1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "TargetInfo.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/Support/SaveAndRestore.h" 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===----------------------------------------------------------------------===// 34 // Statement Emission 35 //===----------------------------------------------------------------------===// 36 37 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 38 if (CGDebugInfo *DI = getDebugInfo()) { 39 SourceLocation Loc; 40 Loc = S->getBeginLoc(); 41 DI->EmitLocation(Builder, Loc); 42 43 LastStopPoint = Loc; 44 } 45 } 46 47 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 48 assert(S && "Null statement?"); 49 PGO.setCurrentStmt(S); 50 51 // These statements have their own debug info handling. 52 if (EmitSimpleStmt(S)) 53 return; 54 55 // Check if we are generating unreachable code. 56 if (!HaveInsertPoint()) { 57 // If so, and the statement doesn't contain a label, then we do not need to 58 // generate actual code. This is safe because (1) the current point is 59 // unreachable, so we don't need to execute the code, and (2) we've already 60 // handled the statements which update internal data structures (like the 61 // local variable map) which could be used by subsequent statements. 62 if (!ContainsLabel(S)) { 63 // Verify that any decl statements were handled as simple, they may be in 64 // scope of subsequent reachable statements. 65 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 66 return; 67 } 68 69 // Otherwise, make a new block to hold the code. 70 EnsureInsertPoint(); 71 } 72 73 // Generate a stoppoint if we are emitting debug info. 74 EmitStopPoint(S); 75 76 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 77 // enabled. 78 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 79 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 80 EmitSimpleOMPExecutableDirective(*D); 81 return; 82 } 83 } 84 85 switch (S->getStmtClass()) { 86 case Stmt::NoStmtClass: 87 case Stmt::CXXCatchStmtClass: 88 case Stmt::SEHExceptStmtClass: 89 case Stmt::SEHFinallyStmtClass: 90 case Stmt::MSDependentExistsStmtClass: 91 llvm_unreachable("invalid statement class to emit generically"); 92 case Stmt::NullStmtClass: 93 case Stmt::CompoundStmtClass: 94 case Stmt::DeclStmtClass: 95 case Stmt::LabelStmtClass: 96 case Stmt::AttributedStmtClass: 97 case Stmt::GotoStmtClass: 98 case Stmt::BreakStmtClass: 99 case Stmt::ContinueStmtClass: 100 case Stmt::DefaultStmtClass: 101 case Stmt::CaseStmtClass: 102 case Stmt::SEHLeaveStmtClass: 103 llvm_unreachable("should have emitted these statements as simple"); 104 105 #define STMT(Type, Base) 106 #define ABSTRACT_STMT(Op) 107 #define EXPR(Type, Base) \ 108 case Stmt::Type##Class: 109 #include "clang/AST/StmtNodes.inc" 110 { 111 // Remember the block we came in on. 112 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 113 assert(incoming && "expression emission must have an insertion point"); 114 115 EmitIgnoredExpr(cast<Expr>(S)); 116 117 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 118 assert(outgoing && "expression emission cleared block!"); 119 120 // The expression emitters assume (reasonably!) that the insertion 121 // point is always set. To maintain that, the call-emission code 122 // for noreturn functions has to enter a new block with no 123 // predecessors. We want to kill that block and mark the current 124 // insertion point unreachable in the common case of a call like 125 // "exit();". Since expression emission doesn't otherwise create 126 // blocks with no predecessors, we can just test for that. 127 // However, we must be careful not to do this to our incoming 128 // block, because *statement* emission does sometimes create 129 // reachable blocks which will have no predecessors until later in 130 // the function. This occurs with, e.g., labels that are not 131 // reachable by fallthrough. 132 if (incoming != outgoing && outgoing->use_empty()) { 133 outgoing->eraseFromParent(); 134 Builder.ClearInsertionPoint(); 135 } 136 break; 137 } 138 139 case Stmt::IndirectGotoStmtClass: 140 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 141 142 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 143 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 144 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 145 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 146 147 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 148 149 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 150 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 151 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 152 case Stmt::CoroutineBodyStmtClass: 153 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 154 break; 155 case Stmt::CoreturnStmtClass: 156 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 157 break; 158 case Stmt::CapturedStmtClass: { 159 const CapturedStmt *CS = cast<CapturedStmt>(S); 160 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 161 } 162 break; 163 case Stmt::ObjCAtTryStmtClass: 164 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 165 break; 166 case Stmt::ObjCAtCatchStmtClass: 167 llvm_unreachable( 168 "@catch statements should be handled by EmitObjCAtTryStmt"); 169 case Stmt::ObjCAtFinallyStmtClass: 170 llvm_unreachable( 171 "@finally statements should be handled by EmitObjCAtTryStmt"); 172 case Stmt::ObjCAtThrowStmtClass: 173 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 174 break; 175 case Stmt::ObjCAtSynchronizedStmtClass: 176 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 177 break; 178 case Stmt::ObjCForCollectionStmtClass: 179 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 180 break; 181 case Stmt::ObjCAutoreleasePoolStmtClass: 182 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 183 break; 184 185 case Stmt::CXXTryStmtClass: 186 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 187 break; 188 case Stmt::CXXForRangeStmtClass: 189 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 190 break; 191 case Stmt::SEHTryStmtClass: 192 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 193 break; 194 case Stmt::OMPParallelDirectiveClass: 195 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 196 break; 197 case Stmt::OMPSimdDirectiveClass: 198 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 199 break; 200 case Stmt::OMPForDirectiveClass: 201 EmitOMPForDirective(cast<OMPForDirective>(*S)); 202 break; 203 case Stmt::OMPForSimdDirectiveClass: 204 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 205 break; 206 case Stmt::OMPSectionsDirectiveClass: 207 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 208 break; 209 case Stmt::OMPSectionDirectiveClass: 210 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 211 break; 212 case Stmt::OMPSingleDirectiveClass: 213 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 214 break; 215 case Stmt::OMPMasterDirectiveClass: 216 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 217 break; 218 case Stmt::OMPCriticalDirectiveClass: 219 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 220 break; 221 case Stmt::OMPParallelForDirectiveClass: 222 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 223 break; 224 case Stmt::OMPParallelForSimdDirectiveClass: 225 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 226 break; 227 case Stmt::OMPParallelMasterDirectiveClass: 228 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 229 break; 230 case Stmt::OMPParallelSectionsDirectiveClass: 231 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 232 break; 233 case Stmt::OMPTaskDirectiveClass: 234 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 235 break; 236 case Stmt::OMPTaskyieldDirectiveClass: 237 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 238 break; 239 case Stmt::OMPBarrierDirectiveClass: 240 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 241 break; 242 case Stmt::OMPTaskwaitDirectiveClass: 243 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 244 break; 245 case Stmt::OMPTaskgroupDirectiveClass: 246 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 247 break; 248 case Stmt::OMPFlushDirectiveClass: 249 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 250 break; 251 case Stmt::OMPDepobjDirectiveClass: 252 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 253 break; 254 case Stmt::OMPScanDirectiveClass: 255 llvm_unreachable("Scan directive not supported yet."); 256 break; 257 case Stmt::OMPOrderedDirectiveClass: 258 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 259 break; 260 case Stmt::OMPAtomicDirectiveClass: 261 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 262 break; 263 case Stmt::OMPTargetDirectiveClass: 264 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 265 break; 266 case Stmt::OMPTeamsDirectiveClass: 267 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 268 break; 269 case Stmt::OMPCancellationPointDirectiveClass: 270 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 271 break; 272 case Stmt::OMPCancelDirectiveClass: 273 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 274 break; 275 case Stmt::OMPTargetDataDirectiveClass: 276 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 277 break; 278 case Stmt::OMPTargetEnterDataDirectiveClass: 279 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 280 break; 281 case Stmt::OMPTargetExitDataDirectiveClass: 282 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 283 break; 284 case Stmt::OMPTargetParallelDirectiveClass: 285 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 286 break; 287 case Stmt::OMPTargetParallelForDirectiveClass: 288 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 289 break; 290 case Stmt::OMPTaskLoopDirectiveClass: 291 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 292 break; 293 case Stmt::OMPTaskLoopSimdDirectiveClass: 294 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 295 break; 296 case Stmt::OMPMasterTaskLoopDirectiveClass: 297 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 298 break; 299 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 300 EmitOMPMasterTaskLoopSimdDirective( 301 cast<OMPMasterTaskLoopSimdDirective>(*S)); 302 break; 303 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 304 EmitOMPParallelMasterTaskLoopDirective( 305 cast<OMPParallelMasterTaskLoopDirective>(*S)); 306 break; 307 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 308 EmitOMPParallelMasterTaskLoopSimdDirective( 309 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 310 break; 311 case Stmt::OMPDistributeDirectiveClass: 312 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 313 break; 314 case Stmt::OMPTargetUpdateDirectiveClass: 315 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 316 break; 317 case Stmt::OMPDistributeParallelForDirectiveClass: 318 EmitOMPDistributeParallelForDirective( 319 cast<OMPDistributeParallelForDirective>(*S)); 320 break; 321 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 322 EmitOMPDistributeParallelForSimdDirective( 323 cast<OMPDistributeParallelForSimdDirective>(*S)); 324 break; 325 case Stmt::OMPDistributeSimdDirectiveClass: 326 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 327 break; 328 case Stmt::OMPTargetParallelForSimdDirectiveClass: 329 EmitOMPTargetParallelForSimdDirective( 330 cast<OMPTargetParallelForSimdDirective>(*S)); 331 break; 332 case Stmt::OMPTargetSimdDirectiveClass: 333 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 334 break; 335 case Stmt::OMPTeamsDistributeDirectiveClass: 336 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 337 break; 338 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 339 EmitOMPTeamsDistributeSimdDirective( 340 cast<OMPTeamsDistributeSimdDirective>(*S)); 341 break; 342 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 343 EmitOMPTeamsDistributeParallelForSimdDirective( 344 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 345 break; 346 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 347 EmitOMPTeamsDistributeParallelForDirective( 348 cast<OMPTeamsDistributeParallelForDirective>(*S)); 349 break; 350 case Stmt::OMPTargetTeamsDirectiveClass: 351 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 352 break; 353 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 354 EmitOMPTargetTeamsDistributeDirective( 355 cast<OMPTargetTeamsDistributeDirective>(*S)); 356 break; 357 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 358 EmitOMPTargetTeamsDistributeParallelForDirective( 359 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 360 break; 361 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 362 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 363 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 364 break; 365 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 366 EmitOMPTargetTeamsDistributeSimdDirective( 367 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 368 break; 369 } 370 } 371 372 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 373 switch (S->getStmtClass()) { 374 default: return false; 375 case Stmt::NullStmtClass: break; 376 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 377 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 378 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 379 case Stmt::AttributedStmtClass: 380 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 381 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 382 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 383 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 384 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 385 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 386 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 387 } 388 389 return true; 390 } 391 392 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 393 /// this captures the expression result of the last sub-statement and returns it 394 /// (for use by the statement expression extension). 395 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 396 AggValueSlot AggSlot) { 397 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 398 "LLVM IR generation of compound statement ('{}')"); 399 400 // Keep track of the current cleanup stack depth, including debug scopes. 401 LexicalScope Scope(*this, S.getSourceRange()); 402 403 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 404 } 405 406 Address 407 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 408 bool GetLast, 409 AggValueSlot AggSlot) { 410 411 const Stmt *ExprResult = S.getStmtExprResult(); 412 assert((!GetLast || (GetLast && ExprResult)) && 413 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 414 415 Address RetAlloca = Address::invalid(); 416 417 for (auto *CurStmt : S.body()) { 418 if (GetLast && ExprResult == CurStmt) { 419 // We have to special case labels here. They are statements, but when put 420 // at the end of a statement expression, they yield the value of their 421 // subexpression. Handle this by walking through all labels we encounter, 422 // emitting them before we evaluate the subexpr. 423 // Similar issues arise for attributed statements. 424 while (!isa<Expr>(ExprResult)) { 425 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 426 EmitLabel(LS->getDecl()); 427 ExprResult = LS->getSubStmt(); 428 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 429 // FIXME: Update this if we ever have attributes that affect the 430 // semantics of an expression. 431 ExprResult = AS->getSubStmt(); 432 } else { 433 llvm_unreachable("unknown value statement"); 434 } 435 } 436 437 EnsureInsertPoint(); 438 439 const Expr *E = cast<Expr>(ExprResult); 440 QualType ExprTy = E->getType(); 441 if (hasAggregateEvaluationKind(ExprTy)) { 442 EmitAggExpr(E, AggSlot); 443 } else { 444 // We can't return an RValue here because there might be cleanups at 445 // the end of the StmtExpr. Because of that, we have to emit the result 446 // here into a temporary alloca. 447 RetAlloca = CreateMemTemp(ExprTy); 448 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 449 /*IsInit*/ false); 450 } 451 } else { 452 EmitStmt(CurStmt); 453 } 454 } 455 456 return RetAlloca; 457 } 458 459 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 460 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 461 462 // If there is a cleanup stack, then we it isn't worth trying to 463 // simplify this block (we would need to remove it from the scope map 464 // and cleanup entry). 465 if (!EHStack.empty()) 466 return; 467 468 // Can only simplify direct branches. 469 if (!BI || !BI->isUnconditional()) 470 return; 471 472 // Can only simplify empty blocks. 473 if (BI->getIterator() != BB->begin()) 474 return; 475 476 BB->replaceAllUsesWith(BI->getSuccessor(0)); 477 BI->eraseFromParent(); 478 BB->eraseFromParent(); 479 } 480 481 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 482 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 483 484 // Fall out of the current block (if necessary). 485 EmitBranch(BB); 486 487 if (IsFinished && BB->use_empty()) { 488 delete BB; 489 return; 490 } 491 492 // Place the block after the current block, if possible, or else at 493 // the end of the function. 494 if (CurBB && CurBB->getParent()) 495 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 496 else 497 CurFn->getBasicBlockList().push_back(BB); 498 Builder.SetInsertPoint(BB); 499 } 500 501 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 502 // Emit a branch from the current block to the target one if this 503 // was a real block. If this was just a fall-through block after a 504 // terminator, don't emit it. 505 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 506 507 if (!CurBB || CurBB->getTerminator()) { 508 // If there is no insert point or the previous block is already 509 // terminated, don't touch it. 510 } else { 511 // Otherwise, create a fall-through branch. 512 Builder.CreateBr(Target); 513 } 514 515 Builder.ClearInsertionPoint(); 516 } 517 518 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 519 bool inserted = false; 520 for (llvm::User *u : block->users()) { 521 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 522 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 523 block); 524 inserted = true; 525 break; 526 } 527 } 528 529 if (!inserted) 530 CurFn->getBasicBlockList().push_back(block); 531 532 Builder.SetInsertPoint(block); 533 } 534 535 CodeGenFunction::JumpDest 536 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 537 JumpDest &Dest = LabelMap[D]; 538 if (Dest.isValid()) return Dest; 539 540 // Create, but don't insert, the new block. 541 Dest = JumpDest(createBasicBlock(D->getName()), 542 EHScopeStack::stable_iterator::invalid(), 543 NextCleanupDestIndex++); 544 return Dest; 545 } 546 547 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 548 // Add this label to the current lexical scope if we're within any 549 // normal cleanups. Jumps "in" to this label --- when permitted by 550 // the language --- may need to be routed around such cleanups. 551 if (EHStack.hasNormalCleanups() && CurLexicalScope) 552 CurLexicalScope->addLabel(D); 553 554 JumpDest &Dest = LabelMap[D]; 555 556 // If we didn't need a forward reference to this label, just go 557 // ahead and create a destination at the current scope. 558 if (!Dest.isValid()) { 559 Dest = getJumpDestInCurrentScope(D->getName()); 560 561 // Otherwise, we need to give this label a target depth and remove 562 // it from the branch-fixups list. 563 } else { 564 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 565 Dest.setScopeDepth(EHStack.stable_begin()); 566 ResolveBranchFixups(Dest.getBlock()); 567 } 568 569 EmitBlock(Dest.getBlock()); 570 571 // Emit debug info for labels. 572 if (CGDebugInfo *DI = getDebugInfo()) { 573 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 574 DI->setLocation(D->getLocation()); 575 DI->EmitLabel(D, Builder); 576 } 577 } 578 579 incrementProfileCounter(D->getStmt()); 580 } 581 582 /// Change the cleanup scope of the labels in this lexical scope to 583 /// match the scope of the enclosing context. 584 void CodeGenFunction::LexicalScope::rescopeLabels() { 585 assert(!Labels.empty()); 586 EHScopeStack::stable_iterator innermostScope 587 = CGF.EHStack.getInnermostNormalCleanup(); 588 589 // Change the scope depth of all the labels. 590 for (SmallVectorImpl<const LabelDecl*>::const_iterator 591 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 592 assert(CGF.LabelMap.count(*i)); 593 JumpDest &dest = CGF.LabelMap.find(*i)->second; 594 assert(dest.getScopeDepth().isValid()); 595 assert(innermostScope.encloses(dest.getScopeDepth())); 596 dest.setScopeDepth(innermostScope); 597 } 598 599 // Reparent the labels if the new scope also has cleanups. 600 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 601 ParentScope->Labels.append(Labels.begin(), Labels.end()); 602 } 603 } 604 605 606 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 607 EmitLabel(S.getDecl()); 608 EmitStmt(S.getSubStmt()); 609 } 610 611 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 612 bool nomerge = false; 613 for (const auto *A : S.getAttrs()) 614 if (A->getKind() == attr::NoMerge) { 615 nomerge = true; 616 break; 617 } 618 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 619 EmitStmt(S.getSubStmt(), S.getAttrs()); 620 } 621 622 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 623 // If this code is reachable then emit a stop point (if generating 624 // debug info). We have to do this ourselves because we are on the 625 // "simple" statement path. 626 if (HaveInsertPoint()) 627 EmitStopPoint(&S); 628 629 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 630 } 631 632 633 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 634 if (const LabelDecl *Target = S.getConstantTarget()) { 635 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 636 return; 637 } 638 639 // Ensure that we have an i8* for our PHI node. 640 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 641 Int8PtrTy, "addr"); 642 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 643 644 // Get the basic block for the indirect goto. 645 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 646 647 // The first instruction in the block has to be the PHI for the switch dest, 648 // add an entry for this branch. 649 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 650 651 EmitBranch(IndGotoBB); 652 } 653 654 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 655 // C99 6.8.4.1: The first substatement is executed if the expression compares 656 // unequal to 0. The condition must be a scalar type. 657 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 658 659 if (S.getInit()) 660 EmitStmt(S.getInit()); 661 662 if (S.getConditionVariable()) 663 EmitDecl(*S.getConditionVariable()); 664 665 // If the condition constant folds and can be elided, try to avoid emitting 666 // the condition and the dead arm of the if/else. 667 bool CondConstant; 668 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 669 S.isConstexpr())) { 670 // Figure out which block (then or else) is executed. 671 const Stmt *Executed = S.getThen(); 672 const Stmt *Skipped = S.getElse(); 673 if (!CondConstant) // Condition false? 674 std::swap(Executed, Skipped); 675 676 // If the skipped block has no labels in it, just emit the executed block. 677 // This avoids emitting dead code and simplifies the CFG substantially. 678 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 679 if (CondConstant) 680 incrementProfileCounter(&S); 681 if (Executed) { 682 RunCleanupsScope ExecutedScope(*this); 683 EmitStmt(Executed); 684 } 685 return; 686 } 687 } 688 689 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 690 // the conditional branch. 691 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 692 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 693 llvm::BasicBlock *ElseBlock = ContBlock; 694 if (S.getElse()) 695 ElseBlock = createBasicBlock("if.else"); 696 697 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 698 getProfileCount(S.getThen())); 699 700 // Emit the 'then' code. 701 EmitBlock(ThenBlock); 702 incrementProfileCounter(&S); 703 { 704 RunCleanupsScope ThenScope(*this); 705 EmitStmt(S.getThen()); 706 } 707 EmitBranch(ContBlock); 708 709 // Emit the 'else' code if present. 710 if (const Stmt *Else = S.getElse()) { 711 { 712 // There is no need to emit line number for an unconditional branch. 713 auto NL = ApplyDebugLocation::CreateEmpty(*this); 714 EmitBlock(ElseBlock); 715 } 716 { 717 RunCleanupsScope ElseScope(*this); 718 EmitStmt(Else); 719 } 720 { 721 // There is no need to emit line number for an unconditional branch. 722 auto NL = ApplyDebugLocation::CreateEmpty(*this); 723 EmitBranch(ContBlock); 724 } 725 } 726 727 // Emit the continuation block for code after the if. 728 EmitBlock(ContBlock, true); 729 } 730 731 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 732 ArrayRef<const Attr *> WhileAttrs) { 733 // Emit the header for the loop, which will also become 734 // the continue target. 735 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 736 EmitBlock(LoopHeader.getBlock()); 737 738 const SourceRange &R = S.getSourceRange(); 739 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 740 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 741 SourceLocToDebugLoc(R.getEnd())); 742 743 // Create an exit block for when the condition fails, which will 744 // also become the break target. 745 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 746 747 // Store the blocks to use for break and continue. 748 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 749 750 // C++ [stmt.while]p2: 751 // When the condition of a while statement is a declaration, the 752 // scope of the variable that is declared extends from its point 753 // of declaration (3.3.2) to the end of the while statement. 754 // [...] 755 // The object created in a condition is destroyed and created 756 // with each iteration of the loop. 757 RunCleanupsScope ConditionScope(*this); 758 759 if (S.getConditionVariable()) 760 EmitDecl(*S.getConditionVariable()); 761 762 // Evaluate the conditional in the while header. C99 6.8.5.1: The 763 // evaluation of the controlling expression takes place before each 764 // execution of the loop body. 765 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 766 767 // while(1) is common, avoid extra exit blocks. Be sure 768 // to correctly handle break/continue though. 769 bool EmitBoolCondBranch = true; 770 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 771 if (C->isOne()) 772 EmitBoolCondBranch = false; 773 774 // As long as the condition is true, go to the loop body. 775 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 776 if (EmitBoolCondBranch) { 777 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 778 if (ConditionScope.requiresCleanups()) 779 ExitBlock = createBasicBlock("while.exit"); 780 Builder.CreateCondBr( 781 BoolCondVal, LoopBody, ExitBlock, 782 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 783 784 if (ExitBlock != LoopExit.getBlock()) { 785 EmitBlock(ExitBlock); 786 EmitBranchThroughCleanup(LoopExit); 787 } 788 } 789 790 // Emit the loop body. We have to emit this in a cleanup scope 791 // because it might be a singleton DeclStmt. 792 { 793 RunCleanupsScope BodyScope(*this); 794 EmitBlock(LoopBody); 795 incrementProfileCounter(&S); 796 EmitStmt(S.getBody()); 797 } 798 799 BreakContinueStack.pop_back(); 800 801 // Immediately force cleanup. 802 ConditionScope.ForceCleanup(); 803 804 EmitStopPoint(&S); 805 // Branch to the loop header again. 806 EmitBranch(LoopHeader.getBlock()); 807 808 LoopStack.pop(); 809 810 // Emit the exit block. 811 EmitBlock(LoopExit.getBlock(), true); 812 813 // The LoopHeader typically is just a branch if we skipped emitting 814 // a branch, try to erase it. 815 if (!EmitBoolCondBranch) 816 SimplifyForwardingBlocks(LoopHeader.getBlock()); 817 } 818 819 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 820 ArrayRef<const Attr *> DoAttrs) { 821 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 822 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 823 824 uint64_t ParentCount = getCurrentProfileCount(); 825 826 // Store the blocks to use for break and continue. 827 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 828 829 // Emit the body of the loop. 830 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 831 832 EmitBlockWithFallThrough(LoopBody, &S); 833 { 834 RunCleanupsScope BodyScope(*this); 835 EmitStmt(S.getBody()); 836 } 837 838 EmitBlock(LoopCond.getBlock()); 839 840 const SourceRange &R = S.getSourceRange(); 841 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 842 SourceLocToDebugLoc(R.getBegin()), 843 SourceLocToDebugLoc(R.getEnd())); 844 845 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 846 // after each execution of the loop body." 847 848 // Evaluate the conditional in the while header. 849 // C99 6.8.5p2/p4: The first substatement is executed if the expression 850 // compares unequal to 0. The condition must be a scalar type. 851 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 852 853 BreakContinueStack.pop_back(); 854 855 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 856 // to correctly handle break/continue though. 857 bool EmitBoolCondBranch = true; 858 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 859 if (C->isZero()) 860 EmitBoolCondBranch = false; 861 862 // As long as the condition is true, iterate the loop. 863 if (EmitBoolCondBranch) { 864 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 865 Builder.CreateCondBr( 866 BoolCondVal, LoopBody, LoopExit.getBlock(), 867 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 868 } 869 870 LoopStack.pop(); 871 872 // Emit the exit block. 873 EmitBlock(LoopExit.getBlock()); 874 875 // The DoCond block typically is just a branch if we skipped 876 // emitting a branch, try to erase it. 877 if (!EmitBoolCondBranch) 878 SimplifyForwardingBlocks(LoopCond.getBlock()); 879 } 880 881 void CodeGenFunction::EmitForStmt(const ForStmt &S, 882 ArrayRef<const Attr *> ForAttrs) { 883 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 884 885 LexicalScope ForScope(*this, S.getSourceRange()); 886 887 // Evaluate the first part before the loop. 888 if (S.getInit()) 889 EmitStmt(S.getInit()); 890 891 // Start the loop with a block that tests the condition. 892 // If there's an increment, the continue scope will be overwritten 893 // later. 894 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 895 llvm::BasicBlock *CondBlock = Continue.getBlock(); 896 EmitBlock(CondBlock); 897 898 const SourceRange &R = S.getSourceRange(); 899 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 900 SourceLocToDebugLoc(R.getBegin()), 901 SourceLocToDebugLoc(R.getEnd())); 902 903 // If the for loop doesn't have an increment we can just use the 904 // condition as the continue block. Otherwise we'll need to create 905 // a block for it (in the current scope, i.e. in the scope of the 906 // condition), and that we will become our continue block. 907 if (S.getInc()) 908 Continue = getJumpDestInCurrentScope("for.inc"); 909 910 // Store the blocks to use for break and continue. 911 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 912 913 // Create a cleanup scope for the condition variable cleanups. 914 LexicalScope ConditionScope(*this, S.getSourceRange()); 915 916 if (S.getCond()) { 917 // If the for statement has a condition scope, emit the local variable 918 // declaration. 919 if (S.getConditionVariable()) { 920 EmitDecl(*S.getConditionVariable()); 921 } 922 923 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 924 // If there are any cleanups between here and the loop-exit scope, 925 // create a block to stage a loop exit along. 926 if (ForScope.requiresCleanups()) 927 ExitBlock = createBasicBlock("for.cond.cleanup"); 928 929 // As long as the condition is true, iterate the loop. 930 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 931 932 // C99 6.8.5p2/p4: The first substatement is executed if the expression 933 // compares unequal to 0. The condition must be a scalar type. 934 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 935 Builder.CreateCondBr( 936 BoolCondVal, ForBody, ExitBlock, 937 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 938 939 if (ExitBlock != LoopExit.getBlock()) { 940 EmitBlock(ExitBlock); 941 EmitBranchThroughCleanup(LoopExit); 942 } 943 944 EmitBlock(ForBody); 945 } else { 946 // Treat it as a non-zero constant. Don't even create a new block for the 947 // body, just fall into it. 948 } 949 incrementProfileCounter(&S); 950 951 { 952 // Create a separate cleanup scope for the body, in case it is not 953 // a compound statement. 954 RunCleanupsScope BodyScope(*this); 955 EmitStmt(S.getBody()); 956 } 957 958 // If there is an increment, emit it next. 959 if (S.getInc()) { 960 EmitBlock(Continue.getBlock()); 961 EmitStmt(S.getInc()); 962 } 963 964 BreakContinueStack.pop_back(); 965 966 ConditionScope.ForceCleanup(); 967 968 EmitStopPoint(&S); 969 EmitBranch(CondBlock); 970 971 ForScope.ForceCleanup(); 972 973 LoopStack.pop(); 974 975 // Emit the fall-through block. 976 EmitBlock(LoopExit.getBlock(), true); 977 } 978 979 void 980 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 981 ArrayRef<const Attr *> ForAttrs) { 982 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 983 984 LexicalScope ForScope(*this, S.getSourceRange()); 985 986 // Evaluate the first pieces before the loop. 987 if (S.getInit()) 988 EmitStmt(S.getInit()); 989 EmitStmt(S.getRangeStmt()); 990 EmitStmt(S.getBeginStmt()); 991 EmitStmt(S.getEndStmt()); 992 993 // Start the loop with a block that tests the condition. 994 // If there's an increment, the continue scope will be overwritten 995 // later. 996 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 997 EmitBlock(CondBlock); 998 999 const SourceRange &R = S.getSourceRange(); 1000 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1001 SourceLocToDebugLoc(R.getBegin()), 1002 SourceLocToDebugLoc(R.getEnd())); 1003 1004 // If there are any cleanups between here and the loop-exit scope, 1005 // create a block to stage a loop exit along. 1006 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1007 if (ForScope.requiresCleanups()) 1008 ExitBlock = createBasicBlock("for.cond.cleanup"); 1009 1010 // The loop body, consisting of the specified body and the loop variable. 1011 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1012 1013 // The body is executed if the expression, contextually converted 1014 // to bool, is true. 1015 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1016 Builder.CreateCondBr( 1017 BoolCondVal, ForBody, ExitBlock, 1018 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 1019 1020 if (ExitBlock != LoopExit.getBlock()) { 1021 EmitBlock(ExitBlock); 1022 EmitBranchThroughCleanup(LoopExit); 1023 } 1024 1025 EmitBlock(ForBody); 1026 incrementProfileCounter(&S); 1027 1028 // Create a block for the increment. In case of a 'continue', we jump there. 1029 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1030 1031 // Store the blocks to use for break and continue. 1032 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1033 1034 { 1035 // Create a separate cleanup scope for the loop variable and body. 1036 LexicalScope BodyScope(*this, S.getSourceRange()); 1037 EmitStmt(S.getLoopVarStmt()); 1038 EmitStmt(S.getBody()); 1039 } 1040 1041 EmitStopPoint(&S); 1042 // If there is an increment, emit it next. 1043 EmitBlock(Continue.getBlock()); 1044 EmitStmt(S.getInc()); 1045 1046 BreakContinueStack.pop_back(); 1047 1048 EmitBranch(CondBlock); 1049 1050 ForScope.ForceCleanup(); 1051 1052 LoopStack.pop(); 1053 1054 // Emit the fall-through block. 1055 EmitBlock(LoopExit.getBlock(), true); 1056 } 1057 1058 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1059 if (RV.isScalar()) { 1060 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1061 } else if (RV.isAggregate()) { 1062 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1063 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1064 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1065 } else { 1066 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1067 /*init*/ true); 1068 } 1069 EmitBranchThroughCleanup(ReturnBlock); 1070 } 1071 1072 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1073 /// if the function returns void, or may be missing one if the function returns 1074 /// non-void. Fun stuff :). 1075 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1076 if (requiresReturnValueCheck()) { 1077 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1078 auto *SLocPtr = 1079 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1080 llvm::GlobalVariable::PrivateLinkage, SLoc); 1081 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1082 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1083 assert(ReturnLocation.isValid() && "No valid return location"); 1084 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1085 ReturnLocation); 1086 } 1087 1088 // Returning from an outlined SEH helper is UB, and we already warn on it. 1089 if (IsOutlinedSEHHelper) { 1090 Builder.CreateUnreachable(); 1091 Builder.ClearInsertionPoint(); 1092 } 1093 1094 // Emit the result value, even if unused, to evaluate the side effects. 1095 const Expr *RV = S.getRetValue(); 1096 1097 // Treat block literals in a return expression as if they appeared 1098 // in their own scope. This permits a small, easily-implemented 1099 // exception to our over-conservative rules about not jumping to 1100 // statements following block literals with non-trivial cleanups. 1101 RunCleanupsScope cleanupScope(*this); 1102 if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) { 1103 enterFullExpression(fe); 1104 RV = fe->getSubExpr(); 1105 } 1106 1107 // FIXME: Clean this up by using an LValue for ReturnTemp, 1108 // EmitStoreThroughLValue, and EmitAnyExpr. 1109 if (getLangOpts().ElideConstructors && 1110 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1111 // Apply the named return value optimization for this return statement, 1112 // which means doing nothing: the appropriate result has already been 1113 // constructed into the NRVO variable. 1114 1115 // If there is an NRVO flag for this variable, set it to 1 into indicate 1116 // that the cleanup code should not destroy the variable. 1117 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1118 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1119 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1120 // Make sure not to return anything, but evaluate the expression 1121 // for side effects. 1122 if (RV) 1123 EmitAnyExpr(RV); 1124 } else if (!RV) { 1125 // Do nothing (return value is left uninitialized) 1126 } else if (FnRetTy->isReferenceType()) { 1127 // If this function returns a reference, take the address of the expression 1128 // rather than the value. 1129 RValue Result = EmitReferenceBindingToExpr(RV); 1130 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1131 } else { 1132 switch (getEvaluationKind(RV->getType())) { 1133 case TEK_Scalar: 1134 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1135 break; 1136 case TEK_Complex: 1137 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1138 /*isInit*/ true); 1139 break; 1140 case TEK_Aggregate: 1141 EmitAggExpr(RV, AggValueSlot::forAddr( 1142 ReturnValue, Qualifiers(), 1143 AggValueSlot::IsDestructed, 1144 AggValueSlot::DoesNotNeedGCBarriers, 1145 AggValueSlot::IsNotAliased, 1146 getOverlapForReturnValue())); 1147 break; 1148 } 1149 } 1150 1151 ++NumReturnExprs; 1152 if (!RV || RV->isEvaluatable(getContext())) 1153 ++NumSimpleReturnExprs; 1154 1155 cleanupScope.ForceCleanup(); 1156 EmitBranchThroughCleanup(ReturnBlock); 1157 } 1158 1159 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1160 // As long as debug info is modeled with instructions, we have to ensure we 1161 // have a place to insert here and write the stop point here. 1162 if (HaveInsertPoint()) 1163 EmitStopPoint(&S); 1164 1165 for (const auto *I : S.decls()) 1166 EmitDecl(*I); 1167 } 1168 1169 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1170 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1171 1172 // If this code is reachable then emit a stop point (if generating 1173 // debug info). We have to do this ourselves because we are on the 1174 // "simple" statement path. 1175 if (HaveInsertPoint()) 1176 EmitStopPoint(&S); 1177 1178 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1179 } 1180 1181 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1182 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1183 1184 // If this code is reachable then emit a stop point (if generating 1185 // debug info). We have to do this ourselves because we are on the 1186 // "simple" statement path. 1187 if (HaveInsertPoint()) 1188 EmitStopPoint(&S); 1189 1190 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1191 } 1192 1193 /// EmitCaseStmtRange - If case statement range is not too big then 1194 /// add multiple cases to switch instruction, one for each value within 1195 /// the range. If range is too big then emit "if" condition check. 1196 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1197 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1198 1199 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1200 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1201 1202 // Emit the code for this case. We do this first to make sure it is 1203 // properly chained from our predecessor before generating the 1204 // switch machinery to enter this block. 1205 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1206 EmitBlockWithFallThrough(CaseDest, &S); 1207 EmitStmt(S.getSubStmt()); 1208 1209 // If range is empty, do nothing. 1210 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1211 return; 1212 1213 llvm::APInt Range = RHS - LHS; 1214 // FIXME: parameters such as this should not be hardcoded. 1215 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1216 // Range is small enough to add multiple switch instruction cases. 1217 uint64_t Total = getProfileCount(&S); 1218 unsigned NCases = Range.getZExtValue() + 1; 1219 // We only have one region counter for the entire set of cases here, so we 1220 // need to divide the weights evenly between the generated cases, ensuring 1221 // that the total weight is preserved. E.g., a weight of 5 over three cases 1222 // will be distributed as weights of 2, 2, and 1. 1223 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1224 for (unsigned I = 0; I != NCases; ++I) { 1225 if (SwitchWeights) 1226 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1227 if (Rem) 1228 Rem--; 1229 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1230 ++LHS; 1231 } 1232 return; 1233 } 1234 1235 // The range is too big. Emit "if" condition into a new block, 1236 // making sure to save and restore the current insertion point. 1237 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1238 1239 // Push this test onto the chain of range checks (which terminates 1240 // in the default basic block). The switch's default will be changed 1241 // to the top of this chain after switch emission is complete. 1242 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1243 CaseRangeBlock = createBasicBlock("sw.caserange"); 1244 1245 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1246 Builder.SetInsertPoint(CaseRangeBlock); 1247 1248 // Emit range check. 1249 llvm::Value *Diff = 1250 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1251 llvm::Value *Cond = 1252 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1253 1254 llvm::MDNode *Weights = nullptr; 1255 if (SwitchWeights) { 1256 uint64_t ThisCount = getProfileCount(&S); 1257 uint64_t DefaultCount = (*SwitchWeights)[0]; 1258 Weights = createProfileWeights(ThisCount, DefaultCount); 1259 1260 // Since we're chaining the switch default through each large case range, we 1261 // need to update the weight for the default, ie, the first case, to include 1262 // this case. 1263 (*SwitchWeights)[0] += ThisCount; 1264 } 1265 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1266 1267 // Restore the appropriate insertion point. 1268 if (RestoreBB) 1269 Builder.SetInsertPoint(RestoreBB); 1270 else 1271 Builder.ClearInsertionPoint(); 1272 } 1273 1274 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1275 // If there is no enclosing switch instance that we're aware of, then this 1276 // case statement and its block can be elided. This situation only happens 1277 // when we've constant-folded the switch, are emitting the constant case, 1278 // and part of the constant case includes another case statement. For 1279 // instance: switch (4) { case 4: do { case 5: } while (1); } 1280 if (!SwitchInsn) { 1281 EmitStmt(S.getSubStmt()); 1282 return; 1283 } 1284 1285 // Handle case ranges. 1286 if (S.getRHS()) { 1287 EmitCaseStmtRange(S); 1288 return; 1289 } 1290 1291 llvm::ConstantInt *CaseVal = 1292 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1293 1294 // If the body of the case is just a 'break', try to not emit an empty block. 1295 // If we're profiling or we're not optimizing, leave the block in for better 1296 // debug and coverage analysis. 1297 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1298 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1299 isa<BreakStmt>(S.getSubStmt())) { 1300 JumpDest Block = BreakContinueStack.back().BreakBlock; 1301 1302 // Only do this optimization if there are no cleanups that need emitting. 1303 if (isObviouslyBranchWithoutCleanups(Block)) { 1304 if (SwitchWeights) 1305 SwitchWeights->push_back(getProfileCount(&S)); 1306 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1307 1308 // If there was a fallthrough into this case, make sure to redirect it to 1309 // the end of the switch as well. 1310 if (Builder.GetInsertBlock()) { 1311 Builder.CreateBr(Block.getBlock()); 1312 Builder.ClearInsertionPoint(); 1313 } 1314 return; 1315 } 1316 } 1317 1318 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1319 EmitBlockWithFallThrough(CaseDest, &S); 1320 if (SwitchWeights) 1321 SwitchWeights->push_back(getProfileCount(&S)); 1322 SwitchInsn->addCase(CaseVal, CaseDest); 1323 1324 // Recursively emitting the statement is acceptable, but is not wonderful for 1325 // code where we have many case statements nested together, i.e.: 1326 // case 1: 1327 // case 2: 1328 // case 3: etc. 1329 // Handling this recursively will create a new block for each case statement 1330 // that falls through to the next case which is IR intensive. It also causes 1331 // deep recursion which can run into stack depth limitations. Handle 1332 // sequential non-range case statements specially. 1333 const CaseStmt *CurCase = &S; 1334 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1335 1336 // Otherwise, iteratively add consecutive cases to this switch stmt. 1337 while (NextCase && NextCase->getRHS() == nullptr) { 1338 CurCase = NextCase; 1339 llvm::ConstantInt *CaseVal = 1340 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1341 1342 if (SwitchWeights) 1343 SwitchWeights->push_back(getProfileCount(NextCase)); 1344 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1345 CaseDest = createBasicBlock("sw.bb"); 1346 EmitBlockWithFallThrough(CaseDest, &S); 1347 } 1348 1349 SwitchInsn->addCase(CaseVal, CaseDest); 1350 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1351 } 1352 1353 // Normal default recursion for non-cases. 1354 EmitStmt(CurCase->getSubStmt()); 1355 } 1356 1357 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1358 // If there is no enclosing switch instance that we're aware of, then this 1359 // default statement can be elided. This situation only happens when we've 1360 // constant-folded the switch. 1361 if (!SwitchInsn) { 1362 EmitStmt(S.getSubStmt()); 1363 return; 1364 } 1365 1366 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1367 assert(DefaultBlock->empty() && 1368 "EmitDefaultStmt: Default block already defined?"); 1369 1370 EmitBlockWithFallThrough(DefaultBlock, &S); 1371 1372 EmitStmt(S.getSubStmt()); 1373 } 1374 1375 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1376 /// constant value that is being switched on, see if we can dead code eliminate 1377 /// the body of the switch to a simple series of statements to emit. Basically, 1378 /// on a switch (5) we want to find these statements: 1379 /// case 5: 1380 /// printf(...); <-- 1381 /// ++i; <-- 1382 /// break; 1383 /// 1384 /// and add them to the ResultStmts vector. If it is unsafe to do this 1385 /// transformation (for example, one of the elided statements contains a label 1386 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1387 /// should include statements after it (e.g. the printf() line is a substmt of 1388 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1389 /// statement, then return CSFC_Success. 1390 /// 1391 /// If Case is non-null, then we are looking for the specified case, checking 1392 /// that nothing we jump over contains labels. If Case is null, then we found 1393 /// the case and are looking for the break. 1394 /// 1395 /// If the recursive walk actually finds our Case, then we set FoundCase to 1396 /// true. 1397 /// 1398 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1399 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1400 const SwitchCase *Case, 1401 bool &FoundCase, 1402 SmallVectorImpl<const Stmt*> &ResultStmts) { 1403 // If this is a null statement, just succeed. 1404 if (!S) 1405 return Case ? CSFC_Success : CSFC_FallThrough; 1406 1407 // If this is the switchcase (case 4: or default) that we're looking for, then 1408 // we're in business. Just add the substatement. 1409 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1410 if (S == Case) { 1411 FoundCase = true; 1412 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1413 ResultStmts); 1414 } 1415 1416 // Otherwise, this is some other case or default statement, just ignore it. 1417 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1418 ResultStmts); 1419 } 1420 1421 // If we are in the live part of the code and we found our break statement, 1422 // return a success! 1423 if (!Case && isa<BreakStmt>(S)) 1424 return CSFC_Success; 1425 1426 // If this is a switch statement, then it might contain the SwitchCase, the 1427 // break, or neither. 1428 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1429 // Handle this as two cases: we might be looking for the SwitchCase (if so 1430 // the skipped statements must be skippable) or we might already have it. 1431 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1432 bool StartedInLiveCode = FoundCase; 1433 unsigned StartSize = ResultStmts.size(); 1434 1435 // If we've not found the case yet, scan through looking for it. 1436 if (Case) { 1437 // Keep track of whether we see a skipped declaration. The code could be 1438 // using the declaration even if it is skipped, so we can't optimize out 1439 // the decl if the kept statements might refer to it. 1440 bool HadSkippedDecl = false; 1441 1442 // If we're looking for the case, just see if we can skip each of the 1443 // substatements. 1444 for (; Case && I != E; ++I) { 1445 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1446 1447 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1448 case CSFC_Failure: return CSFC_Failure; 1449 case CSFC_Success: 1450 // A successful result means that either 1) that the statement doesn't 1451 // have the case and is skippable, or 2) does contain the case value 1452 // and also contains the break to exit the switch. In the later case, 1453 // we just verify the rest of the statements are elidable. 1454 if (FoundCase) { 1455 // If we found the case and skipped declarations, we can't do the 1456 // optimization. 1457 if (HadSkippedDecl) 1458 return CSFC_Failure; 1459 1460 for (++I; I != E; ++I) 1461 if (CodeGenFunction::ContainsLabel(*I, true)) 1462 return CSFC_Failure; 1463 return CSFC_Success; 1464 } 1465 break; 1466 case CSFC_FallThrough: 1467 // If we have a fallthrough condition, then we must have found the 1468 // case started to include statements. Consider the rest of the 1469 // statements in the compound statement as candidates for inclusion. 1470 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1471 // We recursively found Case, so we're not looking for it anymore. 1472 Case = nullptr; 1473 1474 // If we found the case and skipped declarations, we can't do the 1475 // optimization. 1476 if (HadSkippedDecl) 1477 return CSFC_Failure; 1478 break; 1479 } 1480 } 1481 1482 if (!FoundCase) 1483 return CSFC_Success; 1484 1485 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1486 } 1487 1488 // If we have statements in our range, then we know that the statements are 1489 // live and need to be added to the set of statements we're tracking. 1490 bool AnyDecls = false; 1491 for (; I != E; ++I) { 1492 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1493 1494 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1495 case CSFC_Failure: return CSFC_Failure; 1496 case CSFC_FallThrough: 1497 // A fallthrough result means that the statement was simple and just 1498 // included in ResultStmt, keep adding them afterwards. 1499 break; 1500 case CSFC_Success: 1501 // A successful result means that we found the break statement and 1502 // stopped statement inclusion. We just ensure that any leftover stmts 1503 // are skippable and return success ourselves. 1504 for (++I; I != E; ++I) 1505 if (CodeGenFunction::ContainsLabel(*I, true)) 1506 return CSFC_Failure; 1507 return CSFC_Success; 1508 } 1509 } 1510 1511 // If we're about to fall out of a scope without hitting a 'break;', we 1512 // can't perform the optimization if there were any decls in that scope 1513 // (we'd lose their end-of-lifetime). 1514 if (AnyDecls) { 1515 // If the entire compound statement was live, there's one more thing we 1516 // can try before giving up: emit the whole thing as a single statement. 1517 // We can do that unless the statement contains a 'break;'. 1518 // FIXME: Such a break must be at the end of a construct within this one. 1519 // We could emit this by just ignoring the BreakStmts entirely. 1520 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1521 ResultStmts.resize(StartSize); 1522 ResultStmts.push_back(S); 1523 } else { 1524 return CSFC_Failure; 1525 } 1526 } 1527 1528 return CSFC_FallThrough; 1529 } 1530 1531 // Okay, this is some other statement that we don't handle explicitly, like a 1532 // for statement or increment etc. If we are skipping over this statement, 1533 // just verify it doesn't have labels, which would make it invalid to elide. 1534 if (Case) { 1535 if (CodeGenFunction::ContainsLabel(S, true)) 1536 return CSFC_Failure; 1537 return CSFC_Success; 1538 } 1539 1540 // Otherwise, we want to include this statement. Everything is cool with that 1541 // so long as it doesn't contain a break out of the switch we're in. 1542 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1543 1544 // Otherwise, everything is great. Include the statement and tell the caller 1545 // that we fall through and include the next statement as well. 1546 ResultStmts.push_back(S); 1547 return CSFC_FallThrough; 1548 } 1549 1550 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1551 /// then invoke CollectStatementsForCase to find the list of statements to emit 1552 /// for a switch on constant. See the comment above CollectStatementsForCase 1553 /// for more details. 1554 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1555 const llvm::APSInt &ConstantCondValue, 1556 SmallVectorImpl<const Stmt*> &ResultStmts, 1557 ASTContext &C, 1558 const SwitchCase *&ResultCase) { 1559 // First step, find the switch case that is being branched to. We can do this 1560 // efficiently by scanning the SwitchCase list. 1561 const SwitchCase *Case = S.getSwitchCaseList(); 1562 const DefaultStmt *DefaultCase = nullptr; 1563 1564 for (; Case; Case = Case->getNextSwitchCase()) { 1565 // It's either a default or case. Just remember the default statement in 1566 // case we're not jumping to any numbered cases. 1567 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1568 DefaultCase = DS; 1569 continue; 1570 } 1571 1572 // Check to see if this case is the one we're looking for. 1573 const CaseStmt *CS = cast<CaseStmt>(Case); 1574 // Don't handle case ranges yet. 1575 if (CS->getRHS()) return false; 1576 1577 // If we found our case, remember it as 'case'. 1578 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1579 break; 1580 } 1581 1582 // If we didn't find a matching case, we use a default if it exists, or we 1583 // elide the whole switch body! 1584 if (!Case) { 1585 // It is safe to elide the body of the switch if it doesn't contain labels 1586 // etc. If it is safe, return successfully with an empty ResultStmts list. 1587 if (!DefaultCase) 1588 return !CodeGenFunction::ContainsLabel(&S); 1589 Case = DefaultCase; 1590 } 1591 1592 // Ok, we know which case is being jumped to, try to collect all the 1593 // statements that follow it. This can fail for a variety of reasons. Also, 1594 // check to see that the recursive walk actually found our case statement. 1595 // Insane cases like this can fail to find it in the recursive walk since we 1596 // don't handle every stmt kind: 1597 // switch (4) { 1598 // while (1) { 1599 // case 4: ... 1600 bool FoundCase = false; 1601 ResultCase = Case; 1602 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1603 ResultStmts) != CSFC_Failure && 1604 FoundCase; 1605 } 1606 1607 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1608 // Handle nested switch statements. 1609 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1610 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1611 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1612 1613 // See if we can constant fold the condition of the switch and therefore only 1614 // emit the live case statement (if any) of the switch. 1615 llvm::APSInt ConstantCondValue; 1616 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1617 SmallVector<const Stmt*, 4> CaseStmts; 1618 const SwitchCase *Case = nullptr; 1619 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1620 getContext(), Case)) { 1621 if (Case) 1622 incrementProfileCounter(Case); 1623 RunCleanupsScope ExecutedScope(*this); 1624 1625 if (S.getInit()) 1626 EmitStmt(S.getInit()); 1627 1628 // Emit the condition variable if needed inside the entire cleanup scope 1629 // used by this special case for constant folded switches. 1630 if (S.getConditionVariable()) 1631 EmitDecl(*S.getConditionVariable()); 1632 1633 // At this point, we are no longer "within" a switch instance, so 1634 // we can temporarily enforce this to ensure that any embedded case 1635 // statements are not emitted. 1636 SwitchInsn = nullptr; 1637 1638 // Okay, we can dead code eliminate everything except this case. Emit the 1639 // specified series of statements and we're good. 1640 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1641 EmitStmt(CaseStmts[i]); 1642 incrementProfileCounter(&S); 1643 1644 // Now we want to restore the saved switch instance so that nested 1645 // switches continue to function properly 1646 SwitchInsn = SavedSwitchInsn; 1647 1648 return; 1649 } 1650 } 1651 1652 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1653 1654 RunCleanupsScope ConditionScope(*this); 1655 1656 if (S.getInit()) 1657 EmitStmt(S.getInit()); 1658 1659 if (S.getConditionVariable()) 1660 EmitDecl(*S.getConditionVariable()); 1661 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1662 1663 // Create basic block to hold stuff that comes after switch 1664 // statement. We also need to create a default block now so that 1665 // explicit case ranges tests can have a place to jump to on 1666 // failure. 1667 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1668 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1669 if (PGO.haveRegionCounts()) { 1670 // Walk the SwitchCase list to find how many there are. 1671 uint64_t DefaultCount = 0; 1672 unsigned NumCases = 0; 1673 for (const SwitchCase *Case = S.getSwitchCaseList(); 1674 Case; 1675 Case = Case->getNextSwitchCase()) { 1676 if (isa<DefaultStmt>(Case)) 1677 DefaultCount = getProfileCount(Case); 1678 NumCases += 1; 1679 } 1680 SwitchWeights = new SmallVector<uint64_t, 16>(); 1681 SwitchWeights->reserve(NumCases); 1682 // The default needs to be first. We store the edge count, so we already 1683 // know the right weight. 1684 SwitchWeights->push_back(DefaultCount); 1685 } 1686 CaseRangeBlock = DefaultBlock; 1687 1688 // Clear the insertion point to indicate we are in unreachable code. 1689 Builder.ClearInsertionPoint(); 1690 1691 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1692 // then reuse last ContinueBlock. 1693 JumpDest OuterContinue; 1694 if (!BreakContinueStack.empty()) 1695 OuterContinue = BreakContinueStack.back().ContinueBlock; 1696 1697 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1698 1699 // Emit switch body. 1700 EmitStmt(S.getBody()); 1701 1702 BreakContinueStack.pop_back(); 1703 1704 // Update the default block in case explicit case range tests have 1705 // been chained on top. 1706 SwitchInsn->setDefaultDest(CaseRangeBlock); 1707 1708 // If a default was never emitted: 1709 if (!DefaultBlock->getParent()) { 1710 // If we have cleanups, emit the default block so that there's a 1711 // place to jump through the cleanups from. 1712 if (ConditionScope.requiresCleanups()) { 1713 EmitBlock(DefaultBlock); 1714 1715 // Otherwise, just forward the default block to the switch end. 1716 } else { 1717 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1718 delete DefaultBlock; 1719 } 1720 } 1721 1722 ConditionScope.ForceCleanup(); 1723 1724 // Emit continuation. 1725 EmitBlock(SwitchExit.getBlock(), true); 1726 incrementProfileCounter(&S); 1727 1728 // If the switch has a condition wrapped by __builtin_unpredictable, 1729 // create metadata that specifies that the switch is unpredictable. 1730 // Don't bother if not optimizing because that metadata would not be used. 1731 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1732 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1733 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1734 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1735 llvm::MDBuilder MDHelper(getLLVMContext()); 1736 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1737 MDHelper.createUnpredictable()); 1738 } 1739 } 1740 1741 if (SwitchWeights) { 1742 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1743 "switch weights do not match switch cases"); 1744 // If there's only one jump destination there's no sense weighting it. 1745 if (SwitchWeights->size() > 1) 1746 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1747 createProfileWeights(*SwitchWeights)); 1748 delete SwitchWeights; 1749 } 1750 SwitchInsn = SavedSwitchInsn; 1751 SwitchWeights = SavedSwitchWeights; 1752 CaseRangeBlock = SavedCRBlock; 1753 } 1754 1755 static std::string 1756 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1757 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1758 std::string Result; 1759 1760 while (*Constraint) { 1761 switch (*Constraint) { 1762 default: 1763 Result += Target.convertConstraint(Constraint); 1764 break; 1765 // Ignore these 1766 case '*': 1767 case '?': 1768 case '!': 1769 case '=': // Will see this and the following in mult-alt constraints. 1770 case '+': 1771 break; 1772 case '#': // Ignore the rest of the constraint alternative. 1773 while (Constraint[1] && Constraint[1] != ',') 1774 Constraint++; 1775 break; 1776 case '&': 1777 case '%': 1778 Result += *Constraint; 1779 while (Constraint[1] && Constraint[1] == *Constraint) 1780 Constraint++; 1781 break; 1782 case ',': 1783 Result += "|"; 1784 break; 1785 case 'g': 1786 Result += "imr"; 1787 break; 1788 case '[': { 1789 assert(OutCons && 1790 "Must pass output names to constraints with a symbolic name"); 1791 unsigned Index; 1792 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1793 assert(result && "Could not resolve symbolic name"); (void)result; 1794 Result += llvm::utostr(Index); 1795 break; 1796 } 1797 } 1798 1799 Constraint++; 1800 } 1801 1802 return Result; 1803 } 1804 1805 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1806 /// as using a particular register add that as a constraint that will be used 1807 /// in this asm stmt. 1808 static std::string 1809 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1810 const TargetInfo &Target, CodeGenModule &CGM, 1811 const AsmStmt &Stmt, const bool EarlyClobber) { 1812 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1813 if (!AsmDeclRef) 1814 return Constraint; 1815 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1816 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1817 if (!Variable) 1818 return Constraint; 1819 if (Variable->getStorageClass() != SC_Register) 1820 return Constraint; 1821 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1822 if (!Attr) 1823 return Constraint; 1824 StringRef Register = Attr->getLabel(); 1825 assert(Target.isValidGCCRegisterName(Register)); 1826 // We're using validateOutputConstraint here because we only care if 1827 // this is a register constraint. 1828 TargetInfo::ConstraintInfo Info(Constraint, ""); 1829 if (Target.validateOutputConstraint(Info) && 1830 !Info.allowsRegister()) { 1831 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1832 return Constraint; 1833 } 1834 // Canonicalize the register here before returning it. 1835 Register = Target.getNormalizedGCCRegisterName(Register); 1836 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1837 } 1838 1839 llvm::Value* 1840 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1841 LValue InputValue, QualType InputType, 1842 std::string &ConstraintStr, 1843 SourceLocation Loc) { 1844 llvm::Value *Arg; 1845 if (Info.allowsRegister() || !Info.allowsMemory()) { 1846 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1847 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1848 } else { 1849 llvm::Type *Ty = ConvertType(InputType); 1850 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1851 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1852 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1853 Ty = llvm::PointerType::getUnqual(Ty); 1854 1855 Arg = Builder.CreateLoad( 1856 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 1857 } else { 1858 Arg = InputValue.getPointer(*this); 1859 ConstraintStr += '*'; 1860 } 1861 } 1862 } else { 1863 Arg = InputValue.getPointer(*this); 1864 ConstraintStr += '*'; 1865 } 1866 1867 return Arg; 1868 } 1869 1870 llvm::Value* CodeGenFunction::EmitAsmInput( 1871 const TargetInfo::ConstraintInfo &Info, 1872 const Expr *InputExpr, 1873 std::string &ConstraintStr) { 1874 // If this can't be a register or memory, i.e., has to be a constant 1875 // (immediate or symbolic), try to emit it as such. 1876 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1877 if (Info.requiresImmediateConstant()) { 1878 Expr::EvalResult EVResult; 1879 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 1880 1881 llvm::APSInt IntResult; 1882 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 1883 getContext())) 1884 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 1885 } 1886 1887 Expr::EvalResult Result; 1888 if (InputExpr->EvaluateAsInt(Result, getContext())) 1889 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 1890 } 1891 1892 if (Info.allowsRegister() || !Info.allowsMemory()) 1893 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1894 return EmitScalarExpr(InputExpr); 1895 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1896 return EmitScalarExpr(InputExpr); 1897 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1898 LValue Dest = EmitLValue(InputExpr); 1899 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1900 InputExpr->getExprLoc()); 1901 } 1902 1903 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1904 /// asm call instruction. The !srcloc MDNode contains a list of constant 1905 /// integers which are the source locations of the start of each line in the 1906 /// asm. 1907 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1908 CodeGenFunction &CGF) { 1909 SmallVector<llvm::Metadata *, 8> Locs; 1910 // Add the location of the first line to the MDNode. 1911 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1912 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 1913 StringRef StrVal = Str->getString(); 1914 if (!StrVal.empty()) { 1915 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1916 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1917 unsigned StartToken = 0; 1918 unsigned ByteOffset = 0; 1919 1920 // Add the location of the start of each subsequent line of the asm to the 1921 // MDNode. 1922 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1923 if (StrVal[i] != '\n') continue; 1924 SourceLocation LineLoc = Str->getLocationOfByte( 1925 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1926 Locs.push_back(llvm::ConstantAsMetadata::get( 1927 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1928 } 1929 } 1930 1931 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1932 } 1933 1934 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 1935 bool ReadOnly, bool ReadNone, const AsmStmt &S, 1936 const std::vector<llvm::Type *> &ResultRegTypes, 1937 CodeGenFunction &CGF, 1938 std::vector<llvm::Value *> &RegResults) { 1939 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1940 llvm::Attribute::NoUnwind); 1941 // Attach readnone and readonly attributes. 1942 if (!HasSideEffect) { 1943 if (ReadNone) 1944 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1945 llvm::Attribute::ReadNone); 1946 else if (ReadOnly) 1947 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1948 llvm::Attribute::ReadOnly); 1949 } 1950 1951 // Slap the source location of the inline asm into a !srcloc metadata on the 1952 // call. 1953 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1954 Result.setMetadata("srcloc", 1955 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 1956 else { 1957 // At least put the line number on MS inline asm blobs. 1958 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 1959 S.getAsmLoc().getRawEncoding()); 1960 Result.setMetadata("srcloc", 1961 llvm::MDNode::get(CGF.getLLVMContext(), 1962 llvm::ConstantAsMetadata::get(Loc))); 1963 } 1964 1965 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 1966 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 1967 // convergent (meaning, they may call an intrinsically convergent op, such 1968 // as bar.sync, and so can't have certain optimizations applied around 1969 // them). 1970 Result.addAttribute(llvm::AttributeList::FunctionIndex, 1971 llvm::Attribute::Convergent); 1972 // Extract all of the register value results from the asm. 1973 if (ResultRegTypes.size() == 1) { 1974 RegResults.push_back(&Result); 1975 } else { 1976 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1977 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 1978 RegResults.push_back(Tmp); 1979 } 1980 } 1981 } 1982 1983 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1984 // Assemble the final asm string. 1985 std::string AsmString = S.generateAsmString(getContext()); 1986 1987 // Get all the output and input constraints together. 1988 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1989 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1990 1991 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1992 StringRef Name; 1993 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1994 Name = GAS->getOutputName(i); 1995 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1996 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1997 assert(IsValid && "Failed to parse output constraint"); 1998 OutputConstraintInfos.push_back(Info); 1999 } 2000 2001 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2002 StringRef Name; 2003 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2004 Name = GAS->getInputName(i); 2005 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2006 bool IsValid = 2007 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2008 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2009 InputConstraintInfos.push_back(Info); 2010 } 2011 2012 std::string Constraints; 2013 2014 std::vector<LValue> ResultRegDests; 2015 std::vector<QualType> ResultRegQualTys; 2016 std::vector<llvm::Type *> ResultRegTypes; 2017 std::vector<llvm::Type *> ResultTruncRegTypes; 2018 std::vector<llvm::Type *> ArgTypes; 2019 std::vector<llvm::Value*> Args; 2020 llvm::BitVector ResultTypeRequiresCast; 2021 2022 // Keep track of inout constraints. 2023 std::string InOutConstraints; 2024 std::vector<llvm::Value*> InOutArgs; 2025 std::vector<llvm::Type*> InOutArgTypes; 2026 2027 // Keep track of out constraints for tied input operand. 2028 std::vector<std::string> OutputConstraints; 2029 2030 // An inline asm can be marked readonly if it meets the following conditions: 2031 // - it doesn't have any sideeffects 2032 // - it doesn't clobber memory 2033 // - it doesn't return a value by-reference 2034 // It can be marked readnone if it doesn't have any input memory constraints 2035 // in addition to meeting the conditions listed above. 2036 bool ReadOnly = true, ReadNone = true; 2037 2038 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2039 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2040 2041 // Simplify the output constraint. 2042 std::string OutputConstraint(S.getOutputConstraint(i)); 2043 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2044 getTarget(), &OutputConstraintInfos); 2045 2046 const Expr *OutExpr = S.getOutputExpr(i); 2047 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2048 2049 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2050 getTarget(), CGM, S, 2051 Info.earlyClobber()); 2052 OutputConstraints.push_back(OutputConstraint); 2053 LValue Dest = EmitLValue(OutExpr); 2054 if (!Constraints.empty()) 2055 Constraints += ','; 2056 2057 // If this is a register output, then make the inline asm return it 2058 // by-value. If this is a memory result, return the value by-reference. 2059 bool isScalarizableAggregate = 2060 hasAggregateEvaluationKind(OutExpr->getType()); 2061 if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) || 2062 isScalarizableAggregate)) { 2063 Constraints += "=" + OutputConstraint; 2064 ResultRegQualTys.push_back(OutExpr->getType()); 2065 ResultRegDests.push_back(Dest); 2066 ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2067 if (Info.allowsRegister() && isScalarizableAggregate) { 2068 ResultTypeRequiresCast.push_back(true); 2069 unsigned Size = getContext().getTypeSize(OutExpr->getType()); 2070 llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size); 2071 ResultRegTypes.push_back(ConvTy); 2072 } else { 2073 ResultTypeRequiresCast.push_back(false); 2074 ResultRegTypes.push_back(ResultTruncRegTypes.back()); 2075 } 2076 // If this output is tied to an input, and if the input is larger, then 2077 // we need to set the actual result type of the inline asm node to be the 2078 // same as the input type. 2079 if (Info.hasMatchingInput()) { 2080 unsigned InputNo; 2081 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2082 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2083 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2084 break; 2085 } 2086 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2087 2088 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2089 QualType OutputType = OutExpr->getType(); 2090 2091 uint64_t InputSize = getContext().getTypeSize(InputTy); 2092 if (getContext().getTypeSize(OutputType) < InputSize) { 2093 // Form the asm to return the value as a larger integer or fp type. 2094 ResultRegTypes.back() = ConvertType(InputTy); 2095 } 2096 } 2097 if (llvm::Type* AdjTy = 2098 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2099 ResultRegTypes.back())) 2100 ResultRegTypes.back() = AdjTy; 2101 else { 2102 CGM.getDiags().Report(S.getAsmLoc(), 2103 diag::err_asm_invalid_type_in_input) 2104 << OutExpr->getType() << OutputConstraint; 2105 } 2106 2107 // Update largest vector width for any vector types. 2108 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2109 LargestVectorWidth = 2110 std::max((uint64_t)LargestVectorWidth, 2111 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2112 } else { 2113 ArgTypes.push_back(Dest.getAddress(*this).getType()); 2114 Args.push_back(Dest.getPointer(*this)); 2115 Constraints += "=*"; 2116 Constraints += OutputConstraint; 2117 ReadOnly = ReadNone = false; 2118 } 2119 2120 if (Info.isReadWrite()) { 2121 InOutConstraints += ','; 2122 2123 const Expr *InputExpr = S.getOutputExpr(i); 2124 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2125 InOutConstraints, 2126 InputExpr->getExprLoc()); 2127 2128 if (llvm::Type* AdjTy = 2129 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2130 Arg->getType())) 2131 Arg = Builder.CreateBitCast(Arg, AdjTy); 2132 2133 // Update largest vector width for any vector types. 2134 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2135 LargestVectorWidth = 2136 std::max((uint64_t)LargestVectorWidth, 2137 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2138 if (Info.allowsRegister()) 2139 InOutConstraints += llvm::utostr(i); 2140 else 2141 InOutConstraints += OutputConstraint; 2142 2143 InOutArgTypes.push_back(Arg->getType()); 2144 InOutArgs.push_back(Arg); 2145 } 2146 } 2147 2148 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2149 // to the return value slot. Only do this when returning in registers. 2150 if (isa<MSAsmStmt>(&S)) { 2151 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2152 if (RetAI.isDirect() || RetAI.isExtend()) { 2153 // Make a fake lvalue for the return value slot. 2154 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2155 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2156 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2157 ResultRegDests, AsmString, S.getNumOutputs()); 2158 SawAsmBlock = true; 2159 } 2160 } 2161 2162 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2163 const Expr *InputExpr = S.getInputExpr(i); 2164 2165 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2166 2167 if (Info.allowsMemory()) 2168 ReadNone = false; 2169 2170 if (!Constraints.empty()) 2171 Constraints += ','; 2172 2173 // Simplify the input constraint. 2174 std::string InputConstraint(S.getInputConstraint(i)); 2175 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2176 &OutputConstraintInfos); 2177 2178 InputConstraint = AddVariableConstraints( 2179 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2180 getTarget(), CGM, S, false /* No EarlyClobber */); 2181 2182 std::string ReplaceConstraint (InputConstraint); 2183 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2184 2185 // If this input argument is tied to a larger output result, extend the 2186 // input to be the same size as the output. The LLVM backend wants to see 2187 // the input and output of a matching constraint be the same size. Note 2188 // that GCC does not define what the top bits are here. We use zext because 2189 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2190 if (Info.hasTiedOperand()) { 2191 unsigned Output = Info.getTiedOperand(); 2192 QualType OutputType = S.getOutputExpr(Output)->getType(); 2193 QualType InputTy = InputExpr->getType(); 2194 2195 if (getContext().getTypeSize(OutputType) > 2196 getContext().getTypeSize(InputTy)) { 2197 // Use ptrtoint as appropriate so that we can do our extension. 2198 if (isa<llvm::PointerType>(Arg->getType())) 2199 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2200 llvm::Type *OutputTy = ConvertType(OutputType); 2201 if (isa<llvm::IntegerType>(OutputTy)) 2202 Arg = Builder.CreateZExt(Arg, OutputTy); 2203 else if (isa<llvm::PointerType>(OutputTy)) 2204 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2205 else { 2206 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2207 Arg = Builder.CreateFPExt(Arg, OutputTy); 2208 } 2209 } 2210 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2211 ReplaceConstraint = OutputConstraints[Output]; 2212 } 2213 if (llvm::Type* AdjTy = 2214 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2215 Arg->getType())) 2216 Arg = Builder.CreateBitCast(Arg, AdjTy); 2217 else 2218 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2219 << InputExpr->getType() << InputConstraint; 2220 2221 // Update largest vector width for any vector types. 2222 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2223 LargestVectorWidth = 2224 std::max((uint64_t)LargestVectorWidth, 2225 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2226 2227 ArgTypes.push_back(Arg->getType()); 2228 Args.push_back(Arg); 2229 Constraints += InputConstraint; 2230 } 2231 2232 // Labels 2233 SmallVector<llvm::BasicBlock *, 16> Transfer; 2234 llvm::BasicBlock *Fallthrough = nullptr; 2235 bool IsGCCAsmGoto = false; 2236 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2237 IsGCCAsmGoto = GS->isAsmGoto(); 2238 if (IsGCCAsmGoto) { 2239 for (const auto *E : GS->labels()) { 2240 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2241 Transfer.push_back(Dest.getBlock()); 2242 llvm::BlockAddress *BA = 2243 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2244 Args.push_back(BA); 2245 ArgTypes.push_back(BA->getType()); 2246 if (!Constraints.empty()) 2247 Constraints += ','; 2248 Constraints += 'X'; 2249 } 2250 Fallthrough = createBasicBlock("asm.fallthrough"); 2251 } 2252 } 2253 2254 // Append the "input" part of inout constraints last. 2255 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2256 ArgTypes.push_back(InOutArgTypes[i]); 2257 Args.push_back(InOutArgs[i]); 2258 } 2259 Constraints += InOutConstraints; 2260 2261 // Clobbers 2262 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2263 StringRef Clobber = S.getClobber(i); 2264 2265 if (Clobber == "memory") 2266 ReadOnly = ReadNone = false; 2267 else if (Clobber != "cc") { 2268 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2269 if (CGM.getCodeGenOpts().StackClashProtector && 2270 getTarget().isSPRegName(Clobber)) { 2271 CGM.getDiags().Report(S.getAsmLoc(), 2272 diag::warn_stack_clash_protection_inline_asm); 2273 } 2274 } 2275 2276 if (!Constraints.empty()) 2277 Constraints += ','; 2278 2279 Constraints += "~{"; 2280 Constraints += Clobber; 2281 Constraints += '}'; 2282 } 2283 2284 // Add machine specific clobbers 2285 std::string MachineClobbers = getTarget().getClobbers(); 2286 if (!MachineClobbers.empty()) { 2287 if (!Constraints.empty()) 2288 Constraints += ','; 2289 Constraints += MachineClobbers; 2290 } 2291 2292 llvm::Type *ResultType; 2293 if (ResultRegTypes.empty()) 2294 ResultType = VoidTy; 2295 else if (ResultRegTypes.size() == 1) 2296 ResultType = ResultRegTypes[0]; 2297 else 2298 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2299 2300 llvm::FunctionType *FTy = 2301 llvm::FunctionType::get(ResultType, ArgTypes, false); 2302 2303 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2304 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2305 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2306 llvm::InlineAsm *IA = 2307 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2308 /* IsAlignStack */ false, AsmDialect); 2309 std::vector<llvm::Value*> RegResults; 2310 if (IsGCCAsmGoto) { 2311 llvm::CallBrInst *Result = 2312 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2313 EmitBlock(Fallthrough); 2314 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2315 ReadNone, S, ResultRegTypes, *this, RegResults); 2316 } else { 2317 llvm::CallInst *Result = 2318 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2319 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2320 ReadNone, S, ResultRegTypes, *this, RegResults); 2321 } 2322 2323 assert(RegResults.size() == ResultRegTypes.size()); 2324 assert(RegResults.size() == ResultTruncRegTypes.size()); 2325 assert(RegResults.size() == ResultRegDests.size()); 2326 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2327 // in which case its size may grow. 2328 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2329 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2330 llvm::Value *Tmp = RegResults[i]; 2331 2332 // If the result type of the LLVM IR asm doesn't match the result type of 2333 // the expression, do the conversion. 2334 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2335 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2336 2337 // Truncate the integer result to the right size, note that TruncTy can be 2338 // a pointer. 2339 if (TruncTy->isFloatingPointTy()) 2340 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2341 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2342 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2343 Tmp = Builder.CreateTrunc(Tmp, 2344 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2345 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2346 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2347 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2348 Tmp = Builder.CreatePtrToInt(Tmp, 2349 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2350 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2351 } else if (TruncTy->isIntegerTy()) { 2352 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2353 } else if (TruncTy->isVectorTy()) { 2354 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2355 } 2356 } 2357 2358 LValue Dest = ResultRegDests[i]; 2359 // ResultTypeRequiresCast elements correspond to the first 2360 // ResultTypeRequiresCast.size() elements of RegResults. 2361 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2362 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2363 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2364 ResultRegTypes[i]->getPointerTo()); 2365 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2366 if (Ty.isNull()) { 2367 const Expr *OutExpr = S.getOutputExpr(i); 2368 CGM.Error( 2369 OutExpr->getExprLoc(), 2370 "impossible constraint in asm: can't store value into a register"); 2371 return; 2372 } 2373 Dest = MakeAddrLValue(A, Ty); 2374 } 2375 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2376 } 2377 } 2378 2379 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2380 const RecordDecl *RD = S.getCapturedRecordDecl(); 2381 QualType RecordTy = getContext().getRecordType(RD); 2382 2383 // Initialize the captured struct. 2384 LValue SlotLV = 2385 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2386 2387 RecordDecl::field_iterator CurField = RD->field_begin(); 2388 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2389 E = S.capture_init_end(); 2390 I != E; ++I, ++CurField) { 2391 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2392 if (CurField->hasCapturedVLAType()) { 2393 auto VAT = CurField->getCapturedVLAType(); 2394 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2395 } else { 2396 EmitInitializerForField(*CurField, LV, *I); 2397 } 2398 } 2399 2400 return SlotLV; 2401 } 2402 2403 /// Generate an outlined function for the body of a CapturedStmt, store any 2404 /// captured variables into the captured struct, and call the outlined function. 2405 llvm::Function * 2406 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2407 LValue CapStruct = InitCapturedStruct(S); 2408 2409 // Emit the CapturedDecl 2410 CodeGenFunction CGF(CGM, true); 2411 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2412 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2413 delete CGF.CapturedStmtInfo; 2414 2415 // Emit call to the helper function. 2416 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2417 2418 return F; 2419 } 2420 2421 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2422 LValue CapStruct = InitCapturedStruct(S); 2423 return CapStruct.getAddress(*this); 2424 } 2425 2426 /// Creates the outlined function for a CapturedStmt. 2427 llvm::Function * 2428 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2429 assert(CapturedStmtInfo && 2430 "CapturedStmtInfo should be set when generating the captured function"); 2431 const CapturedDecl *CD = S.getCapturedDecl(); 2432 const RecordDecl *RD = S.getCapturedRecordDecl(); 2433 SourceLocation Loc = S.getBeginLoc(); 2434 assert(CD->hasBody() && "missing CapturedDecl body"); 2435 2436 // Build the argument list. 2437 ASTContext &Ctx = CGM.getContext(); 2438 FunctionArgList Args; 2439 Args.append(CD->param_begin(), CD->param_end()); 2440 2441 // Create the function declaration. 2442 const CGFunctionInfo &FuncInfo = 2443 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2444 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2445 2446 llvm::Function *F = 2447 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2448 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2449 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2450 if (CD->isNothrow()) 2451 F->addFnAttr(llvm::Attribute::NoUnwind); 2452 2453 // Generate the function. 2454 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2455 CD->getBody()->getBeginLoc()); 2456 // Set the context parameter in CapturedStmtInfo. 2457 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2458 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2459 2460 // Initialize variable-length arrays. 2461 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2462 Ctx.getTagDeclType(RD)); 2463 for (auto *FD : RD->fields()) { 2464 if (FD->hasCapturedVLAType()) { 2465 auto *ExprArg = 2466 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2467 .getScalarVal(); 2468 auto VAT = FD->getCapturedVLAType(); 2469 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2470 } 2471 } 2472 2473 // If 'this' is captured, load it into CXXThisValue. 2474 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2475 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2476 LValue ThisLValue = EmitLValueForField(Base, FD); 2477 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2478 } 2479 2480 PGO.assignRegionCounters(GlobalDecl(CD), F); 2481 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2482 FinishFunction(CD->getBodyRBrace()); 2483 2484 return F; 2485 } 2486