909 
1910   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1911 
1912   RunCleanupsScope ConditionScope(*this);
1913 
1914   if (S.getInit())
1915     EmitStmt(S.getInit());
1916 
1917   if (S.getConditionVariable())
1918     EmitDecl(*S.getConditionVariable());
1919   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1920 
1921   // Create basic block to hold stuff that comes after switch
1922   // statement. We also need to create a default block now so that
1923   // explicit case ranges tests can have a place to jump to on
1924   // failure.
1925   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1926   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1927   if (PGO.haveRegionCounts()) {
1928     // Walk the SwitchCase list to find how many there are.
1929     uint64_t DefaultCount = 0;
1930     unsigned NumCases = 0;
1931     for (const SwitchCase *Case = S.getSwitchCaseList();
1932          Case;
1933          Case = Case->getNextSwitchCase()) {
1934       if (isa<DefaultStmt>(Case))
1935         DefaultCount = getProfileCount(Case);
1936       NumCases += 1;
1937     }
1938     SwitchWeights = new SmallVector<uint64_t, 16>();
1939     SwitchWeights->reserve(NumCases);
1940     // The default needs to be first. We store the edge count, so we already
1941     // know the right weight.
1942     SwitchWeights->push_back(DefaultCount);
1943   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1944     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1945     // Initialize the default case.
1946     SwitchLikelihood->push_back(Stmt::LH_None);
1947   }
1948 
1949   CaseRangeBlock = DefaultBlock;
1950 
1951   // Clear the insertion point to indicate we are in unreachable code.
1952   Builder.ClearInsertionPoint();
1953 
1954   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1955   // then reuse last ContinueBlock.
1956   JumpDest OuterContinue;
1957   if (!BreakContinueStack.empty())
1958     OuterContinue = BreakContinueStack.back().ContinueBlock;
1959 
1960   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1961 
1962   // Emit switch body.
1963   EmitStmt(S.getBody());
1964 
1965   BreakContinueStack.pop_back();
1966 
1967   // Update the default block in case explicit case range tests have
1968   // been chained on top.
1969   SwitchInsn->setDefaultDest(CaseRangeBlock);
1970 
1971   // If a default was never emitted:
1972   if (!DefaultBlock->getParent()) {
1973     // If we have cleanups, emit the default block so that there's a
1974     // place to jump through the cleanups from.
1975     if (ConditionScope.requiresCleanups()) {
1976       EmitBlock(DefaultBlock);
1977 
1978     // Otherwise, just forward the default block to the switch end.
1979     } else {
1980       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1981       delete DefaultBlock;
1982     }
1983   }
1984 
1985   ConditionScope.ForceCleanup();
1986 
1987   // Emit continuation.
1988   EmitBlock(SwitchExit.getBlock(), true);
1989   incrementProfileCounter(&S);
1990 
1991   // If the switch has a condition wrapped by __builtin_unpredictable,
1992   // create metadata that specifies that the switch is unpredictable.
1993   // Don't bother if not optimizing because that metadata would not be used.
1994   auto *Call = dyn_cast<CallExpr>(S.getCond());
1995   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1996     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1997     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1998       llvm::MDBuilder MDHelper(getLLVMContext());
1999       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2000                               MDHelper.createUnpredictable());
2001     }
2002   }
2003 
2004   if (SwitchWeights) {
2005     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2006            "switch weights do not match switch cases");
2007     // If there's only one jump destination there's no sense weighting it.
2008     if (SwitchWeights->size() > 1)
2009       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2010                               createProfileWeights(*SwitchWeights));
2011     delete SwitchWeights;
2012   } else if (SwitchLikelihood) {
2013     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2014            "switch likelihoods do not match switch cases");
2015     Optional<SmallVector<uint64_t, 16>> LHW =
2016         getLikelihoodWeights(*SwitchLikelihood);
2017     if (LHW) {
2018       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2019       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2020                               createProfileWeights(*LHW));
2021     }
2022     delete SwitchLikelihood;
2023   }
2024   SwitchInsn = SavedSwitchInsn;
2025   SwitchWeights = SavedSwitchWeights;
2026   SwitchLikelihood = SavedSwitchLikelihood;
2027   CaseRangeBlock = SavedCRBlock;
2028 }
2029 
2030 static std::string
2031 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2032                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2033   std::string Result;
2034 
2035   while (*Constraint) {
2036     switch (*Constraint) {
2037     default:
2038       Result += Target.convertConstraint(Constraint);
2039       break;
2040     // Ignore these
2041     case '*':
2042     case '?':
2043     case '!':
2044     case '=': // Will see this and the following in mult-alt constraints.
2045     case '+':
2046       break;
2047     case '#': // Ignore the rest of the constraint alternative.
2048       while (Constraint[1] && Constraint[1] != ',')
2049         Constraint++;
2050       break;
2051     case '&':
2052     case '%':
2053       Result += *Constraint;
2054       while (Constraint[1] && Constraint[1] == *Constraint)
2055         Constraint++;
2056       break;
2057     case ',':
2058       Result += "|";
2059       break;
2060     case 'g':
2061       Result += "imr";
2062       break;
2063     case '[': {
2064       assert(OutCons &&
2065              "Must pass output names to constraints with a symbolic name");
2066       unsigned Index;
2067       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2068       assert(result && "Could not resolve symbolic name"); (void)result;
2069       Result += llvm::utostr(Index);
2070       break;
2071     }
2072     }
2073 
2074     Constraint++;
2075   }
2076 
2077   return Result;
2078 }
2079 
2080 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2081 /// as using a particular register add that as a constraint that will be used
2082 /// in this asm stmt.
2083 static std::string
2084 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2085                        const TargetInfo &Target, CodeGenModule &CGM,
2086                        const AsmStmt &Stmt, const bool EarlyClobber,
2087                        std::string *GCCReg = nullptr) {
2088   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2089   if (!AsmDeclRef)
2090     return Constraint;
2091   const ValueDecl &Value = *AsmDeclRef->getDecl();
2092   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2093   if (!Variable)
2094     return Constraint;
2095   if (Variable->getStorageClass() != SC_Register)
2096     return Constraint;
2097   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2098   if (!Attr)
2099     return Constraint;
2100   StringRef Register = Attr->getLabel();
2101   assert(Target.isValidGCCRegisterName(Register));
2102   // We're using validateOutputConstraint here because we only care if
2103   // this is a register constraint.
2104   TargetInfo::ConstraintInfo Info(Constraint, "");
2105   if (Target.validateOutputConstraint(Info) &&
2106       !Info.allowsRegister()) {
2107     CGM.ErrorUnsupported(&Stmt, "__asm__");
2108     return Constraint;
2109   }
2110   // Canonicalize the register here before returning it.
2111   Register = Target.getNormalizedGCCRegisterName(Register);
2112   if (GCCReg != nullptr)
2113     *GCCReg = Register.str();
2114   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2115 }
2116 
2117 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2118     const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2119     QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2120   if (Info.allowsRegister() || !Info.allowsMemory()) {
2121     if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2122       return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2123 
2124     llvm::Type *Ty = ConvertType(InputType);
2125     uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2126     if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2127         getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2128       Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2129 
2130       return {Builder.CreateLoad(Builder.CreateElementBitCast(
2131                   InputValue.getAddress(*this), Ty)),
2132               nullptr};
2133     }
2134   }
2135 
2136   Address Addr = InputValue.getAddress(*this);
2137   ConstraintStr += '*';
2138   return {Addr.getPointer(), Addr.getElementType()};
2139 }
2140 
2141 std::pair<llvm::Value *, llvm::Type *>
2142 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2143                               const Expr *InputExpr,
2144                               std::string &ConstraintStr) {
2145   // If this can't be a register or memory, i.e., has to be a constant
2146   // (immediate or symbolic), try to emit it as such.
2147   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2148     if (Info.requiresImmediateConstant()) {
2149       Expr::EvalResult EVResult;
2150       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2151 
2152       llvm::APSInt IntResult;
2153       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2154                                           getContext()))
2155         return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2156     }
2157 
2158     Expr::EvalResult Result;
2159     if (InputExpr->EvaluateAsInt(Result, getContext()))
2160       return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2161               nullptr};
2162   }
2163 
2164   if (Info.allowsRegister() || !Info.allowsMemory())
2165     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2166       return {EmitScalarExpr(InputExpr), nullptr};
2167   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2168     return {EmitScalarExpr(InputExpr), nullptr};
2169   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2170   LValue Dest = EmitLValue(InputExpr);
2171   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2172                             InputExpr->getExprLoc());
2173 }
2174 
2175 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2176 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2177 /// integers which are the source locations of the start of each line in the
2178 /// asm.
2179 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2180                                       CodeGenFunction &CGF) {
2181   SmallVector<llvm::Metadata *, 8> Locs;
2182   // Add the location of the first line to the MDNode.
2183   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2184       CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2185   StringRef StrVal = Str->getString();
2186   if (!StrVal.empty()) {
2187     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2188     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2189     unsigned StartToken = 0;
2190     unsigned ByteOffset = 0;
2191 
2192     // Add the location of the start of each subsequent line of the asm to the
2193     // MDNode.
2194     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2195       if (StrVal[i] != '\n') continue;
2196       SourceLocation LineLoc = Str->getLocationOfByte(
2197           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2198       Locs.push_back(llvm::ConstantAsMetadata::get(
2199           llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2200     }
2201   }
2202 
2203   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2204 }
2205 
2206 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2207                               bool HasUnwindClobber, bool ReadOnly,
2208                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2209                               const std::vector<llvm::Type *> &ResultRegTypes,
2210                               const std::vector<llvm::Type *> &ArgElemTypes,
2211                               CodeGenFunction &CGF,
2212                               std::vector<llvm::Value *> &RegResults) {
2213   if (!HasUnwindClobber)
2214     Result.addFnAttr(llvm::Attribute::NoUnwind);
2215 
2216   if (NoMerge)
2217     Result.addFnAttr(llvm::Attribute::NoMerge);
2218   // Attach readnone and readonly attributes.
2219   if (!HasSideEffect) {
2220     if (ReadNone)
2221       Result.addFnAttr(llvm::Attribute::ReadNone);
2222     else if (ReadOnly)
2223       Result.addFnAttr(llvm::Attribute::ReadOnly);
2224   }
2225 
2226   // Add elementtype attribute for indirect constraints.
2227   for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2228     if (Pair.value()) {
2229       auto Attr = llvm::Attribute::get(
2230           CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2231       Result.addParamAttr(Pair.index(), Attr);
2232     }
2233   }
2234 
2235   // Slap the source location of the inline asm into a !srcloc metadata on the
2236   // call.
2237   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2238     Result.setMetadata("srcloc",
2239                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2240   else {
2241     // At least put the line number on MS inline asm blobs.
2242     llvm::Constant *Loc =
2243         llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2244     Result.setMetadata("srcloc",
2245                        llvm::MDNode::get(CGF.getLLVMContext(),
2246                                          llvm::ConstantAsMetadata::get(Loc)));
2247   }
2248 
2249   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2250     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2251     // convergent (meaning, they may call an intrinsically convergent op, such
2252     // as bar.sync, and so can't have certain optimizations applied around
2253     // them).
2254     Result.addFnAttr(llvm::Attribute::Convergent);
2255   // Extract all of the register value results from the asm.
2256   if (ResultRegTypes.size() == 1) {
2257     RegResults.push_back(&Result);
2258   } else {
2259     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2260       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2261       RegResults.push_back(Tmp);
2262     }
2263   }
2264 }
2265 
2266 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2267   // Assemble the final asm string.
2268   std::string AsmString = S.generateAsmString(getContext());
2269 
2270   // Get all the output and input constraints together.
2271   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2272   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2273 
2274   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2275     StringRef Name;
2276     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2277       Name = GAS->getOutputName(i);
2278     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2279     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2280     assert(IsValid && "Failed to parse output constraint");
2281     OutputConstraintInfos.push_back(Info);
2282   }
2283 
2284   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2285     StringRef Name;
2286     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2287       Name = GAS->getInputName(i);
2288     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2289     bool IsValid =
2290       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2291     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2292     InputConstraintInfos.push_back(Info);
2293   }
2294 
2295   std::string Constraints;
2296 
2297   std::vector<LValue> ResultRegDests;
2298   std::vector<QualType> ResultRegQualTys;
2299   std::vector<llvm::Type *> ResultRegTypes;
2300   std::vector<llvm::Type *> ResultTruncRegTypes;
2301   std::vector<llvm::Type *> ArgTypes;
2302   std::vector<llvm::Type *> ArgElemTypes;
2303   std::vector<llvm::Value*> Args;
2304   llvm::BitVector ResultTypeRequiresCast;
2305 
2306   // Keep track of inout constraints.
2307   std::string InOutConstraints;
2308   std::vector<llvm::Value*> InOutArgs;
2309   std::vector<llvm::Type*> InOutArgTypes;
2310   std::vector<llvm::Type*> InOutArgElemTypes;
2311 
2312   // Keep track of out constraints for tied input operand.
2313   std::vector<std::string> OutputConstraints;
2314 
2315   // Keep track of defined physregs.
2316   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2317 
2318   // An inline asm can be marked readonly if it meets the following conditions:
2319   //  - it doesn't have any sideeffects
2320   //  - it doesn't clobber memory
2321   //  - it doesn't return a value by-reference
2322   // It can be marked readnone if it doesn't have any input memory constraints
2323   // in addition to meeting the conditions listed above.
2324   bool ReadOnly = true, ReadNone = true;
2325 
2326   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2327     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2328 
2329     // Simplify the output constraint.
2330     std::string OutputConstraint(S.getOutputConstraint(i));
2331     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2332                                           getTarget(), &OutputConstraintInfos);
2333 
2334     const Expr *OutExpr = S.getOutputExpr(i);
2335     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2336 
2337     std::string GCCReg;
2338     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2339                                               getTarget(), CGM, S,
2340                                               Info.earlyClobber(),
2341                                               &GCCReg);
2342     // Give an error on multiple outputs to same physreg.
2343     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2344       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2345 
2346     OutputConstraints.push_back(OutputConstraint);
2347     LValue Dest = EmitLValue(OutExpr);
2348     if (!Constraints.empty())
2349       Constraints += ',';
2350 
2351     // If this is a register output, then make the inline asm return it
2352     // by-value.  If this is a memory result, return the value by-reference.
2353     QualType QTy = OutExpr->getType();
2354     const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2355                                      hasAggregateEvaluationKind(QTy);
2356     if (!Info.allowsMemory() && IsScalarOrAggregate) {
2357 
2358       Constraints += "=" + OutputConstraint;
2359       ResultRegQualTys.push_back(QTy);
2360       ResultRegDests.push_back(Dest);
2361 
2362       llvm::Type *Ty = ConvertTypeForMem(QTy);
2363       const bool RequiresCast = Info.allowsRegister() &&
2364           (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2365            Ty->isAggregateType());
2366 
2367       ResultTruncRegTypes.push_back(Ty);
2368       ResultTypeRequiresCast.push_back(RequiresCast);
2369 
2370       if (RequiresCast) {
2371         unsigned Size = getContext().getTypeSize(QTy);
2372         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2373       }
2374       ResultRegTypes.push_back(Ty);
2375       // If this output is tied to an input, and if the input is larger, then
2376       // we need to set the actual result type of the inline asm node to be the
2377       // same as the input type.
2378       if (Info.hasMatchingInput()) {
2379         unsigned InputNo;
2380         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2381           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2382           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2383             break;
2384         }
2385         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2386 
2387         QualType InputTy = S.getInputExpr(InputNo)->getType();
2388         QualType OutputType = OutExpr->getType();
2389 
2390         uint64_t InputSize = getContext().getTypeSize(InputTy);
2391         if (getContext().getTypeSize(OutputType) < InputSize) {
2392           // Form the asm to return the value as a larger integer or fp type.
2393           ResultRegTypes.back() = ConvertType(InputTy);
2394         }
2395       }
2396       if (llvm::Type* AdjTy =
2397             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2398                                                  ResultRegTypes.back()))
2399         ResultRegTypes.back() = AdjTy;
2400       else {
2401         CGM.getDiags().Report(S.getAsmLoc(),
2402                               diag::err_asm_invalid_type_in_input)
2403             << OutExpr->getType() << OutputConstraint;
2404       }
2405 
2406       // Update largest vector width for any vector types.
2407       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2408         LargestVectorWidth =
2409             std::max((uint64_t)LargestVectorWidth,
2410                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2411     } else {
2412       Address DestAddr = Dest.getAddress(*this);
2413       // Matrix types in memory are represented by arrays, but accessed through
2414       // vector pointers, with the alignment specified on the access operation.
2415       // For inline assembly, update pointer arguments to use vector pointers.
2416       // Otherwise there will be a mis-match if the matrix is also an
2417       // input-argument which is represented as vector.
2418       if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2419         DestAddr = Builder.CreateElementBitCast(
2420             DestAddr, ConvertType(OutExpr->getType()));
2421 
2422       ArgTypes.push_back(DestAddr.getType());
2423       ArgElemTypes.push_back(DestAddr.getElementType());
2424       Args.push_back(DestAddr.getPointer());
2425       Constraints += "=*";
2426       Constraints += OutputConstraint;
2427       ReadOnly = ReadNone = false;
2428     }
2429 
2430     if (Info.isReadWrite()) {
2431       InOutConstraints += ',';
2432 
2433       const Expr *InputExpr = S.getOutputExpr(i);
2434       llvm::Value *Arg;
2435       llvm::Type *ArgElemType;
2436       std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2437           Info, Dest, InputExpr->getType(), InOutConstraints,
2438           InputExpr->getExprLoc());
2439 
2440       if (llvm::Type* AdjTy =
2441           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2442                                                Arg->getType()))
2443         Arg = Builder.CreateBitCast(Arg, AdjTy);
2444 
2445       // Update largest vector width for any vector types.
2446       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2447         LargestVectorWidth =
2448             std::max((uint64_t)LargestVectorWidth,
2449                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2450       // Only tie earlyclobber physregs.
2451       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2452         InOutConstraints += llvm::utostr(i);
2453       else
2454         InOutConstraints += OutputConstraint;
2455 
2456       InOutArgTypes.push_back(Arg->getType());
2457       InOutArgElemTypes.push_back(ArgElemType);
2458       InOutArgs.push_back(Arg);
2459     }
2460   }
2461 
2462   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2463   // to the return value slot. Only do this when returning in registers.
2464   if (isa<MSAsmStmt>(&S)) {
2465     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2466     if (RetAI.isDirect() || RetAI.isExtend()) {
2467       // Make a fake lvalue for the return value slot.
2468       LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2469       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2470           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2471           ResultRegDests, AsmString, S.getNumOutputs());
2472       SawAsmBlock = true;
2473     }
2474   }
2475 
2476   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2477     const Expr *InputExpr = S.getInputExpr(i);
2478 
2479     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2480 
2481     if (Info.allowsMemory())
2482       ReadNone = false;
2483 
2484     if (!Constraints.empty())
2485       Constraints += ',';
2486 
2487     // Simplify the input constraint.
2488     std::string InputConstraint(S.getInputConstraint(i));
2489     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2490                                          &OutputConstraintInfos);
2491 
2492     InputConstraint = AddVariableConstraints(
2493         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2494         getTarget(), CGM, S, false /* No EarlyClobber */);
2495 
2496     std::string ReplaceConstraint (InputConstraint);
2497     llvm::Value *Arg;
2498     llvm::Type *ArgElemType;
2499     std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2500 
2501     // If this input argument is tied to a larger output result, extend the
2502     // input to be the same size as the output.  The LLVM backend wants to see
2503     // the input and output of a matching constraint be the same size.  Note
2504     // that GCC does not define what the top bits are here.  We use zext because
2505     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2506     if (Info.hasTiedOperand()) {
2507       unsigned Output = Info.getTiedOperand();
2508       QualType OutputType = S.getOutputExpr(Output)->getType();
2509       QualType InputTy = InputExpr->getType();
2510 
2511       if (getContext().getTypeSize(OutputType) >
2512           getContext().getTypeSize(InputTy)) {
2513         // Use ptrtoint as appropriate so that we can do our extension.
2514         if (isa<llvm::PointerType>(Arg->getType()))
2515           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2516         llvm::Type *OutputTy = ConvertType(OutputType);
2517         if (isa<llvm::IntegerType>(OutputTy))
2518           Arg = Builder.CreateZExt(Arg, OutputTy);
2519         else if (isa<llvm::PointerType>(OutputTy))
2520           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2521         else if (OutputTy->isFloatingPointTy())
2522           Arg = Builder.CreateFPExt(Arg, OutputTy);
2523       }
2524       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2525       ReplaceConstraint = OutputConstraints[Output];
2526     }
2527     if (llvm::Type* AdjTy =
2528           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2529                                                    Arg->getType()))
2530       Arg = Builder.CreateBitCast(Arg, AdjTy);
2531     else
2532       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2533           << InputExpr->getType() << InputConstraint;
2534 
2535     // Update largest vector width for any vector types.
2536     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2537       LargestVectorWidth =
2538           std::max((uint64_t)LargestVectorWidth,
2539                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2540 
2541     ArgTypes.push_back(Arg->getType());
2542     ArgElemTypes.push_back(ArgElemType);
2543     Args.push_back(Arg);
2544     Constraints += InputConstraint;
2545   }
2546 
2547   // Append the "input" part of inout constraints.
2548   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2549     ArgTypes.push_back(InOutArgTypes[i]);
2550     ArgElemTypes.push_back(InOutArgElemTypes[i]);
2551     Args.push_back(InOutArgs[i]);
2552   }
2553   Constraints += InOutConstraints;
2554 
2555   // Labels
2556   SmallVector<llvm::BasicBlock *, 16> Transfer;
2557   llvm::BasicBlock *Fallthrough = nullptr;
2558   bool IsGCCAsmGoto = false;
2559   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2560     IsGCCAsmGoto = GS->isAsmGoto();
2561     if (IsGCCAsmGoto) {
2562       for (const auto *E : GS->labels()) {
2563         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2564         Transfer.push_back(Dest.getBlock());
2565         llvm::BlockAddress *BA =
2566             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2567         Args.push_back(BA);
2568         ArgTypes.push_back(BA->getType());
2569         ArgElemTypes.push_back(nullptr);
2570         if (!Constraints.empty())
2571           Constraints += ',';
2572         Constraints += 'i';
2573       }
2574       Fallthrough = createBasicBlock("asm.fallthrough");
2575     }
2576   }
2577 
2578   bool HasUnwindClobber = false;
2579 
2580   // Clobbers
2581   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2582     StringRef Clobber = S.getClobber(i);
2583 
2584     if (Clobber == "memory")
2585       ReadOnly = ReadNone = false;
2586     else if (Clobber == "unwind") {
2587       HasUnwindClobber = true;
2588       continue;
2589     } else if (Clobber != "cc") {
2590       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2591       if (CGM.getCodeGenOpts().StackClashProtector &&
2592           getTarget().isSPRegName(Clobber)) {
2593         CGM.getDiags().Report(S.getAsmLoc(),
2594                               diag::warn_stack_clash_protection_inline_asm);
2595       }
2596     }
2597 
2598     if (isa<MSAsmStmt>(&S)) {
2599       if (Clobber == "eax" || Clobber == "edx") {
2600         if (Constraints.find("=&A") != std::string::npos)
2601           continue;
2602         std::string::size_type position1 =
2603             Constraints.find("={" + Clobber.str() + "}");
2604         if (position1 != std::string::npos) {
2605           Constraints.insert(position1 + 1, "&");
2606           continue;
2607         }
2608         std::string::size_type position2 = Constraints.find("=A");
2609         if (position2 != std::string::npos) {
2610           Constraints.insert(position2 + 1, "&");
2611           continue;
2612         }
2613       }
2614     }
2615     if (!Constraints.empty())
2616       Constraints += ',';
2617 
2618     Constraints += "~{";
2619     Constraints += Clobber;
2620     Constraints += '}';
2621   }
2622 
2623   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2624          "unwind clobber can't be used with asm goto");
2625 
2626   // Add machine specific clobbers
2627   std::string MachineClobbers = getTarget().getClobbers();
2628   if (!MachineClobbers.empty()) {
2629     if (!Constraints.empty())
2630       Constraints += ',';
2631     Constraints += MachineClobbers;
2632   }
2633 
2634   llvm::Type *ResultType;
2635   if (ResultRegTypes.empty())
2636     ResultType = VoidTy;
2637   else if (ResultRegTypes.size() == 1)
2638     ResultType = ResultRegTypes[0];
2639   else
2640     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2641 
2642   llvm::FunctionType *FTy =
2643     llvm::FunctionType::get(ResultType, ArgTypes, false);
2644 
2645   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2646 
2647   llvm::InlineAsm::AsmDialect GnuAsmDialect =
2648       CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
2649           ? llvm::InlineAsm::AD_ATT
2650           : llvm::InlineAsm::AD_Intel;
2651   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2652     llvm::InlineAsm::AD_Intel : GnuAsmDialect;
2653 
2654   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2655       FTy, AsmString, Constraints, HasSideEffect,
2656       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2657   std::vector<llvm::Value*> RegResults;
2658   if (IsGCCAsmGoto) {
2659     llvm::CallBrInst *Result =
2660         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2661     EmitBlock(Fallthrough);
2662     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2663                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2664                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2665   } else if (HasUnwindClobber) {
2666     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2667     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2668                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2669                       *this, RegResults);
2670   } else {
2671     llvm::CallInst *Result =
2672         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2673     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2674                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2675                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2676   }
2677 
2678   assert(RegResults.size() == ResultRegTypes.size());
2679   assert(RegResults.size() == ResultTruncRegTypes.size());
2680   assert(RegResults.size() == ResultRegDests.size());
2681   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2682   // in which case its size may grow.
2683   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2684   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2685     llvm::Value *Tmp = RegResults[i];
2686     llvm::Type *TruncTy = ResultTruncRegTypes[i];
2687 
2688     // If the result type of the LLVM IR asm doesn't match the result type of
2689     // the expression, do the conversion.
2690     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2691 
2692       // Truncate the integer result to the right size, note that TruncTy can be
2693       // a pointer.
2694       if (TruncTy->isFloatingPointTy())
2695         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2696       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2697         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2698         Tmp = Builder.CreateTrunc(Tmp,
2699                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2700         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2701       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2702         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2703         Tmp = Builder.CreatePtrToInt(Tmp,
2704                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2705         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2706       } else if (TruncTy->isIntegerTy()) {
2707         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2708       } else if (TruncTy->isVectorTy()) {
2709         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2710       }
2711     }
2712 
2713     LValue Dest = ResultRegDests[i];
2714     // ResultTypeRequiresCast elements correspond to the first
2715     // ResultTypeRequiresCast.size() elements of RegResults.
2716     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2717       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2718       Address A = Builder.CreateElementBitCast(Dest.getAddress(*this),
2719                                                ResultRegTypes[i]);
2720       if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) {
2721         Builder.CreateStore(Tmp, A);
2722         continue;
2723       }
2724 
2725       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2726       if (Ty.isNull()) {
2727         const Expr *OutExpr = S.getOutputExpr(i);
2728         CGM.Error(
2729             OutExpr->getExprLoc(),
2730             "impossible constraint in asm: can't store value into a register");
2731         return;
2732       }
2733       Dest = MakeAddrLValue(A, Ty);
2734     }
2735     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2736   }
2737 }
2738 
2739 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2740   const RecordDecl *RD = S.getCapturedRecordDecl();
2741   QualType RecordTy = getContext().getRecordType(RD);
2742 
2743   // Initialize the captured struct.
2744   LValue SlotLV =
2745     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2746 
2747   RecordDecl::field_iterator CurField = RD->field_begin();
2748   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2749                                                  E = S.capture_init_end();
2750        I != E; ++I, ++CurField) {
2751     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2752     if (CurField->hasCapturedVLAType()) {
2753       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2754     } else {
2755       EmitInitializerForField(*CurField, LV, *I);
2756     }
2757   }
2758 
2759   return SlotLV;
2760 }
2761 
2762 /// Generate an outlined function for the body of a CapturedStmt, store any
2763 /// captured variables into the captured struct, and call the outlined function.
2764 llvm::Function *
2765 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2766   LValue CapStruct = InitCapturedStruct(S);
2767 
2768   // Emit the CapturedDecl
2769   CodeGenFunction CGF(CGM, true);
2770   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2771   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2772   delete CGF.CapturedStmtInfo;
2773 
2774   // Emit call to the helper function.
2775   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2776 
2777   return F;
2778 }
2779 
2780 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2781   LValue CapStruct = InitCapturedStruct(S);
2782   return CapStruct.getAddress(*this);
2783 }
2784 
2785 /// Creates the outlined function for a CapturedStmt.
2786 llvm::Function *
2787 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2788   assert(CapturedStmtInfo &&
2789     "CapturedStmtInfo should be set when generating the captured function");
2790   const CapturedDecl *CD = S.getCapturedDecl();
2791   const RecordDecl *RD = S.getCapturedRecordDecl();
2792   SourceLocation Loc = S.getBeginLoc();
2793   assert(CD->hasBody() && "missing CapturedDecl body");
2794 
2795   // Build the argument list.
2796   ASTContext &Ctx = CGM.getContext();
2797   FunctionArgList Args;
2798   Args.append(CD->param_begin(), CD->param_end());
2799 
2800   // Create the function declaration.
2801   const CGFunctionInfo &FuncInfo =
2802     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2803   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2804 
2805   llvm::Function *F =
2806     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2807                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2808   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2809   if (CD->isNothrow())
2810     F->addFnAttr(llvm::Attribute::NoUnwind);
2811 
2812   // Generate the function.
2813   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2814                 CD->getBody()->getBeginLoc());
2815   // Set the context parameter in CapturedStmtInfo.
2816   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2817   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2818 
2819   // Initialize variable-length arrays.
2820   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2821                                            Ctx.getTagDeclType(RD));
2822   for (auto *FD : RD->fields()) {
2823     if (FD->hasCapturedVLAType()) {
2824       auto *ExprArg =
2825           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2826               .getScalarVal();
2827       auto VAT = FD->getCapturedVLAType();
2828       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2829     }
2830   }
2831 
2832   // If 'this' is captured, load it into CXXThisValue.
2833   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2834     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2835     LValue ThisLValue = EmitLValueForField(Base, FD);
2836     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2837   }
2838 
2839   PGO.assignRegionCounters(GlobalDecl(CD), F);
2840   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2841   FinishFunction(CD->getBodyRBrace());
2842 
2843   return F;
2844 }
2845