1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106 
107     EmitIgnoredExpr(cast<Expr>(S));
108 
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111 
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130 
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138 
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140 
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CapturedStmtClass: {
145     const CapturedStmt *CS = cast<CapturedStmt>(S);
146     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
147     }
148     break;
149   case Stmt::ObjCAtTryStmtClass:
150     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
151     break;
152   case Stmt::ObjCAtCatchStmtClass:
153     llvm_unreachable(
154                     "@catch statements should be handled by EmitObjCAtTryStmt");
155   case Stmt::ObjCAtFinallyStmtClass:
156     llvm_unreachable(
157                   "@finally statements should be handled by EmitObjCAtTryStmt");
158   case Stmt::ObjCAtThrowStmtClass:
159     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
160     break;
161   case Stmt::ObjCAtSynchronizedStmtClass:
162     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
163     break;
164   case Stmt::ObjCForCollectionStmtClass:
165     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
166     break;
167   case Stmt::ObjCAutoreleasePoolStmtClass:
168     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
169     break;
170 
171   case Stmt::CXXTryStmtClass:
172     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
173     break;
174   case Stmt::CXXForRangeStmtClass:
175     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
176     break;
177   case Stmt::SEHTryStmtClass:
178     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
179     break;
180   case Stmt::OMPParallelDirectiveClass:
181     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
182     break;
183   case Stmt::OMPSimdDirectiveClass:
184     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
185     break;
186   case Stmt::OMPForDirectiveClass:
187     EmitOMPForDirective(cast<OMPForDirective>(*S));
188     break;
189   case Stmt::OMPForSimdDirectiveClass:
190     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
191     break;
192   case Stmt::OMPSectionsDirectiveClass:
193     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
194     break;
195   case Stmt::OMPSectionDirectiveClass:
196     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
197     break;
198   case Stmt::OMPSingleDirectiveClass:
199     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
200     break;
201   case Stmt::OMPMasterDirectiveClass:
202     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
203     break;
204   case Stmt::OMPCriticalDirectiveClass:
205     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
206     break;
207   case Stmt::OMPParallelForDirectiveClass:
208     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
209     break;
210   case Stmt::OMPParallelForSimdDirectiveClass:
211     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
212     break;
213   case Stmt::OMPParallelSectionsDirectiveClass:
214     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
215     break;
216   case Stmt::OMPTaskDirectiveClass:
217     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
218     break;
219   case Stmt::OMPTaskyieldDirectiveClass:
220     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
221     break;
222   case Stmt::OMPBarrierDirectiveClass:
223     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
224     break;
225   case Stmt::OMPTaskwaitDirectiveClass:
226     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
227     break;
228   case Stmt::OMPTaskgroupDirectiveClass:
229     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
230     break;
231   case Stmt::OMPFlushDirectiveClass:
232     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
233     break;
234   case Stmt::OMPOrderedDirectiveClass:
235     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
236     break;
237   case Stmt::OMPAtomicDirectiveClass:
238     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
239     break;
240   case Stmt::OMPTargetDirectiveClass:
241     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
242     break;
243   case Stmt::OMPTeamsDirectiveClass:
244     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
245     break;
246   case Stmt::OMPCancellationPointDirectiveClass:
247     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
248     break;
249   case Stmt::OMPCancelDirectiveClass:
250     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
251     break;
252   case Stmt::OMPTargetDataDirectiveClass:
253     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
254     break;
255   }
256 }
257 
258 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
259   switch (S->getStmtClass()) {
260   default: return false;
261   case Stmt::NullStmtClass: break;
262   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
263   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
264   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
265   case Stmt::AttributedStmtClass:
266                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
267   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
268   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
269   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
270   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
271   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
272   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
273   }
274 
275   return true;
276 }
277 
278 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
279 /// this captures the expression result of the last sub-statement and returns it
280 /// (for use by the statement expression extension).
281 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
282                                           AggValueSlot AggSlot) {
283   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
284                              "LLVM IR generation of compound statement ('{}')");
285 
286   // Keep track of the current cleanup stack depth, including debug scopes.
287   LexicalScope Scope(*this, S.getSourceRange());
288 
289   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
290 }
291 
292 Address
293 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
294                                               bool GetLast,
295                                               AggValueSlot AggSlot) {
296 
297   for (CompoundStmt::const_body_iterator I = S.body_begin(),
298        E = S.body_end()-GetLast; I != E; ++I)
299     EmitStmt(*I);
300 
301   Address RetAlloca = Address::invalid();
302   if (GetLast) {
303     // We have to special case labels here.  They are statements, but when put
304     // at the end of a statement expression, they yield the value of their
305     // subexpression.  Handle this by walking through all labels we encounter,
306     // emitting them before we evaluate the subexpr.
307     const Stmt *LastStmt = S.body_back();
308     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
309       EmitLabel(LS->getDecl());
310       LastStmt = LS->getSubStmt();
311     }
312 
313     EnsureInsertPoint();
314 
315     QualType ExprTy = cast<Expr>(LastStmt)->getType();
316     if (hasAggregateEvaluationKind(ExprTy)) {
317       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
318     } else {
319       // We can't return an RValue here because there might be cleanups at
320       // the end of the StmtExpr.  Because of that, we have to emit the result
321       // here into a temporary alloca.
322       RetAlloca = CreateMemTemp(ExprTy);
323       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
324                        /*IsInit*/false);
325     }
326 
327   }
328 
329   return RetAlloca;
330 }
331 
332 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
333   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
334 
335   // If there is a cleanup stack, then we it isn't worth trying to
336   // simplify this block (we would need to remove it from the scope map
337   // and cleanup entry).
338   if (!EHStack.empty())
339     return;
340 
341   // Can only simplify direct branches.
342   if (!BI || !BI->isUnconditional())
343     return;
344 
345   // Can only simplify empty blocks.
346   if (BI != BB->begin())
347     return;
348 
349   BB->replaceAllUsesWith(BI->getSuccessor(0));
350   BI->eraseFromParent();
351   BB->eraseFromParent();
352 }
353 
354 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
355   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
356 
357   // Fall out of the current block (if necessary).
358   EmitBranch(BB);
359 
360   if (IsFinished && BB->use_empty()) {
361     delete BB;
362     return;
363   }
364 
365   // Place the block after the current block, if possible, or else at
366   // the end of the function.
367   if (CurBB && CurBB->getParent())
368     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
369   else
370     CurFn->getBasicBlockList().push_back(BB);
371   Builder.SetInsertPoint(BB);
372 }
373 
374 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
375   // Emit a branch from the current block to the target one if this
376   // was a real block.  If this was just a fall-through block after a
377   // terminator, don't emit it.
378   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
379 
380   if (!CurBB || CurBB->getTerminator()) {
381     // If there is no insert point or the previous block is already
382     // terminated, don't touch it.
383   } else {
384     // Otherwise, create a fall-through branch.
385     Builder.CreateBr(Target);
386   }
387 
388   Builder.ClearInsertionPoint();
389 }
390 
391 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
392   bool inserted = false;
393   for (llvm::User *u : block->users()) {
394     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
395       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
396       inserted = true;
397       break;
398     }
399   }
400 
401   if (!inserted)
402     CurFn->getBasicBlockList().push_back(block);
403 
404   Builder.SetInsertPoint(block);
405 }
406 
407 CodeGenFunction::JumpDest
408 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
409   JumpDest &Dest = LabelMap[D];
410   if (Dest.isValid()) return Dest;
411 
412   // Create, but don't insert, the new block.
413   Dest = JumpDest(createBasicBlock(D->getName()),
414                   EHScopeStack::stable_iterator::invalid(),
415                   NextCleanupDestIndex++);
416   return Dest;
417 }
418 
419 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
420   // Add this label to the current lexical scope if we're within any
421   // normal cleanups.  Jumps "in" to this label --- when permitted by
422   // the language --- may need to be routed around such cleanups.
423   if (EHStack.hasNormalCleanups() && CurLexicalScope)
424     CurLexicalScope->addLabel(D);
425 
426   JumpDest &Dest = LabelMap[D];
427 
428   // If we didn't need a forward reference to this label, just go
429   // ahead and create a destination at the current scope.
430   if (!Dest.isValid()) {
431     Dest = getJumpDestInCurrentScope(D->getName());
432 
433   // Otherwise, we need to give this label a target depth and remove
434   // it from the branch-fixups list.
435   } else {
436     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
437     Dest.setScopeDepth(EHStack.stable_begin());
438     ResolveBranchFixups(Dest.getBlock());
439   }
440 
441   EmitBlock(Dest.getBlock());
442   incrementProfileCounter(D->getStmt());
443 }
444 
445 /// Change the cleanup scope of the labels in this lexical scope to
446 /// match the scope of the enclosing context.
447 void CodeGenFunction::LexicalScope::rescopeLabels() {
448   assert(!Labels.empty());
449   EHScopeStack::stable_iterator innermostScope
450     = CGF.EHStack.getInnermostNormalCleanup();
451 
452   // Change the scope depth of all the labels.
453   for (SmallVectorImpl<const LabelDecl*>::const_iterator
454          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
455     assert(CGF.LabelMap.count(*i));
456     JumpDest &dest = CGF.LabelMap.find(*i)->second;
457     assert(dest.getScopeDepth().isValid());
458     assert(innermostScope.encloses(dest.getScopeDepth()));
459     dest.setScopeDepth(innermostScope);
460   }
461 
462   // Reparent the labels if the new scope also has cleanups.
463   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
464     ParentScope->Labels.append(Labels.begin(), Labels.end());
465   }
466 }
467 
468 
469 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
470   EmitLabel(S.getDecl());
471   EmitStmt(S.getSubStmt());
472 }
473 
474 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
475   const Stmt *SubStmt = S.getSubStmt();
476   switch (SubStmt->getStmtClass()) {
477   case Stmt::DoStmtClass:
478     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
479     break;
480   case Stmt::ForStmtClass:
481     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
482     break;
483   case Stmt::WhileStmtClass:
484     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
485     break;
486   case Stmt::CXXForRangeStmtClass:
487     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
488     break;
489   default:
490     EmitStmt(SubStmt);
491   }
492 }
493 
494 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
495   // If this code is reachable then emit a stop point (if generating
496   // debug info). We have to do this ourselves because we are on the
497   // "simple" statement path.
498   if (HaveInsertPoint())
499     EmitStopPoint(&S);
500 
501   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
502 }
503 
504 
505 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
506   if (const LabelDecl *Target = S.getConstantTarget()) {
507     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
508     return;
509   }
510 
511   // Ensure that we have an i8* for our PHI node.
512   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
513                                          Int8PtrTy, "addr");
514   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
515 
516   // Get the basic block for the indirect goto.
517   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
518 
519   // The first instruction in the block has to be the PHI for the switch dest,
520   // add an entry for this branch.
521   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
522 
523   EmitBranch(IndGotoBB);
524 }
525 
526 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
527   // C99 6.8.4.1: The first substatement is executed if the expression compares
528   // unequal to 0.  The condition must be a scalar type.
529   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
530 
531   if (S.getConditionVariable())
532     EmitAutoVarDecl(*S.getConditionVariable());
533 
534   // If the condition constant folds and can be elided, try to avoid emitting
535   // the condition and the dead arm of the if/else.
536   bool CondConstant;
537   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
538     // Figure out which block (then or else) is executed.
539     const Stmt *Executed = S.getThen();
540     const Stmt *Skipped  = S.getElse();
541     if (!CondConstant)  // Condition false?
542       std::swap(Executed, Skipped);
543 
544     // If the skipped block has no labels in it, just emit the executed block.
545     // This avoids emitting dead code and simplifies the CFG substantially.
546     if (!ContainsLabel(Skipped)) {
547       if (CondConstant)
548         incrementProfileCounter(&S);
549       if (Executed) {
550         RunCleanupsScope ExecutedScope(*this);
551         EmitStmt(Executed);
552       }
553       return;
554     }
555   }
556 
557   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
558   // the conditional branch.
559   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
560   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
561   llvm::BasicBlock *ElseBlock = ContBlock;
562   if (S.getElse())
563     ElseBlock = createBasicBlock("if.else");
564 
565   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
566                        getProfileCount(S.getThen()));
567 
568   // Emit the 'then' code.
569   EmitBlock(ThenBlock);
570   incrementProfileCounter(&S);
571   {
572     RunCleanupsScope ThenScope(*this);
573     EmitStmt(S.getThen());
574   }
575   EmitBranch(ContBlock);
576 
577   // Emit the 'else' code if present.
578   if (const Stmt *Else = S.getElse()) {
579     {
580       // There is no need to emit line number for an unconditional branch.
581       auto NL = ApplyDebugLocation::CreateEmpty(*this);
582       EmitBlock(ElseBlock);
583     }
584     {
585       RunCleanupsScope ElseScope(*this);
586       EmitStmt(Else);
587     }
588     {
589       // There is no need to emit line number for an unconditional branch.
590       auto NL = ApplyDebugLocation::CreateEmpty(*this);
591       EmitBranch(ContBlock);
592     }
593   }
594 
595   // Emit the continuation block for code after the if.
596   EmitBlock(ContBlock, true);
597 }
598 
599 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
600                                     ArrayRef<const Attr *> WhileAttrs) {
601   // Emit the header for the loop, which will also become
602   // the continue target.
603   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
604   EmitBlock(LoopHeader.getBlock());
605 
606   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs);
607 
608   // Create an exit block for when the condition fails, which will
609   // also become the break target.
610   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
611 
612   // Store the blocks to use for break and continue.
613   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
614 
615   // C++ [stmt.while]p2:
616   //   When the condition of a while statement is a declaration, the
617   //   scope of the variable that is declared extends from its point
618   //   of declaration (3.3.2) to the end of the while statement.
619   //   [...]
620   //   The object created in a condition is destroyed and created
621   //   with each iteration of the loop.
622   RunCleanupsScope ConditionScope(*this);
623 
624   if (S.getConditionVariable())
625     EmitAutoVarDecl(*S.getConditionVariable());
626 
627   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
628   // evaluation of the controlling expression takes place before each
629   // execution of the loop body.
630   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
631 
632   // while(1) is common, avoid extra exit blocks.  Be sure
633   // to correctly handle break/continue though.
634   bool EmitBoolCondBranch = true;
635   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
636     if (C->isOne())
637       EmitBoolCondBranch = false;
638 
639   // As long as the condition is true, go to the loop body.
640   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
641   if (EmitBoolCondBranch) {
642     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
643     if (ConditionScope.requiresCleanups())
644       ExitBlock = createBasicBlock("while.exit");
645     Builder.CreateCondBr(
646         BoolCondVal, LoopBody, ExitBlock,
647         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
648 
649     if (ExitBlock != LoopExit.getBlock()) {
650       EmitBlock(ExitBlock);
651       EmitBranchThroughCleanup(LoopExit);
652     }
653   }
654 
655   // Emit the loop body.  We have to emit this in a cleanup scope
656   // because it might be a singleton DeclStmt.
657   {
658     RunCleanupsScope BodyScope(*this);
659     EmitBlock(LoopBody);
660     incrementProfileCounter(&S);
661     EmitStmt(S.getBody());
662   }
663 
664   BreakContinueStack.pop_back();
665 
666   // Immediately force cleanup.
667   ConditionScope.ForceCleanup();
668 
669   EmitStopPoint(&S);
670   // Branch to the loop header again.
671   EmitBranch(LoopHeader.getBlock());
672 
673   LoopStack.pop();
674 
675   // Emit the exit block.
676   EmitBlock(LoopExit.getBlock(), true);
677 
678   // The LoopHeader typically is just a branch if we skipped emitting
679   // a branch, try to erase it.
680   if (!EmitBoolCondBranch)
681     SimplifyForwardingBlocks(LoopHeader.getBlock());
682 }
683 
684 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
685                                  ArrayRef<const Attr *> DoAttrs) {
686   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
687   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
688 
689   uint64_t ParentCount = getCurrentProfileCount();
690 
691   // Store the blocks to use for break and continue.
692   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
693 
694   // Emit the body of the loop.
695   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
696 
697   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs);
698 
699   EmitBlockWithFallThrough(LoopBody, &S);
700   {
701     RunCleanupsScope BodyScope(*this);
702     EmitStmt(S.getBody());
703   }
704 
705   EmitBlock(LoopCond.getBlock());
706 
707   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
708   // after each execution of the loop body."
709 
710   // Evaluate the conditional in the while header.
711   // C99 6.8.5p2/p4: The first substatement is executed if the expression
712   // compares unequal to 0.  The condition must be a scalar type.
713   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
714 
715   BreakContinueStack.pop_back();
716 
717   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
718   // to correctly handle break/continue though.
719   bool EmitBoolCondBranch = true;
720   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
721     if (C->isZero())
722       EmitBoolCondBranch = false;
723 
724   // As long as the condition is true, iterate the loop.
725   if (EmitBoolCondBranch) {
726     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
727     Builder.CreateCondBr(
728         BoolCondVal, LoopBody, LoopExit.getBlock(),
729         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
730   }
731 
732   LoopStack.pop();
733 
734   // Emit the exit block.
735   EmitBlock(LoopExit.getBlock());
736 
737   // The DoCond block typically is just a branch if we skipped
738   // emitting a branch, try to erase it.
739   if (!EmitBoolCondBranch)
740     SimplifyForwardingBlocks(LoopCond.getBlock());
741 }
742 
743 void CodeGenFunction::EmitForStmt(const ForStmt &S,
744                                   ArrayRef<const Attr *> ForAttrs) {
745   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
746 
747   LexicalScope ForScope(*this, S.getSourceRange());
748 
749   // Evaluate the first part before the loop.
750   if (S.getInit())
751     EmitStmt(S.getInit());
752 
753   // Start the loop with a block that tests the condition.
754   // If there's an increment, the continue scope will be overwritten
755   // later.
756   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
757   llvm::BasicBlock *CondBlock = Continue.getBlock();
758   EmitBlock(CondBlock);
759 
760   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
761 
762   // If the for loop doesn't have an increment we can just use the
763   // condition as the continue block.  Otherwise we'll need to create
764   // a block for it (in the current scope, i.e. in the scope of the
765   // condition), and that we will become our continue block.
766   if (S.getInc())
767     Continue = getJumpDestInCurrentScope("for.inc");
768 
769   // Store the blocks to use for break and continue.
770   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
771 
772   // Create a cleanup scope for the condition variable cleanups.
773   LexicalScope ConditionScope(*this, S.getSourceRange());
774 
775   if (S.getCond()) {
776     // If the for statement has a condition scope, emit the local variable
777     // declaration.
778     if (S.getConditionVariable()) {
779       EmitAutoVarDecl(*S.getConditionVariable());
780     }
781 
782     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
783     // If there are any cleanups between here and the loop-exit scope,
784     // create a block to stage a loop exit along.
785     if (ForScope.requiresCleanups())
786       ExitBlock = createBasicBlock("for.cond.cleanup");
787 
788     // As long as the condition is true, iterate the loop.
789     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
790 
791     // C99 6.8.5p2/p4: The first substatement is executed if the expression
792     // compares unequal to 0.  The condition must be a scalar type.
793     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
794     Builder.CreateCondBr(
795         BoolCondVal, ForBody, ExitBlock,
796         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
797 
798     if (ExitBlock != LoopExit.getBlock()) {
799       EmitBlock(ExitBlock);
800       EmitBranchThroughCleanup(LoopExit);
801     }
802 
803     EmitBlock(ForBody);
804   } else {
805     // Treat it as a non-zero constant.  Don't even create a new block for the
806     // body, just fall into it.
807   }
808   incrementProfileCounter(&S);
809 
810   {
811     // Create a separate cleanup scope for the body, in case it is not
812     // a compound statement.
813     RunCleanupsScope BodyScope(*this);
814     EmitStmt(S.getBody());
815   }
816 
817   // If there is an increment, emit it next.
818   if (S.getInc()) {
819     EmitBlock(Continue.getBlock());
820     EmitStmt(S.getInc());
821   }
822 
823   BreakContinueStack.pop_back();
824 
825   ConditionScope.ForceCleanup();
826 
827   EmitStopPoint(&S);
828   EmitBranch(CondBlock);
829 
830   ForScope.ForceCleanup();
831 
832   LoopStack.pop();
833 
834   // Emit the fall-through block.
835   EmitBlock(LoopExit.getBlock(), true);
836 }
837 
838 void
839 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
840                                      ArrayRef<const Attr *> ForAttrs) {
841   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
842 
843   LexicalScope ForScope(*this, S.getSourceRange());
844 
845   // Evaluate the first pieces before the loop.
846   EmitStmt(S.getRangeStmt());
847   EmitStmt(S.getBeginEndStmt());
848 
849   // Start the loop with a block that tests the condition.
850   // If there's an increment, the continue scope will be overwritten
851   // later.
852   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
853   EmitBlock(CondBlock);
854 
855   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
856 
857   // If there are any cleanups between here and the loop-exit scope,
858   // create a block to stage a loop exit along.
859   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
860   if (ForScope.requiresCleanups())
861     ExitBlock = createBasicBlock("for.cond.cleanup");
862 
863   // The loop body, consisting of the specified body and the loop variable.
864   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
865 
866   // The body is executed if the expression, contextually converted
867   // to bool, is true.
868   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
869   Builder.CreateCondBr(
870       BoolCondVal, ForBody, ExitBlock,
871       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
872 
873   if (ExitBlock != LoopExit.getBlock()) {
874     EmitBlock(ExitBlock);
875     EmitBranchThroughCleanup(LoopExit);
876   }
877 
878   EmitBlock(ForBody);
879   incrementProfileCounter(&S);
880 
881   // Create a block for the increment. In case of a 'continue', we jump there.
882   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
883 
884   // Store the blocks to use for break and continue.
885   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
886 
887   {
888     // Create a separate cleanup scope for the loop variable and body.
889     LexicalScope BodyScope(*this, S.getSourceRange());
890     EmitStmt(S.getLoopVarStmt());
891     EmitStmt(S.getBody());
892   }
893 
894   EmitStopPoint(&S);
895   // If there is an increment, emit it next.
896   EmitBlock(Continue.getBlock());
897   EmitStmt(S.getInc());
898 
899   BreakContinueStack.pop_back();
900 
901   EmitBranch(CondBlock);
902 
903   ForScope.ForceCleanup();
904 
905   LoopStack.pop();
906 
907   // Emit the fall-through block.
908   EmitBlock(LoopExit.getBlock(), true);
909 }
910 
911 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
912   if (RV.isScalar()) {
913     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
914   } else if (RV.isAggregate()) {
915     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
916   } else {
917     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
918                        /*init*/ true);
919   }
920   EmitBranchThroughCleanup(ReturnBlock);
921 }
922 
923 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
924 /// if the function returns void, or may be missing one if the function returns
925 /// non-void.  Fun stuff :).
926 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
927   // Returning from an outlined SEH helper is UB, and we already warn on it.
928   if (IsOutlinedSEHHelper) {
929     Builder.CreateUnreachable();
930     Builder.ClearInsertionPoint();
931   }
932 
933   // Emit the result value, even if unused, to evalute the side effects.
934   const Expr *RV = S.getRetValue();
935 
936   // Treat block literals in a return expression as if they appeared
937   // in their own scope.  This permits a small, easily-implemented
938   // exception to our over-conservative rules about not jumping to
939   // statements following block literals with non-trivial cleanups.
940   RunCleanupsScope cleanupScope(*this);
941   if (const ExprWithCleanups *cleanups =
942         dyn_cast_or_null<ExprWithCleanups>(RV)) {
943     enterFullExpression(cleanups);
944     RV = cleanups->getSubExpr();
945   }
946 
947   // FIXME: Clean this up by using an LValue for ReturnTemp,
948   // EmitStoreThroughLValue, and EmitAnyExpr.
949   if (getLangOpts().ElideConstructors &&
950       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
951     // Apply the named return value optimization for this return statement,
952     // which means doing nothing: the appropriate result has already been
953     // constructed into the NRVO variable.
954 
955     // If there is an NRVO flag for this variable, set it to 1 into indicate
956     // that the cleanup code should not destroy the variable.
957     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
958       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
959   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
960     // Make sure not to return anything, but evaluate the expression
961     // for side effects.
962     if (RV)
963       EmitAnyExpr(RV);
964   } else if (!RV) {
965     // Do nothing (return value is left uninitialized)
966   } else if (FnRetTy->isReferenceType()) {
967     // If this function returns a reference, take the address of the expression
968     // rather than the value.
969     RValue Result = EmitReferenceBindingToExpr(RV);
970     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
971   } else {
972     switch (getEvaluationKind(RV->getType())) {
973     case TEK_Scalar:
974       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
975       break;
976     case TEK_Complex:
977       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
978                                 /*isInit*/ true);
979       break;
980     case TEK_Aggregate:
981       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
982                                             Qualifiers(),
983                                             AggValueSlot::IsDestructed,
984                                             AggValueSlot::DoesNotNeedGCBarriers,
985                                             AggValueSlot::IsNotAliased));
986       break;
987     }
988   }
989 
990   ++NumReturnExprs;
991   if (!RV || RV->isEvaluatable(getContext()))
992     ++NumSimpleReturnExprs;
993 
994   cleanupScope.ForceCleanup();
995   EmitBranchThroughCleanup(ReturnBlock);
996 }
997 
998 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
999   // As long as debug info is modeled with instructions, we have to ensure we
1000   // have a place to insert here and write the stop point here.
1001   if (HaveInsertPoint())
1002     EmitStopPoint(&S);
1003 
1004   for (const auto *I : S.decls())
1005     EmitDecl(*I);
1006 }
1007 
1008 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1009   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1010 
1011   // If this code is reachable then emit a stop point (if generating
1012   // debug info). We have to do this ourselves because we are on the
1013   // "simple" statement path.
1014   if (HaveInsertPoint())
1015     EmitStopPoint(&S);
1016 
1017   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1018 }
1019 
1020 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1021   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1022 
1023   // If this code is reachable then emit a stop point (if generating
1024   // debug info). We have to do this ourselves because we are on the
1025   // "simple" statement path.
1026   if (HaveInsertPoint())
1027     EmitStopPoint(&S);
1028 
1029   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1030 }
1031 
1032 /// EmitCaseStmtRange - If case statement range is not too big then
1033 /// add multiple cases to switch instruction, one for each value within
1034 /// the range. If range is too big then emit "if" condition check.
1035 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1036   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1037 
1038   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1039   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1040 
1041   // Emit the code for this case. We do this first to make sure it is
1042   // properly chained from our predecessor before generating the
1043   // switch machinery to enter this block.
1044   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1045   EmitBlockWithFallThrough(CaseDest, &S);
1046   EmitStmt(S.getSubStmt());
1047 
1048   // If range is empty, do nothing.
1049   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1050     return;
1051 
1052   llvm::APInt Range = RHS - LHS;
1053   // FIXME: parameters such as this should not be hardcoded.
1054   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1055     // Range is small enough to add multiple switch instruction cases.
1056     uint64_t Total = getProfileCount(&S);
1057     unsigned NCases = Range.getZExtValue() + 1;
1058     // We only have one region counter for the entire set of cases here, so we
1059     // need to divide the weights evenly between the generated cases, ensuring
1060     // that the total weight is preserved. E.g., a weight of 5 over three cases
1061     // will be distributed as weights of 2, 2, and 1.
1062     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1063     for (unsigned I = 0; I != NCases; ++I) {
1064       if (SwitchWeights)
1065         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1066       if (Rem)
1067         Rem--;
1068       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1069       LHS++;
1070     }
1071     return;
1072   }
1073 
1074   // The range is too big. Emit "if" condition into a new block,
1075   // making sure to save and restore the current insertion point.
1076   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1077 
1078   // Push this test onto the chain of range checks (which terminates
1079   // in the default basic block). The switch's default will be changed
1080   // to the top of this chain after switch emission is complete.
1081   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1082   CaseRangeBlock = createBasicBlock("sw.caserange");
1083 
1084   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1085   Builder.SetInsertPoint(CaseRangeBlock);
1086 
1087   // Emit range check.
1088   llvm::Value *Diff =
1089     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1090   llvm::Value *Cond =
1091     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1092 
1093   llvm::MDNode *Weights = nullptr;
1094   if (SwitchWeights) {
1095     uint64_t ThisCount = getProfileCount(&S);
1096     uint64_t DefaultCount = (*SwitchWeights)[0];
1097     Weights = createProfileWeights(ThisCount, DefaultCount);
1098 
1099     // Since we're chaining the switch default through each large case range, we
1100     // need to update the weight for the default, ie, the first case, to include
1101     // this case.
1102     (*SwitchWeights)[0] += ThisCount;
1103   }
1104   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1105 
1106   // Restore the appropriate insertion point.
1107   if (RestoreBB)
1108     Builder.SetInsertPoint(RestoreBB);
1109   else
1110     Builder.ClearInsertionPoint();
1111 }
1112 
1113 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1114   // If there is no enclosing switch instance that we're aware of, then this
1115   // case statement and its block can be elided.  This situation only happens
1116   // when we've constant-folded the switch, are emitting the constant case,
1117   // and part of the constant case includes another case statement.  For
1118   // instance: switch (4) { case 4: do { case 5: } while (1); }
1119   if (!SwitchInsn) {
1120     EmitStmt(S.getSubStmt());
1121     return;
1122   }
1123 
1124   // Handle case ranges.
1125   if (S.getRHS()) {
1126     EmitCaseStmtRange(S);
1127     return;
1128   }
1129 
1130   llvm::ConstantInt *CaseVal =
1131     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1132 
1133   // If the body of the case is just a 'break', try to not emit an empty block.
1134   // If we're profiling or we're not optimizing, leave the block in for better
1135   // debug and coverage analysis.
1136   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1137       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1138       isa<BreakStmt>(S.getSubStmt())) {
1139     JumpDest Block = BreakContinueStack.back().BreakBlock;
1140 
1141     // Only do this optimization if there are no cleanups that need emitting.
1142     if (isObviouslyBranchWithoutCleanups(Block)) {
1143       if (SwitchWeights)
1144         SwitchWeights->push_back(getProfileCount(&S));
1145       SwitchInsn->addCase(CaseVal, Block.getBlock());
1146 
1147       // If there was a fallthrough into this case, make sure to redirect it to
1148       // the end of the switch as well.
1149       if (Builder.GetInsertBlock()) {
1150         Builder.CreateBr(Block.getBlock());
1151         Builder.ClearInsertionPoint();
1152       }
1153       return;
1154     }
1155   }
1156 
1157   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1158   EmitBlockWithFallThrough(CaseDest, &S);
1159   if (SwitchWeights)
1160     SwitchWeights->push_back(getProfileCount(&S));
1161   SwitchInsn->addCase(CaseVal, CaseDest);
1162 
1163   // Recursively emitting the statement is acceptable, but is not wonderful for
1164   // code where we have many case statements nested together, i.e.:
1165   //  case 1:
1166   //    case 2:
1167   //      case 3: etc.
1168   // Handling this recursively will create a new block for each case statement
1169   // that falls through to the next case which is IR intensive.  It also causes
1170   // deep recursion which can run into stack depth limitations.  Handle
1171   // sequential non-range case statements specially.
1172   const CaseStmt *CurCase = &S;
1173   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1174 
1175   // Otherwise, iteratively add consecutive cases to this switch stmt.
1176   while (NextCase && NextCase->getRHS() == nullptr) {
1177     CurCase = NextCase;
1178     llvm::ConstantInt *CaseVal =
1179       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1180 
1181     if (SwitchWeights)
1182       SwitchWeights->push_back(getProfileCount(NextCase));
1183     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1184       CaseDest = createBasicBlock("sw.bb");
1185       EmitBlockWithFallThrough(CaseDest, &S);
1186     }
1187 
1188     SwitchInsn->addCase(CaseVal, CaseDest);
1189     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1190   }
1191 
1192   // Normal default recursion for non-cases.
1193   EmitStmt(CurCase->getSubStmt());
1194 }
1195 
1196 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1197   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1198   assert(DefaultBlock->empty() &&
1199          "EmitDefaultStmt: Default block already defined?");
1200 
1201   EmitBlockWithFallThrough(DefaultBlock, &S);
1202 
1203   EmitStmt(S.getSubStmt());
1204 }
1205 
1206 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1207 /// constant value that is being switched on, see if we can dead code eliminate
1208 /// the body of the switch to a simple series of statements to emit.  Basically,
1209 /// on a switch (5) we want to find these statements:
1210 ///    case 5:
1211 ///      printf(...);    <--
1212 ///      ++i;            <--
1213 ///      break;
1214 ///
1215 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1216 /// transformation (for example, one of the elided statements contains a label
1217 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1218 /// should include statements after it (e.g. the printf() line is a substmt of
1219 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1220 /// statement, then return CSFC_Success.
1221 ///
1222 /// If Case is non-null, then we are looking for the specified case, checking
1223 /// that nothing we jump over contains labels.  If Case is null, then we found
1224 /// the case and are looking for the break.
1225 ///
1226 /// If the recursive walk actually finds our Case, then we set FoundCase to
1227 /// true.
1228 ///
1229 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1230 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1231                                             const SwitchCase *Case,
1232                                             bool &FoundCase,
1233                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1234   // If this is a null statement, just succeed.
1235   if (!S)
1236     return Case ? CSFC_Success : CSFC_FallThrough;
1237 
1238   // If this is the switchcase (case 4: or default) that we're looking for, then
1239   // we're in business.  Just add the substatement.
1240   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1241     if (S == Case) {
1242       FoundCase = true;
1243       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1244                                       ResultStmts);
1245     }
1246 
1247     // Otherwise, this is some other case or default statement, just ignore it.
1248     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1249                                     ResultStmts);
1250   }
1251 
1252   // If we are in the live part of the code and we found our break statement,
1253   // return a success!
1254   if (!Case && isa<BreakStmt>(S))
1255     return CSFC_Success;
1256 
1257   // If this is a switch statement, then it might contain the SwitchCase, the
1258   // break, or neither.
1259   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1260     // Handle this as two cases: we might be looking for the SwitchCase (if so
1261     // the skipped statements must be skippable) or we might already have it.
1262     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1263     if (Case) {
1264       // Keep track of whether we see a skipped declaration.  The code could be
1265       // using the declaration even if it is skipped, so we can't optimize out
1266       // the decl if the kept statements might refer to it.
1267       bool HadSkippedDecl = false;
1268 
1269       // If we're looking for the case, just see if we can skip each of the
1270       // substatements.
1271       for (; Case && I != E; ++I) {
1272         HadSkippedDecl |= isa<DeclStmt>(*I);
1273 
1274         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1275         case CSFC_Failure: return CSFC_Failure;
1276         case CSFC_Success:
1277           // A successful result means that either 1) that the statement doesn't
1278           // have the case and is skippable, or 2) does contain the case value
1279           // and also contains the break to exit the switch.  In the later case,
1280           // we just verify the rest of the statements are elidable.
1281           if (FoundCase) {
1282             // If we found the case and skipped declarations, we can't do the
1283             // optimization.
1284             if (HadSkippedDecl)
1285               return CSFC_Failure;
1286 
1287             for (++I; I != E; ++I)
1288               if (CodeGenFunction::ContainsLabel(*I, true))
1289                 return CSFC_Failure;
1290             return CSFC_Success;
1291           }
1292           break;
1293         case CSFC_FallThrough:
1294           // If we have a fallthrough condition, then we must have found the
1295           // case started to include statements.  Consider the rest of the
1296           // statements in the compound statement as candidates for inclusion.
1297           assert(FoundCase && "Didn't find case but returned fallthrough?");
1298           // We recursively found Case, so we're not looking for it anymore.
1299           Case = nullptr;
1300 
1301           // If we found the case and skipped declarations, we can't do the
1302           // optimization.
1303           if (HadSkippedDecl)
1304             return CSFC_Failure;
1305           break;
1306         }
1307       }
1308     }
1309 
1310     // If we have statements in our range, then we know that the statements are
1311     // live and need to be added to the set of statements we're tracking.
1312     for (; I != E; ++I) {
1313       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1314       case CSFC_Failure: return CSFC_Failure;
1315       case CSFC_FallThrough:
1316         // A fallthrough result means that the statement was simple and just
1317         // included in ResultStmt, keep adding them afterwards.
1318         break;
1319       case CSFC_Success:
1320         // A successful result means that we found the break statement and
1321         // stopped statement inclusion.  We just ensure that any leftover stmts
1322         // are skippable and return success ourselves.
1323         for (++I; I != E; ++I)
1324           if (CodeGenFunction::ContainsLabel(*I, true))
1325             return CSFC_Failure;
1326         return CSFC_Success;
1327       }
1328     }
1329 
1330     return Case ? CSFC_Success : CSFC_FallThrough;
1331   }
1332 
1333   // Okay, this is some other statement that we don't handle explicitly, like a
1334   // for statement or increment etc.  If we are skipping over this statement,
1335   // just verify it doesn't have labels, which would make it invalid to elide.
1336   if (Case) {
1337     if (CodeGenFunction::ContainsLabel(S, true))
1338       return CSFC_Failure;
1339     return CSFC_Success;
1340   }
1341 
1342   // Otherwise, we want to include this statement.  Everything is cool with that
1343   // so long as it doesn't contain a break out of the switch we're in.
1344   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1345 
1346   // Otherwise, everything is great.  Include the statement and tell the caller
1347   // that we fall through and include the next statement as well.
1348   ResultStmts.push_back(S);
1349   return CSFC_FallThrough;
1350 }
1351 
1352 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1353 /// then invoke CollectStatementsForCase to find the list of statements to emit
1354 /// for a switch on constant.  See the comment above CollectStatementsForCase
1355 /// for more details.
1356 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1357                                        const llvm::APSInt &ConstantCondValue,
1358                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1359                                        ASTContext &C,
1360                                        const SwitchCase *&ResultCase) {
1361   // First step, find the switch case that is being branched to.  We can do this
1362   // efficiently by scanning the SwitchCase list.
1363   const SwitchCase *Case = S.getSwitchCaseList();
1364   const DefaultStmt *DefaultCase = nullptr;
1365 
1366   for (; Case; Case = Case->getNextSwitchCase()) {
1367     // It's either a default or case.  Just remember the default statement in
1368     // case we're not jumping to any numbered cases.
1369     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1370       DefaultCase = DS;
1371       continue;
1372     }
1373 
1374     // Check to see if this case is the one we're looking for.
1375     const CaseStmt *CS = cast<CaseStmt>(Case);
1376     // Don't handle case ranges yet.
1377     if (CS->getRHS()) return false;
1378 
1379     // If we found our case, remember it as 'case'.
1380     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1381       break;
1382   }
1383 
1384   // If we didn't find a matching case, we use a default if it exists, or we
1385   // elide the whole switch body!
1386   if (!Case) {
1387     // It is safe to elide the body of the switch if it doesn't contain labels
1388     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1389     if (!DefaultCase)
1390       return !CodeGenFunction::ContainsLabel(&S);
1391     Case = DefaultCase;
1392   }
1393 
1394   // Ok, we know which case is being jumped to, try to collect all the
1395   // statements that follow it.  This can fail for a variety of reasons.  Also,
1396   // check to see that the recursive walk actually found our case statement.
1397   // Insane cases like this can fail to find it in the recursive walk since we
1398   // don't handle every stmt kind:
1399   // switch (4) {
1400   //   while (1) {
1401   //     case 4: ...
1402   bool FoundCase = false;
1403   ResultCase = Case;
1404   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1405                                   ResultStmts) != CSFC_Failure &&
1406          FoundCase;
1407 }
1408 
1409 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1410   // Handle nested switch statements.
1411   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1412   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1413   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1414 
1415   // See if we can constant fold the condition of the switch and therefore only
1416   // emit the live case statement (if any) of the switch.
1417   llvm::APSInt ConstantCondValue;
1418   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1419     SmallVector<const Stmt*, 4> CaseStmts;
1420     const SwitchCase *Case = nullptr;
1421     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1422                                    getContext(), Case)) {
1423       if (Case)
1424         incrementProfileCounter(Case);
1425       RunCleanupsScope ExecutedScope(*this);
1426 
1427       // Emit the condition variable if needed inside the entire cleanup scope
1428       // used by this special case for constant folded switches.
1429       if (S.getConditionVariable())
1430         EmitAutoVarDecl(*S.getConditionVariable());
1431 
1432       // At this point, we are no longer "within" a switch instance, so
1433       // we can temporarily enforce this to ensure that any embedded case
1434       // statements are not emitted.
1435       SwitchInsn = nullptr;
1436 
1437       // Okay, we can dead code eliminate everything except this case.  Emit the
1438       // specified series of statements and we're good.
1439       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1440         EmitStmt(CaseStmts[i]);
1441       incrementProfileCounter(&S);
1442 
1443       // Now we want to restore the saved switch instance so that nested
1444       // switches continue to function properly
1445       SwitchInsn = SavedSwitchInsn;
1446 
1447       return;
1448     }
1449   }
1450 
1451   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1452 
1453   RunCleanupsScope ConditionScope(*this);
1454   if (S.getConditionVariable())
1455     EmitAutoVarDecl(*S.getConditionVariable());
1456   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1457 
1458   // Create basic block to hold stuff that comes after switch
1459   // statement. We also need to create a default block now so that
1460   // explicit case ranges tests can have a place to jump to on
1461   // failure.
1462   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1463   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1464   if (PGO.haveRegionCounts()) {
1465     // Walk the SwitchCase list to find how many there are.
1466     uint64_t DefaultCount = 0;
1467     unsigned NumCases = 0;
1468     for (const SwitchCase *Case = S.getSwitchCaseList();
1469          Case;
1470          Case = Case->getNextSwitchCase()) {
1471       if (isa<DefaultStmt>(Case))
1472         DefaultCount = getProfileCount(Case);
1473       NumCases += 1;
1474     }
1475     SwitchWeights = new SmallVector<uint64_t, 16>();
1476     SwitchWeights->reserve(NumCases);
1477     // The default needs to be first. We store the edge count, so we already
1478     // know the right weight.
1479     SwitchWeights->push_back(DefaultCount);
1480   }
1481   CaseRangeBlock = DefaultBlock;
1482 
1483   // Clear the insertion point to indicate we are in unreachable code.
1484   Builder.ClearInsertionPoint();
1485 
1486   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1487   // then reuse last ContinueBlock.
1488   JumpDest OuterContinue;
1489   if (!BreakContinueStack.empty())
1490     OuterContinue = BreakContinueStack.back().ContinueBlock;
1491 
1492   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1493 
1494   // Emit switch body.
1495   EmitStmt(S.getBody());
1496 
1497   BreakContinueStack.pop_back();
1498 
1499   // Update the default block in case explicit case range tests have
1500   // been chained on top.
1501   SwitchInsn->setDefaultDest(CaseRangeBlock);
1502 
1503   // If a default was never emitted:
1504   if (!DefaultBlock->getParent()) {
1505     // If we have cleanups, emit the default block so that there's a
1506     // place to jump through the cleanups from.
1507     if (ConditionScope.requiresCleanups()) {
1508       EmitBlock(DefaultBlock);
1509 
1510     // Otherwise, just forward the default block to the switch end.
1511     } else {
1512       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1513       delete DefaultBlock;
1514     }
1515   }
1516 
1517   ConditionScope.ForceCleanup();
1518 
1519   // Emit continuation.
1520   EmitBlock(SwitchExit.getBlock(), true);
1521   incrementProfileCounter(&S);
1522 
1523   // If the switch has a condition wrapped by __builtin_unpredictable,
1524   // create metadata that specifies that the switch is unpredictable.
1525   // Don't bother if not optimizing because that metadata would not be used.
1526   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1527     if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) {
1528       const Decl *TargetDecl = Call->getCalleeDecl();
1529       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1530         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1531           llvm::MDBuilder MDHelper(getLLVMContext());
1532           SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1533                                   MDHelper.createUnpredictable());
1534         }
1535       }
1536     }
1537   }
1538 
1539   if (SwitchWeights) {
1540     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1541            "switch weights do not match switch cases");
1542     // If there's only one jump destination there's no sense weighting it.
1543     if (SwitchWeights->size() > 1)
1544       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1545                               createProfileWeights(*SwitchWeights));
1546     delete SwitchWeights;
1547   }
1548   SwitchInsn = SavedSwitchInsn;
1549   SwitchWeights = SavedSwitchWeights;
1550   CaseRangeBlock = SavedCRBlock;
1551 }
1552 
1553 static std::string
1554 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1555                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1556   std::string Result;
1557 
1558   while (*Constraint) {
1559     switch (*Constraint) {
1560     default:
1561       Result += Target.convertConstraint(Constraint);
1562       break;
1563     // Ignore these
1564     case '*':
1565     case '?':
1566     case '!':
1567     case '=': // Will see this and the following in mult-alt constraints.
1568     case '+':
1569       break;
1570     case '#': // Ignore the rest of the constraint alternative.
1571       while (Constraint[1] && Constraint[1] != ',')
1572         Constraint++;
1573       break;
1574     case '&':
1575     case '%':
1576       Result += *Constraint;
1577       while (Constraint[1] && Constraint[1] == *Constraint)
1578         Constraint++;
1579       break;
1580     case ',':
1581       Result += "|";
1582       break;
1583     case 'g':
1584       Result += "imr";
1585       break;
1586     case '[': {
1587       assert(OutCons &&
1588              "Must pass output names to constraints with a symbolic name");
1589       unsigned Index;
1590       bool result = Target.resolveSymbolicName(Constraint,
1591                                                &(*OutCons)[0],
1592                                                OutCons->size(), Index);
1593       assert(result && "Could not resolve symbolic name"); (void)result;
1594       Result += llvm::utostr(Index);
1595       break;
1596     }
1597     }
1598 
1599     Constraint++;
1600   }
1601 
1602   return Result;
1603 }
1604 
1605 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1606 /// as using a particular register add that as a constraint that will be used
1607 /// in this asm stmt.
1608 static std::string
1609 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1610                        const TargetInfo &Target, CodeGenModule &CGM,
1611                        const AsmStmt &Stmt, const bool EarlyClobber) {
1612   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1613   if (!AsmDeclRef)
1614     return Constraint;
1615   const ValueDecl &Value = *AsmDeclRef->getDecl();
1616   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1617   if (!Variable)
1618     return Constraint;
1619   if (Variable->getStorageClass() != SC_Register)
1620     return Constraint;
1621   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1622   if (!Attr)
1623     return Constraint;
1624   StringRef Register = Attr->getLabel();
1625   assert(Target.isValidGCCRegisterName(Register));
1626   // We're using validateOutputConstraint here because we only care if
1627   // this is a register constraint.
1628   TargetInfo::ConstraintInfo Info(Constraint, "");
1629   if (Target.validateOutputConstraint(Info) &&
1630       !Info.allowsRegister()) {
1631     CGM.ErrorUnsupported(&Stmt, "__asm__");
1632     return Constraint;
1633   }
1634   // Canonicalize the register here before returning it.
1635   Register = Target.getNormalizedGCCRegisterName(Register);
1636   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1637 }
1638 
1639 llvm::Value*
1640 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1641                                     LValue InputValue, QualType InputType,
1642                                     std::string &ConstraintStr,
1643                                     SourceLocation Loc) {
1644   llvm::Value *Arg;
1645   if (Info.allowsRegister() || !Info.allowsMemory()) {
1646     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1647       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1648     } else {
1649       llvm::Type *Ty = ConvertType(InputType);
1650       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1651       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1652         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1653         Ty = llvm::PointerType::getUnqual(Ty);
1654 
1655         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1656                                                        Ty));
1657       } else {
1658         Arg = InputValue.getPointer();
1659         ConstraintStr += '*';
1660       }
1661     }
1662   } else {
1663     Arg = InputValue.getPointer();
1664     ConstraintStr += '*';
1665   }
1666 
1667   return Arg;
1668 }
1669 
1670 llvm::Value* CodeGenFunction::EmitAsmInput(
1671                                          const TargetInfo::ConstraintInfo &Info,
1672                                            const Expr *InputExpr,
1673                                            std::string &ConstraintStr) {
1674   // If this can't be a register or memory, i.e., has to be a constant
1675   // (immediate or symbolic), try to emit it as such.
1676   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1677     llvm::APSInt Result;
1678     if (InputExpr->EvaluateAsInt(Result, getContext()))
1679       return llvm::ConstantInt::get(getLLVMContext(), Result);
1680     assert(!Info.requiresImmediateConstant() &&
1681            "Required-immediate inlineasm arg isn't constant?");
1682   }
1683 
1684   if (Info.allowsRegister() || !Info.allowsMemory())
1685     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1686       return EmitScalarExpr(InputExpr);
1687 
1688   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1689   LValue Dest = EmitLValue(InputExpr);
1690   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1691                             InputExpr->getExprLoc());
1692 }
1693 
1694 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1695 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1696 /// integers which are the source locations of the start of each line in the
1697 /// asm.
1698 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1699                                       CodeGenFunction &CGF) {
1700   SmallVector<llvm::Metadata *, 8> Locs;
1701   // Add the location of the first line to the MDNode.
1702   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1703       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1704   StringRef StrVal = Str->getString();
1705   if (!StrVal.empty()) {
1706     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1707     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1708 
1709     // Add the location of the start of each subsequent line of the asm to the
1710     // MDNode.
1711     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1712       if (StrVal[i] != '\n') continue;
1713       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1714                                                       CGF.getTarget());
1715       Locs.push_back(llvm::ConstantAsMetadata::get(
1716           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1717     }
1718   }
1719 
1720   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1721 }
1722 
1723 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1724   // Assemble the final asm string.
1725   std::string AsmString = S.generateAsmString(getContext());
1726 
1727   // Get all the output and input constraints together.
1728   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1729   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1730 
1731   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1732     StringRef Name;
1733     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1734       Name = GAS->getOutputName(i);
1735     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1736     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1737     assert(IsValid && "Failed to parse output constraint");
1738     OutputConstraintInfos.push_back(Info);
1739   }
1740 
1741   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1742     StringRef Name;
1743     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1744       Name = GAS->getInputName(i);
1745     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1746     bool IsValid =
1747       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1748                                           S.getNumOutputs(), Info);
1749     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1750     InputConstraintInfos.push_back(Info);
1751   }
1752 
1753   std::string Constraints;
1754 
1755   std::vector<LValue> ResultRegDests;
1756   std::vector<QualType> ResultRegQualTys;
1757   std::vector<llvm::Type *> ResultRegTypes;
1758   std::vector<llvm::Type *> ResultTruncRegTypes;
1759   std::vector<llvm::Type *> ArgTypes;
1760   std::vector<llvm::Value*> Args;
1761 
1762   // Keep track of inout constraints.
1763   std::string InOutConstraints;
1764   std::vector<llvm::Value*> InOutArgs;
1765   std::vector<llvm::Type*> InOutArgTypes;
1766 
1767   // An inline asm can be marked readonly if it meets the following conditions:
1768   //  - it doesn't have any sideeffects
1769   //  - it doesn't clobber memory
1770   //  - it doesn't return a value by-reference
1771   // It can be marked readnone if it doesn't have any input memory constraints
1772   // in addition to meeting the conditions listed above.
1773   bool ReadOnly = true, ReadNone = true;
1774 
1775   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1776     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1777 
1778     // Simplify the output constraint.
1779     std::string OutputConstraint(S.getOutputConstraint(i));
1780     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1781                                           getTarget());
1782 
1783     const Expr *OutExpr = S.getOutputExpr(i);
1784     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1785 
1786     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1787                                               getTarget(), CGM, S,
1788                                               Info.earlyClobber());
1789 
1790     LValue Dest = EmitLValue(OutExpr);
1791     if (!Constraints.empty())
1792       Constraints += ',';
1793 
1794     // If this is a register output, then make the inline asm return it
1795     // by-value.  If this is a memory result, return the value by-reference.
1796     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1797       Constraints += "=" + OutputConstraint;
1798       ResultRegQualTys.push_back(OutExpr->getType());
1799       ResultRegDests.push_back(Dest);
1800       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1801       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1802 
1803       // If this output is tied to an input, and if the input is larger, then
1804       // we need to set the actual result type of the inline asm node to be the
1805       // same as the input type.
1806       if (Info.hasMatchingInput()) {
1807         unsigned InputNo;
1808         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1809           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1810           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1811             break;
1812         }
1813         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1814 
1815         QualType InputTy = S.getInputExpr(InputNo)->getType();
1816         QualType OutputType = OutExpr->getType();
1817 
1818         uint64_t InputSize = getContext().getTypeSize(InputTy);
1819         if (getContext().getTypeSize(OutputType) < InputSize) {
1820           // Form the asm to return the value as a larger integer or fp type.
1821           ResultRegTypes.back() = ConvertType(InputTy);
1822         }
1823       }
1824       if (llvm::Type* AdjTy =
1825             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1826                                                  ResultRegTypes.back()))
1827         ResultRegTypes.back() = AdjTy;
1828       else {
1829         CGM.getDiags().Report(S.getAsmLoc(),
1830                               diag::err_asm_invalid_type_in_input)
1831             << OutExpr->getType() << OutputConstraint;
1832       }
1833     } else {
1834       ArgTypes.push_back(Dest.getAddress().getType());
1835       Args.push_back(Dest.getPointer());
1836       Constraints += "=*";
1837       Constraints += OutputConstraint;
1838       ReadOnly = ReadNone = false;
1839     }
1840 
1841     if (Info.isReadWrite()) {
1842       InOutConstraints += ',';
1843 
1844       const Expr *InputExpr = S.getOutputExpr(i);
1845       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1846                                             InOutConstraints,
1847                                             InputExpr->getExprLoc());
1848 
1849       if (llvm::Type* AdjTy =
1850           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1851                                                Arg->getType()))
1852         Arg = Builder.CreateBitCast(Arg, AdjTy);
1853 
1854       if (Info.allowsRegister())
1855         InOutConstraints += llvm::utostr(i);
1856       else
1857         InOutConstraints += OutputConstraint;
1858 
1859       InOutArgTypes.push_back(Arg->getType());
1860       InOutArgs.push_back(Arg);
1861     }
1862   }
1863 
1864   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1865   // to the return value slot. Only do this when returning in registers.
1866   if (isa<MSAsmStmt>(&S)) {
1867     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1868     if (RetAI.isDirect() || RetAI.isExtend()) {
1869       // Make a fake lvalue for the return value slot.
1870       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1871       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1872           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1873           ResultRegDests, AsmString, S.getNumOutputs());
1874       SawAsmBlock = true;
1875     }
1876   }
1877 
1878   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1879     const Expr *InputExpr = S.getInputExpr(i);
1880 
1881     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1882 
1883     if (Info.allowsMemory())
1884       ReadNone = false;
1885 
1886     if (!Constraints.empty())
1887       Constraints += ',';
1888 
1889     // Simplify the input constraint.
1890     std::string InputConstraint(S.getInputConstraint(i));
1891     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1892                                          &OutputConstraintInfos);
1893 
1894     InputConstraint = AddVariableConstraints(
1895         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1896         getTarget(), CGM, S, false /* No EarlyClobber */);
1897 
1898     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1899 
1900     // If this input argument is tied to a larger output result, extend the
1901     // input to be the same size as the output.  The LLVM backend wants to see
1902     // the input and output of a matching constraint be the same size.  Note
1903     // that GCC does not define what the top bits are here.  We use zext because
1904     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1905     if (Info.hasTiedOperand()) {
1906       unsigned Output = Info.getTiedOperand();
1907       QualType OutputType = S.getOutputExpr(Output)->getType();
1908       QualType InputTy = InputExpr->getType();
1909 
1910       if (getContext().getTypeSize(OutputType) >
1911           getContext().getTypeSize(InputTy)) {
1912         // Use ptrtoint as appropriate so that we can do our extension.
1913         if (isa<llvm::PointerType>(Arg->getType()))
1914           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1915         llvm::Type *OutputTy = ConvertType(OutputType);
1916         if (isa<llvm::IntegerType>(OutputTy))
1917           Arg = Builder.CreateZExt(Arg, OutputTy);
1918         else if (isa<llvm::PointerType>(OutputTy))
1919           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1920         else {
1921           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1922           Arg = Builder.CreateFPExt(Arg, OutputTy);
1923         }
1924       }
1925     }
1926     if (llvm::Type* AdjTy =
1927               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1928                                                    Arg->getType()))
1929       Arg = Builder.CreateBitCast(Arg, AdjTy);
1930     else
1931       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1932           << InputExpr->getType() << InputConstraint;
1933 
1934     ArgTypes.push_back(Arg->getType());
1935     Args.push_back(Arg);
1936     Constraints += InputConstraint;
1937   }
1938 
1939   // Append the "input" part of inout constraints last.
1940   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1941     ArgTypes.push_back(InOutArgTypes[i]);
1942     Args.push_back(InOutArgs[i]);
1943   }
1944   Constraints += InOutConstraints;
1945 
1946   // Clobbers
1947   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1948     StringRef Clobber = S.getClobber(i);
1949 
1950     if (Clobber == "memory")
1951       ReadOnly = ReadNone = false;
1952     else if (Clobber != "cc")
1953       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1954 
1955     if (!Constraints.empty())
1956       Constraints += ',';
1957 
1958     Constraints += "~{";
1959     Constraints += Clobber;
1960     Constraints += '}';
1961   }
1962 
1963   // Add machine specific clobbers
1964   std::string MachineClobbers = getTarget().getClobbers();
1965   if (!MachineClobbers.empty()) {
1966     if (!Constraints.empty())
1967       Constraints += ',';
1968     Constraints += MachineClobbers;
1969   }
1970 
1971   llvm::Type *ResultType;
1972   if (ResultRegTypes.empty())
1973     ResultType = VoidTy;
1974   else if (ResultRegTypes.size() == 1)
1975     ResultType = ResultRegTypes[0];
1976   else
1977     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1978 
1979   llvm::FunctionType *FTy =
1980     llvm::FunctionType::get(ResultType, ArgTypes, false);
1981 
1982   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1983   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1984     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1985   llvm::InlineAsm *IA =
1986     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1987                          /* IsAlignStack */ false, AsmDialect);
1988   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1989   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1990                        llvm::Attribute::NoUnwind);
1991 
1992   // Attach readnone and readonly attributes.
1993   if (!HasSideEffect) {
1994     if (ReadNone)
1995       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1996                            llvm::Attribute::ReadNone);
1997     else if (ReadOnly)
1998       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1999                            llvm::Attribute::ReadOnly);
2000   }
2001 
2002   // Slap the source location of the inline asm into a !srcloc metadata on the
2003   // call.
2004   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2005     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2006                                                    *this));
2007   } else {
2008     // At least put the line number on MS inline asm blobs.
2009     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2010     Result->setMetadata("srcloc",
2011                         llvm::MDNode::get(getLLVMContext(),
2012                                           llvm::ConstantAsMetadata::get(Loc)));
2013   }
2014 
2015   // Extract all of the register value results from the asm.
2016   std::vector<llvm::Value*> RegResults;
2017   if (ResultRegTypes.size() == 1) {
2018     RegResults.push_back(Result);
2019   } else {
2020     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2021       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2022       RegResults.push_back(Tmp);
2023     }
2024   }
2025 
2026   assert(RegResults.size() == ResultRegTypes.size());
2027   assert(RegResults.size() == ResultTruncRegTypes.size());
2028   assert(RegResults.size() == ResultRegDests.size());
2029   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2030     llvm::Value *Tmp = RegResults[i];
2031 
2032     // If the result type of the LLVM IR asm doesn't match the result type of
2033     // the expression, do the conversion.
2034     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2035       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2036 
2037       // Truncate the integer result to the right size, note that TruncTy can be
2038       // a pointer.
2039       if (TruncTy->isFloatingPointTy())
2040         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2041       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2042         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2043         Tmp = Builder.CreateTrunc(Tmp,
2044                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2045         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2046       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2047         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2048         Tmp = Builder.CreatePtrToInt(Tmp,
2049                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2050         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2051       } else if (TruncTy->isIntegerTy()) {
2052         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2053       } else if (TruncTy->isVectorTy()) {
2054         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2055       }
2056     }
2057 
2058     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2059   }
2060 }
2061 
2062 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2063   const RecordDecl *RD = S.getCapturedRecordDecl();
2064   QualType RecordTy = getContext().getRecordType(RD);
2065 
2066   // Initialize the captured struct.
2067   LValue SlotLV =
2068     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2069 
2070   RecordDecl::field_iterator CurField = RD->field_begin();
2071   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2072                                                  E = S.capture_init_end();
2073        I != E; ++I, ++CurField) {
2074     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2075     if (CurField->hasCapturedVLAType()) {
2076       auto VAT = CurField->getCapturedVLAType();
2077       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2078     } else {
2079       EmitInitializerForField(*CurField, LV, *I, None);
2080     }
2081   }
2082 
2083   return SlotLV;
2084 }
2085 
2086 /// Generate an outlined function for the body of a CapturedStmt, store any
2087 /// captured variables into the captured struct, and call the outlined function.
2088 llvm::Function *
2089 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2090   LValue CapStruct = InitCapturedStruct(S);
2091 
2092   // Emit the CapturedDecl
2093   CodeGenFunction CGF(CGM, true);
2094   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2095   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2096   delete CGF.CapturedStmtInfo;
2097 
2098   // Emit call to the helper function.
2099   EmitCallOrInvoke(F, CapStruct.getPointer());
2100 
2101   return F;
2102 }
2103 
2104 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2105   LValue CapStruct = InitCapturedStruct(S);
2106   return CapStruct.getAddress();
2107 }
2108 
2109 /// Creates the outlined function for a CapturedStmt.
2110 llvm::Function *
2111 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2112   assert(CapturedStmtInfo &&
2113     "CapturedStmtInfo should be set when generating the captured function");
2114   const CapturedDecl *CD = S.getCapturedDecl();
2115   const RecordDecl *RD = S.getCapturedRecordDecl();
2116   SourceLocation Loc = S.getLocStart();
2117   assert(CD->hasBody() && "missing CapturedDecl body");
2118 
2119   // Build the argument list.
2120   ASTContext &Ctx = CGM.getContext();
2121   FunctionArgList Args;
2122   Args.append(CD->param_begin(), CD->param_end());
2123 
2124   // Create the function declaration.
2125   FunctionType::ExtInfo ExtInfo;
2126   const CGFunctionInfo &FuncInfo =
2127       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2128                                                     /*IsVariadic=*/false);
2129   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2130 
2131   llvm::Function *F =
2132     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2133                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2134   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2135   if (CD->isNothrow())
2136     F->addFnAttr(llvm::Attribute::NoUnwind);
2137 
2138   // Generate the function.
2139   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2140                 CD->getLocation(),
2141                 CD->getBody()->getLocStart());
2142   // Set the context parameter in CapturedStmtInfo.
2143   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2144   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2145 
2146   // Initialize variable-length arrays.
2147   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2148                                            Ctx.getTagDeclType(RD));
2149   for (auto *FD : RD->fields()) {
2150     if (FD->hasCapturedVLAType()) {
2151       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2152                                        S.getLocStart()).getScalarVal();
2153       auto VAT = FD->getCapturedVLAType();
2154       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2155     }
2156   }
2157 
2158   // If 'this' is captured, load it into CXXThisValue.
2159   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2160     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2161     LValue ThisLValue = EmitLValueForField(Base, FD);
2162     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2163   }
2164 
2165   PGO.assignRegionCounters(CD, F);
2166   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2167   FinishFunction(CD->getBodyRBrace());
2168 
2169   return F;
2170 }
2171