1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 case Stmt::CoreturnStmtClass: 146 CGM.ErrorUnsupported(S, "coroutine"); 147 break; 148 case Stmt::CapturedStmtClass: { 149 const CapturedStmt *CS = cast<CapturedStmt>(S); 150 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 151 } 152 break; 153 case Stmt::ObjCAtTryStmtClass: 154 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 155 break; 156 case Stmt::ObjCAtCatchStmtClass: 157 llvm_unreachable( 158 "@catch statements should be handled by EmitObjCAtTryStmt"); 159 case Stmt::ObjCAtFinallyStmtClass: 160 llvm_unreachable( 161 "@finally statements should be handled by EmitObjCAtTryStmt"); 162 case Stmt::ObjCAtThrowStmtClass: 163 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 164 break; 165 case Stmt::ObjCAtSynchronizedStmtClass: 166 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 167 break; 168 case Stmt::ObjCForCollectionStmtClass: 169 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 170 break; 171 case Stmt::ObjCAutoreleasePoolStmtClass: 172 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 173 break; 174 175 case Stmt::CXXTryStmtClass: 176 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 177 break; 178 case Stmt::CXXForRangeStmtClass: 179 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 180 break; 181 case Stmt::SEHTryStmtClass: 182 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 183 break; 184 case Stmt::OMPParallelDirectiveClass: 185 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 186 break; 187 case Stmt::OMPSimdDirectiveClass: 188 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 189 break; 190 case Stmt::OMPForDirectiveClass: 191 EmitOMPForDirective(cast<OMPForDirective>(*S)); 192 break; 193 case Stmt::OMPForSimdDirectiveClass: 194 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 195 break; 196 case Stmt::OMPSectionsDirectiveClass: 197 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 198 break; 199 case Stmt::OMPSectionDirectiveClass: 200 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 201 break; 202 case Stmt::OMPSingleDirectiveClass: 203 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 204 break; 205 case Stmt::OMPMasterDirectiveClass: 206 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 207 break; 208 case Stmt::OMPCriticalDirectiveClass: 209 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 210 break; 211 case Stmt::OMPParallelForDirectiveClass: 212 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 213 break; 214 case Stmt::OMPParallelForSimdDirectiveClass: 215 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 216 break; 217 case Stmt::OMPParallelSectionsDirectiveClass: 218 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 219 break; 220 case Stmt::OMPTaskDirectiveClass: 221 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 222 break; 223 case Stmt::OMPTaskyieldDirectiveClass: 224 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 225 break; 226 case Stmt::OMPBarrierDirectiveClass: 227 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 228 break; 229 case Stmt::OMPTaskwaitDirectiveClass: 230 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 231 break; 232 case Stmt::OMPTaskgroupDirectiveClass: 233 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 234 break; 235 case Stmt::OMPFlushDirectiveClass: 236 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 237 break; 238 case Stmt::OMPOrderedDirectiveClass: 239 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 240 break; 241 case Stmt::OMPAtomicDirectiveClass: 242 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 243 break; 244 case Stmt::OMPTargetDirectiveClass: 245 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 246 break; 247 case Stmt::OMPTeamsDirectiveClass: 248 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 249 break; 250 case Stmt::OMPCancellationPointDirectiveClass: 251 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 252 break; 253 case Stmt::OMPCancelDirectiveClass: 254 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 255 break; 256 case Stmt::OMPTargetDataDirectiveClass: 257 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 258 break; 259 } 260 } 261 262 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 263 switch (S->getStmtClass()) { 264 default: return false; 265 case Stmt::NullStmtClass: break; 266 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 267 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 268 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 269 case Stmt::AttributedStmtClass: 270 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 271 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 272 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 273 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 274 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 275 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 276 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 277 } 278 279 return true; 280 } 281 282 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 283 /// this captures the expression result of the last sub-statement and returns it 284 /// (for use by the statement expression extension). 285 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 286 AggValueSlot AggSlot) { 287 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 288 "LLVM IR generation of compound statement ('{}')"); 289 290 // Keep track of the current cleanup stack depth, including debug scopes. 291 LexicalScope Scope(*this, S.getSourceRange()); 292 293 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 294 } 295 296 Address 297 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 298 bool GetLast, 299 AggValueSlot AggSlot) { 300 301 for (CompoundStmt::const_body_iterator I = S.body_begin(), 302 E = S.body_end()-GetLast; I != E; ++I) 303 EmitStmt(*I); 304 305 Address RetAlloca = Address::invalid(); 306 if (GetLast) { 307 // We have to special case labels here. They are statements, but when put 308 // at the end of a statement expression, they yield the value of their 309 // subexpression. Handle this by walking through all labels we encounter, 310 // emitting them before we evaluate the subexpr. 311 const Stmt *LastStmt = S.body_back(); 312 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 313 EmitLabel(LS->getDecl()); 314 LastStmt = LS->getSubStmt(); 315 } 316 317 EnsureInsertPoint(); 318 319 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 320 if (hasAggregateEvaluationKind(ExprTy)) { 321 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 322 } else { 323 // We can't return an RValue here because there might be cleanups at 324 // the end of the StmtExpr. Because of that, we have to emit the result 325 // here into a temporary alloca. 326 RetAlloca = CreateMemTemp(ExprTy); 327 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 328 /*IsInit*/false); 329 } 330 331 } 332 333 return RetAlloca; 334 } 335 336 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 337 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 338 339 // If there is a cleanup stack, then we it isn't worth trying to 340 // simplify this block (we would need to remove it from the scope map 341 // and cleanup entry). 342 if (!EHStack.empty()) 343 return; 344 345 // Can only simplify direct branches. 346 if (!BI || !BI->isUnconditional()) 347 return; 348 349 // Can only simplify empty blocks. 350 if (BI != BB->begin()) 351 return; 352 353 BB->replaceAllUsesWith(BI->getSuccessor(0)); 354 BI->eraseFromParent(); 355 BB->eraseFromParent(); 356 } 357 358 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 359 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 360 361 // Fall out of the current block (if necessary). 362 EmitBranch(BB); 363 364 if (IsFinished && BB->use_empty()) { 365 delete BB; 366 return; 367 } 368 369 // Place the block after the current block, if possible, or else at 370 // the end of the function. 371 if (CurBB && CurBB->getParent()) 372 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 373 else 374 CurFn->getBasicBlockList().push_back(BB); 375 Builder.SetInsertPoint(BB); 376 } 377 378 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 379 // Emit a branch from the current block to the target one if this 380 // was a real block. If this was just a fall-through block after a 381 // terminator, don't emit it. 382 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 383 384 if (!CurBB || CurBB->getTerminator()) { 385 // If there is no insert point or the previous block is already 386 // terminated, don't touch it. 387 } else { 388 // Otherwise, create a fall-through branch. 389 Builder.CreateBr(Target); 390 } 391 392 Builder.ClearInsertionPoint(); 393 } 394 395 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 396 bool inserted = false; 397 for (llvm::User *u : block->users()) { 398 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 399 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 400 inserted = true; 401 break; 402 } 403 } 404 405 if (!inserted) 406 CurFn->getBasicBlockList().push_back(block); 407 408 Builder.SetInsertPoint(block); 409 } 410 411 CodeGenFunction::JumpDest 412 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 413 JumpDest &Dest = LabelMap[D]; 414 if (Dest.isValid()) return Dest; 415 416 // Create, but don't insert, the new block. 417 Dest = JumpDest(createBasicBlock(D->getName()), 418 EHScopeStack::stable_iterator::invalid(), 419 NextCleanupDestIndex++); 420 return Dest; 421 } 422 423 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 424 // Add this label to the current lexical scope if we're within any 425 // normal cleanups. Jumps "in" to this label --- when permitted by 426 // the language --- may need to be routed around such cleanups. 427 if (EHStack.hasNormalCleanups() && CurLexicalScope) 428 CurLexicalScope->addLabel(D); 429 430 JumpDest &Dest = LabelMap[D]; 431 432 // If we didn't need a forward reference to this label, just go 433 // ahead and create a destination at the current scope. 434 if (!Dest.isValid()) { 435 Dest = getJumpDestInCurrentScope(D->getName()); 436 437 // Otherwise, we need to give this label a target depth and remove 438 // it from the branch-fixups list. 439 } else { 440 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 441 Dest.setScopeDepth(EHStack.stable_begin()); 442 ResolveBranchFixups(Dest.getBlock()); 443 } 444 445 EmitBlock(Dest.getBlock()); 446 incrementProfileCounter(D->getStmt()); 447 } 448 449 /// Change the cleanup scope of the labels in this lexical scope to 450 /// match the scope of the enclosing context. 451 void CodeGenFunction::LexicalScope::rescopeLabels() { 452 assert(!Labels.empty()); 453 EHScopeStack::stable_iterator innermostScope 454 = CGF.EHStack.getInnermostNormalCleanup(); 455 456 // Change the scope depth of all the labels. 457 for (SmallVectorImpl<const LabelDecl*>::const_iterator 458 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 459 assert(CGF.LabelMap.count(*i)); 460 JumpDest &dest = CGF.LabelMap.find(*i)->second; 461 assert(dest.getScopeDepth().isValid()); 462 assert(innermostScope.encloses(dest.getScopeDepth())); 463 dest.setScopeDepth(innermostScope); 464 } 465 466 // Reparent the labels if the new scope also has cleanups. 467 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 468 ParentScope->Labels.append(Labels.begin(), Labels.end()); 469 } 470 } 471 472 473 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 474 EmitLabel(S.getDecl()); 475 EmitStmt(S.getSubStmt()); 476 } 477 478 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 479 const Stmt *SubStmt = S.getSubStmt(); 480 switch (SubStmt->getStmtClass()) { 481 case Stmt::DoStmtClass: 482 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 483 break; 484 case Stmt::ForStmtClass: 485 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 486 break; 487 case Stmt::WhileStmtClass: 488 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 489 break; 490 case Stmt::CXXForRangeStmtClass: 491 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 492 break; 493 default: 494 EmitStmt(SubStmt); 495 } 496 } 497 498 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 499 // If this code is reachable then emit a stop point (if generating 500 // debug info). We have to do this ourselves because we are on the 501 // "simple" statement path. 502 if (HaveInsertPoint()) 503 EmitStopPoint(&S); 504 505 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 506 } 507 508 509 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 510 if (const LabelDecl *Target = S.getConstantTarget()) { 511 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 512 return; 513 } 514 515 // Ensure that we have an i8* for our PHI node. 516 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 517 Int8PtrTy, "addr"); 518 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 519 520 // Get the basic block for the indirect goto. 521 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 522 523 // The first instruction in the block has to be the PHI for the switch dest, 524 // add an entry for this branch. 525 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 526 527 EmitBranch(IndGotoBB); 528 } 529 530 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 531 // C99 6.8.4.1: The first substatement is executed if the expression compares 532 // unequal to 0. The condition must be a scalar type. 533 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 534 535 if (S.getConditionVariable()) 536 EmitAutoVarDecl(*S.getConditionVariable()); 537 538 // If the condition constant folds and can be elided, try to avoid emitting 539 // the condition and the dead arm of the if/else. 540 bool CondConstant; 541 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 542 // Figure out which block (then or else) is executed. 543 const Stmt *Executed = S.getThen(); 544 const Stmt *Skipped = S.getElse(); 545 if (!CondConstant) // Condition false? 546 std::swap(Executed, Skipped); 547 548 // If the skipped block has no labels in it, just emit the executed block. 549 // This avoids emitting dead code and simplifies the CFG substantially. 550 if (!ContainsLabel(Skipped)) { 551 if (CondConstant) 552 incrementProfileCounter(&S); 553 if (Executed) { 554 RunCleanupsScope ExecutedScope(*this); 555 EmitStmt(Executed); 556 } 557 return; 558 } 559 } 560 561 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 562 // the conditional branch. 563 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 564 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 565 llvm::BasicBlock *ElseBlock = ContBlock; 566 if (S.getElse()) 567 ElseBlock = createBasicBlock("if.else"); 568 569 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 570 getProfileCount(S.getThen())); 571 572 // Emit the 'then' code. 573 EmitBlock(ThenBlock); 574 incrementProfileCounter(&S); 575 { 576 RunCleanupsScope ThenScope(*this); 577 EmitStmt(S.getThen()); 578 } 579 EmitBranch(ContBlock); 580 581 // Emit the 'else' code if present. 582 if (const Stmt *Else = S.getElse()) { 583 { 584 // There is no need to emit line number for an unconditional branch. 585 auto NL = ApplyDebugLocation::CreateEmpty(*this); 586 EmitBlock(ElseBlock); 587 } 588 { 589 RunCleanupsScope ElseScope(*this); 590 EmitStmt(Else); 591 } 592 { 593 // There is no need to emit line number for an unconditional branch. 594 auto NL = ApplyDebugLocation::CreateEmpty(*this); 595 EmitBranch(ContBlock); 596 } 597 } 598 599 // Emit the continuation block for code after the if. 600 EmitBlock(ContBlock, true); 601 } 602 603 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 604 ArrayRef<const Attr *> WhileAttrs) { 605 // Emit the header for the loop, which will also become 606 // the continue target. 607 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 608 EmitBlock(LoopHeader.getBlock()); 609 610 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs); 611 612 // Create an exit block for when the condition fails, which will 613 // also become the break target. 614 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 615 616 // Store the blocks to use for break and continue. 617 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 618 619 // C++ [stmt.while]p2: 620 // When the condition of a while statement is a declaration, the 621 // scope of the variable that is declared extends from its point 622 // of declaration (3.3.2) to the end of the while statement. 623 // [...] 624 // The object created in a condition is destroyed and created 625 // with each iteration of the loop. 626 RunCleanupsScope ConditionScope(*this); 627 628 if (S.getConditionVariable()) 629 EmitAutoVarDecl(*S.getConditionVariable()); 630 631 // Evaluate the conditional in the while header. C99 6.8.5.1: The 632 // evaluation of the controlling expression takes place before each 633 // execution of the loop body. 634 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 635 636 // while(1) is common, avoid extra exit blocks. Be sure 637 // to correctly handle break/continue though. 638 bool EmitBoolCondBranch = true; 639 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 640 if (C->isOne()) 641 EmitBoolCondBranch = false; 642 643 // As long as the condition is true, go to the loop body. 644 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 645 if (EmitBoolCondBranch) { 646 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 647 if (ConditionScope.requiresCleanups()) 648 ExitBlock = createBasicBlock("while.exit"); 649 Builder.CreateCondBr( 650 BoolCondVal, LoopBody, ExitBlock, 651 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 652 653 if (ExitBlock != LoopExit.getBlock()) { 654 EmitBlock(ExitBlock); 655 EmitBranchThroughCleanup(LoopExit); 656 } 657 } 658 659 // Emit the loop body. We have to emit this in a cleanup scope 660 // because it might be a singleton DeclStmt. 661 { 662 RunCleanupsScope BodyScope(*this); 663 EmitBlock(LoopBody); 664 incrementProfileCounter(&S); 665 EmitStmt(S.getBody()); 666 } 667 668 BreakContinueStack.pop_back(); 669 670 // Immediately force cleanup. 671 ConditionScope.ForceCleanup(); 672 673 EmitStopPoint(&S); 674 // Branch to the loop header again. 675 EmitBranch(LoopHeader.getBlock()); 676 677 LoopStack.pop(); 678 679 // Emit the exit block. 680 EmitBlock(LoopExit.getBlock(), true); 681 682 // The LoopHeader typically is just a branch if we skipped emitting 683 // a branch, try to erase it. 684 if (!EmitBoolCondBranch) 685 SimplifyForwardingBlocks(LoopHeader.getBlock()); 686 } 687 688 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 689 ArrayRef<const Attr *> DoAttrs) { 690 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 691 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 692 693 uint64_t ParentCount = getCurrentProfileCount(); 694 695 // Store the blocks to use for break and continue. 696 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 697 698 // Emit the body of the loop. 699 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 700 701 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs); 702 703 EmitBlockWithFallThrough(LoopBody, &S); 704 { 705 RunCleanupsScope BodyScope(*this); 706 EmitStmt(S.getBody()); 707 } 708 709 EmitBlock(LoopCond.getBlock()); 710 711 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 712 // after each execution of the loop body." 713 714 // Evaluate the conditional in the while header. 715 // C99 6.8.5p2/p4: The first substatement is executed if the expression 716 // compares unequal to 0. The condition must be a scalar type. 717 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 718 719 BreakContinueStack.pop_back(); 720 721 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 722 // to correctly handle break/continue though. 723 bool EmitBoolCondBranch = true; 724 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 725 if (C->isZero()) 726 EmitBoolCondBranch = false; 727 728 // As long as the condition is true, iterate the loop. 729 if (EmitBoolCondBranch) { 730 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 731 Builder.CreateCondBr( 732 BoolCondVal, LoopBody, LoopExit.getBlock(), 733 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 734 } 735 736 LoopStack.pop(); 737 738 // Emit the exit block. 739 EmitBlock(LoopExit.getBlock()); 740 741 // The DoCond block typically is just a branch if we skipped 742 // emitting a branch, try to erase it. 743 if (!EmitBoolCondBranch) 744 SimplifyForwardingBlocks(LoopCond.getBlock()); 745 } 746 747 void CodeGenFunction::EmitForStmt(const ForStmt &S, 748 ArrayRef<const Attr *> ForAttrs) { 749 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 750 751 LexicalScope ForScope(*this, S.getSourceRange()); 752 753 // Evaluate the first part before the loop. 754 if (S.getInit()) 755 EmitStmt(S.getInit()); 756 757 // Start the loop with a block that tests the condition. 758 // If there's an increment, the continue scope will be overwritten 759 // later. 760 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 761 llvm::BasicBlock *CondBlock = Continue.getBlock(); 762 EmitBlock(CondBlock); 763 764 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs); 765 766 // If the for loop doesn't have an increment we can just use the 767 // condition as the continue block. Otherwise we'll need to create 768 // a block for it (in the current scope, i.e. in the scope of the 769 // condition), and that we will become our continue block. 770 if (S.getInc()) 771 Continue = getJumpDestInCurrentScope("for.inc"); 772 773 // Store the blocks to use for break and continue. 774 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 775 776 // Create a cleanup scope for the condition variable cleanups. 777 LexicalScope ConditionScope(*this, S.getSourceRange()); 778 779 if (S.getCond()) { 780 // If the for statement has a condition scope, emit the local variable 781 // declaration. 782 if (S.getConditionVariable()) { 783 EmitAutoVarDecl(*S.getConditionVariable()); 784 } 785 786 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 787 // If there are any cleanups between here and the loop-exit scope, 788 // create a block to stage a loop exit along. 789 if (ForScope.requiresCleanups()) 790 ExitBlock = createBasicBlock("for.cond.cleanup"); 791 792 // As long as the condition is true, iterate the loop. 793 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 794 795 // C99 6.8.5p2/p4: The first substatement is executed if the expression 796 // compares unequal to 0. The condition must be a scalar type. 797 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 798 Builder.CreateCondBr( 799 BoolCondVal, ForBody, ExitBlock, 800 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 801 802 if (ExitBlock != LoopExit.getBlock()) { 803 EmitBlock(ExitBlock); 804 EmitBranchThroughCleanup(LoopExit); 805 } 806 807 EmitBlock(ForBody); 808 } else { 809 // Treat it as a non-zero constant. Don't even create a new block for the 810 // body, just fall into it. 811 } 812 incrementProfileCounter(&S); 813 814 { 815 // Create a separate cleanup scope for the body, in case it is not 816 // a compound statement. 817 RunCleanupsScope BodyScope(*this); 818 EmitStmt(S.getBody()); 819 } 820 821 // If there is an increment, emit it next. 822 if (S.getInc()) { 823 EmitBlock(Continue.getBlock()); 824 EmitStmt(S.getInc()); 825 } 826 827 BreakContinueStack.pop_back(); 828 829 ConditionScope.ForceCleanup(); 830 831 EmitStopPoint(&S); 832 EmitBranch(CondBlock); 833 834 ForScope.ForceCleanup(); 835 836 LoopStack.pop(); 837 838 // Emit the fall-through block. 839 EmitBlock(LoopExit.getBlock(), true); 840 } 841 842 void 843 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 844 ArrayRef<const Attr *> ForAttrs) { 845 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 846 847 LexicalScope ForScope(*this, S.getSourceRange()); 848 849 // Evaluate the first pieces before the loop. 850 EmitStmt(S.getRangeStmt()); 851 EmitStmt(S.getBeginEndStmt()); 852 853 // Start the loop with a block that tests the condition. 854 // If there's an increment, the continue scope will be overwritten 855 // later. 856 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 857 EmitBlock(CondBlock); 858 859 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs); 860 861 // If there are any cleanups between here and the loop-exit scope, 862 // create a block to stage a loop exit along. 863 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 864 if (ForScope.requiresCleanups()) 865 ExitBlock = createBasicBlock("for.cond.cleanup"); 866 867 // The loop body, consisting of the specified body and the loop variable. 868 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 869 870 // The body is executed if the expression, contextually converted 871 // to bool, is true. 872 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 873 Builder.CreateCondBr( 874 BoolCondVal, ForBody, ExitBlock, 875 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 876 877 if (ExitBlock != LoopExit.getBlock()) { 878 EmitBlock(ExitBlock); 879 EmitBranchThroughCleanup(LoopExit); 880 } 881 882 EmitBlock(ForBody); 883 incrementProfileCounter(&S); 884 885 // Create a block for the increment. In case of a 'continue', we jump there. 886 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 887 888 // Store the blocks to use for break and continue. 889 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 890 891 { 892 // Create a separate cleanup scope for the loop variable and body. 893 LexicalScope BodyScope(*this, S.getSourceRange()); 894 EmitStmt(S.getLoopVarStmt()); 895 EmitStmt(S.getBody()); 896 } 897 898 EmitStopPoint(&S); 899 // If there is an increment, emit it next. 900 EmitBlock(Continue.getBlock()); 901 EmitStmt(S.getInc()); 902 903 BreakContinueStack.pop_back(); 904 905 EmitBranch(CondBlock); 906 907 ForScope.ForceCleanup(); 908 909 LoopStack.pop(); 910 911 // Emit the fall-through block. 912 EmitBlock(LoopExit.getBlock(), true); 913 } 914 915 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 916 if (RV.isScalar()) { 917 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 918 } else if (RV.isAggregate()) { 919 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 920 } else { 921 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 922 /*init*/ true); 923 } 924 EmitBranchThroughCleanup(ReturnBlock); 925 } 926 927 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 928 /// if the function returns void, or may be missing one if the function returns 929 /// non-void. Fun stuff :). 930 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 931 // Returning from an outlined SEH helper is UB, and we already warn on it. 932 if (IsOutlinedSEHHelper) { 933 Builder.CreateUnreachable(); 934 Builder.ClearInsertionPoint(); 935 } 936 937 // Emit the result value, even if unused, to evalute the side effects. 938 const Expr *RV = S.getRetValue(); 939 940 // Treat block literals in a return expression as if they appeared 941 // in their own scope. This permits a small, easily-implemented 942 // exception to our over-conservative rules about not jumping to 943 // statements following block literals with non-trivial cleanups. 944 RunCleanupsScope cleanupScope(*this); 945 if (const ExprWithCleanups *cleanups = 946 dyn_cast_or_null<ExprWithCleanups>(RV)) { 947 enterFullExpression(cleanups); 948 RV = cleanups->getSubExpr(); 949 } 950 951 // FIXME: Clean this up by using an LValue for ReturnTemp, 952 // EmitStoreThroughLValue, and EmitAnyExpr. 953 if (getLangOpts().ElideConstructors && 954 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 955 // Apply the named return value optimization for this return statement, 956 // which means doing nothing: the appropriate result has already been 957 // constructed into the NRVO variable. 958 959 // If there is an NRVO flag for this variable, set it to 1 into indicate 960 // that the cleanup code should not destroy the variable. 961 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 962 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 963 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 964 // Make sure not to return anything, but evaluate the expression 965 // for side effects. 966 if (RV) 967 EmitAnyExpr(RV); 968 } else if (!RV) { 969 // Do nothing (return value is left uninitialized) 970 } else if (FnRetTy->isReferenceType()) { 971 // If this function returns a reference, take the address of the expression 972 // rather than the value. 973 RValue Result = EmitReferenceBindingToExpr(RV); 974 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 975 } else { 976 switch (getEvaluationKind(RV->getType())) { 977 case TEK_Scalar: 978 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 979 break; 980 case TEK_Complex: 981 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 982 /*isInit*/ true); 983 break; 984 case TEK_Aggregate: 985 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 986 Qualifiers(), 987 AggValueSlot::IsDestructed, 988 AggValueSlot::DoesNotNeedGCBarriers, 989 AggValueSlot::IsNotAliased)); 990 break; 991 } 992 } 993 994 ++NumReturnExprs; 995 if (!RV || RV->isEvaluatable(getContext())) 996 ++NumSimpleReturnExprs; 997 998 cleanupScope.ForceCleanup(); 999 EmitBranchThroughCleanup(ReturnBlock); 1000 } 1001 1002 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1003 // As long as debug info is modeled with instructions, we have to ensure we 1004 // have a place to insert here and write the stop point here. 1005 if (HaveInsertPoint()) 1006 EmitStopPoint(&S); 1007 1008 for (const auto *I : S.decls()) 1009 EmitDecl(*I); 1010 } 1011 1012 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1013 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1014 1015 // If this code is reachable then emit a stop point (if generating 1016 // debug info). We have to do this ourselves because we are on the 1017 // "simple" statement path. 1018 if (HaveInsertPoint()) 1019 EmitStopPoint(&S); 1020 1021 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1022 } 1023 1024 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1025 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1026 1027 // If this code is reachable then emit a stop point (if generating 1028 // debug info). We have to do this ourselves because we are on the 1029 // "simple" statement path. 1030 if (HaveInsertPoint()) 1031 EmitStopPoint(&S); 1032 1033 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1034 } 1035 1036 /// EmitCaseStmtRange - If case statement range is not too big then 1037 /// add multiple cases to switch instruction, one for each value within 1038 /// the range. If range is too big then emit "if" condition check. 1039 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1040 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1041 1042 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1043 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1044 1045 // Emit the code for this case. We do this first to make sure it is 1046 // properly chained from our predecessor before generating the 1047 // switch machinery to enter this block. 1048 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1049 EmitBlockWithFallThrough(CaseDest, &S); 1050 EmitStmt(S.getSubStmt()); 1051 1052 // If range is empty, do nothing. 1053 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1054 return; 1055 1056 llvm::APInt Range = RHS - LHS; 1057 // FIXME: parameters such as this should not be hardcoded. 1058 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1059 // Range is small enough to add multiple switch instruction cases. 1060 uint64_t Total = getProfileCount(&S); 1061 unsigned NCases = Range.getZExtValue() + 1; 1062 // We only have one region counter for the entire set of cases here, so we 1063 // need to divide the weights evenly between the generated cases, ensuring 1064 // that the total weight is preserved. E.g., a weight of 5 over three cases 1065 // will be distributed as weights of 2, 2, and 1. 1066 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1067 for (unsigned I = 0; I != NCases; ++I) { 1068 if (SwitchWeights) 1069 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1070 if (Rem) 1071 Rem--; 1072 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1073 LHS++; 1074 } 1075 return; 1076 } 1077 1078 // The range is too big. Emit "if" condition into a new block, 1079 // making sure to save and restore the current insertion point. 1080 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1081 1082 // Push this test onto the chain of range checks (which terminates 1083 // in the default basic block). The switch's default will be changed 1084 // to the top of this chain after switch emission is complete. 1085 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1086 CaseRangeBlock = createBasicBlock("sw.caserange"); 1087 1088 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1089 Builder.SetInsertPoint(CaseRangeBlock); 1090 1091 // Emit range check. 1092 llvm::Value *Diff = 1093 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1094 llvm::Value *Cond = 1095 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1096 1097 llvm::MDNode *Weights = nullptr; 1098 if (SwitchWeights) { 1099 uint64_t ThisCount = getProfileCount(&S); 1100 uint64_t DefaultCount = (*SwitchWeights)[0]; 1101 Weights = createProfileWeights(ThisCount, DefaultCount); 1102 1103 // Since we're chaining the switch default through each large case range, we 1104 // need to update the weight for the default, ie, the first case, to include 1105 // this case. 1106 (*SwitchWeights)[0] += ThisCount; 1107 } 1108 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1109 1110 // Restore the appropriate insertion point. 1111 if (RestoreBB) 1112 Builder.SetInsertPoint(RestoreBB); 1113 else 1114 Builder.ClearInsertionPoint(); 1115 } 1116 1117 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1118 // If there is no enclosing switch instance that we're aware of, then this 1119 // case statement and its block can be elided. This situation only happens 1120 // when we've constant-folded the switch, are emitting the constant case, 1121 // and part of the constant case includes another case statement. For 1122 // instance: switch (4) { case 4: do { case 5: } while (1); } 1123 if (!SwitchInsn) { 1124 EmitStmt(S.getSubStmt()); 1125 return; 1126 } 1127 1128 // Handle case ranges. 1129 if (S.getRHS()) { 1130 EmitCaseStmtRange(S); 1131 return; 1132 } 1133 1134 llvm::ConstantInt *CaseVal = 1135 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1136 1137 // If the body of the case is just a 'break', try to not emit an empty block. 1138 // If we're profiling or we're not optimizing, leave the block in for better 1139 // debug and coverage analysis. 1140 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1141 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1142 isa<BreakStmt>(S.getSubStmt())) { 1143 JumpDest Block = BreakContinueStack.back().BreakBlock; 1144 1145 // Only do this optimization if there are no cleanups that need emitting. 1146 if (isObviouslyBranchWithoutCleanups(Block)) { 1147 if (SwitchWeights) 1148 SwitchWeights->push_back(getProfileCount(&S)); 1149 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1150 1151 // If there was a fallthrough into this case, make sure to redirect it to 1152 // the end of the switch as well. 1153 if (Builder.GetInsertBlock()) { 1154 Builder.CreateBr(Block.getBlock()); 1155 Builder.ClearInsertionPoint(); 1156 } 1157 return; 1158 } 1159 } 1160 1161 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1162 EmitBlockWithFallThrough(CaseDest, &S); 1163 if (SwitchWeights) 1164 SwitchWeights->push_back(getProfileCount(&S)); 1165 SwitchInsn->addCase(CaseVal, CaseDest); 1166 1167 // Recursively emitting the statement is acceptable, but is not wonderful for 1168 // code where we have many case statements nested together, i.e.: 1169 // case 1: 1170 // case 2: 1171 // case 3: etc. 1172 // Handling this recursively will create a new block for each case statement 1173 // that falls through to the next case which is IR intensive. It also causes 1174 // deep recursion which can run into stack depth limitations. Handle 1175 // sequential non-range case statements specially. 1176 const CaseStmt *CurCase = &S; 1177 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1178 1179 // Otherwise, iteratively add consecutive cases to this switch stmt. 1180 while (NextCase && NextCase->getRHS() == nullptr) { 1181 CurCase = NextCase; 1182 llvm::ConstantInt *CaseVal = 1183 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1184 1185 if (SwitchWeights) 1186 SwitchWeights->push_back(getProfileCount(NextCase)); 1187 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1188 CaseDest = createBasicBlock("sw.bb"); 1189 EmitBlockWithFallThrough(CaseDest, &S); 1190 } 1191 1192 SwitchInsn->addCase(CaseVal, CaseDest); 1193 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1194 } 1195 1196 // Normal default recursion for non-cases. 1197 EmitStmt(CurCase->getSubStmt()); 1198 } 1199 1200 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1201 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1202 assert(DefaultBlock->empty() && 1203 "EmitDefaultStmt: Default block already defined?"); 1204 1205 EmitBlockWithFallThrough(DefaultBlock, &S); 1206 1207 EmitStmt(S.getSubStmt()); 1208 } 1209 1210 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1211 /// constant value that is being switched on, see if we can dead code eliminate 1212 /// the body of the switch to a simple series of statements to emit. Basically, 1213 /// on a switch (5) we want to find these statements: 1214 /// case 5: 1215 /// printf(...); <-- 1216 /// ++i; <-- 1217 /// break; 1218 /// 1219 /// and add them to the ResultStmts vector. If it is unsafe to do this 1220 /// transformation (for example, one of the elided statements contains a label 1221 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1222 /// should include statements after it (e.g. the printf() line is a substmt of 1223 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1224 /// statement, then return CSFC_Success. 1225 /// 1226 /// If Case is non-null, then we are looking for the specified case, checking 1227 /// that nothing we jump over contains labels. If Case is null, then we found 1228 /// the case and are looking for the break. 1229 /// 1230 /// If the recursive walk actually finds our Case, then we set FoundCase to 1231 /// true. 1232 /// 1233 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1234 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1235 const SwitchCase *Case, 1236 bool &FoundCase, 1237 SmallVectorImpl<const Stmt*> &ResultStmts) { 1238 // If this is a null statement, just succeed. 1239 if (!S) 1240 return Case ? CSFC_Success : CSFC_FallThrough; 1241 1242 // If this is the switchcase (case 4: or default) that we're looking for, then 1243 // we're in business. Just add the substatement. 1244 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1245 if (S == Case) { 1246 FoundCase = true; 1247 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1248 ResultStmts); 1249 } 1250 1251 // Otherwise, this is some other case or default statement, just ignore it. 1252 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1253 ResultStmts); 1254 } 1255 1256 // If we are in the live part of the code and we found our break statement, 1257 // return a success! 1258 if (!Case && isa<BreakStmt>(S)) 1259 return CSFC_Success; 1260 1261 // If this is a switch statement, then it might contain the SwitchCase, the 1262 // break, or neither. 1263 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1264 // Handle this as two cases: we might be looking for the SwitchCase (if so 1265 // the skipped statements must be skippable) or we might already have it. 1266 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1267 if (Case) { 1268 // Keep track of whether we see a skipped declaration. The code could be 1269 // using the declaration even if it is skipped, so we can't optimize out 1270 // the decl if the kept statements might refer to it. 1271 bool HadSkippedDecl = false; 1272 1273 // If we're looking for the case, just see if we can skip each of the 1274 // substatements. 1275 for (; Case && I != E; ++I) { 1276 HadSkippedDecl |= isa<DeclStmt>(*I); 1277 1278 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1279 case CSFC_Failure: return CSFC_Failure; 1280 case CSFC_Success: 1281 // A successful result means that either 1) that the statement doesn't 1282 // have the case and is skippable, or 2) does contain the case value 1283 // and also contains the break to exit the switch. In the later case, 1284 // we just verify the rest of the statements are elidable. 1285 if (FoundCase) { 1286 // If we found the case and skipped declarations, we can't do the 1287 // optimization. 1288 if (HadSkippedDecl) 1289 return CSFC_Failure; 1290 1291 for (++I; I != E; ++I) 1292 if (CodeGenFunction::ContainsLabel(*I, true)) 1293 return CSFC_Failure; 1294 return CSFC_Success; 1295 } 1296 break; 1297 case CSFC_FallThrough: 1298 // If we have a fallthrough condition, then we must have found the 1299 // case started to include statements. Consider the rest of the 1300 // statements in the compound statement as candidates for inclusion. 1301 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1302 // We recursively found Case, so we're not looking for it anymore. 1303 Case = nullptr; 1304 1305 // If we found the case and skipped declarations, we can't do the 1306 // optimization. 1307 if (HadSkippedDecl) 1308 return CSFC_Failure; 1309 break; 1310 } 1311 } 1312 } 1313 1314 // If we have statements in our range, then we know that the statements are 1315 // live and need to be added to the set of statements we're tracking. 1316 for (; I != E; ++I) { 1317 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1318 case CSFC_Failure: return CSFC_Failure; 1319 case CSFC_FallThrough: 1320 // A fallthrough result means that the statement was simple and just 1321 // included in ResultStmt, keep adding them afterwards. 1322 break; 1323 case CSFC_Success: 1324 // A successful result means that we found the break statement and 1325 // stopped statement inclusion. We just ensure that any leftover stmts 1326 // are skippable and return success ourselves. 1327 for (++I; I != E; ++I) 1328 if (CodeGenFunction::ContainsLabel(*I, true)) 1329 return CSFC_Failure; 1330 return CSFC_Success; 1331 } 1332 } 1333 1334 return Case ? CSFC_Success : CSFC_FallThrough; 1335 } 1336 1337 // Okay, this is some other statement that we don't handle explicitly, like a 1338 // for statement or increment etc. If we are skipping over this statement, 1339 // just verify it doesn't have labels, which would make it invalid to elide. 1340 if (Case) { 1341 if (CodeGenFunction::ContainsLabel(S, true)) 1342 return CSFC_Failure; 1343 return CSFC_Success; 1344 } 1345 1346 // Otherwise, we want to include this statement. Everything is cool with that 1347 // so long as it doesn't contain a break out of the switch we're in. 1348 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1349 1350 // Otherwise, everything is great. Include the statement and tell the caller 1351 // that we fall through and include the next statement as well. 1352 ResultStmts.push_back(S); 1353 return CSFC_FallThrough; 1354 } 1355 1356 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1357 /// then invoke CollectStatementsForCase to find the list of statements to emit 1358 /// for a switch on constant. See the comment above CollectStatementsForCase 1359 /// for more details. 1360 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1361 const llvm::APSInt &ConstantCondValue, 1362 SmallVectorImpl<const Stmt*> &ResultStmts, 1363 ASTContext &C, 1364 const SwitchCase *&ResultCase) { 1365 // First step, find the switch case that is being branched to. We can do this 1366 // efficiently by scanning the SwitchCase list. 1367 const SwitchCase *Case = S.getSwitchCaseList(); 1368 const DefaultStmt *DefaultCase = nullptr; 1369 1370 for (; Case; Case = Case->getNextSwitchCase()) { 1371 // It's either a default or case. Just remember the default statement in 1372 // case we're not jumping to any numbered cases. 1373 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1374 DefaultCase = DS; 1375 continue; 1376 } 1377 1378 // Check to see if this case is the one we're looking for. 1379 const CaseStmt *CS = cast<CaseStmt>(Case); 1380 // Don't handle case ranges yet. 1381 if (CS->getRHS()) return false; 1382 1383 // If we found our case, remember it as 'case'. 1384 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1385 break; 1386 } 1387 1388 // If we didn't find a matching case, we use a default if it exists, or we 1389 // elide the whole switch body! 1390 if (!Case) { 1391 // It is safe to elide the body of the switch if it doesn't contain labels 1392 // etc. If it is safe, return successfully with an empty ResultStmts list. 1393 if (!DefaultCase) 1394 return !CodeGenFunction::ContainsLabel(&S); 1395 Case = DefaultCase; 1396 } 1397 1398 // Ok, we know which case is being jumped to, try to collect all the 1399 // statements that follow it. This can fail for a variety of reasons. Also, 1400 // check to see that the recursive walk actually found our case statement. 1401 // Insane cases like this can fail to find it in the recursive walk since we 1402 // don't handle every stmt kind: 1403 // switch (4) { 1404 // while (1) { 1405 // case 4: ... 1406 bool FoundCase = false; 1407 ResultCase = Case; 1408 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1409 ResultStmts) != CSFC_Failure && 1410 FoundCase; 1411 } 1412 1413 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1414 // Handle nested switch statements. 1415 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1416 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1417 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1418 1419 // See if we can constant fold the condition of the switch and therefore only 1420 // emit the live case statement (if any) of the switch. 1421 llvm::APSInt ConstantCondValue; 1422 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1423 SmallVector<const Stmt*, 4> CaseStmts; 1424 const SwitchCase *Case = nullptr; 1425 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1426 getContext(), Case)) { 1427 if (Case) 1428 incrementProfileCounter(Case); 1429 RunCleanupsScope ExecutedScope(*this); 1430 1431 // Emit the condition variable if needed inside the entire cleanup scope 1432 // used by this special case for constant folded switches. 1433 if (S.getConditionVariable()) 1434 EmitAutoVarDecl(*S.getConditionVariable()); 1435 1436 // At this point, we are no longer "within" a switch instance, so 1437 // we can temporarily enforce this to ensure that any embedded case 1438 // statements are not emitted. 1439 SwitchInsn = nullptr; 1440 1441 // Okay, we can dead code eliminate everything except this case. Emit the 1442 // specified series of statements and we're good. 1443 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1444 EmitStmt(CaseStmts[i]); 1445 incrementProfileCounter(&S); 1446 1447 // Now we want to restore the saved switch instance so that nested 1448 // switches continue to function properly 1449 SwitchInsn = SavedSwitchInsn; 1450 1451 return; 1452 } 1453 } 1454 1455 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1456 1457 RunCleanupsScope ConditionScope(*this); 1458 if (S.getConditionVariable()) 1459 EmitAutoVarDecl(*S.getConditionVariable()); 1460 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1461 1462 // Create basic block to hold stuff that comes after switch 1463 // statement. We also need to create a default block now so that 1464 // explicit case ranges tests can have a place to jump to on 1465 // failure. 1466 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1467 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1468 if (PGO.haveRegionCounts()) { 1469 // Walk the SwitchCase list to find how many there are. 1470 uint64_t DefaultCount = 0; 1471 unsigned NumCases = 0; 1472 for (const SwitchCase *Case = S.getSwitchCaseList(); 1473 Case; 1474 Case = Case->getNextSwitchCase()) { 1475 if (isa<DefaultStmt>(Case)) 1476 DefaultCount = getProfileCount(Case); 1477 NumCases += 1; 1478 } 1479 SwitchWeights = new SmallVector<uint64_t, 16>(); 1480 SwitchWeights->reserve(NumCases); 1481 // The default needs to be first. We store the edge count, so we already 1482 // know the right weight. 1483 SwitchWeights->push_back(DefaultCount); 1484 } 1485 CaseRangeBlock = DefaultBlock; 1486 1487 // Clear the insertion point to indicate we are in unreachable code. 1488 Builder.ClearInsertionPoint(); 1489 1490 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1491 // then reuse last ContinueBlock. 1492 JumpDest OuterContinue; 1493 if (!BreakContinueStack.empty()) 1494 OuterContinue = BreakContinueStack.back().ContinueBlock; 1495 1496 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1497 1498 // Emit switch body. 1499 EmitStmt(S.getBody()); 1500 1501 BreakContinueStack.pop_back(); 1502 1503 // Update the default block in case explicit case range tests have 1504 // been chained on top. 1505 SwitchInsn->setDefaultDest(CaseRangeBlock); 1506 1507 // If a default was never emitted: 1508 if (!DefaultBlock->getParent()) { 1509 // If we have cleanups, emit the default block so that there's a 1510 // place to jump through the cleanups from. 1511 if (ConditionScope.requiresCleanups()) { 1512 EmitBlock(DefaultBlock); 1513 1514 // Otherwise, just forward the default block to the switch end. 1515 } else { 1516 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1517 delete DefaultBlock; 1518 } 1519 } 1520 1521 ConditionScope.ForceCleanup(); 1522 1523 // Emit continuation. 1524 EmitBlock(SwitchExit.getBlock(), true); 1525 incrementProfileCounter(&S); 1526 1527 // If the switch has a condition wrapped by __builtin_unpredictable, 1528 // create metadata that specifies that the switch is unpredictable. 1529 // Don't bother if not optimizing because that metadata would not be used. 1530 if (CGM.getCodeGenOpts().OptimizationLevel != 0) { 1531 if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) { 1532 const Decl *TargetDecl = Call->getCalleeDecl(); 1533 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 1534 if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1535 llvm::MDBuilder MDHelper(getLLVMContext()); 1536 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1537 MDHelper.createUnpredictable()); 1538 } 1539 } 1540 } 1541 } 1542 1543 if (SwitchWeights) { 1544 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1545 "switch weights do not match switch cases"); 1546 // If there's only one jump destination there's no sense weighting it. 1547 if (SwitchWeights->size() > 1) 1548 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1549 createProfileWeights(*SwitchWeights)); 1550 delete SwitchWeights; 1551 } 1552 SwitchInsn = SavedSwitchInsn; 1553 SwitchWeights = SavedSwitchWeights; 1554 CaseRangeBlock = SavedCRBlock; 1555 } 1556 1557 static std::string 1558 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1559 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1560 std::string Result; 1561 1562 while (*Constraint) { 1563 switch (*Constraint) { 1564 default: 1565 Result += Target.convertConstraint(Constraint); 1566 break; 1567 // Ignore these 1568 case '*': 1569 case '?': 1570 case '!': 1571 case '=': // Will see this and the following in mult-alt constraints. 1572 case '+': 1573 break; 1574 case '#': // Ignore the rest of the constraint alternative. 1575 while (Constraint[1] && Constraint[1] != ',') 1576 Constraint++; 1577 break; 1578 case '&': 1579 case '%': 1580 Result += *Constraint; 1581 while (Constraint[1] && Constraint[1] == *Constraint) 1582 Constraint++; 1583 break; 1584 case ',': 1585 Result += "|"; 1586 break; 1587 case 'g': 1588 Result += "imr"; 1589 break; 1590 case '[': { 1591 assert(OutCons && 1592 "Must pass output names to constraints with a symbolic name"); 1593 unsigned Index; 1594 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1595 assert(result && "Could not resolve symbolic name"); (void)result; 1596 Result += llvm::utostr(Index); 1597 break; 1598 } 1599 } 1600 1601 Constraint++; 1602 } 1603 1604 return Result; 1605 } 1606 1607 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1608 /// as using a particular register add that as a constraint that will be used 1609 /// in this asm stmt. 1610 static std::string 1611 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1612 const TargetInfo &Target, CodeGenModule &CGM, 1613 const AsmStmt &Stmt, const bool EarlyClobber) { 1614 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1615 if (!AsmDeclRef) 1616 return Constraint; 1617 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1618 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1619 if (!Variable) 1620 return Constraint; 1621 if (Variable->getStorageClass() != SC_Register) 1622 return Constraint; 1623 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1624 if (!Attr) 1625 return Constraint; 1626 StringRef Register = Attr->getLabel(); 1627 assert(Target.isValidGCCRegisterName(Register)); 1628 // We're using validateOutputConstraint here because we only care if 1629 // this is a register constraint. 1630 TargetInfo::ConstraintInfo Info(Constraint, ""); 1631 if (Target.validateOutputConstraint(Info) && 1632 !Info.allowsRegister()) { 1633 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1634 return Constraint; 1635 } 1636 // Canonicalize the register here before returning it. 1637 Register = Target.getNormalizedGCCRegisterName(Register); 1638 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1639 } 1640 1641 llvm::Value* 1642 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1643 LValue InputValue, QualType InputType, 1644 std::string &ConstraintStr, 1645 SourceLocation Loc) { 1646 llvm::Value *Arg; 1647 if (Info.allowsRegister() || !Info.allowsMemory()) { 1648 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1649 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1650 } else { 1651 llvm::Type *Ty = ConvertType(InputType); 1652 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1653 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1654 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1655 Ty = llvm::PointerType::getUnqual(Ty); 1656 1657 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1658 Ty)); 1659 } else { 1660 Arg = InputValue.getPointer(); 1661 ConstraintStr += '*'; 1662 } 1663 } 1664 } else { 1665 Arg = InputValue.getPointer(); 1666 ConstraintStr += '*'; 1667 } 1668 1669 return Arg; 1670 } 1671 1672 llvm::Value* CodeGenFunction::EmitAsmInput( 1673 const TargetInfo::ConstraintInfo &Info, 1674 const Expr *InputExpr, 1675 std::string &ConstraintStr) { 1676 // If this can't be a register or memory, i.e., has to be a constant 1677 // (immediate or symbolic), try to emit it as such. 1678 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1679 llvm::APSInt Result; 1680 if (InputExpr->EvaluateAsInt(Result, getContext())) 1681 return llvm::ConstantInt::get(getLLVMContext(), Result); 1682 assert(!Info.requiresImmediateConstant() && 1683 "Required-immediate inlineasm arg isn't constant?"); 1684 } 1685 1686 if (Info.allowsRegister() || !Info.allowsMemory()) 1687 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1688 return EmitScalarExpr(InputExpr); 1689 1690 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1691 LValue Dest = EmitLValue(InputExpr); 1692 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1693 InputExpr->getExprLoc()); 1694 } 1695 1696 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1697 /// asm call instruction. The !srcloc MDNode contains a list of constant 1698 /// integers which are the source locations of the start of each line in the 1699 /// asm. 1700 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1701 CodeGenFunction &CGF) { 1702 SmallVector<llvm::Metadata *, 8> Locs; 1703 // Add the location of the first line to the MDNode. 1704 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1705 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1706 StringRef StrVal = Str->getString(); 1707 if (!StrVal.empty()) { 1708 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1709 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1710 1711 // Add the location of the start of each subsequent line of the asm to the 1712 // MDNode. 1713 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1714 if (StrVal[i] != '\n') continue; 1715 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1716 CGF.getTarget()); 1717 Locs.push_back(llvm::ConstantAsMetadata::get( 1718 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1719 } 1720 } 1721 1722 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1723 } 1724 1725 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1726 // Assemble the final asm string. 1727 std::string AsmString = S.generateAsmString(getContext()); 1728 1729 // Get all the output and input constraints together. 1730 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1731 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1732 1733 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1734 StringRef Name; 1735 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1736 Name = GAS->getOutputName(i); 1737 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1738 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1739 assert(IsValid && "Failed to parse output constraint"); 1740 OutputConstraintInfos.push_back(Info); 1741 } 1742 1743 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1744 StringRef Name; 1745 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1746 Name = GAS->getInputName(i); 1747 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1748 bool IsValid = 1749 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1750 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1751 InputConstraintInfos.push_back(Info); 1752 } 1753 1754 std::string Constraints; 1755 1756 std::vector<LValue> ResultRegDests; 1757 std::vector<QualType> ResultRegQualTys; 1758 std::vector<llvm::Type *> ResultRegTypes; 1759 std::vector<llvm::Type *> ResultTruncRegTypes; 1760 std::vector<llvm::Type *> ArgTypes; 1761 std::vector<llvm::Value*> Args; 1762 1763 // Keep track of inout constraints. 1764 std::string InOutConstraints; 1765 std::vector<llvm::Value*> InOutArgs; 1766 std::vector<llvm::Type*> InOutArgTypes; 1767 1768 // An inline asm can be marked readonly if it meets the following conditions: 1769 // - it doesn't have any sideeffects 1770 // - it doesn't clobber memory 1771 // - it doesn't return a value by-reference 1772 // It can be marked readnone if it doesn't have any input memory constraints 1773 // in addition to meeting the conditions listed above. 1774 bool ReadOnly = true, ReadNone = true; 1775 1776 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1777 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1778 1779 // Simplify the output constraint. 1780 std::string OutputConstraint(S.getOutputConstraint(i)); 1781 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1782 getTarget()); 1783 1784 const Expr *OutExpr = S.getOutputExpr(i); 1785 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1786 1787 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1788 getTarget(), CGM, S, 1789 Info.earlyClobber()); 1790 1791 LValue Dest = EmitLValue(OutExpr); 1792 if (!Constraints.empty()) 1793 Constraints += ','; 1794 1795 // If this is a register output, then make the inline asm return it 1796 // by-value. If this is a memory result, return the value by-reference. 1797 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1798 Constraints += "=" + OutputConstraint; 1799 ResultRegQualTys.push_back(OutExpr->getType()); 1800 ResultRegDests.push_back(Dest); 1801 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1802 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1803 1804 // If this output is tied to an input, and if the input is larger, then 1805 // we need to set the actual result type of the inline asm node to be the 1806 // same as the input type. 1807 if (Info.hasMatchingInput()) { 1808 unsigned InputNo; 1809 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1810 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1811 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1812 break; 1813 } 1814 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1815 1816 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1817 QualType OutputType = OutExpr->getType(); 1818 1819 uint64_t InputSize = getContext().getTypeSize(InputTy); 1820 if (getContext().getTypeSize(OutputType) < InputSize) { 1821 // Form the asm to return the value as a larger integer or fp type. 1822 ResultRegTypes.back() = ConvertType(InputTy); 1823 } 1824 } 1825 if (llvm::Type* AdjTy = 1826 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1827 ResultRegTypes.back())) 1828 ResultRegTypes.back() = AdjTy; 1829 else { 1830 CGM.getDiags().Report(S.getAsmLoc(), 1831 diag::err_asm_invalid_type_in_input) 1832 << OutExpr->getType() << OutputConstraint; 1833 } 1834 } else { 1835 ArgTypes.push_back(Dest.getAddress().getType()); 1836 Args.push_back(Dest.getPointer()); 1837 Constraints += "=*"; 1838 Constraints += OutputConstraint; 1839 ReadOnly = ReadNone = false; 1840 } 1841 1842 if (Info.isReadWrite()) { 1843 InOutConstraints += ','; 1844 1845 const Expr *InputExpr = S.getOutputExpr(i); 1846 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1847 InOutConstraints, 1848 InputExpr->getExprLoc()); 1849 1850 if (llvm::Type* AdjTy = 1851 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1852 Arg->getType())) 1853 Arg = Builder.CreateBitCast(Arg, AdjTy); 1854 1855 if (Info.allowsRegister()) 1856 InOutConstraints += llvm::utostr(i); 1857 else 1858 InOutConstraints += OutputConstraint; 1859 1860 InOutArgTypes.push_back(Arg->getType()); 1861 InOutArgs.push_back(Arg); 1862 } 1863 } 1864 1865 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1866 // to the return value slot. Only do this when returning in registers. 1867 if (isa<MSAsmStmt>(&S)) { 1868 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1869 if (RetAI.isDirect() || RetAI.isExtend()) { 1870 // Make a fake lvalue for the return value slot. 1871 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1872 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1873 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1874 ResultRegDests, AsmString, S.getNumOutputs()); 1875 SawAsmBlock = true; 1876 } 1877 } 1878 1879 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1880 const Expr *InputExpr = S.getInputExpr(i); 1881 1882 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1883 1884 if (Info.allowsMemory()) 1885 ReadNone = false; 1886 1887 if (!Constraints.empty()) 1888 Constraints += ','; 1889 1890 // Simplify the input constraint. 1891 std::string InputConstraint(S.getInputConstraint(i)); 1892 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1893 &OutputConstraintInfos); 1894 1895 InputConstraint = AddVariableConstraints( 1896 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 1897 getTarget(), CGM, S, false /* No EarlyClobber */); 1898 1899 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1900 1901 // If this input argument is tied to a larger output result, extend the 1902 // input to be the same size as the output. The LLVM backend wants to see 1903 // the input and output of a matching constraint be the same size. Note 1904 // that GCC does not define what the top bits are here. We use zext because 1905 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1906 if (Info.hasTiedOperand()) { 1907 unsigned Output = Info.getTiedOperand(); 1908 QualType OutputType = S.getOutputExpr(Output)->getType(); 1909 QualType InputTy = InputExpr->getType(); 1910 1911 if (getContext().getTypeSize(OutputType) > 1912 getContext().getTypeSize(InputTy)) { 1913 // Use ptrtoint as appropriate so that we can do our extension. 1914 if (isa<llvm::PointerType>(Arg->getType())) 1915 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1916 llvm::Type *OutputTy = ConvertType(OutputType); 1917 if (isa<llvm::IntegerType>(OutputTy)) 1918 Arg = Builder.CreateZExt(Arg, OutputTy); 1919 else if (isa<llvm::PointerType>(OutputTy)) 1920 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1921 else { 1922 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1923 Arg = Builder.CreateFPExt(Arg, OutputTy); 1924 } 1925 } 1926 } 1927 if (llvm::Type* AdjTy = 1928 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1929 Arg->getType())) 1930 Arg = Builder.CreateBitCast(Arg, AdjTy); 1931 else 1932 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1933 << InputExpr->getType() << InputConstraint; 1934 1935 ArgTypes.push_back(Arg->getType()); 1936 Args.push_back(Arg); 1937 Constraints += InputConstraint; 1938 } 1939 1940 // Append the "input" part of inout constraints last. 1941 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1942 ArgTypes.push_back(InOutArgTypes[i]); 1943 Args.push_back(InOutArgs[i]); 1944 } 1945 Constraints += InOutConstraints; 1946 1947 // Clobbers 1948 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1949 StringRef Clobber = S.getClobber(i); 1950 1951 if (Clobber == "memory") 1952 ReadOnly = ReadNone = false; 1953 else if (Clobber != "cc") 1954 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1955 1956 if (!Constraints.empty()) 1957 Constraints += ','; 1958 1959 Constraints += "~{"; 1960 Constraints += Clobber; 1961 Constraints += '}'; 1962 } 1963 1964 // Add machine specific clobbers 1965 std::string MachineClobbers = getTarget().getClobbers(); 1966 if (!MachineClobbers.empty()) { 1967 if (!Constraints.empty()) 1968 Constraints += ','; 1969 Constraints += MachineClobbers; 1970 } 1971 1972 llvm::Type *ResultType; 1973 if (ResultRegTypes.empty()) 1974 ResultType = VoidTy; 1975 else if (ResultRegTypes.size() == 1) 1976 ResultType = ResultRegTypes[0]; 1977 else 1978 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1979 1980 llvm::FunctionType *FTy = 1981 llvm::FunctionType::get(ResultType, ArgTypes, false); 1982 1983 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1984 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1985 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1986 llvm::InlineAsm *IA = 1987 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1988 /* IsAlignStack */ false, AsmDialect); 1989 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1990 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1991 llvm::Attribute::NoUnwind); 1992 1993 // Attach readnone and readonly attributes. 1994 if (!HasSideEffect) { 1995 if (ReadNone) 1996 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1997 llvm::Attribute::ReadNone); 1998 else if (ReadOnly) 1999 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2000 llvm::Attribute::ReadOnly); 2001 } 2002 2003 // Slap the source location of the inline asm into a !srcloc metadata on the 2004 // call. 2005 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2006 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2007 *this)); 2008 } else { 2009 // At least put the line number on MS inline asm blobs. 2010 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2011 Result->setMetadata("srcloc", 2012 llvm::MDNode::get(getLLVMContext(), 2013 llvm::ConstantAsMetadata::get(Loc))); 2014 } 2015 2016 // Extract all of the register value results from the asm. 2017 std::vector<llvm::Value*> RegResults; 2018 if (ResultRegTypes.size() == 1) { 2019 RegResults.push_back(Result); 2020 } else { 2021 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2022 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2023 RegResults.push_back(Tmp); 2024 } 2025 } 2026 2027 assert(RegResults.size() == ResultRegTypes.size()); 2028 assert(RegResults.size() == ResultTruncRegTypes.size()); 2029 assert(RegResults.size() == ResultRegDests.size()); 2030 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2031 llvm::Value *Tmp = RegResults[i]; 2032 2033 // If the result type of the LLVM IR asm doesn't match the result type of 2034 // the expression, do the conversion. 2035 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2036 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2037 2038 // Truncate the integer result to the right size, note that TruncTy can be 2039 // a pointer. 2040 if (TruncTy->isFloatingPointTy()) 2041 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2042 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2043 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2044 Tmp = Builder.CreateTrunc(Tmp, 2045 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2046 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2047 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2048 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2049 Tmp = Builder.CreatePtrToInt(Tmp, 2050 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2051 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2052 } else if (TruncTy->isIntegerTy()) { 2053 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2054 } else if (TruncTy->isVectorTy()) { 2055 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2056 } 2057 } 2058 2059 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2060 } 2061 } 2062 2063 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2064 const RecordDecl *RD = S.getCapturedRecordDecl(); 2065 QualType RecordTy = getContext().getRecordType(RD); 2066 2067 // Initialize the captured struct. 2068 LValue SlotLV = 2069 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2070 2071 RecordDecl::field_iterator CurField = RD->field_begin(); 2072 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2073 E = S.capture_init_end(); 2074 I != E; ++I, ++CurField) { 2075 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2076 if (CurField->hasCapturedVLAType()) { 2077 auto VAT = CurField->getCapturedVLAType(); 2078 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2079 } else { 2080 EmitInitializerForField(*CurField, LV, *I, None); 2081 } 2082 } 2083 2084 return SlotLV; 2085 } 2086 2087 /// Generate an outlined function for the body of a CapturedStmt, store any 2088 /// captured variables into the captured struct, and call the outlined function. 2089 llvm::Function * 2090 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2091 LValue CapStruct = InitCapturedStruct(S); 2092 2093 // Emit the CapturedDecl 2094 CodeGenFunction CGF(CGM, true); 2095 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2096 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2097 delete CGF.CapturedStmtInfo; 2098 2099 // Emit call to the helper function. 2100 EmitCallOrInvoke(F, CapStruct.getPointer()); 2101 2102 return F; 2103 } 2104 2105 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2106 LValue CapStruct = InitCapturedStruct(S); 2107 return CapStruct.getAddress(); 2108 } 2109 2110 /// Creates the outlined function for a CapturedStmt. 2111 llvm::Function * 2112 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2113 assert(CapturedStmtInfo && 2114 "CapturedStmtInfo should be set when generating the captured function"); 2115 const CapturedDecl *CD = S.getCapturedDecl(); 2116 const RecordDecl *RD = S.getCapturedRecordDecl(); 2117 SourceLocation Loc = S.getLocStart(); 2118 assert(CD->hasBody() && "missing CapturedDecl body"); 2119 2120 // Build the argument list. 2121 ASTContext &Ctx = CGM.getContext(); 2122 FunctionArgList Args; 2123 Args.append(CD->param_begin(), CD->param_end()); 2124 2125 // Create the function declaration. 2126 FunctionType::ExtInfo ExtInfo; 2127 const CGFunctionInfo &FuncInfo = 2128 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2129 /*IsVariadic=*/false); 2130 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2131 2132 llvm::Function *F = 2133 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2134 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2135 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2136 if (CD->isNothrow()) 2137 F->addFnAttr(llvm::Attribute::NoUnwind); 2138 2139 // Generate the function. 2140 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2141 CD->getLocation(), 2142 CD->getBody()->getLocStart()); 2143 // Set the context parameter in CapturedStmtInfo. 2144 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2145 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2146 2147 // Initialize variable-length arrays. 2148 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2149 Ctx.getTagDeclType(RD)); 2150 for (auto *FD : RD->fields()) { 2151 if (FD->hasCapturedVLAType()) { 2152 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2153 S.getLocStart()).getScalarVal(); 2154 auto VAT = FD->getCapturedVLAType(); 2155 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2156 } 2157 } 2158 2159 // If 'this' is captured, load it into CXXThisValue. 2160 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2161 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2162 LValue ThisLValue = EmitLValueForField(Base, FD); 2163 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2164 } 2165 2166 PGO.assignRegionCounters(CD, F); 2167 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2168 FinishFunction(CD->getBodyRBrace()); 2169 2170 return F; 2171 } 2172