1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Assumptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===----------------------------------------------------------------------===//
40 //                              Statement Emission
41 //===----------------------------------------------------------------------===//
42 
43 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
44   if (CGDebugInfo *DI = getDebugInfo()) {
45     SourceLocation Loc;
46     Loc = S->getBeginLoc();
47     DI->EmitLocation(Builder, Loc);
48 
49     LastStopPoint = Loc;
50   }
51 }
52 
53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
54   assert(S && "Null statement?");
55   PGO.setCurrentStmt(S);
56 
57   // These statements have their own debug info handling.
58   if (EmitSimpleStmt(S, Attrs))
59     return;
60 
61   // Check if we are generating unreachable code.
62   if (!HaveInsertPoint()) {
63     // If so, and the statement doesn't contain a label, then we do not need to
64     // generate actual code. This is safe because (1) the current point is
65     // unreachable, so we don't need to execute the code, and (2) we've already
66     // handled the statements which update internal data structures (like the
67     // local variable map) which could be used by subsequent statements.
68     if (!ContainsLabel(S)) {
69       // Verify that any decl statements were handled as simple, they may be in
70       // scope of subsequent reachable statements.
71       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
72       return;
73     }
74 
75     // Otherwise, make a new block to hold the code.
76     EnsureInsertPoint();
77   }
78 
79   // Generate a stoppoint if we are emitting debug info.
80   EmitStopPoint(S);
81 
82   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
83   // enabled.
84   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
85     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
86       EmitSimpleOMPExecutableDirective(*D);
87       return;
88     }
89   }
90 
91   switch (S->getStmtClass()) {
92   case Stmt::NoStmtClass:
93   case Stmt::CXXCatchStmtClass:
94   case Stmt::SEHExceptStmtClass:
95   case Stmt::SEHFinallyStmtClass:
96   case Stmt::MSDependentExistsStmtClass:
97     llvm_unreachable("invalid statement class to emit generically");
98   case Stmt::NullStmtClass:
99   case Stmt::CompoundStmtClass:
100   case Stmt::DeclStmtClass:
101   case Stmt::LabelStmtClass:
102   case Stmt::AttributedStmtClass:
103   case Stmt::GotoStmtClass:
104   case Stmt::BreakStmtClass:
105   case Stmt::ContinueStmtClass:
106   case Stmt::DefaultStmtClass:
107   case Stmt::CaseStmtClass:
108   case Stmt::SEHLeaveStmtClass:
109     llvm_unreachable("should have emitted these statements as simple");
110 
111 #define STMT(Type, Base)
112 #define ABSTRACT_STMT(Op)
113 #define EXPR(Type, Base) \
114   case Stmt::Type##Class:
115 #include "clang/AST/StmtNodes.inc"
116   {
117     // Remember the block we came in on.
118     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
119     assert(incoming && "expression emission must have an insertion point");
120 
121     EmitIgnoredExpr(cast<Expr>(S));
122 
123     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
124     assert(outgoing && "expression emission cleared block!");
125 
126     // The expression emitters assume (reasonably!) that the insertion
127     // point is always set.  To maintain that, the call-emission code
128     // for noreturn functions has to enter a new block with no
129     // predecessors.  We want to kill that block and mark the current
130     // insertion point unreachable in the common case of a call like
131     // "exit();".  Since expression emission doesn't otherwise create
132     // blocks with no predecessors, we can just test for that.
133     // However, we must be careful not to do this to our incoming
134     // block, because *statement* emission does sometimes create
135     // reachable blocks which will have no predecessors until later in
136     // the function.  This occurs with, e.g., labels that are not
137     // reachable by fallthrough.
138     if (incoming != outgoing && outgoing->use_empty()) {
139       outgoing->eraseFromParent();
140       Builder.ClearInsertionPoint();
141     }
142     break;
143   }
144 
145   case Stmt::IndirectGotoStmtClass:
146     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
147 
148   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
149   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
150   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
151   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
152 
153   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
154 
155   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
156   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
157   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
158   case Stmt::CoroutineBodyStmtClass:
159     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
160     break;
161   case Stmt::CoreturnStmtClass:
162     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
163     break;
164   case Stmt::CapturedStmtClass: {
165     const CapturedStmt *CS = cast<CapturedStmt>(S);
166     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
167     }
168     break;
169   case Stmt::ObjCAtTryStmtClass:
170     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
171     break;
172   case Stmt::ObjCAtCatchStmtClass:
173     llvm_unreachable(
174                     "@catch statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtFinallyStmtClass:
176     llvm_unreachable(
177                   "@finally statements should be handled by EmitObjCAtTryStmt");
178   case Stmt::ObjCAtThrowStmtClass:
179     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
180     break;
181   case Stmt::ObjCAtSynchronizedStmtClass:
182     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
183     break;
184   case Stmt::ObjCForCollectionStmtClass:
185     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
186     break;
187   case Stmt::ObjCAutoreleasePoolStmtClass:
188     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
189     break;
190 
191   case Stmt::CXXTryStmtClass:
192     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
193     break;
194   case Stmt::CXXForRangeStmtClass:
195     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
196     break;
197   case Stmt::SEHTryStmtClass:
198     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
199     break;
200   case Stmt::OMPMetaDirectiveClass:
201     EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
202     break;
203   case Stmt::OMPCanonicalLoopClass:
204     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
205     break;
206   case Stmt::OMPParallelDirectiveClass:
207     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
208     break;
209   case Stmt::OMPSimdDirectiveClass:
210     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
211     break;
212   case Stmt::OMPTileDirectiveClass:
213     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
214     break;
215   case Stmt::OMPUnrollDirectiveClass:
216     EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
217     break;
218   case Stmt::OMPForDirectiveClass:
219     EmitOMPForDirective(cast<OMPForDirective>(*S));
220     break;
221   case Stmt::OMPForSimdDirectiveClass:
222     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
223     break;
224   case Stmt::OMPSectionsDirectiveClass:
225     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
226     break;
227   case Stmt::OMPSectionDirectiveClass:
228     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
229     break;
230   case Stmt::OMPSingleDirectiveClass:
231     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
232     break;
233   case Stmt::OMPMasterDirectiveClass:
234     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
235     break;
236   case Stmt::OMPCriticalDirectiveClass:
237     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
238     break;
239   case Stmt::OMPParallelForDirectiveClass:
240     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
241     break;
242   case Stmt::OMPParallelForSimdDirectiveClass:
243     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
244     break;
245   case Stmt::OMPParallelMasterDirectiveClass:
246     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
247     break;
248   case Stmt::OMPParallelSectionsDirectiveClass:
249     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
250     break;
251   case Stmt::OMPTaskDirectiveClass:
252     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
253     break;
254   case Stmt::OMPTaskyieldDirectiveClass:
255     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
256     break;
257   case Stmt::OMPBarrierDirectiveClass:
258     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
259     break;
260   case Stmt::OMPTaskwaitDirectiveClass:
261     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
262     break;
263   case Stmt::OMPTaskgroupDirectiveClass:
264     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
265     break;
266   case Stmt::OMPFlushDirectiveClass:
267     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
268     break;
269   case Stmt::OMPDepobjDirectiveClass:
270     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
271     break;
272   case Stmt::OMPScanDirectiveClass:
273     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
274     break;
275   case Stmt::OMPOrderedDirectiveClass:
276     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
277     break;
278   case Stmt::OMPAtomicDirectiveClass:
279     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
280     break;
281   case Stmt::OMPTargetDirectiveClass:
282     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
283     break;
284   case Stmt::OMPTeamsDirectiveClass:
285     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
286     break;
287   case Stmt::OMPCancellationPointDirectiveClass:
288     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
289     break;
290   case Stmt::OMPCancelDirectiveClass:
291     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
292     break;
293   case Stmt::OMPTargetDataDirectiveClass:
294     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
295     break;
296   case Stmt::OMPTargetEnterDataDirectiveClass:
297     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
298     break;
299   case Stmt::OMPTargetExitDataDirectiveClass:
300     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
301     break;
302   case Stmt::OMPTargetParallelDirectiveClass:
303     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
304     break;
305   case Stmt::OMPTargetParallelForDirectiveClass:
306     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
307     break;
308   case Stmt::OMPTaskLoopDirectiveClass:
309     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
310     break;
311   case Stmt::OMPTaskLoopSimdDirectiveClass:
312     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
313     break;
314   case Stmt::OMPMasterTaskLoopDirectiveClass:
315     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
316     break;
317   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
318     EmitOMPMasterTaskLoopSimdDirective(
319         cast<OMPMasterTaskLoopSimdDirective>(*S));
320     break;
321   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
322     EmitOMPParallelMasterTaskLoopDirective(
323         cast<OMPParallelMasterTaskLoopDirective>(*S));
324     break;
325   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
326     EmitOMPParallelMasterTaskLoopSimdDirective(
327         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
328     break;
329   case Stmt::OMPDistributeDirectiveClass:
330     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
331     break;
332   case Stmt::OMPTargetUpdateDirectiveClass:
333     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
334     break;
335   case Stmt::OMPDistributeParallelForDirectiveClass:
336     EmitOMPDistributeParallelForDirective(
337         cast<OMPDistributeParallelForDirective>(*S));
338     break;
339   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
340     EmitOMPDistributeParallelForSimdDirective(
341         cast<OMPDistributeParallelForSimdDirective>(*S));
342     break;
343   case Stmt::OMPDistributeSimdDirectiveClass:
344     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
345     break;
346   case Stmt::OMPTargetParallelForSimdDirectiveClass:
347     EmitOMPTargetParallelForSimdDirective(
348         cast<OMPTargetParallelForSimdDirective>(*S));
349     break;
350   case Stmt::OMPTargetSimdDirectiveClass:
351     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
352     break;
353   case Stmt::OMPTeamsDistributeDirectiveClass:
354     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
355     break;
356   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
357     EmitOMPTeamsDistributeSimdDirective(
358         cast<OMPTeamsDistributeSimdDirective>(*S));
359     break;
360   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
361     EmitOMPTeamsDistributeParallelForSimdDirective(
362         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
363     break;
364   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
365     EmitOMPTeamsDistributeParallelForDirective(
366         cast<OMPTeamsDistributeParallelForDirective>(*S));
367     break;
368   case Stmt::OMPTargetTeamsDirectiveClass:
369     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
370     break;
371   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
372     EmitOMPTargetTeamsDistributeDirective(
373         cast<OMPTargetTeamsDistributeDirective>(*S));
374     break;
375   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
376     EmitOMPTargetTeamsDistributeParallelForDirective(
377         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
378     break;
379   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
380     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
381         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
382     break;
383   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
384     EmitOMPTargetTeamsDistributeSimdDirective(
385         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
386     break;
387   case Stmt::OMPInteropDirectiveClass:
388     EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
389     break;
390   case Stmt::OMPDispatchDirectiveClass:
391     llvm_unreachable("Dispatch directive not supported yet.");
392     break;
393   case Stmt::OMPMaskedDirectiveClass:
394     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
395     break;
396   case Stmt::OMPGenericLoopDirectiveClass:
397     EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
398     break;
399   case Stmt::OMPTeamsGenericLoopDirectiveClass:
400     llvm_unreachable("teams loop directive not supported yet.");
401     break;
402   case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
403     llvm_unreachable("target teams loop directive not supported yet.");
404     break;
405   case Stmt::OMPParallelGenericLoopDirectiveClass:
406     llvm_unreachable("parallel loop directive not supported yet.");
407     break;
408   case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
409     llvm_unreachable("target parallel loop directive not supported yet.");
410     break;
411   case Stmt::OMPParallelMaskedDirectiveClass:
412     llvm_unreachable("parallel masked directive not supported yet.");
413     break;
414   }
415 }
416 
417 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
418                                      ArrayRef<const Attr *> Attrs) {
419   switch (S->getStmtClass()) {
420   default:
421     return false;
422   case Stmt::NullStmtClass:
423     break;
424   case Stmt::CompoundStmtClass:
425     EmitCompoundStmt(cast<CompoundStmt>(*S));
426     break;
427   case Stmt::DeclStmtClass:
428     EmitDeclStmt(cast<DeclStmt>(*S));
429     break;
430   case Stmt::LabelStmtClass:
431     EmitLabelStmt(cast<LabelStmt>(*S));
432     break;
433   case Stmt::AttributedStmtClass:
434     EmitAttributedStmt(cast<AttributedStmt>(*S));
435     break;
436   case Stmt::GotoStmtClass:
437     EmitGotoStmt(cast<GotoStmt>(*S));
438     break;
439   case Stmt::BreakStmtClass:
440     EmitBreakStmt(cast<BreakStmt>(*S));
441     break;
442   case Stmt::ContinueStmtClass:
443     EmitContinueStmt(cast<ContinueStmt>(*S));
444     break;
445   case Stmt::DefaultStmtClass:
446     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
447     break;
448   case Stmt::CaseStmtClass:
449     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
450     break;
451   case Stmt::SEHLeaveStmtClass:
452     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
453     break;
454   }
455   return true;
456 }
457 
458 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
459 /// this captures the expression result of the last sub-statement and returns it
460 /// (for use by the statement expression extension).
461 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
462                                           AggValueSlot AggSlot) {
463   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
464                              "LLVM IR generation of compound statement ('{}')");
465 
466   // Keep track of the current cleanup stack depth, including debug scopes.
467   LexicalScope Scope(*this, S.getSourceRange());
468 
469   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
470 }
471 
472 Address
473 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
474                                               bool GetLast,
475                                               AggValueSlot AggSlot) {
476 
477   const Stmt *ExprResult = S.getStmtExprResult();
478   assert((!GetLast || (GetLast && ExprResult)) &&
479          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
480 
481   Address RetAlloca = Address::invalid();
482 
483   for (auto *CurStmt : S.body()) {
484     if (GetLast && ExprResult == CurStmt) {
485       // We have to special case labels here.  They are statements, but when put
486       // at the end of a statement expression, they yield the value of their
487       // subexpression.  Handle this by walking through all labels we encounter,
488       // emitting them before we evaluate the subexpr.
489       // Similar issues arise for attributed statements.
490       while (!isa<Expr>(ExprResult)) {
491         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
492           EmitLabel(LS->getDecl());
493           ExprResult = LS->getSubStmt();
494         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
495           // FIXME: Update this if we ever have attributes that affect the
496           // semantics of an expression.
497           ExprResult = AS->getSubStmt();
498         } else {
499           llvm_unreachable("unknown value statement");
500         }
501       }
502 
503       EnsureInsertPoint();
504 
505       const Expr *E = cast<Expr>(ExprResult);
506       QualType ExprTy = E->getType();
507       if (hasAggregateEvaluationKind(ExprTy)) {
508         EmitAggExpr(E, AggSlot);
509       } else {
510         // We can't return an RValue here because there might be cleanups at
511         // the end of the StmtExpr.  Because of that, we have to emit the result
512         // here into a temporary alloca.
513         RetAlloca = CreateMemTemp(ExprTy);
514         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
515                          /*IsInit*/ false);
516       }
517     } else {
518       EmitStmt(CurStmt);
519     }
520   }
521 
522   return RetAlloca;
523 }
524 
525 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
526   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
527 
528   // If there is a cleanup stack, then we it isn't worth trying to
529   // simplify this block (we would need to remove it from the scope map
530   // and cleanup entry).
531   if (!EHStack.empty())
532     return;
533 
534   // Can only simplify direct branches.
535   if (!BI || !BI->isUnconditional())
536     return;
537 
538   // Can only simplify empty blocks.
539   if (BI->getIterator() != BB->begin())
540     return;
541 
542   BB->replaceAllUsesWith(BI->getSuccessor(0));
543   BI->eraseFromParent();
544   BB->eraseFromParent();
545 }
546 
547 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
548   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
549 
550   // Fall out of the current block (if necessary).
551   EmitBranch(BB);
552 
553   if (IsFinished && BB->use_empty()) {
554     delete BB;
555     return;
556   }
557 
558   // Place the block after the current block, if possible, or else at
559   // the end of the function.
560   if (CurBB && CurBB->getParent())
561     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
562   else
563     CurFn->getBasicBlockList().push_back(BB);
564   Builder.SetInsertPoint(BB);
565 }
566 
567 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
568   // Emit a branch from the current block to the target one if this
569   // was a real block.  If this was just a fall-through block after a
570   // terminator, don't emit it.
571   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
572 
573   if (!CurBB || CurBB->getTerminator()) {
574     // If there is no insert point or the previous block is already
575     // terminated, don't touch it.
576   } else {
577     // Otherwise, create a fall-through branch.
578     Builder.CreateBr(Target);
579   }
580 
581   Builder.ClearInsertionPoint();
582 }
583 
584 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
585   bool inserted = false;
586   for (llvm::User *u : block->users()) {
587     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
588       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
589                                              block);
590       inserted = true;
591       break;
592     }
593   }
594 
595   if (!inserted)
596     CurFn->getBasicBlockList().push_back(block);
597 
598   Builder.SetInsertPoint(block);
599 }
600 
601 CodeGenFunction::JumpDest
602 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
603   JumpDest &Dest = LabelMap[D];
604   if (Dest.isValid()) return Dest;
605 
606   // Create, but don't insert, the new block.
607   Dest = JumpDest(createBasicBlock(D->getName()),
608                   EHScopeStack::stable_iterator::invalid(),
609                   NextCleanupDestIndex++);
610   return Dest;
611 }
612 
613 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
614   // Add this label to the current lexical scope if we're within any
615   // normal cleanups.  Jumps "in" to this label --- when permitted by
616   // the language --- may need to be routed around such cleanups.
617   if (EHStack.hasNormalCleanups() && CurLexicalScope)
618     CurLexicalScope->addLabel(D);
619 
620   JumpDest &Dest = LabelMap[D];
621 
622   // If we didn't need a forward reference to this label, just go
623   // ahead and create a destination at the current scope.
624   if (!Dest.isValid()) {
625     Dest = getJumpDestInCurrentScope(D->getName());
626 
627   // Otherwise, we need to give this label a target depth and remove
628   // it from the branch-fixups list.
629   } else {
630     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
631     Dest.setScopeDepth(EHStack.stable_begin());
632     ResolveBranchFixups(Dest.getBlock());
633   }
634 
635   EmitBlock(Dest.getBlock());
636 
637   // Emit debug info for labels.
638   if (CGDebugInfo *DI = getDebugInfo()) {
639     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
640       DI->setLocation(D->getLocation());
641       DI->EmitLabel(D, Builder);
642     }
643   }
644 
645   incrementProfileCounter(D->getStmt());
646 }
647 
648 /// Change the cleanup scope of the labels in this lexical scope to
649 /// match the scope of the enclosing context.
650 void CodeGenFunction::LexicalScope::rescopeLabels() {
651   assert(!Labels.empty());
652   EHScopeStack::stable_iterator innermostScope
653     = CGF.EHStack.getInnermostNormalCleanup();
654 
655   // Change the scope depth of all the labels.
656   for (SmallVectorImpl<const LabelDecl*>::const_iterator
657          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
658     assert(CGF.LabelMap.count(*i));
659     JumpDest &dest = CGF.LabelMap.find(*i)->second;
660     assert(dest.getScopeDepth().isValid());
661     assert(innermostScope.encloses(dest.getScopeDepth()));
662     dest.setScopeDepth(innermostScope);
663   }
664 
665   // Reparent the labels if the new scope also has cleanups.
666   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
667     ParentScope->Labels.append(Labels.begin(), Labels.end());
668   }
669 }
670 
671 
672 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
673   EmitLabel(S.getDecl());
674 
675   // IsEHa - emit eha.scope.begin if it's a side entry of a scope
676   if (getLangOpts().EHAsynch && S.isSideEntry())
677     EmitSehCppScopeBegin();
678 
679   EmitStmt(S.getSubStmt());
680 }
681 
682 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
683   bool nomerge = false;
684   bool noinline = false;
685   bool alwaysinline = false;
686   const CallExpr *musttail = nullptr;
687 
688   for (const auto *A : S.getAttrs()) {
689     switch (A->getKind()) {
690     default:
691       break;
692     case attr::NoMerge:
693       nomerge = true;
694       break;
695     case attr::NoInline:
696       noinline = true;
697       break;
698     case attr::AlwaysInline:
699       alwaysinline = true;
700       break;
701     case attr::MustTail:
702       const Stmt *Sub = S.getSubStmt();
703       const ReturnStmt *R = cast<ReturnStmt>(Sub);
704       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
705       break;
706     }
707   }
708   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
709   SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline);
710   SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt,
711                                          alwaysinline);
712   SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
713   EmitStmt(S.getSubStmt(), S.getAttrs());
714 }
715 
716 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
717   // If this code is reachable then emit a stop point (if generating
718   // debug info). We have to do this ourselves because we are on the
719   // "simple" statement path.
720   if (HaveInsertPoint())
721     EmitStopPoint(&S);
722 
723   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
724 }
725 
726 
727 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
728   if (const LabelDecl *Target = S.getConstantTarget()) {
729     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
730     return;
731   }
732 
733   // Ensure that we have an i8* for our PHI node.
734   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
735                                          Int8PtrTy, "addr");
736   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
737 
738   // Get the basic block for the indirect goto.
739   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
740 
741   // The first instruction in the block has to be the PHI for the switch dest,
742   // add an entry for this branch.
743   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
744 
745   EmitBranch(IndGotoBB);
746 }
747 
748 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
749   // The else branch of a consteval if statement is always the only branch that
750   // can be runtime evaluated.
751   if (S.isConsteval()) {
752     const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
753     if (Executed) {
754       RunCleanupsScope ExecutedScope(*this);
755       EmitStmt(Executed);
756     }
757     return;
758   }
759 
760   // C99 6.8.4.1: The first substatement is executed if the expression compares
761   // unequal to 0.  The condition must be a scalar type.
762   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
763 
764   if (S.getInit())
765     EmitStmt(S.getInit());
766 
767   if (S.getConditionVariable())
768     EmitDecl(*S.getConditionVariable());
769 
770   // If the condition constant folds and can be elided, try to avoid emitting
771   // the condition and the dead arm of the if/else.
772   bool CondConstant;
773   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
774                                    S.isConstexpr())) {
775     // Figure out which block (then or else) is executed.
776     const Stmt *Executed = S.getThen();
777     const Stmt *Skipped  = S.getElse();
778     if (!CondConstant)  // Condition false?
779       std::swap(Executed, Skipped);
780 
781     // If the skipped block has no labels in it, just emit the executed block.
782     // This avoids emitting dead code and simplifies the CFG substantially.
783     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
784       if (CondConstant)
785         incrementProfileCounter(&S);
786       if (Executed) {
787         RunCleanupsScope ExecutedScope(*this);
788         EmitStmt(Executed);
789       }
790       return;
791     }
792   }
793 
794   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
795   // the conditional branch.
796   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
797   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
798   llvm::BasicBlock *ElseBlock = ContBlock;
799   if (S.getElse())
800     ElseBlock = createBasicBlock("if.else");
801 
802   // Prefer the PGO based weights over the likelihood attribute.
803   // When the build isn't optimized the metadata isn't used, so don't generate
804   // it.
805   Stmt::Likelihood LH = Stmt::LH_None;
806   uint64_t Count = getProfileCount(S.getThen());
807   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
808     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
809   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
810 
811   // Emit the 'then' code.
812   EmitBlock(ThenBlock);
813   incrementProfileCounter(&S);
814   {
815     RunCleanupsScope ThenScope(*this);
816     EmitStmt(S.getThen());
817   }
818   EmitBranch(ContBlock);
819 
820   // Emit the 'else' code if present.
821   if (const Stmt *Else = S.getElse()) {
822     {
823       // There is no need to emit line number for an unconditional branch.
824       auto NL = ApplyDebugLocation::CreateEmpty(*this);
825       EmitBlock(ElseBlock);
826     }
827     {
828       RunCleanupsScope ElseScope(*this);
829       EmitStmt(Else);
830     }
831     {
832       // There is no need to emit line number for an unconditional branch.
833       auto NL = ApplyDebugLocation::CreateEmpty(*this);
834       EmitBranch(ContBlock);
835     }
836   }
837 
838   // Emit the continuation block for code after the if.
839   EmitBlock(ContBlock, true);
840 }
841 
842 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
843                                     ArrayRef<const Attr *> WhileAttrs) {
844   // Emit the header for the loop, which will also become
845   // the continue target.
846   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
847   EmitBlock(LoopHeader.getBlock());
848 
849   // Create an exit block for when the condition fails, which will
850   // also become the break target.
851   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
852 
853   // Store the blocks to use for break and continue.
854   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
855 
856   // C++ [stmt.while]p2:
857   //   When the condition of a while statement is a declaration, the
858   //   scope of the variable that is declared extends from its point
859   //   of declaration (3.3.2) to the end of the while statement.
860   //   [...]
861   //   The object created in a condition is destroyed and created
862   //   with each iteration of the loop.
863   RunCleanupsScope ConditionScope(*this);
864 
865   if (S.getConditionVariable())
866     EmitDecl(*S.getConditionVariable());
867 
868   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
869   // evaluation of the controlling expression takes place before each
870   // execution of the loop body.
871   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
872 
873   // while(1) is common, avoid extra exit blocks.  Be sure
874   // to correctly handle break/continue though.
875   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
876   bool CondIsConstInt = C != nullptr;
877   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
878   const SourceRange &R = S.getSourceRange();
879   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
880                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
881                  SourceLocToDebugLoc(R.getEnd()),
882                  checkIfLoopMustProgress(CondIsConstInt));
883 
884   // As long as the condition is true, go to the loop body.
885   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
886   if (EmitBoolCondBranch) {
887     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
888     if (ConditionScope.requiresCleanups())
889       ExitBlock = createBasicBlock("while.exit");
890     llvm::MDNode *Weights =
891         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
892     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
893       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
894           BoolCondVal, Stmt::getLikelihood(S.getBody()));
895     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
896 
897     if (ExitBlock != LoopExit.getBlock()) {
898       EmitBlock(ExitBlock);
899       EmitBranchThroughCleanup(LoopExit);
900     }
901   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
902     CGM.getDiags().Report(A->getLocation(),
903                           diag::warn_attribute_has_no_effect_on_infinite_loop)
904         << A << A->getRange();
905     CGM.getDiags().Report(
906         S.getWhileLoc(),
907         diag::note_attribute_has_no_effect_on_infinite_loop_here)
908         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
909   }
910 
911   // Emit the loop body.  We have to emit this in a cleanup scope
912   // because it might be a singleton DeclStmt.
913   {
914     RunCleanupsScope BodyScope(*this);
915     EmitBlock(LoopBody);
916     incrementProfileCounter(&S);
917     EmitStmt(S.getBody());
918   }
919 
920   BreakContinueStack.pop_back();
921 
922   // Immediately force cleanup.
923   ConditionScope.ForceCleanup();
924 
925   EmitStopPoint(&S);
926   // Branch to the loop header again.
927   EmitBranch(LoopHeader.getBlock());
928 
929   LoopStack.pop();
930 
931   // Emit the exit block.
932   EmitBlock(LoopExit.getBlock(), true);
933 
934   // The LoopHeader typically is just a branch if we skipped emitting
935   // a branch, try to erase it.
936   if (!EmitBoolCondBranch)
937     SimplifyForwardingBlocks(LoopHeader.getBlock());
938 }
939 
940 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
941                                  ArrayRef<const Attr *> DoAttrs) {
942   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
943   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
944 
945   uint64_t ParentCount = getCurrentProfileCount();
946 
947   // Store the blocks to use for break and continue.
948   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
949 
950   // Emit the body of the loop.
951   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
952 
953   EmitBlockWithFallThrough(LoopBody, &S);
954   {
955     RunCleanupsScope BodyScope(*this);
956     EmitStmt(S.getBody());
957   }
958 
959   EmitBlock(LoopCond.getBlock());
960 
961   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
962   // after each execution of the loop body."
963 
964   // Evaluate the conditional in the while header.
965   // C99 6.8.5p2/p4: The first substatement is executed if the expression
966   // compares unequal to 0.  The condition must be a scalar type.
967   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
968 
969   BreakContinueStack.pop_back();
970 
971   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
972   // to correctly handle break/continue though.
973   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
974   bool CondIsConstInt = C;
975   bool EmitBoolCondBranch = !C || !C->isZero();
976 
977   const SourceRange &R = S.getSourceRange();
978   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
979                  SourceLocToDebugLoc(R.getBegin()),
980                  SourceLocToDebugLoc(R.getEnd()),
981                  checkIfLoopMustProgress(CondIsConstInt));
982 
983   // As long as the condition is true, iterate the loop.
984   if (EmitBoolCondBranch) {
985     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
986     Builder.CreateCondBr(
987         BoolCondVal, LoopBody, LoopExit.getBlock(),
988         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
989   }
990 
991   LoopStack.pop();
992 
993   // Emit the exit block.
994   EmitBlock(LoopExit.getBlock());
995 
996   // The DoCond block typically is just a branch if we skipped
997   // emitting a branch, try to erase it.
998   if (!EmitBoolCondBranch)
999     SimplifyForwardingBlocks(LoopCond.getBlock());
1000 }
1001 
1002 void CodeGenFunction::EmitForStmt(const ForStmt &S,
1003                                   ArrayRef<const Attr *> ForAttrs) {
1004   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1005 
1006   LexicalScope ForScope(*this, S.getSourceRange());
1007 
1008   // Evaluate the first part before the loop.
1009   if (S.getInit())
1010     EmitStmt(S.getInit());
1011 
1012   // Start the loop with a block that tests the condition.
1013   // If there's an increment, the continue scope will be overwritten
1014   // later.
1015   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
1016   llvm::BasicBlock *CondBlock = CondDest.getBlock();
1017   EmitBlock(CondBlock);
1018 
1019   Expr::EvalResult Result;
1020   bool CondIsConstInt =
1021       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
1022 
1023   const SourceRange &R = S.getSourceRange();
1024   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1025                  SourceLocToDebugLoc(R.getBegin()),
1026                  SourceLocToDebugLoc(R.getEnd()),
1027                  checkIfLoopMustProgress(CondIsConstInt));
1028 
1029   // Create a cleanup scope for the condition variable cleanups.
1030   LexicalScope ConditionScope(*this, S.getSourceRange());
1031 
1032   // If the for loop doesn't have an increment we can just use the condition as
1033   // the continue block. Otherwise, if there is no condition variable, we can
1034   // form the continue block now. If there is a condition variable, we can't
1035   // form the continue block until after we've emitted the condition, because
1036   // the condition is in scope in the increment, but Sema's jump diagnostics
1037   // ensure that there are no continues from the condition variable that jump
1038   // to the loop increment.
1039   JumpDest Continue;
1040   if (!S.getInc())
1041     Continue = CondDest;
1042   else if (!S.getConditionVariable())
1043     Continue = getJumpDestInCurrentScope("for.inc");
1044   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1045 
1046   if (S.getCond()) {
1047     // If the for statement has a condition scope, emit the local variable
1048     // declaration.
1049     if (S.getConditionVariable()) {
1050       EmitDecl(*S.getConditionVariable());
1051 
1052       // We have entered the condition variable's scope, so we're now able to
1053       // jump to the continue block.
1054       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1055       BreakContinueStack.back().ContinueBlock = Continue;
1056     }
1057 
1058     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1059     // If there are any cleanups between here and the loop-exit scope,
1060     // create a block to stage a loop exit along.
1061     if (ForScope.requiresCleanups())
1062       ExitBlock = createBasicBlock("for.cond.cleanup");
1063 
1064     // As long as the condition is true, iterate the loop.
1065     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1066 
1067     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1068     // compares unequal to 0.  The condition must be a scalar type.
1069     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1070     llvm::MDNode *Weights =
1071         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1072     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1073       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1074           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1075 
1076     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1077 
1078     if (ExitBlock != LoopExit.getBlock()) {
1079       EmitBlock(ExitBlock);
1080       EmitBranchThroughCleanup(LoopExit);
1081     }
1082 
1083     EmitBlock(ForBody);
1084   } else {
1085     // Treat it as a non-zero constant.  Don't even create a new block for the
1086     // body, just fall into it.
1087   }
1088   incrementProfileCounter(&S);
1089 
1090   {
1091     // Create a separate cleanup scope for the body, in case it is not
1092     // a compound statement.
1093     RunCleanupsScope BodyScope(*this);
1094     EmitStmt(S.getBody());
1095   }
1096 
1097   // If there is an increment, emit it next.
1098   if (S.getInc()) {
1099     EmitBlock(Continue.getBlock());
1100     EmitStmt(S.getInc());
1101   }
1102 
1103   BreakContinueStack.pop_back();
1104 
1105   ConditionScope.ForceCleanup();
1106 
1107   EmitStopPoint(&S);
1108   EmitBranch(CondBlock);
1109 
1110   ForScope.ForceCleanup();
1111 
1112   LoopStack.pop();
1113 
1114   // Emit the fall-through block.
1115   EmitBlock(LoopExit.getBlock(), true);
1116 }
1117 
1118 void
1119 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1120                                      ArrayRef<const Attr *> ForAttrs) {
1121   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1122 
1123   LexicalScope ForScope(*this, S.getSourceRange());
1124 
1125   // Evaluate the first pieces before the loop.
1126   if (S.getInit())
1127     EmitStmt(S.getInit());
1128   EmitStmt(S.getRangeStmt());
1129   EmitStmt(S.getBeginStmt());
1130   EmitStmt(S.getEndStmt());
1131 
1132   // Start the loop with a block that tests the condition.
1133   // If there's an increment, the continue scope will be overwritten
1134   // later.
1135   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1136   EmitBlock(CondBlock);
1137 
1138   const SourceRange &R = S.getSourceRange();
1139   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1140                  SourceLocToDebugLoc(R.getBegin()),
1141                  SourceLocToDebugLoc(R.getEnd()));
1142 
1143   // If there are any cleanups between here and the loop-exit scope,
1144   // create a block to stage a loop exit along.
1145   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1146   if (ForScope.requiresCleanups())
1147     ExitBlock = createBasicBlock("for.cond.cleanup");
1148 
1149   // The loop body, consisting of the specified body and the loop variable.
1150   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1151 
1152   // The body is executed if the expression, contextually converted
1153   // to bool, is true.
1154   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1155   llvm::MDNode *Weights =
1156       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1157   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1158     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1159         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1160   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1161 
1162   if (ExitBlock != LoopExit.getBlock()) {
1163     EmitBlock(ExitBlock);
1164     EmitBranchThroughCleanup(LoopExit);
1165   }
1166 
1167   EmitBlock(ForBody);
1168   incrementProfileCounter(&S);
1169 
1170   // Create a block for the increment. In case of a 'continue', we jump there.
1171   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1172 
1173   // Store the blocks to use for break and continue.
1174   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1175 
1176   {
1177     // Create a separate cleanup scope for the loop variable and body.
1178     LexicalScope BodyScope(*this, S.getSourceRange());
1179     EmitStmt(S.getLoopVarStmt());
1180     EmitStmt(S.getBody());
1181   }
1182 
1183   EmitStopPoint(&S);
1184   // If there is an increment, emit it next.
1185   EmitBlock(Continue.getBlock());
1186   EmitStmt(S.getInc());
1187 
1188   BreakContinueStack.pop_back();
1189 
1190   EmitBranch(CondBlock);
1191 
1192   ForScope.ForceCleanup();
1193 
1194   LoopStack.pop();
1195 
1196   // Emit the fall-through block.
1197   EmitBlock(LoopExit.getBlock(), true);
1198 }
1199 
1200 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1201   if (RV.isScalar()) {
1202     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1203   } else if (RV.isAggregate()) {
1204     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1205     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1206     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1207   } else {
1208     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1209                        /*init*/ true);
1210   }
1211   EmitBranchThroughCleanup(ReturnBlock);
1212 }
1213 
1214 namespace {
1215 // RAII struct used to save and restore a return statment's result expression.
1216 struct SaveRetExprRAII {
1217   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1218       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1219     CGF.RetExpr = RetExpr;
1220   }
1221   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1222   const Expr *OldRetExpr;
1223   CodeGenFunction &CGF;
1224 };
1225 } // namespace
1226 
1227 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1228 /// codegen it as 'tail call ...; ret void;'.
1229 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1230                                      const CGFunctionInfo *CurFnInfo) {
1231   auto calleeQualType = CE->getCallee()->getType();
1232   const FunctionType *calleeType = nullptr;
1233   if (calleeQualType->isFunctionPointerType() ||
1234       calleeQualType->isFunctionReferenceType() ||
1235       calleeQualType->isBlockPointerType() ||
1236       calleeQualType->isMemberFunctionPointerType()) {
1237     calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1238   } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1239     calleeType = ty;
1240   } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1241     if (auto methodDecl = CMCE->getMethodDecl()) {
1242       // getMethodDecl() doesn't handle member pointers at the moment.
1243       calleeType = methodDecl->getType()->castAs<FunctionType>();
1244     } else {
1245       return;
1246     }
1247   } else {
1248     return;
1249   }
1250   if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1251       (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1252     auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1253     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1254     Builder.CreateRetVoid();
1255     Builder.ClearInsertionPoint();
1256   }
1257 }
1258 
1259 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1260 /// if the function returns void, or may be missing one if the function returns
1261 /// non-void.  Fun stuff :).
1262 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1263   if (requiresReturnValueCheck()) {
1264     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1265     auto *SLocPtr =
1266         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1267                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1268     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1269     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1270     assert(ReturnLocation.isValid() && "No valid return location");
1271     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1272                         ReturnLocation);
1273   }
1274 
1275   // Returning from an outlined SEH helper is UB, and we already warn on it.
1276   if (IsOutlinedSEHHelper) {
1277     Builder.CreateUnreachable();
1278     Builder.ClearInsertionPoint();
1279   }
1280 
1281   // Emit the result value, even if unused, to evaluate the side effects.
1282   const Expr *RV = S.getRetValue();
1283 
1284   // Record the result expression of the return statement. The recorded
1285   // expression is used to determine whether a block capture's lifetime should
1286   // end at the end of the full expression as opposed to the end of the scope
1287   // enclosing the block expression.
1288   //
1289   // This permits a small, easily-implemented exception to our over-conservative
1290   // rules about not jumping to statements following block literals with
1291   // non-trivial cleanups.
1292   SaveRetExprRAII SaveRetExpr(RV, *this);
1293 
1294   RunCleanupsScope cleanupScope(*this);
1295   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1296     RV = EWC->getSubExpr();
1297   // FIXME: Clean this up by using an LValue for ReturnTemp,
1298   // EmitStoreThroughLValue, and EmitAnyExpr.
1299   // Check if the NRVO candidate was not globalized in OpenMP mode.
1300   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1301       S.getNRVOCandidate()->isNRVOVariable() &&
1302       (!getLangOpts().OpenMP ||
1303        !CGM.getOpenMPRuntime()
1304             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1305             .isValid())) {
1306     // Apply the named return value optimization for this return statement,
1307     // which means doing nothing: the appropriate result has already been
1308     // constructed into the NRVO variable.
1309 
1310     // If there is an NRVO flag for this variable, set it to 1 into indicate
1311     // that the cleanup code should not destroy the variable.
1312     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1313       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1314   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1315     // Make sure not to return anything, but evaluate the expression
1316     // for side effects.
1317     if (RV) {
1318       EmitAnyExpr(RV);
1319       if (auto *CE = dyn_cast<CallExpr>(RV))
1320         makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1321     }
1322   } else if (!RV) {
1323     // Do nothing (return value is left uninitialized)
1324   } else if (FnRetTy->isReferenceType()) {
1325     // If this function returns a reference, take the address of the expression
1326     // rather than the value.
1327     RValue Result = EmitReferenceBindingToExpr(RV);
1328     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1329   } else {
1330     switch (getEvaluationKind(RV->getType())) {
1331     case TEK_Scalar:
1332       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1333       break;
1334     case TEK_Complex:
1335       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1336                                 /*isInit*/ true);
1337       break;
1338     case TEK_Aggregate:
1339       EmitAggExpr(RV, AggValueSlot::forAddr(
1340                           ReturnValue, Qualifiers(),
1341                           AggValueSlot::IsDestructed,
1342                           AggValueSlot::DoesNotNeedGCBarriers,
1343                           AggValueSlot::IsNotAliased,
1344                           getOverlapForReturnValue()));
1345       break;
1346     }
1347   }
1348 
1349   ++NumReturnExprs;
1350   if (!RV || RV->isEvaluatable(getContext()))
1351     ++NumSimpleReturnExprs;
1352 
1353   cleanupScope.ForceCleanup();
1354   EmitBranchThroughCleanup(ReturnBlock);
1355 }
1356 
1357 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1358   // As long as debug info is modeled with instructions, we have to ensure we
1359   // have a place to insert here and write the stop point here.
1360   if (HaveInsertPoint())
1361     EmitStopPoint(&S);
1362 
1363   for (const auto *I : S.decls())
1364     EmitDecl(*I);
1365 }
1366 
1367 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1368   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1369 
1370   // If this code is reachable then emit a stop point (if generating
1371   // debug info). We have to do this ourselves because we are on the
1372   // "simple" statement path.
1373   if (HaveInsertPoint())
1374     EmitStopPoint(&S);
1375 
1376   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1377 }
1378 
1379 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1380   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1381 
1382   // If this code is reachable then emit a stop point (if generating
1383   // debug info). We have to do this ourselves because we are on the
1384   // "simple" statement path.
1385   if (HaveInsertPoint())
1386     EmitStopPoint(&S);
1387 
1388   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1389 }
1390 
1391 /// EmitCaseStmtRange - If case statement range is not too big then
1392 /// add multiple cases to switch instruction, one for each value within
1393 /// the range. If range is too big then emit "if" condition check.
1394 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1395                                         ArrayRef<const Attr *> Attrs) {
1396   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1397 
1398   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1399   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1400 
1401   // Emit the code for this case. We do this first to make sure it is
1402   // properly chained from our predecessor before generating the
1403   // switch machinery to enter this block.
1404   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1405   EmitBlockWithFallThrough(CaseDest, &S);
1406   EmitStmt(S.getSubStmt());
1407 
1408   // If range is empty, do nothing.
1409   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1410     return;
1411 
1412   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1413   llvm::APInt Range = RHS - LHS;
1414   // FIXME: parameters such as this should not be hardcoded.
1415   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1416     // Range is small enough to add multiple switch instruction cases.
1417     uint64_t Total = getProfileCount(&S);
1418     unsigned NCases = Range.getZExtValue() + 1;
1419     // We only have one region counter for the entire set of cases here, so we
1420     // need to divide the weights evenly between the generated cases, ensuring
1421     // that the total weight is preserved. E.g., a weight of 5 over three cases
1422     // will be distributed as weights of 2, 2, and 1.
1423     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1424     for (unsigned I = 0; I != NCases; ++I) {
1425       if (SwitchWeights)
1426         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1427       else if (SwitchLikelihood)
1428         SwitchLikelihood->push_back(LH);
1429 
1430       if (Rem)
1431         Rem--;
1432       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1433       ++LHS;
1434     }
1435     return;
1436   }
1437 
1438   // The range is too big. Emit "if" condition into a new block,
1439   // making sure to save and restore the current insertion point.
1440   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1441 
1442   // Push this test onto the chain of range checks (which terminates
1443   // in the default basic block). The switch's default will be changed
1444   // to the top of this chain after switch emission is complete.
1445   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1446   CaseRangeBlock = createBasicBlock("sw.caserange");
1447 
1448   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1449   Builder.SetInsertPoint(CaseRangeBlock);
1450 
1451   // Emit range check.
1452   llvm::Value *Diff =
1453     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1454   llvm::Value *Cond =
1455     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1456 
1457   llvm::MDNode *Weights = nullptr;
1458   if (SwitchWeights) {
1459     uint64_t ThisCount = getProfileCount(&S);
1460     uint64_t DefaultCount = (*SwitchWeights)[0];
1461     Weights = createProfileWeights(ThisCount, DefaultCount);
1462 
1463     // Since we're chaining the switch default through each large case range, we
1464     // need to update the weight for the default, ie, the first case, to include
1465     // this case.
1466     (*SwitchWeights)[0] += ThisCount;
1467   } else if (SwitchLikelihood)
1468     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1469 
1470   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1471 
1472   // Restore the appropriate insertion point.
1473   if (RestoreBB)
1474     Builder.SetInsertPoint(RestoreBB);
1475   else
1476     Builder.ClearInsertionPoint();
1477 }
1478 
1479 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1480                                    ArrayRef<const Attr *> Attrs) {
1481   // If there is no enclosing switch instance that we're aware of, then this
1482   // case statement and its block can be elided.  This situation only happens
1483   // when we've constant-folded the switch, are emitting the constant case,
1484   // and part of the constant case includes another case statement.  For
1485   // instance: switch (4) { case 4: do { case 5: } while (1); }
1486   if (!SwitchInsn) {
1487     EmitStmt(S.getSubStmt());
1488     return;
1489   }
1490 
1491   // Handle case ranges.
1492   if (S.getRHS()) {
1493     EmitCaseStmtRange(S, Attrs);
1494     return;
1495   }
1496 
1497   llvm::ConstantInt *CaseVal =
1498     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1499   if (SwitchLikelihood)
1500     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1501 
1502   // If the body of the case is just a 'break', try to not emit an empty block.
1503   // If we're profiling or we're not optimizing, leave the block in for better
1504   // debug and coverage analysis.
1505   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1506       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1507       isa<BreakStmt>(S.getSubStmt())) {
1508     JumpDest Block = BreakContinueStack.back().BreakBlock;
1509 
1510     // Only do this optimization if there are no cleanups that need emitting.
1511     if (isObviouslyBranchWithoutCleanups(Block)) {
1512       if (SwitchWeights)
1513         SwitchWeights->push_back(getProfileCount(&S));
1514       SwitchInsn->addCase(CaseVal, Block.getBlock());
1515 
1516       // If there was a fallthrough into this case, make sure to redirect it to
1517       // the end of the switch as well.
1518       if (Builder.GetInsertBlock()) {
1519         Builder.CreateBr(Block.getBlock());
1520         Builder.ClearInsertionPoint();
1521       }
1522       return;
1523     }
1524   }
1525 
1526   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1527   EmitBlockWithFallThrough(CaseDest, &S);
1528   if (SwitchWeights)
1529     SwitchWeights->push_back(getProfileCount(&S));
1530   SwitchInsn->addCase(CaseVal, CaseDest);
1531 
1532   // Recursively emitting the statement is acceptable, but is not wonderful for
1533   // code where we have many case statements nested together, i.e.:
1534   //  case 1:
1535   //    case 2:
1536   //      case 3: etc.
1537   // Handling this recursively will create a new block for each case statement
1538   // that falls through to the next case which is IR intensive.  It also causes
1539   // deep recursion which can run into stack depth limitations.  Handle
1540   // sequential non-range case statements specially.
1541   //
1542   // TODO When the next case has a likelihood attribute the code returns to the
1543   // recursive algorithm. Maybe improve this case if it becomes common practice
1544   // to use a lot of attributes.
1545   const CaseStmt *CurCase = &S;
1546   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1547 
1548   // Otherwise, iteratively add consecutive cases to this switch stmt.
1549   while (NextCase && NextCase->getRHS() == nullptr) {
1550     CurCase = NextCase;
1551     llvm::ConstantInt *CaseVal =
1552       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1553 
1554     if (SwitchWeights)
1555       SwitchWeights->push_back(getProfileCount(NextCase));
1556     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1557       CaseDest = createBasicBlock("sw.bb");
1558       EmitBlockWithFallThrough(CaseDest, CurCase);
1559     }
1560     // Since this loop is only executed when the CaseStmt has no attributes
1561     // use a hard-coded value.
1562     if (SwitchLikelihood)
1563       SwitchLikelihood->push_back(Stmt::LH_None);
1564 
1565     SwitchInsn->addCase(CaseVal, CaseDest);
1566     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1567   }
1568 
1569   // Generate a stop point for debug info if the case statement is
1570   // followed by a default statement. A fallthrough case before a
1571   // default case gets its own branch target.
1572   if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1573     EmitStopPoint(CurCase);
1574 
1575   // Normal default recursion for non-cases.
1576   EmitStmt(CurCase->getSubStmt());
1577 }
1578 
1579 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1580                                       ArrayRef<const Attr *> Attrs) {
1581   // If there is no enclosing switch instance that we're aware of, then this
1582   // default statement can be elided. This situation only happens when we've
1583   // constant-folded the switch.
1584   if (!SwitchInsn) {
1585     EmitStmt(S.getSubStmt());
1586     return;
1587   }
1588 
1589   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1590   assert(DefaultBlock->empty() &&
1591          "EmitDefaultStmt: Default block already defined?");
1592 
1593   if (SwitchLikelihood)
1594     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1595 
1596   EmitBlockWithFallThrough(DefaultBlock, &S);
1597 
1598   EmitStmt(S.getSubStmt());
1599 }
1600 
1601 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1602 /// constant value that is being switched on, see if we can dead code eliminate
1603 /// the body of the switch to a simple series of statements to emit.  Basically,
1604 /// on a switch (5) we want to find these statements:
1605 ///    case 5:
1606 ///      printf(...);    <--
1607 ///      ++i;            <--
1608 ///      break;
1609 ///
1610 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1611 /// transformation (for example, one of the elided statements contains a label
1612 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1613 /// should include statements after it (e.g. the printf() line is a substmt of
1614 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1615 /// statement, then return CSFC_Success.
1616 ///
1617 /// If Case is non-null, then we are looking for the specified case, checking
1618 /// that nothing we jump over contains labels.  If Case is null, then we found
1619 /// the case and are looking for the break.
1620 ///
1621 /// If the recursive walk actually finds our Case, then we set FoundCase to
1622 /// true.
1623 ///
1624 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1625 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1626                                             const SwitchCase *Case,
1627                                             bool &FoundCase,
1628                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1629   // If this is a null statement, just succeed.
1630   if (!S)
1631     return Case ? CSFC_Success : CSFC_FallThrough;
1632 
1633   // If this is the switchcase (case 4: or default) that we're looking for, then
1634   // we're in business.  Just add the substatement.
1635   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1636     if (S == Case) {
1637       FoundCase = true;
1638       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1639                                       ResultStmts);
1640     }
1641 
1642     // Otherwise, this is some other case or default statement, just ignore it.
1643     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1644                                     ResultStmts);
1645   }
1646 
1647   // If we are in the live part of the code and we found our break statement,
1648   // return a success!
1649   if (!Case && isa<BreakStmt>(S))
1650     return CSFC_Success;
1651 
1652   // If this is a switch statement, then it might contain the SwitchCase, the
1653   // break, or neither.
1654   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1655     // Handle this as two cases: we might be looking for the SwitchCase (if so
1656     // the skipped statements must be skippable) or we might already have it.
1657     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1658     bool StartedInLiveCode = FoundCase;
1659     unsigned StartSize = ResultStmts.size();
1660 
1661     // If we've not found the case yet, scan through looking for it.
1662     if (Case) {
1663       // Keep track of whether we see a skipped declaration.  The code could be
1664       // using the declaration even if it is skipped, so we can't optimize out
1665       // the decl if the kept statements might refer to it.
1666       bool HadSkippedDecl = false;
1667 
1668       // If we're looking for the case, just see if we can skip each of the
1669       // substatements.
1670       for (; Case && I != E; ++I) {
1671         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1672 
1673         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1674         case CSFC_Failure: return CSFC_Failure;
1675         case CSFC_Success:
1676           // A successful result means that either 1) that the statement doesn't
1677           // have the case and is skippable, or 2) does contain the case value
1678           // and also contains the break to exit the switch.  In the later case,
1679           // we just verify the rest of the statements are elidable.
1680           if (FoundCase) {
1681             // If we found the case and skipped declarations, we can't do the
1682             // optimization.
1683             if (HadSkippedDecl)
1684               return CSFC_Failure;
1685 
1686             for (++I; I != E; ++I)
1687               if (CodeGenFunction::ContainsLabel(*I, true))
1688                 return CSFC_Failure;
1689             return CSFC_Success;
1690           }
1691           break;
1692         case CSFC_FallThrough:
1693           // If we have a fallthrough condition, then we must have found the
1694           // case started to include statements.  Consider the rest of the
1695           // statements in the compound statement as candidates for inclusion.
1696           assert(FoundCase && "Didn't find case but returned fallthrough?");
1697           // We recursively found Case, so we're not looking for it anymore.
1698           Case = nullptr;
1699 
1700           // If we found the case and skipped declarations, we can't do the
1701           // optimization.
1702           if (HadSkippedDecl)
1703             return CSFC_Failure;
1704           break;
1705         }
1706       }
1707 
1708       if (!FoundCase)
1709         return CSFC_Success;
1710 
1711       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1712     }
1713 
1714     // If we have statements in our range, then we know that the statements are
1715     // live and need to be added to the set of statements we're tracking.
1716     bool AnyDecls = false;
1717     for (; I != E; ++I) {
1718       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1719 
1720       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1721       case CSFC_Failure: return CSFC_Failure;
1722       case CSFC_FallThrough:
1723         // A fallthrough result means that the statement was simple and just
1724         // included in ResultStmt, keep adding them afterwards.
1725         break;
1726       case CSFC_Success:
1727         // A successful result means that we found the break statement and
1728         // stopped statement inclusion.  We just ensure that any leftover stmts
1729         // are skippable and return success ourselves.
1730         for (++I; I != E; ++I)
1731           if (CodeGenFunction::ContainsLabel(*I, true))
1732             return CSFC_Failure;
1733         return CSFC_Success;
1734       }
1735     }
1736 
1737     // If we're about to fall out of a scope without hitting a 'break;', we
1738     // can't perform the optimization if there were any decls in that scope
1739     // (we'd lose their end-of-lifetime).
1740     if (AnyDecls) {
1741       // If the entire compound statement was live, there's one more thing we
1742       // can try before giving up: emit the whole thing as a single statement.
1743       // We can do that unless the statement contains a 'break;'.
1744       // FIXME: Such a break must be at the end of a construct within this one.
1745       // We could emit this by just ignoring the BreakStmts entirely.
1746       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1747         ResultStmts.resize(StartSize);
1748         ResultStmts.push_back(S);
1749       } else {
1750         return CSFC_Failure;
1751       }
1752     }
1753 
1754     return CSFC_FallThrough;
1755   }
1756 
1757   // Okay, this is some other statement that we don't handle explicitly, like a
1758   // for statement or increment etc.  If we are skipping over this statement,
1759   // just verify it doesn't have labels, which would make it invalid to elide.
1760   if (Case) {
1761     if (CodeGenFunction::ContainsLabel(S, true))
1762       return CSFC_Failure;
1763     return CSFC_Success;
1764   }
1765 
1766   // Otherwise, we want to include this statement.  Everything is cool with that
1767   // so long as it doesn't contain a break out of the switch we're in.
1768   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1769 
1770   // Otherwise, everything is great.  Include the statement and tell the caller
1771   // that we fall through and include the next statement as well.
1772   ResultStmts.push_back(S);
1773   return CSFC_FallThrough;
1774 }
1775 
1776 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1777 /// then invoke CollectStatementsForCase to find the list of statements to emit
1778 /// for a switch on constant.  See the comment above CollectStatementsForCase
1779 /// for more details.
1780 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1781                                        const llvm::APSInt &ConstantCondValue,
1782                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1783                                        ASTContext &C,
1784                                        const SwitchCase *&ResultCase) {
1785   // First step, find the switch case that is being branched to.  We can do this
1786   // efficiently by scanning the SwitchCase list.
1787   const SwitchCase *Case = S.getSwitchCaseList();
1788   const DefaultStmt *DefaultCase = nullptr;
1789 
1790   for (; Case; Case = Case->getNextSwitchCase()) {
1791     // It's either a default or case.  Just remember the default statement in
1792     // case we're not jumping to any numbered cases.
1793     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1794       DefaultCase = DS;
1795       continue;
1796     }
1797 
1798     // Check to see if this case is the one we're looking for.
1799     const CaseStmt *CS = cast<CaseStmt>(Case);
1800     // Don't handle case ranges yet.
1801     if (CS->getRHS()) return false;
1802 
1803     // If we found our case, remember it as 'case'.
1804     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1805       break;
1806   }
1807 
1808   // If we didn't find a matching case, we use a default if it exists, or we
1809   // elide the whole switch body!
1810   if (!Case) {
1811     // It is safe to elide the body of the switch if it doesn't contain labels
1812     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1813     if (!DefaultCase)
1814       return !CodeGenFunction::ContainsLabel(&S);
1815     Case = DefaultCase;
1816   }
1817 
1818   // Ok, we know which case is being jumped to, try to collect all the
1819   // statements that follow it.  This can fail for a variety of reasons.  Also,
1820   // check to see that the recursive walk actually found our case statement.
1821   // Insane cases like this can fail to find it in the recursive walk since we
1822   // don't handle every stmt kind:
1823   // switch (4) {
1824   //   while (1) {
1825   //     case 4: ...
1826   bool FoundCase = false;
1827   ResultCase = Case;
1828   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1829                                   ResultStmts) != CSFC_Failure &&
1830          FoundCase;
1831 }
1832 
1833 static Optional<SmallVector<uint64_t, 16>>
1834 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1835   // Are there enough branches to weight them?
1836   if (Likelihoods.size() <= 1)
1837     return None;
1838 
1839   uint64_t NumUnlikely = 0;
1840   uint64_t NumNone = 0;
1841   uint64_t NumLikely = 0;
1842   for (const auto LH : Likelihoods) {
1843     switch (LH) {
1844     case Stmt::LH_Unlikely:
1845       ++NumUnlikely;
1846       break;
1847     case Stmt::LH_None:
1848       ++NumNone;
1849       break;
1850     case Stmt::LH_Likely:
1851       ++NumLikely;
1852       break;
1853     }
1854   }
1855 
1856   // Is there a likelihood attribute used?
1857   if (NumUnlikely == 0 && NumLikely == 0)
1858     return None;
1859 
1860   // When multiple cases share the same code they can be combined during
1861   // optimization. In that case the weights of the branch will be the sum of
1862   // the individual weights. Make sure the combined sum of all neutral cases
1863   // doesn't exceed the value of a single likely attribute.
1864   // The additions both avoid divisions by 0 and make sure the weights of None
1865   // don't exceed the weight of Likely.
1866   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1867   const uint64_t None = Likely / (NumNone + 1);
1868   const uint64_t Unlikely = 0;
1869 
1870   SmallVector<uint64_t, 16> Result;
1871   Result.reserve(Likelihoods.size());
1872   for (const auto LH : Likelihoods) {
1873     switch (LH) {
1874     case Stmt::LH_Unlikely:
1875       Result.push_back(Unlikely);
1876       break;
1877     case Stmt::LH_None:
1878       Result.push_back(None);
1879       break;
1880     case Stmt::LH_Likely:
1881       Result.push_back(Likely);
1882       break;
1883     }
1884   }
1885 
1886   return Result;
1887 }
1888 
1889 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1890   // Handle nested switch statements.
1891   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1892   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1893   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1894   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1895 
1896   // See if we can constant fold the condition of the switch and therefore only
1897   // emit the live case statement (if any) of the switch.
1898   llvm::APSInt ConstantCondValue;
1899   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1900     SmallVector<const Stmt*, 4> CaseStmts;
1901     const SwitchCase *Case = nullptr;
1902     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1903                                    getContext(), Case)) {
1904       if (Case)
1905         incrementProfileCounter(Case);
1906       RunCleanupsScope ExecutedScope(*this);
1907 
1908       if (S.getInit())
1909         EmitStmt(S.getInit());
1910 
1911       // Emit the condition variable if needed inside the entire cleanup scope
1912       // used by this special case for constant folded switches.
1913       if (S.getConditionVariable())
1914         EmitDecl(*S.getConditionVariable());
1915 
1916       // At this point, we are no longer "within" a switch instance, so
1917       // we can temporarily enforce this to ensure that any embedded case
1918       // statements are not emitted.
1919       SwitchInsn = nullptr;
1920 
1921       // Okay, we can dead code eliminate everything except this case.  Emit the
1922       // specified series of statements and we're good.
1923       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1924         EmitStmt(CaseStmts[i]);
1925       incrementProfileCounter(&S);
1926 
1927       // Now we want to restore the saved switch instance so that nested
1928       // switches continue to function properly
1929       SwitchInsn = SavedSwitchInsn;
1930 
1931       return;
1932     }
1933   }
1934 
1935   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1936 
1937   RunCleanupsScope ConditionScope(*this);
1938 
1939   if (S.getInit())
1940     EmitStmt(S.getInit());
1941 
1942   if (S.getConditionVariable())
1943     EmitDecl(*S.getConditionVariable());
1944   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1945 
1946   // Create basic block to hold stuff that comes after switch
1947   // statement. We also need to create a default block now so that
1948   // explicit case ranges tests can have a place to jump to on
1949   // failure.
1950   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1951   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1952   if (PGO.haveRegionCounts()) {
1953     // Walk the SwitchCase list to find how many there are.
1954     uint64_t DefaultCount = 0;
1955     unsigned NumCases = 0;
1956     for (const SwitchCase *Case = S.getSwitchCaseList();
1957          Case;
1958          Case = Case->getNextSwitchCase()) {
1959       if (isa<DefaultStmt>(Case))
1960         DefaultCount = getProfileCount(Case);
1961       NumCases += 1;
1962     }
1963     SwitchWeights = new SmallVector<uint64_t, 16>();
1964     SwitchWeights->reserve(NumCases);
1965     // The default needs to be first. We store the edge count, so we already
1966     // know the right weight.
1967     SwitchWeights->push_back(DefaultCount);
1968   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1969     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1970     // Initialize the default case.
1971     SwitchLikelihood->push_back(Stmt::LH_None);
1972   }
1973 
1974   CaseRangeBlock = DefaultBlock;
1975 
1976   // Clear the insertion point to indicate we are in unreachable code.
1977   Builder.ClearInsertionPoint();
1978 
1979   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1980   // then reuse last ContinueBlock.
1981   JumpDest OuterContinue;
1982   if (!BreakContinueStack.empty())
1983     OuterContinue = BreakContinueStack.back().ContinueBlock;
1984 
1985   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1986 
1987   // Emit switch body.
1988   EmitStmt(S.getBody());
1989 
1990   BreakContinueStack.pop_back();
1991 
1992   // Update the default block in case explicit case range tests have
1993   // been chained on top.
1994   SwitchInsn->setDefaultDest(CaseRangeBlock);
1995 
1996   // If a default was never emitted:
1997   if (!DefaultBlock->getParent()) {
1998     // If we have cleanups, emit the default block so that there's a
1999     // place to jump through the cleanups from.
2000     if (ConditionScope.requiresCleanups()) {
2001       EmitBlock(DefaultBlock);
2002 
2003     // Otherwise, just forward the default block to the switch end.
2004     } else {
2005       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
2006       delete DefaultBlock;
2007     }
2008   }
2009 
2010   ConditionScope.ForceCleanup();
2011 
2012   // Emit continuation.
2013   EmitBlock(SwitchExit.getBlock(), true);
2014   incrementProfileCounter(&S);
2015 
2016   // If the switch has a condition wrapped by __builtin_unpredictable,
2017   // create metadata that specifies that the switch is unpredictable.
2018   // Don't bother if not optimizing because that metadata would not be used.
2019   auto *Call = dyn_cast<CallExpr>(S.getCond());
2020   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2021     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2022     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2023       llvm::MDBuilder MDHelper(getLLVMContext());
2024       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2025                               MDHelper.createUnpredictable());
2026     }
2027   }
2028 
2029   if (SwitchWeights) {
2030     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2031            "switch weights do not match switch cases");
2032     // If there's only one jump destination there's no sense weighting it.
2033     if (SwitchWeights->size() > 1)
2034       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2035                               createProfileWeights(*SwitchWeights));
2036     delete SwitchWeights;
2037   } else if (SwitchLikelihood) {
2038     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2039            "switch likelihoods do not match switch cases");
2040     Optional<SmallVector<uint64_t, 16>> LHW =
2041         getLikelihoodWeights(*SwitchLikelihood);
2042     if (LHW) {
2043       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2044       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2045                               createProfileWeights(*LHW));
2046     }
2047     delete SwitchLikelihood;
2048   }
2049   SwitchInsn = SavedSwitchInsn;
2050   SwitchWeights = SavedSwitchWeights;
2051   SwitchLikelihood = SavedSwitchLikelihood;
2052   CaseRangeBlock = SavedCRBlock;
2053 }
2054 
2055 static std::string
2056 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2057                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2058   std::string Result;
2059 
2060   while (*Constraint) {
2061     switch (*Constraint) {
2062     default:
2063       Result += Target.convertConstraint(Constraint);
2064       break;
2065     // Ignore these
2066     case '*':
2067     case '?':
2068     case '!':
2069     case '=': // Will see this and the following in mult-alt constraints.
2070     case '+':
2071       break;
2072     case '#': // Ignore the rest of the constraint alternative.
2073       while (Constraint[1] && Constraint[1] != ',')
2074         Constraint++;
2075       break;
2076     case '&':
2077     case '%':
2078       Result += *Constraint;
2079       while (Constraint[1] && Constraint[1] == *Constraint)
2080         Constraint++;
2081       break;
2082     case ',':
2083       Result += "|";
2084       break;
2085     case 'g':
2086       Result += "imr";
2087       break;
2088     case '[': {
2089       assert(OutCons &&
2090              "Must pass output names to constraints with a symbolic name");
2091       unsigned Index;
2092       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2093       assert(result && "Could not resolve symbolic name"); (void)result;
2094       Result += llvm::utostr(Index);
2095       break;
2096     }
2097     }
2098 
2099     Constraint++;
2100   }
2101 
2102   return Result;
2103 }
2104 
2105 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2106 /// as using a particular register add that as a constraint that will be used
2107 /// in this asm stmt.
2108 static std::string
2109 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2110                        const TargetInfo &Target, CodeGenModule &CGM,
2111                        const AsmStmt &Stmt, const bool EarlyClobber,
2112                        std::string *GCCReg = nullptr) {
2113   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2114   if (!AsmDeclRef)
2115     return Constraint;
2116   const ValueDecl &Value = *AsmDeclRef->getDecl();
2117   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2118   if (!Variable)
2119     return Constraint;
2120   if (Variable->getStorageClass() != SC_Register)
2121     return Constraint;
2122   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2123   if (!Attr)
2124     return Constraint;
2125   StringRef Register = Attr->getLabel();
2126   assert(Target.isValidGCCRegisterName(Register));
2127   // We're using validateOutputConstraint here because we only care if
2128   // this is a register constraint.
2129   TargetInfo::ConstraintInfo Info(Constraint, "");
2130   if (Target.validateOutputConstraint(Info) &&
2131       !Info.allowsRegister()) {
2132     CGM.ErrorUnsupported(&Stmt, "__asm__");
2133     return Constraint;
2134   }
2135   // Canonicalize the register here before returning it.
2136   Register = Target.getNormalizedGCCRegisterName(Register);
2137   if (GCCReg != nullptr)
2138     *GCCReg = Register.str();
2139   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2140 }
2141 
2142 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2143     const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2144     QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2145   if (Info.allowsRegister() || !Info.allowsMemory()) {
2146     if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2147       return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2148 
2149     llvm::Type *Ty = ConvertType(InputType);
2150     uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2151     if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2152         getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2153       Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2154 
2155       return {Builder.CreateLoad(Builder.CreateElementBitCast(
2156                   InputValue.getAddress(*this), Ty)),
2157               nullptr};
2158     }
2159   }
2160 
2161   Address Addr = InputValue.getAddress(*this);
2162   ConstraintStr += '*';
2163   return {Addr.getPointer(), Addr.getElementType()};
2164 }
2165 
2166 std::pair<llvm::Value *, llvm::Type *>
2167 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2168                               const Expr *InputExpr,
2169                               std::string &ConstraintStr) {
2170   // If this can't be a register or memory, i.e., has to be a constant
2171   // (immediate or symbolic), try to emit it as such.
2172   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2173     if (Info.requiresImmediateConstant()) {
2174       Expr::EvalResult EVResult;
2175       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2176 
2177       llvm::APSInt IntResult;
2178       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2179                                           getContext()))
2180         return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2181     }
2182 
2183     Expr::EvalResult Result;
2184     if (InputExpr->EvaluateAsInt(Result, getContext()))
2185       return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2186               nullptr};
2187   }
2188 
2189   if (Info.allowsRegister() || !Info.allowsMemory())
2190     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2191       return {EmitScalarExpr(InputExpr), nullptr};
2192   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2193     return {EmitScalarExpr(InputExpr), nullptr};
2194   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2195   LValue Dest = EmitLValue(InputExpr);
2196   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2197                             InputExpr->getExprLoc());
2198 }
2199 
2200 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2201 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2202 /// integers which are the source locations of the start of each line in the
2203 /// asm.
2204 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2205                                       CodeGenFunction &CGF) {
2206   SmallVector<llvm::Metadata *, 8> Locs;
2207   // Add the location of the first line to the MDNode.
2208   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2209       CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2210   StringRef StrVal = Str->getString();
2211   if (!StrVal.empty()) {
2212     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2213     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2214     unsigned StartToken = 0;
2215     unsigned ByteOffset = 0;
2216 
2217     // Add the location of the start of each subsequent line of the asm to the
2218     // MDNode.
2219     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2220       if (StrVal[i] != '\n') continue;
2221       SourceLocation LineLoc = Str->getLocationOfByte(
2222           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2223       Locs.push_back(llvm::ConstantAsMetadata::get(
2224           llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2225     }
2226   }
2227 
2228   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2229 }
2230 
2231 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2232                               bool HasUnwindClobber, bool ReadOnly,
2233                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2234                               const std::vector<llvm::Type *> &ResultRegTypes,
2235                               const std::vector<llvm::Type *> &ArgElemTypes,
2236                               CodeGenFunction &CGF,
2237                               std::vector<llvm::Value *> &RegResults) {
2238   if (!HasUnwindClobber)
2239     Result.addFnAttr(llvm::Attribute::NoUnwind);
2240 
2241   if (NoMerge)
2242     Result.addFnAttr(llvm::Attribute::NoMerge);
2243   // Attach readnone and readonly attributes.
2244   if (!HasSideEffect) {
2245     if (ReadNone)
2246       Result.addFnAttr(llvm::Attribute::ReadNone);
2247     else if (ReadOnly)
2248       Result.addFnAttr(llvm::Attribute::ReadOnly);
2249   }
2250 
2251   // Add elementtype attribute for indirect constraints.
2252   for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2253     if (Pair.value()) {
2254       auto Attr = llvm::Attribute::get(
2255           CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2256       Result.addParamAttr(Pair.index(), Attr);
2257     }
2258   }
2259 
2260   // Slap the source location of the inline asm into a !srcloc metadata on the
2261   // call.
2262   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2263     Result.setMetadata("srcloc",
2264                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2265   else {
2266     // At least put the line number on MS inline asm blobs.
2267     llvm::Constant *Loc =
2268         llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2269     Result.setMetadata("srcloc",
2270                        llvm::MDNode::get(CGF.getLLVMContext(),
2271                                          llvm::ConstantAsMetadata::get(Loc)));
2272   }
2273 
2274   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2275     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2276     // convergent (meaning, they may call an intrinsically convergent op, such
2277     // as bar.sync, and so can't have certain optimizations applied around
2278     // them).
2279     Result.addFnAttr(llvm::Attribute::Convergent);
2280   // Extract all of the register value results from the asm.
2281   if (ResultRegTypes.size() == 1) {
2282     RegResults.push_back(&Result);
2283   } else {
2284     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2285       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2286       RegResults.push_back(Tmp);
2287     }
2288   }
2289 }
2290 
2291 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2292   // Assemble the final asm string.
2293   std::string AsmString = S.generateAsmString(getContext());
2294 
2295   // Get all the output and input constraints together.
2296   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2297   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2298 
2299   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2300     StringRef Name;
2301     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2302       Name = GAS->getOutputName(i);
2303     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2304     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2305     assert(IsValid && "Failed to parse output constraint");
2306     OutputConstraintInfos.push_back(Info);
2307   }
2308 
2309   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2310     StringRef Name;
2311     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2312       Name = GAS->getInputName(i);
2313     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2314     bool IsValid =
2315       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2316     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2317     InputConstraintInfos.push_back(Info);
2318   }
2319 
2320   std::string Constraints;
2321 
2322   std::vector<LValue> ResultRegDests;
2323   std::vector<QualType> ResultRegQualTys;
2324   std::vector<llvm::Type *> ResultRegTypes;
2325   std::vector<llvm::Type *> ResultTruncRegTypes;
2326   std::vector<llvm::Type *> ArgTypes;
2327   std::vector<llvm::Type *> ArgElemTypes;
2328   std::vector<llvm::Value*> Args;
2329   llvm::BitVector ResultTypeRequiresCast;
2330 
2331   // Keep track of inout constraints.
2332   std::string InOutConstraints;
2333   std::vector<llvm::Value*> InOutArgs;
2334   std::vector<llvm::Type*> InOutArgTypes;
2335   std::vector<llvm::Type*> InOutArgElemTypes;
2336 
2337   // Keep track of out constraints for tied input operand.
2338   std::vector<std::string> OutputConstraints;
2339 
2340   // Keep track of defined physregs.
2341   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2342 
2343   // An inline asm can be marked readonly if it meets the following conditions:
2344   //  - it doesn't have any sideeffects
2345   //  - it doesn't clobber memory
2346   //  - it doesn't return a value by-reference
2347   // It can be marked readnone if it doesn't have any input memory constraints
2348   // in addition to meeting the conditions listed above.
2349   bool ReadOnly = true, ReadNone = true;
2350 
2351   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2352     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2353 
2354     // Simplify the output constraint.
2355     std::string OutputConstraint(S.getOutputConstraint(i));
2356     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2357                                           getTarget(), &OutputConstraintInfos);
2358 
2359     const Expr *OutExpr = S.getOutputExpr(i);
2360     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2361 
2362     std::string GCCReg;
2363     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2364                                               getTarget(), CGM, S,
2365                                               Info.earlyClobber(),
2366                                               &GCCReg);
2367     // Give an error on multiple outputs to same physreg.
2368     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2369       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2370 
2371     OutputConstraints.push_back(OutputConstraint);
2372     LValue Dest = EmitLValue(OutExpr);
2373     if (!Constraints.empty())
2374       Constraints += ',';
2375 
2376     // If this is a register output, then make the inline asm return it
2377     // by-value.  If this is a memory result, return the value by-reference.
2378     QualType QTy = OutExpr->getType();
2379     const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2380                                      hasAggregateEvaluationKind(QTy);
2381     if (!Info.allowsMemory() && IsScalarOrAggregate) {
2382 
2383       Constraints += "=" + OutputConstraint;
2384       ResultRegQualTys.push_back(QTy);
2385       ResultRegDests.push_back(Dest);
2386 
2387       llvm::Type *Ty = ConvertTypeForMem(QTy);
2388       const bool RequiresCast = Info.allowsRegister() &&
2389           (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2390            Ty->isAggregateType());
2391 
2392       ResultTruncRegTypes.push_back(Ty);
2393       ResultTypeRequiresCast.push_back(RequiresCast);
2394 
2395       if (RequiresCast) {
2396         unsigned Size = getContext().getTypeSize(QTy);
2397         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2398       }
2399       ResultRegTypes.push_back(Ty);
2400       // If this output is tied to an input, and if the input is larger, then
2401       // we need to set the actual result type of the inline asm node to be the
2402       // same as the input type.
2403       if (Info.hasMatchingInput()) {
2404         unsigned InputNo;
2405         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2406           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2407           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2408             break;
2409         }
2410         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2411 
2412         QualType InputTy = S.getInputExpr(InputNo)->getType();
2413         QualType OutputType = OutExpr->getType();
2414 
2415         uint64_t InputSize = getContext().getTypeSize(InputTy);
2416         if (getContext().getTypeSize(OutputType) < InputSize) {
2417           // Form the asm to return the value as a larger integer or fp type.
2418           ResultRegTypes.back() = ConvertType(InputTy);
2419         }
2420       }
2421       if (llvm::Type* AdjTy =
2422             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2423                                                  ResultRegTypes.back()))
2424         ResultRegTypes.back() = AdjTy;
2425       else {
2426         CGM.getDiags().Report(S.getAsmLoc(),
2427                               diag::err_asm_invalid_type_in_input)
2428             << OutExpr->getType() << OutputConstraint;
2429       }
2430 
2431       // Update largest vector width for any vector types.
2432       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2433         LargestVectorWidth =
2434             std::max((uint64_t)LargestVectorWidth,
2435                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2436     } else {
2437       Address DestAddr = Dest.getAddress(*this);
2438       // Matrix types in memory are represented by arrays, but accessed through
2439       // vector pointers, with the alignment specified on the access operation.
2440       // For inline assembly, update pointer arguments to use vector pointers.
2441       // Otherwise there will be a mis-match if the matrix is also an
2442       // input-argument which is represented as vector.
2443       if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2444         DestAddr = Builder.CreateElementBitCast(
2445             DestAddr, ConvertType(OutExpr->getType()));
2446 
2447       ArgTypes.push_back(DestAddr.getType());
2448       ArgElemTypes.push_back(DestAddr.getElementType());
2449       Args.push_back(DestAddr.getPointer());
2450       Constraints += "=*";
2451       Constraints += OutputConstraint;
2452       ReadOnly = ReadNone = false;
2453     }
2454 
2455     if (Info.isReadWrite()) {
2456       InOutConstraints += ',';
2457 
2458       const Expr *InputExpr = S.getOutputExpr(i);
2459       llvm::Value *Arg;
2460       llvm::Type *ArgElemType;
2461       std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2462           Info, Dest, InputExpr->getType(), InOutConstraints,
2463           InputExpr->getExprLoc());
2464 
2465       if (llvm::Type* AdjTy =
2466           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2467                                                Arg->getType()))
2468         Arg = Builder.CreateBitCast(Arg, AdjTy);
2469 
2470       // Update largest vector width for any vector types.
2471       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2472         LargestVectorWidth =
2473             std::max((uint64_t)LargestVectorWidth,
2474                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2475       // Only tie earlyclobber physregs.
2476       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2477         InOutConstraints += llvm::utostr(i);
2478       else
2479         InOutConstraints += OutputConstraint;
2480 
2481       InOutArgTypes.push_back(Arg->getType());
2482       InOutArgElemTypes.push_back(ArgElemType);
2483       InOutArgs.push_back(Arg);
2484     }
2485   }
2486 
2487   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2488   // to the return value slot. Only do this when returning in registers.
2489   if (isa<MSAsmStmt>(&S)) {
2490     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2491     if (RetAI.isDirect() || RetAI.isExtend()) {
2492       // Make a fake lvalue for the return value slot.
2493       LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2494       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2495           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2496           ResultRegDests, AsmString, S.getNumOutputs());
2497       SawAsmBlock = true;
2498     }
2499   }
2500 
2501   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2502     const Expr *InputExpr = S.getInputExpr(i);
2503 
2504     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2505 
2506     if (Info.allowsMemory())
2507       ReadNone = false;
2508 
2509     if (!Constraints.empty())
2510       Constraints += ',';
2511 
2512     // Simplify the input constraint.
2513     std::string InputConstraint(S.getInputConstraint(i));
2514     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2515                                          &OutputConstraintInfos);
2516 
2517     InputConstraint = AddVariableConstraints(
2518         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2519         getTarget(), CGM, S, false /* No EarlyClobber */);
2520 
2521     std::string ReplaceConstraint (InputConstraint);
2522     llvm::Value *Arg;
2523     llvm::Type *ArgElemType;
2524     std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2525 
2526     // If this input argument is tied to a larger output result, extend the
2527     // input to be the same size as the output.  The LLVM backend wants to see
2528     // the input and output of a matching constraint be the same size.  Note
2529     // that GCC does not define what the top bits are here.  We use zext because
2530     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2531     if (Info.hasTiedOperand()) {
2532       unsigned Output = Info.getTiedOperand();
2533       QualType OutputType = S.getOutputExpr(Output)->getType();
2534       QualType InputTy = InputExpr->getType();
2535 
2536       if (getContext().getTypeSize(OutputType) >
2537           getContext().getTypeSize(InputTy)) {
2538         // Use ptrtoint as appropriate so that we can do our extension.
2539         if (isa<llvm::PointerType>(Arg->getType()))
2540           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2541         llvm::Type *OutputTy = ConvertType(OutputType);
2542         if (isa<llvm::IntegerType>(OutputTy))
2543           Arg = Builder.CreateZExt(Arg, OutputTy);
2544         else if (isa<llvm::PointerType>(OutputTy))
2545           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2546         else if (OutputTy->isFloatingPointTy())
2547           Arg = Builder.CreateFPExt(Arg, OutputTy);
2548       }
2549       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2550       ReplaceConstraint = OutputConstraints[Output];
2551     }
2552     if (llvm::Type* AdjTy =
2553           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2554                                                    Arg->getType()))
2555       Arg = Builder.CreateBitCast(Arg, AdjTy);
2556     else
2557       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2558           << InputExpr->getType() << InputConstraint;
2559 
2560     // Update largest vector width for any vector types.
2561     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2562       LargestVectorWidth =
2563           std::max((uint64_t)LargestVectorWidth,
2564                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2565 
2566     ArgTypes.push_back(Arg->getType());
2567     ArgElemTypes.push_back(ArgElemType);
2568     Args.push_back(Arg);
2569     Constraints += InputConstraint;
2570   }
2571 
2572   // Append the "input" part of inout constraints.
2573   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2574     ArgTypes.push_back(InOutArgTypes[i]);
2575     ArgElemTypes.push_back(InOutArgElemTypes[i]);
2576     Args.push_back(InOutArgs[i]);
2577   }
2578   Constraints += InOutConstraints;
2579 
2580   // Labels
2581   SmallVector<llvm::BasicBlock *, 16> Transfer;
2582   llvm::BasicBlock *Fallthrough = nullptr;
2583   bool IsGCCAsmGoto = false;
2584   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2585     IsGCCAsmGoto = GS->isAsmGoto();
2586     if (IsGCCAsmGoto) {
2587       for (const auto *E : GS->labels()) {
2588         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2589         Transfer.push_back(Dest.getBlock());
2590         llvm::BlockAddress *BA =
2591             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2592         Args.push_back(BA);
2593         ArgTypes.push_back(BA->getType());
2594         ArgElemTypes.push_back(nullptr);
2595         if (!Constraints.empty())
2596           Constraints += ',';
2597         Constraints += 'i';
2598       }
2599       Fallthrough = createBasicBlock("asm.fallthrough");
2600     }
2601   }
2602 
2603   bool HasUnwindClobber = false;
2604 
2605   // Clobbers
2606   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2607     StringRef Clobber = S.getClobber(i);
2608 
2609     if (Clobber == "memory")
2610       ReadOnly = ReadNone = false;
2611     else if (Clobber == "unwind") {
2612       HasUnwindClobber = true;
2613       continue;
2614     } else if (Clobber != "cc") {
2615       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2616       if (CGM.getCodeGenOpts().StackClashProtector &&
2617           getTarget().isSPRegName(Clobber)) {
2618         CGM.getDiags().Report(S.getAsmLoc(),
2619                               diag::warn_stack_clash_protection_inline_asm);
2620       }
2621     }
2622 
2623     if (isa<MSAsmStmt>(&S)) {
2624       if (Clobber == "eax" || Clobber == "edx") {
2625         if (Constraints.find("=&A") != std::string::npos)
2626           continue;
2627         std::string::size_type position1 =
2628             Constraints.find("={" + Clobber.str() + "}");
2629         if (position1 != std::string::npos) {
2630           Constraints.insert(position1 + 1, "&");
2631           continue;
2632         }
2633         std::string::size_type position2 = Constraints.find("=A");
2634         if (position2 != std::string::npos) {
2635           Constraints.insert(position2 + 1, "&");
2636           continue;
2637         }
2638       }
2639     }
2640     if (!Constraints.empty())
2641       Constraints += ',';
2642 
2643     Constraints += "~{";
2644     Constraints += Clobber;
2645     Constraints += '}';
2646   }
2647 
2648   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2649          "unwind clobber can't be used with asm goto");
2650 
2651   // Add machine specific clobbers
2652   std::string MachineClobbers = getTarget().getClobbers();
2653   if (!MachineClobbers.empty()) {
2654     if (!Constraints.empty())
2655       Constraints += ',';
2656     Constraints += MachineClobbers;
2657   }
2658 
2659   llvm::Type *ResultType;
2660   if (ResultRegTypes.empty())
2661     ResultType = VoidTy;
2662   else if (ResultRegTypes.size() == 1)
2663     ResultType = ResultRegTypes[0];
2664   else
2665     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2666 
2667   llvm::FunctionType *FTy =
2668     llvm::FunctionType::get(ResultType, ArgTypes, false);
2669 
2670   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2671 
2672   llvm::InlineAsm::AsmDialect GnuAsmDialect =
2673       CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
2674           ? llvm::InlineAsm::AD_ATT
2675           : llvm::InlineAsm::AD_Intel;
2676   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2677     llvm::InlineAsm::AD_Intel : GnuAsmDialect;
2678 
2679   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2680       FTy, AsmString, Constraints, HasSideEffect,
2681       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2682   std::vector<llvm::Value*> RegResults;
2683   if (IsGCCAsmGoto) {
2684     llvm::CallBrInst *Result =
2685         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2686     EmitBlock(Fallthrough);
2687     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2688                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2689                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2690   } else if (HasUnwindClobber) {
2691     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2692     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2693                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2694                       *this, RegResults);
2695   } else {
2696     llvm::CallInst *Result =
2697         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2698     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2699                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2700                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2701   }
2702 
2703   assert(RegResults.size() == ResultRegTypes.size());
2704   assert(RegResults.size() == ResultTruncRegTypes.size());
2705   assert(RegResults.size() == ResultRegDests.size());
2706   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2707   // in which case its size may grow.
2708   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2709   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2710     llvm::Value *Tmp = RegResults[i];
2711     llvm::Type *TruncTy = ResultTruncRegTypes[i];
2712 
2713     // If the result type of the LLVM IR asm doesn't match the result type of
2714     // the expression, do the conversion.
2715     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2716 
2717       // Truncate the integer result to the right size, note that TruncTy can be
2718       // a pointer.
2719       if (TruncTy->isFloatingPointTy())
2720         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2721       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2722         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2723         Tmp = Builder.CreateTrunc(Tmp,
2724                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2725         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2726       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2727         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2728         Tmp = Builder.CreatePtrToInt(Tmp,
2729                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2730         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2731       } else if (TruncTy->isIntegerTy()) {
2732         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2733       } else if (TruncTy->isVectorTy()) {
2734         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2735       }
2736     }
2737 
2738     LValue Dest = ResultRegDests[i];
2739     // ResultTypeRequiresCast elements correspond to the first
2740     // ResultTypeRequiresCast.size() elements of RegResults.
2741     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2742       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2743       Address A = Builder.CreateElementBitCast(Dest.getAddress(*this),
2744                                                ResultRegTypes[i]);
2745       if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) {
2746         Builder.CreateStore(Tmp, A);
2747         continue;
2748       }
2749 
2750       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2751       if (Ty.isNull()) {
2752         const Expr *OutExpr = S.getOutputExpr(i);
2753         CGM.getDiags().Report(OutExpr->getExprLoc(),
2754                               diag::err_store_value_to_reg);
2755         return;
2756       }
2757       Dest = MakeAddrLValue(A, Ty);
2758     }
2759     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2760   }
2761 }
2762 
2763 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2764   const RecordDecl *RD = S.getCapturedRecordDecl();
2765   QualType RecordTy = getContext().getRecordType(RD);
2766 
2767   // Initialize the captured struct.
2768   LValue SlotLV =
2769     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2770 
2771   RecordDecl::field_iterator CurField = RD->field_begin();
2772   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2773                                                  E = S.capture_init_end();
2774        I != E; ++I, ++CurField) {
2775     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2776     if (CurField->hasCapturedVLAType()) {
2777       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2778     } else {
2779       EmitInitializerForField(*CurField, LV, *I);
2780     }
2781   }
2782 
2783   return SlotLV;
2784 }
2785 
2786 /// Generate an outlined function for the body of a CapturedStmt, store any
2787 /// captured variables into the captured struct, and call the outlined function.
2788 llvm::Function *
2789 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2790   LValue CapStruct = InitCapturedStruct(S);
2791 
2792   // Emit the CapturedDecl
2793   CodeGenFunction CGF(CGM, true);
2794   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2795   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2796   delete CGF.CapturedStmtInfo;
2797 
2798   // Emit call to the helper function.
2799   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2800 
2801   return F;
2802 }
2803 
2804 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2805   LValue CapStruct = InitCapturedStruct(S);
2806   return CapStruct.getAddress(*this);
2807 }
2808 
2809 /// Creates the outlined function for a CapturedStmt.
2810 llvm::Function *
2811 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2812   assert(CapturedStmtInfo &&
2813     "CapturedStmtInfo should be set when generating the captured function");
2814   const CapturedDecl *CD = S.getCapturedDecl();
2815   const RecordDecl *RD = S.getCapturedRecordDecl();
2816   SourceLocation Loc = S.getBeginLoc();
2817   assert(CD->hasBody() && "missing CapturedDecl body");
2818 
2819   // Build the argument list.
2820   ASTContext &Ctx = CGM.getContext();
2821   FunctionArgList Args;
2822   Args.append(CD->param_begin(), CD->param_end());
2823 
2824   // Create the function declaration.
2825   const CGFunctionInfo &FuncInfo =
2826     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2827   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2828 
2829   llvm::Function *F =
2830     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2831                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2832   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2833   if (CD->isNothrow())
2834     F->addFnAttr(llvm::Attribute::NoUnwind);
2835 
2836   // Generate the function.
2837   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2838                 CD->getBody()->getBeginLoc());
2839   // Set the context parameter in CapturedStmtInfo.
2840   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2841   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2842 
2843   // Initialize variable-length arrays.
2844   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2845                                            Ctx.getTagDeclType(RD));
2846   for (auto *FD : RD->fields()) {
2847     if (FD->hasCapturedVLAType()) {
2848       auto *ExprArg =
2849           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2850               .getScalarVal();
2851       auto VAT = FD->getCapturedVLAType();
2852       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2853     }
2854   }
2855 
2856   // If 'this' is captured, load it into CXXThisValue.
2857   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2858     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2859     LValue ThisLValue = EmitLValueForField(Base, FD);
2860     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2861   }
2862 
2863   PGO.assignRegionCounters(GlobalDecl(CD), F);
2864   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2865   FinishFunction(CD->getBodyRBrace());
2866 
2867   return F;
2868 }
2869