1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Assumptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===----------------------------------------------------------------------===//
40 //                              Statement Emission
41 //===----------------------------------------------------------------------===//
42 
43 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
44   if (CGDebugInfo *DI = getDebugInfo()) {
45     SourceLocation Loc;
46     Loc = S->getBeginLoc();
47     DI->EmitLocation(Builder, Loc);
48 
49     LastStopPoint = Loc;
50   }
51 }
52 
53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
54   assert(S && "Null statement?");
55   PGO.setCurrentStmt(S);
56 
57   // These statements have their own debug info handling.
58   if (EmitSimpleStmt(S, Attrs))
59     return;
60 
61   // Check if we are generating unreachable code.
62   if (!HaveInsertPoint()) {
63     // If so, and the statement doesn't contain a label, then we do not need to
64     // generate actual code. This is safe because (1) the current point is
65     // unreachable, so we don't need to execute the code, and (2) we've already
66     // handled the statements which update internal data structures (like the
67     // local variable map) which could be used by subsequent statements.
68     if (!ContainsLabel(S)) {
69       // Verify that any decl statements were handled as simple, they may be in
70       // scope of subsequent reachable statements.
71       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
72       return;
73     }
74 
75     // Otherwise, make a new block to hold the code.
76     EnsureInsertPoint();
77   }
78 
79   // Generate a stoppoint if we are emitting debug info.
80   EmitStopPoint(S);
81 
82   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
83   // enabled.
84   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
85     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
86       EmitSimpleOMPExecutableDirective(*D);
87       return;
88     }
89   }
90 
91   switch (S->getStmtClass()) {
92   case Stmt::NoStmtClass:
93   case Stmt::CXXCatchStmtClass:
94   case Stmt::SEHExceptStmtClass:
95   case Stmt::SEHFinallyStmtClass:
96   case Stmt::MSDependentExistsStmtClass:
97     llvm_unreachable("invalid statement class to emit generically");
98   case Stmt::NullStmtClass:
99   case Stmt::CompoundStmtClass:
100   case Stmt::DeclStmtClass:
101   case Stmt::LabelStmtClass:
102   case Stmt::AttributedStmtClass:
103   case Stmt::GotoStmtClass:
104   case Stmt::BreakStmtClass:
105   case Stmt::ContinueStmtClass:
106   case Stmt::DefaultStmtClass:
107   case Stmt::CaseStmtClass:
108   case Stmt::SEHLeaveStmtClass:
109     llvm_unreachable("should have emitted these statements as simple");
110 
111 #define STMT(Type, Base)
112 #define ABSTRACT_STMT(Op)
113 #define EXPR(Type, Base) \
114   case Stmt::Type##Class:
115 #include "clang/AST/StmtNodes.inc"
116   {
117     // Remember the block we came in on.
118     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
119     assert(incoming && "expression emission must have an insertion point");
120 
121     EmitIgnoredExpr(cast<Expr>(S));
122 
123     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
124     assert(outgoing && "expression emission cleared block!");
125 
126     // The expression emitters assume (reasonably!) that the insertion
127     // point is always set.  To maintain that, the call-emission code
128     // for noreturn functions has to enter a new block with no
129     // predecessors.  We want to kill that block and mark the current
130     // insertion point unreachable in the common case of a call like
131     // "exit();".  Since expression emission doesn't otherwise create
132     // blocks with no predecessors, we can just test for that.
133     // However, we must be careful not to do this to our incoming
134     // block, because *statement* emission does sometimes create
135     // reachable blocks which will have no predecessors until later in
136     // the function.  This occurs with, e.g., labels that are not
137     // reachable by fallthrough.
138     if (incoming != outgoing && outgoing->use_empty()) {
139       outgoing->eraseFromParent();
140       Builder.ClearInsertionPoint();
141     }
142     break;
143   }
144 
145   case Stmt::IndirectGotoStmtClass:
146     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
147 
148   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
149   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
150   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
151   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
152 
153   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
154 
155   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
156   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
157   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
158   case Stmt::CoroutineBodyStmtClass:
159     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
160     break;
161   case Stmt::CoreturnStmtClass:
162     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
163     break;
164   case Stmt::CapturedStmtClass: {
165     const CapturedStmt *CS = cast<CapturedStmt>(S);
166     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
167     }
168     break;
169   case Stmt::ObjCAtTryStmtClass:
170     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
171     break;
172   case Stmt::ObjCAtCatchStmtClass:
173     llvm_unreachable(
174                     "@catch statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtFinallyStmtClass:
176     llvm_unreachable(
177                   "@finally statements should be handled by EmitObjCAtTryStmt");
178   case Stmt::ObjCAtThrowStmtClass:
179     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
180     break;
181   case Stmt::ObjCAtSynchronizedStmtClass:
182     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
183     break;
184   case Stmt::ObjCForCollectionStmtClass:
185     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
186     break;
187   case Stmt::ObjCAutoreleasePoolStmtClass:
188     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
189     break;
190 
191   case Stmt::CXXTryStmtClass:
192     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
193     break;
194   case Stmt::CXXForRangeStmtClass:
195     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
196     break;
197   case Stmt::SEHTryStmtClass:
198     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
199     break;
200   case Stmt::OMPMetaDirectiveClass:
201     EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
202     break;
203   case Stmt::OMPCanonicalLoopClass:
204     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
205     break;
206   case Stmt::OMPParallelDirectiveClass:
207     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
208     break;
209   case Stmt::OMPSimdDirectiveClass:
210     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
211     break;
212   case Stmt::OMPTileDirectiveClass:
213     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
214     break;
215   case Stmt::OMPUnrollDirectiveClass:
216     EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
217     break;
218   case Stmt::OMPForDirectiveClass:
219     EmitOMPForDirective(cast<OMPForDirective>(*S));
220     break;
221   case Stmt::OMPForSimdDirectiveClass:
222     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
223     break;
224   case Stmt::OMPSectionsDirectiveClass:
225     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
226     break;
227   case Stmt::OMPSectionDirectiveClass:
228     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
229     break;
230   case Stmt::OMPSingleDirectiveClass:
231     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
232     break;
233   case Stmt::OMPMasterDirectiveClass:
234     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
235     break;
236   case Stmt::OMPCriticalDirectiveClass:
237     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
238     break;
239   case Stmt::OMPParallelForDirectiveClass:
240     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
241     break;
242   case Stmt::OMPParallelForSimdDirectiveClass:
243     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
244     break;
245   case Stmt::OMPParallelMasterDirectiveClass:
246     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
247     break;
248   case Stmt::OMPParallelSectionsDirectiveClass:
249     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
250     break;
251   case Stmt::OMPTaskDirectiveClass:
252     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
253     break;
254   case Stmt::OMPTaskyieldDirectiveClass:
255     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
256     break;
257   case Stmt::OMPBarrierDirectiveClass:
258     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
259     break;
260   case Stmt::OMPTaskwaitDirectiveClass:
261     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
262     break;
263   case Stmt::OMPTaskgroupDirectiveClass:
264     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
265     break;
266   case Stmt::OMPFlushDirectiveClass:
267     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
268     break;
269   case Stmt::OMPDepobjDirectiveClass:
270     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
271     break;
272   case Stmt::OMPScanDirectiveClass:
273     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
274     break;
275   case Stmt::OMPOrderedDirectiveClass:
276     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
277     break;
278   case Stmt::OMPAtomicDirectiveClass:
279     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
280     break;
281   case Stmt::OMPTargetDirectiveClass:
282     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
283     break;
284   case Stmt::OMPTeamsDirectiveClass:
285     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
286     break;
287   case Stmt::OMPCancellationPointDirectiveClass:
288     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
289     break;
290   case Stmt::OMPCancelDirectiveClass:
291     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
292     break;
293   case Stmt::OMPTargetDataDirectiveClass:
294     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
295     break;
296   case Stmt::OMPTargetEnterDataDirectiveClass:
297     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
298     break;
299   case Stmt::OMPTargetExitDataDirectiveClass:
300     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
301     break;
302   case Stmt::OMPTargetParallelDirectiveClass:
303     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
304     break;
305   case Stmt::OMPTargetParallelForDirectiveClass:
306     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
307     break;
308   case Stmt::OMPTaskLoopDirectiveClass:
309     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
310     break;
311   case Stmt::OMPTaskLoopSimdDirectiveClass:
312     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
313     break;
314   case Stmt::OMPMasterTaskLoopDirectiveClass:
315     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
316     break;
317   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
318     EmitOMPMasterTaskLoopSimdDirective(
319         cast<OMPMasterTaskLoopSimdDirective>(*S));
320     break;
321   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
322     EmitOMPParallelMasterTaskLoopDirective(
323         cast<OMPParallelMasterTaskLoopDirective>(*S));
324     break;
325   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
326     EmitOMPParallelMasterTaskLoopSimdDirective(
327         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
328     break;
329   case Stmt::OMPDistributeDirectiveClass:
330     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
331     break;
332   case Stmt::OMPTargetUpdateDirectiveClass:
333     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
334     break;
335   case Stmt::OMPDistributeParallelForDirectiveClass:
336     EmitOMPDistributeParallelForDirective(
337         cast<OMPDistributeParallelForDirective>(*S));
338     break;
339   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
340     EmitOMPDistributeParallelForSimdDirective(
341         cast<OMPDistributeParallelForSimdDirective>(*S));
342     break;
343   case Stmt::OMPDistributeSimdDirectiveClass:
344     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
345     break;
346   case Stmt::OMPTargetParallelForSimdDirectiveClass:
347     EmitOMPTargetParallelForSimdDirective(
348         cast<OMPTargetParallelForSimdDirective>(*S));
349     break;
350   case Stmt::OMPTargetSimdDirectiveClass:
351     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
352     break;
353   case Stmt::OMPTeamsDistributeDirectiveClass:
354     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
355     break;
356   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
357     EmitOMPTeamsDistributeSimdDirective(
358         cast<OMPTeamsDistributeSimdDirective>(*S));
359     break;
360   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
361     EmitOMPTeamsDistributeParallelForSimdDirective(
362         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
363     break;
364   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
365     EmitOMPTeamsDistributeParallelForDirective(
366         cast<OMPTeamsDistributeParallelForDirective>(*S));
367     break;
368   case Stmt::OMPTargetTeamsDirectiveClass:
369     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
370     break;
371   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
372     EmitOMPTargetTeamsDistributeDirective(
373         cast<OMPTargetTeamsDistributeDirective>(*S));
374     break;
375   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
376     EmitOMPTargetTeamsDistributeParallelForDirective(
377         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
378     break;
379   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
380     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
381         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
382     break;
383   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
384     EmitOMPTargetTeamsDistributeSimdDirective(
385         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
386     break;
387   case Stmt::OMPInteropDirectiveClass:
388     llvm_unreachable("Interop directive not supported yet.");
389     break;
390   case Stmt::OMPDispatchDirectiveClass:
391     llvm_unreachable("Dispatch directive not supported yet.");
392     break;
393   case Stmt::OMPMaskedDirectiveClass:
394     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
395     break;
396   }
397 }
398 
399 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
400                                      ArrayRef<const Attr *> Attrs) {
401   switch (S->getStmtClass()) {
402   default:
403     return false;
404   case Stmt::NullStmtClass:
405     break;
406   case Stmt::CompoundStmtClass:
407     EmitCompoundStmt(cast<CompoundStmt>(*S));
408     break;
409   case Stmt::DeclStmtClass:
410     EmitDeclStmt(cast<DeclStmt>(*S));
411     break;
412   case Stmt::LabelStmtClass:
413     EmitLabelStmt(cast<LabelStmt>(*S));
414     break;
415   case Stmt::AttributedStmtClass:
416     EmitAttributedStmt(cast<AttributedStmt>(*S));
417     break;
418   case Stmt::GotoStmtClass:
419     EmitGotoStmt(cast<GotoStmt>(*S));
420     break;
421   case Stmt::BreakStmtClass:
422     EmitBreakStmt(cast<BreakStmt>(*S));
423     break;
424   case Stmt::ContinueStmtClass:
425     EmitContinueStmt(cast<ContinueStmt>(*S));
426     break;
427   case Stmt::DefaultStmtClass:
428     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
429     break;
430   case Stmt::CaseStmtClass:
431     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
432     break;
433   case Stmt::SEHLeaveStmtClass:
434     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
435     break;
436   }
437   return true;
438 }
439 
440 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
441 /// this captures the expression result of the last sub-statement and returns it
442 /// (for use by the statement expression extension).
443 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
444                                           AggValueSlot AggSlot) {
445   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
446                              "LLVM IR generation of compound statement ('{}')");
447 
448   // Keep track of the current cleanup stack depth, including debug scopes.
449   LexicalScope Scope(*this, S.getSourceRange());
450 
451   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
452 }
453 
454 Address
455 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
456                                               bool GetLast,
457                                               AggValueSlot AggSlot) {
458 
459   const Stmt *ExprResult = S.getStmtExprResult();
460   assert((!GetLast || (GetLast && ExprResult)) &&
461          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
462 
463   Address RetAlloca = Address::invalid();
464 
465   for (auto *CurStmt : S.body()) {
466     if (GetLast && ExprResult == CurStmt) {
467       // We have to special case labels here.  They are statements, but when put
468       // at the end of a statement expression, they yield the value of their
469       // subexpression.  Handle this by walking through all labels we encounter,
470       // emitting them before we evaluate the subexpr.
471       // Similar issues arise for attributed statements.
472       while (!isa<Expr>(ExprResult)) {
473         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
474           EmitLabel(LS->getDecl());
475           ExprResult = LS->getSubStmt();
476         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
477           // FIXME: Update this if we ever have attributes that affect the
478           // semantics of an expression.
479           ExprResult = AS->getSubStmt();
480         } else {
481           llvm_unreachable("unknown value statement");
482         }
483       }
484 
485       EnsureInsertPoint();
486 
487       const Expr *E = cast<Expr>(ExprResult);
488       QualType ExprTy = E->getType();
489       if (hasAggregateEvaluationKind(ExprTy)) {
490         EmitAggExpr(E, AggSlot);
491       } else {
492         // We can't return an RValue here because there might be cleanups at
493         // the end of the StmtExpr.  Because of that, we have to emit the result
494         // here into a temporary alloca.
495         RetAlloca = CreateMemTemp(ExprTy);
496         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
497                          /*IsInit*/ false);
498       }
499     } else {
500       EmitStmt(CurStmt);
501     }
502   }
503 
504   return RetAlloca;
505 }
506 
507 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
508   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
509 
510   // If there is a cleanup stack, then we it isn't worth trying to
511   // simplify this block (we would need to remove it from the scope map
512   // and cleanup entry).
513   if (!EHStack.empty())
514     return;
515 
516   // Can only simplify direct branches.
517   if (!BI || !BI->isUnconditional())
518     return;
519 
520   // Can only simplify empty blocks.
521   if (BI->getIterator() != BB->begin())
522     return;
523 
524   BB->replaceAllUsesWith(BI->getSuccessor(0));
525   BI->eraseFromParent();
526   BB->eraseFromParent();
527 }
528 
529 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
530   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
531 
532   // Fall out of the current block (if necessary).
533   EmitBranch(BB);
534 
535   if (IsFinished && BB->use_empty()) {
536     delete BB;
537     return;
538   }
539 
540   // Place the block after the current block, if possible, or else at
541   // the end of the function.
542   if (CurBB && CurBB->getParent())
543     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
544   else
545     CurFn->getBasicBlockList().push_back(BB);
546   Builder.SetInsertPoint(BB);
547 }
548 
549 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
550   // Emit a branch from the current block to the target one if this
551   // was a real block.  If this was just a fall-through block after a
552   // terminator, don't emit it.
553   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
554 
555   if (!CurBB || CurBB->getTerminator()) {
556     // If there is no insert point or the previous block is already
557     // terminated, don't touch it.
558   } else {
559     // Otherwise, create a fall-through branch.
560     Builder.CreateBr(Target);
561   }
562 
563   Builder.ClearInsertionPoint();
564 }
565 
566 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
567   bool inserted = false;
568   for (llvm::User *u : block->users()) {
569     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
570       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
571                                              block);
572       inserted = true;
573       break;
574     }
575   }
576 
577   if (!inserted)
578     CurFn->getBasicBlockList().push_back(block);
579 
580   Builder.SetInsertPoint(block);
581 }
582 
583 CodeGenFunction::JumpDest
584 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
585   JumpDest &Dest = LabelMap[D];
586   if (Dest.isValid()) return Dest;
587 
588   // Create, but don't insert, the new block.
589   Dest = JumpDest(createBasicBlock(D->getName()),
590                   EHScopeStack::stable_iterator::invalid(),
591                   NextCleanupDestIndex++);
592   return Dest;
593 }
594 
595 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
596   // Add this label to the current lexical scope if we're within any
597   // normal cleanups.  Jumps "in" to this label --- when permitted by
598   // the language --- may need to be routed around such cleanups.
599   if (EHStack.hasNormalCleanups() && CurLexicalScope)
600     CurLexicalScope->addLabel(D);
601 
602   JumpDest &Dest = LabelMap[D];
603 
604   // If we didn't need a forward reference to this label, just go
605   // ahead and create a destination at the current scope.
606   if (!Dest.isValid()) {
607     Dest = getJumpDestInCurrentScope(D->getName());
608 
609   // Otherwise, we need to give this label a target depth and remove
610   // it from the branch-fixups list.
611   } else {
612     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
613     Dest.setScopeDepth(EHStack.stable_begin());
614     ResolveBranchFixups(Dest.getBlock());
615   }
616 
617   EmitBlock(Dest.getBlock());
618 
619   // Emit debug info for labels.
620   if (CGDebugInfo *DI = getDebugInfo()) {
621     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
622       DI->setLocation(D->getLocation());
623       DI->EmitLabel(D, Builder);
624     }
625   }
626 
627   incrementProfileCounter(D->getStmt());
628 }
629 
630 /// Change the cleanup scope of the labels in this lexical scope to
631 /// match the scope of the enclosing context.
632 void CodeGenFunction::LexicalScope::rescopeLabels() {
633   assert(!Labels.empty());
634   EHScopeStack::stable_iterator innermostScope
635     = CGF.EHStack.getInnermostNormalCleanup();
636 
637   // Change the scope depth of all the labels.
638   for (SmallVectorImpl<const LabelDecl*>::const_iterator
639          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
640     assert(CGF.LabelMap.count(*i));
641     JumpDest &dest = CGF.LabelMap.find(*i)->second;
642     assert(dest.getScopeDepth().isValid());
643     assert(innermostScope.encloses(dest.getScopeDepth()));
644     dest.setScopeDepth(innermostScope);
645   }
646 
647   // Reparent the labels if the new scope also has cleanups.
648   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
649     ParentScope->Labels.append(Labels.begin(), Labels.end());
650   }
651 }
652 
653 
654 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
655   EmitLabel(S.getDecl());
656 
657   // IsEHa - emit eha.scope.begin if it's a side entry of a scope
658   if (getLangOpts().EHAsynch && S.isSideEntry())
659     EmitSehCppScopeBegin();
660 
661   EmitStmt(S.getSubStmt());
662 }
663 
664 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
665   bool nomerge = false;
666   const CallExpr *musttail = nullptr;
667 
668   for (const auto *A : S.getAttrs()) {
669     if (A->getKind() == attr::NoMerge) {
670       nomerge = true;
671     }
672     if (A->getKind() == attr::MustTail) {
673       const Stmt *Sub = S.getSubStmt();
674       const ReturnStmt *R = cast<ReturnStmt>(Sub);
675       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
676     }
677   }
678   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
679   SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
680   EmitStmt(S.getSubStmt(), S.getAttrs());
681 }
682 
683 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
684   // If this code is reachable then emit a stop point (if generating
685   // debug info). We have to do this ourselves because we are on the
686   // "simple" statement path.
687   if (HaveInsertPoint())
688     EmitStopPoint(&S);
689 
690   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
691 }
692 
693 
694 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
695   if (const LabelDecl *Target = S.getConstantTarget()) {
696     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
697     return;
698   }
699 
700   // Ensure that we have an i8* for our PHI node.
701   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
702                                          Int8PtrTy, "addr");
703   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
704 
705   // Get the basic block for the indirect goto.
706   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
707 
708   // The first instruction in the block has to be the PHI for the switch dest,
709   // add an entry for this branch.
710   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
711 
712   EmitBranch(IndGotoBB);
713 }
714 
715 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
716   // C99 6.8.4.1: The first substatement is executed if the expression compares
717   // unequal to 0.  The condition must be a scalar type.
718   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
719 
720   if (S.getInit())
721     EmitStmt(S.getInit());
722 
723   if (S.getConditionVariable())
724     EmitDecl(*S.getConditionVariable());
725 
726   // If the condition constant folds and can be elided, try to avoid emitting
727   // the condition and the dead arm of the if/else.
728   bool CondConstant;
729   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
730                                    S.isConstexpr())) {
731     // Figure out which block (then or else) is executed.
732     const Stmt *Executed = S.getThen();
733     const Stmt *Skipped  = S.getElse();
734     if (!CondConstant)  // Condition false?
735       std::swap(Executed, Skipped);
736 
737     // If the skipped block has no labels in it, just emit the executed block.
738     // This avoids emitting dead code and simplifies the CFG substantially.
739     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
740       if (CondConstant)
741         incrementProfileCounter(&S);
742       if (Executed) {
743         RunCleanupsScope ExecutedScope(*this);
744         EmitStmt(Executed);
745       }
746       return;
747     }
748   }
749 
750   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
751   // the conditional branch.
752   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
753   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
754   llvm::BasicBlock *ElseBlock = ContBlock;
755   if (S.getElse())
756     ElseBlock = createBasicBlock("if.else");
757 
758   // Prefer the PGO based weights over the likelihood attribute.
759   // When the build isn't optimized the metadata isn't used, so don't generate
760   // it.
761   Stmt::Likelihood LH = Stmt::LH_None;
762   uint64_t Count = getProfileCount(S.getThen());
763   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
764     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
765   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
766 
767   // Emit the 'then' code.
768   EmitBlock(ThenBlock);
769   incrementProfileCounter(&S);
770   {
771     RunCleanupsScope ThenScope(*this);
772     EmitStmt(S.getThen());
773   }
774   EmitBranch(ContBlock);
775 
776   // Emit the 'else' code if present.
777   if (const Stmt *Else = S.getElse()) {
778     {
779       // There is no need to emit line number for an unconditional branch.
780       auto NL = ApplyDebugLocation::CreateEmpty(*this);
781       EmitBlock(ElseBlock);
782     }
783     {
784       RunCleanupsScope ElseScope(*this);
785       EmitStmt(Else);
786     }
787     {
788       // There is no need to emit line number for an unconditional branch.
789       auto NL = ApplyDebugLocation::CreateEmpty(*this);
790       EmitBranch(ContBlock);
791     }
792   }
793 
794   // Emit the continuation block for code after the if.
795   EmitBlock(ContBlock, true);
796 }
797 
798 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
799                                     ArrayRef<const Attr *> WhileAttrs) {
800   // Emit the header for the loop, which will also become
801   // the continue target.
802   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
803   EmitBlock(LoopHeader.getBlock());
804 
805   // Create an exit block for when the condition fails, which will
806   // also become the break target.
807   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
808 
809   // Store the blocks to use for break and continue.
810   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
811 
812   // C++ [stmt.while]p2:
813   //   When the condition of a while statement is a declaration, the
814   //   scope of the variable that is declared extends from its point
815   //   of declaration (3.3.2) to the end of the while statement.
816   //   [...]
817   //   The object created in a condition is destroyed and created
818   //   with each iteration of the loop.
819   RunCleanupsScope ConditionScope(*this);
820 
821   if (S.getConditionVariable())
822     EmitDecl(*S.getConditionVariable());
823 
824   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
825   // evaluation of the controlling expression takes place before each
826   // execution of the loop body.
827   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
828 
829   // while(1) is common, avoid extra exit blocks.  Be sure
830   // to correctly handle break/continue though.
831   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
832   bool CondIsConstInt = C != nullptr;
833   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
834   const SourceRange &R = S.getSourceRange();
835   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
836                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
837                  SourceLocToDebugLoc(R.getEnd()),
838                  checkIfLoopMustProgress(CondIsConstInt));
839 
840   // As long as the condition is true, go to the loop body.
841   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
842   if (EmitBoolCondBranch) {
843     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
844     if (ConditionScope.requiresCleanups())
845       ExitBlock = createBasicBlock("while.exit");
846     llvm::MDNode *Weights =
847         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
848     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
849       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
850           BoolCondVal, Stmt::getLikelihood(S.getBody()));
851     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
852 
853     if (ExitBlock != LoopExit.getBlock()) {
854       EmitBlock(ExitBlock);
855       EmitBranchThroughCleanup(LoopExit);
856     }
857   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
858     CGM.getDiags().Report(A->getLocation(),
859                           diag::warn_attribute_has_no_effect_on_infinite_loop)
860         << A << A->getRange();
861     CGM.getDiags().Report(
862         S.getWhileLoc(),
863         diag::note_attribute_has_no_effect_on_infinite_loop_here)
864         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
865   }
866 
867   // Emit the loop body.  We have to emit this in a cleanup scope
868   // because it might be a singleton DeclStmt.
869   {
870     RunCleanupsScope BodyScope(*this);
871     EmitBlock(LoopBody);
872     incrementProfileCounter(&S);
873     EmitStmt(S.getBody());
874   }
875 
876   BreakContinueStack.pop_back();
877 
878   // Immediately force cleanup.
879   ConditionScope.ForceCleanup();
880 
881   EmitStopPoint(&S);
882   // Branch to the loop header again.
883   EmitBranch(LoopHeader.getBlock());
884 
885   LoopStack.pop();
886 
887   // Emit the exit block.
888   EmitBlock(LoopExit.getBlock(), true);
889 
890   // The LoopHeader typically is just a branch if we skipped emitting
891   // a branch, try to erase it.
892   if (!EmitBoolCondBranch)
893     SimplifyForwardingBlocks(LoopHeader.getBlock());
894 }
895 
896 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
897                                  ArrayRef<const Attr *> DoAttrs) {
898   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
899   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
900 
901   uint64_t ParentCount = getCurrentProfileCount();
902 
903   // Store the blocks to use for break and continue.
904   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
905 
906   // Emit the body of the loop.
907   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
908 
909   EmitBlockWithFallThrough(LoopBody, &S);
910   {
911     RunCleanupsScope BodyScope(*this);
912     EmitStmt(S.getBody());
913   }
914 
915   EmitBlock(LoopCond.getBlock());
916 
917   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
918   // after each execution of the loop body."
919 
920   // Evaluate the conditional in the while header.
921   // C99 6.8.5p2/p4: The first substatement is executed if the expression
922   // compares unequal to 0.  The condition must be a scalar type.
923   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
924 
925   BreakContinueStack.pop_back();
926 
927   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
928   // to correctly handle break/continue though.
929   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
930   bool CondIsConstInt = C;
931   bool EmitBoolCondBranch = !C || !C->isZero();
932 
933   const SourceRange &R = S.getSourceRange();
934   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
935                  SourceLocToDebugLoc(R.getBegin()),
936                  SourceLocToDebugLoc(R.getEnd()),
937                  checkIfLoopMustProgress(CondIsConstInt));
938 
939   // As long as the condition is true, iterate the loop.
940   if (EmitBoolCondBranch) {
941     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
942     Builder.CreateCondBr(
943         BoolCondVal, LoopBody, LoopExit.getBlock(),
944         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
945   }
946 
947   LoopStack.pop();
948 
949   // Emit the exit block.
950   EmitBlock(LoopExit.getBlock());
951 
952   // The DoCond block typically is just a branch if we skipped
953   // emitting a branch, try to erase it.
954   if (!EmitBoolCondBranch)
955     SimplifyForwardingBlocks(LoopCond.getBlock());
956 }
957 
958 void CodeGenFunction::EmitForStmt(const ForStmt &S,
959                                   ArrayRef<const Attr *> ForAttrs) {
960   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
961 
962   LexicalScope ForScope(*this, S.getSourceRange());
963 
964   // Evaluate the first part before the loop.
965   if (S.getInit())
966     EmitStmt(S.getInit());
967 
968   // Start the loop with a block that tests the condition.
969   // If there's an increment, the continue scope will be overwritten
970   // later.
971   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
972   llvm::BasicBlock *CondBlock = CondDest.getBlock();
973   EmitBlock(CondBlock);
974 
975   Expr::EvalResult Result;
976   bool CondIsConstInt =
977       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
978 
979   const SourceRange &R = S.getSourceRange();
980   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
981                  SourceLocToDebugLoc(R.getBegin()),
982                  SourceLocToDebugLoc(R.getEnd()),
983                  checkIfLoopMustProgress(CondIsConstInt));
984 
985   // Create a cleanup scope for the condition variable cleanups.
986   LexicalScope ConditionScope(*this, S.getSourceRange());
987 
988   // If the for loop doesn't have an increment we can just use the condition as
989   // the continue block. Otherwise, if there is no condition variable, we can
990   // form the continue block now. If there is a condition variable, we can't
991   // form the continue block until after we've emitted the condition, because
992   // the condition is in scope in the increment, but Sema's jump diagnostics
993   // ensure that there are no continues from the condition variable that jump
994   // to the loop increment.
995   JumpDest Continue;
996   if (!S.getInc())
997     Continue = CondDest;
998   else if (!S.getConditionVariable())
999     Continue = getJumpDestInCurrentScope("for.inc");
1000   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1001 
1002   if (S.getCond()) {
1003     // If the for statement has a condition scope, emit the local variable
1004     // declaration.
1005     if (S.getConditionVariable()) {
1006       EmitDecl(*S.getConditionVariable());
1007 
1008       // We have entered the condition variable's scope, so we're now able to
1009       // jump to the continue block.
1010       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1011       BreakContinueStack.back().ContinueBlock = Continue;
1012     }
1013 
1014     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1015     // If there are any cleanups between here and the loop-exit scope,
1016     // create a block to stage a loop exit along.
1017     if (ForScope.requiresCleanups())
1018       ExitBlock = createBasicBlock("for.cond.cleanup");
1019 
1020     // As long as the condition is true, iterate the loop.
1021     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1022 
1023     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1024     // compares unequal to 0.  The condition must be a scalar type.
1025     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1026     llvm::MDNode *Weights =
1027         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1028     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1029       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1030           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1031 
1032     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1033 
1034     if (ExitBlock != LoopExit.getBlock()) {
1035       EmitBlock(ExitBlock);
1036       EmitBranchThroughCleanup(LoopExit);
1037     }
1038 
1039     EmitBlock(ForBody);
1040   } else {
1041     // Treat it as a non-zero constant.  Don't even create a new block for the
1042     // body, just fall into it.
1043   }
1044   incrementProfileCounter(&S);
1045 
1046   {
1047     // Create a separate cleanup scope for the body, in case it is not
1048     // a compound statement.
1049     RunCleanupsScope BodyScope(*this);
1050     EmitStmt(S.getBody());
1051   }
1052 
1053   // If there is an increment, emit it next.
1054   if (S.getInc()) {
1055     EmitBlock(Continue.getBlock());
1056     EmitStmt(S.getInc());
1057   }
1058 
1059   BreakContinueStack.pop_back();
1060 
1061   ConditionScope.ForceCleanup();
1062 
1063   EmitStopPoint(&S);
1064   EmitBranch(CondBlock);
1065 
1066   ForScope.ForceCleanup();
1067 
1068   LoopStack.pop();
1069 
1070   // Emit the fall-through block.
1071   EmitBlock(LoopExit.getBlock(), true);
1072 }
1073 
1074 void
1075 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1076                                      ArrayRef<const Attr *> ForAttrs) {
1077   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1078 
1079   LexicalScope ForScope(*this, S.getSourceRange());
1080 
1081   // Evaluate the first pieces before the loop.
1082   if (S.getInit())
1083     EmitStmt(S.getInit());
1084   EmitStmt(S.getRangeStmt());
1085   EmitStmt(S.getBeginStmt());
1086   EmitStmt(S.getEndStmt());
1087 
1088   // Start the loop with a block that tests the condition.
1089   // If there's an increment, the continue scope will be overwritten
1090   // later.
1091   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1092   EmitBlock(CondBlock);
1093 
1094   const SourceRange &R = S.getSourceRange();
1095   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1096                  SourceLocToDebugLoc(R.getBegin()),
1097                  SourceLocToDebugLoc(R.getEnd()));
1098 
1099   // If there are any cleanups between here and the loop-exit scope,
1100   // create a block to stage a loop exit along.
1101   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1102   if (ForScope.requiresCleanups())
1103     ExitBlock = createBasicBlock("for.cond.cleanup");
1104 
1105   // The loop body, consisting of the specified body and the loop variable.
1106   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1107 
1108   // The body is executed if the expression, contextually converted
1109   // to bool, is true.
1110   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1111   llvm::MDNode *Weights =
1112       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1113   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1114     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1115         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1116   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1117 
1118   if (ExitBlock != LoopExit.getBlock()) {
1119     EmitBlock(ExitBlock);
1120     EmitBranchThroughCleanup(LoopExit);
1121   }
1122 
1123   EmitBlock(ForBody);
1124   incrementProfileCounter(&S);
1125 
1126   // Create a block for the increment. In case of a 'continue', we jump there.
1127   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1128 
1129   // Store the blocks to use for break and continue.
1130   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1131 
1132   {
1133     // Create a separate cleanup scope for the loop variable and body.
1134     LexicalScope BodyScope(*this, S.getSourceRange());
1135     EmitStmt(S.getLoopVarStmt());
1136     EmitStmt(S.getBody());
1137   }
1138 
1139   EmitStopPoint(&S);
1140   // If there is an increment, emit it next.
1141   EmitBlock(Continue.getBlock());
1142   EmitStmt(S.getInc());
1143 
1144   BreakContinueStack.pop_back();
1145 
1146   EmitBranch(CondBlock);
1147 
1148   ForScope.ForceCleanup();
1149 
1150   LoopStack.pop();
1151 
1152   // Emit the fall-through block.
1153   EmitBlock(LoopExit.getBlock(), true);
1154 }
1155 
1156 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1157   if (RV.isScalar()) {
1158     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1159   } else if (RV.isAggregate()) {
1160     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1161     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1162     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1163   } else {
1164     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1165                        /*init*/ true);
1166   }
1167   EmitBranchThroughCleanup(ReturnBlock);
1168 }
1169 
1170 namespace {
1171 // RAII struct used to save and restore a return statment's result expression.
1172 struct SaveRetExprRAII {
1173   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1174       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1175     CGF.RetExpr = RetExpr;
1176   }
1177   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1178   const Expr *OldRetExpr;
1179   CodeGenFunction &CGF;
1180 };
1181 } // namespace
1182 
1183 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1184 /// codegen it as 'tail call ...; ret void;'.
1185 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1186                                      const CGFunctionInfo *CurFnInfo) {
1187   auto calleeQualType = CE->getCallee()->getType();
1188   const FunctionType *calleeType = nullptr;
1189   if (calleeQualType->isFunctionPointerType() ||
1190       calleeQualType->isFunctionReferenceType() ||
1191       calleeQualType->isBlockPointerType() ||
1192       calleeQualType->isMemberFunctionPointerType()) {
1193     calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1194   } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1195     calleeType = ty;
1196   } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1197     if (auto methodDecl = CMCE->getMethodDecl()) {
1198       // getMethodDecl() doesn't handle member pointers at the moment.
1199       calleeType = methodDecl->getType()->castAs<FunctionType>();
1200     } else {
1201       return;
1202     }
1203   } else {
1204     return;
1205   }
1206   if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1207       (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1208     auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1209     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1210     Builder.CreateRetVoid();
1211     Builder.ClearInsertionPoint();
1212   }
1213 }
1214 
1215 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1216 /// if the function returns void, or may be missing one if the function returns
1217 /// non-void.  Fun stuff :).
1218 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1219   if (requiresReturnValueCheck()) {
1220     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1221     auto *SLocPtr =
1222         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1223                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1224     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1225     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1226     assert(ReturnLocation.isValid() && "No valid return location");
1227     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1228                         ReturnLocation);
1229   }
1230 
1231   // Returning from an outlined SEH helper is UB, and we already warn on it.
1232   if (IsOutlinedSEHHelper) {
1233     Builder.CreateUnreachable();
1234     Builder.ClearInsertionPoint();
1235   }
1236 
1237   // Emit the result value, even if unused, to evaluate the side effects.
1238   const Expr *RV = S.getRetValue();
1239 
1240   // Record the result expression of the return statement. The recorded
1241   // expression is used to determine whether a block capture's lifetime should
1242   // end at the end of the full expression as opposed to the end of the scope
1243   // enclosing the block expression.
1244   //
1245   // This permits a small, easily-implemented exception to our over-conservative
1246   // rules about not jumping to statements following block literals with
1247   // non-trivial cleanups.
1248   SaveRetExprRAII SaveRetExpr(RV, *this);
1249 
1250   RunCleanupsScope cleanupScope(*this);
1251   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1252     RV = EWC->getSubExpr();
1253   // FIXME: Clean this up by using an LValue for ReturnTemp,
1254   // EmitStoreThroughLValue, and EmitAnyExpr.
1255   // Check if the NRVO candidate was not globalized in OpenMP mode.
1256   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1257       S.getNRVOCandidate()->isNRVOVariable() &&
1258       (!getLangOpts().OpenMP ||
1259        !CGM.getOpenMPRuntime()
1260             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1261             .isValid())) {
1262     // Apply the named return value optimization for this return statement,
1263     // which means doing nothing: the appropriate result has already been
1264     // constructed into the NRVO variable.
1265 
1266     // If there is an NRVO flag for this variable, set it to 1 into indicate
1267     // that the cleanup code should not destroy the variable.
1268     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1269       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1270   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1271     // Make sure not to return anything, but evaluate the expression
1272     // for side effects.
1273     if (RV) {
1274       EmitAnyExpr(RV);
1275       if (auto *CE = dyn_cast<CallExpr>(RV))
1276         makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1277     }
1278   } else if (!RV) {
1279     // Do nothing (return value is left uninitialized)
1280   } else if (FnRetTy->isReferenceType()) {
1281     // If this function returns a reference, take the address of the expression
1282     // rather than the value.
1283     RValue Result = EmitReferenceBindingToExpr(RV);
1284     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1285   } else {
1286     switch (getEvaluationKind(RV->getType())) {
1287     case TEK_Scalar:
1288       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1289       break;
1290     case TEK_Complex:
1291       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1292                                 /*isInit*/ true);
1293       break;
1294     case TEK_Aggregate:
1295       EmitAggExpr(RV, AggValueSlot::forAddr(
1296                           ReturnValue, Qualifiers(),
1297                           AggValueSlot::IsDestructed,
1298                           AggValueSlot::DoesNotNeedGCBarriers,
1299                           AggValueSlot::IsNotAliased,
1300                           getOverlapForReturnValue()));
1301       break;
1302     }
1303   }
1304 
1305   ++NumReturnExprs;
1306   if (!RV || RV->isEvaluatable(getContext()))
1307     ++NumSimpleReturnExprs;
1308 
1309   cleanupScope.ForceCleanup();
1310   EmitBranchThroughCleanup(ReturnBlock);
1311 }
1312 
1313 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1314   // As long as debug info is modeled with instructions, we have to ensure we
1315   // have a place to insert here and write the stop point here.
1316   if (HaveInsertPoint())
1317     EmitStopPoint(&S);
1318 
1319   for (const auto *I : S.decls())
1320     EmitDecl(*I);
1321 }
1322 
1323 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1324   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1325 
1326   // If this code is reachable then emit a stop point (if generating
1327   // debug info). We have to do this ourselves because we are on the
1328   // "simple" statement path.
1329   if (HaveInsertPoint())
1330     EmitStopPoint(&S);
1331 
1332   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1333 }
1334 
1335 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1336   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1337 
1338   // If this code is reachable then emit a stop point (if generating
1339   // debug info). We have to do this ourselves because we are on the
1340   // "simple" statement path.
1341   if (HaveInsertPoint())
1342     EmitStopPoint(&S);
1343 
1344   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1345 }
1346 
1347 /// EmitCaseStmtRange - If case statement range is not too big then
1348 /// add multiple cases to switch instruction, one for each value within
1349 /// the range. If range is too big then emit "if" condition check.
1350 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1351                                         ArrayRef<const Attr *> Attrs) {
1352   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1353 
1354   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1355   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1356 
1357   // Emit the code for this case. We do this first to make sure it is
1358   // properly chained from our predecessor before generating the
1359   // switch machinery to enter this block.
1360   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1361   EmitBlockWithFallThrough(CaseDest, &S);
1362   EmitStmt(S.getSubStmt());
1363 
1364   // If range is empty, do nothing.
1365   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1366     return;
1367 
1368   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1369   llvm::APInt Range = RHS - LHS;
1370   // FIXME: parameters such as this should not be hardcoded.
1371   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1372     // Range is small enough to add multiple switch instruction cases.
1373     uint64_t Total = getProfileCount(&S);
1374     unsigned NCases = Range.getZExtValue() + 1;
1375     // We only have one region counter for the entire set of cases here, so we
1376     // need to divide the weights evenly between the generated cases, ensuring
1377     // that the total weight is preserved. E.g., a weight of 5 over three cases
1378     // will be distributed as weights of 2, 2, and 1.
1379     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1380     for (unsigned I = 0; I != NCases; ++I) {
1381       if (SwitchWeights)
1382         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1383       else if (SwitchLikelihood)
1384         SwitchLikelihood->push_back(LH);
1385 
1386       if (Rem)
1387         Rem--;
1388       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1389       ++LHS;
1390     }
1391     return;
1392   }
1393 
1394   // The range is too big. Emit "if" condition into a new block,
1395   // making sure to save and restore the current insertion point.
1396   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1397 
1398   // Push this test onto the chain of range checks (which terminates
1399   // in the default basic block). The switch's default will be changed
1400   // to the top of this chain after switch emission is complete.
1401   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1402   CaseRangeBlock = createBasicBlock("sw.caserange");
1403 
1404   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1405   Builder.SetInsertPoint(CaseRangeBlock);
1406 
1407   // Emit range check.
1408   llvm::Value *Diff =
1409     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1410   llvm::Value *Cond =
1411     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1412 
1413   llvm::MDNode *Weights = nullptr;
1414   if (SwitchWeights) {
1415     uint64_t ThisCount = getProfileCount(&S);
1416     uint64_t DefaultCount = (*SwitchWeights)[0];
1417     Weights = createProfileWeights(ThisCount, DefaultCount);
1418 
1419     // Since we're chaining the switch default through each large case range, we
1420     // need to update the weight for the default, ie, the first case, to include
1421     // this case.
1422     (*SwitchWeights)[0] += ThisCount;
1423   } else if (SwitchLikelihood)
1424     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1425 
1426   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1427 
1428   // Restore the appropriate insertion point.
1429   if (RestoreBB)
1430     Builder.SetInsertPoint(RestoreBB);
1431   else
1432     Builder.ClearInsertionPoint();
1433 }
1434 
1435 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1436                                    ArrayRef<const Attr *> Attrs) {
1437   // If there is no enclosing switch instance that we're aware of, then this
1438   // case statement and its block can be elided.  This situation only happens
1439   // when we've constant-folded the switch, are emitting the constant case,
1440   // and part of the constant case includes another case statement.  For
1441   // instance: switch (4) { case 4: do { case 5: } while (1); }
1442   if (!SwitchInsn) {
1443     EmitStmt(S.getSubStmt());
1444     return;
1445   }
1446 
1447   // Handle case ranges.
1448   if (S.getRHS()) {
1449     EmitCaseStmtRange(S, Attrs);
1450     return;
1451   }
1452 
1453   llvm::ConstantInt *CaseVal =
1454     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1455   if (SwitchLikelihood)
1456     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1457 
1458   // If the body of the case is just a 'break', try to not emit an empty block.
1459   // If we're profiling or we're not optimizing, leave the block in for better
1460   // debug and coverage analysis.
1461   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1462       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1463       isa<BreakStmt>(S.getSubStmt())) {
1464     JumpDest Block = BreakContinueStack.back().BreakBlock;
1465 
1466     // Only do this optimization if there are no cleanups that need emitting.
1467     if (isObviouslyBranchWithoutCleanups(Block)) {
1468       if (SwitchWeights)
1469         SwitchWeights->push_back(getProfileCount(&S));
1470       SwitchInsn->addCase(CaseVal, Block.getBlock());
1471 
1472       // If there was a fallthrough into this case, make sure to redirect it to
1473       // the end of the switch as well.
1474       if (Builder.GetInsertBlock()) {
1475         Builder.CreateBr(Block.getBlock());
1476         Builder.ClearInsertionPoint();
1477       }
1478       return;
1479     }
1480   }
1481 
1482   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1483   EmitBlockWithFallThrough(CaseDest, &S);
1484   if (SwitchWeights)
1485     SwitchWeights->push_back(getProfileCount(&S));
1486   SwitchInsn->addCase(CaseVal, CaseDest);
1487 
1488   // Recursively emitting the statement is acceptable, but is not wonderful for
1489   // code where we have many case statements nested together, i.e.:
1490   //  case 1:
1491   //    case 2:
1492   //      case 3: etc.
1493   // Handling this recursively will create a new block for each case statement
1494   // that falls through to the next case which is IR intensive.  It also causes
1495   // deep recursion which can run into stack depth limitations.  Handle
1496   // sequential non-range case statements specially.
1497   //
1498   // TODO When the next case has a likelihood attribute the code returns to the
1499   // recursive algorithm. Maybe improve this case if it becomes common practice
1500   // to use a lot of attributes.
1501   const CaseStmt *CurCase = &S;
1502   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1503 
1504   // Otherwise, iteratively add consecutive cases to this switch stmt.
1505   while (NextCase && NextCase->getRHS() == nullptr) {
1506     CurCase = NextCase;
1507     llvm::ConstantInt *CaseVal =
1508       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1509 
1510     if (SwitchWeights)
1511       SwitchWeights->push_back(getProfileCount(NextCase));
1512     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1513       CaseDest = createBasicBlock("sw.bb");
1514       EmitBlockWithFallThrough(CaseDest, CurCase);
1515     }
1516     // Since this loop is only executed when the CaseStmt has no attributes
1517     // use a hard-coded value.
1518     if (SwitchLikelihood)
1519       SwitchLikelihood->push_back(Stmt::LH_None);
1520 
1521     SwitchInsn->addCase(CaseVal, CaseDest);
1522     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1523   }
1524 
1525   // Generate a stop point for debug info if the case statement is
1526   // followed by a default statement. A fallthrough case before a
1527   // default case gets its own branch target.
1528   if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1529     EmitStopPoint(CurCase);
1530 
1531   // Normal default recursion for non-cases.
1532   EmitStmt(CurCase->getSubStmt());
1533 }
1534 
1535 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1536                                       ArrayRef<const Attr *> Attrs) {
1537   // If there is no enclosing switch instance that we're aware of, then this
1538   // default statement can be elided. This situation only happens when we've
1539   // constant-folded the switch.
1540   if (!SwitchInsn) {
1541     EmitStmt(S.getSubStmt());
1542     return;
1543   }
1544 
1545   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1546   assert(DefaultBlock->empty() &&
1547          "EmitDefaultStmt: Default block already defined?");
1548 
1549   if (SwitchLikelihood)
1550     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1551 
1552   EmitBlockWithFallThrough(DefaultBlock, &S);
1553 
1554   EmitStmt(S.getSubStmt());
1555 }
1556 
1557 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1558 /// constant value that is being switched on, see if we can dead code eliminate
1559 /// the body of the switch to a simple series of statements to emit.  Basically,
1560 /// on a switch (5) we want to find these statements:
1561 ///    case 5:
1562 ///      printf(...);    <--
1563 ///      ++i;            <--
1564 ///      break;
1565 ///
1566 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1567 /// transformation (for example, one of the elided statements contains a label
1568 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1569 /// should include statements after it (e.g. the printf() line is a substmt of
1570 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1571 /// statement, then return CSFC_Success.
1572 ///
1573 /// If Case is non-null, then we are looking for the specified case, checking
1574 /// that nothing we jump over contains labels.  If Case is null, then we found
1575 /// the case and are looking for the break.
1576 ///
1577 /// If the recursive walk actually finds our Case, then we set FoundCase to
1578 /// true.
1579 ///
1580 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1581 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1582                                             const SwitchCase *Case,
1583                                             bool &FoundCase,
1584                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1585   // If this is a null statement, just succeed.
1586   if (!S)
1587     return Case ? CSFC_Success : CSFC_FallThrough;
1588 
1589   // If this is the switchcase (case 4: or default) that we're looking for, then
1590   // we're in business.  Just add the substatement.
1591   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1592     if (S == Case) {
1593       FoundCase = true;
1594       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1595                                       ResultStmts);
1596     }
1597 
1598     // Otherwise, this is some other case or default statement, just ignore it.
1599     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1600                                     ResultStmts);
1601   }
1602 
1603   // If we are in the live part of the code and we found our break statement,
1604   // return a success!
1605   if (!Case && isa<BreakStmt>(S))
1606     return CSFC_Success;
1607 
1608   // If this is a switch statement, then it might contain the SwitchCase, the
1609   // break, or neither.
1610   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1611     // Handle this as two cases: we might be looking for the SwitchCase (if so
1612     // the skipped statements must be skippable) or we might already have it.
1613     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1614     bool StartedInLiveCode = FoundCase;
1615     unsigned StartSize = ResultStmts.size();
1616 
1617     // If we've not found the case yet, scan through looking for it.
1618     if (Case) {
1619       // Keep track of whether we see a skipped declaration.  The code could be
1620       // using the declaration even if it is skipped, so we can't optimize out
1621       // the decl if the kept statements might refer to it.
1622       bool HadSkippedDecl = false;
1623 
1624       // If we're looking for the case, just see if we can skip each of the
1625       // substatements.
1626       for (; Case && I != E; ++I) {
1627         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1628 
1629         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1630         case CSFC_Failure: return CSFC_Failure;
1631         case CSFC_Success:
1632           // A successful result means that either 1) that the statement doesn't
1633           // have the case and is skippable, or 2) does contain the case value
1634           // and also contains the break to exit the switch.  In the later case,
1635           // we just verify the rest of the statements are elidable.
1636           if (FoundCase) {
1637             // If we found the case and skipped declarations, we can't do the
1638             // optimization.
1639             if (HadSkippedDecl)
1640               return CSFC_Failure;
1641 
1642             for (++I; I != E; ++I)
1643               if (CodeGenFunction::ContainsLabel(*I, true))
1644                 return CSFC_Failure;
1645             return CSFC_Success;
1646           }
1647           break;
1648         case CSFC_FallThrough:
1649           // If we have a fallthrough condition, then we must have found the
1650           // case started to include statements.  Consider the rest of the
1651           // statements in the compound statement as candidates for inclusion.
1652           assert(FoundCase && "Didn't find case but returned fallthrough?");
1653           // We recursively found Case, so we're not looking for it anymore.
1654           Case = nullptr;
1655 
1656           // If we found the case and skipped declarations, we can't do the
1657           // optimization.
1658           if (HadSkippedDecl)
1659             return CSFC_Failure;
1660           break;
1661         }
1662       }
1663 
1664       if (!FoundCase)
1665         return CSFC_Success;
1666 
1667       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1668     }
1669 
1670     // If we have statements in our range, then we know that the statements are
1671     // live and need to be added to the set of statements we're tracking.
1672     bool AnyDecls = false;
1673     for (; I != E; ++I) {
1674       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1675 
1676       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1677       case CSFC_Failure: return CSFC_Failure;
1678       case CSFC_FallThrough:
1679         // A fallthrough result means that the statement was simple and just
1680         // included in ResultStmt, keep adding them afterwards.
1681         break;
1682       case CSFC_Success:
1683         // A successful result means that we found the break statement and
1684         // stopped statement inclusion.  We just ensure that any leftover stmts
1685         // are skippable and return success ourselves.
1686         for (++I; I != E; ++I)
1687           if (CodeGenFunction::ContainsLabel(*I, true))
1688             return CSFC_Failure;
1689         return CSFC_Success;
1690       }
1691     }
1692 
1693     // If we're about to fall out of a scope without hitting a 'break;', we
1694     // can't perform the optimization if there were any decls in that scope
1695     // (we'd lose their end-of-lifetime).
1696     if (AnyDecls) {
1697       // If the entire compound statement was live, there's one more thing we
1698       // can try before giving up: emit the whole thing as a single statement.
1699       // We can do that unless the statement contains a 'break;'.
1700       // FIXME: Such a break must be at the end of a construct within this one.
1701       // We could emit this by just ignoring the BreakStmts entirely.
1702       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1703         ResultStmts.resize(StartSize);
1704         ResultStmts.push_back(S);
1705       } else {
1706         return CSFC_Failure;
1707       }
1708     }
1709 
1710     return CSFC_FallThrough;
1711   }
1712 
1713   // Okay, this is some other statement that we don't handle explicitly, like a
1714   // for statement or increment etc.  If we are skipping over this statement,
1715   // just verify it doesn't have labels, which would make it invalid to elide.
1716   if (Case) {
1717     if (CodeGenFunction::ContainsLabel(S, true))
1718       return CSFC_Failure;
1719     return CSFC_Success;
1720   }
1721 
1722   // Otherwise, we want to include this statement.  Everything is cool with that
1723   // so long as it doesn't contain a break out of the switch we're in.
1724   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1725 
1726   // Otherwise, everything is great.  Include the statement and tell the caller
1727   // that we fall through and include the next statement as well.
1728   ResultStmts.push_back(S);
1729   return CSFC_FallThrough;
1730 }
1731 
1732 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1733 /// then invoke CollectStatementsForCase to find the list of statements to emit
1734 /// for a switch on constant.  See the comment above CollectStatementsForCase
1735 /// for more details.
1736 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1737                                        const llvm::APSInt &ConstantCondValue,
1738                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1739                                        ASTContext &C,
1740                                        const SwitchCase *&ResultCase) {
1741   // First step, find the switch case that is being branched to.  We can do this
1742   // efficiently by scanning the SwitchCase list.
1743   const SwitchCase *Case = S.getSwitchCaseList();
1744   const DefaultStmt *DefaultCase = nullptr;
1745 
1746   for (; Case; Case = Case->getNextSwitchCase()) {
1747     // It's either a default or case.  Just remember the default statement in
1748     // case we're not jumping to any numbered cases.
1749     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1750       DefaultCase = DS;
1751       continue;
1752     }
1753 
1754     // Check to see if this case is the one we're looking for.
1755     const CaseStmt *CS = cast<CaseStmt>(Case);
1756     // Don't handle case ranges yet.
1757     if (CS->getRHS()) return false;
1758 
1759     // If we found our case, remember it as 'case'.
1760     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1761       break;
1762   }
1763 
1764   // If we didn't find a matching case, we use a default if it exists, or we
1765   // elide the whole switch body!
1766   if (!Case) {
1767     // It is safe to elide the body of the switch if it doesn't contain labels
1768     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1769     if (!DefaultCase)
1770       return !CodeGenFunction::ContainsLabel(&S);
1771     Case = DefaultCase;
1772   }
1773 
1774   // Ok, we know which case is being jumped to, try to collect all the
1775   // statements that follow it.  This can fail for a variety of reasons.  Also,
1776   // check to see that the recursive walk actually found our case statement.
1777   // Insane cases like this can fail to find it in the recursive walk since we
1778   // don't handle every stmt kind:
1779   // switch (4) {
1780   //   while (1) {
1781   //     case 4: ...
1782   bool FoundCase = false;
1783   ResultCase = Case;
1784   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1785                                   ResultStmts) != CSFC_Failure &&
1786          FoundCase;
1787 }
1788 
1789 static Optional<SmallVector<uint64_t, 16>>
1790 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1791   // Are there enough branches to weight them?
1792   if (Likelihoods.size() <= 1)
1793     return None;
1794 
1795   uint64_t NumUnlikely = 0;
1796   uint64_t NumNone = 0;
1797   uint64_t NumLikely = 0;
1798   for (const auto LH : Likelihoods) {
1799     switch (LH) {
1800     case Stmt::LH_Unlikely:
1801       ++NumUnlikely;
1802       break;
1803     case Stmt::LH_None:
1804       ++NumNone;
1805       break;
1806     case Stmt::LH_Likely:
1807       ++NumLikely;
1808       break;
1809     }
1810   }
1811 
1812   // Is there a likelihood attribute used?
1813   if (NumUnlikely == 0 && NumLikely == 0)
1814     return None;
1815 
1816   // When multiple cases share the same code they can be combined during
1817   // optimization. In that case the weights of the branch will be the sum of
1818   // the individual weights. Make sure the combined sum of all neutral cases
1819   // doesn't exceed the value of a single likely attribute.
1820   // The additions both avoid divisions by 0 and make sure the weights of None
1821   // don't exceed the weight of Likely.
1822   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1823   const uint64_t None = Likely / (NumNone + 1);
1824   const uint64_t Unlikely = 0;
1825 
1826   SmallVector<uint64_t, 16> Result;
1827   Result.reserve(Likelihoods.size());
1828   for (const auto LH : Likelihoods) {
1829     switch (LH) {
1830     case Stmt::LH_Unlikely:
1831       Result.push_back(Unlikely);
1832       break;
1833     case Stmt::LH_None:
1834       Result.push_back(None);
1835       break;
1836     case Stmt::LH_Likely:
1837       Result.push_back(Likely);
1838       break;
1839     }
1840   }
1841 
1842   return Result;
1843 }
1844 
1845 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1846   // Handle nested switch statements.
1847   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1848   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1849   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1850   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1851 
1852   // See if we can constant fold the condition of the switch and therefore only
1853   // emit the live case statement (if any) of the switch.
1854   llvm::APSInt ConstantCondValue;
1855   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1856     SmallVector<const Stmt*, 4> CaseStmts;
1857     const SwitchCase *Case = nullptr;
1858     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1859                                    getContext(), Case)) {
1860       if (Case)
1861         incrementProfileCounter(Case);
1862       RunCleanupsScope ExecutedScope(*this);
1863 
1864       if (S.getInit())
1865         EmitStmt(S.getInit());
1866 
1867       // Emit the condition variable if needed inside the entire cleanup scope
1868       // used by this special case for constant folded switches.
1869       if (S.getConditionVariable())
1870         EmitDecl(*S.getConditionVariable());
1871 
1872       // At this point, we are no longer "within" a switch instance, so
1873       // we can temporarily enforce this to ensure that any embedded case
1874       // statements are not emitted.
1875       SwitchInsn = nullptr;
1876 
1877       // Okay, we can dead code eliminate everything except this case.  Emit the
1878       // specified series of statements and we're good.
1879       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1880         EmitStmt(CaseStmts[i]);
1881       incrementProfileCounter(&S);
1882 
1883       // Now we want to restore the saved switch instance so that nested
1884       // switches continue to function properly
1885       SwitchInsn = SavedSwitchInsn;
1886 
1887       return;
1888     }
1889   }
1890 
1891   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1892 
1893   RunCleanupsScope ConditionScope(*this);
1894 
1895   if (S.getInit())
1896     EmitStmt(S.getInit());
1897 
1898   if (S.getConditionVariable())
1899     EmitDecl(*S.getConditionVariable());
1900   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1901 
1902   // Create basic block to hold stuff that comes after switch
1903   // statement. We also need to create a default block now so that
1904   // explicit case ranges tests can have a place to jump to on
1905   // failure.
1906   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1907   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1908   if (PGO.haveRegionCounts()) {
1909     // Walk the SwitchCase list to find how many there are.
1910     uint64_t DefaultCount = 0;
1911     unsigned NumCases = 0;
1912     for (const SwitchCase *Case = S.getSwitchCaseList();
1913          Case;
1914          Case = Case->getNextSwitchCase()) {
1915       if (isa<DefaultStmt>(Case))
1916         DefaultCount = getProfileCount(Case);
1917       NumCases += 1;
1918     }
1919     SwitchWeights = new SmallVector<uint64_t, 16>();
1920     SwitchWeights->reserve(NumCases);
1921     // The default needs to be first. We store the edge count, so we already
1922     // know the right weight.
1923     SwitchWeights->push_back(DefaultCount);
1924   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1925     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1926     // Initialize the default case.
1927     SwitchLikelihood->push_back(Stmt::LH_None);
1928   }
1929 
1930   CaseRangeBlock = DefaultBlock;
1931 
1932   // Clear the insertion point to indicate we are in unreachable code.
1933   Builder.ClearInsertionPoint();
1934 
1935   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1936   // then reuse last ContinueBlock.
1937   JumpDest OuterContinue;
1938   if (!BreakContinueStack.empty())
1939     OuterContinue = BreakContinueStack.back().ContinueBlock;
1940 
1941   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1942 
1943   // Emit switch body.
1944   EmitStmt(S.getBody());
1945 
1946   BreakContinueStack.pop_back();
1947 
1948   // Update the default block in case explicit case range tests have
1949   // been chained on top.
1950   SwitchInsn->setDefaultDest(CaseRangeBlock);
1951 
1952   // If a default was never emitted:
1953   if (!DefaultBlock->getParent()) {
1954     // If we have cleanups, emit the default block so that there's a
1955     // place to jump through the cleanups from.
1956     if (ConditionScope.requiresCleanups()) {
1957       EmitBlock(DefaultBlock);
1958 
1959     // Otherwise, just forward the default block to the switch end.
1960     } else {
1961       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1962       delete DefaultBlock;
1963     }
1964   }
1965 
1966   ConditionScope.ForceCleanup();
1967 
1968   // Emit continuation.
1969   EmitBlock(SwitchExit.getBlock(), true);
1970   incrementProfileCounter(&S);
1971 
1972   // If the switch has a condition wrapped by __builtin_unpredictable,
1973   // create metadata that specifies that the switch is unpredictable.
1974   // Don't bother if not optimizing because that metadata would not be used.
1975   auto *Call = dyn_cast<CallExpr>(S.getCond());
1976   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1977     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1978     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1979       llvm::MDBuilder MDHelper(getLLVMContext());
1980       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1981                               MDHelper.createUnpredictable());
1982     }
1983   }
1984 
1985   if (SwitchWeights) {
1986     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1987            "switch weights do not match switch cases");
1988     // If there's only one jump destination there's no sense weighting it.
1989     if (SwitchWeights->size() > 1)
1990       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1991                               createProfileWeights(*SwitchWeights));
1992     delete SwitchWeights;
1993   } else if (SwitchLikelihood) {
1994     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
1995            "switch likelihoods do not match switch cases");
1996     Optional<SmallVector<uint64_t, 16>> LHW =
1997         getLikelihoodWeights(*SwitchLikelihood);
1998     if (LHW) {
1999       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2000       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2001                               createProfileWeights(*LHW));
2002     }
2003     delete SwitchLikelihood;
2004   }
2005   SwitchInsn = SavedSwitchInsn;
2006   SwitchWeights = SavedSwitchWeights;
2007   SwitchLikelihood = SavedSwitchLikelihood;
2008   CaseRangeBlock = SavedCRBlock;
2009 }
2010 
2011 static std::string
2012 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2013                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2014   std::string Result;
2015 
2016   while (*Constraint) {
2017     switch (*Constraint) {
2018     default:
2019       Result += Target.convertConstraint(Constraint);
2020       break;
2021     // Ignore these
2022     case '*':
2023     case '?':
2024     case '!':
2025     case '=': // Will see this and the following in mult-alt constraints.
2026     case '+':
2027       break;
2028     case '#': // Ignore the rest of the constraint alternative.
2029       while (Constraint[1] && Constraint[1] != ',')
2030         Constraint++;
2031       break;
2032     case '&':
2033     case '%':
2034       Result += *Constraint;
2035       while (Constraint[1] && Constraint[1] == *Constraint)
2036         Constraint++;
2037       break;
2038     case ',':
2039       Result += "|";
2040       break;
2041     case 'g':
2042       Result += "imr";
2043       break;
2044     case '[': {
2045       assert(OutCons &&
2046              "Must pass output names to constraints with a symbolic name");
2047       unsigned Index;
2048       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2049       assert(result && "Could not resolve symbolic name"); (void)result;
2050       Result += llvm::utostr(Index);
2051       break;
2052     }
2053     }
2054 
2055     Constraint++;
2056   }
2057 
2058   return Result;
2059 }
2060 
2061 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2062 /// as using a particular register add that as a constraint that will be used
2063 /// in this asm stmt.
2064 static std::string
2065 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2066                        const TargetInfo &Target, CodeGenModule &CGM,
2067                        const AsmStmt &Stmt, const bool EarlyClobber,
2068                        std::string *GCCReg = nullptr) {
2069   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2070   if (!AsmDeclRef)
2071     return Constraint;
2072   const ValueDecl &Value = *AsmDeclRef->getDecl();
2073   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2074   if (!Variable)
2075     return Constraint;
2076   if (Variable->getStorageClass() != SC_Register)
2077     return Constraint;
2078   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2079   if (!Attr)
2080     return Constraint;
2081   StringRef Register = Attr->getLabel();
2082   assert(Target.isValidGCCRegisterName(Register));
2083   // We're using validateOutputConstraint here because we only care if
2084   // this is a register constraint.
2085   TargetInfo::ConstraintInfo Info(Constraint, "");
2086   if (Target.validateOutputConstraint(Info) &&
2087       !Info.allowsRegister()) {
2088     CGM.ErrorUnsupported(&Stmt, "__asm__");
2089     return Constraint;
2090   }
2091   // Canonicalize the register here before returning it.
2092   Register = Target.getNormalizedGCCRegisterName(Register);
2093   if (GCCReg != nullptr)
2094     *GCCReg = Register.str();
2095   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2096 }
2097 
2098 llvm::Value*
2099 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2100                                     LValue InputValue, QualType InputType,
2101                                     std::string &ConstraintStr,
2102                                     SourceLocation Loc) {
2103   llvm::Value *Arg;
2104   if (Info.allowsRegister() || !Info.allowsMemory()) {
2105     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
2106       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
2107     } else {
2108       llvm::Type *Ty = ConvertType(InputType);
2109       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2110       if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2111           getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2112         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2113         Ty = llvm::PointerType::getUnqual(Ty);
2114 
2115         Arg = Builder.CreateLoad(
2116             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
2117       } else {
2118         Arg = InputValue.getPointer(*this);
2119         ConstraintStr += '*';
2120       }
2121     }
2122   } else {
2123     Arg = InputValue.getPointer(*this);
2124     ConstraintStr += '*';
2125   }
2126 
2127   return Arg;
2128 }
2129 
2130 llvm::Value* CodeGenFunction::EmitAsmInput(
2131                                          const TargetInfo::ConstraintInfo &Info,
2132                                            const Expr *InputExpr,
2133                                            std::string &ConstraintStr) {
2134   // If this can't be a register or memory, i.e., has to be a constant
2135   // (immediate or symbolic), try to emit it as such.
2136   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2137     if (Info.requiresImmediateConstant()) {
2138       Expr::EvalResult EVResult;
2139       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2140 
2141       llvm::APSInt IntResult;
2142       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2143                                           getContext()))
2144         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
2145     }
2146 
2147     Expr::EvalResult Result;
2148     if (InputExpr->EvaluateAsInt(Result, getContext()))
2149       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
2150   }
2151 
2152   if (Info.allowsRegister() || !Info.allowsMemory())
2153     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2154       return EmitScalarExpr(InputExpr);
2155   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2156     return EmitScalarExpr(InputExpr);
2157   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2158   LValue Dest = EmitLValue(InputExpr);
2159   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2160                             InputExpr->getExprLoc());
2161 }
2162 
2163 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2164 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2165 /// integers which are the source locations of the start of each line in the
2166 /// asm.
2167 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2168                                       CodeGenFunction &CGF) {
2169   SmallVector<llvm::Metadata *, 8> Locs;
2170   // Add the location of the first line to the MDNode.
2171   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2172       CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2173   StringRef StrVal = Str->getString();
2174   if (!StrVal.empty()) {
2175     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2176     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2177     unsigned StartToken = 0;
2178     unsigned ByteOffset = 0;
2179 
2180     // Add the location of the start of each subsequent line of the asm to the
2181     // MDNode.
2182     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2183       if (StrVal[i] != '\n') continue;
2184       SourceLocation LineLoc = Str->getLocationOfByte(
2185           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2186       Locs.push_back(llvm::ConstantAsMetadata::get(
2187           llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2188     }
2189   }
2190 
2191   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2192 }
2193 
2194 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2195                               bool HasUnwindClobber, bool ReadOnly,
2196                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2197                               const std::vector<llvm::Type *> &ResultRegTypes,
2198                               CodeGenFunction &CGF,
2199                               std::vector<llvm::Value *> &RegResults) {
2200   if (!HasUnwindClobber)
2201     Result.addFnAttr(llvm::Attribute::NoUnwind);
2202 
2203   if (NoMerge)
2204     Result.addFnAttr(llvm::Attribute::NoMerge);
2205   // Attach readnone and readonly attributes.
2206   if (!HasSideEffect) {
2207     if (ReadNone)
2208       Result.addFnAttr(llvm::Attribute::ReadNone);
2209     else if (ReadOnly)
2210       Result.addFnAttr(llvm::Attribute::ReadOnly);
2211   }
2212 
2213   // Attach OpenMP assumption attributes from the caller, if they exist.
2214   if (CGF.CGM.getLangOpts().OpenMP) {
2215     SmallVector<StringRef, 4> Attrs;
2216 
2217     for (const AssumptionAttr *AA :
2218          CGF.CurFuncDecl->specific_attrs<AssumptionAttr>())
2219       AA->getAssumption().split(Attrs, ",");
2220 
2221     if (!Attrs.empty())
2222       Result.addFnAttr(
2223           llvm::Attribute::get(CGF.getLLVMContext(), llvm::AssumptionAttrKey,
2224                                llvm::join(Attrs.begin(), Attrs.end(), ",")));
2225   }
2226 
2227   // Slap the source location of the inline asm into a !srcloc metadata on the
2228   // call.
2229   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2230     Result.setMetadata("srcloc",
2231                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2232   else {
2233     // At least put the line number on MS inline asm blobs.
2234     llvm::Constant *Loc =
2235         llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2236     Result.setMetadata("srcloc",
2237                        llvm::MDNode::get(CGF.getLLVMContext(),
2238                                          llvm::ConstantAsMetadata::get(Loc)));
2239   }
2240 
2241   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2242     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2243     // convergent (meaning, they may call an intrinsically convergent op, such
2244     // as bar.sync, and so can't have certain optimizations applied around
2245     // them).
2246     Result.addFnAttr(llvm::Attribute::Convergent);
2247   // Extract all of the register value results from the asm.
2248   if (ResultRegTypes.size() == 1) {
2249     RegResults.push_back(&Result);
2250   } else {
2251     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2252       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2253       RegResults.push_back(Tmp);
2254     }
2255   }
2256 }
2257 
2258 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2259   // Assemble the final asm string.
2260   std::string AsmString = S.generateAsmString(getContext());
2261 
2262   // Get all the output and input constraints together.
2263   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2264   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2265 
2266   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2267     StringRef Name;
2268     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2269       Name = GAS->getOutputName(i);
2270     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2271     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2272     assert(IsValid && "Failed to parse output constraint");
2273     OutputConstraintInfos.push_back(Info);
2274   }
2275 
2276   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2277     StringRef Name;
2278     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2279       Name = GAS->getInputName(i);
2280     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2281     bool IsValid =
2282       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2283     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2284     InputConstraintInfos.push_back(Info);
2285   }
2286 
2287   std::string Constraints;
2288 
2289   std::vector<LValue> ResultRegDests;
2290   std::vector<QualType> ResultRegQualTys;
2291   std::vector<llvm::Type *> ResultRegTypes;
2292   std::vector<llvm::Type *> ResultTruncRegTypes;
2293   std::vector<llvm::Type *> ArgTypes;
2294   std::vector<llvm::Value*> Args;
2295   llvm::BitVector ResultTypeRequiresCast;
2296 
2297   // Keep track of inout constraints.
2298   std::string InOutConstraints;
2299   std::vector<llvm::Value*> InOutArgs;
2300   std::vector<llvm::Type*> InOutArgTypes;
2301 
2302   // Keep track of out constraints for tied input operand.
2303   std::vector<std::string> OutputConstraints;
2304 
2305   // Keep track of defined physregs.
2306   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2307 
2308   // An inline asm can be marked readonly if it meets the following conditions:
2309   //  - it doesn't have any sideeffects
2310   //  - it doesn't clobber memory
2311   //  - it doesn't return a value by-reference
2312   // It can be marked readnone if it doesn't have any input memory constraints
2313   // in addition to meeting the conditions listed above.
2314   bool ReadOnly = true, ReadNone = true;
2315 
2316   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2317     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2318 
2319     // Simplify the output constraint.
2320     std::string OutputConstraint(S.getOutputConstraint(i));
2321     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2322                                           getTarget(), &OutputConstraintInfos);
2323 
2324     const Expr *OutExpr = S.getOutputExpr(i);
2325     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2326 
2327     std::string GCCReg;
2328     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2329                                               getTarget(), CGM, S,
2330                                               Info.earlyClobber(),
2331                                               &GCCReg);
2332     // Give an error on multiple outputs to same physreg.
2333     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2334       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2335 
2336     OutputConstraints.push_back(OutputConstraint);
2337     LValue Dest = EmitLValue(OutExpr);
2338     if (!Constraints.empty())
2339       Constraints += ',';
2340 
2341     // If this is a register output, then make the inline asm return it
2342     // by-value.  If this is a memory result, return the value by-reference.
2343     QualType QTy = OutExpr->getType();
2344     const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2345                                      hasAggregateEvaluationKind(QTy);
2346     if (!Info.allowsMemory() && IsScalarOrAggregate) {
2347 
2348       Constraints += "=" + OutputConstraint;
2349       ResultRegQualTys.push_back(QTy);
2350       ResultRegDests.push_back(Dest);
2351 
2352       llvm::Type *Ty = ConvertTypeForMem(QTy);
2353       const bool RequiresCast = Info.allowsRegister() &&
2354           (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2355            Ty->isAggregateType());
2356 
2357       ResultTruncRegTypes.push_back(Ty);
2358       ResultTypeRequiresCast.push_back(RequiresCast);
2359 
2360       if (RequiresCast) {
2361         unsigned Size = getContext().getTypeSize(QTy);
2362         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2363       }
2364       ResultRegTypes.push_back(Ty);
2365       // If this output is tied to an input, and if the input is larger, then
2366       // we need to set the actual result type of the inline asm node to be the
2367       // same as the input type.
2368       if (Info.hasMatchingInput()) {
2369         unsigned InputNo;
2370         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2371           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2372           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2373             break;
2374         }
2375         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2376 
2377         QualType InputTy = S.getInputExpr(InputNo)->getType();
2378         QualType OutputType = OutExpr->getType();
2379 
2380         uint64_t InputSize = getContext().getTypeSize(InputTy);
2381         if (getContext().getTypeSize(OutputType) < InputSize) {
2382           // Form the asm to return the value as a larger integer or fp type.
2383           ResultRegTypes.back() = ConvertType(InputTy);
2384         }
2385       }
2386       if (llvm::Type* AdjTy =
2387             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2388                                                  ResultRegTypes.back()))
2389         ResultRegTypes.back() = AdjTy;
2390       else {
2391         CGM.getDiags().Report(S.getAsmLoc(),
2392                               diag::err_asm_invalid_type_in_input)
2393             << OutExpr->getType() << OutputConstraint;
2394       }
2395 
2396       // Update largest vector width for any vector types.
2397       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2398         LargestVectorWidth =
2399             std::max((uint64_t)LargestVectorWidth,
2400                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2401     } else {
2402       llvm::Type *DestAddrTy = Dest.getAddress(*this).getType();
2403       llvm::Value *DestPtr = Dest.getPointer(*this);
2404       // Matrix types in memory are represented by arrays, but accessed through
2405       // vector pointers, with the alignment specified on the access operation.
2406       // For inline assembly, update pointer arguments to use vector pointers.
2407       // Otherwise there will be a mis-match if the matrix is also an
2408       // input-argument which is represented as vector.
2409       if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) {
2410         DestAddrTy = llvm::PointerType::get(
2411             ConvertType(OutExpr->getType()),
2412             cast<llvm::PointerType>(DestAddrTy)->getAddressSpace());
2413         DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy);
2414       }
2415       ArgTypes.push_back(DestAddrTy);
2416       Args.push_back(DestPtr);
2417       Constraints += "=*";
2418       Constraints += OutputConstraint;
2419       ReadOnly = ReadNone = false;
2420     }
2421 
2422     if (Info.isReadWrite()) {
2423       InOutConstraints += ',';
2424 
2425       const Expr *InputExpr = S.getOutputExpr(i);
2426       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2427                                             InOutConstraints,
2428                                             InputExpr->getExprLoc());
2429 
2430       if (llvm::Type* AdjTy =
2431           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2432                                                Arg->getType()))
2433         Arg = Builder.CreateBitCast(Arg, AdjTy);
2434 
2435       // Update largest vector width for any vector types.
2436       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2437         LargestVectorWidth =
2438             std::max((uint64_t)LargestVectorWidth,
2439                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2440       // Only tie earlyclobber physregs.
2441       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2442         InOutConstraints += llvm::utostr(i);
2443       else
2444         InOutConstraints += OutputConstraint;
2445 
2446       InOutArgTypes.push_back(Arg->getType());
2447       InOutArgs.push_back(Arg);
2448     }
2449   }
2450 
2451   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2452   // to the return value slot. Only do this when returning in registers.
2453   if (isa<MSAsmStmt>(&S)) {
2454     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2455     if (RetAI.isDirect() || RetAI.isExtend()) {
2456       // Make a fake lvalue for the return value slot.
2457       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2458       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2459           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2460           ResultRegDests, AsmString, S.getNumOutputs());
2461       SawAsmBlock = true;
2462     }
2463   }
2464 
2465   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2466     const Expr *InputExpr = S.getInputExpr(i);
2467 
2468     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2469 
2470     if (Info.allowsMemory())
2471       ReadNone = false;
2472 
2473     if (!Constraints.empty())
2474       Constraints += ',';
2475 
2476     // Simplify the input constraint.
2477     std::string InputConstraint(S.getInputConstraint(i));
2478     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2479                                          &OutputConstraintInfos);
2480 
2481     InputConstraint = AddVariableConstraints(
2482         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2483         getTarget(), CGM, S, false /* No EarlyClobber */);
2484 
2485     std::string ReplaceConstraint (InputConstraint);
2486     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2487 
2488     // If this input argument is tied to a larger output result, extend the
2489     // input to be the same size as the output.  The LLVM backend wants to see
2490     // the input and output of a matching constraint be the same size.  Note
2491     // that GCC does not define what the top bits are here.  We use zext because
2492     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2493     if (Info.hasTiedOperand()) {
2494       unsigned Output = Info.getTiedOperand();
2495       QualType OutputType = S.getOutputExpr(Output)->getType();
2496       QualType InputTy = InputExpr->getType();
2497 
2498       if (getContext().getTypeSize(OutputType) >
2499           getContext().getTypeSize(InputTy)) {
2500         // Use ptrtoint as appropriate so that we can do our extension.
2501         if (isa<llvm::PointerType>(Arg->getType()))
2502           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2503         llvm::Type *OutputTy = ConvertType(OutputType);
2504         if (isa<llvm::IntegerType>(OutputTy))
2505           Arg = Builder.CreateZExt(Arg, OutputTy);
2506         else if (isa<llvm::PointerType>(OutputTy))
2507           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2508         else {
2509           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2510           Arg = Builder.CreateFPExt(Arg, OutputTy);
2511         }
2512       }
2513       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2514       ReplaceConstraint = OutputConstraints[Output];
2515     }
2516     if (llvm::Type* AdjTy =
2517           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2518                                                    Arg->getType()))
2519       Arg = Builder.CreateBitCast(Arg, AdjTy);
2520     else
2521       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2522           << InputExpr->getType() << InputConstraint;
2523 
2524     // Update largest vector width for any vector types.
2525     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2526       LargestVectorWidth =
2527           std::max((uint64_t)LargestVectorWidth,
2528                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2529 
2530     ArgTypes.push_back(Arg->getType());
2531     Args.push_back(Arg);
2532     Constraints += InputConstraint;
2533   }
2534 
2535   // Labels
2536   SmallVector<llvm::BasicBlock *, 16> Transfer;
2537   llvm::BasicBlock *Fallthrough = nullptr;
2538   bool IsGCCAsmGoto = false;
2539   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2540     IsGCCAsmGoto = GS->isAsmGoto();
2541     if (IsGCCAsmGoto) {
2542       for (const auto *E : GS->labels()) {
2543         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2544         Transfer.push_back(Dest.getBlock());
2545         llvm::BlockAddress *BA =
2546             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2547         Args.push_back(BA);
2548         ArgTypes.push_back(BA->getType());
2549         if (!Constraints.empty())
2550           Constraints += ',';
2551         Constraints += 'X';
2552       }
2553       Fallthrough = createBasicBlock("asm.fallthrough");
2554     }
2555   }
2556 
2557   // Append the "input" part of inout constraints last.
2558   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2559     ArgTypes.push_back(InOutArgTypes[i]);
2560     Args.push_back(InOutArgs[i]);
2561   }
2562   Constraints += InOutConstraints;
2563 
2564   bool HasUnwindClobber = false;
2565 
2566   // Clobbers
2567   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2568     StringRef Clobber = S.getClobber(i);
2569 
2570     if (Clobber == "memory")
2571       ReadOnly = ReadNone = false;
2572     else if (Clobber == "unwind") {
2573       HasUnwindClobber = true;
2574       continue;
2575     } else if (Clobber != "cc") {
2576       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2577       if (CGM.getCodeGenOpts().StackClashProtector &&
2578           getTarget().isSPRegName(Clobber)) {
2579         CGM.getDiags().Report(S.getAsmLoc(),
2580                               diag::warn_stack_clash_protection_inline_asm);
2581       }
2582     }
2583 
2584     if (isa<MSAsmStmt>(&S)) {
2585       if (Clobber == "eax" || Clobber == "edx") {
2586         if (Constraints.find("=&A") != std::string::npos)
2587           continue;
2588         std::string::size_type position1 =
2589             Constraints.find("={" + Clobber.str() + "}");
2590         if (position1 != std::string::npos) {
2591           Constraints.insert(position1 + 1, "&");
2592           continue;
2593         }
2594         std::string::size_type position2 = Constraints.find("=A");
2595         if (position2 != std::string::npos) {
2596           Constraints.insert(position2 + 1, "&");
2597           continue;
2598         }
2599       }
2600     }
2601     if (!Constraints.empty())
2602       Constraints += ',';
2603 
2604     Constraints += "~{";
2605     Constraints += Clobber;
2606     Constraints += '}';
2607   }
2608 
2609   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2610          "unwind clobber can't be used with asm goto");
2611 
2612   // Add machine specific clobbers
2613   std::string MachineClobbers = getTarget().getClobbers();
2614   if (!MachineClobbers.empty()) {
2615     if (!Constraints.empty())
2616       Constraints += ',';
2617     Constraints += MachineClobbers;
2618   }
2619 
2620   llvm::Type *ResultType;
2621   if (ResultRegTypes.empty())
2622     ResultType = VoidTy;
2623   else if (ResultRegTypes.size() == 1)
2624     ResultType = ResultRegTypes[0];
2625   else
2626     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2627 
2628   llvm::FunctionType *FTy =
2629     llvm::FunctionType::get(ResultType, ArgTypes, false);
2630 
2631   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2632   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2633     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2634   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2635       FTy, AsmString, Constraints, HasSideEffect,
2636       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2637   std::vector<llvm::Value*> RegResults;
2638   if (IsGCCAsmGoto) {
2639     llvm::CallBrInst *Result =
2640         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2641     EmitBlock(Fallthrough);
2642     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2643                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2644                       ResultRegTypes, *this, RegResults);
2645   } else if (HasUnwindClobber) {
2646     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2647     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2648                       InNoMergeAttributedStmt, S, ResultRegTypes, *this,
2649                       RegResults);
2650   } else {
2651     llvm::CallInst *Result =
2652         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2653     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2654                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2655                       ResultRegTypes, *this, RegResults);
2656   }
2657 
2658   assert(RegResults.size() == ResultRegTypes.size());
2659   assert(RegResults.size() == ResultTruncRegTypes.size());
2660   assert(RegResults.size() == ResultRegDests.size());
2661   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2662   // in which case its size may grow.
2663   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2664   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2665     llvm::Value *Tmp = RegResults[i];
2666     llvm::Type *TruncTy = ResultTruncRegTypes[i];
2667 
2668     // If the result type of the LLVM IR asm doesn't match the result type of
2669     // the expression, do the conversion.
2670     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2671 
2672       // Truncate the integer result to the right size, note that TruncTy can be
2673       // a pointer.
2674       if (TruncTy->isFloatingPointTy())
2675         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2676       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2677         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2678         Tmp = Builder.CreateTrunc(Tmp,
2679                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2680         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2681       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2682         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2683         Tmp = Builder.CreatePtrToInt(Tmp,
2684                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2685         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2686       } else if (TruncTy->isIntegerTy()) {
2687         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2688       } else if (TruncTy->isVectorTy()) {
2689         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2690       }
2691     }
2692 
2693     LValue Dest = ResultRegDests[i];
2694     // ResultTypeRequiresCast elements correspond to the first
2695     // ResultTypeRequiresCast.size() elements of RegResults.
2696     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2697       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2698       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2699                                         ResultRegTypes[i]->getPointerTo());
2700       if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) {
2701         Builder.CreateStore(Tmp, A);
2702         continue;
2703       }
2704 
2705       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2706       if (Ty.isNull()) {
2707         const Expr *OutExpr = S.getOutputExpr(i);
2708         CGM.Error(
2709             OutExpr->getExprLoc(),
2710             "impossible constraint in asm: can't store value into a register");
2711         return;
2712       }
2713       Dest = MakeAddrLValue(A, Ty);
2714     }
2715     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2716   }
2717 }
2718 
2719 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2720   const RecordDecl *RD = S.getCapturedRecordDecl();
2721   QualType RecordTy = getContext().getRecordType(RD);
2722 
2723   // Initialize the captured struct.
2724   LValue SlotLV =
2725     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2726 
2727   RecordDecl::field_iterator CurField = RD->field_begin();
2728   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2729                                                  E = S.capture_init_end();
2730        I != E; ++I, ++CurField) {
2731     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2732     if (CurField->hasCapturedVLAType()) {
2733       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2734     } else {
2735       EmitInitializerForField(*CurField, LV, *I);
2736     }
2737   }
2738 
2739   return SlotLV;
2740 }
2741 
2742 /// Generate an outlined function for the body of a CapturedStmt, store any
2743 /// captured variables into the captured struct, and call the outlined function.
2744 llvm::Function *
2745 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2746   LValue CapStruct = InitCapturedStruct(S);
2747 
2748   // Emit the CapturedDecl
2749   CodeGenFunction CGF(CGM, true);
2750   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2751   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2752   delete CGF.CapturedStmtInfo;
2753 
2754   // Emit call to the helper function.
2755   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2756 
2757   return F;
2758 }
2759 
2760 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2761   LValue CapStruct = InitCapturedStruct(S);
2762   return CapStruct.getAddress(*this);
2763 }
2764 
2765 /// Creates the outlined function for a CapturedStmt.
2766 llvm::Function *
2767 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2768   assert(CapturedStmtInfo &&
2769     "CapturedStmtInfo should be set when generating the captured function");
2770   const CapturedDecl *CD = S.getCapturedDecl();
2771   const RecordDecl *RD = S.getCapturedRecordDecl();
2772   SourceLocation Loc = S.getBeginLoc();
2773   assert(CD->hasBody() && "missing CapturedDecl body");
2774 
2775   // Build the argument list.
2776   ASTContext &Ctx = CGM.getContext();
2777   FunctionArgList Args;
2778   Args.append(CD->param_begin(), CD->param_end());
2779 
2780   // Create the function declaration.
2781   const CGFunctionInfo &FuncInfo =
2782     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2783   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2784 
2785   llvm::Function *F =
2786     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2787                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2788   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2789   if (CD->isNothrow())
2790     F->addFnAttr(llvm::Attribute::NoUnwind);
2791 
2792   // Generate the function.
2793   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2794                 CD->getBody()->getBeginLoc());
2795   // Set the context parameter in CapturedStmtInfo.
2796   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2797   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2798 
2799   // Initialize variable-length arrays.
2800   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2801                                            Ctx.getTagDeclType(RD));
2802   for (auto *FD : RD->fields()) {
2803     if (FD->hasCapturedVLAType()) {
2804       auto *ExprArg =
2805           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2806               .getScalarVal();
2807       auto VAT = FD->getCapturedVLAType();
2808       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2809     }
2810   }
2811 
2812   // If 'this' is captured, load it into CXXThisValue.
2813   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2814     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2815     LValue ThisLValue = EmitLValueForField(Base, FD);
2816     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2817   }
2818 
2819   PGO.assignRegionCounters(GlobalDecl(CD), F);
2820   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2821   FinishFunction(CD->getBodyRBrace());
2822 
2823   return F;
2824 }
2825