1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/PrettyStackTrace.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/SaveAndRestore.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                              Statement Emission
37 //===----------------------------------------------------------------------===//
38 
39 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
40   if (CGDebugInfo *DI = getDebugInfo()) {
41     SourceLocation Loc;
42     Loc = S->getBeginLoc();
43     DI->EmitLocation(Builder, Loc);
44 
45     LastStopPoint = Loc;
46   }
47 }
48 
49 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
50   assert(S && "Null statement?");
51   PGO.setCurrentStmt(S);
52 
53   // These statements have their own debug info handling.
54   if (EmitSimpleStmt(S))
55     return;
56 
57   // Check if we are generating unreachable code.
58   if (!HaveInsertPoint()) {
59     // If so, and the statement doesn't contain a label, then we do not need to
60     // generate actual code. This is safe because (1) the current point is
61     // unreachable, so we don't need to execute the code, and (2) we've already
62     // handled the statements which update internal data structures (like the
63     // local variable map) which could be used by subsequent statements.
64     if (!ContainsLabel(S)) {
65       // Verify that any decl statements were handled as simple, they may be in
66       // scope of subsequent reachable statements.
67       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
68       return;
69     }
70 
71     // Otherwise, make a new block to hold the code.
72     EnsureInsertPoint();
73   }
74 
75   // Generate a stoppoint if we are emitting debug info.
76   EmitStopPoint(S);
77 
78   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
79   // enabled.
80   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
81     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
82       EmitSimpleOMPExecutableDirective(*D);
83       return;
84     }
85   }
86 
87   switch (S->getStmtClass()) {
88   case Stmt::NoStmtClass:
89   case Stmt::CXXCatchStmtClass:
90   case Stmt::SEHExceptStmtClass:
91   case Stmt::SEHFinallyStmtClass:
92   case Stmt::MSDependentExistsStmtClass:
93     llvm_unreachable("invalid statement class to emit generically");
94   case Stmt::NullStmtClass:
95   case Stmt::CompoundStmtClass:
96   case Stmt::DeclStmtClass:
97   case Stmt::LabelStmtClass:
98   case Stmt::AttributedStmtClass:
99   case Stmt::GotoStmtClass:
100   case Stmt::BreakStmtClass:
101   case Stmt::ContinueStmtClass:
102   case Stmt::DefaultStmtClass:
103   case Stmt::CaseStmtClass:
104   case Stmt::SEHLeaveStmtClass:
105     llvm_unreachable("should have emitted these statements as simple");
106 
107 #define STMT(Type, Base)
108 #define ABSTRACT_STMT(Op)
109 #define EXPR(Type, Base) \
110   case Stmt::Type##Class:
111 #include "clang/AST/StmtNodes.inc"
112   {
113     // Remember the block we came in on.
114     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
115     assert(incoming && "expression emission must have an insertion point");
116 
117     EmitIgnoredExpr(cast<Expr>(S));
118 
119     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
120     assert(outgoing && "expression emission cleared block!");
121 
122     // The expression emitters assume (reasonably!) that the insertion
123     // point is always set.  To maintain that, the call-emission code
124     // for noreturn functions has to enter a new block with no
125     // predecessors.  We want to kill that block and mark the current
126     // insertion point unreachable in the common case of a call like
127     // "exit();".  Since expression emission doesn't otherwise create
128     // blocks with no predecessors, we can just test for that.
129     // However, we must be careful not to do this to our incoming
130     // block, because *statement* emission does sometimes create
131     // reachable blocks which will have no predecessors until later in
132     // the function.  This occurs with, e.g., labels that are not
133     // reachable by fallthrough.
134     if (incoming != outgoing && outgoing->use_empty()) {
135       outgoing->eraseFromParent();
136       Builder.ClearInsertionPoint();
137     }
138     break;
139   }
140 
141   case Stmt::IndirectGotoStmtClass:
142     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
143 
144   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
145   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
146   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
147   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
148 
149   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
150 
151   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
152   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
153   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
154   case Stmt::CoroutineBodyStmtClass:
155     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
156     break;
157   case Stmt::CoreturnStmtClass:
158     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
159     break;
160   case Stmt::CapturedStmtClass: {
161     const CapturedStmt *CS = cast<CapturedStmt>(S);
162     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
163     }
164     break;
165   case Stmt::ObjCAtTryStmtClass:
166     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
167     break;
168   case Stmt::ObjCAtCatchStmtClass:
169     llvm_unreachable(
170                     "@catch statements should be handled by EmitObjCAtTryStmt");
171   case Stmt::ObjCAtFinallyStmtClass:
172     llvm_unreachable(
173                   "@finally statements should be handled by EmitObjCAtTryStmt");
174   case Stmt::ObjCAtThrowStmtClass:
175     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
176     break;
177   case Stmt::ObjCAtSynchronizedStmtClass:
178     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
179     break;
180   case Stmt::ObjCForCollectionStmtClass:
181     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
182     break;
183   case Stmt::ObjCAutoreleasePoolStmtClass:
184     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
185     break;
186 
187   case Stmt::CXXTryStmtClass:
188     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
189     break;
190   case Stmt::CXXForRangeStmtClass:
191     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
192     break;
193   case Stmt::SEHTryStmtClass:
194     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
195     break;
196   case Stmt::OMPParallelDirectiveClass:
197     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
198     break;
199   case Stmt::OMPSimdDirectiveClass:
200     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
201     break;
202   case Stmt::OMPForDirectiveClass:
203     EmitOMPForDirective(cast<OMPForDirective>(*S));
204     break;
205   case Stmt::OMPForSimdDirectiveClass:
206     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
207     break;
208   case Stmt::OMPSectionsDirectiveClass:
209     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
210     break;
211   case Stmt::OMPSectionDirectiveClass:
212     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
213     break;
214   case Stmt::OMPSingleDirectiveClass:
215     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
216     break;
217   case Stmt::OMPMasterDirectiveClass:
218     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
219     break;
220   case Stmt::OMPCriticalDirectiveClass:
221     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
222     break;
223   case Stmt::OMPParallelForDirectiveClass:
224     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
225     break;
226   case Stmt::OMPParallelForSimdDirectiveClass:
227     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
228     break;
229   case Stmt::OMPParallelMasterDirectiveClass:
230     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
231     break;
232   case Stmt::OMPParallelSectionsDirectiveClass:
233     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
234     break;
235   case Stmt::OMPTaskDirectiveClass:
236     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
237     break;
238   case Stmt::OMPTaskyieldDirectiveClass:
239     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
240     break;
241   case Stmt::OMPBarrierDirectiveClass:
242     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
243     break;
244   case Stmt::OMPTaskwaitDirectiveClass:
245     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
246     break;
247   case Stmt::OMPTaskgroupDirectiveClass:
248     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
249     break;
250   case Stmt::OMPFlushDirectiveClass:
251     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
252     break;
253   case Stmt::OMPDepobjDirectiveClass:
254     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
255     break;
256   case Stmt::OMPScanDirectiveClass:
257     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
258     break;
259   case Stmt::OMPOrderedDirectiveClass:
260     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
261     break;
262   case Stmt::OMPAtomicDirectiveClass:
263     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
264     break;
265   case Stmt::OMPTargetDirectiveClass:
266     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
267     break;
268   case Stmt::OMPTeamsDirectiveClass:
269     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
270     break;
271   case Stmt::OMPCancellationPointDirectiveClass:
272     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
273     break;
274   case Stmt::OMPCancelDirectiveClass:
275     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
276     break;
277   case Stmt::OMPTargetDataDirectiveClass:
278     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
279     break;
280   case Stmt::OMPTargetEnterDataDirectiveClass:
281     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
282     break;
283   case Stmt::OMPTargetExitDataDirectiveClass:
284     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
285     break;
286   case Stmt::OMPTargetParallelDirectiveClass:
287     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
288     break;
289   case Stmt::OMPTargetParallelForDirectiveClass:
290     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
291     break;
292   case Stmt::OMPTaskLoopDirectiveClass:
293     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
294     break;
295   case Stmt::OMPTaskLoopSimdDirectiveClass:
296     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
297     break;
298   case Stmt::OMPMasterTaskLoopDirectiveClass:
299     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
300     break;
301   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
302     EmitOMPMasterTaskLoopSimdDirective(
303         cast<OMPMasterTaskLoopSimdDirective>(*S));
304     break;
305   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
306     EmitOMPParallelMasterTaskLoopDirective(
307         cast<OMPParallelMasterTaskLoopDirective>(*S));
308     break;
309   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
310     EmitOMPParallelMasterTaskLoopSimdDirective(
311         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
312     break;
313   case Stmt::OMPDistributeDirectiveClass:
314     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
315     break;
316   case Stmt::OMPTargetUpdateDirectiveClass:
317     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
318     break;
319   case Stmt::OMPDistributeParallelForDirectiveClass:
320     EmitOMPDistributeParallelForDirective(
321         cast<OMPDistributeParallelForDirective>(*S));
322     break;
323   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
324     EmitOMPDistributeParallelForSimdDirective(
325         cast<OMPDistributeParallelForSimdDirective>(*S));
326     break;
327   case Stmt::OMPDistributeSimdDirectiveClass:
328     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
329     break;
330   case Stmt::OMPTargetParallelForSimdDirectiveClass:
331     EmitOMPTargetParallelForSimdDirective(
332         cast<OMPTargetParallelForSimdDirective>(*S));
333     break;
334   case Stmt::OMPTargetSimdDirectiveClass:
335     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
336     break;
337   case Stmt::OMPTeamsDistributeDirectiveClass:
338     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
339     break;
340   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
341     EmitOMPTeamsDistributeSimdDirective(
342         cast<OMPTeamsDistributeSimdDirective>(*S));
343     break;
344   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
345     EmitOMPTeamsDistributeParallelForSimdDirective(
346         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
347     break;
348   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
349     EmitOMPTeamsDistributeParallelForDirective(
350         cast<OMPTeamsDistributeParallelForDirective>(*S));
351     break;
352   case Stmt::OMPTargetTeamsDirectiveClass:
353     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
354     break;
355   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
356     EmitOMPTargetTeamsDistributeDirective(
357         cast<OMPTargetTeamsDistributeDirective>(*S));
358     break;
359   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
360     EmitOMPTargetTeamsDistributeParallelForDirective(
361         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
362     break;
363   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
364     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
365         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
366     break;
367   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
368     EmitOMPTargetTeamsDistributeSimdDirective(
369         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
370     break;
371   }
372 }
373 
374 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
375   switch (S->getStmtClass()) {
376   default: return false;
377   case Stmt::NullStmtClass: break;
378   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
379   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
380   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
381   case Stmt::AttributedStmtClass:
382                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
383   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
384   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
385   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
386   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
387   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
388   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
389   }
390 
391   return true;
392 }
393 
394 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
395 /// this captures the expression result of the last sub-statement and returns it
396 /// (for use by the statement expression extension).
397 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
398                                           AggValueSlot AggSlot) {
399   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
400                              "LLVM IR generation of compound statement ('{}')");
401 
402   // Keep track of the current cleanup stack depth, including debug scopes.
403   LexicalScope Scope(*this, S.getSourceRange());
404 
405   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
406 }
407 
408 Address
409 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
410                                               bool GetLast,
411                                               AggValueSlot AggSlot) {
412 
413   const Stmt *ExprResult = S.getStmtExprResult();
414   assert((!GetLast || (GetLast && ExprResult)) &&
415          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
416 
417   Address RetAlloca = Address::invalid();
418 
419   for (auto *CurStmt : S.body()) {
420     if (GetLast && ExprResult == CurStmt) {
421       // We have to special case labels here.  They are statements, but when put
422       // at the end of a statement expression, they yield the value of their
423       // subexpression.  Handle this by walking through all labels we encounter,
424       // emitting them before we evaluate the subexpr.
425       // Similar issues arise for attributed statements.
426       while (!isa<Expr>(ExprResult)) {
427         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
428           EmitLabel(LS->getDecl());
429           ExprResult = LS->getSubStmt();
430         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
431           // FIXME: Update this if we ever have attributes that affect the
432           // semantics of an expression.
433           ExprResult = AS->getSubStmt();
434         } else {
435           llvm_unreachable("unknown value statement");
436         }
437       }
438 
439       EnsureInsertPoint();
440 
441       const Expr *E = cast<Expr>(ExprResult);
442       QualType ExprTy = E->getType();
443       if (hasAggregateEvaluationKind(ExprTy)) {
444         EmitAggExpr(E, AggSlot);
445       } else {
446         // We can't return an RValue here because there might be cleanups at
447         // the end of the StmtExpr.  Because of that, we have to emit the result
448         // here into a temporary alloca.
449         RetAlloca = CreateMemTemp(ExprTy);
450         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
451                          /*IsInit*/ false);
452       }
453     } else {
454       EmitStmt(CurStmt);
455     }
456   }
457 
458   return RetAlloca;
459 }
460 
461 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
462   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
463 
464   // If there is a cleanup stack, then we it isn't worth trying to
465   // simplify this block (we would need to remove it from the scope map
466   // and cleanup entry).
467   if (!EHStack.empty())
468     return;
469 
470   // Can only simplify direct branches.
471   if (!BI || !BI->isUnconditional())
472     return;
473 
474   // Can only simplify empty blocks.
475   if (BI->getIterator() != BB->begin())
476     return;
477 
478   BB->replaceAllUsesWith(BI->getSuccessor(0));
479   BI->eraseFromParent();
480   BB->eraseFromParent();
481 }
482 
483 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
484   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
485 
486   // Fall out of the current block (if necessary).
487   EmitBranch(BB);
488 
489   if (IsFinished && BB->use_empty()) {
490     delete BB;
491     return;
492   }
493 
494   // Place the block after the current block, if possible, or else at
495   // the end of the function.
496   if (CurBB && CurBB->getParent())
497     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
498   else
499     CurFn->getBasicBlockList().push_back(BB);
500   Builder.SetInsertPoint(BB);
501 }
502 
503 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
504   // Emit a branch from the current block to the target one if this
505   // was a real block.  If this was just a fall-through block after a
506   // terminator, don't emit it.
507   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
508 
509   if (!CurBB || CurBB->getTerminator()) {
510     // If there is no insert point or the previous block is already
511     // terminated, don't touch it.
512   } else {
513     // Otherwise, create a fall-through branch.
514     Builder.CreateBr(Target);
515   }
516 
517   Builder.ClearInsertionPoint();
518 }
519 
520 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
521   bool inserted = false;
522   for (llvm::User *u : block->users()) {
523     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
524       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
525                                              block);
526       inserted = true;
527       break;
528     }
529   }
530 
531   if (!inserted)
532     CurFn->getBasicBlockList().push_back(block);
533 
534   Builder.SetInsertPoint(block);
535 }
536 
537 CodeGenFunction::JumpDest
538 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
539   JumpDest &Dest = LabelMap[D];
540   if (Dest.isValid()) return Dest;
541 
542   // Create, but don't insert, the new block.
543   Dest = JumpDest(createBasicBlock(D->getName()),
544                   EHScopeStack::stable_iterator::invalid(),
545                   NextCleanupDestIndex++);
546   return Dest;
547 }
548 
549 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
550   // Add this label to the current lexical scope if we're within any
551   // normal cleanups.  Jumps "in" to this label --- when permitted by
552   // the language --- may need to be routed around such cleanups.
553   if (EHStack.hasNormalCleanups() && CurLexicalScope)
554     CurLexicalScope->addLabel(D);
555 
556   JumpDest &Dest = LabelMap[D];
557 
558   // If we didn't need a forward reference to this label, just go
559   // ahead and create a destination at the current scope.
560   if (!Dest.isValid()) {
561     Dest = getJumpDestInCurrentScope(D->getName());
562 
563   // Otherwise, we need to give this label a target depth and remove
564   // it from the branch-fixups list.
565   } else {
566     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
567     Dest.setScopeDepth(EHStack.stable_begin());
568     ResolveBranchFixups(Dest.getBlock());
569   }
570 
571   EmitBlock(Dest.getBlock());
572 
573   // Emit debug info for labels.
574   if (CGDebugInfo *DI = getDebugInfo()) {
575     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
576       DI->setLocation(D->getLocation());
577       DI->EmitLabel(D, Builder);
578     }
579   }
580 
581   incrementProfileCounter(D->getStmt());
582 }
583 
584 /// Change the cleanup scope of the labels in this lexical scope to
585 /// match the scope of the enclosing context.
586 void CodeGenFunction::LexicalScope::rescopeLabels() {
587   assert(!Labels.empty());
588   EHScopeStack::stable_iterator innermostScope
589     = CGF.EHStack.getInnermostNormalCleanup();
590 
591   // Change the scope depth of all the labels.
592   for (SmallVectorImpl<const LabelDecl*>::const_iterator
593          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
594     assert(CGF.LabelMap.count(*i));
595     JumpDest &dest = CGF.LabelMap.find(*i)->second;
596     assert(dest.getScopeDepth().isValid());
597     assert(innermostScope.encloses(dest.getScopeDepth()));
598     dest.setScopeDepth(innermostScope);
599   }
600 
601   // Reparent the labels if the new scope also has cleanups.
602   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
603     ParentScope->Labels.append(Labels.begin(), Labels.end());
604   }
605 }
606 
607 
608 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
609   EmitLabel(S.getDecl());
610   EmitStmt(S.getSubStmt());
611 }
612 
613 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
614   bool nomerge = false;
615   for (const auto *A : S.getAttrs())
616     if (A->getKind() == attr::NoMerge) {
617       nomerge = true;
618       break;
619     }
620   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
621   EmitStmt(S.getSubStmt(), S.getAttrs());
622 }
623 
624 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
625   // If this code is reachable then emit a stop point (if generating
626   // debug info). We have to do this ourselves because we are on the
627   // "simple" statement path.
628   if (HaveInsertPoint())
629     EmitStopPoint(&S);
630 
631   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
632 }
633 
634 
635 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
636   if (const LabelDecl *Target = S.getConstantTarget()) {
637     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
638     return;
639   }
640 
641   // Ensure that we have an i8* for our PHI node.
642   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
643                                          Int8PtrTy, "addr");
644   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
645 
646   // Get the basic block for the indirect goto.
647   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
648 
649   // The first instruction in the block has to be the PHI for the switch dest,
650   // add an entry for this branch.
651   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
652 
653   EmitBranch(IndGotoBB);
654 }
655 
656 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
657   // C99 6.8.4.1: The first substatement is executed if the expression compares
658   // unequal to 0.  The condition must be a scalar type.
659   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
660 
661   if (S.getInit())
662     EmitStmt(S.getInit());
663 
664   if (S.getConditionVariable())
665     EmitDecl(*S.getConditionVariable());
666 
667   // If the condition constant folds and can be elided, try to avoid emitting
668   // the condition and the dead arm of the if/else.
669   bool CondConstant;
670   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
671                                    S.isConstexpr())) {
672     // Figure out which block (then or else) is executed.
673     const Stmt *Executed = S.getThen();
674     const Stmt *Skipped  = S.getElse();
675     if (!CondConstant)  // Condition false?
676       std::swap(Executed, Skipped);
677 
678     // If the skipped block has no labels in it, just emit the executed block.
679     // This avoids emitting dead code and simplifies the CFG substantially.
680     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
681       if (CondConstant)
682         incrementProfileCounter(&S);
683       if (Executed) {
684         RunCleanupsScope ExecutedScope(*this);
685         EmitStmt(Executed);
686       }
687       return;
688     }
689   }
690 
691   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
692   // the conditional branch.
693   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
694   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
695   llvm::BasicBlock *ElseBlock = ContBlock;
696   if (S.getElse())
697     ElseBlock = createBasicBlock("if.else");
698 
699   // Prefer the PGO based weights over the likelihood attribute.
700   // When the build isn't optimized the metadata isn't used, so don't generate
701   // it.
702   Stmt::Likelihood LH = Stmt::LH_None;
703   uint64_t Count = getProfileCount(S.getThen());
704   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
705     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
706   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
707 
708   // Emit the 'then' code.
709   EmitBlock(ThenBlock);
710   incrementProfileCounter(&S);
711   {
712     RunCleanupsScope ThenScope(*this);
713     EmitStmt(S.getThen());
714   }
715   EmitBranch(ContBlock);
716 
717   // Emit the 'else' code if present.
718   if (const Stmt *Else = S.getElse()) {
719     {
720       // There is no need to emit line number for an unconditional branch.
721       auto NL = ApplyDebugLocation::CreateEmpty(*this);
722       EmitBlock(ElseBlock);
723     }
724     {
725       RunCleanupsScope ElseScope(*this);
726       EmitStmt(Else);
727     }
728     {
729       // There is no need to emit line number for an unconditional branch.
730       auto NL = ApplyDebugLocation::CreateEmpty(*this);
731       EmitBranch(ContBlock);
732     }
733   }
734 
735   // Emit the continuation block for code after the if.
736   EmitBlock(ContBlock, true);
737 }
738 
739 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
740                                     ArrayRef<const Attr *> WhileAttrs) {
741   // Emit the header for the loop, which will also become
742   // the continue target.
743   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
744   EmitBlock(LoopHeader.getBlock());
745 
746   const SourceRange &R = S.getSourceRange();
747   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
748                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
749                  SourceLocToDebugLoc(R.getEnd()));
750 
751   // Create an exit block for when the condition fails, which will
752   // also become the break target.
753   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
754 
755   // Store the blocks to use for break and continue.
756   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
757 
758   // C++ [stmt.while]p2:
759   //   When the condition of a while statement is a declaration, the
760   //   scope of the variable that is declared extends from its point
761   //   of declaration (3.3.2) to the end of the while statement.
762   //   [...]
763   //   The object created in a condition is destroyed and created
764   //   with each iteration of the loop.
765   RunCleanupsScope ConditionScope(*this);
766 
767   if (S.getConditionVariable())
768     EmitDecl(*S.getConditionVariable());
769 
770   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
771   // evaluation of the controlling expression takes place before each
772   // execution of the loop body.
773   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
774 
775   // while(1) is common, avoid extra exit blocks.  Be sure
776   // to correctly handle break/continue though.
777   bool EmitBoolCondBranch = true;
778   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
779     if (C->isOne())
780       EmitBoolCondBranch = false;
781 
782   // As long as the condition is true, go to the loop body.
783   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
784   if (EmitBoolCondBranch) {
785     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
786     if (ConditionScope.requiresCleanups())
787       ExitBlock = createBasicBlock("while.exit");
788     Builder.CreateCondBr(
789         BoolCondVal, LoopBody, ExitBlock,
790         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
791 
792     if (ExitBlock != LoopExit.getBlock()) {
793       EmitBlock(ExitBlock);
794       EmitBranchThroughCleanup(LoopExit);
795     }
796   }
797 
798   // Emit the loop body.  We have to emit this in a cleanup scope
799   // because it might be a singleton DeclStmt.
800   {
801     RunCleanupsScope BodyScope(*this);
802     EmitBlock(LoopBody);
803     incrementProfileCounter(&S);
804     EmitStmt(S.getBody());
805   }
806 
807   BreakContinueStack.pop_back();
808 
809   // Immediately force cleanup.
810   ConditionScope.ForceCleanup();
811 
812   EmitStopPoint(&S);
813   // Branch to the loop header again.
814   EmitBranch(LoopHeader.getBlock());
815 
816   LoopStack.pop();
817 
818   // Emit the exit block.
819   EmitBlock(LoopExit.getBlock(), true);
820 
821   // The LoopHeader typically is just a branch if we skipped emitting
822   // a branch, try to erase it.
823   if (!EmitBoolCondBranch)
824     SimplifyForwardingBlocks(LoopHeader.getBlock());
825 }
826 
827 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
828                                  ArrayRef<const Attr *> DoAttrs) {
829   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
830   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
831 
832   uint64_t ParentCount = getCurrentProfileCount();
833 
834   // Store the blocks to use for break and continue.
835   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
836 
837   // Emit the body of the loop.
838   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
839 
840   EmitBlockWithFallThrough(LoopBody, &S);
841   {
842     RunCleanupsScope BodyScope(*this);
843     EmitStmt(S.getBody());
844   }
845 
846   EmitBlock(LoopCond.getBlock());
847 
848   const SourceRange &R = S.getSourceRange();
849   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
850                  SourceLocToDebugLoc(R.getBegin()),
851                  SourceLocToDebugLoc(R.getEnd()));
852 
853   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
854   // after each execution of the loop body."
855 
856   // Evaluate the conditional in the while header.
857   // C99 6.8.5p2/p4: The first substatement is executed if the expression
858   // compares unequal to 0.  The condition must be a scalar type.
859   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
860 
861   BreakContinueStack.pop_back();
862 
863   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
864   // to correctly handle break/continue though.
865   bool EmitBoolCondBranch = true;
866   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
867     if (C->isZero())
868       EmitBoolCondBranch = false;
869 
870   // As long as the condition is true, iterate the loop.
871   if (EmitBoolCondBranch) {
872     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
873     Builder.CreateCondBr(
874         BoolCondVal, LoopBody, LoopExit.getBlock(),
875         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
876   }
877 
878   LoopStack.pop();
879 
880   // Emit the exit block.
881   EmitBlock(LoopExit.getBlock());
882 
883   // The DoCond block typically is just a branch if we skipped
884   // emitting a branch, try to erase it.
885   if (!EmitBoolCondBranch)
886     SimplifyForwardingBlocks(LoopCond.getBlock());
887 }
888 
889 void CodeGenFunction::EmitForStmt(const ForStmt &S,
890                                   ArrayRef<const Attr *> ForAttrs) {
891   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
892 
893   LexicalScope ForScope(*this, S.getSourceRange());
894 
895   // Evaluate the first part before the loop.
896   if (S.getInit())
897     EmitStmt(S.getInit());
898 
899   // Start the loop with a block that tests the condition.
900   // If there's an increment, the continue scope will be overwritten
901   // later.
902   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
903   llvm::BasicBlock *CondBlock = Continue.getBlock();
904   EmitBlock(CondBlock);
905 
906   const SourceRange &R = S.getSourceRange();
907   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
908                  SourceLocToDebugLoc(R.getBegin()),
909                  SourceLocToDebugLoc(R.getEnd()));
910 
911   // If the for loop doesn't have an increment we can just use the
912   // condition as the continue block.  Otherwise we'll need to create
913   // a block for it (in the current scope, i.e. in the scope of the
914   // condition), and that we will become our continue block.
915   if (S.getInc())
916     Continue = getJumpDestInCurrentScope("for.inc");
917 
918   // Store the blocks to use for break and continue.
919   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
920 
921   // Create a cleanup scope for the condition variable cleanups.
922   LexicalScope ConditionScope(*this, S.getSourceRange());
923 
924   if (S.getCond()) {
925     // If the for statement has a condition scope, emit the local variable
926     // declaration.
927     if (S.getConditionVariable()) {
928       EmitDecl(*S.getConditionVariable());
929     }
930 
931     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
932     // If there are any cleanups between here and the loop-exit scope,
933     // create a block to stage a loop exit along.
934     if (ForScope.requiresCleanups())
935       ExitBlock = createBasicBlock("for.cond.cleanup");
936 
937     // As long as the condition is true, iterate the loop.
938     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
939 
940     // C99 6.8.5p2/p4: The first substatement is executed if the expression
941     // compares unequal to 0.  The condition must be a scalar type.
942     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
943     Builder.CreateCondBr(
944         BoolCondVal, ForBody, ExitBlock,
945         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
946 
947     if (ExitBlock != LoopExit.getBlock()) {
948       EmitBlock(ExitBlock);
949       EmitBranchThroughCleanup(LoopExit);
950     }
951 
952     EmitBlock(ForBody);
953   } else {
954     // Treat it as a non-zero constant.  Don't even create a new block for the
955     // body, just fall into it.
956   }
957   incrementProfileCounter(&S);
958 
959   {
960     // Create a separate cleanup scope for the body, in case it is not
961     // a compound statement.
962     RunCleanupsScope BodyScope(*this);
963     EmitStmt(S.getBody());
964   }
965 
966   // If there is an increment, emit it next.
967   if (S.getInc()) {
968     EmitBlock(Continue.getBlock());
969     EmitStmt(S.getInc());
970   }
971 
972   BreakContinueStack.pop_back();
973 
974   ConditionScope.ForceCleanup();
975 
976   EmitStopPoint(&S);
977   EmitBranch(CondBlock);
978 
979   ForScope.ForceCleanup();
980 
981   LoopStack.pop();
982 
983   // Emit the fall-through block.
984   EmitBlock(LoopExit.getBlock(), true);
985 }
986 
987 void
988 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
989                                      ArrayRef<const Attr *> ForAttrs) {
990   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
991 
992   LexicalScope ForScope(*this, S.getSourceRange());
993 
994   // Evaluate the first pieces before the loop.
995   if (S.getInit())
996     EmitStmt(S.getInit());
997   EmitStmt(S.getRangeStmt());
998   EmitStmt(S.getBeginStmt());
999   EmitStmt(S.getEndStmt());
1000 
1001   // Start the loop with a block that tests the condition.
1002   // If there's an increment, the continue scope will be overwritten
1003   // later.
1004   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1005   EmitBlock(CondBlock);
1006 
1007   const SourceRange &R = S.getSourceRange();
1008   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1009                  SourceLocToDebugLoc(R.getBegin()),
1010                  SourceLocToDebugLoc(R.getEnd()));
1011 
1012   // If there are any cleanups between here and the loop-exit scope,
1013   // create a block to stage a loop exit along.
1014   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1015   if (ForScope.requiresCleanups())
1016     ExitBlock = createBasicBlock("for.cond.cleanup");
1017 
1018   // The loop body, consisting of the specified body and the loop variable.
1019   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1020 
1021   // The body is executed if the expression, contextually converted
1022   // to bool, is true.
1023   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1024   Builder.CreateCondBr(
1025       BoolCondVal, ForBody, ExitBlock,
1026       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
1027 
1028   if (ExitBlock != LoopExit.getBlock()) {
1029     EmitBlock(ExitBlock);
1030     EmitBranchThroughCleanup(LoopExit);
1031   }
1032 
1033   EmitBlock(ForBody);
1034   incrementProfileCounter(&S);
1035 
1036   // Create a block for the increment. In case of a 'continue', we jump there.
1037   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1038 
1039   // Store the blocks to use for break and continue.
1040   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1041 
1042   {
1043     // Create a separate cleanup scope for the loop variable and body.
1044     LexicalScope BodyScope(*this, S.getSourceRange());
1045     EmitStmt(S.getLoopVarStmt());
1046     EmitStmt(S.getBody());
1047   }
1048 
1049   EmitStopPoint(&S);
1050   // If there is an increment, emit it next.
1051   EmitBlock(Continue.getBlock());
1052   EmitStmt(S.getInc());
1053 
1054   BreakContinueStack.pop_back();
1055 
1056   EmitBranch(CondBlock);
1057 
1058   ForScope.ForceCleanup();
1059 
1060   LoopStack.pop();
1061 
1062   // Emit the fall-through block.
1063   EmitBlock(LoopExit.getBlock(), true);
1064 }
1065 
1066 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1067   if (RV.isScalar()) {
1068     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1069   } else if (RV.isAggregate()) {
1070     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1071     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1072     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1073   } else {
1074     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1075                        /*init*/ true);
1076   }
1077   EmitBranchThroughCleanup(ReturnBlock);
1078 }
1079 
1080 namespace {
1081 // RAII struct used to save and restore a return statment's result expression.
1082 struct SaveRetExprRAII {
1083   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1084       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1085     CGF.RetExpr = RetExpr;
1086   }
1087   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1088   const Expr *OldRetExpr;
1089   CodeGenFunction &CGF;
1090 };
1091 } // namespace
1092 
1093 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1094 /// if the function returns void, or may be missing one if the function returns
1095 /// non-void.  Fun stuff :).
1096 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1097   if (requiresReturnValueCheck()) {
1098     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1099     auto *SLocPtr =
1100         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1101                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1102     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1103     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1104     assert(ReturnLocation.isValid() && "No valid return location");
1105     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1106                         ReturnLocation);
1107   }
1108 
1109   // Returning from an outlined SEH helper is UB, and we already warn on it.
1110   if (IsOutlinedSEHHelper) {
1111     Builder.CreateUnreachable();
1112     Builder.ClearInsertionPoint();
1113   }
1114 
1115   // Emit the result value, even if unused, to evaluate the side effects.
1116   const Expr *RV = S.getRetValue();
1117 
1118   // Record the result expression of the return statement. The recorded
1119   // expression is used to determine whether a block capture's lifetime should
1120   // end at the end of the full expression as opposed to the end of the scope
1121   // enclosing the block expression.
1122   //
1123   // This permits a small, easily-implemented exception to our over-conservative
1124   // rules about not jumping to statements following block literals with
1125   // non-trivial cleanups.
1126   SaveRetExprRAII SaveRetExpr(RV, *this);
1127 
1128   RunCleanupsScope cleanupScope(*this);
1129   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1130     RV = EWC->getSubExpr();
1131   // FIXME: Clean this up by using an LValue for ReturnTemp,
1132   // EmitStoreThroughLValue, and EmitAnyExpr.
1133   // Check if the NRVO candidate was not globalized in OpenMP mode.
1134   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1135       S.getNRVOCandidate()->isNRVOVariable() &&
1136       (!getLangOpts().OpenMP ||
1137        !CGM.getOpenMPRuntime()
1138             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1139             .isValid())) {
1140     // Apply the named return value optimization for this return statement,
1141     // which means doing nothing: the appropriate result has already been
1142     // constructed into the NRVO variable.
1143 
1144     // If there is an NRVO flag for this variable, set it to 1 into indicate
1145     // that the cleanup code should not destroy the variable.
1146     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1147       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1148   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1149     // Make sure not to return anything, but evaluate the expression
1150     // for side effects.
1151     if (RV)
1152       EmitAnyExpr(RV);
1153   } else if (!RV) {
1154     // Do nothing (return value is left uninitialized)
1155   } else if (FnRetTy->isReferenceType()) {
1156     // If this function returns a reference, take the address of the expression
1157     // rather than the value.
1158     RValue Result = EmitReferenceBindingToExpr(RV);
1159     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1160   } else {
1161     switch (getEvaluationKind(RV->getType())) {
1162     case TEK_Scalar:
1163       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1164       break;
1165     case TEK_Complex:
1166       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1167                                 /*isInit*/ true);
1168       break;
1169     case TEK_Aggregate:
1170       EmitAggExpr(RV, AggValueSlot::forAddr(
1171                           ReturnValue, Qualifiers(),
1172                           AggValueSlot::IsDestructed,
1173                           AggValueSlot::DoesNotNeedGCBarriers,
1174                           AggValueSlot::IsNotAliased,
1175                           getOverlapForReturnValue()));
1176       break;
1177     }
1178   }
1179 
1180   ++NumReturnExprs;
1181   if (!RV || RV->isEvaluatable(getContext()))
1182     ++NumSimpleReturnExprs;
1183 
1184   cleanupScope.ForceCleanup();
1185   EmitBranchThroughCleanup(ReturnBlock);
1186 }
1187 
1188 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1189   // As long as debug info is modeled with instructions, we have to ensure we
1190   // have a place to insert here and write the stop point here.
1191   if (HaveInsertPoint())
1192     EmitStopPoint(&S);
1193 
1194   for (const auto *I : S.decls())
1195     EmitDecl(*I);
1196 }
1197 
1198 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1199   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1200 
1201   // If this code is reachable then emit a stop point (if generating
1202   // debug info). We have to do this ourselves because we are on the
1203   // "simple" statement path.
1204   if (HaveInsertPoint())
1205     EmitStopPoint(&S);
1206 
1207   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1208 }
1209 
1210 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1211   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1212 
1213   // If this code is reachable then emit a stop point (if generating
1214   // debug info). We have to do this ourselves because we are on the
1215   // "simple" statement path.
1216   if (HaveInsertPoint())
1217     EmitStopPoint(&S);
1218 
1219   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1220 }
1221 
1222 /// EmitCaseStmtRange - If case statement range is not too big then
1223 /// add multiple cases to switch instruction, one for each value within
1224 /// the range. If range is too big then emit "if" condition check.
1225 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1226   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1227 
1228   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1229   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1230 
1231   // Emit the code for this case. We do this first to make sure it is
1232   // properly chained from our predecessor before generating the
1233   // switch machinery to enter this block.
1234   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1235   EmitBlockWithFallThrough(CaseDest, &S);
1236   EmitStmt(S.getSubStmt());
1237 
1238   // If range is empty, do nothing.
1239   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1240     return;
1241 
1242   llvm::APInt Range = RHS - LHS;
1243   // FIXME: parameters such as this should not be hardcoded.
1244   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1245     // Range is small enough to add multiple switch instruction cases.
1246     uint64_t Total = getProfileCount(&S);
1247     unsigned NCases = Range.getZExtValue() + 1;
1248     // We only have one region counter for the entire set of cases here, so we
1249     // need to divide the weights evenly between the generated cases, ensuring
1250     // that the total weight is preserved. E.g., a weight of 5 over three cases
1251     // will be distributed as weights of 2, 2, and 1.
1252     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1253     for (unsigned I = 0; I != NCases; ++I) {
1254       if (SwitchWeights)
1255         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1256       if (Rem)
1257         Rem--;
1258       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1259       ++LHS;
1260     }
1261     return;
1262   }
1263 
1264   // The range is too big. Emit "if" condition into a new block,
1265   // making sure to save and restore the current insertion point.
1266   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1267 
1268   // Push this test onto the chain of range checks (which terminates
1269   // in the default basic block). The switch's default will be changed
1270   // to the top of this chain after switch emission is complete.
1271   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1272   CaseRangeBlock = createBasicBlock("sw.caserange");
1273 
1274   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1275   Builder.SetInsertPoint(CaseRangeBlock);
1276 
1277   // Emit range check.
1278   llvm::Value *Diff =
1279     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1280   llvm::Value *Cond =
1281     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1282 
1283   llvm::MDNode *Weights = nullptr;
1284   if (SwitchWeights) {
1285     uint64_t ThisCount = getProfileCount(&S);
1286     uint64_t DefaultCount = (*SwitchWeights)[0];
1287     Weights = createProfileWeights(ThisCount, DefaultCount);
1288 
1289     // Since we're chaining the switch default through each large case range, we
1290     // need to update the weight for the default, ie, the first case, to include
1291     // this case.
1292     (*SwitchWeights)[0] += ThisCount;
1293   }
1294   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1295 
1296   // Restore the appropriate insertion point.
1297   if (RestoreBB)
1298     Builder.SetInsertPoint(RestoreBB);
1299   else
1300     Builder.ClearInsertionPoint();
1301 }
1302 
1303 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1304   // If there is no enclosing switch instance that we're aware of, then this
1305   // case statement and its block can be elided.  This situation only happens
1306   // when we've constant-folded the switch, are emitting the constant case,
1307   // and part of the constant case includes another case statement.  For
1308   // instance: switch (4) { case 4: do { case 5: } while (1); }
1309   if (!SwitchInsn) {
1310     EmitStmt(S.getSubStmt());
1311     return;
1312   }
1313 
1314   // Handle case ranges.
1315   if (S.getRHS()) {
1316     EmitCaseStmtRange(S);
1317     return;
1318   }
1319 
1320   llvm::ConstantInt *CaseVal =
1321     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1322 
1323   // If the body of the case is just a 'break', try to not emit an empty block.
1324   // If we're profiling or we're not optimizing, leave the block in for better
1325   // debug and coverage analysis.
1326   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1327       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1328       isa<BreakStmt>(S.getSubStmt())) {
1329     JumpDest Block = BreakContinueStack.back().BreakBlock;
1330 
1331     // Only do this optimization if there are no cleanups that need emitting.
1332     if (isObviouslyBranchWithoutCleanups(Block)) {
1333       if (SwitchWeights)
1334         SwitchWeights->push_back(getProfileCount(&S));
1335       SwitchInsn->addCase(CaseVal, Block.getBlock());
1336 
1337       // If there was a fallthrough into this case, make sure to redirect it to
1338       // the end of the switch as well.
1339       if (Builder.GetInsertBlock()) {
1340         Builder.CreateBr(Block.getBlock());
1341         Builder.ClearInsertionPoint();
1342       }
1343       return;
1344     }
1345   }
1346 
1347   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1348   EmitBlockWithFallThrough(CaseDest, &S);
1349   if (SwitchWeights)
1350     SwitchWeights->push_back(getProfileCount(&S));
1351   SwitchInsn->addCase(CaseVal, CaseDest);
1352 
1353   // Recursively emitting the statement is acceptable, but is not wonderful for
1354   // code where we have many case statements nested together, i.e.:
1355   //  case 1:
1356   //    case 2:
1357   //      case 3: etc.
1358   // Handling this recursively will create a new block for each case statement
1359   // that falls through to the next case which is IR intensive.  It also causes
1360   // deep recursion which can run into stack depth limitations.  Handle
1361   // sequential non-range case statements specially.
1362   const CaseStmt *CurCase = &S;
1363   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1364 
1365   // Otherwise, iteratively add consecutive cases to this switch stmt.
1366   while (NextCase && NextCase->getRHS() == nullptr) {
1367     CurCase = NextCase;
1368     llvm::ConstantInt *CaseVal =
1369       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1370 
1371     if (SwitchWeights)
1372       SwitchWeights->push_back(getProfileCount(NextCase));
1373     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1374       CaseDest = createBasicBlock("sw.bb");
1375       EmitBlockWithFallThrough(CaseDest, &S);
1376     }
1377 
1378     SwitchInsn->addCase(CaseVal, CaseDest);
1379     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1380   }
1381 
1382   // Normal default recursion for non-cases.
1383   EmitStmt(CurCase->getSubStmt());
1384 }
1385 
1386 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1387   // If there is no enclosing switch instance that we're aware of, then this
1388   // default statement can be elided. This situation only happens when we've
1389   // constant-folded the switch.
1390   if (!SwitchInsn) {
1391     EmitStmt(S.getSubStmt());
1392     return;
1393   }
1394 
1395   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1396   assert(DefaultBlock->empty() &&
1397          "EmitDefaultStmt: Default block already defined?");
1398 
1399   EmitBlockWithFallThrough(DefaultBlock, &S);
1400 
1401   EmitStmt(S.getSubStmt());
1402 }
1403 
1404 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1405 /// constant value that is being switched on, see if we can dead code eliminate
1406 /// the body of the switch to a simple series of statements to emit.  Basically,
1407 /// on a switch (5) we want to find these statements:
1408 ///    case 5:
1409 ///      printf(...);    <--
1410 ///      ++i;            <--
1411 ///      break;
1412 ///
1413 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1414 /// transformation (for example, one of the elided statements contains a label
1415 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1416 /// should include statements after it (e.g. the printf() line is a substmt of
1417 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1418 /// statement, then return CSFC_Success.
1419 ///
1420 /// If Case is non-null, then we are looking for the specified case, checking
1421 /// that nothing we jump over contains labels.  If Case is null, then we found
1422 /// the case and are looking for the break.
1423 ///
1424 /// If the recursive walk actually finds our Case, then we set FoundCase to
1425 /// true.
1426 ///
1427 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1428 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1429                                             const SwitchCase *Case,
1430                                             bool &FoundCase,
1431                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1432   // If this is a null statement, just succeed.
1433   if (!S)
1434     return Case ? CSFC_Success : CSFC_FallThrough;
1435 
1436   // If this is the switchcase (case 4: or default) that we're looking for, then
1437   // we're in business.  Just add the substatement.
1438   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1439     if (S == Case) {
1440       FoundCase = true;
1441       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1442                                       ResultStmts);
1443     }
1444 
1445     // Otherwise, this is some other case or default statement, just ignore it.
1446     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1447                                     ResultStmts);
1448   }
1449 
1450   // If we are in the live part of the code and we found our break statement,
1451   // return a success!
1452   if (!Case && isa<BreakStmt>(S))
1453     return CSFC_Success;
1454 
1455   // If this is a switch statement, then it might contain the SwitchCase, the
1456   // break, or neither.
1457   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1458     // Handle this as two cases: we might be looking for the SwitchCase (if so
1459     // the skipped statements must be skippable) or we might already have it.
1460     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1461     bool StartedInLiveCode = FoundCase;
1462     unsigned StartSize = ResultStmts.size();
1463 
1464     // If we've not found the case yet, scan through looking for it.
1465     if (Case) {
1466       // Keep track of whether we see a skipped declaration.  The code could be
1467       // using the declaration even if it is skipped, so we can't optimize out
1468       // the decl if the kept statements might refer to it.
1469       bool HadSkippedDecl = false;
1470 
1471       // If we're looking for the case, just see if we can skip each of the
1472       // substatements.
1473       for (; Case && I != E; ++I) {
1474         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1475 
1476         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1477         case CSFC_Failure: return CSFC_Failure;
1478         case CSFC_Success:
1479           // A successful result means that either 1) that the statement doesn't
1480           // have the case and is skippable, or 2) does contain the case value
1481           // and also contains the break to exit the switch.  In the later case,
1482           // we just verify the rest of the statements are elidable.
1483           if (FoundCase) {
1484             // If we found the case and skipped declarations, we can't do the
1485             // optimization.
1486             if (HadSkippedDecl)
1487               return CSFC_Failure;
1488 
1489             for (++I; I != E; ++I)
1490               if (CodeGenFunction::ContainsLabel(*I, true))
1491                 return CSFC_Failure;
1492             return CSFC_Success;
1493           }
1494           break;
1495         case CSFC_FallThrough:
1496           // If we have a fallthrough condition, then we must have found the
1497           // case started to include statements.  Consider the rest of the
1498           // statements in the compound statement as candidates for inclusion.
1499           assert(FoundCase && "Didn't find case but returned fallthrough?");
1500           // We recursively found Case, so we're not looking for it anymore.
1501           Case = nullptr;
1502 
1503           // If we found the case and skipped declarations, we can't do the
1504           // optimization.
1505           if (HadSkippedDecl)
1506             return CSFC_Failure;
1507           break;
1508         }
1509       }
1510 
1511       if (!FoundCase)
1512         return CSFC_Success;
1513 
1514       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1515     }
1516 
1517     // If we have statements in our range, then we know that the statements are
1518     // live and need to be added to the set of statements we're tracking.
1519     bool AnyDecls = false;
1520     for (; I != E; ++I) {
1521       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1522 
1523       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1524       case CSFC_Failure: return CSFC_Failure;
1525       case CSFC_FallThrough:
1526         // A fallthrough result means that the statement was simple and just
1527         // included in ResultStmt, keep adding them afterwards.
1528         break;
1529       case CSFC_Success:
1530         // A successful result means that we found the break statement and
1531         // stopped statement inclusion.  We just ensure that any leftover stmts
1532         // are skippable and return success ourselves.
1533         for (++I; I != E; ++I)
1534           if (CodeGenFunction::ContainsLabel(*I, true))
1535             return CSFC_Failure;
1536         return CSFC_Success;
1537       }
1538     }
1539 
1540     // If we're about to fall out of a scope without hitting a 'break;', we
1541     // can't perform the optimization if there were any decls in that scope
1542     // (we'd lose their end-of-lifetime).
1543     if (AnyDecls) {
1544       // If the entire compound statement was live, there's one more thing we
1545       // can try before giving up: emit the whole thing as a single statement.
1546       // We can do that unless the statement contains a 'break;'.
1547       // FIXME: Such a break must be at the end of a construct within this one.
1548       // We could emit this by just ignoring the BreakStmts entirely.
1549       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1550         ResultStmts.resize(StartSize);
1551         ResultStmts.push_back(S);
1552       } else {
1553         return CSFC_Failure;
1554       }
1555     }
1556 
1557     return CSFC_FallThrough;
1558   }
1559 
1560   // Okay, this is some other statement that we don't handle explicitly, like a
1561   // for statement or increment etc.  If we are skipping over this statement,
1562   // just verify it doesn't have labels, which would make it invalid to elide.
1563   if (Case) {
1564     if (CodeGenFunction::ContainsLabel(S, true))
1565       return CSFC_Failure;
1566     return CSFC_Success;
1567   }
1568 
1569   // Otherwise, we want to include this statement.  Everything is cool with that
1570   // so long as it doesn't contain a break out of the switch we're in.
1571   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1572 
1573   // Otherwise, everything is great.  Include the statement and tell the caller
1574   // that we fall through and include the next statement as well.
1575   ResultStmts.push_back(S);
1576   return CSFC_FallThrough;
1577 }
1578 
1579 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1580 /// then invoke CollectStatementsForCase to find the list of statements to emit
1581 /// for a switch on constant.  See the comment above CollectStatementsForCase
1582 /// for more details.
1583 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1584                                        const llvm::APSInt &ConstantCondValue,
1585                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1586                                        ASTContext &C,
1587                                        const SwitchCase *&ResultCase) {
1588   // First step, find the switch case that is being branched to.  We can do this
1589   // efficiently by scanning the SwitchCase list.
1590   const SwitchCase *Case = S.getSwitchCaseList();
1591   const DefaultStmt *DefaultCase = nullptr;
1592 
1593   for (; Case; Case = Case->getNextSwitchCase()) {
1594     // It's either a default or case.  Just remember the default statement in
1595     // case we're not jumping to any numbered cases.
1596     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1597       DefaultCase = DS;
1598       continue;
1599     }
1600 
1601     // Check to see if this case is the one we're looking for.
1602     const CaseStmt *CS = cast<CaseStmt>(Case);
1603     // Don't handle case ranges yet.
1604     if (CS->getRHS()) return false;
1605 
1606     // If we found our case, remember it as 'case'.
1607     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1608       break;
1609   }
1610 
1611   // If we didn't find a matching case, we use a default if it exists, or we
1612   // elide the whole switch body!
1613   if (!Case) {
1614     // It is safe to elide the body of the switch if it doesn't contain labels
1615     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1616     if (!DefaultCase)
1617       return !CodeGenFunction::ContainsLabel(&S);
1618     Case = DefaultCase;
1619   }
1620 
1621   // Ok, we know which case is being jumped to, try to collect all the
1622   // statements that follow it.  This can fail for a variety of reasons.  Also,
1623   // check to see that the recursive walk actually found our case statement.
1624   // Insane cases like this can fail to find it in the recursive walk since we
1625   // don't handle every stmt kind:
1626   // switch (4) {
1627   //   while (1) {
1628   //     case 4: ...
1629   bool FoundCase = false;
1630   ResultCase = Case;
1631   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1632                                   ResultStmts) != CSFC_Failure &&
1633          FoundCase;
1634 }
1635 
1636 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1637   // Handle nested switch statements.
1638   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1639   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1640   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1641 
1642   // See if we can constant fold the condition of the switch and therefore only
1643   // emit the live case statement (if any) of the switch.
1644   llvm::APSInt ConstantCondValue;
1645   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1646     SmallVector<const Stmt*, 4> CaseStmts;
1647     const SwitchCase *Case = nullptr;
1648     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1649                                    getContext(), Case)) {
1650       if (Case)
1651         incrementProfileCounter(Case);
1652       RunCleanupsScope ExecutedScope(*this);
1653 
1654       if (S.getInit())
1655         EmitStmt(S.getInit());
1656 
1657       // Emit the condition variable if needed inside the entire cleanup scope
1658       // used by this special case for constant folded switches.
1659       if (S.getConditionVariable())
1660         EmitDecl(*S.getConditionVariable());
1661 
1662       // At this point, we are no longer "within" a switch instance, so
1663       // we can temporarily enforce this to ensure that any embedded case
1664       // statements are not emitted.
1665       SwitchInsn = nullptr;
1666 
1667       // Okay, we can dead code eliminate everything except this case.  Emit the
1668       // specified series of statements and we're good.
1669       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1670         EmitStmt(CaseStmts[i]);
1671       incrementProfileCounter(&S);
1672 
1673       // Now we want to restore the saved switch instance so that nested
1674       // switches continue to function properly
1675       SwitchInsn = SavedSwitchInsn;
1676 
1677       return;
1678     }
1679   }
1680 
1681   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1682 
1683   RunCleanupsScope ConditionScope(*this);
1684 
1685   if (S.getInit())
1686     EmitStmt(S.getInit());
1687 
1688   if (S.getConditionVariable())
1689     EmitDecl(*S.getConditionVariable());
1690   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1691 
1692   // Create basic block to hold stuff that comes after switch
1693   // statement. We also need to create a default block now so that
1694   // explicit case ranges tests can have a place to jump to on
1695   // failure.
1696   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1697   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1698   if (PGO.haveRegionCounts()) {
1699     // Walk the SwitchCase list to find how many there are.
1700     uint64_t DefaultCount = 0;
1701     unsigned NumCases = 0;
1702     for (const SwitchCase *Case = S.getSwitchCaseList();
1703          Case;
1704          Case = Case->getNextSwitchCase()) {
1705       if (isa<DefaultStmt>(Case))
1706         DefaultCount = getProfileCount(Case);
1707       NumCases += 1;
1708     }
1709     SwitchWeights = new SmallVector<uint64_t, 16>();
1710     SwitchWeights->reserve(NumCases);
1711     // The default needs to be first. We store the edge count, so we already
1712     // know the right weight.
1713     SwitchWeights->push_back(DefaultCount);
1714   }
1715   CaseRangeBlock = DefaultBlock;
1716 
1717   // Clear the insertion point to indicate we are in unreachable code.
1718   Builder.ClearInsertionPoint();
1719 
1720   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1721   // then reuse last ContinueBlock.
1722   JumpDest OuterContinue;
1723   if (!BreakContinueStack.empty())
1724     OuterContinue = BreakContinueStack.back().ContinueBlock;
1725 
1726   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1727 
1728   // Emit switch body.
1729   EmitStmt(S.getBody());
1730 
1731   BreakContinueStack.pop_back();
1732 
1733   // Update the default block in case explicit case range tests have
1734   // been chained on top.
1735   SwitchInsn->setDefaultDest(CaseRangeBlock);
1736 
1737   // If a default was never emitted:
1738   if (!DefaultBlock->getParent()) {
1739     // If we have cleanups, emit the default block so that there's a
1740     // place to jump through the cleanups from.
1741     if (ConditionScope.requiresCleanups()) {
1742       EmitBlock(DefaultBlock);
1743 
1744     // Otherwise, just forward the default block to the switch end.
1745     } else {
1746       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1747       delete DefaultBlock;
1748     }
1749   }
1750 
1751   ConditionScope.ForceCleanup();
1752 
1753   // Emit continuation.
1754   EmitBlock(SwitchExit.getBlock(), true);
1755   incrementProfileCounter(&S);
1756 
1757   // If the switch has a condition wrapped by __builtin_unpredictable,
1758   // create metadata that specifies that the switch is unpredictable.
1759   // Don't bother if not optimizing because that metadata would not be used.
1760   auto *Call = dyn_cast<CallExpr>(S.getCond());
1761   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1762     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1763     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1764       llvm::MDBuilder MDHelper(getLLVMContext());
1765       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1766                               MDHelper.createUnpredictable());
1767     }
1768   }
1769 
1770   if (SwitchWeights) {
1771     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1772            "switch weights do not match switch cases");
1773     // If there's only one jump destination there's no sense weighting it.
1774     if (SwitchWeights->size() > 1)
1775       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1776                               createProfileWeights(*SwitchWeights));
1777     delete SwitchWeights;
1778   }
1779   SwitchInsn = SavedSwitchInsn;
1780   SwitchWeights = SavedSwitchWeights;
1781   CaseRangeBlock = SavedCRBlock;
1782 }
1783 
1784 static std::string
1785 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1786                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1787   std::string Result;
1788 
1789   while (*Constraint) {
1790     switch (*Constraint) {
1791     default:
1792       Result += Target.convertConstraint(Constraint);
1793       break;
1794     // Ignore these
1795     case '*':
1796     case '?':
1797     case '!':
1798     case '=': // Will see this and the following in mult-alt constraints.
1799     case '+':
1800       break;
1801     case '#': // Ignore the rest of the constraint alternative.
1802       while (Constraint[1] && Constraint[1] != ',')
1803         Constraint++;
1804       break;
1805     case '&':
1806     case '%':
1807       Result += *Constraint;
1808       while (Constraint[1] && Constraint[1] == *Constraint)
1809         Constraint++;
1810       break;
1811     case ',':
1812       Result += "|";
1813       break;
1814     case 'g':
1815       Result += "imr";
1816       break;
1817     case '[': {
1818       assert(OutCons &&
1819              "Must pass output names to constraints with a symbolic name");
1820       unsigned Index;
1821       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1822       assert(result && "Could not resolve symbolic name"); (void)result;
1823       Result += llvm::utostr(Index);
1824       break;
1825     }
1826     }
1827 
1828     Constraint++;
1829   }
1830 
1831   return Result;
1832 }
1833 
1834 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1835 /// as using a particular register add that as a constraint that will be used
1836 /// in this asm stmt.
1837 static std::string
1838 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1839                        const TargetInfo &Target, CodeGenModule &CGM,
1840                        const AsmStmt &Stmt, const bool EarlyClobber,
1841                        std::string *GCCReg = nullptr) {
1842   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1843   if (!AsmDeclRef)
1844     return Constraint;
1845   const ValueDecl &Value = *AsmDeclRef->getDecl();
1846   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1847   if (!Variable)
1848     return Constraint;
1849   if (Variable->getStorageClass() != SC_Register)
1850     return Constraint;
1851   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1852   if (!Attr)
1853     return Constraint;
1854   StringRef Register = Attr->getLabel();
1855   assert(Target.isValidGCCRegisterName(Register));
1856   // We're using validateOutputConstraint here because we only care if
1857   // this is a register constraint.
1858   TargetInfo::ConstraintInfo Info(Constraint, "");
1859   if (Target.validateOutputConstraint(Info) &&
1860       !Info.allowsRegister()) {
1861     CGM.ErrorUnsupported(&Stmt, "__asm__");
1862     return Constraint;
1863   }
1864   // Canonicalize the register here before returning it.
1865   Register = Target.getNormalizedGCCRegisterName(Register);
1866   if (GCCReg != nullptr)
1867     *GCCReg = Register.str();
1868   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1869 }
1870 
1871 llvm::Value*
1872 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1873                                     LValue InputValue, QualType InputType,
1874                                     std::string &ConstraintStr,
1875                                     SourceLocation Loc) {
1876   llvm::Value *Arg;
1877   if (Info.allowsRegister() || !Info.allowsMemory()) {
1878     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1879       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1880     } else {
1881       llvm::Type *Ty = ConvertType(InputType);
1882       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1883       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1884         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1885         Ty = llvm::PointerType::getUnqual(Ty);
1886 
1887         Arg = Builder.CreateLoad(
1888             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
1889       } else {
1890         Arg = InputValue.getPointer(*this);
1891         ConstraintStr += '*';
1892       }
1893     }
1894   } else {
1895     Arg = InputValue.getPointer(*this);
1896     ConstraintStr += '*';
1897   }
1898 
1899   return Arg;
1900 }
1901 
1902 llvm::Value* CodeGenFunction::EmitAsmInput(
1903                                          const TargetInfo::ConstraintInfo &Info,
1904                                            const Expr *InputExpr,
1905                                            std::string &ConstraintStr) {
1906   // If this can't be a register or memory, i.e., has to be a constant
1907   // (immediate or symbolic), try to emit it as such.
1908   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1909     if (Info.requiresImmediateConstant()) {
1910       Expr::EvalResult EVResult;
1911       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
1912 
1913       llvm::APSInt IntResult;
1914       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
1915                                           getContext()))
1916         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
1917     }
1918 
1919     Expr::EvalResult Result;
1920     if (InputExpr->EvaluateAsInt(Result, getContext()))
1921       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
1922   }
1923 
1924   if (Info.allowsRegister() || !Info.allowsMemory())
1925     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1926       return EmitScalarExpr(InputExpr);
1927   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1928     return EmitScalarExpr(InputExpr);
1929   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1930   LValue Dest = EmitLValue(InputExpr);
1931   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1932                             InputExpr->getExprLoc());
1933 }
1934 
1935 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1936 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1937 /// integers which are the source locations of the start of each line in the
1938 /// asm.
1939 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1940                                       CodeGenFunction &CGF) {
1941   SmallVector<llvm::Metadata *, 8> Locs;
1942   // Add the location of the first line to the MDNode.
1943   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1944       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
1945   StringRef StrVal = Str->getString();
1946   if (!StrVal.empty()) {
1947     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1948     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1949     unsigned StartToken = 0;
1950     unsigned ByteOffset = 0;
1951 
1952     // Add the location of the start of each subsequent line of the asm to the
1953     // MDNode.
1954     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1955       if (StrVal[i] != '\n') continue;
1956       SourceLocation LineLoc = Str->getLocationOfByte(
1957           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1958       Locs.push_back(llvm::ConstantAsMetadata::get(
1959           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1960     }
1961   }
1962 
1963   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1964 }
1965 
1966 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
1967                               bool ReadOnly, bool ReadNone, bool NoMerge,
1968                               const AsmStmt &S,
1969                               const std::vector<llvm::Type *> &ResultRegTypes,
1970                               CodeGenFunction &CGF,
1971                               std::vector<llvm::Value *> &RegResults) {
1972   Result.addAttribute(llvm::AttributeList::FunctionIndex,
1973                       llvm::Attribute::NoUnwind);
1974   if (NoMerge)
1975     Result.addAttribute(llvm::AttributeList::FunctionIndex,
1976                         llvm::Attribute::NoMerge);
1977   // Attach readnone and readonly attributes.
1978   if (!HasSideEffect) {
1979     if (ReadNone)
1980       Result.addAttribute(llvm::AttributeList::FunctionIndex,
1981                           llvm::Attribute::ReadNone);
1982     else if (ReadOnly)
1983       Result.addAttribute(llvm::AttributeList::FunctionIndex,
1984                           llvm::Attribute::ReadOnly);
1985   }
1986 
1987   // Slap the source location of the inline asm into a !srcloc metadata on the
1988   // call.
1989   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1990     Result.setMetadata("srcloc",
1991                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
1992   else {
1993     // At least put the line number on MS inline asm blobs.
1994     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
1995                                         S.getAsmLoc().getRawEncoding());
1996     Result.setMetadata("srcloc",
1997                        llvm::MDNode::get(CGF.getLLVMContext(),
1998                                          llvm::ConstantAsMetadata::get(Loc)));
1999   }
2000 
2001   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2002     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2003     // convergent (meaning, they may call an intrinsically convergent op, such
2004     // as bar.sync, and so can't have certain optimizations applied around
2005     // them).
2006     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2007                         llvm::Attribute::Convergent);
2008   // Extract all of the register value results from the asm.
2009   if (ResultRegTypes.size() == 1) {
2010     RegResults.push_back(&Result);
2011   } else {
2012     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2013       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2014       RegResults.push_back(Tmp);
2015     }
2016   }
2017 }
2018 
2019 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2020   // Assemble the final asm string.
2021   std::string AsmString = S.generateAsmString(getContext());
2022 
2023   // Get all the output and input constraints together.
2024   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2025   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2026 
2027   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2028     StringRef Name;
2029     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2030       Name = GAS->getOutputName(i);
2031     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2032     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2033     assert(IsValid && "Failed to parse output constraint");
2034     OutputConstraintInfos.push_back(Info);
2035   }
2036 
2037   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2038     StringRef Name;
2039     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2040       Name = GAS->getInputName(i);
2041     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2042     bool IsValid =
2043       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2044     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2045     InputConstraintInfos.push_back(Info);
2046   }
2047 
2048   std::string Constraints;
2049 
2050   std::vector<LValue> ResultRegDests;
2051   std::vector<QualType> ResultRegQualTys;
2052   std::vector<llvm::Type *> ResultRegTypes;
2053   std::vector<llvm::Type *> ResultTruncRegTypes;
2054   std::vector<llvm::Type *> ArgTypes;
2055   std::vector<llvm::Value*> Args;
2056   llvm::BitVector ResultTypeRequiresCast;
2057 
2058   // Keep track of inout constraints.
2059   std::string InOutConstraints;
2060   std::vector<llvm::Value*> InOutArgs;
2061   std::vector<llvm::Type*> InOutArgTypes;
2062 
2063   // Keep track of out constraints for tied input operand.
2064   std::vector<std::string> OutputConstraints;
2065 
2066   // Keep track of defined physregs.
2067   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2068 
2069   // An inline asm can be marked readonly if it meets the following conditions:
2070   //  - it doesn't have any sideeffects
2071   //  - it doesn't clobber memory
2072   //  - it doesn't return a value by-reference
2073   // It can be marked readnone if it doesn't have any input memory constraints
2074   // in addition to meeting the conditions listed above.
2075   bool ReadOnly = true, ReadNone = true;
2076 
2077   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2078     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2079 
2080     // Simplify the output constraint.
2081     std::string OutputConstraint(S.getOutputConstraint(i));
2082     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2083                                           getTarget(), &OutputConstraintInfos);
2084 
2085     const Expr *OutExpr = S.getOutputExpr(i);
2086     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2087 
2088     std::string GCCReg;
2089     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2090                                               getTarget(), CGM, S,
2091                                               Info.earlyClobber(),
2092                                               &GCCReg);
2093     // Give an error on multiple outputs to same physreg.
2094     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2095       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2096 
2097     OutputConstraints.push_back(OutputConstraint);
2098     LValue Dest = EmitLValue(OutExpr);
2099     if (!Constraints.empty())
2100       Constraints += ',';
2101 
2102     // If this is a register output, then make the inline asm return it
2103     // by-value.  If this is a memory result, return the value by-reference.
2104     bool isScalarizableAggregate =
2105         hasAggregateEvaluationKind(OutExpr->getType());
2106     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2107                                  isScalarizableAggregate)) {
2108       Constraints += "=" + OutputConstraint;
2109       ResultRegQualTys.push_back(OutExpr->getType());
2110       ResultRegDests.push_back(Dest);
2111       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2112       if (Info.allowsRegister() && isScalarizableAggregate) {
2113         ResultTypeRequiresCast.push_back(true);
2114         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2115         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2116         ResultRegTypes.push_back(ConvTy);
2117       } else {
2118         ResultTypeRequiresCast.push_back(false);
2119         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2120       }
2121       // If this output is tied to an input, and if the input is larger, then
2122       // we need to set the actual result type of the inline asm node to be the
2123       // same as the input type.
2124       if (Info.hasMatchingInput()) {
2125         unsigned InputNo;
2126         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2127           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2128           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2129             break;
2130         }
2131         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2132 
2133         QualType InputTy = S.getInputExpr(InputNo)->getType();
2134         QualType OutputType = OutExpr->getType();
2135 
2136         uint64_t InputSize = getContext().getTypeSize(InputTy);
2137         if (getContext().getTypeSize(OutputType) < InputSize) {
2138           // Form the asm to return the value as a larger integer or fp type.
2139           ResultRegTypes.back() = ConvertType(InputTy);
2140         }
2141       }
2142       if (llvm::Type* AdjTy =
2143             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2144                                                  ResultRegTypes.back()))
2145         ResultRegTypes.back() = AdjTy;
2146       else {
2147         CGM.getDiags().Report(S.getAsmLoc(),
2148                               diag::err_asm_invalid_type_in_input)
2149             << OutExpr->getType() << OutputConstraint;
2150       }
2151 
2152       // Update largest vector width for any vector types.
2153       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2154         LargestVectorWidth =
2155             std::max((uint64_t)LargestVectorWidth,
2156                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2157     } else {
2158       ArgTypes.push_back(Dest.getAddress(*this).getType());
2159       Args.push_back(Dest.getPointer(*this));
2160       Constraints += "=*";
2161       Constraints += OutputConstraint;
2162       ReadOnly = ReadNone = false;
2163     }
2164 
2165     if (Info.isReadWrite()) {
2166       InOutConstraints += ',';
2167 
2168       const Expr *InputExpr = S.getOutputExpr(i);
2169       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2170                                             InOutConstraints,
2171                                             InputExpr->getExprLoc());
2172 
2173       if (llvm::Type* AdjTy =
2174           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2175                                                Arg->getType()))
2176         Arg = Builder.CreateBitCast(Arg, AdjTy);
2177 
2178       // Update largest vector width for any vector types.
2179       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2180         LargestVectorWidth =
2181             std::max((uint64_t)LargestVectorWidth,
2182                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2183       // Don't tie physregs.
2184       if (Info.allowsRegister() && GCCReg.empty())
2185         InOutConstraints += llvm::utostr(i);
2186       else
2187         InOutConstraints += OutputConstraint;
2188 
2189       InOutArgTypes.push_back(Arg->getType());
2190       InOutArgs.push_back(Arg);
2191     }
2192   }
2193 
2194   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2195   // to the return value slot. Only do this when returning in registers.
2196   if (isa<MSAsmStmt>(&S)) {
2197     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2198     if (RetAI.isDirect() || RetAI.isExtend()) {
2199       // Make a fake lvalue for the return value slot.
2200       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2201       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2202           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2203           ResultRegDests, AsmString, S.getNumOutputs());
2204       SawAsmBlock = true;
2205     }
2206   }
2207 
2208   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2209     const Expr *InputExpr = S.getInputExpr(i);
2210 
2211     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2212 
2213     if (Info.allowsMemory())
2214       ReadNone = false;
2215 
2216     if (!Constraints.empty())
2217       Constraints += ',';
2218 
2219     // Simplify the input constraint.
2220     std::string InputConstraint(S.getInputConstraint(i));
2221     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2222                                          &OutputConstraintInfos);
2223 
2224     InputConstraint = AddVariableConstraints(
2225         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2226         getTarget(), CGM, S, false /* No EarlyClobber */);
2227 
2228     std::string ReplaceConstraint (InputConstraint);
2229     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2230 
2231     // If this input argument is tied to a larger output result, extend the
2232     // input to be the same size as the output.  The LLVM backend wants to see
2233     // the input and output of a matching constraint be the same size.  Note
2234     // that GCC does not define what the top bits are here.  We use zext because
2235     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2236     if (Info.hasTiedOperand()) {
2237       unsigned Output = Info.getTiedOperand();
2238       QualType OutputType = S.getOutputExpr(Output)->getType();
2239       QualType InputTy = InputExpr->getType();
2240 
2241       if (getContext().getTypeSize(OutputType) >
2242           getContext().getTypeSize(InputTy)) {
2243         // Use ptrtoint as appropriate so that we can do our extension.
2244         if (isa<llvm::PointerType>(Arg->getType()))
2245           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2246         llvm::Type *OutputTy = ConvertType(OutputType);
2247         if (isa<llvm::IntegerType>(OutputTy))
2248           Arg = Builder.CreateZExt(Arg, OutputTy);
2249         else if (isa<llvm::PointerType>(OutputTy))
2250           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2251         else {
2252           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2253           Arg = Builder.CreateFPExt(Arg, OutputTy);
2254         }
2255       }
2256       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2257       ReplaceConstraint = OutputConstraints[Output];
2258     }
2259     if (llvm::Type* AdjTy =
2260           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2261                                                    Arg->getType()))
2262       Arg = Builder.CreateBitCast(Arg, AdjTy);
2263     else
2264       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2265           << InputExpr->getType() << InputConstraint;
2266 
2267     // Update largest vector width for any vector types.
2268     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2269       LargestVectorWidth =
2270           std::max((uint64_t)LargestVectorWidth,
2271                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2272 
2273     ArgTypes.push_back(Arg->getType());
2274     Args.push_back(Arg);
2275     Constraints += InputConstraint;
2276   }
2277 
2278   // Labels
2279   SmallVector<llvm::BasicBlock *, 16> Transfer;
2280   llvm::BasicBlock *Fallthrough = nullptr;
2281   bool IsGCCAsmGoto = false;
2282   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2283     IsGCCAsmGoto = GS->isAsmGoto();
2284     if (IsGCCAsmGoto) {
2285       for (const auto *E : GS->labels()) {
2286         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2287         Transfer.push_back(Dest.getBlock());
2288         llvm::BlockAddress *BA =
2289             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2290         Args.push_back(BA);
2291         ArgTypes.push_back(BA->getType());
2292         if (!Constraints.empty())
2293           Constraints += ',';
2294         Constraints += 'X';
2295       }
2296       Fallthrough = createBasicBlock("asm.fallthrough");
2297     }
2298   }
2299 
2300   // Append the "input" part of inout constraints last.
2301   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2302     ArgTypes.push_back(InOutArgTypes[i]);
2303     Args.push_back(InOutArgs[i]);
2304   }
2305   Constraints += InOutConstraints;
2306 
2307   // Clobbers
2308   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2309     StringRef Clobber = S.getClobber(i);
2310 
2311     if (Clobber == "memory")
2312       ReadOnly = ReadNone = false;
2313     else if (Clobber != "cc") {
2314       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2315       if (CGM.getCodeGenOpts().StackClashProtector &&
2316           getTarget().isSPRegName(Clobber)) {
2317         CGM.getDiags().Report(S.getAsmLoc(),
2318                               diag::warn_stack_clash_protection_inline_asm);
2319       }
2320     }
2321 
2322     if (!Constraints.empty())
2323       Constraints += ',';
2324 
2325     Constraints += "~{";
2326     Constraints += Clobber;
2327     Constraints += '}';
2328   }
2329 
2330   // Add machine specific clobbers
2331   std::string MachineClobbers = getTarget().getClobbers();
2332   if (!MachineClobbers.empty()) {
2333     if (!Constraints.empty())
2334       Constraints += ',';
2335     Constraints += MachineClobbers;
2336   }
2337 
2338   llvm::Type *ResultType;
2339   if (ResultRegTypes.empty())
2340     ResultType = VoidTy;
2341   else if (ResultRegTypes.size() == 1)
2342     ResultType = ResultRegTypes[0];
2343   else
2344     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2345 
2346   llvm::FunctionType *FTy =
2347     llvm::FunctionType::get(ResultType, ArgTypes, false);
2348 
2349   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2350   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2351     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2352   llvm::InlineAsm *IA =
2353     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2354                          /* IsAlignStack */ false, AsmDialect);
2355   std::vector<llvm::Value*> RegResults;
2356   if (IsGCCAsmGoto) {
2357     llvm::CallBrInst *Result =
2358         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2359     EmitBlock(Fallthrough);
2360     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2361                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2362                       *this, RegResults);
2363   } else {
2364     llvm::CallInst *Result =
2365         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2366     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2367                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2368                       *this, RegResults);
2369   }
2370 
2371   assert(RegResults.size() == ResultRegTypes.size());
2372   assert(RegResults.size() == ResultTruncRegTypes.size());
2373   assert(RegResults.size() == ResultRegDests.size());
2374   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2375   // in which case its size may grow.
2376   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2377   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2378     llvm::Value *Tmp = RegResults[i];
2379 
2380     // If the result type of the LLVM IR asm doesn't match the result type of
2381     // the expression, do the conversion.
2382     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2383       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2384 
2385       // Truncate the integer result to the right size, note that TruncTy can be
2386       // a pointer.
2387       if (TruncTy->isFloatingPointTy())
2388         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2389       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2390         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2391         Tmp = Builder.CreateTrunc(Tmp,
2392                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2393         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2394       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2395         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2396         Tmp = Builder.CreatePtrToInt(Tmp,
2397                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2398         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2399       } else if (TruncTy->isIntegerTy()) {
2400         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2401       } else if (TruncTy->isVectorTy()) {
2402         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2403       }
2404     }
2405 
2406     LValue Dest = ResultRegDests[i];
2407     // ResultTypeRequiresCast elements correspond to the first
2408     // ResultTypeRequiresCast.size() elements of RegResults.
2409     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2410       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2411       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2412                                         ResultRegTypes[i]->getPointerTo());
2413       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2414       if (Ty.isNull()) {
2415         const Expr *OutExpr = S.getOutputExpr(i);
2416         CGM.Error(
2417             OutExpr->getExprLoc(),
2418             "impossible constraint in asm: can't store value into a register");
2419         return;
2420       }
2421       Dest = MakeAddrLValue(A, Ty);
2422     }
2423     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2424   }
2425 }
2426 
2427 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2428   const RecordDecl *RD = S.getCapturedRecordDecl();
2429   QualType RecordTy = getContext().getRecordType(RD);
2430 
2431   // Initialize the captured struct.
2432   LValue SlotLV =
2433     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2434 
2435   RecordDecl::field_iterator CurField = RD->field_begin();
2436   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2437                                                  E = S.capture_init_end();
2438        I != E; ++I, ++CurField) {
2439     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2440     if (CurField->hasCapturedVLAType()) {
2441       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2442     } else {
2443       EmitInitializerForField(*CurField, LV, *I);
2444     }
2445   }
2446 
2447   return SlotLV;
2448 }
2449 
2450 /// Generate an outlined function for the body of a CapturedStmt, store any
2451 /// captured variables into the captured struct, and call the outlined function.
2452 llvm::Function *
2453 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2454   LValue CapStruct = InitCapturedStruct(S);
2455 
2456   // Emit the CapturedDecl
2457   CodeGenFunction CGF(CGM, true);
2458   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2459   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2460   delete CGF.CapturedStmtInfo;
2461 
2462   // Emit call to the helper function.
2463   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2464 
2465   return F;
2466 }
2467 
2468 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2469   LValue CapStruct = InitCapturedStruct(S);
2470   return CapStruct.getAddress(*this);
2471 }
2472 
2473 /// Creates the outlined function for a CapturedStmt.
2474 llvm::Function *
2475 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2476   assert(CapturedStmtInfo &&
2477     "CapturedStmtInfo should be set when generating the captured function");
2478   const CapturedDecl *CD = S.getCapturedDecl();
2479   const RecordDecl *RD = S.getCapturedRecordDecl();
2480   SourceLocation Loc = S.getBeginLoc();
2481   assert(CD->hasBody() && "missing CapturedDecl body");
2482 
2483   // Build the argument list.
2484   ASTContext &Ctx = CGM.getContext();
2485   FunctionArgList Args;
2486   Args.append(CD->param_begin(), CD->param_end());
2487 
2488   // Create the function declaration.
2489   const CGFunctionInfo &FuncInfo =
2490     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2491   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2492 
2493   llvm::Function *F =
2494     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2495                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2496   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2497   if (CD->isNothrow())
2498     F->addFnAttr(llvm::Attribute::NoUnwind);
2499 
2500   // Generate the function.
2501   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2502                 CD->getBody()->getBeginLoc());
2503   // Set the context parameter in CapturedStmtInfo.
2504   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2505   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2506 
2507   // Initialize variable-length arrays.
2508   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2509                                            Ctx.getTagDeclType(RD));
2510   for (auto *FD : RD->fields()) {
2511     if (FD->hasCapturedVLAType()) {
2512       auto *ExprArg =
2513           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2514               .getScalarVal();
2515       auto VAT = FD->getCapturedVLAType();
2516       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2517     }
2518   }
2519 
2520   // If 'this' is captured, load it into CXXThisValue.
2521   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2522     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2523     LValue ThisLValue = EmitLValueForField(Base, FD);
2524     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2525   }
2526 
2527   PGO.assignRegionCounters(GlobalDecl(CD), F);
2528   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2529   FinishFunction(CD->getBodyRBrace());
2530 
2531   return F;
2532 }
2533