1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106 
107     EmitIgnoredExpr(cast<Expr>(S));
108 
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111 
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130 
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138 
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140 
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CoroutineBodyStmtClass:
145   case Stmt::CoreturnStmtClass:
146     CGM.ErrorUnsupported(S, "coroutine");
147     break;
148   case Stmt::CapturedStmtClass: {
149     const CapturedStmt *CS = cast<CapturedStmt>(S);
150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
151     }
152     break;
153   case Stmt::ObjCAtTryStmtClass:
154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
155     break;
156   case Stmt::ObjCAtCatchStmtClass:
157     llvm_unreachable(
158                     "@catch statements should be handled by EmitObjCAtTryStmt");
159   case Stmt::ObjCAtFinallyStmtClass:
160     llvm_unreachable(
161                   "@finally statements should be handled by EmitObjCAtTryStmt");
162   case Stmt::ObjCAtThrowStmtClass:
163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
164     break;
165   case Stmt::ObjCAtSynchronizedStmtClass:
166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
167     break;
168   case Stmt::ObjCForCollectionStmtClass:
169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
170     break;
171   case Stmt::ObjCAutoreleasePoolStmtClass:
172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
173     break;
174 
175   case Stmt::CXXTryStmtClass:
176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
177     break;
178   case Stmt::CXXForRangeStmtClass:
179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
180     break;
181   case Stmt::SEHTryStmtClass:
182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
183     break;
184   case Stmt::OMPParallelDirectiveClass:
185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
186     break;
187   case Stmt::OMPSimdDirectiveClass:
188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
189     break;
190   case Stmt::OMPForDirectiveClass:
191     EmitOMPForDirective(cast<OMPForDirective>(*S));
192     break;
193   case Stmt::OMPForSimdDirectiveClass:
194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
195     break;
196   case Stmt::OMPSectionsDirectiveClass:
197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
198     break;
199   case Stmt::OMPSectionDirectiveClass:
200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
201     break;
202   case Stmt::OMPSingleDirectiveClass:
203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
204     break;
205   case Stmt::OMPMasterDirectiveClass:
206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
207     break;
208   case Stmt::OMPCriticalDirectiveClass:
209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
210     break;
211   case Stmt::OMPParallelForDirectiveClass:
212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
213     break;
214   case Stmt::OMPParallelForSimdDirectiveClass:
215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
216     break;
217   case Stmt::OMPParallelSectionsDirectiveClass:
218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
219     break;
220   case Stmt::OMPTaskDirectiveClass:
221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
222     break;
223   case Stmt::OMPTaskyieldDirectiveClass:
224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
225     break;
226   case Stmt::OMPBarrierDirectiveClass:
227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
228     break;
229   case Stmt::OMPTaskwaitDirectiveClass:
230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
231     break;
232   case Stmt::OMPTaskgroupDirectiveClass:
233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
234     break;
235   case Stmt::OMPFlushDirectiveClass:
236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
237     break;
238   case Stmt::OMPOrderedDirectiveClass:
239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
240     break;
241   case Stmt::OMPAtomicDirectiveClass:
242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
243     break;
244   case Stmt::OMPTargetDirectiveClass:
245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
246     break;
247   case Stmt::OMPTeamsDirectiveClass:
248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
249     break;
250   case Stmt::OMPCancellationPointDirectiveClass:
251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
252     break;
253   case Stmt::OMPCancelDirectiveClass:
254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
255     break;
256   case Stmt::OMPTargetDataDirectiveClass:
257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
258     break;
259   case Stmt::OMPTargetEnterDataDirectiveClass:
260     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
261     break;
262   case Stmt::OMPTargetExitDataDirectiveClass:
263     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
264     break;
265   case Stmt::OMPTargetParallelDirectiveClass:
266     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
267     break;
268   case Stmt::OMPTargetParallelForDirectiveClass:
269     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
270     break;
271   case Stmt::OMPTaskLoopDirectiveClass:
272     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
273     break;
274   case Stmt::OMPTaskLoopSimdDirectiveClass:
275     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
276     break;
277   case Stmt::OMPDistributeDirectiveClass:
278     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
279     break;
280   }
281 }
282 
283 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
284   switch (S->getStmtClass()) {
285   default: return false;
286   case Stmt::NullStmtClass: break;
287   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
288   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
289   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
290   case Stmt::AttributedStmtClass:
291                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
292   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
293   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
294   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
295   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
296   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
297   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
298   }
299 
300   return true;
301 }
302 
303 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
304 /// this captures the expression result of the last sub-statement and returns it
305 /// (for use by the statement expression extension).
306 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
307                                           AggValueSlot AggSlot) {
308   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
309                              "LLVM IR generation of compound statement ('{}')");
310 
311   // Keep track of the current cleanup stack depth, including debug scopes.
312   LexicalScope Scope(*this, S.getSourceRange());
313 
314   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
315 }
316 
317 Address
318 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
319                                               bool GetLast,
320                                               AggValueSlot AggSlot) {
321 
322   for (CompoundStmt::const_body_iterator I = S.body_begin(),
323        E = S.body_end()-GetLast; I != E; ++I)
324     EmitStmt(*I);
325 
326   Address RetAlloca = Address::invalid();
327   if (GetLast) {
328     // We have to special case labels here.  They are statements, but when put
329     // at the end of a statement expression, they yield the value of their
330     // subexpression.  Handle this by walking through all labels we encounter,
331     // emitting them before we evaluate the subexpr.
332     const Stmt *LastStmt = S.body_back();
333     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
334       EmitLabel(LS->getDecl());
335       LastStmt = LS->getSubStmt();
336     }
337 
338     EnsureInsertPoint();
339 
340     QualType ExprTy = cast<Expr>(LastStmt)->getType();
341     if (hasAggregateEvaluationKind(ExprTy)) {
342       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
343     } else {
344       // We can't return an RValue here because there might be cleanups at
345       // the end of the StmtExpr.  Because of that, we have to emit the result
346       // here into a temporary alloca.
347       RetAlloca = CreateMemTemp(ExprTy);
348       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
349                        /*IsInit*/false);
350     }
351 
352   }
353 
354   return RetAlloca;
355 }
356 
357 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
358   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
359 
360   // If there is a cleanup stack, then we it isn't worth trying to
361   // simplify this block (we would need to remove it from the scope map
362   // and cleanup entry).
363   if (!EHStack.empty())
364     return;
365 
366   // Can only simplify direct branches.
367   if (!BI || !BI->isUnconditional())
368     return;
369 
370   // Can only simplify empty blocks.
371   if (BI->getIterator() != BB->begin())
372     return;
373 
374   BB->replaceAllUsesWith(BI->getSuccessor(0));
375   BI->eraseFromParent();
376   BB->eraseFromParent();
377 }
378 
379 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
380   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
381 
382   // Fall out of the current block (if necessary).
383   EmitBranch(BB);
384 
385   if (IsFinished && BB->use_empty()) {
386     delete BB;
387     return;
388   }
389 
390   // Place the block after the current block, if possible, or else at
391   // the end of the function.
392   if (CurBB && CurBB->getParent())
393     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
394   else
395     CurFn->getBasicBlockList().push_back(BB);
396   Builder.SetInsertPoint(BB);
397 }
398 
399 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
400   // Emit a branch from the current block to the target one if this
401   // was a real block.  If this was just a fall-through block after a
402   // terminator, don't emit it.
403   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
404 
405   if (!CurBB || CurBB->getTerminator()) {
406     // If there is no insert point or the previous block is already
407     // terminated, don't touch it.
408   } else {
409     // Otherwise, create a fall-through branch.
410     Builder.CreateBr(Target);
411   }
412 
413   Builder.ClearInsertionPoint();
414 }
415 
416 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
417   bool inserted = false;
418   for (llvm::User *u : block->users()) {
419     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
420       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
421                                              block);
422       inserted = true;
423       break;
424     }
425   }
426 
427   if (!inserted)
428     CurFn->getBasicBlockList().push_back(block);
429 
430   Builder.SetInsertPoint(block);
431 }
432 
433 CodeGenFunction::JumpDest
434 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
435   JumpDest &Dest = LabelMap[D];
436   if (Dest.isValid()) return Dest;
437 
438   // Create, but don't insert, the new block.
439   Dest = JumpDest(createBasicBlock(D->getName()),
440                   EHScopeStack::stable_iterator::invalid(),
441                   NextCleanupDestIndex++);
442   return Dest;
443 }
444 
445 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
446   // Add this label to the current lexical scope if we're within any
447   // normal cleanups.  Jumps "in" to this label --- when permitted by
448   // the language --- may need to be routed around such cleanups.
449   if (EHStack.hasNormalCleanups() && CurLexicalScope)
450     CurLexicalScope->addLabel(D);
451 
452   JumpDest &Dest = LabelMap[D];
453 
454   // If we didn't need a forward reference to this label, just go
455   // ahead and create a destination at the current scope.
456   if (!Dest.isValid()) {
457     Dest = getJumpDestInCurrentScope(D->getName());
458 
459   // Otherwise, we need to give this label a target depth and remove
460   // it from the branch-fixups list.
461   } else {
462     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
463     Dest.setScopeDepth(EHStack.stable_begin());
464     ResolveBranchFixups(Dest.getBlock());
465   }
466 
467   EmitBlock(Dest.getBlock());
468   incrementProfileCounter(D->getStmt());
469 }
470 
471 /// Change the cleanup scope of the labels in this lexical scope to
472 /// match the scope of the enclosing context.
473 void CodeGenFunction::LexicalScope::rescopeLabels() {
474   assert(!Labels.empty());
475   EHScopeStack::stable_iterator innermostScope
476     = CGF.EHStack.getInnermostNormalCleanup();
477 
478   // Change the scope depth of all the labels.
479   for (SmallVectorImpl<const LabelDecl*>::const_iterator
480          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
481     assert(CGF.LabelMap.count(*i));
482     JumpDest &dest = CGF.LabelMap.find(*i)->second;
483     assert(dest.getScopeDepth().isValid());
484     assert(innermostScope.encloses(dest.getScopeDepth()));
485     dest.setScopeDepth(innermostScope);
486   }
487 
488   // Reparent the labels if the new scope also has cleanups.
489   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
490     ParentScope->Labels.append(Labels.begin(), Labels.end());
491   }
492 }
493 
494 
495 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
496   EmitLabel(S.getDecl());
497   EmitStmt(S.getSubStmt());
498 }
499 
500 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
501   const Stmt *SubStmt = S.getSubStmt();
502   switch (SubStmt->getStmtClass()) {
503   case Stmt::DoStmtClass:
504     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
505     break;
506   case Stmt::ForStmtClass:
507     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
508     break;
509   case Stmt::WhileStmtClass:
510     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
511     break;
512   case Stmt::CXXForRangeStmtClass:
513     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
514     break;
515   default:
516     EmitStmt(SubStmt);
517   }
518 }
519 
520 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
521   // If this code is reachable then emit a stop point (if generating
522   // debug info). We have to do this ourselves because we are on the
523   // "simple" statement path.
524   if (HaveInsertPoint())
525     EmitStopPoint(&S);
526 
527   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
528 }
529 
530 
531 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
532   if (const LabelDecl *Target = S.getConstantTarget()) {
533     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
534     return;
535   }
536 
537   // Ensure that we have an i8* for our PHI node.
538   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
539                                          Int8PtrTy, "addr");
540   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
541 
542   // Get the basic block for the indirect goto.
543   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
544 
545   // The first instruction in the block has to be the PHI for the switch dest,
546   // add an entry for this branch.
547   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
548 
549   EmitBranch(IndGotoBB);
550 }
551 
552 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
553   // C99 6.8.4.1: The first substatement is executed if the expression compares
554   // unequal to 0.  The condition must be a scalar type.
555   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
556 
557   if (S.getConditionVariable())
558     EmitAutoVarDecl(*S.getConditionVariable());
559 
560   // If the condition constant folds and can be elided, try to avoid emitting
561   // the condition and the dead arm of the if/else.
562   bool CondConstant;
563   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
564     // Figure out which block (then or else) is executed.
565     const Stmt *Executed = S.getThen();
566     const Stmt *Skipped  = S.getElse();
567     if (!CondConstant)  // Condition false?
568       std::swap(Executed, Skipped);
569 
570     // If the skipped block has no labels in it, just emit the executed block.
571     // This avoids emitting dead code and simplifies the CFG substantially.
572     if (!ContainsLabel(Skipped)) {
573       if (CondConstant)
574         incrementProfileCounter(&S);
575       if (Executed) {
576         RunCleanupsScope ExecutedScope(*this);
577         EmitStmt(Executed);
578       }
579       return;
580     }
581   }
582 
583   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
584   // the conditional branch.
585   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
586   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
587   llvm::BasicBlock *ElseBlock = ContBlock;
588   if (S.getElse())
589     ElseBlock = createBasicBlock("if.else");
590 
591   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
592                        getProfileCount(S.getThen()));
593 
594   // Emit the 'then' code.
595   EmitBlock(ThenBlock);
596   incrementProfileCounter(&S);
597   {
598     RunCleanupsScope ThenScope(*this);
599     EmitStmt(S.getThen());
600   }
601   EmitBranch(ContBlock);
602 
603   // Emit the 'else' code if present.
604   if (const Stmt *Else = S.getElse()) {
605     {
606       // There is no need to emit line number for an unconditional branch.
607       auto NL = ApplyDebugLocation::CreateEmpty(*this);
608       EmitBlock(ElseBlock);
609     }
610     {
611       RunCleanupsScope ElseScope(*this);
612       EmitStmt(Else);
613     }
614     {
615       // There is no need to emit line number for an unconditional branch.
616       auto NL = ApplyDebugLocation::CreateEmpty(*this);
617       EmitBranch(ContBlock);
618     }
619   }
620 
621   // Emit the continuation block for code after the if.
622   EmitBlock(ContBlock, true);
623 }
624 
625 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
626                                     ArrayRef<const Attr *> WhileAttrs) {
627   // Emit the header for the loop, which will also become
628   // the continue target.
629   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
630   EmitBlock(LoopHeader.getBlock());
631 
632   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs);
633 
634   // Create an exit block for when the condition fails, which will
635   // also become the break target.
636   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
637 
638   // Store the blocks to use for break and continue.
639   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
640 
641   // C++ [stmt.while]p2:
642   //   When the condition of a while statement is a declaration, the
643   //   scope of the variable that is declared extends from its point
644   //   of declaration (3.3.2) to the end of the while statement.
645   //   [...]
646   //   The object created in a condition is destroyed and created
647   //   with each iteration of the loop.
648   RunCleanupsScope ConditionScope(*this);
649 
650   if (S.getConditionVariable())
651     EmitAutoVarDecl(*S.getConditionVariable());
652 
653   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
654   // evaluation of the controlling expression takes place before each
655   // execution of the loop body.
656   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
657 
658   // while(1) is common, avoid extra exit blocks.  Be sure
659   // to correctly handle break/continue though.
660   bool EmitBoolCondBranch = true;
661   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
662     if (C->isOne())
663       EmitBoolCondBranch = false;
664 
665   // As long as the condition is true, go to the loop body.
666   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
667   if (EmitBoolCondBranch) {
668     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
669     if (ConditionScope.requiresCleanups())
670       ExitBlock = createBasicBlock("while.exit");
671     Builder.CreateCondBr(
672         BoolCondVal, LoopBody, ExitBlock,
673         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
674 
675     if (ExitBlock != LoopExit.getBlock()) {
676       EmitBlock(ExitBlock);
677       EmitBranchThroughCleanup(LoopExit);
678     }
679   }
680 
681   // Emit the loop body.  We have to emit this in a cleanup scope
682   // because it might be a singleton DeclStmt.
683   {
684     RunCleanupsScope BodyScope(*this);
685     EmitBlock(LoopBody);
686     incrementProfileCounter(&S);
687     EmitStmt(S.getBody());
688   }
689 
690   BreakContinueStack.pop_back();
691 
692   // Immediately force cleanup.
693   ConditionScope.ForceCleanup();
694 
695   EmitStopPoint(&S);
696   // Branch to the loop header again.
697   EmitBranch(LoopHeader.getBlock());
698 
699   LoopStack.pop();
700 
701   // Emit the exit block.
702   EmitBlock(LoopExit.getBlock(), true);
703 
704   // The LoopHeader typically is just a branch if we skipped emitting
705   // a branch, try to erase it.
706   if (!EmitBoolCondBranch)
707     SimplifyForwardingBlocks(LoopHeader.getBlock());
708 }
709 
710 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
711                                  ArrayRef<const Attr *> DoAttrs) {
712   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
713   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
714 
715   uint64_t ParentCount = getCurrentProfileCount();
716 
717   // Store the blocks to use for break and continue.
718   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
719 
720   // Emit the body of the loop.
721   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
722 
723   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs);
724 
725   EmitBlockWithFallThrough(LoopBody, &S);
726   {
727     RunCleanupsScope BodyScope(*this);
728     EmitStmt(S.getBody());
729   }
730 
731   EmitBlock(LoopCond.getBlock());
732 
733   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
734   // after each execution of the loop body."
735 
736   // Evaluate the conditional in the while header.
737   // C99 6.8.5p2/p4: The first substatement is executed if the expression
738   // compares unequal to 0.  The condition must be a scalar type.
739   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
740 
741   BreakContinueStack.pop_back();
742 
743   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
744   // to correctly handle break/continue though.
745   bool EmitBoolCondBranch = true;
746   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
747     if (C->isZero())
748       EmitBoolCondBranch = false;
749 
750   // As long as the condition is true, iterate the loop.
751   if (EmitBoolCondBranch) {
752     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
753     Builder.CreateCondBr(
754         BoolCondVal, LoopBody, LoopExit.getBlock(),
755         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
756   }
757 
758   LoopStack.pop();
759 
760   // Emit the exit block.
761   EmitBlock(LoopExit.getBlock());
762 
763   // The DoCond block typically is just a branch if we skipped
764   // emitting a branch, try to erase it.
765   if (!EmitBoolCondBranch)
766     SimplifyForwardingBlocks(LoopCond.getBlock());
767 }
768 
769 void CodeGenFunction::EmitForStmt(const ForStmt &S,
770                                   ArrayRef<const Attr *> ForAttrs) {
771   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
772 
773   LexicalScope ForScope(*this, S.getSourceRange());
774 
775   // Evaluate the first part before the loop.
776   if (S.getInit())
777     EmitStmt(S.getInit());
778 
779   // Start the loop with a block that tests the condition.
780   // If there's an increment, the continue scope will be overwritten
781   // later.
782   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
783   llvm::BasicBlock *CondBlock = Continue.getBlock();
784   EmitBlock(CondBlock);
785 
786   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
787 
788   // If the for loop doesn't have an increment we can just use the
789   // condition as the continue block.  Otherwise we'll need to create
790   // a block for it (in the current scope, i.e. in the scope of the
791   // condition), and that we will become our continue block.
792   if (S.getInc())
793     Continue = getJumpDestInCurrentScope("for.inc");
794 
795   // Store the blocks to use for break and continue.
796   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
797 
798   // Create a cleanup scope for the condition variable cleanups.
799   LexicalScope ConditionScope(*this, S.getSourceRange());
800 
801   if (S.getCond()) {
802     // If the for statement has a condition scope, emit the local variable
803     // declaration.
804     if (S.getConditionVariable()) {
805       EmitAutoVarDecl(*S.getConditionVariable());
806     }
807 
808     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
809     // If there are any cleanups between here and the loop-exit scope,
810     // create a block to stage a loop exit along.
811     if (ForScope.requiresCleanups())
812       ExitBlock = createBasicBlock("for.cond.cleanup");
813 
814     // As long as the condition is true, iterate the loop.
815     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
816 
817     // C99 6.8.5p2/p4: The first substatement is executed if the expression
818     // compares unequal to 0.  The condition must be a scalar type.
819     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
820     Builder.CreateCondBr(
821         BoolCondVal, ForBody, ExitBlock,
822         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
823 
824     if (ExitBlock != LoopExit.getBlock()) {
825       EmitBlock(ExitBlock);
826       EmitBranchThroughCleanup(LoopExit);
827     }
828 
829     EmitBlock(ForBody);
830   } else {
831     // Treat it as a non-zero constant.  Don't even create a new block for the
832     // body, just fall into it.
833   }
834   incrementProfileCounter(&S);
835 
836   {
837     // Create a separate cleanup scope for the body, in case it is not
838     // a compound statement.
839     RunCleanupsScope BodyScope(*this);
840     EmitStmt(S.getBody());
841   }
842 
843   // If there is an increment, emit it next.
844   if (S.getInc()) {
845     EmitBlock(Continue.getBlock());
846     EmitStmt(S.getInc());
847   }
848 
849   BreakContinueStack.pop_back();
850 
851   ConditionScope.ForceCleanup();
852 
853   EmitStopPoint(&S);
854   EmitBranch(CondBlock);
855 
856   ForScope.ForceCleanup();
857 
858   LoopStack.pop();
859 
860   // Emit the fall-through block.
861   EmitBlock(LoopExit.getBlock(), true);
862 }
863 
864 void
865 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
866                                      ArrayRef<const Attr *> ForAttrs) {
867   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
868 
869   LexicalScope ForScope(*this, S.getSourceRange());
870 
871   // Evaluate the first pieces before the loop.
872   EmitStmt(S.getRangeStmt());
873   EmitStmt(S.getBeginStmt());
874   EmitStmt(S.getEndStmt());
875 
876   // Start the loop with a block that tests the condition.
877   // If there's an increment, the continue scope will be overwritten
878   // later.
879   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
880   EmitBlock(CondBlock);
881 
882   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
883 
884   // If there are any cleanups between here and the loop-exit scope,
885   // create a block to stage a loop exit along.
886   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
887   if (ForScope.requiresCleanups())
888     ExitBlock = createBasicBlock("for.cond.cleanup");
889 
890   // The loop body, consisting of the specified body and the loop variable.
891   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
892 
893   // The body is executed if the expression, contextually converted
894   // to bool, is true.
895   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
896   Builder.CreateCondBr(
897       BoolCondVal, ForBody, ExitBlock,
898       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
899 
900   if (ExitBlock != LoopExit.getBlock()) {
901     EmitBlock(ExitBlock);
902     EmitBranchThroughCleanup(LoopExit);
903   }
904 
905   EmitBlock(ForBody);
906   incrementProfileCounter(&S);
907 
908   // Create a block for the increment. In case of a 'continue', we jump there.
909   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
910 
911   // Store the blocks to use for break and continue.
912   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
913 
914   {
915     // Create a separate cleanup scope for the loop variable and body.
916     LexicalScope BodyScope(*this, S.getSourceRange());
917     EmitStmt(S.getLoopVarStmt());
918     EmitStmt(S.getBody());
919   }
920 
921   EmitStopPoint(&S);
922   // If there is an increment, emit it next.
923   EmitBlock(Continue.getBlock());
924   EmitStmt(S.getInc());
925 
926   BreakContinueStack.pop_back();
927 
928   EmitBranch(CondBlock);
929 
930   ForScope.ForceCleanup();
931 
932   LoopStack.pop();
933 
934   // Emit the fall-through block.
935   EmitBlock(LoopExit.getBlock(), true);
936 }
937 
938 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
939   if (RV.isScalar()) {
940     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
941   } else if (RV.isAggregate()) {
942     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
943   } else {
944     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
945                        /*init*/ true);
946   }
947   EmitBranchThroughCleanup(ReturnBlock);
948 }
949 
950 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
951 /// if the function returns void, or may be missing one if the function returns
952 /// non-void.  Fun stuff :).
953 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
954   // Returning from an outlined SEH helper is UB, and we already warn on it.
955   if (IsOutlinedSEHHelper) {
956     Builder.CreateUnreachable();
957     Builder.ClearInsertionPoint();
958   }
959 
960   // Emit the result value, even if unused, to evalute the side effects.
961   const Expr *RV = S.getRetValue();
962 
963   // Treat block literals in a return expression as if they appeared
964   // in their own scope.  This permits a small, easily-implemented
965   // exception to our over-conservative rules about not jumping to
966   // statements following block literals with non-trivial cleanups.
967   RunCleanupsScope cleanupScope(*this);
968   if (const ExprWithCleanups *cleanups =
969         dyn_cast_or_null<ExprWithCleanups>(RV)) {
970     enterFullExpression(cleanups);
971     RV = cleanups->getSubExpr();
972   }
973 
974   // FIXME: Clean this up by using an LValue for ReturnTemp,
975   // EmitStoreThroughLValue, and EmitAnyExpr.
976   if (getLangOpts().ElideConstructors &&
977       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
978     // Apply the named return value optimization for this return statement,
979     // which means doing nothing: the appropriate result has already been
980     // constructed into the NRVO variable.
981 
982     // If there is an NRVO flag for this variable, set it to 1 into indicate
983     // that the cleanup code should not destroy the variable.
984     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
985       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
986   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
987     // Make sure not to return anything, but evaluate the expression
988     // for side effects.
989     if (RV)
990       EmitAnyExpr(RV);
991   } else if (!RV) {
992     // Do nothing (return value is left uninitialized)
993   } else if (FnRetTy->isReferenceType()) {
994     // If this function returns a reference, take the address of the expression
995     // rather than the value.
996     RValue Result = EmitReferenceBindingToExpr(RV);
997     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
998   } else {
999     switch (getEvaluationKind(RV->getType())) {
1000     case TEK_Scalar:
1001       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1002       break;
1003     case TEK_Complex:
1004       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1005                                 /*isInit*/ true);
1006       break;
1007     case TEK_Aggregate:
1008       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
1009                                             Qualifiers(),
1010                                             AggValueSlot::IsDestructed,
1011                                             AggValueSlot::DoesNotNeedGCBarriers,
1012                                             AggValueSlot::IsNotAliased));
1013       break;
1014     }
1015   }
1016 
1017   ++NumReturnExprs;
1018   if (!RV || RV->isEvaluatable(getContext()))
1019     ++NumSimpleReturnExprs;
1020 
1021   cleanupScope.ForceCleanup();
1022   EmitBranchThroughCleanup(ReturnBlock);
1023 }
1024 
1025 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1026   // As long as debug info is modeled with instructions, we have to ensure we
1027   // have a place to insert here and write the stop point here.
1028   if (HaveInsertPoint())
1029     EmitStopPoint(&S);
1030 
1031   for (const auto *I : S.decls())
1032     EmitDecl(*I);
1033 }
1034 
1035 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1036   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1037 
1038   // If this code is reachable then emit a stop point (if generating
1039   // debug info). We have to do this ourselves because we are on the
1040   // "simple" statement path.
1041   if (HaveInsertPoint())
1042     EmitStopPoint(&S);
1043 
1044   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1045 }
1046 
1047 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1048   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1049 
1050   // If this code is reachable then emit a stop point (if generating
1051   // debug info). We have to do this ourselves because we are on the
1052   // "simple" statement path.
1053   if (HaveInsertPoint())
1054     EmitStopPoint(&S);
1055 
1056   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1057 }
1058 
1059 /// EmitCaseStmtRange - If case statement range is not too big then
1060 /// add multiple cases to switch instruction, one for each value within
1061 /// the range. If range is too big then emit "if" condition check.
1062 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1063   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1064 
1065   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1066   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1067 
1068   // Emit the code for this case. We do this first to make sure it is
1069   // properly chained from our predecessor before generating the
1070   // switch machinery to enter this block.
1071   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1072   EmitBlockWithFallThrough(CaseDest, &S);
1073   EmitStmt(S.getSubStmt());
1074 
1075   // If range is empty, do nothing.
1076   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1077     return;
1078 
1079   llvm::APInt Range = RHS - LHS;
1080   // FIXME: parameters such as this should not be hardcoded.
1081   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1082     // Range is small enough to add multiple switch instruction cases.
1083     uint64_t Total = getProfileCount(&S);
1084     unsigned NCases = Range.getZExtValue() + 1;
1085     // We only have one region counter for the entire set of cases here, so we
1086     // need to divide the weights evenly between the generated cases, ensuring
1087     // that the total weight is preserved. E.g., a weight of 5 over three cases
1088     // will be distributed as weights of 2, 2, and 1.
1089     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1090     for (unsigned I = 0; I != NCases; ++I) {
1091       if (SwitchWeights)
1092         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1093       if (Rem)
1094         Rem--;
1095       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1096       LHS++;
1097     }
1098     return;
1099   }
1100 
1101   // The range is too big. Emit "if" condition into a new block,
1102   // making sure to save and restore the current insertion point.
1103   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1104 
1105   // Push this test onto the chain of range checks (which terminates
1106   // in the default basic block). The switch's default will be changed
1107   // to the top of this chain after switch emission is complete.
1108   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1109   CaseRangeBlock = createBasicBlock("sw.caserange");
1110 
1111   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1112   Builder.SetInsertPoint(CaseRangeBlock);
1113 
1114   // Emit range check.
1115   llvm::Value *Diff =
1116     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1117   llvm::Value *Cond =
1118     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1119 
1120   llvm::MDNode *Weights = nullptr;
1121   if (SwitchWeights) {
1122     uint64_t ThisCount = getProfileCount(&S);
1123     uint64_t DefaultCount = (*SwitchWeights)[0];
1124     Weights = createProfileWeights(ThisCount, DefaultCount);
1125 
1126     // Since we're chaining the switch default through each large case range, we
1127     // need to update the weight for the default, ie, the first case, to include
1128     // this case.
1129     (*SwitchWeights)[0] += ThisCount;
1130   }
1131   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1132 
1133   // Restore the appropriate insertion point.
1134   if (RestoreBB)
1135     Builder.SetInsertPoint(RestoreBB);
1136   else
1137     Builder.ClearInsertionPoint();
1138 }
1139 
1140 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1141   // If there is no enclosing switch instance that we're aware of, then this
1142   // case statement and its block can be elided.  This situation only happens
1143   // when we've constant-folded the switch, are emitting the constant case,
1144   // and part of the constant case includes another case statement.  For
1145   // instance: switch (4) { case 4: do { case 5: } while (1); }
1146   if (!SwitchInsn) {
1147     EmitStmt(S.getSubStmt());
1148     return;
1149   }
1150 
1151   // Handle case ranges.
1152   if (S.getRHS()) {
1153     EmitCaseStmtRange(S);
1154     return;
1155   }
1156 
1157   llvm::ConstantInt *CaseVal =
1158     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1159 
1160   // If the body of the case is just a 'break', try to not emit an empty block.
1161   // If we're profiling or we're not optimizing, leave the block in for better
1162   // debug and coverage analysis.
1163   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1164       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1165       isa<BreakStmt>(S.getSubStmt())) {
1166     JumpDest Block = BreakContinueStack.back().BreakBlock;
1167 
1168     // Only do this optimization if there are no cleanups that need emitting.
1169     if (isObviouslyBranchWithoutCleanups(Block)) {
1170       if (SwitchWeights)
1171         SwitchWeights->push_back(getProfileCount(&S));
1172       SwitchInsn->addCase(CaseVal, Block.getBlock());
1173 
1174       // If there was a fallthrough into this case, make sure to redirect it to
1175       // the end of the switch as well.
1176       if (Builder.GetInsertBlock()) {
1177         Builder.CreateBr(Block.getBlock());
1178         Builder.ClearInsertionPoint();
1179       }
1180       return;
1181     }
1182   }
1183 
1184   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1185   EmitBlockWithFallThrough(CaseDest, &S);
1186   if (SwitchWeights)
1187     SwitchWeights->push_back(getProfileCount(&S));
1188   SwitchInsn->addCase(CaseVal, CaseDest);
1189 
1190   // Recursively emitting the statement is acceptable, but is not wonderful for
1191   // code where we have many case statements nested together, i.e.:
1192   //  case 1:
1193   //    case 2:
1194   //      case 3: etc.
1195   // Handling this recursively will create a new block for each case statement
1196   // that falls through to the next case which is IR intensive.  It also causes
1197   // deep recursion which can run into stack depth limitations.  Handle
1198   // sequential non-range case statements specially.
1199   const CaseStmt *CurCase = &S;
1200   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1201 
1202   // Otherwise, iteratively add consecutive cases to this switch stmt.
1203   while (NextCase && NextCase->getRHS() == nullptr) {
1204     CurCase = NextCase;
1205     llvm::ConstantInt *CaseVal =
1206       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1207 
1208     if (SwitchWeights)
1209       SwitchWeights->push_back(getProfileCount(NextCase));
1210     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1211       CaseDest = createBasicBlock("sw.bb");
1212       EmitBlockWithFallThrough(CaseDest, &S);
1213     }
1214 
1215     SwitchInsn->addCase(CaseVal, CaseDest);
1216     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1217   }
1218 
1219   // Normal default recursion for non-cases.
1220   EmitStmt(CurCase->getSubStmt());
1221 }
1222 
1223 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1224   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1225   assert(DefaultBlock->empty() &&
1226          "EmitDefaultStmt: Default block already defined?");
1227 
1228   EmitBlockWithFallThrough(DefaultBlock, &S);
1229 
1230   EmitStmt(S.getSubStmt());
1231 }
1232 
1233 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1234 /// constant value that is being switched on, see if we can dead code eliminate
1235 /// the body of the switch to a simple series of statements to emit.  Basically,
1236 /// on a switch (5) we want to find these statements:
1237 ///    case 5:
1238 ///      printf(...);    <--
1239 ///      ++i;            <--
1240 ///      break;
1241 ///
1242 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1243 /// transformation (for example, one of the elided statements contains a label
1244 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1245 /// should include statements after it (e.g. the printf() line is a substmt of
1246 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1247 /// statement, then return CSFC_Success.
1248 ///
1249 /// If Case is non-null, then we are looking for the specified case, checking
1250 /// that nothing we jump over contains labels.  If Case is null, then we found
1251 /// the case and are looking for the break.
1252 ///
1253 /// If the recursive walk actually finds our Case, then we set FoundCase to
1254 /// true.
1255 ///
1256 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1257 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1258                                             const SwitchCase *Case,
1259                                             bool &FoundCase,
1260                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1261   // If this is a null statement, just succeed.
1262   if (!S)
1263     return Case ? CSFC_Success : CSFC_FallThrough;
1264 
1265   // If this is the switchcase (case 4: or default) that we're looking for, then
1266   // we're in business.  Just add the substatement.
1267   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1268     if (S == Case) {
1269       FoundCase = true;
1270       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1271                                       ResultStmts);
1272     }
1273 
1274     // Otherwise, this is some other case or default statement, just ignore it.
1275     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1276                                     ResultStmts);
1277   }
1278 
1279   // If we are in the live part of the code and we found our break statement,
1280   // return a success!
1281   if (!Case && isa<BreakStmt>(S))
1282     return CSFC_Success;
1283 
1284   // If this is a switch statement, then it might contain the SwitchCase, the
1285   // break, or neither.
1286   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1287     // Handle this as two cases: we might be looking for the SwitchCase (if so
1288     // the skipped statements must be skippable) or we might already have it.
1289     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1290     if (Case) {
1291       // Keep track of whether we see a skipped declaration.  The code could be
1292       // using the declaration even if it is skipped, so we can't optimize out
1293       // the decl if the kept statements might refer to it.
1294       bool HadSkippedDecl = false;
1295 
1296       // If we're looking for the case, just see if we can skip each of the
1297       // substatements.
1298       for (; Case && I != E; ++I) {
1299         HadSkippedDecl |= isa<DeclStmt>(*I);
1300 
1301         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1302         case CSFC_Failure: return CSFC_Failure;
1303         case CSFC_Success:
1304           // A successful result means that either 1) that the statement doesn't
1305           // have the case and is skippable, or 2) does contain the case value
1306           // and also contains the break to exit the switch.  In the later case,
1307           // we just verify the rest of the statements are elidable.
1308           if (FoundCase) {
1309             // If we found the case and skipped declarations, we can't do the
1310             // optimization.
1311             if (HadSkippedDecl)
1312               return CSFC_Failure;
1313 
1314             for (++I; I != E; ++I)
1315               if (CodeGenFunction::ContainsLabel(*I, true))
1316                 return CSFC_Failure;
1317             return CSFC_Success;
1318           }
1319           break;
1320         case CSFC_FallThrough:
1321           // If we have a fallthrough condition, then we must have found the
1322           // case started to include statements.  Consider the rest of the
1323           // statements in the compound statement as candidates for inclusion.
1324           assert(FoundCase && "Didn't find case but returned fallthrough?");
1325           // We recursively found Case, so we're not looking for it anymore.
1326           Case = nullptr;
1327 
1328           // If we found the case and skipped declarations, we can't do the
1329           // optimization.
1330           if (HadSkippedDecl)
1331             return CSFC_Failure;
1332           break;
1333         }
1334       }
1335     }
1336 
1337     // If we have statements in our range, then we know that the statements are
1338     // live and need to be added to the set of statements we're tracking.
1339     for (; I != E; ++I) {
1340       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1341       case CSFC_Failure: return CSFC_Failure;
1342       case CSFC_FallThrough:
1343         // A fallthrough result means that the statement was simple and just
1344         // included in ResultStmt, keep adding them afterwards.
1345         break;
1346       case CSFC_Success:
1347         // A successful result means that we found the break statement and
1348         // stopped statement inclusion.  We just ensure that any leftover stmts
1349         // are skippable and return success ourselves.
1350         for (++I; I != E; ++I)
1351           if (CodeGenFunction::ContainsLabel(*I, true))
1352             return CSFC_Failure;
1353         return CSFC_Success;
1354       }
1355     }
1356 
1357     return Case ? CSFC_Success : CSFC_FallThrough;
1358   }
1359 
1360   // Okay, this is some other statement that we don't handle explicitly, like a
1361   // for statement or increment etc.  If we are skipping over this statement,
1362   // just verify it doesn't have labels, which would make it invalid to elide.
1363   if (Case) {
1364     if (CodeGenFunction::ContainsLabel(S, true))
1365       return CSFC_Failure;
1366     return CSFC_Success;
1367   }
1368 
1369   // Otherwise, we want to include this statement.  Everything is cool with that
1370   // so long as it doesn't contain a break out of the switch we're in.
1371   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1372 
1373   // Otherwise, everything is great.  Include the statement and tell the caller
1374   // that we fall through and include the next statement as well.
1375   ResultStmts.push_back(S);
1376   return CSFC_FallThrough;
1377 }
1378 
1379 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1380 /// then invoke CollectStatementsForCase to find the list of statements to emit
1381 /// for a switch on constant.  See the comment above CollectStatementsForCase
1382 /// for more details.
1383 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1384                                        const llvm::APSInt &ConstantCondValue,
1385                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1386                                        ASTContext &C,
1387                                        const SwitchCase *&ResultCase) {
1388   // First step, find the switch case that is being branched to.  We can do this
1389   // efficiently by scanning the SwitchCase list.
1390   const SwitchCase *Case = S.getSwitchCaseList();
1391   const DefaultStmt *DefaultCase = nullptr;
1392 
1393   for (; Case; Case = Case->getNextSwitchCase()) {
1394     // It's either a default or case.  Just remember the default statement in
1395     // case we're not jumping to any numbered cases.
1396     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1397       DefaultCase = DS;
1398       continue;
1399     }
1400 
1401     // Check to see if this case is the one we're looking for.
1402     const CaseStmt *CS = cast<CaseStmt>(Case);
1403     // Don't handle case ranges yet.
1404     if (CS->getRHS()) return false;
1405 
1406     // If we found our case, remember it as 'case'.
1407     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1408       break;
1409   }
1410 
1411   // If we didn't find a matching case, we use a default if it exists, or we
1412   // elide the whole switch body!
1413   if (!Case) {
1414     // It is safe to elide the body of the switch if it doesn't contain labels
1415     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1416     if (!DefaultCase)
1417       return !CodeGenFunction::ContainsLabel(&S);
1418     Case = DefaultCase;
1419   }
1420 
1421   // Ok, we know which case is being jumped to, try to collect all the
1422   // statements that follow it.  This can fail for a variety of reasons.  Also,
1423   // check to see that the recursive walk actually found our case statement.
1424   // Insane cases like this can fail to find it in the recursive walk since we
1425   // don't handle every stmt kind:
1426   // switch (4) {
1427   //   while (1) {
1428   //     case 4: ...
1429   bool FoundCase = false;
1430   ResultCase = Case;
1431   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1432                                   ResultStmts) != CSFC_Failure &&
1433          FoundCase;
1434 }
1435 
1436 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1437   // Handle nested switch statements.
1438   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1439   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1440   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1441 
1442   // See if we can constant fold the condition of the switch and therefore only
1443   // emit the live case statement (if any) of the switch.
1444   llvm::APSInt ConstantCondValue;
1445   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1446     SmallVector<const Stmt*, 4> CaseStmts;
1447     const SwitchCase *Case = nullptr;
1448     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1449                                    getContext(), Case)) {
1450       if (Case)
1451         incrementProfileCounter(Case);
1452       RunCleanupsScope ExecutedScope(*this);
1453 
1454       // Emit the condition variable if needed inside the entire cleanup scope
1455       // used by this special case for constant folded switches.
1456       if (S.getConditionVariable())
1457         EmitAutoVarDecl(*S.getConditionVariable());
1458 
1459       // At this point, we are no longer "within" a switch instance, so
1460       // we can temporarily enforce this to ensure that any embedded case
1461       // statements are not emitted.
1462       SwitchInsn = nullptr;
1463 
1464       // Okay, we can dead code eliminate everything except this case.  Emit the
1465       // specified series of statements and we're good.
1466       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1467         EmitStmt(CaseStmts[i]);
1468       incrementProfileCounter(&S);
1469 
1470       // Now we want to restore the saved switch instance so that nested
1471       // switches continue to function properly
1472       SwitchInsn = SavedSwitchInsn;
1473 
1474       return;
1475     }
1476   }
1477 
1478   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1479 
1480   RunCleanupsScope ConditionScope(*this);
1481   if (S.getConditionVariable())
1482     EmitAutoVarDecl(*S.getConditionVariable());
1483   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1484 
1485   // Create basic block to hold stuff that comes after switch
1486   // statement. We also need to create a default block now so that
1487   // explicit case ranges tests can have a place to jump to on
1488   // failure.
1489   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1490   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1491   if (PGO.haveRegionCounts()) {
1492     // Walk the SwitchCase list to find how many there are.
1493     uint64_t DefaultCount = 0;
1494     unsigned NumCases = 0;
1495     for (const SwitchCase *Case = S.getSwitchCaseList();
1496          Case;
1497          Case = Case->getNextSwitchCase()) {
1498       if (isa<DefaultStmt>(Case))
1499         DefaultCount = getProfileCount(Case);
1500       NumCases += 1;
1501     }
1502     SwitchWeights = new SmallVector<uint64_t, 16>();
1503     SwitchWeights->reserve(NumCases);
1504     // The default needs to be first. We store the edge count, so we already
1505     // know the right weight.
1506     SwitchWeights->push_back(DefaultCount);
1507   }
1508   CaseRangeBlock = DefaultBlock;
1509 
1510   // Clear the insertion point to indicate we are in unreachable code.
1511   Builder.ClearInsertionPoint();
1512 
1513   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1514   // then reuse last ContinueBlock.
1515   JumpDest OuterContinue;
1516   if (!BreakContinueStack.empty())
1517     OuterContinue = BreakContinueStack.back().ContinueBlock;
1518 
1519   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1520 
1521   // Emit switch body.
1522   EmitStmt(S.getBody());
1523 
1524   BreakContinueStack.pop_back();
1525 
1526   // Update the default block in case explicit case range tests have
1527   // been chained on top.
1528   SwitchInsn->setDefaultDest(CaseRangeBlock);
1529 
1530   // If a default was never emitted:
1531   if (!DefaultBlock->getParent()) {
1532     // If we have cleanups, emit the default block so that there's a
1533     // place to jump through the cleanups from.
1534     if (ConditionScope.requiresCleanups()) {
1535       EmitBlock(DefaultBlock);
1536 
1537     // Otherwise, just forward the default block to the switch end.
1538     } else {
1539       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1540       delete DefaultBlock;
1541     }
1542   }
1543 
1544   ConditionScope.ForceCleanup();
1545 
1546   // Emit continuation.
1547   EmitBlock(SwitchExit.getBlock(), true);
1548   incrementProfileCounter(&S);
1549 
1550   // If the switch has a condition wrapped by __builtin_unpredictable,
1551   // create metadata that specifies that the switch is unpredictable.
1552   // Don't bother if not optimizing because that metadata would not be used.
1553   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1554     if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) {
1555       const Decl *TargetDecl = Call->getCalleeDecl();
1556       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1557         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1558           llvm::MDBuilder MDHelper(getLLVMContext());
1559           SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1560                                   MDHelper.createUnpredictable());
1561         }
1562       }
1563     }
1564   }
1565 
1566   if (SwitchWeights) {
1567     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1568            "switch weights do not match switch cases");
1569     // If there's only one jump destination there's no sense weighting it.
1570     if (SwitchWeights->size() > 1)
1571       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1572                               createProfileWeights(*SwitchWeights));
1573     delete SwitchWeights;
1574   }
1575   SwitchInsn = SavedSwitchInsn;
1576   SwitchWeights = SavedSwitchWeights;
1577   CaseRangeBlock = SavedCRBlock;
1578 }
1579 
1580 static std::string
1581 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1582                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1583   std::string Result;
1584 
1585   while (*Constraint) {
1586     switch (*Constraint) {
1587     default:
1588       Result += Target.convertConstraint(Constraint);
1589       break;
1590     // Ignore these
1591     case '*':
1592     case '?':
1593     case '!':
1594     case '=': // Will see this and the following in mult-alt constraints.
1595     case '+':
1596       break;
1597     case '#': // Ignore the rest of the constraint alternative.
1598       while (Constraint[1] && Constraint[1] != ',')
1599         Constraint++;
1600       break;
1601     case '&':
1602     case '%':
1603       Result += *Constraint;
1604       while (Constraint[1] && Constraint[1] == *Constraint)
1605         Constraint++;
1606       break;
1607     case ',':
1608       Result += "|";
1609       break;
1610     case 'g':
1611       Result += "imr";
1612       break;
1613     case '[': {
1614       assert(OutCons &&
1615              "Must pass output names to constraints with a symbolic name");
1616       unsigned Index;
1617       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1618       assert(result && "Could not resolve symbolic name"); (void)result;
1619       Result += llvm::utostr(Index);
1620       break;
1621     }
1622     }
1623 
1624     Constraint++;
1625   }
1626 
1627   return Result;
1628 }
1629 
1630 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1631 /// as using a particular register add that as a constraint that will be used
1632 /// in this asm stmt.
1633 static std::string
1634 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1635                        const TargetInfo &Target, CodeGenModule &CGM,
1636                        const AsmStmt &Stmt, const bool EarlyClobber) {
1637   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1638   if (!AsmDeclRef)
1639     return Constraint;
1640   const ValueDecl &Value = *AsmDeclRef->getDecl();
1641   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1642   if (!Variable)
1643     return Constraint;
1644   if (Variable->getStorageClass() != SC_Register)
1645     return Constraint;
1646   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1647   if (!Attr)
1648     return Constraint;
1649   StringRef Register = Attr->getLabel();
1650   assert(Target.isValidGCCRegisterName(Register));
1651   // We're using validateOutputConstraint here because we only care if
1652   // this is a register constraint.
1653   TargetInfo::ConstraintInfo Info(Constraint, "");
1654   if (Target.validateOutputConstraint(Info) &&
1655       !Info.allowsRegister()) {
1656     CGM.ErrorUnsupported(&Stmt, "__asm__");
1657     return Constraint;
1658   }
1659   // Canonicalize the register here before returning it.
1660   Register = Target.getNormalizedGCCRegisterName(Register);
1661   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1662 }
1663 
1664 llvm::Value*
1665 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1666                                     LValue InputValue, QualType InputType,
1667                                     std::string &ConstraintStr,
1668                                     SourceLocation Loc) {
1669   llvm::Value *Arg;
1670   if (Info.allowsRegister() || !Info.allowsMemory()) {
1671     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1672       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1673     } else {
1674       llvm::Type *Ty = ConvertType(InputType);
1675       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1676       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1677         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1678         Ty = llvm::PointerType::getUnqual(Ty);
1679 
1680         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1681                                                        Ty));
1682       } else {
1683         Arg = InputValue.getPointer();
1684         ConstraintStr += '*';
1685       }
1686     }
1687   } else {
1688     Arg = InputValue.getPointer();
1689     ConstraintStr += '*';
1690   }
1691 
1692   return Arg;
1693 }
1694 
1695 llvm::Value* CodeGenFunction::EmitAsmInput(
1696                                          const TargetInfo::ConstraintInfo &Info,
1697                                            const Expr *InputExpr,
1698                                            std::string &ConstraintStr) {
1699   // If this can't be a register or memory, i.e., has to be a constant
1700   // (immediate or symbolic), try to emit it as such.
1701   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1702     llvm::APSInt Result;
1703     if (InputExpr->EvaluateAsInt(Result, getContext()))
1704       return llvm::ConstantInt::get(getLLVMContext(), Result);
1705     assert(!Info.requiresImmediateConstant() &&
1706            "Required-immediate inlineasm arg isn't constant?");
1707   }
1708 
1709   if (Info.allowsRegister() || !Info.allowsMemory())
1710     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1711       return EmitScalarExpr(InputExpr);
1712   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1713     return EmitScalarExpr(InputExpr);
1714   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1715   LValue Dest = EmitLValue(InputExpr);
1716   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1717                             InputExpr->getExprLoc());
1718 }
1719 
1720 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1721 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1722 /// integers which are the source locations of the start of each line in the
1723 /// asm.
1724 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1725                                       CodeGenFunction &CGF) {
1726   SmallVector<llvm::Metadata *, 8> Locs;
1727   // Add the location of the first line to the MDNode.
1728   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1729       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1730   StringRef StrVal = Str->getString();
1731   if (!StrVal.empty()) {
1732     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1733     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1734     unsigned StartToken = 0;
1735     unsigned ByteOffset = 0;
1736 
1737     // Add the location of the start of each subsequent line of the asm to the
1738     // MDNode.
1739     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1740       if (StrVal[i] != '\n') continue;
1741       SourceLocation LineLoc = Str->getLocationOfByte(
1742           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1743       Locs.push_back(llvm::ConstantAsMetadata::get(
1744           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1745     }
1746   }
1747 
1748   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1749 }
1750 
1751 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1752   // Assemble the final asm string.
1753   std::string AsmString = S.generateAsmString(getContext());
1754 
1755   // Get all the output and input constraints together.
1756   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1757   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1758 
1759   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1760     StringRef Name;
1761     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1762       Name = GAS->getOutputName(i);
1763     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1764     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1765     assert(IsValid && "Failed to parse output constraint");
1766     OutputConstraintInfos.push_back(Info);
1767   }
1768 
1769   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1770     StringRef Name;
1771     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1772       Name = GAS->getInputName(i);
1773     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1774     bool IsValid =
1775       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1776     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1777     InputConstraintInfos.push_back(Info);
1778   }
1779 
1780   std::string Constraints;
1781 
1782   std::vector<LValue> ResultRegDests;
1783   std::vector<QualType> ResultRegQualTys;
1784   std::vector<llvm::Type *> ResultRegTypes;
1785   std::vector<llvm::Type *> ResultTruncRegTypes;
1786   std::vector<llvm::Type *> ArgTypes;
1787   std::vector<llvm::Value*> Args;
1788 
1789   // Keep track of inout constraints.
1790   std::string InOutConstraints;
1791   std::vector<llvm::Value*> InOutArgs;
1792   std::vector<llvm::Type*> InOutArgTypes;
1793 
1794   // An inline asm can be marked readonly if it meets the following conditions:
1795   //  - it doesn't have any sideeffects
1796   //  - it doesn't clobber memory
1797   //  - it doesn't return a value by-reference
1798   // It can be marked readnone if it doesn't have any input memory constraints
1799   // in addition to meeting the conditions listed above.
1800   bool ReadOnly = true, ReadNone = true;
1801 
1802   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1803     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1804 
1805     // Simplify the output constraint.
1806     std::string OutputConstraint(S.getOutputConstraint(i));
1807     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1808                                           getTarget());
1809 
1810     const Expr *OutExpr = S.getOutputExpr(i);
1811     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1812 
1813     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1814                                               getTarget(), CGM, S,
1815                                               Info.earlyClobber());
1816 
1817     LValue Dest = EmitLValue(OutExpr);
1818     if (!Constraints.empty())
1819       Constraints += ',';
1820 
1821     // If this is a register output, then make the inline asm return it
1822     // by-value.  If this is a memory result, return the value by-reference.
1823     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1824       Constraints += "=" + OutputConstraint;
1825       ResultRegQualTys.push_back(OutExpr->getType());
1826       ResultRegDests.push_back(Dest);
1827       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1828       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1829 
1830       // If this output is tied to an input, and if the input is larger, then
1831       // we need to set the actual result type of the inline asm node to be the
1832       // same as the input type.
1833       if (Info.hasMatchingInput()) {
1834         unsigned InputNo;
1835         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1836           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1837           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1838             break;
1839         }
1840         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1841 
1842         QualType InputTy = S.getInputExpr(InputNo)->getType();
1843         QualType OutputType = OutExpr->getType();
1844 
1845         uint64_t InputSize = getContext().getTypeSize(InputTy);
1846         if (getContext().getTypeSize(OutputType) < InputSize) {
1847           // Form the asm to return the value as a larger integer or fp type.
1848           ResultRegTypes.back() = ConvertType(InputTy);
1849         }
1850       }
1851       if (llvm::Type* AdjTy =
1852             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1853                                                  ResultRegTypes.back()))
1854         ResultRegTypes.back() = AdjTy;
1855       else {
1856         CGM.getDiags().Report(S.getAsmLoc(),
1857                               diag::err_asm_invalid_type_in_input)
1858             << OutExpr->getType() << OutputConstraint;
1859       }
1860     } else {
1861       ArgTypes.push_back(Dest.getAddress().getType());
1862       Args.push_back(Dest.getPointer());
1863       Constraints += "=*";
1864       Constraints += OutputConstraint;
1865       ReadOnly = ReadNone = false;
1866     }
1867 
1868     if (Info.isReadWrite()) {
1869       InOutConstraints += ',';
1870 
1871       const Expr *InputExpr = S.getOutputExpr(i);
1872       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1873                                             InOutConstraints,
1874                                             InputExpr->getExprLoc());
1875 
1876       if (llvm::Type* AdjTy =
1877           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1878                                                Arg->getType()))
1879         Arg = Builder.CreateBitCast(Arg, AdjTy);
1880 
1881       if (Info.allowsRegister())
1882         InOutConstraints += llvm::utostr(i);
1883       else
1884         InOutConstraints += OutputConstraint;
1885 
1886       InOutArgTypes.push_back(Arg->getType());
1887       InOutArgs.push_back(Arg);
1888     }
1889   }
1890 
1891   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1892   // to the return value slot. Only do this when returning in registers.
1893   if (isa<MSAsmStmt>(&S)) {
1894     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1895     if (RetAI.isDirect() || RetAI.isExtend()) {
1896       // Make a fake lvalue for the return value slot.
1897       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1898       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1899           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1900           ResultRegDests, AsmString, S.getNumOutputs());
1901       SawAsmBlock = true;
1902     }
1903   }
1904 
1905   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1906     const Expr *InputExpr = S.getInputExpr(i);
1907 
1908     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1909 
1910     if (Info.allowsMemory())
1911       ReadNone = false;
1912 
1913     if (!Constraints.empty())
1914       Constraints += ',';
1915 
1916     // Simplify the input constraint.
1917     std::string InputConstraint(S.getInputConstraint(i));
1918     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1919                                          &OutputConstraintInfos);
1920 
1921     InputConstraint = AddVariableConstraints(
1922         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1923         getTarget(), CGM, S, false /* No EarlyClobber */);
1924 
1925     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1926 
1927     // If this input argument is tied to a larger output result, extend the
1928     // input to be the same size as the output.  The LLVM backend wants to see
1929     // the input and output of a matching constraint be the same size.  Note
1930     // that GCC does not define what the top bits are here.  We use zext because
1931     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1932     if (Info.hasTiedOperand()) {
1933       unsigned Output = Info.getTiedOperand();
1934       QualType OutputType = S.getOutputExpr(Output)->getType();
1935       QualType InputTy = InputExpr->getType();
1936 
1937       if (getContext().getTypeSize(OutputType) >
1938           getContext().getTypeSize(InputTy)) {
1939         // Use ptrtoint as appropriate so that we can do our extension.
1940         if (isa<llvm::PointerType>(Arg->getType()))
1941           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1942         llvm::Type *OutputTy = ConvertType(OutputType);
1943         if (isa<llvm::IntegerType>(OutputTy))
1944           Arg = Builder.CreateZExt(Arg, OutputTy);
1945         else if (isa<llvm::PointerType>(OutputTy))
1946           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1947         else {
1948           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1949           Arg = Builder.CreateFPExt(Arg, OutputTy);
1950         }
1951       }
1952     }
1953     if (llvm::Type* AdjTy =
1954               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1955                                                    Arg->getType()))
1956       Arg = Builder.CreateBitCast(Arg, AdjTy);
1957     else
1958       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1959           << InputExpr->getType() << InputConstraint;
1960 
1961     ArgTypes.push_back(Arg->getType());
1962     Args.push_back(Arg);
1963     Constraints += InputConstraint;
1964   }
1965 
1966   // Append the "input" part of inout constraints last.
1967   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1968     ArgTypes.push_back(InOutArgTypes[i]);
1969     Args.push_back(InOutArgs[i]);
1970   }
1971   Constraints += InOutConstraints;
1972 
1973   // Clobbers
1974   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1975     StringRef Clobber = S.getClobber(i);
1976 
1977     if (Clobber == "memory")
1978       ReadOnly = ReadNone = false;
1979     else if (Clobber != "cc")
1980       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1981 
1982     if (!Constraints.empty())
1983       Constraints += ',';
1984 
1985     Constraints += "~{";
1986     Constraints += Clobber;
1987     Constraints += '}';
1988   }
1989 
1990   // Add machine specific clobbers
1991   std::string MachineClobbers = getTarget().getClobbers();
1992   if (!MachineClobbers.empty()) {
1993     if (!Constraints.empty())
1994       Constraints += ',';
1995     Constraints += MachineClobbers;
1996   }
1997 
1998   llvm::Type *ResultType;
1999   if (ResultRegTypes.empty())
2000     ResultType = VoidTy;
2001   else if (ResultRegTypes.size() == 1)
2002     ResultType = ResultRegTypes[0];
2003   else
2004     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2005 
2006   llvm::FunctionType *FTy =
2007     llvm::FunctionType::get(ResultType, ArgTypes, false);
2008 
2009   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2010   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2011     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2012   llvm::InlineAsm *IA =
2013     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2014                          /* IsAlignStack */ false, AsmDialect);
2015   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2016   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2017                        llvm::Attribute::NoUnwind);
2018 
2019   if (isa<MSAsmStmt>(&S)) {
2020     // If the assembly contains any labels, mark the call noduplicate to prevent
2021     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
2022     // works.
2023     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
2024       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2025                            llvm::Attribute::NoDuplicate);
2026   }
2027 
2028   // Attach readnone and readonly attributes.
2029   if (!HasSideEffect) {
2030     if (ReadNone)
2031       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2032                            llvm::Attribute::ReadNone);
2033     else if (ReadOnly)
2034       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2035                            llvm::Attribute::ReadOnly);
2036   }
2037 
2038   // Slap the source location of the inline asm into a !srcloc metadata on the
2039   // call.
2040   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2041     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2042                                                    *this));
2043   } else {
2044     // At least put the line number on MS inline asm blobs.
2045     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2046     Result->setMetadata("srcloc",
2047                         llvm::MDNode::get(getLLVMContext(),
2048                                           llvm::ConstantAsMetadata::get(Loc)));
2049   }
2050 
2051   // Extract all of the register value results from the asm.
2052   std::vector<llvm::Value*> RegResults;
2053   if (ResultRegTypes.size() == 1) {
2054     RegResults.push_back(Result);
2055   } else {
2056     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2057       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2058       RegResults.push_back(Tmp);
2059     }
2060   }
2061 
2062   assert(RegResults.size() == ResultRegTypes.size());
2063   assert(RegResults.size() == ResultTruncRegTypes.size());
2064   assert(RegResults.size() == ResultRegDests.size());
2065   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2066     llvm::Value *Tmp = RegResults[i];
2067 
2068     // If the result type of the LLVM IR asm doesn't match the result type of
2069     // the expression, do the conversion.
2070     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2071       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2072 
2073       // Truncate the integer result to the right size, note that TruncTy can be
2074       // a pointer.
2075       if (TruncTy->isFloatingPointTy())
2076         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2077       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2078         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2079         Tmp = Builder.CreateTrunc(Tmp,
2080                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2081         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2082       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2083         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2084         Tmp = Builder.CreatePtrToInt(Tmp,
2085                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2086         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2087       } else if (TruncTy->isIntegerTy()) {
2088         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2089       } else if (TruncTy->isVectorTy()) {
2090         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2091       }
2092     }
2093 
2094     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2095   }
2096 }
2097 
2098 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2099   const RecordDecl *RD = S.getCapturedRecordDecl();
2100   QualType RecordTy = getContext().getRecordType(RD);
2101 
2102   // Initialize the captured struct.
2103   LValue SlotLV =
2104     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2105 
2106   RecordDecl::field_iterator CurField = RD->field_begin();
2107   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2108                                                  E = S.capture_init_end();
2109        I != E; ++I, ++CurField) {
2110     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2111     if (CurField->hasCapturedVLAType()) {
2112       auto VAT = CurField->getCapturedVLAType();
2113       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2114     } else {
2115       EmitInitializerForField(*CurField, LV, *I, None);
2116     }
2117   }
2118 
2119   return SlotLV;
2120 }
2121 
2122 /// Generate an outlined function for the body of a CapturedStmt, store any
2123 /// captured variables into the captured struct, and call the outlined function.
2124 llvm::Function *
2125 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2126   LValue CapStruct = InitCapturedStruct(S);
2127 
2128   // Emit the CapturedDecl
2129   CodeGenFunction CGF(CGM, true);
2130   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2131   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2132   delete CGF.CapturedStmtInfo;
2133 
2134   // Emit call to the helper function.
2135   EmitCallOrInvoke(F, CapStruct.getPointer());
2136 
2137   return F;
2138 }
2139 
2140 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2141   LValue CapStruct = InitCapturedStruct(S);
2142   return CapStruct.getAddress();
2143 }
2144 
2145 /// Creates the outlined function for a CapturedStmt.
2146 llvm::Function *
2147 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2148   assert(CapturedStmtInfo &&
2149     "CapturedStmtInfo should be set when generating the captured function");
2150   const CapturedDecl *CD = S.getCapturedDecl();
2151   const RecordDecl *RD = S.getCapturedRecordDecl();
2152   SourceLocation Loc = S.getLocStart();
2153   assert(CD->hasBody() && "missing CapturedDecl body");
2154 
2155   // Build the argument list.
2156   ASTContext &Ctx = CGM.getContext();
2157   FunctionArgList Args;
2158   Args.append(CD->param_begin(), CD->param_end());
2159 
2160   // Create the function declaration.
2161   FunctionType::ExtInfo ExtInfo;
2162   const CGFunctionInfo &FuncInfo =
2163     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2164   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2165 
2166   llvm::Function *F =
2167     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2168                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2169   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2170   if (CD->isNothrow())
2171     F->addFnAttr(llvm::Attribute::NoUnwind);
2172 
2173   // Generate the function.
2174   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2175                 CD->getLocation(),
2176                 CD->getBody()->getLocStart());
2177   // Set the context parameter in CapturedStmtInfo.
2178   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2179   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2180 
2181   // Initialize variable-length arrays.
2182   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2183                                            Ctx.getTagDeclType(RD));
2184   for (auto *FD : RD->fields()) {
2185     if (FD->hasCapturedVLAType()) {
2186       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2187                                        S.getLocStart()).getScalarVal();
2188       auto VAT = FD->getCapturedVLAType();
2189       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2190     }
2191   }
2192 
2193   // If 'this' is captured, load it into CXXThisValue.
2194   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2195     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2196     LValue ThisLValue = EmitLValueForField(Base, FD);
2197     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2198   }
2199 
2200   PGO.assignRegionCounters(GlobalDecl(CD), F);
2201   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2202   FinishFunction(CD->getBodyRBrace());
2203 
2204   return F;
2205 }
2206