1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 146 break; 147 case Stmt::CoreturnStmtClass: 148 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 149 break; 150 case Stmt::CapturedStmtClass: { 151 const CapturedStmt *CS = cast<CapturedStmt>(S); 152 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 153 } 154 break; 155 case Stmt::ObjCAtTryStmtClass: 156 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 157 break; 158 case Stmt::ObjCAtCatchStmtClass: 159 llvm_unreachable( 160 "@catch statements should be handled by EmitObjCAtTryStmt"); 161 case Stmt::ObjCAtFinallyStmtClass: 162 llvm_unreachable( 163 "@finally statements should be handled by EmitObjCAtTryStmt"); 164 case Stmt::ObjCAtThrowStmtClass: 165 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 166 break; 167 case Stmt::ObjCAtSynchronizedStmtClass: 168 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 169 break; 170 case Stmt::ObjCForCollectionStmtClass: 171 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 172 break; 173 case Stmt::ObjCAutoreleasePoolStmtClass: 174 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 175 break; 176 177 case Stmt::CXXTryStmtClass: 178 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 179 break; 180 case Stmt::CXXForRangeStmtClass: 181 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 182 break; 183 case Stmt::SEHTryStmtClass: 184 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 185 break; 186 case Stmt::OMPParallelDirectiveClass: 187 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 188 break; 189 case Stmt::OMPSimdDirectiveClass: 190 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 191 break; 192 case Stmt::OMPForDirectiveClass: 193 EmitOMPForDirective(cast<OMPForDirective>(*S)); 194 break; 195 case Stmt::OMPForSimdDirectiveClass: 196 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 197 break; 198 case Stmt::OMPSectionsDirectiveClass: 199 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 200 break; 201 case Stmt::OMPSectionDirectiveClass: 202 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 203 break; 204 case Stmt::OMPSingleDirectiveClass: 205 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 206 break; 207 case Stmt::OMPMasterDirectiveClass: 208 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 209 break; 210 case Stmt::OMPCriticalDirectiveClass: 211 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 212 break; 213 case Stmt::OMPParallelForDirectiveClass: 214 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 215 break; 216 case Stmt::OMPParallelForSimdDirectiveClass: 217 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 218 break; 219 case Stmt::OMPParallelSectionsDirectiveClass: 220 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 221 break; 222 case Stmt::OMPTaskDirectiveClass: 223 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 224 break; 225 case Stmt::OMPTaskyieldDirectiveClass: 226 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 227 break; 228 case Stmt::OMPBarrierDirectiveClass: 229 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 230 break; 231 case Stmt::OMPTaskwaitDirectiveClass: 232 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 233 break; 234 case Stmt::OMPTaskgroupDirectiveClass: 235 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 236 break; 237 case Stmt::OMPFlushDirectiveClass: 238 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 239 break; 240 case Stmt::OMPOrderedDirectiveClass: 241 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 242 break; 243 case Stmt::OMPAtomicDirectiveClass: 244 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 245 break; 246 case Stmt::OMPTargetDirectiveClass: 247 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 248 break; 249 case Stmt::OMPTeamsDirectiveClass: 250 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 251 break; 252 case Stmt::OMPCancellationPointDirectiveClass: 253 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 254 break; 255 case Stmt::OMPCancelDirectiveClass: 256 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 257 break; 258 case Stmt::OMPTargetDataDirectiveClass: 259 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 260 break; 261 case Stmt::OMPTargetEnterDataDirectiveClass: 262 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 263 break; 264 case Stmt::OMPTargetExitDataDirectiveClass: 265 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 266 break; 267 case Stmt::OMPTargetParallelDirectiveClass: 268 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 269 break; 270 case Stmt::OMPTargetParallelForDirectiveClass: 271 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 272 break; 273 case Stmt::OMPTaskLoopDirectiveClass: 274 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 275 break; 276 case Stmt::OMPTaskLoopSimdDirectiveClass: 277 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 278 break; 279 case Stmt::OMPDistributeDirectiveClass: 280 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 281 break; 282 case Stmt::OMPTargetUpdateDirectiveClass: 283 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 284 break; 285 case Stmt::OMPDistributeParallelForDirectiveClass: 286 EmitOMPDistributeParallelForDirective( 287 cast<OMPDistributeParallelForDirective>(*S)); 288 break; 289 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 290 EmitOMPDistributeParallelForSimdDirective( 291 cast<OMPDistributeParallelForSimdDirective>(*S)); 292 break; 293 case Stmt::OMPDistributeSimdDirectiveClass: 294 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 295 break; 296 case Stmt::OMPTargetParallelForSimdDirectiveClass: 297 EmitOMPTargetParallelForSimdDirective( 298 cast<OMPTargetParallelForSimdDirective>(*S)); 299 break; 300 case Stmt::OMPTargetSimdDirectiveClass: 301 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 302 break; 303 case Stmt::OMPTeamsDistributeDirectiveClass: 304 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 305 break; 306 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 307 EmitOMPTeamsDistributeSimdDirective( 308 cast<OMPTeamsDistributeSimdDirective>(*S)); 309 break; 310 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 311 EmitOMPTeamsDistributeParallelForSimdDirective( 312 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 313 break; 314 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 315 EmitOMPTeamsDistributeParallelForDirective( 316 cast<OMPTeamsDistributeParallelForDirective>(*S)); 317 break; 318 case Stmt::OMPTargetTeamsDirectiveClass: 319 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 320 break; 321 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 322 EmitOMPTargetTeamsDistributeDirective( 323 cast<OMPTargetTeamsDistributeDirective>(*S)); 324 break; 325 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 326 EmitOMPTargetTeamsDistributeParallelForDirective( 327 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 328 break; 329 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 330 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 331 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 332 break; 333 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 334 EmitOMPTargetTeamsDistributeSimdDirective( 335 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 336 break; 337 } 338 } 339 340 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 341 switch (S->getStmtClass()) { 342 default: return false; 343 case Stmt::NullStmtClass: break; 344 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 345 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 346 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 347 case Stmt::AttributedStmtClass: 348 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 349 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 350 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 351 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 352 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 353 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 354 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 355 } 356 357 return true; 358 } 359 360 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 361 /// this captures the expression result of the last sub-statement and returns it 362 /// (for use by the statement expression extension). 363 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 364 AggValueSlot AggSlot) { 365 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 366 "LLVM IR generation of compound statement ('{}')"); 367 368 // Keep track of the current cleanup stack depth, including debug scopes. 369 LexicalScope Scope(*this, S.getSourceRange()); 370 371 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 372 } 373 374 Address 375 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 376 bool GetLast, 377 AggValueSlot AggSlot) { 378 379 for (CompoundStmt::const_body_iterator I = S.body_begin(), 380 E = S.body_end()-GetLast; I != E; ++I) 381 EmitStmt(*I); 382 383 Address RetAlloca = Address::invalid(); 384 if (GetLast) { 385 // We have to special case labels here. They are statements, but when put 386 // at the end of a statement expression, they yield the value of their 387 // subexpression. Handle this by walking through all labels we encounter, 388 // emitting them before we evaluate the subexpr. 389 const Stmt *LastStmt = S.body_back(); 390 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 391 EmitLabel(LS->getDecl()); 392 LastStmt = LS->getSubStmt(); 393 } 394 395 EnsureInsertPoint(); 396 397 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 398 if (hasAggregateEvaluationKind(ExprTy)) { 399 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 400 } else { 401 // We can't return an RValue here because there might be cleanups at 402 // the end of the StmtExpr. Because of that, we have to emit the result 403 // here into a temporary alloca. 404 RetAlloca = CreateMemTemp(ExprTy); 405 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 406 /*IsInit*/false); 407 } 408 409 } 410 411 return RetAlloca; 412 } 413 414 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 415 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 416 417 // If there is a cleanup stack, then we it isn't worth trying to 418 // simplify this block (we would need to remove it from the scope map 419 // and cleanup entry). 420 if (!EHStack.empty()) 421 return; 422 423 // Can only simplify direct branches. 424 if (!BI || !BI->isUnconditional()) 425 return; 426 427 // Can only simplify empty blocks. 428 if (BI->getIterator() != BB->begin()) 429 return; 430 431 BB->replaceAllUsesWith(BI->getSuccessor(0)); 432 BI->eraseFromParent(); 433 BB->eraseFromParent(); 434 } 435 436 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 437 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 438 439 // Fall out of the current block (if necessary). 440 EmitBranch(BB); 441 442 if (IsFinished && BB->use_empty()) { 443 delete BB; 444 return; 445 } 446 447 // Place the block after the current block, if possible, or else at 448 // the end of the function. 449 if (CurBB && CurBB->getParent()) 450 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 451 else 452 CurFn->getBasicBlockList().push_back(BB); 453 Builder.SetInsertPoint(BB); 454 } 455 456 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 457 // Emit a branch from the current block to the target one if this 458 // was a real block. If this was just a fall-through block after a 459 // terminator, don't emit it. 460 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 461 462 if (!CurBB || CurBB->getTerminator()) { 463 // If there is no insert point or the previous block is already 464 // terminated, don't touch it. 465 } else { 466 // Otherwise, create a fall-through branch. 467 Builder.CreateBr(Target); 468 } 469 470 Builder.ClearInsertionPoint(); 471 } 472 473 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 474 bool inserted = false; 475 for (llvm::User *u : block->users()) { 476 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 477 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 478 block); 479 inserted = true; 480 break; 481 } 482 } 483 484 if (!inserted) 485 CurFn->getBasicBlockList().push_back(block); 486 487 Builder.SetInsertPoint(block); 488 } 489 490 CodeGenFunction::JumpDest 491 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 492 JumpDest &Dest = LabelMap[D]; 493 if (Dest.isValid()) return Dest; 494 495 // Create, but don't insert, the new block. 496 Dest = JumpDest(createBasicBlock(D->getName()), 497 EHScopeStack::stable_iterator::invalid(), 498 NextCleanupDestIndex++); 499 return Dest; 500 } 501 502 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 503 // Add this label to the current lexical scope if we're within any 504 // normal cleanups. Jumps "in" to this label --- when permitted by 505 // the language --- may need to be routed around such cleanups. 506 if (EHStack.hasNormalCleanups() && CurLexicalScope) 507 CurLexicalScope->addLabel(D); 508 509 JumpDest &Dest = LabelMap[D]; 510 511 // If we didn't need a forward reference to this label, just go 512 // ahead and create a destination at the current scope. 513 if (!Dest.isValid()) { 514 Dest = getJumpDestInCurrentScope(D->getName()); 515 516 // Otherwise, we need to give this label a target depth and remove 517 // it from the branch-fixups list. 518 } else { 519 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 520 Dest.setScopeDepth(EHStack.stable_begin()); 521 ResolveBranchFixups(Dest.getBlock()); 522 } 523 524 EmitBlock(Dest.getBlock()); 525 incrementProfileCounter(D->getStmt()); 526 } 527 528 /// Change the cleanup scope of the labels in this lexical scope to 529 /// match the scope of the enclosing context. 530 void CodeGenFunction::LexicalScope::rescopeLabels() { 531 assert(!Labels.empty()); 532 EHScopeStack::stable_iterator innermostScope 533 = CGF.EHStack.getInnermostNormalCleanup(); 534 535 // Change the scope depth of all the labels. 536 for (SmallVectorImpl<const LabelDecl*>::const_iterator 537 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 538 assert(CGF.LabelMap.count(*i)); 539 JumpDest &dest = CGF.LabelMap.find(*i)->second; 540 assert(dest.getScopeDepth().isValid()); 541 assert(innermostScope.encloses(dest.getScopeDepth())); 542 dest.setScopeDepth(innermostScope); 543 } 544 545 // Reparent the labels if the new scope also has cleanups. 546 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 547 ParentScope->Labels.append(Labels.begin(), Labels.end()); 548 } 549 } 550 551 552 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 553 EmitLabel(S.getDecl()); 554 EmitStmt(S.getSubStmt()); 555 } 556 557 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 558 EmitStmt(S.getSubStmt(), S.getAttrs()); 559 } 560 561 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 562 // If this code is reachable then emit a stop point (if generating 563 // debug info). We have to do this ourselves because we are on the 564 // "simple" statement path. 565 if (HaveInsertPoint()) 566 EmitStopPoint(&S); 567 568 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 569 } 570 571 572 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 573 if (const LabelDecl *Target = S.getConstantTarget()) { 574 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 575 return; 576 } 577 578 // Ensure that we have an i8* for our PHI node. 579 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 580 Int8PtrTy, "addr"); 581 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 582 583 // Get the basic block for the indirect goto. 584 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 585 586 // The first instruction in the block has to be the PHI for the switch dest, 587 // add an entry for this branch. 588 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 589 590 EmitBranch(IndGotoBB); 591 } 592 593 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 594 // C99 6.8.4.1: The first substatement is executed if the expression compares 595 // unequal to 0. The condition must be a scalar type. 596 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 597 598 if (S.getInit()) 599 EmitStmt(S.getInit()); 600 601 if (S.getConditionVariable()) 602 EmitAutoVarDecl(*S.getConditionVariable()); 603 604 // If the condition constant folds and can be elided, try to avoid emitting 605 // the condition and the dead arm of the if/else. 606 bool CondConstant; 607 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 608 S.isConstexpr())) { 609 // Figure out which block (then or else) is executed. 610 const Stmt *Executed = S.getThen(); 611 const Stmt *Skipped = S.getElse(); 612 if (!CondConstant) // Condition false? 613 std::swap(Executed, Skipped); 614 615 // If the skipped block has no labels in it, just emit the executed block. 616 // This avoids emitting dead code and simplifies the CFG substantially. 617 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 618 if (CondConstant) 619 incrementProfileCounter(&S); 620 if (Executed) { 621 RunCleanupsScope ExecutedScope(*this); 622 EmitStmt(Executed); 623 } 624 return; 625 } 626 } 627 628 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 629 // the conditional branch. 630 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 631 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 632 llvm::BasicBlock *ElseBlock = ContBlock; 633 if (S.getElse()) 634 ElseBlock = createBasicBlock("if.else"); 635 636 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 637 getProfileCount(S.getThen())); 638 639 // Emit the 'then' code. 640 EmitBlock(ThenBlock); 641 incrementProfileCounter(&S); 642 { 643 RunCleanupsScope ThenScope(*this); 644 EmitStmt(S.getThen()); 645 } 646 EmitBranch(ContBlock); 647 648 // Emit the 'else' code if present. 649 if (const Stmt *Else = S.getElse()) { 650 { 651 // There is no need to emit line number for an unconditional branch. 652 auto NL = ApplyDebugLocation::CreateEmpty(*this); 653 EmitBlock(ElseBlock); 654 } 655 { 656 RunCleanupsScope ElseScope(*this); 657 EmitStmt(Else); 658 } 659 { 660 // There is no need to emit line number for an unconditional branch. 661 auto NL = ApplyDebugLocation::CreateEmpty(*this); 662 EmitBranch(ContBlock); 663 } 664 } 665 666 // Emit the continuation block for code after the if. 667 EmitBlock(ContBlock, true); 668 } 669 670 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 671 ArrayRef<const Attr *> WhileAttrs) { 672 // Emit the header for the loop, which will also become 673 // the continue target. 674 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 675 EmitBlock(LoopHeader.getBlock()); 676 677 const SourceRange &R = S.getSourceRange(); 678 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 679 SourceLocToDebugLoc(R.getBegin()), 680 SourceLocToDebugLoc(R.getEnd())); 681 682 // Create an exit block for when the condition fails, which will 683 // also become the break target. 684 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 685 686 // Store the blocks to use for break and continue. 687 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 688 689 // C++ [stmt.while]p2: 690 // When the condition of a while statement is a declaration, the 691 // scope of the variable that is declared extends from its point 692 // of declaration (3.3.2) to the end of the while statement. 693 // [...] 694 // The object created in a condition is destroyed and created 695 // with each iteration of the loop. 696 RunCleanupsScope ConditionScope(*this); 697 698 if (S.getConditionVariable()) 699 EmitAutoVarDecl(*S.getConditionVariable()); 700 701 // Evaluate the conditional in the while header. C99 6.8.5.1: The 702 // evaluation of the controlling expression takes place before each 703 // execution of the loop body. 704 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 705 706 // while(1) is common, avoid extra exit blocks. Be sure 707 // to correctly handle break/continue though. 708 bool EmitBoolCondBranch = true; 709 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 710 if (C->isOne()) 711 EmitBoolCondBranch = false; 712 713 // As long as the condition is true, go to the loop body. 714 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 715 if (EmitBoolCondBranch) { 716 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 717 if (ConditionScope.requiresCleanups()) 718 ExitBlock = createBasicBlock("while.exit"); 719 Builder.CreateCondBr( 720 BoolCondVal, LoopBody, ExitBlock, 721 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 722 723 if (ExitBlock != LoopExit.getBlock()) { 724 EmitBlock(ExitBlock); 725 EmitBranchThroughCleanup(LoopExit); 726 } 727 } 728 729 // Emit the loop body. We have to emit this in a cleanup scope 730 // because it might be a singleton DeclStmt. 731 { 732 RunCleanupsScope BodyScope(*this); 733 EmitBlock(LoopBody); 734 incrementProfileCounter(&S); 735 EmitStmt(S.getBody()); 736 } 737 738 BreakContinueStack.pop_back(); 739 740 // Immediately force cleanup. 741 ConditionScope.ForceCleanup(); 742 743 EmitStopPoint(&S); 744 // Branch to the loop header again. 745 EmitBranch(LoopHeader.getBlock()); 746 747 LoopStack.pop(); 748 749 // Emit the exit block. 750 EmitBlock(LoopExit.getBlock(), true); 751 752 // The LoopHeader typically is just a branch if we skipped emitting 753 // a branch, try to erase it. 754 if (!EmitBoolCondBranch) 755 SimplifyForwardingBlocks(LoopHeader.getBlock()); 756 } 757 758 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 759 ArrayRef<const Attr *> DoAttrs) { 760 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 761 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 762 763 uint64_t ParentCount = getCurrentProfileCount(); 764 765 // Store the blocks to use for break and continue. 766 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 767 768 // Emit the body of the loop. 769 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 770 771 const SourceRange &R = S.getSourceRange(); 772 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 773 SourceLocToDebugLoc(R.getBegin()), 774 SourceLocToDebugLoc(R.getEnd())); 775 776 EmitBlockWithFallThrough(LoopBody, &S); 777 { 778 RunCleanupsScope BodyScope(*this); 779 EmitStmt(S.getBody()); 780 } 781 782 EmitBlock(LoopCond.getBlock()); 783 784 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 785 // after each execution of the loop body." 786 787 // Evaluate the conditional in the while header. 788 // C99 6.8.5p2/p4: The first substatement is executed if the expression 789 // compares unequal to 0. The condition must be a scalar type. 790 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 791 792 BreakContinueStack.pop_back(); 793 794 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 795 // to correctly handle break/continue though. 796 bool EmitBoolCondBranch = true; 797 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 798 if (C->isZero()) 799 EmitBoolCondBranch = false; 800 801 // As long as the condition is true, iterate the loop. 802 if (EmitBoolCondBranch) { 803 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 804 Builder.CreateCondBr( 805 BoolCondVal, LoopBody, LoopExit.getBlock(), 806 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 807 } 808 809 LoopStack.pop(); 810 811 // Emit the exit block. 812 EmitBlock(LoopExit.getBlock()); 813 814 // The DoCond block typically is just a branch if we skipped 815 // emitting a branch, try to erase it. 816 if (!EmitBoolCondBranch) 817 SimplifyForwardingBlocks(LoopCond.getBlock()); 818 } 819 820 void CodeGenFunction::EmitForStmt(const ForStmt &S, 821 ArrayRef<const Attr *> ForAttrs) { 822 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 823 824 LexicalScope ForScope(*this, S.getSourceRange()); 825 826 // Evaluate the first part before the loop. 827 if (S.getInit()) 828 EmitStmt(S.getInit()); 829 830 // Start the loop with a block that tests the condition. 831 // If there's an increment, the continue scope will be overwritten 832 // later. 833 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 834 llvm::BasicBlock *CondBlock = Continue.getBlock(); 835 EmitBlock(CondBlock); 836 837 const SourceRange &R = S.getSourceRange(); 838 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 839 SourceLocToDebugLoc(R.getBegin()), 840 SourceLocToDebugLoc(R.getEnd())); 841 842 // If the for loop doesn't have an increment we can just use the 843 // condition as the continue block. Otherwise we'll need to create 844 // a block for it (in the current scope, i.e. in the scope of the 845 // condition), and that we will become our continue block. 846 if (S.getInc()) 847 Continue = getJumpDestInCurrentScope("for.inc"); 848 849 // Store the blocks to use for break and continue. 850 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 851 852 // Create a cleanup scope for the condition variable cleanups. 853 LexicalScope ConditionScope(*this, S.getSourceRange()); 854 855 if (S.getCond()) { 856 // If the for statement has a condition scope, emit the local variable 857 // declaration. 858 if (S.getConditionVariable()) { 859 EmitAutoVarDecl(*S.getConditionVariable()); 860 } 861 862 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 863 // If there are any cleanups between here and the loop-exit scope, 864 // create a block to stage a loop exit along. 865 if (ForScope.requiresCleanups()) 866 ExitBlock = createBasicBlock("for.cond.cleanup"); 867 868 // As long as the condition is true, iterate the loop. 869 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 870 871 // C99 6.8.5p2/p4: The first substatement is executed if the expression 872 // compares unequal to 0. The condition must be a scalar type. 873 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 874 Builder.CreateCondBr( 875 BoolCondVal, ForBody, ExitBlock, 876 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 877 878 if (ExitBlock != LoopExit.getBlock()) { 879 EmitBlock(ExitBlock); 880 EmitBranchThroughCleanup(LoopExit); 881 } 882 883 EmitBlock(ForBody); 884 } else { 885 // Treat it as a non-zero constant. Don't even create a new block for the 886 // body, just fall into it. 887 } 888 incrementProfileCounter(&S); 889 890 { 891 // Create a separate cleanup scope for the body, in case it is not 892 // a compound statement. 893 RunCleanupsScope BodyScope(*this); 894 EmitStmt(S.getBody()); 895 } 896 897 // If there is an increment, emit it next. 898 if (S.getInc()) { 899 EmitBlock(Continue.getBlock()); 900 EmitStmt(S.getInc()); 901 } 902 903 BreakContinueStack.pop_back(); 904 905 ConditionScope.ForceCleanup(); 906 907 EmitStopPoint(&S); 908 EmitBranch(CondBlock); 909 910 ForScope.ForceCleanup(); 911 912 LoopStack.pop(); 913 914 // Emit the fall-through block. 915 EmitBlock(LoopExit.getBlock(), true); 916 } 917 918 void 919 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 920 ArrayRef<const Attr *> ForAttrs) { 921 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 922 923 LexicalScope ForScope(*this, S.getSourceRange()); 924 925 // Evaluate the first pieces before the loop. 926 EmitStmt(S.getRangeStmt()); 927 EmitStmt(S.getBeginStmt()); 928 EmitStmt(S.getEndStmt()); 929 930 // Start the loop with a block that tests the condition. 931 // If there's an increment, the continue scope will be overwritten 932 // later. 933 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 934 EmitBlock(CondBlock); 935 936 const SourceRange &R = S.getSourceRange(); 937 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 938 SourceLocToDebugLoc(R.getBegin()), 939 SourceLocToDebugLoc(R.getEnd())); 940 941 // If there are any cleanups between here and the loop-exit scope, 942 // create a block to stage a loop exit along. 943 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 944 if (ForScope.requiresCleanups()) 945 ExitBlock = createBasicBlock("for.cond.cleanup"); 946 947 // The loop body, consisting of the specified body and the loop variable. 948 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 949 950 // The body is executed if the expression, contextually converted 951 // to bool, is true. 952 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 953 Builder.CreateCondBr( 954 BoolCondVal, ForBody, ExitBlock, 955 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 956 957 if (ExitBlock != LoopExit.getBlock()) { 958 EmitBlock(ExitBlock); 959 EmitBranchThroughCleanup(LoopExit); 960 } 961 962 EmitBlock(ForBody); 963 incrementProfileCounter(&S); 964 965 // Create a block for the increment. In case of a 'continue', we jump there. 966 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 967 968 // Store the blocks to use for break and continue. 969 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 970 971 { 972 // Create a separate cleanup scope for the loop variable and body. 973 LexicalScope BodyScope(*this, S.getSourceRange()); 974 EmitStmt(S.getLoopVarStmt()); 975 EmitStmt(S.getBody()); 976 } 977 978 EmitStopPoint(&S); 979 // If there is an increment, emit it next. 980 EmitBlock(Continue.getBlock()); 981 EmitStmt(S.getInc()); 982 983 BreakContinueStack.pop_back(); 984 985 EmitBranch(CondBlock); 986 987 ForScope.ForceCleanup(); 988 989 LoopStack.pop(); 990 991 // Emit the fall-through block. 992 EmitBlock(LoopExit.getBlock(), true); 993 } 994 995 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 996 if (RV.isScalar()) { 997 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 998 } else if (RV.isAggregate()) { 999 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 1000 } else { 1001 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1002 /*init*/ true); 1003 } 1004 EmitBranchThroughCleanup(ReturnBlock); 1005 } 1006 1007 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1008 /// if the function returns void, or may be missing one if the function returns 1009 /// non-void. Fun stuff :). 1010 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1011 if (requiresReturnValueCheck()) { 1012 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getLocStart()); 1013 auto *SLocPtr = 1014 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1015 llvm::GlobalVariable::PrivateLinkage, SLoc); 1016 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1017 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1018 assert(ReturnLocation.isValid() && "No valid return location"); 1019 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1020 ReturnLocation); 1021 } 1022 1023 // Returning from an outlined SEH helper is UB, and we already warn on it. 1024 if (IsOutlinedSEHHelper) { 1025 Builder.CreateUnreachable(); 1026 Builder.ClearInsertionPoint(); 1027 } 1028 1029 // Emit the result value, even if unused, to evalute the side effects. 1030 const Expr *RV = S.getRetValue(); 1031 1032 // Treat block literals in a return expression as if they appeared 1033 // in their own scope. This permits a small, easily-implemented 1034 // exception to our over-conservative rules about not jumping to 1035 // statements following block literals with non-trivial cleanups. 1036 RunCleanupsScope cleanupScope(*this); 1037 if (const ExprWithCleanups *cleanups = 1038 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1039 enterFullExpression(cleanups); 1040 RV = cleanups->getSubExpr(); 1041 } 1042 1043 // FIXME: Clean this up by using an LValue for ReturnTemp, 1044 // EmitStoreThroughLValue, and EmitAnyExpr. 1045 if (getLangOpts().ElideConstructors && 1046 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1047 // Apply the named return value optimization for this return statement, 1048 // which means doing nothing: the appropriate result has already been 1049 // constructed into the NRVO variable. 1050 1051 // If there is an NRVO flag for this variable, set it to 1 into indicate 1052 // that the cleanup code should not destroy the variable. 1053 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1054 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1055 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1056 // Make sure not to return anything, but evaluate the expression 1057 // for side effects. 1058 if (RV) 1059 EmitAnyExpr(RV); 1060 } else if (!RV) { 1061 // Do nothing (return value is left uninitialized) 1062 } else if (FnRetTy->isReferenceType()) { 1063 // If this function returns a reference, take the address of the expression 1064 // rather than the value. 1065 RValue Result = EmitReferenceBindingToExpr(RV); 1066 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1067 } else { 1068 switch (getEvaluationKind(RV->getType())) { 1069 case TEK_Scalar: 1070 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1071 break; 1072 case TEK_Complex: 1073 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1074 /*isInit*/ true); 1075 break; 1076 case TEK_Aggregate: 1077 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 1078 Qualifiers(), 1079 AggValueSlot::IsDestructed, 1080 AggValueSlot::DoesNotNeedGCBarriers, 1081 AggValueSlot::IsNotAliased)); 1082 break; 1083 } 1084 } 1085 1086 ++NumReturnExprs; 1087 if (!RV || RV->isEvaluatable(getContext())) 1088 ++NumSimpleReturnExprs; 1089 1090 cleanupScope.ForceCleanup(); 1091 EmitBranchThroughCleanup(ReturnBlock); 1092 } 1093 1094 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1095 // As long as debug info is modeled with instructions, we have to ensure we 1096 // have a place to insert here and write the stop point here. 1097 if (HaveInsertPoint()) 1098 EmitStopPoint(&S); 1099 1100 for (const auto *I : S.decls()) 1101 EmitDecl(*I); 1102 } 1103 1104 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1105 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1106 1107 // If this code is reachable then emit a stop point (if generating 1108 // debug info). We have to do this ourselves because we are on the 1109 // "simple" statement path. 1110 if (HaveInsertPoint()) 1111 EmitStopPoint(&S); 1112 1113 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1114 } 1115 1116 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1117 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1118 1119 // If this code is reachable then emit a stop point (if generating 1120 // debug info). We have to do this ourselves because we are on the 1121 // "simple" statement path. 1122 if (HaveInsertPoint()) 1123 EmitStopPoint(&S); 1124 1125 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1126 } 1127 1128 /// EmitCaseStmtRange - If case statement range is not too big then 1129 /// add multiple cases to switch instruction, one for each value within 1130 /// the range. If range is too big then emit "if" condition check. 1131 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1132 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1133 1134 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1135 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1136 1137 // Emit the code for this case. We do this first to make sure it is 1138 // properly chained from our predecessor before generating the 1139 // switch machinery to enter this block. 1140 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1141 EmitBlockWithFallThrough(CaseDest, &S); 1142 EmitStmt(S.getSubStmt()); 1143 1144 // If range is empty, do nothing. 1145 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1146 return; 1147 1148 llvm::APInt Range = RHS - LHS; 1149 // FIXME: parameters such as this should not be hardcoded. 1150 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1151 // Range is small enough to add multiple switch instruction cases. 1152 uint64_t Total = getProfileCount(&S); 1153 unsigned NCases = Range.getZExtValue() + 1; 1154 // We only have one region counter for the entire set of cases here, so we 1155 // need to divide the weights evenly between the generated cases, ensuring 1156 // that the total weight is preserved. E.g., a weight of 5 over three cases 1157 // will be distributed as weights of 2, 2, and 1. 1158 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1159 for (unsigned I = 0; I != NCases; ++I) { 1160 if (SwitchWeights) 1161 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1162 if (Rem) 1163 Rem--; 1164 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1165 ++LHS; 1166 } 1167 return; 1168 } 1169 1170 // The range is too big. Emit "if" condition into a new block, 1171 // making sure to save and restore the current insertion point. 1172 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1173 1174 // Push this test onto the chain of range checks (which terminates 1175 // in the default basic block). The switch's default will be changed 1176 // to the top of this chain after switch emission is complete. 1177 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1178 CaseRangeBlock = createBasicBlock("sw.caserange"); 1179 1180 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1181 Builder.SetInsertPoint(CaseRangeBlock); 1182 1183 // Emit range check. 1184 llvm::Value *Diff = 1185 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1186 llvm::Value *Cond = 1187 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1188 1189 llvm::MDNode *Weights = nullptr; 1190 if (SwitchWeights) { 1191 uint64_t ThisCount = getProfileCount(&S); 1192 uint64_t DefaultCount = (*SwitchWeights)[0]; 1193 Weights = createProfileWeights(ThisCount, DefaultCount); 1194 1195 // Since we're chaining the switch default through each large case range, we 1196 // need to update the weight for the default, ie, the first case, to include 1197 // this case. 1198 (*SwitchWeights)[0] += ThisCount; 1199 } 1200 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1201 1202 // Restore the appropriate insertion point. 1203 if (RestoreBB) 1204 Builder.SetInsertPoint(RestoreBB); 1205 else 1206 Builder.ClearInsertionPoint(); 1207 } 1208 1209 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1210 // If there is no enclosing switch instance that we're aware of, then this 1211 // case statement and its block can be elided. This situation only happens 1212 // when we've constant-folded the switch, are emitting the constant case, 1213 // and part of the constant case includes another case statement. For 1214 // instance: switch (4) { case 4: do { case 5: } while (1); } 1215 if (!SwitchInsn) { 1216 EmitStmt(S.getSubStmt()); 1217 return; 1218 } 1219 1220 // Handle case ranges. 1221 if (S.getRHS()) { 1222 EmitCaseStmtRange(S); 1223 return; 1224 } 1225 1226 llvm::ConstantInt *CaseVal = 1227 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1228 1229 // If the body of the case is just a 'break', try to not emit an empty block. 1230 // If we're profiling or we're not optimizing, leave the block in for better 1231 // debug and coverage analysis. 1232 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1233 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1234 isa<BreakStmt>(S.getSubStmt())) { 1235 JumpDest Block = BreakContinueStack.back().BreakBlock; 1236 1237 // Only do this optimization if there are no cleanups that need emitting. 1238 if (isObviouslyBranchWithoutCleanups(Block)) { 1239 if (SwitchWeights) 1240 SwitchWeights->push_back(getProfileCount(&S)); 1241 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1242 1243 // If there was a fallthrough into this case, make sure to redirect it to 1244 // the end of the switch as well. 1245 if (Builder.GetInsertBlock()) { 1246 Builder.CreateBr(Block.getBlock()); 1247 Builder.ClearInsertionPoint(); 1248 } 1249 return; 1250 } 1251 } 1252 1253 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1254 EmitBlockWithFallThrough(CaseDest, &S); 1255 if (SwitchWeights) 1256 SwitchWeights->push_back(getProfileCount(&S)); 1257 SwitchInsn->addCase(CaseVal, CaseDest); 1258 1259 // Recursively emitting the statement is acceptable, but is not wonderful for 1260 // code where we have many case statements nested together, i.e.: 1261 // case 1: 1262 // case 2: 1263 // case 3: etc. 1264 // Handling this recursively will create a new block for each case statement 1265 // that falls through to the next case which is IR intensive. It also causes 1266 // deep recursion which can run into stack depth limitations. Handle 1267 // sequential non-range case statements specially. 1268 const CaseStmt *CurCase = &S; 1269 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1270 1271 // Otherwise, iteratively add consecutive cases to this switch stmt. 1272 while (NextCase && NextCase->getRHS() == nullptr) { 1273 CurCase = NextCase; 1274 llvm::ConstantInt *CaseVal = 1275 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1276 1277 if (SwitchWeights) 1278 SwitchWeights->push_back(getProfileCount(NextCase)); 1279 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1280 CaseDest = createBasicBlock("sw.bb"); 1281 EmitBlockWithFallThrough(CaseDest, &S); 1282 } 1283 1284 SwitchInsn->addCase(CaseVal, CaseDest); 1285 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1286 } 1287 1288 // Normal default recursion for non-cases. 1289 EmitStmt(CurCase->getSubStmt()); 1290 } 1291 1292 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1293 // If there is no enclosing switch instance that we're aware of, then this 1294 // default statement can be elided. This situation only happens when we've 1295 // constant-folded the switch. 1296 if (!SwitchInsn) { 1297 EmitStmt(S.getSubStmt()); 1298 return; 1299 } 1300 1301 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1302 assert(DefaultBlock->empty() && 1303 "EmitDefaultStmt: Default block already defined?"); 1304 1305 EmitBlockWithFallThrough(DefaultBlock, &S); 1306 1307 EmitStmt(S.getSubStmt()); 1308 } 1309 1310 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1311 /// constant value that is being switched on, see if we can dead code eliminate 1312 /// the body of the switch to a simple series of statements to emit. Basically, 1313 /// on a switch (5) we want to find these statements: 1314 /// case 5: 1315 /// printf(...); <-- 1316 /// ++i; <-- 1317 /// break; 1318 /// 1319 /// and add them to the ResultStmts vector. If it is unsafe to do this 1320 /// transformation (for example, one of the elided statements contains a label 1321 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1322 /// should include statements after it (e.g. the printf() line is a substmt of 1323 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1324 /// statement, then return CSFC_Success. 1325 /// 1326 /// If Case is non-null, then we are looking for the specified case, checking 1327 /// that nothing we jump over contains labels. If Case is null, then we found 1328 /// the case and are looking for the break. 1329 /// 1330 /// If the recursive walk actually finds our Case, then we set FoundCase to 1331 /// true. 1332 /// 1333 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1334 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1335 const SwitchCase *Case, 1336 bool &FoundCase, 1337 SmallVectorImpl<const Stmt*> &ResultStmts) { 1338 // If this is a null statement, just succeed. 1339 if (!S) 1340 return Case ? CSFC_Success : CSFC_FallThrough; 1341 1342 // If this is the switchcase (case 4: or default) that we're looking for, then 1343 // we're in business. Just add the substatement. 1344 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1345 if (S == Case) { 1346 FoundCase = true; 1347 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1348 ResultStmts); 1349 } 1350 1351 // Otherwise, this is some other case or default statement, just ignore it. 1352 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1353 ResultStmts); 1354 } 1355 1356 // If we are in the live part of the code and we found our break statement, 1357 // return a success! 1358 if (!Case && isa<BreakStmt>(S)) 1359 return CSFC_Success; 1360 1361 // If this is a switch statement, then it might contain the SwitchCase, the 1362 // break, or neither. 1363 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1364 // Handle this as two cases: we might be looking for the SwitchCase (if so 1365 // the skipped statements must be skippable) or we might already have it. 1366 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1367 bool StartedInLiveCode = FoundCase; 1368 unsigned StartSize = ResultStmts.size(); 1369 1370 // If we've not found the case yet, scan through looking for it. 1371 if (Case) { 1372 // Keep track of whether we see a skipped declaration. The code could be 1373 // using the declaration even if it is skipped, so we can't optimize out 1374 // the decl if the kept statements might refer to it. 1375 bool HadSkippedDecl = false; 1376 1377 // If we're looking for the case, just see if we can skip each of the 1378 // substatements. 1379 for (; Case && I != E; ++I) { 1380 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1381 1382 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1383 case CSFC_Failure: return CSFC_Failure; 1384 case CSFC_Success: 1385 // A successful result means that either 1) that the statement doesn't 1386 // have the case and is skippable, or 2) does contain the case value 1387 // and also contains the break to exit the switch. In the later case, 1388 // we just verify the rest of the statements are elidable. 1389 if (FoundCase) { 1390 // If we found the case and skipped declarations, we can't do the 1391 // optimization. 1392 if (HadSkippedDecl) 1393 return CSFC_Failure; 1394 1395 for (++I; I != E; ++I) 1396 if (CodeGenFunction::ContainsLabel(*I, true)) 1397 return CSFC_Failure; 1398 return CSFC_Success; 1399 } 1400 break; 1401 case CSFC_FallThrough: 1402 // If we have a fallthrough condition, then we must have found the 1403 // case started to include statements. Consider the rest of the 1404 // statements in the compound statement as candidates for inclusion. 1405 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1406 // We recursively found Case, so we're not looking for it anymore. 1407 Case = nullptr; 1408 1409 // If we found the case and skipped declarations, we can't do the 1410 // optimization. 1411 if (HadSkippedDecl) 1412 return CSFC_Failure; 1413 break; 1414 } 1415 } 1416 1417 if (!FoundCase) 1418 return CSFC_Success; 1419 1420 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1421 } 1422 1423 // If we have statements in our range, then we know that the statements are 1424 // live and need to be added to the set of statements we're tracking. 1425 bool AnyDecls = false; 1426 for (; I != E; ++I) { 1427 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1428 1429 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1430 case CSFC_Failure: return CSFC_Failure; 1431 case CSFC_FallThrough: 1432 // A fallthrough result means that the statement was simple and just 1433 // included in ResultStmt, keep adding them afterwards. 1434 break; 1435 case CSFC_Success: 1436 // A successful result means that we found the break statement and 1437 // stopped statement inclusion. We just ensure that any leftover stmts 1438 // are skippable and return success ourselves. 1439 for (++I; I != E; ++I) 1440 if (CodeGenFunction::ContainsLabel(*I, true)) 1441 return CSFC_Failure; 1442 return CSFC_Success; 1443 } 1444 } 1445 1446 // If we're about to fall out of a scope without hitting a 'break;', we 1447 // can't perform the optimization if there were any decls in that scope 1448 // (we'd lose their end-of-lifetime). 1449 if (AnyDecls) { 1450 // If the entire compound statement was live, there's one more thing we 1451 // can try before giving up: emit the whole thing as a single statement. 1452 // We can do that unless the statement contains a 'break;'. 1453 // FIXME: Such a break must be at the end of a construct within this one. 1454 // We could emit this by just ignoring the BreakStmts entirely. 1455 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1456 ResultStmts.resize(StartSize); 1457 ResultStmts.push_back(S); 1458 } else { 1459 return CSFC_Failure; 1460 } 1461 } 1462 1463 return CSFC_FallThrough; 1464 } 1465 1466 // Okay, this is some other statement that we don't handle explicitly, like a 1467 // for statement or increment etc. If we are skipping over this statement, 1468 // just verify it doesn't have labels, which would make it invalid to elide. 1469 if (Case) { 1470 if (CodeGenFunction::ContainsLabel(S, true)) 1471 return CSFC_Failure; 1472 return CSFC_Success; 1473 } 1474 1475 // Otherwise, we want to include this statement. Everything is cool with that 1476 // so long as it doesn't contain a break out of the switch we're in. 1477 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1478 1479 // Otherwise, everything is great. Include the statement and tell the caller 1480 // that we fall through and include the next statement as well. 1481 ResultStmts.push_back(S); 1482 return CSFC_FallThrough; 1483 } 1484 1485 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1486 /// then invoke CollectStatementsForCase to find the list of statements to emit 1487 /// for a switch on constant. See the comment above CollectStatementsForCase 1488 /// for more details. 1489 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1490 const llvm::APSInt &ConstantCondValue, 1491 SmallVectorImpl<const Stmt*> &ResultStmts, 1492 ASTContext &C, 1493 const SwitchCase *&ResultCase) { 1494 // First step, find the switch case that is being branched to. We can do this 1495 // efficiently by scanning the SwitchCase list. 1496 const SwitchCase *Case = S.getSwitchCaseList(); 1497 const DefaultStmt *DefaultCase = nullptr; 1498 1499 for (; Case; Case = Case->getNextSwitchCase()) { 1500 // It's either a default or case. Just remember the default statement in 1501 // case we're not jumping to any numbered cases. 1502 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1503 DefaultCase = DS; 1504 continue; 1505 } 1506 1507 // Check to see if this case is the one we're looking for. 1508 const CaseStmt *CS = cast<CaseStmt>(Case); 1509 // Don't handle case ranges yet. 1510 if (CS->getRHS()) return false; 1511 1512 // If we found our case, remember it as 'case'. 1513 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1514 break; 1515 } 1516 1517 // If we didn't find a matching case, we use a default if it exists, or we 1518 // elide the whole switch body! 1519 if (!Case) { 1520 // It is safe to elide the body of the switch if it doesn't contain labels 1521 // etc. If it is safe, return successfully with an empty ResultStmts list. 1522 if (!DefaultCase) 1523 return !CodeGenFunction::ContainsLabel(&S); 1524 Case = DefaultCase; 1525 } 1526 1527 // Ok, we know which case is being jumped to, try to collect all the 1528 // statements that follow it. This can fail for a variety of reasons. Also, 1529 // check to see that the recursive walk actually found our case statement. 1530 // Insane cases like this can fail to find it in the recursive walk since we 1531 // don't handle every stmt kind: 1532 // switch (4) { 1533 // while (1) { 1534 // case 4: ... 1535 bool FoundCase = false; 1536 ResultCase = Case; 1537 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1538 ResultStmts) != CSFC_Failure && 1539 FoundCase; 1540 } 1541 1542 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1543 // Handle nested switch statements. 1544 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1545 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1546 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1547 1548 // See if we can constant fold the condition of the switch and therefore only 1549 // emit the live case statement (if any) of the switch. 1550 llvm::APSInt ConstantCondValue; 1551 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1552 SmallVector<const Stmt*, 4> CaseStmts; 1553 const SwitchCase *Case = nullptr; 1554 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1555 getContext(), Case)) { 1556 if (Case) 1557 incrementProfileCounter(Case); 1558 RunCleanupsScope ExecutedScope(*this); 1559 1560 if (S.getInit()) 1561 EmitStmt(S.getInit()); 1562 1563 // Emit the condition variable if needed inside the entire cleanup scope 1564 // used by this special case for constant folded switches. 1565 if (S.getConditionVariable()) 1566 EmitAutoVarDecl(*S.getConditionVariable()); 1567 1568 // At this point, we are no longer "within" a switch instance, so 1569 // we can temporarily enforce this to ensure that any embedded case 1570 // statements are not emitted. 1571 SwitchInsn = nullptr; 1572 1573 // Okay, we can dead code eliminate everything except this case. Emit the 1574 // specified series of statements and we're good. 1575 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1576 EmitStmt(CaseStmts[i]); 1577 incrementProfileCounter(&S); 1578 1579 // Now we want to restore the saved switch instance so that nested 1580 // switches continue to function properly 1581 SwitchInsn = SavedSwitchInsn; 1582 1583 return; 1584 } 1585 } 1586 1587 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1588 1589 RunCleanupsScope ConditionScope(*this); 1590 1591 if (S.getInit()) 1592 EmitStmt(S.getInit()); 1593 1594 if (S.getConditionVariable()) 1595 EmitAutoVarDecl(*S.getConditionVariable()); 1596 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1597 1598 // Create basic block to hold stuff that comes after switch 1599 // statement. We also need to create a default block now so that 1600 // explicit case ranges tests can have a place to jump to on 1601 // failure. 1602 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1603 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1604 if (PGO.haveRegionCounts()) { 1605 // Walk the SwitchCase list to find how many there are. 1606 uint64_t DefaultCount = 0; 1607 unsigned NumCases = 0; 1608 for (const SwitchCase *Case = S.getSwitchCaseList(); 1609 Case; 1610 Case = Case->getNextSwitchCase()) { 1611 if (isa<DefaultStmt>(Case)) 1612 DefaultCount = getProfileCount(Case); 1613 NumCases += 1; 1614 } 1615 SwitchWeights = new SmallVector<uint64_t, 16>(); 1616 SwitchWeights->reserve(NumCases); 1617 // The default needs to be first. We store the edge count, so we already 1618 // know the right weight. 1619 SwitchWeights->push_back(DefaultCount); 1620 } 1621 CaseRangeBlock = DefaultBlock; 1622 1623 // Clear the insertion point to indicate we are in unreachable code. 1624 Builder.ClearInsertionPoint(); 1625 1626 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1627 // then reuse last ContinueBlock. 1628 JumpDest OuterContinue; 1629 if (!BreakContinueStack.empty()) 1630 OuterContinue = BreakContinueStack.back().ContinueBlock; 1631 1632 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1633 1634 // Emit switch body. 1635 EmitStmt(S.getBody()); 1636 1637 BreakContinueStack.pop_back(); 1638 1639 // Update the default block in case explicit case range tests have 1640 // been chained on top. 1641 SwitchInsn->setDefaultDest(CaseRangeBlock); 1642 1643 // If a default was never emitted: 1644 if (!DefaultBlock->getParent()) { 1645 // If we have cleanups, emit the default block so that there's a 1646 // place to jump through the cleanups from. 1647 if (ConditionScope.requiresCleanups()) { 1648 EmitBlock(DefaultBlock); 1649 1650 // Otherwise, just forward the default block to the switch end. 1651 } else { 1652 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1653 delete DefaultBlock; 1654 } 1655 } 1656 1657 ConditionScope.ForceCleanup(); 1658 1659 // Emit continuation. 1660 EmitBlock(SwitchExit.getBlock(), true); 1661 incrementProfileCounter(&S); 1662 1663 // If the switch has a condition wrapped by __builtin_unpredictable, 1664 // create metadata that specifies that the switch is unpredictable. 1665 // Don't bother if not optimizing because that metadata would not be used. 1666 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1667 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1668 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1669 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1670 llvm::MDBuilder MDHelper(getLLVMContext()); 1671 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1672 MDHelper.createUnpredictable()); 1673 } 1674 } 1675 1676 if (SwitchWeights) { 1677 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1678 "switch weights do not match switch cases"); 1679 // If there's only one jump destination there's no sense weighting it. 1680 if (SwitchWeights->size() > 1) 1681 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1682 createProfileWeights(*SwitchWeights)); 1683 delete SwitchWeights; 1684 } 1685 SwitchInsn = SavedSwitchInsn; 1686 SwitchWeights = SavedSwitchWeights; 1687 CaseRangeBlock = SavedCRBlock; 1688 } 1689 1690 static std::string 1691 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1692 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1693 std::string Result; 1694 1695 while (*Constraint) { 1696 switch (*Constraint) { 1697 default: 1698 Result += Target.convertConstraint(Constraint); 1699 break; 1700 // Ignore these 1701 case '*': 1702 case '?': 1703 case '!': 1704 case '=': // Will see this and the following in mult-alt constraints. 1705 case '+': 1706 break; 1707 case '#': // Ignore the rest of the constraint alternative. 1708 while (Constraint[1] && Constraint[1] != ',') 1709 Constraint++; 1710 break; 1711 case '&': 1712 case '%': 1713 Result += *Constraint; 1714 while (Constraint[1] && Constraint[1] == *Constraint) 1715 Constraint++; 1716 break; 1717 case ',': 1718 Result += "|"; 1719 break; 1720 case 'g': 1721 Result += "imr"; 1722 break; 1723 case '[': { 1724 assert(OutCons && 1725 "Must pass output names to constraints with a symbolic name"); 1726 unsigned Index; 1727 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1728 assert(result && "Could not resolve symbolic name"); (void)result; 1729 Result += llvm::utostr(Index); 1730 break; 1731 } 1732 } 1733 1734 Constraint++; 1735 } 1736 1737 return Result; 1738 } 1739 1740 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1741 /// as using a particular register add that as a constraint that will be used 1742 /// in this asm stmt. 1743 static std::string 1744 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1745 const TargetInfo &Target, CodeGenModule &CGM, 1746 const AsmStmt &Stmt, const bool EarlyClobber) { 1747 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1748 if (!AsmDeclRef) 1749 return Constraint; 1750 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1751 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1752 if (!Variable) 1753 return Constraint; 1754 if (Variable->getStorageClass() != SC_Register) 1755 return Constraint; 1756 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1757 if (!Attr) 1758 return Constraint; 1759 StringRef Register = Attr->getLabel(); 1760 assert(Target.isValidGCCRegisterName(Register)); 1761 // We're using validateOutputConstraint here because we only care if 1762 // this is a register constraint. 1763 TargetInfo::ConstraintInfo Info(Constraint, ""); 1764 if (Target.validateOutputConstraint(Info) && 1765 !Info.allowsRegister()) { 1766 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1767 return Constraint; 1768 } 1769 // Canonicalize the register here before returning it. 1770 Register = Target.getNormalizedGCCRegisterName(Register); 1771 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1772 } 1773 1774 llvm::Value* 1775 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1776 LValue InputValue, QualType InputType, 1777 std::string &ConstraintStr, 1778 SourceLocation Loc) { 1779 llvm::Value *Arg; 1780 if (Info.allowsRegister() || !Info.allowsMemory()) { 1781 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1782 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1783 } else { 1784 llvm::Type *Ty = ConvertType(InputType); 1785 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1786 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1787 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1788 Ty = llvm::PointerType::getUnqual(Ty); 1789 1790 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1791 Ty)); 1792 } else { 1793 Arg = InputValue.getPointer(); 1794 ConstraintStr += '*'; 1795 } 1796 } 1797 } else { 1798 Arg = InputValue.getPointer(); 1799 ConstraintStr += '*'; 1800 } 1801 1802 return Arg; 1803 } 1804 1805 llvm::Value* CodeGenFunction::EmitAsmInput( 1806 const TargetInfo::ConstraintInfo &Info, 1807 const Expr *InputExpr, 1808 std::string &ConstraintStr) { 1809 // If this can't be a register or memory, i.e., has to be a constant 1810 // (immediate or symbolic), try to emit it as such. 1811 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1812 llvm::APSInt Result; 1813 if (InputExpr->EvaluateAsInt(Result, getContext())) 1814 return llvm::ConstantInt::get(getLLVMContext(), Result); 1815 assert(!Info.requiresImmediateConstant() && 1816 "Required-immediate inlineasm arg isn't constant?"); 1817 } 1818 1819 if (Info.allowsRegister() || !Info.allowsMemory()) 1820 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1821 return EmitScalarExpr(InputExpr); 1822 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1823 return EmitScalarExpr(InputExpr); 1824 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1825 LValue Dest = EmitLValue(InputExpr); 1826 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1827 InputExpr->getExprLoc()); 1828 } 1829 1830 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1831 /// asm call instruction. The !srcloc MDNode contains a list of constant 1832 /// integers which are the source locations of the start of each line in the 1833 /// asm. 1834 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1835 CodeGenFunction &CGF) { 1836 SmallVector<llvm::Metadata *, 8> Locs; 1837 // Add the location of the first line to the MDNode. 1838 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1839 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1840 StringRef StrVal = Str->getString(); 1841 if (!StrVal.empty()) { 1842 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1843 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1844 unsigned StartToken = 0; 1845 unsigned ByteOffset = 0; 1846 1847 // Add the location of the start of each subsequent line of the asm to the 1848 // MDNode. 1849 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1850 if (StrVal[i] != '\n') continue; 1851 SourceLocation LineLoc = Str->getLocationOfByte( 1852 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1853 Locs.push_back(llvm::ConstantAsMetadata::get( 1854 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1855 } 1856 } 1857 1858 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1859 } 1860 1861 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1862 // Assemble the final asm string. 1863 std::string AsmString = S.generateAsmString(getContext()); 1864 1865 // Get all the output and input constraints together. 1866 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1867 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1868 1869 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1870 StringRef Name; 1871 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1872 Name = GAS->getOutputName(i); 1873 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1874 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1875 assert(IsValid && "Failed to parse output constraint"); 1876 OutputConstraintInfos.push_back(Info); 1877 } 1878 1879 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1880 StringRef Name; 1881 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1882 Name = GAS->getInputName(i); 1883 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1884 bool IsValid = 1885 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1886 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1887 InputConstraintInfos.push_back(Info); 1888 } 1889 1890 std::string Constraints; 1891 1892 std::vector<LValue> ResultRegDests; 1893 std::vector<QualType> ResultRegQualTys; 1894 std::vector<llvm::Type *> ResultRegTypes; 1895 std::vector<llvm::Type *> ResultTruncRegTypes; 1896 std::vector<llvm::Type *> ArgTypes; 1897 std::vector<llvm::Value*> Args; 1898 1899 // Keep track of inout constraints. 1900 std::string InOutConstraints; 1901 std::vector<llvm::Value*> InOutArgs; 1902 std::vector<llvm::Type*> InOutArgTypes; 1903 1904 // An inline asm can be marked readonly if it meets the following conditions: 1905 // - it doesn't have any sideeffects 1906 // - it doesn't clobber memory 1907 // - it doesn't return a value by-reference 1908 // It can be marked readnone if it doesn't have any input memory constraints 1909 // in addition to meeting the conditions listed above. 1910 bool ReadOnly = true, ReadNone = true; 1911 1912 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1913 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1914 1915 // Simplify the output constraint. 1916 std::string OutputConstraint(S.getOutputConstraint(i)); 1917 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1918 getTarget()); 1919 1920 const Expr *OutExpr = S.getOutputExpr(i); 1921 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1922 1923 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1924 getTarget(), CGM, S, 1925 Info.earlyClobber()); 1926 1927 LValue Dest = EmitLValue(OutExpr); 1928 if (!Constraints.empty()) 1929 Constraints += ','; 1930 1931 // If this is a register output, then make the inline asm return it 1932 // by-value. If this is a memory result, return the value by-reference. 1933 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1934 Constraints += "=" + OutputConstraint; 1935 ResultRegQualTys.push_back(OutExpr->getType()); 1936 ResultRegDests.push_back(Dest); 1937 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1938 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1939 1940 // If this output is tied to an input, and if the input is larger, then 1941 // we need to set the actual result type of the inline asm node to be the 1942 // same as the input type. 1943 if (Info.hasMatchingInput()) { 1944 unsigned InputNo; 1945 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1946 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1947 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1948 break; 1949 } 1950 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1951 1952 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1953 QualType OutputType = OutExpr->getType(); 1954 1955 uint64_t InputSize = getContext().getTypeSize(InputTy); 1956 if (getContext().getTypeSize(OutputType) < InputSize) { 1957 // Form the asm to return the value as a larger integer or fp type. 1958 ResultRegTypes.back() = ConvertType(InputTy); 1959 } 1960 } 1961 if (llvm::Type* AdjTy = 1962 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1963 ResultRegTypes.back())) 1964 ResultRegTypes.back() = AdjTy; 1965 else { 1966 CGM.getDiags().Report(S.getAsmLoc(), 1967 diag::err_asm_invalid_type_in_input) 1968 << OutExpr->getType() << OutputConstraint; 1969 } 1970 } else { 1971 ArgTypes.push_back(Dest.getAddress().getType()); 1972 Args.push_back(Dest.getPointer()); 1973 Constraints += "=*"; 1974 Constraints += OutputConstraint; 1975 ReadOnly = ReadNone = false; 1976 } 1977 1978 if (Info.isReadWrite()) { 1979 InOutConstraints += ','; 1980 1981 const Expr *InputExpr = S.getOutputExpr(i); 1982 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1983 InOutConstraints, 1984 InputExpr->getExprLoc()); 1985 1986 if (llvm::Type* AdjTy = 1987 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1988 Arg->getType())) 1989 Arg = Builder.CreateBitCast(Arg, AdjTy); 1990 1991 if (Info.allowsRegister()) 1992 InOutConstraints += llvm::utostr(i); 1993 else 1994 InOutConstraints += OutputConstraint; 1995 1996 InOutArgTypes.push_back(Arg->getType()); 1997 InOutArgs.push_back(Arg); 1998 } 1999 } 2000 2001 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2002 // to the return value slot. Only do this when returning in registers. 2003 if (isa<MSAsmStmt>(&S)) { 2004 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2005 if (RetAI.isDirect() || RetAI.isExtend()) { 2006 // Make a fake lvalue for the return value slot. 2007 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2008 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2009 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2010 ResultRegDests, AsmString, S.getNumOutputs()); 2011 SawAsmBlock = true; 2012 } 2013 } 2014 2015 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2016 const Expr *InputExpr = S.getInputExpr(i); 2017 2018 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2019 2020 if (Info.allowsMemory()) 2021 ReadNone = false; 2022 2023 if (!Constraints.empty()) 2024 Constraints += ','; 2025 2026 // Simplify the input constraint. 2027 std::string InputConstraint(S.getInputConstraint(i)); 2028 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2029 &OutputConstraintInfos); 2030 2031 InputConstraint = AddVariableConstraints( 2032 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2033 getTarget(), CGM, S, false /* No EarlyClobber */); 2034 2035 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2036 2037 // If this input argument is tied to a larger output result, extend the 2038 // input to be the same size as the output. The LLVM backend wants to see 2039 // the input and output of a matching constraint be the same size. Note 2040 // that GCC does not define what the top bits are here. We use zext because 2041 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2042 if (Info.hasTiedOperand()) { 2043 unsigned Output = Info.getTiedOperand(); 2044 QualType OutputType = S.getOutputExpr(Output)->getType(); 2045 QualType InputTy = InputExpr->getType(); 2046 2047 if (getContext().getTypeSize(OutputType) > 2048 getContext().getTypeSize(InputTy)) { 2049 // Use ptrtoint as appropriate so that we can do our extension. 2050 if (isa<llvm::PointerType>(Arg->getType())) 2051 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2052 llvm::Type *OutputTy = ConvertType(OutputType); 2053 if (isa<llvm::IntegerType>(OutputTy)) 2054 Arg = Builder.CreateZExt(Arg, OutputTy); 2055 else if (isa<llvm::PointerType>(OutputTy)) 2056 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2057 else { 2058 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2059 Arg = Builder.CreateFPExt(Arg, OutputTy); 2060 } 2061 } 2062 } 2063 if (llvm::Type* AdjTy = 2064 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2065 Arg->getType())) 2066 Arg = Builder.CreateBitCast(Arg, AdjTy); 2067 else 2068 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2069 << InputExpr->getType() << InputConstraint; 2070 2071 ArgTypes.push_back(Arg->getType()); 2072 Args.push_back(Arg); 2073 Constraints += InputConstraint; 2074 } 2075 2076 // Append the "input" part of inout constraints last. 2077 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2078 ArgTypes.push_back(InOutArgTypes[i]); 2079 Args.push_back(InOutArgs[i]); 2080 } 2081 Constraints += InOutConstraints; 2082 2083 // Clobbers 2084 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2085 StringRef Clobber = S.getClobber(i); 2086 2087 if (Clobber == "memory") 2088 ReadOnly = ReadNone = false; 2089 else if (Clobber != "cc") 2090 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2091 2092 if (!Constraints.empty()) 2093 Constraints += ','; 2094 2095 Constraints += "~{"; 2096 Constraints += Clobber; 2097 Constraints += '}'; 2098 } 2099 2100 // Add machine specific clobbers 2101 std::string MachineClobbers = getTarget().getClobbers(); 2102 if (!MachineClobbers.empty()) { 2103 if (!Constraints.empty()) 2104 Constraints += ','; 2105 Constraints += MachineClobbers; 2106 } 2107 2108 llvm::Type *ResultType; 2109 if (ResultRegTypes.empty()) 2110 ResultType = VoidTy; 2111 else if (ResultRegTypes.size() == 1) 2112 ResultType = ResultRegTypes[0]; 2113 else 2114 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2115 2116 llvm::FunctionType *FTy = 2117 llvm::FunctionType::get(ResultType, ArgTypes, false); 2118 2119 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2120 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2121 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2122 llvm::InlineAsm *IA = 2123 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2124 /* IsAlignStack */ false, AsmDialect); 2125 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2126 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2127 llvm::Attribute::NoUnwind); 2128 2129 // Attach readnone and readonly attributes. 2130 if (!HasSideEffect) { 2131 if (ReadNone) 2132 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2133 llvm::Attribute::ReadNone); 2134 else if (ReadOnly) 2135 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2136 llvm::Attribute::ReadOnly); 2137 } 2138 2139 // Slap the source location of the inline asm into a !srcloc metadata on the 2140 // call. 2141 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2142 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2143 *this)); 2144 } else { 2145 // At least put the line number on MS inline asm blobs. 2146 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2147 Result->setMetadata("srcloc", 2148 llvm::MDNode::get(getLLVMContext(), 2149 llvm::ConstantAsMetadata::get(Loc))); 2150 } 2151 2152 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 2153 // Conservatively, mark all inline asm blocks in CUDA as convergent 2154 // (meaning, they may call an intrinsically convergent op, such as bar.sync, 2155 // and so can't have certain optimizations applied around them). 2156 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2157 llvm::Attribute::Convergent); 2158 } 2159 2160 // Extract all of the register value results from the asm. 2161 std::vector<llvm::Value*> RegResults; 2162 if (ResultRegTypes.size() == 1) { 2163 RegResults.push_back(Result); 2164 } else { 2165 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2166 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2167 RegResults.push_back(Tmp); 2168 } 2169 } 2170 2171 assert(RegResults.size() == ResultRegTypes.size()); 2172 assert(RegResults.size() == ResultTruncRegTypes.size()); 2173 assert(RegResults.size() == ResultRegDests.size()); 2174 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2175 llvm::Value *Tmp = RegResults[i]; 2176 2177 // If the result type of the LLVM IR asm doesn't match the result type of 2178 // the expression, do the conversion. 2179 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2180 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2181 2182 // Truncate the integer result to the right size, note that TruncTy can be 2183 // a pointer. 2184 if (TruncTy->isFloatingPointTy()) 2185 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2186 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2187 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2188 Tmp = Builder.CreateTrunc(Tmp, 2189 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2190 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2191 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2192 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2193 Tmp = Builder.CreatePtrToInt(Tmp, 2194 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2195 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2196 } else if (TruncTy->isIntegerTy()) { 2197 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2198 } else if (TruncTy->isVectorTy()) { 2199 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2200 } 2201 } 2202 2203 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2204 } 2205 } 2206 2207 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2208 const RecordDecl *RD = S.getCapturedRecordDecl(); 2209 QualType RecordTy = getContext().getRecordType(RD); 2210 2211 // Initialize the captured struct. 2212 LValue SlotLV = 2213 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2214 2215 RecordDecl::field_iterator CurField = RD->field_begin(); 2216 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2217 E = S.capture_init_end(); 2218 I != E; ++I, ++CurField) { 2219 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2220 if (CurField->hasCapturedVLAType()) { 2221 auto VAT = CurField->getCapturedVLAType(); 2222 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2223 } else { 2224 EmitInitializerForField(*CurField, LV, *I); 2225 } 2226 } 2227 2228 return SlotLV; 2229 } 2230 2231 /// Generate an outlined function for the body of a CapturedStmt, store any 2232 /// captured variables into the captured struct, and call the outlined function. 2233 llvm::Function * 2234 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2235 LValue CapStruct = InitCapturedStruct(S); 2236 2237 // Emit the CapturedDecl 2238 CodeGenFunction CGF(CGM, true); 2239 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2240 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2241 delete CGF.CapturedStmtInfo; 2242 2243 // Emit call to the helper function. 2244 EmitCallOrInvoke(F, CapStruct.getPointer()); 2245 2246 return F; 2247 } 2248 2249 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2250 LValue CapStruct = InitCapturedStruct(S); 2251 return CapStruct.getAddress(); 2252 } 2253 2254 /// Creates the outlined function for a CapturedStmt. 2255 llvm::Function * 2256 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2257 assert(CapturedStmtInfo && 2258 "CapturedStmtInfo should be set when generating the captured function"); 2259 const CapturedDecl *CD = S.getCapturedDecl(); 2260 const RecordDecl *RD = S.getCapturedRecordDecl(); 2261 SourceLocation Loc = S.getLocStart(); 2262 assert(CD->hasBody() && "missing CapturedDecl body"); 2263 2264 // Build the argument list. 2265 ASTContext &Ctx = CGM.getContext(); 2266 FunctionArgList Args; 2267 Args.append(CD->param_begin(), CD->param_end()); 2268 2269 // Create the function declaration. 2270 FunctionType::ExtInfo ExtInfo; 2271 const CGFunctionInfo &FuncInfo = 2272 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2273 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2274 2275 llvm::Function *F = 2276 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2277 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2278 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2279 if (CD->isNothrow()) 2280 F->addFnAttr(llvm::Attribute::NoUnwind); 2281 2282 // Generate the function. 2283 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2284 CD->getLocation(), 2285 CD->getBody()->getLocStart()); 2286 // Set the context parameter in CapturedStmtInfo. 2287 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2288 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2289 2290 // Initialize variable-length arrays. 2291 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2292 Ctx.getTagDeclType(RD)); 2293 for (auto *FD : RD->fields()) { 2294 if (FD->hasCapturedVLAType()) { 2295 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2296 S.getLocStart()).getScalarVal(); 2297 auto VAT = FD->getCapturedVLAType(); 2298 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2299 } 2300 } 2301 2302 // If 'this' is captured, load it into CXXThisValue. 2303 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2304 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2305 LValue ThisLValue = EmitLValueForField(Base, FD); 2306 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2307 } 2308 2309 PGO.assignRegionCounters(GlobalDecl(CD), F); 2310 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2311 FinishFunction(CD->getBodyRBrace()); 2312 2313 return F; 2314 } 2315