1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/PrettyStackTrace.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/Support/SaveAndRestore.h"
30 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                              Statement Emission
37 //===----------------------------------------------------------------------===//
38 
39 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
40   if (CGDebugInfo *DI = getDebugInfo()) {
41     SourceLocation Loc;
42     Loc = S->getBeginLoc();
43     DI->EmitLocation(Builder, Loc);
44 
45     LastStopPoint = Loc;
46   }
47 }
48 
49 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
50   assert(S && "Null statement?");
51   PGO.setCurrentStmt(S);
52 
53   // These statements have their own debug info handling.
54   if (EmitSimpleStmt(S))
55     return;
56 
57   // Check if we are generating unreachable code.
58   if (!HaveInsertPoint()) {
59     // If so, and the statement doesn't contain a label, then we do not need to
60     // generate actual code. This is safe because (1) the current point is
61     // unreachable, so we don't need to execute the code, and (2) we've already
62     // handled the statements which update internal data structures (like the
63     // local variable map) which could be used by subsequent statements.
64     if (!ContainsLabel(S)) {
65       // Verify that any decl statements were handled as simple, they may be in
66       // scope of subsequent reachable statements.
67       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
68       return;
69     }
70 
71     // Otherwise, make a new block to hold the code.
72     EnsureInsertPoint();
73   }
74 
75   // Generate a stoppoint if we are emitting debug info.
76   EmitStopPoint(S);
77 
78   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
79   // enabled.
80   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
81     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
82       EmitSimpleOMPExecutableDirective(*D);
83       return;
84     }
85   }
86 
87   switch (S->getStmtClass()) {
88   case Stmt::NoStmtClass:
89   case Stmt::CXXCatchStmtClass:
90   case Stmt::SEHExceptStmtClass:
91   case Stmt::SEHFinallyStmtClass:
92   case Stmt::MSDependentExistsStmtClass:
93     llvm_unreachable("invalid statement class to emit generically");
94   case Stmt::NullStmtClass:
95   case Stmt::CompoundStmtClass:
96   case Stmt::DeclStmtClass:
97   case Stmt::LabelStmtClass:
98   case Stmt::AttributedStmtClass:
99   case Stmt::GotoStmtClass:
100   case Stmt::BreakStmtClass:
101   case Stmt::ContinueStmtClass:
102   case Stmt::DefaultStmtClass:
103   case Stmt::CaseStmtClass:
104   case Stmt::SEHLeaveStmtClass:
105     llvm_unreachable("should have emitted these statements as simple");
106 
107 #define STMT(Type, Base)
108 #define ABSTRACT_STMT(Op)
109 #define EXPR(Type, Base) \
110   case Stmt::Type##Class:
111 #include "clang/AST/StmtNodes.inc"
112   {
113     // Remember the block we came in on.
114     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
115     assert(incoming && "expression emission must have an insertion point");
116 
117     EmitIgnoredExpr(cast<Expr>(S));
118 
119     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
120     assert(outgoing && "expression emission cleared block!");
121 
122     // The expression emitters assume (reasonably!) that the insertion
123     // point is always set.  To maintain that, the call-emission code
124     // for noreturn functions has to enter a new block with no
125     // predecessors.  We want to kill that block and mark the current
126     // insertion point unreachable in the common case of a call like
127     // "exit();".  Since expression emission doesn't otherwise create
128     // blocks with no predecessors, we can just test for that.
129     // However, we must be careful not to do this to our incoming
130     // block, because *statement* emission does sometimes create
131     // reachable blocks which will have no predecessors until later in
132     // the function.  This occurs with, e.g., labels that are not
133     // reachable by fallthrough.
134     if (incoming != outgoing && outgoing->use_empty()) {
135       outgoing->eraseFromParent();
136       Builder.ClearInsertionPoint();
137     }
138     break;
139   }
140 
141   case Stmt::IndirectGotoStmtClass:
142     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
143 
144   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
145   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
146   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
147   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
148 
149   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
150 
151   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
152   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
153   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
154   case Stmt::CoroutineBodyStmtClass:
155     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
156     break;
157   case Stmt::CoreturnStmtClass:
158     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
159     break;
160   case Stmt::CapturedStmtClass: {
161     const CapturedStmt *CS = cast<CapturedStmt>(S);
162     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
163     }
164     break;
165   case Stmt::ObjCAtTryStmtClass:
166     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
167     break;
168   case Stmt::ObjCAtCatchStmtClass:
169     llvm_unreachable(
170                     "@catch statements should be handled by EmitObjCAtTryStmt");
171   case Stmt::ObjCAtFinallyStmtClass:
172     llvm_unreachable(
173                   "@finally statements should be handled by EmitObjCAtTryStmt");
174   case Stmt::ObjCAtThrowStmtClass:
175     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
176     break;
177   case Stmt::ObjCAtSynchronizedStmtClass:
178     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
179     break;
180   case Stmt::ObjCForCollectionStmtClass:
181     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
182     break;
183   case Stmt::ObjCAutoreleasePoolStmtClass:
184     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
185     break;
186 
187   case Stmt::CXXTryStmtClass:
188     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
189     break;
190   case Stmt::CXXForRangeStmtClass:
191     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
192     break;
193   case Stmt::SEHTryStmtClass:
194     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
195     break;
196   case Stmt::OMPParallelDirectiveClass:
197     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
198     break;
199   case Stmt::OMPSimdDirectiveClass:
200     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
201     break;
202   case Stmt::OMPForDirectiveClass:
203     EmitOMPForDirective(cast<OMPForDirective>(*S));
204     break;
205   case Stmt::OMPForSimdDirectiveClass:
206     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
207     break;
208   case Stmt::OMPSectionsDirectiveClass:
209     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
210     break;
211   case Stmt::OMPSectionDirectiveClass:
212     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
213     break;
214   case Stmt::OMPSingleDirectiveClass:
215     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
216     break;
217   case Stmt::OMPMasterDirectiveClass:
218     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
219     break;
220   case Stmt::OMPCriticalDirectiveClass:
221     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
222     break;
223   case Stmt::OMPParallelForDirectiveClass:
224     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
225     break;
226   case Stmt::OMPParallelForSimdDirectiveClass:
227     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
228     break;
229   case Stmt::OMPParallelMasterDirectiveClass:
230     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
231     break;
232   case Stmt::OMPParallelSectionsDirectiveClass:
233     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
234     break;
235   case Stmt::OMPTaskDirectiveClass:
236     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
237     break;
238   case Stmt::OMPTaskyieldDirectiveClass:
239     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
240     break;
241   case Stmt::OMPBarrierDirectiveClass:
242     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
243     break;
244   case Stmt::OMPTaskwaitDirectiveClass:
245     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
246     break;
247   case Stmt::OMPTaskgroupDirectiveClass:
248     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
249     break;
250   case Stmt::OMPFlushDirectiveClass:
251     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
252     break;
253   case Stmt::OMPDepobjDirectiveClass:
254     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
255     break;
256   case Stmt::OMPScanDirectiveClass:
257     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
258     break;
259   case Stmt::OMPOrderedDirectiveClass:
260     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
261     break;
262   case Stmt::OMPAtomicDirectiveClass:
263     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
264     break;
265   case Stmt::OMPTargetDirectiveClass:
266     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
267     break;
268   case Stmt::OMPTeamsDirectiveClass:
269     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
270     break;
271   case Stmt::OMPCancellationPointDirectiveClass:
272     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
273     break;
274   case Stmt::OMPCancelDirectiveClass:
275     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
276     break;
277   case Stmt::OMPTargetDataDirectiveClass:
278     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
279     break;
280   case Stmt::OMPTargetEnterDataDirectiveClass:
281     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
282     break;
283   case Stmt::OMPTargetExitDataDirectiveClass:
284     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
285     break;
286   case Stmt::OMPTargetParallelDirectiveClass:
287     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
288     break;
289   case Stmt::OMPTargetParallelForDirectiveClass:
290     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
291     break;
292   case Stmt::OMPTaskLoopDirectiveClass:
293     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
294     break;
295   case Stmt::OMPTaskLoopSimdDirectiveClass:
296     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
297     break;
298   case Stmt::OMPMasterTaskLoopDirectiveClass:
299     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
300     break;
301   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
302     EmitOMPMasterTaskLoopSimdDirective(
303         cast<OMPMasterTaskLoopSimdDirective>(*S));
304     break;
305   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
306     EmitOMPParallelMasterTaskLoopDirective(
307         cast<OMPParallelMasterTaskLoopDirective>(*S));
308     break;
309   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
310     EmitOMPParallelMasterTaskLoopSimdDirective(
311         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
312     break;
313   case Stmt::OMPDistributeDirectiveClass:
314     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
315     break;
316   case Stmt::OMPTargetUpdateDirectiveClass:
317     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
318     break;
319   case Stmt::OMPDistributeParallelForDirectiveClass:
320     EmitOMPDistributeParallelForDirective(
321         cast<OMPDistributeParallelForDirective>(*S));
322     break;
323   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
324     EmitOMPDistributeParallelForSimdDirective(
325         cast<OMPDistributeParallelForSimdDirective>(*S));
326     break;
327   case Stmt::OMPDistributeSimdDirectiveClass:
328     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
329     break;
330   case Stmt::OMPTargetParallelForSimdDirectiveClass:
331     EmitOMPTargetParallelForSimdDirective(
332         cast<OMPTargetParallelForSimdDirective>(*S));
333     break;
334   case Stmt::OMPTargetSimdDirectiveClass:
335     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
336     break;
337   case Stmt::OMPTeamsDistributeDirectiveClass:
338     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
339     break;
340   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
341     EmitOMPTeamsDistributeSimdDirective(
342         cast<OMPTeamsDistributeSimdDirective>(*S));
343     break;
344   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
345     EmitOMPTeamsDistributeParallelForSimdDirective(
346         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
347     break;
348   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
349     EmitOMPTeamsDistributeParallelForDirective(
350         cast<OMPTeamsDistributeParallelForDirective>(*S));
351     break;
352   case Stmt::OMPTargetTeamsDirectiveClass:
353     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
354     break;
355   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
356     EmitOMPTargetTeamsDistributeDirective(
357         cast<OMPTargetTeamsDistributeDirective>(*S));
358     break;
359   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
360     EmitOMPTargetTeamsDistributeParallelForDirective(
361         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
362     break;
363   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
364     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
365         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
366     break;
367   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
368     EmitOMPTargetTeamsDistributeSimdDirective(
369         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
370     break;
371   }
372 }
373 
374 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
375   switch (S->getStmtClass()) {
376   default: return false;
377   case Stmt::NullStmtClass: break;
378   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
379   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
380   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
381   case Stmt::AttributedStmtClass:
382                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
383   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
384   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
385   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
386   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
387   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
388   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
389   }
390 
391   return true;
392 }
393 
394 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
395 /// this captures the expression result of the last sub-statement and returns it
396 /// (for use by the statement expression extension).
397 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
398                                           AggValueSlot AggSlot) {
399   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
400                              "LLVM IR generation of compound statement ('{}')");
401 
402   // Keep track of the current cleanup stack depth, including debug scopes.
403   LexicalScope Scope(*this, S.getSourceRange());
404 
405   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
406 }
407 
408 Address
409 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
410                                               bool GetLast,
411                                               AggValueSlot AggSlot) {
412 
413   const Stmt *ExprResult = S.getStmtExprResult();
414   assert((!GetLast || (GetLast && ExprResult)) &&
415          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
416 
417   Address RetAlloca = Address::invalid();
418 
419   for (auto *CurStmt : S.body()) {
420     if (GetLast && ExprResult == CurStmt) {
421       // We have to special case labels here.  They are statements, but when put
422       // at the end of a statement expression, they yield the value of their
423       // subexpression.  Handle this by walking through all labels we encounter,
424       // emitting them before we evaluate the subexpr.
425       // Similar issues arise for attributed statements.
426       while (!isa<Expr>(ExprResult)) {
427         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
428           EmitLabel(LS->getDecl());
429           ExprResult = LS->getSubStmt();
430         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
431           // FIXME: Update this if we ever have attributes that affect the
432           // semantics of an expression.
433           ExprResult = AS->getSubStmt();
434         } else {
435           llvm_unreachable("unknown value statement");
436         }
437       }
438 
439       EnsureInsertPoint();
440 
441       const Expr *E = cast<Expr>(ExprResult);
442       QualType ExprTy = E->getType();
443       if (hasAggregateEvaluationKind(ExprTy)) {
444         EmitAggExpr(E, AggSlot);
445       } else {
446         // We can't return an RValue here because there might be cleanups at
447         // the end of the StmtExpr.  Because of that, we have to emit the result
448         // here into a temporary alloca.
449         RetAlloca = CreateMemTemp(ExprTy);
450         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
451                          /*IsInit*/ false);
452       }
453     } else {
454       EmitStmt(CurStmt);
455     }
456   }
457 
458   return RetAlloca;
459 }
460 
461 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
462   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
463 
464   // If there is a cleanup stack, then we it isn't worth trying to
465   // simplify this block (we would need to remove it from the scope map
466   // and cleanup entry).
467   if (!EHStack.empty())
468     return;
469 
470   // Can only simplify direct branches.
471   if (!BI || !BI->isUnconditional())
472     return;
473 
474   // Can only simplify empty blocks.
475   if (BI->getIterator() != BB->begin())
476     return;
477 
478   BB->replaceAllUsesWith(BI->getSuccessor(0));
479   BI->eraseFromParent();
480   BB->eraseFromParent();
481 }
482 
483 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
484   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
485 
486   // Fall out of the current block (if necessary).
487   EmitBranch(BB);
488 
489   if (IsFinished && BB->use_empty()) {
490     delete BB;
491     return;
492   }
493 
494   // Place the block after the current block, if possible, or else at
495   // the end of the function.
496   if (CurBB && CurBB->getParent())
497     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
498   else
499     CurFn->getBasicBlockList().push_back(BB);
500   Builder.SetInsertPoint(BB);
501 }
502 
503 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
504   // Emit a branch from the current block to the target one if this
505   // was a real block.  If this was just a fall-through block after a
506   // terminator, don't emit it.
507   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
508 
509   if (!CurBB || CurBB->getTerminator()) {
510     // If there is no insert point or the previous block is already
511     // terminated, don't touch it.
512   } else {
513     // Otherwise, create a fall-through branch.
514     Builder.CreateBr(Target);
515   }
516 
517   Builder.ClearInsertionPoint();
518 }
519 
520 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
521   bool inserted = false;
522   for (llvm::User *u : block->users()) {
523     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
524       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
525                                              block);
526       inserted = true;
527       break;
528     }
529   }
530 
531   if (!inserted)
532     CurFn->getBasicBlockList().push_back(block);
533 
534   Builder.SetInsertPoint(block);
535 }
536 
537 CodeGenFunction::JumpDest
538 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
539   JumpDest &Dest = LabelMap[D];
540   if (Dest.isValid()) return Dest;
541 
542   // Create, but don't insert, the new block.
543   Dest = JumpDest(createBasicBlock(D->getName()),
544                   EHScopeStack::stable_iterator::invalid(),
545                   NextCleanupDestIndex++);
546   return Dest;
547 }
548 
549 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
550   // Add this label to the current lexical scope if we're within any
551   // normal cleanups.  Jumps "in" to this label --- when permitted by
552   // the language --- may need to be routed around such cleanups.
553   if (EHStack.hasNormalCleanups() && CurLexicalScope)
554     CurLexicalScope->addLabel(D);
555 
556   JumpDest &Dest = LabelMap[D];
557 
558   // If we didn't need a forward reference to this label, just go
559   // ahead and create a destination at the current scope.
560   if (!Dest.isValid()) {
561     Dest = getJumpDestInCurrentScope(D->getName());
562 
563   // Otherwise, we need to give this label a target depth and remove
564   // it from the branch-fixups list.
565   } else {
566     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
567     Dest.setScopeDepth(EHStack.stable_begin());
568     ResolveBranchFixups(Dest.getBlock());
569   }
570 
571   EmitBlock(Dest.getBlock());
572 
573   // Emit debug info for labels.
574   if (CGDebugInfo *DI = getDebugInfo()) {
575     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
576       DI->setLocation(D->getLocation());
577       DI->EmitLabel(D, Builder);
578     }
579   }
580 
581   incrementProfileCounter(D->getStmt());
582 }
583 
584 /// Change the cleanup scope of the labels in this lexical scope to
585 /// match the scope of the enclosing context.
586 void CodeGenFunction::LexicalScope::rescopeLabels() {
587   assert(!Labels.empty());
588   EHScopeStack::stable_iterator innermostScope
589     = CGF.EHStack.getInnermostNormalCleanup();
590 
591   // Change the scope depth of all the labels.
592   for (SmallVectorImpl<const LabelDecl*>::const_iterator
593          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
594     assert(CGF.LabelMap.count(*i));
595     JumpDest &dest = CGF.LabelMap.find(*i)->second;
596     assert(dest.getScopeDepth().isValid());
597     assert(innermostScope.encloses(dest.getScopeDepth()));
598     dest.setScopeDepth(innermostScope);
599   }
600 
601   // Reparent the labels if the new scope also has cleanups.
602   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
603     ParentScope->Labels.append(Labels.begin(), Labels.end());
604   }
605 }
606 
607 
608 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
609   EmitLabel(S.getDecl());
610   EmitStmt(S.getSubStmt());
611 }
612 
613 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
614   bool nomerge = false;
615   for (const auto *A : S.getAttrs())
616     if (A->getKind() == attr::NoMerge) {
617       nomerge = true;
618       break;
619     }
620   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
621   EmitStmt(S.getSubStmt(), S.getAttrs());
622 }
623 
624 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
625   // If this code is reachable then emit a stop point (if generating
626   // debug info). We have to do this ourselves because we are on the
627   // "simple" statement path.
628   if (HaveInsertPoint())
629     EmitStopPoint(&S);
630 
631   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
632 }
633 
634 
635 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
636   if (const LabelDecl *Target = S.getConstantTarget()) {
637     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
638     return;
639   }
640 
641   // Ensure that we have an i8* for our PHI node.
642   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
643                                          Int8PtrTy, "addr");
644   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
645 
646   // Get the basic block for the indirect goto.
647   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
648 
649   // The first instruction in the block has to be the PHI for the switch dest,
650   // add an entry for this branch.
651   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
652 
653   EmitBranch(IndGotoBB);
654 }
655 static Optional<std::pair<uint32_t, uint32_t>>
656 getLikelihoodWeights(const IfStmt &If) {
657   switch (Stmt::getLikelihood(If.getThen(), If.getElse())) {
658   case Stmt::LH_Unlikely:
659     return std::pair<uint32_t, uint32_t>(llvm::UnlikelyBranchWeight,
660                                          llvm::LikelyBranchWeight);
661   case Stmt::LH_None:
662     return None;
663   case Stmt::LH_Likely:
664     return std::pair<uint32_t, uint32_t>(llvm::LikelyBranchWeight,
665                                          llvm::UnlikelyBranchWeight);
666   }
667   llvm_unreachable("Unknown Likelihood");
668 }
669 
670 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
671   // C99 6.8.4.1: The first substatement is executed if the expression compares
672   // unequal to 0.  The condition must be a scalar type.
673   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
674 
675   if (S.getInit())
676     EmitStmt(S.getInit());
677 
678   if (S.getConditionVariable())
679     EmitDecl(*S.getConditionVariable());
680 
681   // If the condition constant folds and can be elided, try to avoid emitting
682   // the condition and the dead arm of the if/else.
683   bool CondConstant;
684   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
685                                    S.isConstexpr())) {
686     // Figure out which block (then or else) is executed.
687     const Stmt *Executed = S.getThen();
688     const Stmt *Skipped  = S.getElse();
689     if (!CondConstant)  // Condition false?
690       std::swap(Executed, Skipped);
691 
692     // If the skipped block has no labels in it, just emit the executed block.
693     // This avoids emitting dead code and simplifies the CFG substantially.
694     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
695       if (CondConstant)
696         incrementProfileCounter(&S);
697       if (Executed) {
698         RunCleanupsScope ExecutedScope(*this);
699         EmitStmt(Executed);
700       }
701       return;
702     }
703   }
704 
705   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
706   // the conditional branch.
707   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
708   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
709   llvm::BasicBlock *ElseBlock = ContBlock;
710   if (S.getElse())
711     ElseBlock = createBasicBlock("if.else");
712 
713   // Prefer the PGO based weights over the likelihood attribute.
714   // When the build isn't optimized the metadata isn't used, so don't generate
715   // it.
716   llvm::MDNode *Weights = nullptr;
717   uint64_t Count = getProfileCount(S.getThen());
718   if (!Count && CGM.getCodeGenOpts().OptimizationLevel) {
719     Optional<std::pair<uint32_t, uint32_t>> LHW = getLikelihoodWeights(S);
720     if (LHW) {
721       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
722       Weights = MDHelper.createBranchWeights(LHW->first, LHW->second);
723     }
724   }
725 
726   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, Weights);
727 
728   // Emit the 'then' code.
729   EmitBlock(ThenBlock);
730   incrementProfileCounter(&S);
731   {
732     RunCleanupsScope ThenScope(*this);
733     EmitStmt(S.getThen());
734   }
735   EmitBranch(ContBlock);
736 
737   // Emit the 'else' code if present.
738   if (const Stmt *Else = S.getElse()) {
739     {
740       // There is no need to emit line number for an unconditional branch.
741       auto NL = ApplyDebugLocation::CreateEmpty(*this);
742       EmitBlock(ElseBlock);
743     }
744     {
745       RunCleanupsScope ElseScope(*this);
746       EmitStmt(Else);
747     }
748     {
749       // There is no need to emit line number for an unconditional branch.
750       auto NL = ApplyDebugLocation::CreateEmpty(*this);
751       EmitBranch(ContBlock);
752     }
753   }
754 
755   // Emit the continuation block for code after the if.
756   EmitBlock(ContBlock, true);
757 }
758 
759 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
760                                     ArrayRef<const Attr *> WhileAttrs) {
761   // Emit the header for the loop, which will also become
762   // the continue target.
763   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
764   EmitBlock(LoopHeader.getBlock());
765 
766   const SourceRange &R = S.getSourceRange();
767   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
768                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
769                  SourceLocToDebugLoc(R.getEnd()));
770 
771   // Create an exit block for when the condition fails, which will
772   // also become the break target.
773   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
774 
775   // Store the blocks to use for break and continue.
776   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
777 
778   // C++ [stmt.while]p2:
779   //   When the condition of a while statement is a declaration, the
780   //   scope of the variable that is declared extends from its point
781   //   of declaration (3.3.2) to the end of the while statement.
782   //   [...]
783   //   The object created in a condition is destroyed and created
784   //   with each iteration of the loop.
785   RunCleanupsScope ConditionScope(*this);
786 
787   if (S.getConditionVariable())
788     EmitDecl(*S.getConditionVariable());
789 
790   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
791   // evaluation of the controlling expression takes place before each
792   // execution of the loop body.
793   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
794 
795   // while(1) is common, avoid extra exit blocks.  Be sure
796   // to correctly handle break/continue though.
797   bool EmitBoolCondBranch = true;
798   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
799     if (C->isOne())
800       EmitBoolCondBranch = false;
801 
802   // As long as the condition is true, go to the loop body.
803   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
804   if (EmitBoolCondBranch) {
805     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
806     if (ConditionScope.requiresCleanups())
807       ExitBlock = createBasicBlock("while.exit");
808     Builder.CreateCondBr(
809         BoolCondVal, LoopBody, ExitBlock,
810         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
811 
812     if (ExitBlock != LoopExit.getBlock()) {
813       EmitBlock(ExitBlock);
814       EmitBranchThroughCleanup(LoopExit);
815     }
816   }
817 
818   // Emit the loop body.  We have to emit this in a cleanup scope
819   // because it might be a singleton DeclStmt.
820   {
821     RunCleanupsScope BodyScope(*this);
822     EmitBlock(LoopBody);
823     incrementProfileCounter(&S);
824     EmitStmt(S.getBody());
825   }
826 
827   BreakContinueStack.pop_back();
828 
829   // Immediately force cleanup.
830   ConditionScope.ForceCleanup();
831 
832   EmitStopPoint(&S);
833   // Branch to the loop header again.
834   EmitBranch(LoopHeader.getBlock());
835 
836   LoopStack.pop();
837 
838   // Emit the exit block.
839   EmitBlock(LoopExit.getBlock(), true);
840 
841   // The LoopHeader typically is just a branch if we skipped emitting
842   // a branch, try to erase it.
843   if (!EmitBoolCondBranch)
844     SimplifyForwardingBlocks(LoopHeader.getBlock());
845 }
846 
847 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
848                                  ArrayRef<const Attr *> DoAttrs) {
849   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
850   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
851 
852   uint64_t ParentCount = getCurrentProfileCount();
853 
854   // Store the blocks to use for break and continue.
855   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
856 
857   // Emit the body of the loop.
858   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
859 
860   EmitBlockWithFallThrough(LoopBody, &S);
861   {
862     RunCleanupsScope BodyScope(*this);
863     EmitStmt(S.getBody());
864   }
865 
866   EmitBlock(LoopCond.getBlock());
867 
868   const SourceRange &R = S.getSourceRange();
869   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
870                  SourceLocToDebugLoc(R.getBegin()),
871                  SourceLocToDebugLoc(R.getEnd()));
872 
873   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
874   // after each execution of the loop body."
875 
876   // Evaluate the conditional in the while header.
877   // C99 6.8.5p2/p4: The first substatement is executed if the expression
878   // compares unequal to 0.  The condition must be a scalar type.
879   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
880 
881   BreakContinueStack.pop_back();
882 
883   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
884   // to correctly handle break/continue though.
885   bool EmitBoolCondBranch = true;
886   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
887     if (C->isZero())
888       EmitBoolCondBranch = false;
889 
890   // As long as the condition is true, iterate the loop.
891   if (EmitBoolCondBranch) {
892     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
893     Builder.CreateCondBr(
894         BoolCondVal, LoopBody, LoopExit.getBlock(),
895         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
896   }
897 
898   LoopStack.pop();
899 
900   // Emit the exit block.
901   EmitBlock(LoopExit.getBlock());
902 
903   // The DoCond block typically is just a branch if we skipped
904   // emitting a branch, try to erase it.
905   if (!EmitBoolCondBranch)
906     SimplifyForwardingBlocks(LoopCond.getBlock());
907 }
908 
909 void CodeGenFunction::EmitForStmt(const ForStmt &S,
910                                   ArrayRef<const Attr *> ForAttrs) {
911   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
912 
913   LexicalScope ForScope(*this, S.getSourceRange());
914 
915   // Evaluate the first part before the loop.
916   if (S.getInit())
917     EmitStmt(S.getInit());
918 
919   // Start the loop with a block that tests the condition.
920   // If there's an increment, the continue scope will be overwritten
921   // later.
922   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
923   llvm::BasicBlock *CondBlock = Continue.getBlock();
924   EmitBlock(CondBlock);
925 
926   const SourceRange &R = S.getSourceRange();
927   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
928                  SourceLocToDebugLoc(R.getBegin()),
929                  SourceLocToDebugLoc(R.getEnd()));
930 
931   // If the for loop doesn't have an increment we can just use the
932   // condition as the continue block.  Otherwise we'll need to create
933   // a block for it (in the current scope, i.e. in the scope of the
934   // condition), and that we will become our continue block.
935   if (S.getInc())
936     Continue = getJumpDestInCurrentScope("for.inc");
937 
938   // Store the blocks to use for break and continue.
939   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
940 
941   // Create a cleanup scope for the condition variable cleanups.
942   LexicalScope ConditionScope(*this, S.getSourceRange());
943 
944   if (S.getCond()) {
945     // If the for statement has a condition scope, emit the local variable
946     // declaration.
947     if (S.getConditionVariable()) {
948       EmitDecl(*S.getConditionVariable());
949     }
950 
951     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
952     // If there are any cleanups between here and the loop-exit scope,
953     // create a block to stage a loop exit along.
954     if (ForScope.requiresCleanups())
955       ExitBlock = createBasicBlock("for.cond.cleanup");
956 
957     // As long as the condition is true, iterate the loop.
958     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
959 
960     // C99 6.8.5p2/p4: The first substatement is executed if the expression
961     // compares unequal to 0.  The condition must be a scalar type.
962     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
963     Builder.CreateCondBr(
964         BoolCondVal, ForBody, ExitBlock,
965         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
966 
967     if (ExitBlock != LoopExit.getBlock()) {
968       EmitBlock(ExitBlock);
969       EmitBranchThroughCleanup(LoopExit);
970     }
971 
972     EmitBlock(ForBody);
973   } else {
974     // Treat it as a non-zero constant.  Don't even create a new block for the
975     // body, just fall into it.
976   }
977   incrementProfileCounter(&S);
978 
979   {
980     // Create a separate cleanup scope for the body, in case it is not
981     // a compound statement.
982     RunCleanupsScope BodyScope(*this);
983     EmitStmt(S.getBody());
984   }
985 
986   // If there is an increment, emit it next.
987   if (S.getInc()) {
988     EmitBlock(Continue.getBlock());
989     EmitStmt(S.getInc());
990   }
991 
992   BreakContinueStack.pop_back();
993 
994   ConditionScope.ForceCleanup();
995 
996   EmitStopPoint(&S);
997   EmitBranch(CondBlock);
998 
999   ForScope.ForceCleanup();
1000 
1001   LoopStack.pop();
1002 
1003   // Emit the fall-through block.
1004   EmitBlock(LoopExit.getBlock(), true);
1005 }
1006 
1007 void
1008 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1009                                      ArrayRef<const Attr *> ForAttrs) {
1010   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1011 
1012   LexicalScope ForScope(*this, S.getSourceRange());
1013 
1014   // Evaluate the first pieces before the loop.
1015   if (S.getInit())
1016     EmitStmt(S.getInit());
1017   EmitStmt(S.getRangeStmt());
1018   EmitStmt(S.getBeginStmt());
1019   EmitStmt(S.getEndStmt());
1020 
1021   // Start the loop with a block that tests the condition.
1022   // If there's an increment, the continue scope will be overwritten
1023   // later.
1024   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1025   EmitBlock(CondBlock);
1026 
1027   const SourceRange &R = S.getSourceRange();
1028   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1029                  SourceLocToDebugLoc(R.getBegin()),
1030                  SourceLocToDebugLoc(R.getEnd()));
1031 
1032   // If there are any cleanups between here and the loop-exit scope,
1033   // create a block to stage a loop exit along.
1034   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1035   if (ForScope.requiresCleanups())
1036     ExitBlock = createBasicBlock("for.cond.cleanup");
1037 
1038   // The loop body, consisting of the specified body and the loop variable.
1039   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1040 
1041   // The body is executed if the expression, contextually converted
1042   // to bool, is true.
1043   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1044   Builder.CreateCondBr(
1045       BoolCondVal, ForBody, ExitBlock,
1046       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
1047 
1048   if (ExitBlock != LoopExit.getBlock()) {
1049     EmitBlock(ExitBlock);
1050     EmitBranchThroughCleanup(LoopExit);
1051   }
1052 
1053   EmitBlock(ForBody);
1054   incrementProfileCounter(&S);
1055 
1056   // Create a block for the increment. In case of a 'continue', we jump there.
1057   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1058 
1059   // Store the blocks to use for break and continue.
1060   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1061 
1062   {
1063     // Create a separate cleanup scope for the loop variable and body.
1064     LexicalScope BodyScope(*this, S.getSourceRange());
1065     EmitStmt(S.getLoopVarStmt());
1066     EmitStmt(S.getBody());
1067   }
1068 
1069   EmitStopPoint(&S);
1070   // If there is an increment, emit it next.
1071   EmitBlock(Continue.getBlock());
1072   EmitStmt(S.getInc());
1073 
1074   BreakContinueStack.pop_back();
1075 
1076   EmitBranch(CondBlock);
1077 
1078   ForScope.ForceCleanup();
1079 
1080   LoopStack.pop();
1081 
1082   // Emit the fall-through block.
1083   EmitBlock(LoopExit.getBlock(), true);
1084 }
1085 
1086 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1087   if (RV.isScalar()) {
1088     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1089   } else if (RV.isAggregate()) {
1090     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1091     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1092     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1093   } else {
1094     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1095                        /*init*/ true);
1096   }
1097   EmitBranchThroughCleanup(ReturnBlock);
1098 }
1099 
1100 namespace {
1101 // RAII struct used to save and restore a return statment's result expression.
1102 struct SaveRetExprRAII {
1103   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1104       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1105     CGF.RetExpr = RetExpr;
1106   }
1107   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1108   const Expr *OldRetExpr;
1109   CodeGenFunction &CGF;
1110 };
1111 } // namespace
1112 
1113 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1114 /// if the function returns void, or may be missing one if the function returns
1115 /// non-void.  Fun stuff :).
1116 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1117   if (requiresReturnValueCheck()) {
1118     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1119     auto *SLocPtr =
1120         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1121                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1122     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1123     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1124     assert(ReturnLocation.isValid() && "No valid return location");
1125     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1126                         ReturnLocation);
1127   }
1128 
1129   // Returning from an outlined SEH helper is UB, and we already warn on it.
1130   if (IsOutlinedSEHHelper) {
1131     Builder.CreateUnreachable();
1132     Builder.ClearInsertionPoint();
1133   }
1134 
1135   // Emit the result value, even if unused, to evaluate the side effects.
1136   const Expr *RV = S.getRetValue();
1137 
1138   // Record the result expression of the return statement. The recorded
1139   // expression is used to determine whether a block capture's lifetime should
1140   // end at the end of the full expression as opposed to the end of the scope
1141   // enclosing the block expression.
1142   //
1143   // This permits a small, easily-implemented exception to our over-conservative
1144   // rules about not jumping to statements following block literals with
1145   // non-trivial cleanups.
1146   SaveRetExprRAII SaveRetExpr(RV, *this);
1147 
1148   RunCleanupsScope cleanupScope(*this);
1149   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1150     RV = EWC->getSubExpr();
1151   // FIXME: Clean this up by using an LValue for ReturnTemp,
1152   // EmitStoreThroughLValue, and EmitAnyExpr.
1153   // Check if the NRVO candidate was not globalized in OpenMP mode.
1154   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1155       S.getNRVOCandidate()->isNRVOVariable() &&
1156       (!getLangOpts().OpenMP ||
1157        !CGM.getOpenMPRuntime()
1158             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1159             .isValid())) {
1160     // Apply the named return value optimization for this return statement,
1161     // which means doing nothing: the appropriate result has already been
1162     // constructed into the NRVO variable.
1163 
1164     // If there is an NRVO flag for this variable, set it to 1 into indicate
1165     // that the cleanup code should not destroy the variable.
1166     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1167       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1168   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1169     // Make sure not to return anything, but evaluate the expression
1170     // for side effects.
1171     if (RV)
1172       EmitAnyExpr(RV);
1173   } else if (!RV) {
1174     // Do nothing (return value is left uninitialized)
1175   } else if (FnRetTy->isReferenceType()) {
1176     // If this function returns a reference, take the address of the expression
1177     // rather than the value.
1178     RValue Result = EmitReferenceBindingToExpr(RV);
1179     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1180   } else {
1181     switch (getEvaluationKind(RV->getType())) {
1182     case TEK_Scalar:
1183       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1184       break;
1185     case TEK_Complex:
1186       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1187                                 /*isInit*/ true);
1188       break;
1189     case TEK_Aggregate:
1190       EmitAggExpr(RV, AggValueSlot::forAddr(
1191                           ReturnValue, Qualifiers(),
1192                           AggValueSlot::IsDestructed,
1193                           AggValueSlot::DoesNotNeedGCBarriers,
1194                           AggValueSlot::IsNotAliased,
1195                           getOverlapForReturnValue()));
1196       break;
1197     }
1198   }
1199 
1200   ++NumReturnExprs;
1201   if (!RV || RV->isEvaluatable(getContext()))
1202     ++NumSimpleReturnExprs;
1203 
1204   cleanupScope.ForceCleanup();
1205   EmitBranchThroughCleanup(ReturnBlock);
1206 }
1207 
1208 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1209   // As long as debug info is modeled with instructions, we have to ensure we
1210   // have a place to insert here and write the stop point here.
1211   if (HaveInsertPoint())
1212     EmitStopPoint(&S);
1213 
1214   for (const auto *I : S.decls())
1215     EmitDecl(*I);
1216 }
1217 
1218 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1219   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1220 
1221   // If this code is reachable then emit a stop point (if generating
1222   // debug info). We have to do this ourselves because we are on the
1223   // "simple" statement path.
1224   if (HaveInsertPoint())
1225     EmitStopPoint(&S);
1226 
1227   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1228 }
1229 
1230 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1231   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1232 
1233   // If this code is reachable then emit a stop point (if generating
1234   // debug info). We have to do this ourselves because we are on the
1235   // "simple" statement path.
1236   if (HaveInsertPoint())
1237     EmitStopPoint(&S);
1238 
1239   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1240 }
1241 
1242 /// EmitCaseStmtRange - If case statement range is not too big then
1243 /// add multiple cases to switch instruction, one for each value within
1244 /// the range. If range is too big then emit "if" condition check.
1245 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1246   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1247 
1248   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1249   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1250 
1251   // Emit the code for this case. We do this first to make sure it is
1252   // properly chained from our predecessor before generating the
1253   // switch machinery to enter this block.
1254   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1255   EmitBlockWithFallThrough(CaseDest, &S);
1256   EmitStmt(S.getSubStmt());
1257 
1258   // If range is empty, do nothing.
1259   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1260     return;
1261 
1262   llvm::APInt Range = RHS - LHS;
1263   // FIXME: parameters such as this should not be hardcoded.
1264   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1265     // Range is small enough to add multiple switch instruction cases.
1266     uint64_t Total = getProfileCount(&S);
1267     unsigned NCases = Range.getZExtValue() + 1;
1268     // We only have one region counter for the entire set of cases here, so we
1269     // need to divide the weights evenly between the generated cases, ensuring
1270     // that the total weight is preserved. E.g., a weight of 5 over three cases
1271     // will be distributed as weights of 2, 2, and 1.
1272     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1273     for (unsigned I = 0; I != NCases; ++I) {
1274       if (SwitchWeights)
1275         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1276       if (Rem)
1277         Rem--;
1278       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1279       ++LHS;
1280     }
1281     return;
1282   }
1283 
1284   // The range is too big. Emit "if" condition into a new block,
1285   // making sure to save and restore the current insertion point.
1286   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1287 
1288   // Push this test onto the chain of range checks (which terminates
1289   // in the default basic block). The switch's default will be changed
1290   // to the top of this chain after switch emission is complete.
1291   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1292   CaseRangeBlock = createBasicBlock("sw.caserange");
1293 
1294   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1295   Builder.SetInsertPoint(CaseRangeBlock);
1296 
1297   // Emit range check.
1298   llvm::Value *Diff =
1299     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1300   llvm::Value *Cond =
1301     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1302 
1303   llvm::MDNode *Weights = nullptr;
1304   if (SwitchWeights) {
1305     uint64_t ThisCount = getProfileCount(&S);
1306     uint64_t DefaultCount = (*SwitchWeights)[0];
1307     Weights = createProfileWeights(ThisCount, DefaultCount);
1308 
1309     // Since we're chaining the switch default through each large case range, we
1310     // need to update the weight for the default, ie, the first case, to include
1311     // this case.
1312     (*SwitchWeights)[0] += ThisCount;
1313   }
1314   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1315 
1316   // Restore the appropriate insertion point.
1317   if (RestoreBB)
1318     Builder.SetInsertPoint(RestoreBB);
1319   else
1320     Builder.ClearInsertionPoint();
1321 }
1322 
1323 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1324   // If there is no enclosing switch instance that we're aware of, then this
1325   // case statement and its block can be elided.  This situation only happens
1326   // when we've constant-folded the switch, are emitting the constant case,
1327   // and part of the constant case includes another case statement.  For
1328   // instance: switch (4) { case 4: do { case 5: } while (1); }
1329   if (!SwitchInsn) {
1330     EmitStmt(S.getSubStmt());
1331     return;
1332   }
1333 
1334   // Handle case ranges.
1335   if (S.getRHS()) {
1336     EmitCaseStmtRange(S);
1337     return;
1338   }
1339 
1340   llvm::ConstantInt *CaseVal =
1341     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1342 
1343   // If the body of the case is just a 'break', try to not emit an empty block.
1344   // If we're profiling or we're not optimizing, leave the block in for better
1345   // debug and coverage analysis.
1346   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1347       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1348       isa<BreakStmt>(S.getSubStmt())) {
1349     JumpDest Block = BreakContinueStack.back().BreakBlock;
1350 
1351     // Only do this optimization if there are no cleanups that need emitting.
1352     if (isObviouslyBranchWithoutCleanups(Block)) {
1353       if (SwitchWeights)
1354         SwitchWeights->push_back(getProfileCount(&S));
1355       SwitchInsn->addCase(CaseVal, Block.getBlock());
1356 
1357       // If there was a fallthrough into this case, make sure to redirect it to
1358       // the end of the switch as well.
1359       if (Builder.GetInsertBlock()) {
1360         Builder.CreateBr(Block.getBlock());
1361         Builder.ClearInsertionPoint();
1362       }
1363       return;
1364     }
1365   }
1366 
1367   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1368   EmitBlockWithFallThrough(CaseDest, &S);
1369   if (SwitchWeights)
1370     SwitchWeights->push_back(getProfileCount(&S));
1371   SwitchInsn->addCase(CaseVal, CaseDest);
1372 
1373   // Recursively emitting the statement is acceptable, but is not wonderful for
1374   // code where we have many case statements nested together, i.e.:
1375   //  case 1:
1376   //    case 2:
1377   //      case 3: etc.
1378   // Handling this recursively will create a new block for each case statement
1379   // that falls through to the next case which is IR intensive.  It also causes
1380   // deep recursion which can run into stack depth limitations.  Handle
1381   // sequential non-range case statements specially.
1382   const CaseStmt *CurCase = &S;
1383   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1384 
1385   // Otherwise, iteratively add consecutive cases to this switch stmt.
1386   while (NextCase && NextCase->getRHS() == nullptr) {
1387     CurCase = NextCase;
1388     llvm::ConstantInt *CaseVal =
1389       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1390 
1391     if (SwitchWeights)
1392       SwitchWeights->push_back(getProfileCount(NextCase));
1393     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1394       CaseDest = createBasicBlock("sw.bb");
1395       EmitBlockWithFallThrough(CaseDest, &S);
1396     }
1397 
1398     SwitchInsn->addCase(CaseVal, CaseDest);
1399     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1400   }
1401 
1402   // Normal default recursion for non-cases.
1403   EmitStmt(CurCase->getSubStmt());
1404 }
1405 
1406 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1407   // If there is no enclosing switch instance that we're aware of, then this
1408   // default statement can be elided. This situation only happens when we've
1409   // constant-folded the switch.
1410   if (!SwitchInsn) {
1411     EmitStmt(S.getSubStmt());
1412     return;
1413   }
1414 
1415   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1416   assert(DefaultBlock->empty() &&
1417          "EmitDefaultStmt: Default block already defined?");
1418 
1419   EmitBlockWithFallThrough(DefaultBlock, &S);
1420 
1421   EmitStmt(S.getSubStmt());
1422 }
1423 
1424 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1425 /// constant value that is being switched on, see if we can dead code eliminate
1426 /// the body of the switch to a simple series of statements to emit.  Basically,
1427 /// on a switch (5) we want to find these statements:
1428 ///    case 5:
1429 ///      printf(...);    <--
1430 ///      ++i;            <--
1431 ///      break;
1432 ///
1433 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1434 /// transformation (for example, one of the elided statements contains a label
1435 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1436 /// should include statements after it (e.g. the printf() line is a substmt of
1437 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1438 /// statement, then return CSFC_Success.
1439 ///
1440 /// If Case is non-null, then we are looking for the specified case, checking
1441 /// that nothing we jump over contains labels.  If Case is null, then we found
1442 /// the case and are looking for the break.
1443 ///
1444 /// If the recursive walk actually finds our Case, then we set FoundCase to
1445 /// true.
1446 ///
1447 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1448 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1449                                             const SwitchCase *Case,
1450                                             bool &FoundCase,
1451                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1452   // If this is a null statement, just succeed.
1453   if (!S)
1454     return Case ? CSFC_Success : CSFC_FallThrough;
1455 
1456   // If this is the switchcase (case 4: or default) that we're looking for, then
1457   // we're in business.  Just add the substatement.
1458   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1459     if (S == Case) {
1460       FoundCase = true;
1461       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1462                                       ResultStmts);
1463     }
1464 
1465     // Otherwise, this is some other case or default statement, just ignore it.
1466     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1467                                     ResultStmts);
1468   }
1469 
1470   // If we are in the live part of the code and we found our break statement,
1471   // return a success!
1472   if (!Case && isa<BreakStmt>(S))
1473     return CSFC_Success;
1474 
1475   // If this is a switch statement, then it might contain the SwitchCase, the
1476   // break, or neither.
1477   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1478     // Handle this as two cases: we might be looking for the SwitchCase (if so
1479     // the skipped statements must be skippable) or we might already have it.
1480     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1481     bool StartedInLiveCode = FoundCase;
1482     unsigned StartSize = ResultStmts.size();
1483 
1484     // If we've not found the case yet, scan through looking for it.
1485     if (Case) {
1486       // Keep track of whether we see a skipped declaration.  The code could be
1487       // using the declaration even if it is skipped, so we can't optimize out
1488       // the decl if the kept statements might refer to it.
1489       bool HadSkippedDecl = false;
1490 
1491       // If we're looking for the case, just see if we can skip each of the
1492       // substatements.
1493       for (; Case && I != E; ++I) {
1494         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1495 
1496         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1497         case CSFC_Failure: return CSFC_Failure;
1498         case CSFC_Success:
1499           // A successful result means that either 1) that the statement doesn't
1500           // have the case and is skippable, or 2) does contain the case value
1501           // and also contains the break to exit the switch.  In the later case,
1502           // we just verify the rest of the statements are elidable.
1503           if (FoundCase) {
1504             // If we found the case and skipped declarations, we can't do the
1505             // optimization.
1506             if (HadSkippedDecl)
1507               return CSFC_Failure;
1508 
1509             for (++I; I != E; ++I)
1510               if (CodeGenFunction::ContainsLabel(*I, true))
1511                 return CSFC_Failure;
1512             return CSFC_Success;
1513           }
1514           break;
1515         case CSFC_FallThrough:
1516           // If we have a fallthrough condition, then we must have found the
1517           // case started to include statements.  Consider the rest of the
1518           // statements in the compound statement as candidates for inclusion.
1519           assert(FoundCase && "Didn't find case but returned fallthrough?");
1520           // We recursively found Case, so we're not looking for it anymore.
1521           Case = nullptr;
1522 
1523           // If we found the case and skipped declarations, we can't do the
1524           // optimization.
1525           if (HadSkippedDecl)
1526             return CSFC_Failure;
1527           break;
1528         }
1529       }
1530 
1531       if (!FoundCase)
1532         return CSFC_Success;
1533 
1534       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1535     }
1536 
1537     // If we have statements in our range, then we know that the statements are
1538     // live and need to be added to the set of statements we're tracking.
1539     bool AnyDecls = false;
1540     for (; I != E; ++I) {
1541       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1542 
1543       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1544       case CSFC_Failure: return CSFC_Failure;
1545       case CSFC_FallThrough:
1546         // A fallthrough result means that the statement was simple and just
1547         // included in ResultStmt, keep adding them afterwards.
1548         break;
1549       case CSFC_Success:
1550         // A successful result means that we found the break statement and
1551         // stopped statement inclusion.  We just ensure that any leftover stmts
1552         // are skippable and return success ourselves.
1553         for (++I; I != E; ++I)
1554           if (CodeGenFunction::ContainsLabel(*I, true))
1555             return CSFC_Failure;
1556         return CSFC_Success;
1557       }
1558     }
1559 
1560     // If we're about to fall out of a scope without hitting a 'break;', we
1561     // can't perform the optimization if there were any decls in that scope
1562     // (we'd lose their end-of-lifetime).
1563     if (AnyDecls) {
1564       // If the entire compound statement was live, there's one more thing we
1565       // can try before giving up: emit the whole thing as a single statement.
1566       // We can do that unless the statement contains a 'break;'.
1567       // FIXME: Such a break must be at the end of a construct within this one.
1568       // We could emit this by just ignoring the BreakStmts entirely.
1569       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1570         ResultStmts.resize(StartSize);
1571         ResultStmts.push_back(S);
1572       } else {
1573         return CSFC_Failure;
1574       }
1575     }
1576 
1577     return CSFC_FallThrough;
1578   }
1579 
1580   // Okay, this is some other statement that we don't handle explicitly, like a
1581   // for statement or increment etc.  If we are skipping over this statement,
1582   // just verify it doesn't have labels, which would make it invalid to elide.
1583   if (Case) {
1584     if (CodeGenFunction::ContainsLabel(S, true))
1585       return CSFC_Failure;
1586     return CSFC_Success;
1587   }
1588 
1589   // Otherwise, we want to include this statement.  Everything is cool with that
1590   // so long as it doesn't contain a break out of the switch we're in.
1591   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1592 
1593   // Otherwise, everything is great.  Include the statement and tell the caller
1594   // that we fall through and include the next statement as well.
1595   ResultStmts.push_back(S);
1596   return CSFC_FallThrough;
1597 }
1598 
1599 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1600 /// then invoke CollectStatementsForCase to find the list of statements to emit
1601 /// for a switch on constant.  See the comment above CollectStatementsForCase
1602 /// for more details.
1603 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1604                                        const llvm::APSInt &ConstantCondValue,
1605                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1606                                        ASTContext &C,
1607                                        const SwitchCase *&ResultCase) {
1608   // First step, find the switch case that is being branched to.  We can do this
1609   // efficiently by scanning the SwitchCase list.
1610   const SwitchCase *Case = S.getSwitchCaseList();
1611   const DefaultStmt *DefaultCase = nullptr;
1612 
1613   for (; Case; Case = Case->getNextSwitchCase()) {
1614     // It's either a default or case.  Just remember the default statement in
1615     // case we're not jumping to any numbered cases.
1616     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1617       DefaultCase = DS;
1618       continue;
1619     }
1620 
1621     // Check to see if this case is the one we're looking for.
1622     const CaseStmt *CS = cast<CaseStmt>(Case);
1623     // Don't handle case ranges yet.
1624     if (CS->getRHS()) return false;
1625 
1626     // If we found our case, remember it as 'case'.
1627     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1628       break;
1629   }
1630 
1631   // If we didn't find a matching case, we use a default if it exists, or we
1632   // elide the whole switch body!
1633   if (!Case) {
1634     // It is safe to elide the body of the switch if it doesn't contain labels
1635     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1636     if (!DefaultCase)
1637       return !CodeGenFunction::ContainsLabel(&S);
1638     Case = DefaultCase;
1639   }
1640 
1641   // Ok, we know which case is being jumped to, try to collect all the
1642   // statements that follow it.  This can fail for a variety of reasons.  Also,
1643   // check to see that the recursive walk actually found our case statement.
1644   // Insane cases like this can fail to find it in the recursive walk since we
1645   // don't handle every stmt kind:
1646   // switch (4) {
1647   //   while (1) {
1648   //     case 4: ...
1649   bool FoundCase = false;
1650   ResultCase = Case;
1651   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1652                                   ResultStmts) != CSFC_Failure &&
1653          FoundCase;
1654 }
1655 
1656 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1657   // Handle nested switch statements.
1658   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1659   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1660   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1661 
1662   // See if we can constant fold the condition of the switch and therefore only
1663   // emit the live case statement (if any) of the switch.
1664   llvm::APSInt ConstantCondValue;
1665   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1666     SmallVector<const Stmt*, 4> CaseStmts;
1667     const SwitchCase *Case = nullptr;
1668     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1669                                    getContext(), Case)) {
1670       if (Case)
1671         incrementProfileCounter(Case);
1672       RunCleanupsScope ExecutedScope(*this);
1673 
1674       if (S.getInit())
1675         EmitStmt(S.getInit());
1676 
1677       // Emit the condition variable if needed inside the entire cleanup scope
1678       // used by this special case for constant folded switches.
1679       if (S.getConditionVariable())
1680         EmitDecl(*S.getConditionVariable());
1681 
1682       // At this point, we are no longer "within" a switch instance, so
1683       // we can temporarily enforce this to ensure that any embedded case
1684       // statements are not emitted.
1685       SwitchInsn = nullptr;
1686 
1687       // Okay, we can dead code eliminate everything except this case.  Emit the
1688       // specified series of statements and we're good.
1689       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1690         EmitStmt(CaseStmts[i]);
1691       incrementProfileCounter(&S);
1692 
1693       // Now we want to restore the saved switch instance so that nested
1694       // switches continue to function properly
1695       SwitchInsn = SavedSwitchInsn;
1696 
1697       return;
1698     }
1699   }
1700 
1701   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1702 
1703   RunCleanupsScope ConditionScope(*this);
1704 
1705   if (S.getInit())
1706     EmitStmt(S.getInit());
1707 
1708   if (S.getConditionVariable())
1709     EmitDecl(*S.getConditionVariable());
1710   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1711 
1712   // Create basic block to hold stuff that comes after switch
1713   // statement. We also need to create a default block now so that
1714   // explicit case ranges tests can have a place to jump to on
1715   // failure.
1716   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1717   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1718   if (PGO.haveRegionCounts()) {
1719     // Walk the SwitchCase list to find how many there are.
1720     uint64_t DefaultCount = 0;
1721     unsigned NumCases = 0;
1722     for (const SwitchCase *Case = S.getSwitchCaseList();
1723          Case;
1724          Case = Case->getNextSwitchCase()) {
1725       if (isa<DefaultStmt>(Case))
1726         DefaultCount = getProfileCount(Case);
1727       NumCases += 1;
1728     }
1729     SwitchWeights = new SmallVector<uint64_t, 16>();
1730     SwitchWeights->reserve(NumCases);
1731     // The default needs to be first. We store the edge count, so we already
1732     // know the right weight.
1733     SwitchWeights->push_back(DefaultCount);
1734   }
1735   CaseRangeBlock = DefaultBlock;
1736 
1737   // Clear the insertion point to indicate we are in unreachable code.
1738   Builder.ClearInsertionPoint();
1739 
1740   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1741   // then reuse last ContinueBlock.
1742   JumpDest OuterContinue;
1743   if (!BreakContinueStack.empty())
1744     OuterContinue = BreakContinueStack.back().ContinueBlock;
1745 
1746   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1747 
1748   // Emit switch body.
1749   EmitStmt(S.getBody());
1750 
1751   BreakContinueStack.pop_back();
1752 
1753   // Update the default block in case explicit case range tests have
1754   // been chained on top.
1755   SwitchInsn->setDefaultDest(CaseRangeBlock);
1756 
1757   // If a default was never emitted:
1758   if (!DefaultBlock->getParent()) {
1759     // If we have cleanups, emit the default block so that there's a
1760     // place to jump through the cleanups from.
1761     if (ConditionScope.requiresCleanups()) {
1762       EmitBlock(DefaultBlock);
1763 
1764     // Otherwise, just forward the default block to the switch end.
1765     } else {
1766       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1767       delete DefaultBlock;
1768     }
1769   }
1770 
1771   ConditionScope.ForceCleanup();
1772 
1773   // Emit continuation.
1774   EmitBlock(SwitchExit.getBlock(), true);
1775   incrementProfileCounter(&S);
1776 
1777   // If the switch has a condition wrapped by __builtin_unpredictable,
1778   // create metadata that specifies that the switch is unpredictable.
1779   // Don't bother if not optimizing because that metadata would not be used.
1780   auto *Call = dyn_cast<CallExpr>(S.getCond());
1781   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1782     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1783     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1784       llvm::MDBuilder MDHelper(getLLVMContext());
1785       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1786                               MDHelper.createUnpredictable());
1787     }
1788   }
1789 
1790   if (SwitchWeights) {
1791     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1792            "switch weights do not match switch cases");
1793     // If there's only one jump destination there's no sense weighting it.
1794     if (SwitchWeights->size() > 1)
1795       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1796                               createProfileWeights(*SwitchWeights));
1797     delete SwitchWeights;
1798   }
1799   SwitchInsn = SavedSwitchInsn;
1800   SwitchWeights = SavedSwitchWeights;
1801   CaseRangeBlock = SavedCRBlock;
1802 }
1803 
1804 static std::string
1805 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1806                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1807   std::string Result;
1808 
1809   while (*Constraint) {
1810     switch (*Constraint) {
1811     default:
1812       Result += Target.convertConstraint(Constraint);
1813       break;
1814     // Ignore these
1815     case '*':
1816     case '?':
1817     case '!':
1818     case '=': // Will see this and the following in mult-alt constraints.
1819     case '+':
1820       break;
1821     case '#': // Ignore the rest of the constraint alternative.
1822       while (Constraint[1] && Constraint[1] != ',')
1823         Constraint++;
1824       break;
1825     case '&':
1826     case '%':
1827       Result += *Constraint;
1828       while (Constraint[1] && Constraint[1] == *Constraint)
1829         Constraint++;
1830       break;
1831     case ',':
1832       Result += "|";
1833       break;
1834     case 'g':
1835       Result += "imr";
1836       break;
1837     case '[': {
1838       assert(OutCons &&
1839              "Must pass output names to constraints with a symbolic name");
1840       unsigned Index;
1841       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1842       assert(result && "Could not resolve symbolic name"); (void)result;
1843       Result += llvm::utostr(Index);
1844       break;
1845     }
1846     }
1847 
1848     Constraint++;
1849   }
1850 
1851   return Result;
1852 }
1853 
1854 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1855 /// as using a particular register add that as a constraint that will be used
1856 /// in this asm stmt.
1857 static std::string
1858 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1859                        const TargetInfo &Target, CodeGenModule &CGM,
1860                        const AsmStmt &Stmt, const bool EarlyClobber) {
1861   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1862   if (!AsmDeclRef)
1863     return Constraint;
1864   const ValueDecl &Value = *AsmDeclRef->getDecl();
1865   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1866   if (!Variable)
1867     return Constraint;
1868   if (Variable->getStorageClass() != SC_Register)
1869     return Constraint;
1870   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1871   if (!Attr)
1872     return Constraint;
1873   StringRef Register = Attr->getLabel();
1874   assert(Target.isValidGCCRegisterName(Register));
1875   // We're using validateOutputConstraint here because we only care if
1876   // this is a register constraint.
1877   TargetInfo::ConstraintInfo Info(Constraint, "");
1878   if (Target.validateOutputConstraint(Info) &&
1879       !Info.allowsRegister()) {
1880     CGM.ErrorUnsupported(&Stmt, "__asm__");
1881     return Constraint;
1882   }
1883   // Canonicalize the register here before returning it.
1884   Register = Target.getNormalizedGCCRegisterName(Register);
1885   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1886 }
1887 
1888 llvm::Value*
1889 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1890                                     LValue InputValue, QualType InputType,
1891                                     std::string &ConstraintStr,
1892                                     SourceLocation Loc) {
1893   llvm::Value *Arg;
1894   if (Info.allowsRegister() || !Info.allowsMemory()) {
1895     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1896       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1897     } else {
1898       llvm::Type *Ty = ConvertType(InputType);
1899       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1900       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1901         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1902         Ty = llvm::PointerType::getUnqual(Ty);
1903 
1904         Arg = Builder.CreateLoad(
1905             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
1906       } else {
1907         Arg = InputValue.getPointer(*this);
1908         ConstraintStr += '*';
1909       }
1910     }
1911   } else {
1912     Arg = InputValue.getPointer(*this);
1913     ConstraintStr += '*';
1914   }
1915 
1916   return Arg;
1917 }
1918 
1919 llvm::Value* CodeGenFunction::EmitAsmInput(
1920                                          const TargetInfo::ConstraintInfo &Info,
1921                                            const Expr *InputExpr,
1922                                            std::string &ConstraintStr) {
1923   // If this can't be a register or memory, i.e., has to be a constant
1924   // (immediate or symbolic), try to emit it as such.
1925   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1926     if (Info.requiresImmediateConstant()) {
1927       Expr::EvalResult EVResult;
1928       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
1929 
1930       llvm::APSInt IntResult;
1931       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
1932                                           getContext()))
1933         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
1934     }
1935 
1936     Expr::EvalResult Result;
1937     if (InputExpr->EvaluateAsInt(Result, getContext()))
1938       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
1939   }
1940 
1941   if (Info.allowsRegister() || !Info.allowsMemory())
1942     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1943       return EmitScalarExpr(InputExpr);
1944   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1945     return EmitScalarExpr(InputExpr);
1946   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1947   LValue Dest = EmitLValue(InputExpr);
1948   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1949                             InputExpr->getExprLoc());
1950 }
1951 
1952 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1953 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1954 /// integers which are the source locations of the start of each line in the
1955 /// asm.
1956 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1957                                       CodeGenFunction &CGF) {
1958   SmallVector<llvm::Metadata *, 8> Locs;
1959   // Add the location of the first line to the MDNode.
1960   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1961       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
1962   StringRef StrVal = Str->getString();
1963   if (!StrVal.empty()) {
1964     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1965     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1966     unsigned StartToken = 0;
1967     unsigned ByteOffset = 0;
1968 
1969     // Add the location of the start of each subsequent line of the asm to the
1970     // MDNode.
1971     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1972       if (StrVal[i] != '\n') continue;
1973       SourceLocation LineLoc = Str->getLocationOfByte(
1974           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1975       Locs.push_back(llvm::ConstantAsMetadata::get(
1976           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1977     }
1978   }
1979 
1980   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1981 }
1982 
1983 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
1984                               bool ReadOnly, bool ReadNone, bool NoMerge,
1985                               const AsmStmt &S,
1986                               const std::vector<llvm::Type *> &ResultRegTypes,
1987                               CodeGenFunction &CGF,
1988                               std::vector<llvm::Value *> &RegResults) {
1989   Result.addAttribute(llvm::AttributeList::FunctionIndex,
1990                       llvm::Attribute::NoUnwind);
1991   if (NoMerge)
1992     Result.addAttribute(llvm::AttributeList::FunctionIndex,
1993                         llvm::Attribute::NoMerge);
1994   // Attach readnone and readonly attributes.
1995   if (!HasSideEffect) {
1996     if (ReadNone)
1997       Result.addAttribute(llvm::AttributeList::FunctionIndex,
1998                           llvm::Attribute::ReadNone);
1999     else if (ReadOnly)
2000       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2001                           llvm::Attribute::ReadOnly);
2002   }
2003 
2004   // Slap the source location of the inline asm into a !srcloc metadata on the
2005   // call.
2006   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2007     Result.setMetadata("srcloc",
2008                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2009   else {
2010     // At least put the line number on MS inline asm blobs.
2011     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
2012                                         S.getAsmLoc().getRawEncoding());
2013     Result.setMetadata("srcloc",
2014                        llvm::MDNode::get(CGF.getLLVMContext(),
2015                                          llvm::ConstantAsMetadata::get(Loc)));
2016   }
2017 
2018   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2019     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2020     // convergent (meaning, they may call an intrinsically convergent op, such
2021     // as bar.sync, and so can't have certain optimizations applied around
2022     // them).
2023     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2024                         llvm::Attribute::Convergent);
2025   // Extract all of the register value results from the asm.
2026   if (ResultRegTypes.size() == 1) {
2027     RegResults.push_back(&Result);
2028   } else {
2029     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2030       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2031       RegResults.push_back(Tmp);
2032     }
2033   }
2034 }
2035 
2036 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2037   // Assemble the final asm string.
2038   std::string AsmString = S.generateAsmString(getContext());
2039 
2040   // Get all the output and input constraints together.
2041   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2042   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2043 
2044   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2045     StringRef Name;
2046     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2047       Name = GAS->getOutputName(i);
2048     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2049     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2050     assert(IsValid && "Failed to parse output constraint");
2051     OutputConstraintInfos.push_back(Info);
2052   }
2053 
2054   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2055     StringRef Name;
2056     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2057       Name = GAS->getInputName(i);
2058     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2059     bool IsValid =
2060       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2061     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2062     InputConstraintInfos.push_back(Info);
2063   }
2064 
2065   std::string Constraints;
2066 
2067   std::vector<LValue> ResultRegDests;
2068   std::vector<QualType> ResultRegQualTys;
2069   std::vector<llvm::Type *> ResultRegTypes;
2070   std::vector<llvm::Type *> ResultTruncRegTypes;
2071   std::vector<llvm::Type *> ArgTypes;
2072   std::vector<llvm::Value*> Args;
2073   llvm::BitVector ResultTypeRequiresCast;
2074 
2075   // Keep track of inout constraints.
2076   std::string InOutConstraints;
2077   std::vector<llvm::Value*> InOutArgs;
2078   std::vector<llvm::Type*> InOutArgTypes;
2079 
2080   // Keep track of out constraints for tied input operand.
2081   std::vector<std::string> OutputConstraints;
2082 
2083   // An inline asm can be marked readonly if it meets the following conditions:
2084   //  - it doesn't have any sideeffects
2085   //  - it doesn't clobber memory
2086   //  - it doesn't return a value by-reference
2087   // It can be marked readnone if it doesn't have any input memory constraints
2088   // in addition to meeting the conditions listed above.
2089   bool ReadOnly = true, ReadNone = true;
2090 
2091   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2092     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2093 
2094     // Simplify the output constraint.
2095     std::string OutputConstraint(S.getOutputConstraint(i));
2096     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2097                                           getTarget(), &OutputConstraintInfos);
2098 
2099     const Expr *OutExpr = S.getOutputExpr(i);
2100     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2101 
2102     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2103                                               getTarget(), CGM, S,
2104                                               Info.earlyClobber());
2105     OutputConstraints.push_back(OutputConstraint);
2106     LValue Dest = EmitLValue(OutExpr);
2107     if (!Constraints.empty())
2108       Constraints += ',';
2109 
2110     // If this is a register output, then make the inline asm return it
2111     // by-value.  If this is a memory result, return the value by-reference.
2112     bool isScalarizableAggregate =
2113         hasAggregateEvaluationKind(OutExpr->getType());
2114     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2115                                  isScalarizableAggregate)) {
2116       Constraints += "=" + OutputConstraint;
2117       ResultRegQualTys.push_back(OutExpr->getType());
2118       ResultRegDests.push_back(Dest);
2119       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2120       if (Info.allowsRegister() && isScalarizableAggregate) {
2121         ResultTypeRequiresCast.push_back(true);
2122         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2123         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2124         ResultRegTypes.push_back(ConvTy);
2125       } else {
2126         ResultTypeRequiresCast.push_back(false);
2127         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2128       }
2129       // If this output is tied to an input, and if the input is larger, then
2130       // we need to set the actual result type of the inline asm node to be the
2131       // same as the input type.
2132       if (Info.hasMatchingInput()) {
2133         unsigned InputNo;
2134         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2135           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2136           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2137             break;
2138         }
2139         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2140 
2141         QualType InputTy = S.getInputExpr(InputNo)->getType();
2142         QualType OutputType = OutExpr->getType();
2143 
2144         uint64_t InputSize = getContext().getTypeSize(InputTy);
2145         if (getContext().getTypeSize(OutputType) < InputSize) {
2146           // Form the asm to return the value as a larger integer or fp type.
2147           ResultRegTypes.back() = ConvertType(InputTy);
2148         }
2149       }
2150       if (llvm::Type* AdjTy =
2151             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2152                                                  ResultRegTypes.back()))
2153         ResultRegTypes.back() = AdjTy;
2154       else {
2155         CGM.getDiags().Report(S.getAsmLoc(),
2156                               diag::err_asm_invalid_type_in_input)
2157             << OutExpr->getType() << OutputConstraint;
2158       }
2159 
2160       // Update largest vector width for any vector types.
2161       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2162         LargestVectorWidth =
2163             std::max((uint64_t)LargestVectorWidth,
2164                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2165     } else {
2166       ArgTypes.push_back(Dest.getAddress(*this).getType());
2167       Args.push_back(Dest.getPointer(*this));
2168       Constraints += "=*";
2169       Constraints += OutputConstraint;
2170       ReadOnly = ReadNone = false;
2171     }
2172 
2173     if (Info.isReadWrite()) {
2174       InOutConstraints += ',';
2175 
2176       const Expr *InputExpr = S.getOutputExpr(i);
2177       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2178                                             InOutConstraints,
2179                                             InputExpr->getExprLoc());
2180 
2181       if (llvm::Type* AdjTy =
2182           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2183                                                Arg->getType()))
2184         Arg = Builder.CreateBitCast(Arg, AdjTy);
2185 
2186       // Update largest vector width for any vector types.
2187       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2188         LargestVectorWidth =
2189             std::max((uint64_t)LargestVectorWidth,
2190                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2191       if (Info.allowsRegister())
2192         InOutConstraints += llvm::utostr(i);
2193       else
2194         InOutConstraints += OutputConstraint;
2195 
2196       InOutArgTypes.push_back(Arg->getType());
2197       InOutArgs.push_back(Arg);
2198     }
2199   }
2200 
2201   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2202   // to the return value slot. Only do this when returning in registers.
2203   if (isa<MSAsmStmt>(&S)) {
2204     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2205     if (RetAI.isDirect() || RetAI.isExtend()) {
2206       // Make a fake lvalue for the return value slot.
2207       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2208       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2209           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2210           ResultRegDests, AsmString, S.getNumOutputs());
2211       SawAsmBlock = true;
2212     }
2213   }
2214 
2215   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2216     const Expr *InputExpr = S.getInputExpr(i);
2217 
2218     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2219 
2220     if (Info.allowsMemory())
2221       ReadNone = false;
2222 
2223     if (!Constraints.empty())
2224       Constraints += ',';
2225 
2226     // Simplify the input constraint.
2227     std::string InputConstraint(S.getInputConstraint(i));
2228     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2229                                          &OutputConstraintInfos);
2230 
2231     InputConstraint = AddVariableConstraints(
2232         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2233         getTarget(), CGM, S, false /* No EarlyClobber */);
2234 
2235     std::string ReplaceConstraint (InputConstraint);
2236     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2237 
2238     // If this input argument is tied to a larger output result, extend the
2239     // input to be the same size as the output.  The LLVM backend wants to see
2240     // the input and output of a matching constraint be the same size.  Note
2241     // that GCC does not define what the top bits are here.  We use zext because
2242     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2243     if (Info.hasTiedOperand()) {
2244       unsigned Output = Info.getTiedOperand();
2245       QualType OutputType = S.getOutputExpr(Output)->getType();
2246       QualType InputTy = InputExpr->getType();
2247 
2248       if (getContext().getTypeSize(OutputType) >
2249           getContext().getTypeSize(InputTy)) {
2250         // Use ptrtoint as appropriate so that we can do our extension.
2251         if (isa<llvm::PointerType>(Arg->getType()))
2252           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2253         llvm::Type *OutputTy = ConvertType(OutputType);
2254         if (isa<llvm::IntegerType>(OutputTy))
2255           Arg = Builder.CreateZExt(Arg, OutputTy);
2256         else if (isa<llvm::PointerType>(OutputTy))
2257           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2258         else {
2259           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2260           Arg = Builder.CreateFPExt(Arg, OutputTy);
2261         }
2262       }
2263       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2264       ReplaceConstraint = OutputConstraints[Output];
2265     }
2266     if (llvm::Type* AdjTy =
2267           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2268                                                    Arg->getType()))
2269       Arg = Builder.CreateBitCast(Arg, AdjTy);
2270     else
2271       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2272           << InputExpr->getType() << InputConstraint;
2273 
2274     // Update largest vector width for any vector types.
2275     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2276       LargestVectorWidth =
2277           std::max((uint64_t)LargestVectorWidth,
2278                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2279 
2280     ArgTypes.push_back(Arg->getType());
2281     Args.push_back(Arg);
2282     Constraints += InputConstraint;
2283   }
2284 
2285   // Labels
2286   SmallVector<llvm::BasicBlock *, 16> Transfer;
2287   llvm::BasicBlock *Fallthrough = nullptr;
2288   bool IsGCCAsmGoto = false;
2289   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2290     IsGCCAsmGoto = GS->isAsmGoto();
2291     if (IsGCCAsmGoto) {
2292       for (const auto *E : GS->labels()) {
2293         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2294         Transfer.push_back(Dest.getBlock());
2295         llvm::BlockAddress *BA =
2296             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2297         Args.push_back(BA);
2298         ArgTypes.push_back(BA->getType());
2299         if (!Constraints.empty())
2300           Constraints += ',';
2301         Constraints += 'X';
2302       }
2303       Fallthrough = createBasicBlock("asm.fallthrough");
2304     }
2305   }
2306 
2307   // Append the "input" part of inout constraints last.
2308   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2309     ArgTypes.push_back(InOutArgTypes[i]);
2310     Args.push_back(InOutArgs[i]);
2311   }
2312   Constraints += InOutConstraints;
2313 
2314   // Clobbers
2315   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2316     StringRef Clobber = S.getClobber(i);
2317 
2318     if (Clobber == "memory")
2319       ReadOnly = ReadNone = false;
2320     else if (Clobber != "cc") {
2321       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2322       if (CGM.getCodeGenOpts().StackClashProtector &&
2323           getTarget().isSPRegName(Clobber)) {
2324         CGM.getDiags().Report(S.getAsmLoc(),
2325                               diag::warn_stack_clash_protection_inline_asm);
2326       }
2327     }
2328 
2329     if (!Constraints.empty())
2330       Constraints += ',';
2331 
2332     Constraints += "~{";
2333     Constraints += Clobber;
2334     Constraints += '}';
2335   }
2336 
2337   // Add machine specific clobbers
2338   std::string MachineClobbers = getTarget().getClobbers();
2339   if (!MachineClobbers.empty()) {
2340     if (!Constraints.empty())
2341       Constraints += ',';
2342     Constraints += MachineClobbers;
2343   }
2344 
2345   llvm::Type *ResultType;
2346   if (ResultRegTypes.empty())
2347     ResultType = VoidTy;
2348   else if (ResultRegTypes.size() == 1)
2349     ResultType = ResultRegTypes[0];
2350   else
2351     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2352 
2353   llvm::FunctionType *FTy =
2354     llvm::FunctionType::get(ResultType, ArgTypes, false);
2355 
2356   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2357   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2358     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2359   llvm::InlineAsm *IA =
2360     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2361                          /* IsAlignStack */ false, AsmDialect);
2362   std::vector<llvm::Value*> RegResults;
2363   if (IsGCCAsmGoto) {
2364     llvm::CallBrInst *Result =
2365         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2366     EmitBlock(Fallthrough);
2367     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2368                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2369                       *this, RegResults);
2370   } else {
2371     llvm::CallInst *Result =
2372         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2373     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2374                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2375                       *this, RegResults);
2376   }
2377 
2378   assert(RegResults.size() == ResultRegTypes.size());
2379   assert(RegResults.size() == ResultTruncRegTypes.size());
2380   assert(RegResults.size() == ResultRegDests.size());
2381   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2382   // in which case its size may grow.
2383   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2384   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2385     llvm::Value *Tmp = RegResults[i];
2386 
2387     // If the result type of the LLVM IR asm doesn't match the result type of
2388     // the expression, do the conversion.
2389     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2390       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2391 
2392       // Truncate the integer result to the right size, note that TruncTy can be
2393       // a pointer.
2394       if (TruncTy->isFloatingPointTy())
2395         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2396       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2397         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2398         Tmp = Builder.CreateTrunc(Tmp,
2399                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2400         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2401       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2402         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2403         Tmp = Builder.CreatePtrToInt(Tmp,
2404                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2405         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2406       } else if (TruncTy->isIntegerTy()) {
2407         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2408       } else if (TruncTy->isVectorTy()) {
2409         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2410       }
2411     }
2412 
2413     LValue Dest = ResultRegDests[i];
2414     // ResultTypeRequiresCast elements correspond to the first
2415     // ResultTypeRequiresCast.size() elements of RegResults.
2416     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2417       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2418       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2419                                         ResultRegTypes[i]->getPointerTo());
2420       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2421       if (Ty.isNull()) {
2422         const Expr *OutExpr = S.getOutputExpr(i);
2423         CGM.Error(
2424             OutExpr->getExprLoc(),
2425             "impossible constraint in asm: can't store value into a register");
2426         return;
2427       }
2428       Dest = MakeAddrLValue(A, Ty);
2429     }
2430     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2431   }
2432 }
2433 
2434 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2435   const RecordDecl *RD = S.getCapturedRecordDecl();
2436   QualType RecordTy = getContext().getRecordType(RD);
2437 
2438   // Initialize the captured struct.
2439   LValue SlotLV =
2440     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2441 
2442   RecordDecl::field_iterator CurField = RD->field_begin();
2443   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2444                                                  E = S.capture_init_end();
2445        I != E; ++I, ++CurField) {
2446     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2447     if (CurField->hasCapturedVLAType()) {
2448       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2449     } else {
2450       EmitInitializerForField(*CurField, LV, *I);
2451     }
2452   }
2453 
2454   return SlotLV;
2455 }
2456 
2457 /// Generate an outlined function for the body of a CapturedStmt, store any
2458 /// captured variables into the captured struct, and call the outlined function.
2459 llvm::Function *
2460 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2461   LValue CapStruct = InitCapturedStruct(S);
2462 
2463   // Emit the CapturedDecl
2464   CodeGenFunction CGF(CGM, true);
2465   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2466   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2467   delete CGF.CapturedStmtInfo;
2468 
2469   // Emit call to the helper function.
2470   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2471 
2472   return F;
2473 }
2474 
2475 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2476   LValue CapStruct = InitCapturedStruct(S);
2477   return CapStruct.getAddress(*this);
2478 }
2479 
2480 /// Creates the outlined function for a CapturedStmt.
2481 llvm::Function *
2482 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2483   assert(CapturedStmtInfo &&
2484     "CapturedStmtInfo should be set when generating the captured function");
2485   const CapturedDecl *CD = S.getCapturedDecl();
2486   const RecordDecl *RD = S.getCapturedRecordDecl();
2487   SourceLocation Loc = S.getBeginLoc();
2488   assert(CD->hasBody() && "missing CapturedDecl body");
2489 
2490   // Build the argument list.
2491   ASTContext &Ctx = CGM.getContext();
2492   FunctionArgList Args;
2493   Args.append(CD->param_begin(), CD->param_end());
2494 
2495   // Create the function declaration.
2496   const CGFunctionInfo &FuncInfo =
2497     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2498   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2499 
2500   llvm::Function *F =
2501     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2502                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2503   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2504   if (CD->isNothrow())
2505     F->addFnAttr(llvm::Attribute::NoUnwind);
2506 
2507   // Generate the function.
2508   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2509                 CD->getBody()->getBeginLoc());
2510   // Set the context parameter in CapturedStmtInfo.
2511   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2512   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2513 
2514   // Initialize variable-length arrays.
2515   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2516                                            Ctx.getTagDeclType(RD));
2517   for (auto *FD : RD->fields()) {
2518     if (FD->hasCapturedVLAType()) {
2519       auto *ExprArg =
2520           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2521               .getScalarVal();
2522       auto VAT = FD->getCapturedVLAType();
2523       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2524     }
2525   }
2526 
2527   // If 'this' is captured, load it into CXXThisValue.
2528   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2529     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2530     LValue ThisLValue = EmitLValueForField(Base, FD);
2531     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2532   }
2533 
2534   PGO.assignRegionCounters(GlobalDecl(CD), F);
2535   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2536   FinishFunction(CD->getBodyRBrace());
2537 
2538   return F;
2539 }
2540