1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Sema/SemaDiagnostic.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/Support/CallSite.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Statement Emission 32 //===----------------------------------------------------------------------===// 33 34 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 35 if (CGDebugInfo *DI = getDebugInfo()) { 36 SourceLocation Loc; 37 Loc = S->getLocStart(); 38 DI->EmitLocation(Builder, Loc); 39 40 LastStopPoint = Loc; 41 } 42 } 43 44 void CodeGenFunction::EmitStmt(const Stmt *S) { 45 assert(S && "Null statement?"); 46 47 // These statements have their own debug info handling. 48 if (EmitSimpleStmt(S)) 49 return; 50 51 // Check if we are generating unreachable code. 52 if (!HaveInsertPoint()) { 53 // If so, and the statement doesn't contain a label, then we do not need to 54 // generate actual code. This is safe because (1) the current point is 55 // unreachable, so we don't need to execute the code, and (2) we've already 56 // handled the statements which update internal data structures (like the 57 // local variable map) which could be used by subsequent statements. 58 if (!ContainsLabel(S)) { 59 // Verify that any decl statements were handled as simple, they may be in 60 // scope of subsequent reachable statements. 61 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 62 return; 63 } 64 65 // Otherwise, make a new block to hold the code. 66 EnsureInsertPoint(); 67 } 68 69 // Generate a stoppoint if we are emitting debug info. 70 EmitStopPoint(S); 71 72 switch (S->getStmtClass()) { 73 case Stmt::NoStmtClass: 74 case Stmt::CXXCatchStmtClass: 75 case Stmt::SEHExceptStmtClass: 76 case Stmt::SEHFinallyStmtClass: 77 case Stmt::MSDependentExistsStmtClass: 78 case Stmt::OMPParallelDirectiveClass: 79 llvm_unreachable("invalid statement class to emit generically"); 80 case Stmt::NullStmtClass: 81 case Stmt::CompoundStmtClass: 82 case Stmt::DeclStmtClass: 83 case Stmt::LabelStmtClass: 84 case Stmt::AttributedStmtClass: 85 case Stmt::GotoStmtClass: 86 case Stmt::BreakStmtClass: 87 case Stmt::ContinueStmtClass: 88 case Stmt::DefaultStmtClass: 89 case Stmt::CaseStmtClass: 90 llvm_unreachable("should have emitted these statements as simple"); 91 92 #define STMT(Type, Base) 93 #define ABSTRACT_STMT(Op) 94 #define EXPR(Type, Base) \ 95 case Stmt::Type##Class: 96 #include "clang/AST/StmtNodes.inc" 97 { 98 // Remember the block we came in on. 99 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 100 assert(incoming && "expression emission must have an insertion point"); 101 102 EmitIgnoredExpr(cast<Expr>(S)); 103 104 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 105 assert(outgoing && "expression emission cleared block!"); 106 107 // The expression emitters assume (reasonably!) that the insertion 108 // point is always set. To maintain that, the call-emission code 109 // for noreturn functions has to enter a new block with no 110 // predecessors. We want to kill that block and mark the current 111 // insertion point unreachable in the common case of a call like 112 // "exit();". Since expression emission doesn't otherwise create 113 // blocks with no predecessors, we can just test for that. 114 // However, we must be careful not to do this to our incoming 115 // block, because *statement* emission does sometimes create 116 // reachable blocks which will have no predecessors until later in 117 // the function. This occurs with, e.g., labels that are not 118 // reachable by fallthrough. 119 if (incoming != outgoing && outgoing->use_empty()) { 120 outgoing->eraseFromParent(); 121 Builder.ClearInsertionPoint(); 122 } 123 break; 124 } 125 126 case Stmt::IndirectGotoStmtClass: 127 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 128 129 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 130 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 131 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 132 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 133 134 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 135 136 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 137 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 138 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 139 case Stmt::CapturedStmtClass: { 140 const CapturedStmt *CS = cast<CapturedStmt>(S); 141 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 142 } 143 break; 144 case Stmt::ObjCAtTryStmtClass: 145 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 146 break; 147 case Stmt::ObjCAtCatchStmtClass: 148 llvm_unreachable( 149 "@catch statements should be handled by EmitObjCAtTryStmt"); 150 case Stmt::ObjCAtFinallyStmtClass: 151 llvm_unreachable( 152 "@finally statements should be handled by EmitObjCAtTryStmt"); 153 case Stmt::ObjCAtThrowStmtClass: 154 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 155 break; 156 case Stmt::ObjCAtSynchronizedStmtClass: 157 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 158 break; 159 case Stmt::ObjCForCollectionStmtClass: 160 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 161 break; 162 case Stmt::ObjCAutoreleasePoolStmtClass: 163 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 164 break; 165 166 case Stmt::CXXTryStmtClass: 167 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 168 break; 169 case Stmt::CXXForRangeStmtClass: 170 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 171 break; 172 case Stmt::SEHTryStmtClass: 173 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 174 break; 175 } 176 } 177 178 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 179 switch (S->getStmtClass()) { 180 default: return false; 181 case Stmt::NullStmtClass: break; 182 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 183 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 184 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 185 case Stmt::AttributedStmtClass: 186 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 187 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 188 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 189 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 190 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 191 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 192 } 193 194 return true; 195 } 196 197 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 198 /// this captures the expression result of the last sub-statement and returns it 199 /// (for use by the statement expression extension). 200 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 201 AggValueSlot AggSlot) { 202 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 203 "LLVM IR generation of compound statement ('{}')"); 204 205 // Keep track of the current cleanup stack depth, including debug scopes. 206 LexicalScope Scope(*this, S.getSourceRange()); 207 208 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 209 } 210 211 llvm::Value* 212 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 213 bool GetLast, 214 AggValueSlot AggSlot) { 215 216 for (CompoundStmt::const_body_iterator I = S.body_begin(), 217 E = S.body_end()-GetLast; I != E; ++I) 218 EmitStmt(*I); 219 220 llvm::Value *RetAlloca = 0; 221 if (GetLast) { 222 // We have to special case labels here. They are statements, but when put 223 // at the end of a statement expression, they yield the value of their 224 // subexpression. Handle this by walking through all labels we encounter, 225 // emitting them before we evaluate the subexpr. 226 const Stmt *LastStmt = S.body_back(); 227 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 228 EmitLabel(LS->getDecl()); 229 LastStmt = LS->getSubStmt(); 230 } 231 232 EnsureInsertPoint(); 233 234 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 235 if (hasAggregateEvaluationKind(ExprTy)) { 236 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 237 } else { 238 // We can't return an RValue here because there might be cleanups at 239 // the end of the StmtExpr. Because of that, we have to emit the result 240 // here into a temporary alloca. 241 RetAlloca = CreateMemTemp(ExprTy); 242 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 243 /*IsInit*/false); 244 } 245 246 } 247 248 return RetAlloca; 249 } 250 251 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 252 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 253 254 // If there is a cleanup stack, then we it isn't worth trying to 255 // simplify this block (we would need to remove it from the scope map 256 // and cleanup entry). 257 if (!EHStack.empty()) 258 return; 259 260 // Can only simplify direct branches. 261 if (!BI || !BI->isUnconditional()) 262 return; 263 264 // Can only simplify empty blocks. 265 if (BI != BB->begin()) 266 return; 267 268 BB->replaceAllUsesWith(BI->getSuccessor(0)); 269 BI->eraseFromParent(); 270 BB->eraseFromParent(); 271 } 272 273 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 274 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 275 276 // Fall out of the current block (if necessary). 277 EmitBranch(BB); 278 279 if (IsFinished && BB->use_empty()) { 280 delete BB; 281 return; 282 } 283 284 // Place the block after the current block, if possible, or else at 285 // the end of the function. 286 if (CurBB && CurBB->getParent()) 287 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 288 else 289 CurFn->getBasicBlockList().push_back(BB); 290 Builder.SetInsertPoint(BB); 291 } 292 293 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 294 // Emit a branch from the current block to the target one if this 295 // was a real block. If this was just a fall-through block after a 296 // terminator, don't emit it. 297 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 298 299 if (!CurBB || CurBB->getTerminator()) { 300 // If there is no insert point or the previous block is already 301 // terminated, don't touch it. 302 } else { 303 // Otherwise, create a fall-through branch. 304 Builder.CreateBr(Target); 305 } 306 307 Builder.ClearInsertionPoint(); 308 } 309 310 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 311 bool inserted = false; 312 for (llvm::BasicBlock::use_iterator 313 i = block->use_begin(), e = block->use_end(); i != e; ++i) { 314 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) { 315 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 316 inserted = true; 317 break; 318 } 319 } 320 321 if (!inserted) 322 CurFn->getBasicBlockList().push_back(block); 323 324 Builder.SetInsertPoint(block); 325 } 326 327 CodeGenFunction::JumpDest 328 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 329 JumpDest &Dest = LabelMap[D]; 330 if (Dest.isValid()) return Dest; 331 332 // Create, but don't insert, the new block. 333 Dest = JumpDest(createBasicBlock(D->getName()), 334 EHScopeStack::stable_iterator::invalid(), 335 NextCleanupDestIndex++); 336 return Dest; 337 } 338 339 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 340 // Add this label to the current lexical scope if we're within any 341 // normal cleanups. Jumps "in" to this label --- when permitted by 342 // the language --- may need to be routed around such cleanups. 343 if (EHStack.hasNormalCleanups() && CurLexicalScope) 344 CurLexicalScope->addLabel(D); 345 346 JumpDest &Dest = LabelMap[D]; 347 348 // If we didn't need a forward reference to this label, just go 349 // ahead and create a destination at the current scope. 350 if (!Dest.isValid()) { 351 Dest = getJumpDestInCurrentScope(D->getName()); 352 353 // Otherwise, we need to give this label a target depth and remove 354 // it from the branch-fixups list. 355 } else { 356 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 357 Dest.setScopeDepth(EHStack.stable_begin()); 358 ResolveBranchFixups(Dest.getBlock()); 359 } 360 361 EmitBlock(Dest.getBlock()); 362 } 363 364 /// Change the cleanup scope of the labels in this lexical scope to 365 /// match the scope of the enclosing context. 366 void CodeGenFunction::LexicalScope::rescopeLabels() { 367 assert(!Labels.empty()); 368 EHScopeStack::stable_iterator innermostScope 369 = CGF.EHStack.getInnermostNormalCleanup(); 370 371 // Change the scope depth of all the labels. 372 for (SmallVectorImpl<const LabelDecl*>::const_iterator 373 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 374 assert(CGF.LabelMap.count(*i)); 375 JumpDest &dest = CGF.LabelMap.find(*i)->second; 376 assert(dest.getScopeDepth().isValid()); 377 assert(innermostScope.encloses(dest.getScopeDepth())); 378 dest.setScopeDepth(innermostScope); 379 } 380 381 // Reparent the labels if the new scope also has cleanups. 382 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 383 ParentScope->Labels.append(Labels.begin(), Labels.end()); 384 } 385 } 386 387 388 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 389 EmitLabel(S.getDecl()); 390 EmitStmt(S.getSubStmt()); 391 } 392 393 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 394 EmitStmt(S.getSubStmt()); 395 } 396 397 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 398 // If this code is reachable then emit a stop point (if generating 399 // debug info). We have to do this ourselves because we are on the 400 // "simple" statement path. 401 if (HaveInsertPoint()) 402 EmitStopPoint(&S); 403 404 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 405 } 406 407 408 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 409 if (const LabelDecl *Target = S.getConstantTarget()) { 410 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 411 return; 412 } 413 414 // Ensure that we have an i8* for our PHI node. 415 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 416 Int8PtrTy, "addr"); 417 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 418 419 // Get the basic block for the indirect goto. 420 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 421 422 // The first instruction in the block has to be the PHI for the switch dest, 423 // add an entry for this branch. 424 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 425 426 EmitBranch(IndGotoBB); 427 } 428 429 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 430 // C99 6.8.4.1: The first substatement is executed if the expression compares 431 // unequal to 0. The condition must be a scalar type. 432 LexicalScope ConditionScope(*this, S.getSourceRange()); 433 434 if (S.getConditionVariable()) 435 EmitAutoVarDecl(*S.getConditionVariable()); 436 437 // If the condition constant folds and can be elided, try to avoid emitting 438 // the condition and the dead arm of the if/else. 439 bool CondConstant; 440 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 441 // Figure out which block (then or else) is executed. 442 const Stmt *Executed = S.getThen(); 443 const Stmt *Skipped = S.getElse(); 444 if (!CondConstant) // Condition false? 445 std::swap(Executed, Skipped); 446 447 // If the skipped block has no labels in it, just emit the executed block. 448 // This avoids emitting dead code and simplifies the CFG substantially. 449 if (!ContainsLabel(Skipped)) { 450 if (Executed) { 451 RunCleanupsScope ExecutedScope(*this); 452 EmitStmt(Executed); 453 } 454 return; 455 } 456 } 457 458 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 459 // the conditional branch. 460 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 461 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 462 llvm::BasicBlock *ElseBlock = ContBlock; 463 if (S.getElse()) 464 ElseBlock = createBasicBlock("if.else"); 465 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); 466 467 // Emit the 'then' code. 468 EmitBlock(ThenBlock); 469 { 470 RunCleanupsScope ThenScope(*this); 471 EmitStmt(S.getThen()); 472 } 473 EmitBranch(ContBlock); 474 475 // Emit the 'else' code if present. 476 if (const Stmt *Else = S.getElse()) { 477 // There is no need to emit line number for unconditional branch. 478 if (getDebugInfo()) 479 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 480 EmitBlock(ElseBlock); 481 { 482 RunCleanupsScope ElseScope(*this); 483 EmitStmt(Else); 484 } 485 // There is no need to emit line number for unconditional branch. 486 if (getDebugInfo()) 487 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 488 EmitBranch(ContBlock); 489 } 490 491 // Emit the continuation block for code after the if. 492 EmitBlock(ContBlock, true); 493 } 494 495 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 496 // Emit the header for the loop, which will also become 497 // the continue target. 498 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 499 EmitBlock(LoopHeader.getBlock()); 500 501 // Create an exit block for when the condition fails, which will 502 // also become the break target. 503 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 504 505 // Store the blocks to use for break and continue. 506 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 507 508 // C++ [stmt.while]p2: 509 // When the condition of a while statement is a declaration, the 510 // scope of the variable that is declared extends from its point 511 // of declaration (3.3.2) to the end of the while statement. 512 // [...] 513 // The object created in a condition is destroyed and created 514 // with each iteration of the loop. 515 RunCleanupsScope ConditionScope(*this); 516 517 if (S.getConditionVariable()) 518 EmitAutoVarDecl(*S.getConditionVariable()); 519 520 // Evaluate the conditional in the while header. C99 6.8.5.1: The 521 // evaluation of the controlling expression takes place before each 522 // execution of the loop body. 523 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 524 525 // while(1) is common, avoid extra exit blocks. Be sure 526 // to correctly handle break/continue though. 527 bool EmitBoolCondBranch = true; 528 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 529 if (C->isOne()) 530 EmitBoolCondBranch = false; 531 532 // As long as the condition is true, go to the loop body. 533 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 534 if (EmitBoolCondBranch) { 535 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 536 if (ConditionScope.requiresCleanups()) 537 ExitBlock = createBasicBlock("while.exit"); 538 539 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 540 541 if (ExitBlock != LoopExit.getBlock()) { 542 EmitBlock(ExitBlock); 543 EmitBranchThroughCleanup(LoopExit); 544 } 545 } 546 547 // Emit the loop body. We have to emit this in a cleanup scope 548 // because it might be a singleton DeclStmt. 549 { 550 RunCleanupsScope BodyScope(*this); 551 EmitBlock(LoopBody); 552 EmitStmt(S.getBody()); 553 } 554 555 BreakContinueStack.pop_back(); 556 557 // Immediately force cleanup. 558 ConditionScope.ForceCleanup(); 559 560 // Branch to the loop header again. 561 EmitBranch(LoopHeader.getBlock()); 562 563 // Emit the exit block. 564 EmitBlock(LoopExit.getBlock(), true); 565 566 // The LoopHeader typically is just a branch if we skipped emitting 567 // a branch, try to erase it. 568 if (!EmitBoolCondBranch) 569 SimplifyForwardingBlocks(LoopHeader.getBlock()); 570 } 571 572 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 573 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 574 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 575 576 // Store the blocks to use for break and continue. 577 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 578 579 // Emit the body of the loop. 580 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 581 EmitBlock(LoopBody); 582 { 583 RunCleanupsScope BodyScope(*this); 584 EmitStmt(S.getBody()); 585 } 586 587 BreakContinueStack.pop_back(); 588 589 EmitBlock(LoopCond.getBlock()); 590 591 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 592 // after each execution of the loop body." 593 594 // Evaluate the conditional in the while header. 595 // C99 6.8.5p2/p4: The first substatement is executed if the expression 596 // compares unequal to 0. The condition must be a scalar type. 597 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 598 599 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 600 // to correctly handle break/continue though. 601 bool EmitBoolCondBranch = true; 602 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 603 if (C->isZero()) 604 EmitBoolCondBranch = false; 605 606 // As long as the condition is true, iterate the loop. 607 if (EmitBoolCondBranch) 608 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); 609 610 // Emit the exit block. 611 EmitBlock(LoopExit.getBlock()); 612 613 // The DoCond block typically is just a branch if we skipped 614 // emitting a branch, try to erase it. 615 if (!EmitBoolCondBranch) 616 SimplifyForwardingBlocks(LoopCond.getBlock()); 617 } 618 619 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 620 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 621 622 RunCleanupsScope ForScope(*this); 623 624 CGDebugInfo *DI = getDebugInfo(); 625 if (DI) 626 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 627 628 // Evaluate the first part before the loop. 629 if (S.getInit()) 630 EmitStmt(S.getInit()); 631 632 // Start the loop with a block that tests the condition. 633 // If there's an increment, the continue scope will be overwritten 634 // later. 635 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 636 llvm::BasicBlock *CondBlock = Continue.getBlock(); 637 EmitBlock(CondBlock); 638 639 // Create a cleanup scope for the condition variable cleanups. 640 RunCleanupsScope ConditionScope(*this); 641 642 if (S.getCond()) { 643 // If the for statement has a condition scope, emit the local variable 644 // declaration. 645 if (S.getConditionVariable()) { 646 EmitAutoVarDecl(*S.getConditionVariable()); 647 } 648 649 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 650 // If there are any cleanups between here and the loop-exit scope, 651 // create a block to stage a loop exit along. 652 if (ForScope.requiresCleanups()) 653 ExitBlock = createBasicBlock("for.cond.cleanup"); 654 655 // As long as the condition is true, iterate the loop. 656 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 657 658 // C99 6.8.5p2/p4: The first substatement is executed if the expression 659 // compares unequal to 0. The condition must be a scalar type. 660 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 661 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 662 663 if (ExitBlock != LoopExit.getBlock()) { 664 EmitBlock(ExitBlock); 665 EmitBranchThroughCleanup(LoopExit); 666 } 667 668 EmitBlock(ForBody); 669 } else { 670 // Treat it as a non-zero constant. Don't even create a new block for the 671 // body, just fall into it. 672 } 673 674 // If the for loop doesn't have an increment we can just use the 675 // condition as the continue block. Otherwise we'll need to create 676 // a block for it (in the current scope, i.e. in the scope of the 677 // condition), and that we will become our continue block. 678 if (S.getInc()) 679 Continue = getJumpDestInCurrentScope("for.inc"); 680 681 // Store the blocks to use for break and continue. 682 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 683 684 { 685 // Create a separate cleanup scope for the body, in case it is not 686 // a compound statement. 687 RunCleanupsScope BodyScope(*this); 688 EmitStmt(S.getBody()); 689 } 690 691 // If there is an increment, emit it next. 692 if (S.getInc()) { 693 EmitBlock(Continue.getBlock()); 694 EmitStmt(S.getInc()); 695 } 696 697 BreakContinueStack.pop_back(); 698 699 ConditionScope.ForceCleanup(); 700 EmitBranch(CondBlock); 701 702 ForScope.ForceCleanup(); 703 704 if (DI) 705 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 706 707 // Emit the fall-through block. 708 EmitBlock(LoopExit.getBlock(), true); 709 } 710 711 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 712 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 713 714 RunCleanupsScope ForScope(*this); 715 716 CGDebugInfo *DI = getDebugInfo(); 717 if (DI) 718 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 719 720 // Evaluate the first pieces before the loop. 721 EmitStmt(S.getRangeStmt()); 722 EmitStmt(S.getBeginEndStmt()); 723 724 // Start the loop with a block that tests the condition. 725 // If there's an increment, the continue scope will be overwritten 726 // later. 727 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 728 EmitBlock(CondBlock); 729 730 // If there are any cleanups between here and the loop-exit scope, 731 // create a block to stage a loop exit along. 732 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 733 if (ForScope.requiresCleanups()) 734 ExitBlock = createBasicBlock("for.cond.cleanup"); 735 736 // The loop body, consisting of the specified body and the loop variable. 737 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 738 739 // The body is executed if the expression, contextually converted 740 // to bool, is true. 741 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 742 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 743 744 if (ExitBlock != LoopExit.getBlock()) { 745 EmitBlock(ExitBlock); 746 EmitBranchThroughCleanup(LoopExit); 747 } 748 749 EmitBlock(ForBody); 750 751 // Create a block for the increment. In case of a 'continue', we jump there. 752 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 753 754 // Store the blocks to use for break and continue. 755 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 756 757 { 758 // Create a separate cleanup scope for the loop variable and body. 759 RunCleanupsScope BodyScope(*this); 760 EmitStmt(S.getLoopVarStmt()); 761 EmitStmt(S.getBody()); 762 } 763 764 // If there is an increment, emit it next. 765 EmitBlock(Continue.getBlock()); 766 EmitStmt(S.getInc()); 767 768 BreakContinueStack.pop_back(); 769 770 EmitBranch(CondBlock); 771 772 ForScope.ForceCleanup(); 773 774 if (DI) 775 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 776 777 // Emit the fall-through block. 778 EmitBlock(LoopExit.getBlock(), true); 779 } 780 781 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 782 if (RV.isScalar()) { 783 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 784 } else if (RV.isAggregate()) { 785 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 786 } else { 787 EmitStoreOfComplex(RV.getComplexVal(), 788 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 789 /*init*/ true); 790 } 791 EmitBranchThroughCleanup(ReturnBlock); 792 } 793 794 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 795 /// if the function returns void, or may be missing one if the function returns 796 /// non-void. Fun stuff :). 797 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 798 // Emit the result value, even if unused, to evalute the side effects. 799 const Expr *RV = S.getRetValue(); 800 801 // Treat block literals in a return expression as if they appeared 802 // in their own scope. This permits a small, easily-implemented 803 // exception to our over-conservative rules about not jumping to 804 // statements following block literals with non-trivial cleanups. 805 RunCleanupsScope cleanupScope(*this); 806 if (const ExprWithCleanups *cleanups = 807 dyn_cast_or_null<ExprWithCleanups>(RV)) { 808 enterFullExpression(cleanups); 809 RV = cleanups->getSubExpr(); 810 } 811 812 // FIXME: Clean this up by using an LValue for ReturnTemp, 813 // EmitStoreThroughLValue, and EmitAnyExpr. 814 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 815 // Apply the named return value optimization for this return statement, 816 // which means doing nothing: the appropriate result has already been 817 // constructed into the NRVO variable. 818 819 // If there is an NRVO flag for this variable, set it to 1 into indicate 820 // that the cleanup code should not destroy the variable. 821 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 822 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 823 } else if (!ReturnValue) { 824 // Make sure not to return anything, but evaluate the expression 825 // for side effects. 826 if (RV) 827 EmitAnyExpr(RV); 828 } else if (RV == 0) { 829 // Do nothing (return value is left uninitialized) 830 } else if (FnRetTy->isReferenceType()) { 831 // If this function returns a reference, take the address of the expression 832 // rather than the value. 833 RValue Result = EmitReferenceBindingToExpr(RV); 834 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 835 } else { 836 switch (getEvaluationKind(RV->getType())) { 837 case TEK_Scalar: 838 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 839 break; 840 case TEK_Complex: 841 EmitComplexExprIntoLValue(RV, 842 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 843 /*isInit*/ true); 844 break; 845 case TEK_Aggregate: { 846 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 847 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 848 Qualifiers(), 849 AggValueSlot::IsDestructed, 850 AggValueSlot::DoesNotNeedGCBarriers, 851 AggValueSlot::IsNotAliased)); 852 break; 853 } 854 } 855 } 856 857 ++NumReturnExprs; 858 if (RV == 0 || RV->isEvaluatable(getContext())) 859 ++NumSimpleReturnExprs; 860 861 cleanupScope.ForceCleanup(); 862 EmitBranchThroughCleanup(ReturnBlock); 863 } 864 865 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 866 // As long as debug info is modeled with instructions, we have to ensure we 867 // have a place to insert here and write the stop point here. 868 if (HaveInsertPoint()) 869 EmitStopPoint(&S); 870 871 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); 872 I != E; ++I) 873 EmitDecl(**I); 874 } 875 876 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 877 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 878 879 // If this code is reachable then emit a stop point (if generating 880 // debug info). We have to do this ourselves because we are on the 881 // "simple" statement path. 882 if (HaveInsertPoint()) 883 EmitStopPoint(&S); 884 885 JumpDest Block = BreakContinueStack.back().BreakBlock; 886 EmitBranchThroughCleanup(Block); 887 } 888 889 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 890 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 891 892 // If this code is reachable then emit a stop point (if generating 893 // debug info). We have to do this ourselves because we are on the 894 // "simple" statement path. 895 if (HaveInsertPoint()) 896 EmitStopPoint(&S); 897 898 JumpDest Block = BreakContinueStack.back().ContinueBlock; 899 EmitBranchThroughCleanup(Block); 900 } 901 902 /// EmitCaseStmtRange - If case statement range is not too big then 903 /// add multiple cases to switch instruction, one for each value within 904 /// the range. If range is too big then emit "if" condition check. 905 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 906 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 907 908 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 909 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 910 911 // Emit the code for this case. We do this first to make sure it is 912 // properly chained from our predecessor before generating the 913 // switch machinery to enter this block. 914 EmitBlock(createBasicBlock("sw.bb")); 915 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 916 EmitStmt(S.getSubStmt()); 917 918 // If range is empty, do nothing. 919 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 920 return; 921 922 llvm::APInt Range = RHS - LHS; 923 // FIXME: parameters such as this should not be hardcoded. 924 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 925 // Range is small enough to add multiple switch instruction cases. 926 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { 927 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 928 LHS++; 929 } 930 return; 931 } 932 933 // The range is too big. Emit "if" condition into a new block, 934 // making sure to save and restore the current insertion point. 935 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 936 937 // Push this test onto the chain of range checks (which terminates 938 // in the default basic block). The switch's default will be changed 939 // to the top of this chain after switch emission is complete. 940 llvm::BasicBlock *FalseDest = CaseRangeBlock; 941 CaseRangeBlock = createBasicBlock("sw.caserange"); 942 943 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 944 Builder.SetInsertPoint(CaseRangeBlock); 945 946 // Emit range check. 947 llvm::Value *Diff = 948 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 949 llvm::Value *Cond = 950 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 951 Builder.CreateCondBr(Cond, CaseDest, FalseDest); 952 953 // Restore the appropriate insertion point. 954 if (RestoreBB) 955 Builder.SetInsertPoint(RestoreBB); 956 else 957 Builder.ClearInsertionPoint(); 958 } 959 960 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 961 // If there is no enclosing switch instance that we're aware of, then this 962 // case statement and its block can be elided. This situation only happens 963 // when we've constant-folded the switch, are emitting the constant case, 964 // and part of the constant case includes another case statement. For 965 // instance: switch (4) { case 4: do { case 5: } while (1); } 966 if (!SwitchInsn) { 967 EmitStmt(S.getSubStmt()); 968 return; 969 } 970 971 // Handle case ranges. 972 if (S.getRHS()) { 973 EmitCaseStmtRange(S); 974 return; 975 } 976 977 llvm::ConstantInt *CaseVal = 978 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 979 980 // If the body of the case is just a 'break', and if there was no fallthrough, 981 // try to not emit an empty block. 982 if ((CGM.getCodeGenOpts().OptimizationLevel > 0) && 983 isa<BreakStmt>(S.getSubStmt())) { 984 JumpDest Block = BreakContinueStack.back().BreakBlock; 985 986 // Only do this optimization if there are no cleanups that need emitting. 987 if (isObviouslyBranchWithoutCleanups(Block)) { 988 SwitchInsn->addCase(CaseVal, Block.getBlock()); 989 990 // If there was a fallthrough into this case, make sure to redirect it to 991 // the end of the switch as well. 992 if (Builder.GetInsertBlock()) { 993 Builder.CreateBr(Block.getBlock()); 994 Builder.ClearInsertionPoint(); 995 } 996 return; 997 } 998 } 999 1000 EmitBlock(createBasicBlock("sw.bb")); 1001 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 1002 SwitchInsn->addCase(CaseVal, CaseDest); 1003 1004 // Recursively emitting the statement is acceptable, but is not wonderful for 1005 // code where we have many case statements nested together, i.e.: 1006 // case 1: 1007 // case 2: 1008 // case 3: etc. 1009 // Handling this recursively will create a new block for each case statement 1010 // that falls through to the next case which is IR intensive. It also causes 1011 // deep recursion which can run into stack depth limitations. Handle 1012 // sequential non-range case statements specially. 1013 const CaseStmt *CurCase = &S; 1014 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1015 1016 // Otherwise, iteratively add consecutive cases to this switch stmt. 1017 while (NextCase && NextCase->getRHS() == 0) { 1018 CurCase = NextCase; 1019 llvm::ConstantInt *CaseVal = 1020 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1021 SwitchInsn->addCase(CaseVal, CaseDest); 1022 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1023 } 1024 1025 // Normal default recursion for non-cases. 1026 EmitStmt(CurCase->getSubStmt()); 1027 } 1028 1029 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1030 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1031 assert(DefaultBlock->empty() && 1032 "EmitDefaultStmt: Default block already defined?"); 1033 EmitBlock(DefaultBlock); 1034 EmitStmt(S.getSubStmt()); 1035 } 1036 1037 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1038 /// constant value that is being switched on, see if we can dead code eliminate 1039 /// the body of the switch to a simple series of statements to emit. Basically, 1040 /// on a switch (5) we want to find these statements: 1041 /// case 5: 1042 /// printf(...); <-- 1043 /// ++i; <-- 1044 /// break; 1045 /// 1046 /// and add them to the ResultStmts vector. If it is unsafe to do this 1047 /// transformation (for example, one of the elided statements contains a label 1048 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1049 /// should include statements after it (e.g. the printf() line is a substmt of 1050 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1051 /// statement, then return CSFC_Success. 1052 /// 1053 /// If Case is non-null, then we are looking for the specified case, checking 1054 /// that nothing we jump over contains labels. If Case is null, then we found 1055 /// the case and are looking for the break. 1056 /// 1057 /// If the recursive walk actually finds our Case, then we set FoundCase to 1058 /// true. 1059 /// 1060 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1061 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1062 const SwitchCase *Case, 1063 bool &FoundCase, 1064 SmallVectorImpl<const Stmt*> &ResultStmts) { 1065 // If this is a null statement, just succeed. 1066 if (S == 0) 1067 return Case ? CSFC_Success : CSFC_FallThrough; 1068 1069 // If this is the switchcase (case 4: or default) that we're looking for, then 1070 // we're in business. Just add the substatement. 1071 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1072 if (S == Case) { 1073 FoundCase = true; 1074 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 1075 ResultStmts); 1076 } 1077 1078 // Otherwise, this is some other case or default statement, just ignore it. 1079 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1080 ResultStmts); 1081 } 1082 1083 // If we are in the live part of the code and we found our break statement, 1084 // return a success! 1085 if (Case == 0 && isa<BreakStmt>(S)) 1086 return CSFC_Success; 1087 1088 // If this is a switch statement, then it might contain the SwitchCase, the 1089 // break, or neither. 1090 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1091 // Handle this as two cases: we might be looking for the SwitchCase (if so 1092 // the skipped statements must be skippable) or we might already have it. 1093 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1094 if (Case) { 1095 // Keep track of whether we see a skipped declaration. The code could be 1096 // using the declaration even if it is skipped, so we can't optimize out 1097 // the decl if the kept statements might refer to it. 1098 bool HadSkippedDecl = false; 1099 1100 // If we're looking for the case, just see if we can skip each of the 1101 // substatements. 1102 for (; Case && I != E; ++I) { 1103 HadSkippedDecl |= isa<DeclStmt>(*I); 1104 1105 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1106 case CSFC_Failure: return CSFC_Failure; 1107 case CSFC_Success: 1108 // A successful result means that either 1) that the statement doesn't 1109 // have the case and is skippable, or 2) does contain the case value 1110 // and also contains the break to exit the switch. In the later case, 1111 // we just verify the rest of the statements are elidable. 1112 if (FoundCase) { 1113 // If we found the case and skipped declarations, we can't do the 1114 // optimization. 1115 if (HadSkippedDecl) 1116 return CSFC_Failure; 1117 1118 for (++I; I != E; ++I) 1119 if (CodeGenFunction::ContainsLabel(*I, true)) 1120 return CSFC_Failure; 1121 return CSFC_Success; 1122 } 1123 break; 1124 case CSFC_FallThrough: 1125 // If we have a fallthrough condition, then we must have found the 1126 // case started to include statements. Consider the rest of the 1127 // statements in the compound statement as candidates for inclusion. 1128 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1129 // We recursively found Case, so we're not looking for it anymore. 1130 Case = 0; 1131 1132 // If we found the case and skipped declarations, we can't do the 1133 // optimization. 1134 if (HadSkippedDecl) 1135 return CSFC_Failure; 1136 break; 1137 } 1138 } 1139 } 1140 1141 // If we have statements in our range, then we know that the statements are 1142 // live and need to be added to the set of statements we're tracking. 1143 for (; I != E; ++I) { 1144 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1145 case CSFC_Failure: return CSFC_Failure; 1146 case CSFC_FallThrough: 1147 // A fallthrough result means that the statement was simple and just 1148 // included in ResultStmt, keep adding them afterwards. 1149 break; 1150 case CSFC_Success: 1151 // A successful result means that we found the break statement and 1152 // stopped statement inclusion. We just ensure that any leftover stmts 1153 // are skippable and return success ourselves. 1154 for (++I; I != E; ++I) 1155 if (CodeGenFunction::ContainsLabel(*I, true)) 1156 return CSFC_Failure; 1157 return CSFC_Success; 1158 } 1159 } 1160 1161 return Case ? CSFC_Success : CSFC_FallThrough; 1162 } 1163 1164 // Okay, this is some other statement that we don't handle explicitly, like a 1165 // for statement or increment etc. If we are skipping over this statement, 1166 // just verify it doesn't have labels, which would make it invalid to elide. 1167 if (Case) { 1168 if (CodeGenFunction::ContainsLabel(S, true)) 1169 return CSFC_Failure; 1170 return CSFC_Success; 1171 } 1172 1173 // Otherwise, we want to include this statement. Everything is cool with that 1174 // so long as it doesn't contain a break out of the switch we're in. 1175 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1176 1177 // Otherwise, everything is great. Include the statement and tell the caller 1178 // that we fall through and include the next statement as well. 1179 ResultStmts.push_back(S); 1180 return CSFC_FallThrough; 1181 } 1182 1183 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1184 /// then invoke CollectStatementsForCase to find the list of statements to emit 1185 /// for a switch on constant. See the comment above CollectStatementsForCase 1186 /// for more details. 1187 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1188 const llvm::APSInt &ConstantCondValue, 1189 SmallVectorImpl<const Stmt*> &ResultStmts, 1190 ASTContext &C) { 1191 // First step, find the switch case that is being branched to. We can do this 1192 // efficiently by scanning the SwitchCase list. 1193 const SwitchCase *Case = S.getSwitchCaseList(); 1194 const DefaultStmt *DefaultCase = 0; 1195 1196 for (; Case; Case = Case->getNextSwitchCase()) { 1197 // It's either a default or case. Just remember the default statement in 1198 // case we're not jumping to any numbered cases. 1199 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1200 DefaultCase = DS; 1201 continue; 1202 } 1203 1204 // Check to see if this case is the one we're looking for. 1205 const CaseStmt *CS = cast<CaseStmt>(Case); 1206 // Don't handle case ranges yet. 1207 if (CS->getRHS()) return false; 1208 1209 // If we found our case, remember it as 'case'. 1210 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1211 break; 1212 } 1213 1214 // If we didn't find a matching case, we use a default if it exists, or we 1215 // elide the whole switch body! 1216 if (Case == 0) { 1217 // It is safe to elide the body of the switch if it doesn't contain labels 1218 // etc. If it is safe, return successfully with an empty ResultStmts list. 1219 if (DefaultCase == 0) 1220 return !CodeGenFunction::ContainsLabel(&S); 1221 Case = DefaultCase; 1222 } 1223 1224 // Ok, we know which case is being jumped to, try to collect all the 1225 // statements that follow it. This can fail for a variety of reasons. Also, 1226 // check to see that the recursive walk actually found our case statement. 1227 // Insane cases like this can fail to find it in the recursive walk since we 1228 // don't handle every stmt kind: 1229 // switch (4) { 1230 // while (1) { 1231 // case 4: ... 1232 bool FoundCase = false; 1233 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1234 ResultStmts) != CSFC_Failure && 1235 FoundCase; 1236 } 1237 1238 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1239 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1240 1241 RunCleanupsScope ConditionScope(*this); 1242 1243 if (S.getConditionVariable()) 1244 EmitAutoVarDecl(*S.getConditionVariable()); 1245 1246 // Handle nested switch statements. 1247 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1248 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1249 1250 // See if we can constant fold the condition of the switch and therefore only 1251 // emit the live case statement (if any) of the switch. 1252 llvm::APSInt ConstantCondValue; 1253 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1254 SmallVector<const Stmt*, 4> CaseStmts; 1255 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1256 getContext())) { 1257 RunCleanupsScope ExecutedScope(*this); 1258 1259 // At this point, we are no longer "within" a switch instance, so 1260 // we can temporarily enforce this to ensure that any embedded case 1261 // statements are not emitted. 1262 SwitchInsn = 0; 1263 1264 // Okay, we can dead code eliminate everything except this case. Emit the 1265 // specified series of statements and we're good. 1266 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1267 EmitStmt(CaseStmts[i]); 1268 1269 // Now we want to restore the saved switch instance so that nested 1270 // switches continue to function properly 1271 SwitchInsn = SavedSwitchInsn; 1272 1273 return; 1274 } 1275 } 1276 1277 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1278 1279 // Create basic block to hold stuff that comes after switch 1280 // statement. We also need to create a default block now so that 1281 // explicit case ranges tests can have a place to jump to on 1282 // failure. 1283 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1284 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1285 CaseRangeBlock = DefaultBlock; 1286 1287 // Clear the insertion point to indicate we are in unreachable code. 1288 Builder.ClearInsertionPoint(); 1289 1290 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1291 // then reuse last ContinueBlock. 1292 JumpDest OuterContinue; 1293 if (!BreakContinueStack.empty()) 1294 OuterContinue = BreakContinueStack.back().ContinueBlock; 1295 1296 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1297 1298 // Emit switch body. 1299 EmitStmt(S.getBody()); 1300 1301 BreakContinueStack.pop_back(); 1302 1303 // Update the default block in case explicit case range tests have 1304 // been chained on top. 1305 SwitchInsn->setDefaultDest(CaseRangeBlock); 1306 1307 // If a default was never emitted: 1308 if (!DefaultBlock->getParent()) { 1309 // If we have cleanups, emit the default block so that there's a 1310 // place to jump through the cleanups from. 1311 if (ConditionScope.requiresCleanups()) { 1312 EmitBlock(DefaultBlock); 1313 1314 // Otherwise, just forward the default block to the switch end. 1315 } else { 1316 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1317 delete DefaultBlock; 1318 } 1319 } 1320 1321 ConditionScope.ForceCleanup(); 1322 1323 // Emit continuation. 1324 EmitBlock(SwitchExit.getBlock(), true); 1325 1326 SwitchInsn = SavedSwitchInsn; 1327 CaseRangeBlock = SavedCRBlock; 1328 } 1329 1330 static std::string 1331 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1332 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1333 std::string Result; 1334 1335 while (*Constraint) { 1336 switch (*Constraint) { 1337 default: 1338 Result += Target.convertConstraint(Constraint); 1339 break; 1340 // Ignore these 1341 case '*': 1342 case '?': 1343 case '!': 1344 case '=': // Will see this and the following in mult-alt constraints. 1345 case '+': 1346 break; 1347 case '#': // Ignore the rest of the constraint alternative. 1348 while (Constraint[1] && Constraint[1] != ',') 1349 Constraint++; 1350 break; 1351 case ',': 1352 Result += "|"; 1353 break; 1354 case 'g': 1355 Result += "imr"; 1356 break; 1357 case '[': { 1358 assert(OutCons && 1359 "Must pass output names to constraints with a symbolic name"); 1360 unsigned Index; 1361 bool result = Target.resolveSymbolicName(Constraint, 1362 &(*OutCons)[0], 1363 OutCons->size(), Index); 1364 assert(result && "Could not resolve symbolic name"); (void)result; 1365 Result += llvm::utostr(Index); 1366 break; 1367 } 1368 } 1369 1370 Constraint++; 1371 } 1372 1373 return Result; 1374 } 1375 1376 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1377 /// as using a particular register add that as a constraint that will be used 1378 /// in this asm stmt. 1379 static std::string 1380 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1381 const TargetInfo &Target, CodeGenModule &CGM, 1382 const AsmStmt &Stmt) { 1383 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1384 if (!AsmDeclRef) 1385 return Constraint; 1386 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1387 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1388 if (!Variable) 1389 return Constraint; 1390 if (Variable->getStorageClass() != SC_Register) 1391 return Constraint; 1392 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1393 if (!Attr) 1394 return Constraint; 1395 StringRef Register = Attr->getLabel(); 1396 assert(Target.isValidGCCRegisterName(Register)); 1397 // We're using validateOutputConstraint here because we only care if 1398 // this is a register constraint. 1399 TargetInfo::ConstraintInfo Info(Constraint, ""); 1400 if (Target.validateOutputConstraint(Info) && 1401 !Info.allowsRegister()) { 1402 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1403 return Constraint; 1404 } 1405 // Canonicalize the register here before returning it. 1406 Register = Target.getNormalizedGCCRegisterName(Register); 1407 return "{" + Register.str() + "}"; 1408 } 1409 1410 llvm::Value* 1411 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1412 LValue InputValue, QualType InputType, 1413 std::string &ConstraintStr, 1414 SourceLocation Loc) { 1415 llvm::Value *Arg; 1416 if (Info.allowsRegister() || !Info.allowsMemory()) { 1417 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1418 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1419 } else { 1420 llvm::Type *Ty = ConvertType(InputType); 1421 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1422 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1423 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1424 Ty = llvm::PointerType::getUnqual(Ty); 1425 1426 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1427 Ty)); 1428 } else { 1429 Arg = InputValue.getAddress(); 1430 ConstraintStr += '*'; 1431 } 1432 } 1433 } else { 1434 Arg = InputValue.getAddress(); 1435 ConstraintStr += '*'; 1436 } 1437 1438 return Arg; 1439 } 1440 1441 llvm::Value* CodeGenFunction::EmitAsmInput( 1442 const TargetInfo::ConstraintInfo &Info, 1443 const Expr *InputExpr, 1444 std::string &ConstraintStr) { 1445 if (Info.allowsRegister() || !Info.allowsMemory()) 1446 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1447 return EmitScalarExpr(InputExpr); 1448 1449 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1450 LValue Dest = EmitLValue(InputExpr); 1451 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1452 InputExpr->getExprLoc()); 1453 } 1454 1455 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1456 /// asm call instruction. The !srcloc MDNode contains a list of constant 1457 /// integers which are the source locations of the start of each line in the 1458 /// asm. 1459 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1460 CodeGenFunction &CGF) { 1461 SmallVector<llvm::Value *, 8> Locs; 1462 // Add the location of the first line to the MDNode. 1463 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1464 Str->getLocStart().getRawEncoding())); 1465 StringRef StrVal = Str->getString(); 1466 if (!StrVal.empty()) { 1467 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1468 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1469 1470 // Add the location of the start of each subsequent line of the asm to the 1471 // MDNode. 1472 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1473 if (StrVal[i] != '\n') continue; 1474 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1475 CGF.getTarget()); 1476 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1477 LineLoc.getRawEncoding())); 1478 } 1479 } 1480 1481 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1482 } 1483 1484 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1485 // Assemble the final asm string. 1486 std::string AsmString = S.generateAsmString(getContext()); 1487 1488 // Get all the output and input constraints together. 1489 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1490 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1491 1492 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1493 StringRef Name; 1494 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1495 Name = GAS->getOutputName(i); 1496 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1497 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1498 assert(IsValid && "Failed to parse output constraint"); 1499 OutputConstraintInfos.push_back(Info); 1500 } 1501 1502 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1503 StringRef Name; 1504 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1505 Name = GAS->getInputName(i); 1506 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1507 bool IsValid = 1508 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1509 S.getNumOutputs(), Info); 1510 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1511 InputConstraintInfos.push_back(Info); 1512 } 1513 1514 std::string Constraints; 1515 1516 std::vector<LValue> ResultRegDests; 1517 std::vector<QualType> ResultRegQualTys; 1518 std::vector<llvm::Type *> ResultRegTypes; 1519 std::vector<llvm::Type *> ResultTruncRegTypes; 1520 std::vector<llvm::Type *> ArgTypes; 1521 std::vector<llvm::Value*> Args; 1522 1523 // Keep track of inout constraints. 1524 std::string InOutConstraints; 1525 std::vector<llvm::Value*> InOutArgs; 1526 std::vector<llvm::Type*> InOutArgTypes; 1527 1528 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1529 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1530 1531 // Simplify the output constraint. 1532 std::string OutputConstraint(S.getOutputConstraint(i)); 1533 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1534 getTarget()); 1535 1536 const Expr *OutExpr = S.getOutputExpr(i); 1537 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1538 1539 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1540 getTarget(), CGM, S); 1541 1542 LValue Dest = EmitLValue(OutExpr); 1543 if (!Constraints.empty()) 1544 Constraints += ','; 1545 1546 // If this is a register output, then make the inline asm return it 1547 // by-value. If this is a memory result, return the value by-reference. 1548 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1549 Constraints += "=" + OutputConstraint; 1550 ResultRegQualTys.push_back(OutExpr->getType()); 1551 ResultRegDests.push_back(Dest); 1552 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1553 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1554 1555 // If this output is tied to an input, and if the input is larger, then 1556 // we need to set the actual result type of the inline asm node to be the 1557 // same as the input type. 1558 if (Info.hasMatchingInput()) { 1559 unsigned InputNo; 1560 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1561 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1562 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1563 break; 1564 } 1565 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1566 1567 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1568 QualType OutputType = OutExpr->getType(); 1569 1570 uint64_t InputSize = getContext().getTypeSize(InputTy); 1571 if (getContext().getTypeSize(OutputType) < InputSize) { 1572 // Form the asm to return the value as a larger integer or fp type. 1573 ResultRegTypes.back() = ConvertType(InputTy); 1574 } 1575 } 1576 if (llvm::Type* AdjTy = 1577 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1578 ResultRegTypes.back())) 1579 ResultRegTypes.back() = AdjTy; 1580 else { 1581 CGM.getDiags().Report(S.getAsmLoc(), 1582 diag::err_asm_invalid_type_in_input) 1583 << OutExpr->getType() << OutputConstraint; 1584 } 1585 } else { 1586 ArgTypes.push_back(Dest.getAddress()->getType()); 1587 Args.push_back(Dest.getAddress()); 1588 Constraints += "=*"; 1589 Constraints += OutputConstraint; 1590 } 1591 1592 if (Info.isReadWrite()) { 1593 InOutConstraints += ','; 1594 1595 const Expr *InputExpr = S.getOutputExpr(i); 1596 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1597 InOutConstraints, 1598 InputExpr->getExprLoc()); 1599 1600 if (llvm::Type* AdjTy = 1601 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1602 Arg->getType())) 1603 Arg = Builder.CreateBitCast(Arg, AdjTy); 1604 1605 if (Info.allowsRegister()) 1606 InOutConstraints += llvm::utostr(i); 1607 else 1608 InOutConstraints += OutputConstraint; 1609 1610 InOutArgTypes.push_back(Arg->getType()); 1611 InOutArgs.push_back(Arg); 1612 } 1613 } 1614 1615 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1616 1617 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1618 const Expr *InputExpr = S.getInputExpr(i); 1619 1620 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1621 1622 if (!Constraints.empty()) 1623 Constraints += ','; 1624 1625 // Simplify the input constraint. 1626 std::string InputConstraint(S.getInputConstraint(i)); 1627 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1628 &OutputConstraintInfos); 1629 1630 InputConstraint = 1631 AddVariableConstraints(InputConstraint, 1632 *InputExpr->IgnoreParenNoopCasts(getContext()), 1633 getTarget(), CGM, S); 1634 1635 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1636 1637 // If this input argument is tied to a larger output result, extend the 1638 // input to be the same size as the output. The LLVM backend wants to see 1639 // the input and output of a matching constraint be the same size. Note 1640 // that GCC does not define what the top bits are here. We use zext because 1641 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1642 if (Info.hasTiedOperand()) { 1643 unsigned Output = Info.getTiedOperand(); 1644 QualType OutputType = S.getOutputExpr(Output)->getType(); 1645 QualType InputTy = InputExpr->getType(); 1646 1647 if (getContext().getTypeSize(OutputType) > 1648 getContext().getTypeSize(InputTy)) { 1649 // Use ptrtoint as appropriate so that we can do our extension. 1650 if (isa<llvm::PointerType>(Arg->getType())) 1651 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1652 llvm::Type *OutputTy = ConvertType(OutputType); 1653 if (isa<llvm::IntegerType>(OutputTy)) 1654 Arg = Builder.CreateZExt(Arg, OutputTy); 1655 else if (isa<llvm::PointerType>(OutputTy)) 1656 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1657 else { 1658 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1659 Arg = Builder.CreateFPExt(Arg, OutputTy); 1660 } 1661 } 1662 } 1663 if (llvm::Type* AdjTy = 1664 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1665 Arg->getType())) 1666 Arg = Builder.CreateBitCast(Arg, AdjTy); 1667 else 1668 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1669 << InputExpr->getType() << InputConstraint; 1670 1671 ArgTypes.push_back(Arg->getType()); 1672 Args.push_back(Arg); 1673 Constraints += InputConstraint; 1674 } 1675 1676 // Append the "input" part of inout constraints last. 1677 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1678 ArgTypes.push_back(InOutArgTypes[i]); 1679 Args.push_back(InOutArgs[i]); 1680 } 1681 Constraints += InOutConstraints; 1682 1683 // Clobbers 1684 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1685 StringRef Clobber = S.getClobber(i); 1686 1687 if (Clobber != "memory" && Clobber != "cc") 1688 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1689 1690 if (i != 0 || NumConstraints != 0) 1691 Constraints += ','; 1692 1693 Constraints += "~{"; 1694 Constraints += Clobber; 1695 Constraints += '}'; 1696 } 1697 1698 // Add machine specific clobbers 1699 std::string MachineClobbers = getTarget().getClobbers(); 1700 if (!MachineClobbers.empty()) { 1701 if (!Constraints.empty()) 1702 Constraints += ','; 1703 Constraints += MachineClobbers; 1704 } 1705 1706 llvm::Type *ResultType; 1707 if (ResultRegTypes.empty()) 1708 ResultType = VoidTy; 1709 else if (ResultRegTypes.size() == 1) 1710 ResultType = ResultRegTypes[0]; 1711 else 1712 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1713 1714 llvm::FunctionType *FTy = 1715 llvm::FunctionType::get(ResultType, ArgTypes, false); 1716 1717 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1718 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1719 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1720 llvm::InlineAsm *IA = 1721 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1722 /* IsAlignStack */ false, AsmDialect); 1723 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1724 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1725 llvm::Attribute::NoUnwind); 1726 1727 // Slap the source location of the inline asm into a !srcloc metadata on the 1728 // call. FIXME: Handle metadata for MS-style inline asms. 1729 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1730 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 1731 *this)); 1732 1733 // Extract all of the register value results from the asm. 1734 std::vector<llvm::Value*> RegResults; 1735 if (ResultRegTypes.size() == 1) { 1736 RegResults.push_back(Result); 1737 } else { 1738 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1739 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1740 RegResults.push_back(Tmp); 1741 } 1742 } 1743 1744 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1745 llvm::Value *Tmp = RegResults[i]; 1746 1747 // If the result type of the LLVM IR asm doesn't match the result type of 1748 // the expression, do the conversion. 1749 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1750 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1751 1752 // Truncate the integer result to the right size, note that TruncTy can be 1753 // a pointer. 1754 if (TruncTy->isFloatingPointTy()) 1755 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1756 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1757 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 1758 Tmp = Builder.CreateTrunc(Tmp, 1759 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1760 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1761 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1762 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 1763 Tmp = Builder.CreatePtrToInt(Tmp, 1764 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1765 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1766 } else if (TruncTy->isIntegerTy()) { 1767 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1768 } else if (TruncTy->isVectorTy()) { 1769 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1770 } 1771 } 1772 1773 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1774 } 1775 } 1776 1777 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 1778 const RecordDecl *RD = S.getCapturedRecordDecl(); 1779 QualType RecordTy = CGF.getContext().getRecordType(RD); 1780 1781 // Initialize the captured struct. 1782 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 1783 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 1784 1785 RecordDecl::field_iterator CurField = RD->field_begin(); 1786 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 1787 E = S.capture_init_end(); 1788 I != E; ++I, ++CurField) { 1789 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1790 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 1791 } 1792 1793 return SlotLV; 1794 } 1795 1796 /// Generate an outlined function for the body of a CapturedStmt, store any 1797 /// captured variables into the captured struct, and call the outlined function. 1798 llvm::Function * 1799 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 1800 const CapturedDecl *CD = S.getCapturedDecl(); 1801 const RecordDecl *RD = S.getCapturedRecordDecl(); 1802 assert(CD->hasBody() && "missing CapturedDecl body"); 1803 1804 LValue CapStruct = InitCapturedStruct(*this, S); 1805 1806 // Emit the CapturedDecl 1807 CodeGenFunction CGF(CGM, true); 1808 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 1809 llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart()); 1810 delete CGF.CapturedStmtInfo; 1811 1812 // Emit call to the helper function. 1813 EmitCallOrInvoke(F, CapStruct.getAddress()); 1814 1815 return F; 1816 } 1817 1818 /// Creates the outlined function for a CapturedStmt. 1819 llvm::Function * 1820 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD, 1821 const RecordDecl *RD, 1822 SourceLocation Loc) { 1823 assert(CapturedStmtInfo && 1824 "CapturedStmtInfo should be set when generating the captured function"); 1825 1826 // Build the argument list. 1827 ASTContext &Ctx = CGM.getContext(); 1828 FunctionArgList Args; 1829 Args.append(CD->param_begin(), CD->param_end()); 1830 1831 // Create the function declaration. 1832 FunctionType::ExtInfo ExtInfo; 1833 const CGFunctionInfo &FuncInfo = 1834 CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 1835 /*IsVariadic=*/false); 1836 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 1837 1838 llvm::Function *F = 1839 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 1840 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 1841 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 1842 1843 // Generate the function. 1844 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart()); 1845 1846 // Set the context parameter in CapturedStmtInfo. 1847 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 1848 assert(DeclPtr && "missing context parameter for CapturedStmt"); 1849 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 1850 1851 // If 'this' is captured, load it into CXXThisValue. 1852 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 1853 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 1854 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 1855 Ctx.getTagDeclType(RD)); 1856 LValue ThisLValue = EmitLValueForField(LV, FD); 1857 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 1858 } 1859 1860 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 1861 FinishFunction(CD->getBodyRBrace()); 1862 1863 return F; 1864 } 1865